WorldWideScience

Sample records for stratospheric trace gas

  1. A Lagrangian View of Stratospheric Trace Gas Distributions

    Science.gov (United States)

    Schoeberl, M. R.; Sparling, L.; Dessler, A.; Jackman, C. H.; Fleming, E. L.

    1998-01-01

    As a result of photochemistry, some relationship between the stratospheric age-of-air and the amount of tracer contained within an air sample is expected. The existence of such a relationship allows inferences about transport history to be made from observations of chemical tracers. This paper lays down the conceptual foundations for the relationship between age and tracer amount, developed within a Lagrangian framework. In general, the photochemical loss depends not only on the age of the parcel but also on its path. We show that under the "average path approximation" that the path variations are less important than parcel age. The average path approximation then allows us to develop a formal relationship between the age spectrum and the tracer spectrum. Using the relation between the tracer and age spectra, tracer-tracer correlations can be interpreted as resulting from mixing which connects parts of the single path photochemistry curve, which is formed purely from the action of photochemistry on an irreducible parcel. This geometric interpretation of mixing gives rise to constraints on trace gas correlations, and explains why some observations are do not fall on rapid mixing curves. This effect is seen in the ATMOS observations.

  2. Satellite observations and modeling of transport in the upper troposphere through the lower mesosphere during the 2006 major stratospheric sudden warming

    Directory of Open Access Journals (Sweden)

    W. H. Daffer

    2009-07-01

    Full Text Available An unusually strong and prolonged stratospheric sudden warming (SSW in January 2006 was the first major SSW for which globally distributed long-lived trace gas data are available covering the upper troposphere through the lower mesosphere. We use Aura Microwave Limb Sounder (MLS, Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS data, the SLIMCAT Chemistry Transport Model (CTM, and assimilated meteorological analyses to provide a comprehensive picture of transport during this event. The upper tropospheric ridge that triggered the SSW was associated with an elevated tropopause and layering in trace gas profiles in conjunction with stratospheric and tropospheric intrusions. Anomalous poleward transport (with corresponding quasi-isentropic troposphere-to-stratosphere exchange at the lowest levels studied in the region over the ridge extended well into the lower stratosphere. In the middle and upper stratosphere, the breakdown of the polar vortex transport barrier was seen in a signature of rapid, widespread mixing in trace gases, including CO, H2O, CH4 and N2O. The vortex broke down slightly later and more slowly in the lower than in the middle stratosphere. In the middle and lower stratosphere, small remnants with trace gas values characteristic of the pre-SSW vortex lingered through the weak and slow recovery of the vortex. The upper stratospheric vortex quickly reformed, and, as enhanced diabatic descent set in, CO descended into this strong vortex, echoing the fall vortex development. Trace gas evolution in the SLIMCAT CTM agrees well with that in the satellite trace gas data from the upper troposphere through the middle stratosphere. In the upper stratosphere and lower mesosphere, the SLIMCAT simulation does not capture the strong descent of mesospheric CO and H2O values into the reformed vortex; this poor CTM performance in the upper stratosphere and lower mesosphere results

  3. Polar Processes in a 50-year Simulation of Stratospheric Chemistry and Transport

    Science.gov (United States)

    Kawa, S.R.; Douglass, A. R.; Patrick, L. C.; Allen, D. R.; Randall, C. E.

    2004-01-01

    The unique chemical, dynamical, and microphysical processes that occur in the winter polar lower stratosphere are expected to interact strongly with changing climate and trace gas abundances. Significant changes in ozone have been observed and prediction of future ozone and climate interactions depends on modeling these processes successfully. We have conducted an off-line model simulation of the stratosphere for trace gas conditions representative of 1975-2025 using meteorology from the NASA finite-volume general circulation model. The objective of this simulation is to examine the sensitivity of stratospheric ozone and chemical change to varying meteorology and trace gas inputs. This presentation will examine the dependence of ozone and related processes in polar regions on the climatological and trace gas changes in the model. The model past performance is base-lined against available observations, and a future ozone recovery scenario is forecast. Overall the model ozone simulation is quite realistic, but initial analysis of the detailed evolution of some observable processes suggests systematic shortcomings in our description of the polar chemical rates and/or mechanisms. Model sensitivities, strengths, and weaknesses will be discussed with implications for uncertainty and confidence in coupled climate chemistry predictions.

  4. The airborne mass spectrometer AIMS – Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS

    Directory of Open Access Journals (Sweden)

    T. Jurkat

    2016-04-01

    an isotopically labeled 34SO2 standard. In addition, we report on trace gas measurements of HONO, which is sensitive to the reaction with SF5−. The detection limit for the various trace gases is in the low 10 pptv range at a 1 s time resolution with an overall uncertainty of the measurement of the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO (High Altitude LOng range research aircraft. As an example, measurements conducted during the TACTS/ESMVal (Transport and Composition of the LMS/UT and Earth System Model Validation mission with HALO in 2012 are presented, focusing on a classification of tropospheric and stratospheric influences in the UTLS region. The combination of AIMS measurements with other measurement techniques yields a comprehensive picture of the sulfur, chlorine and reactive nitrogen oxide budget in the UTLS. The different trace gases measured with AIMS exhibit the potential to gain a better understanding of the trace gas origin and variability at and near the tropopause.

  5. Tropical troposphere to stratosphere transport of carbon monoxide and long-lived trace species in the Chemical Lagrangian Model of the Stratosphere (CLaMS

    Directory of Open Access Journals (Sweden)

    R. Pommrich

    2014-12-01

    Full Text Available Variations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact of these transport fluxes on the composition of the tropical lower stratosphere. Anomaly patterns of carbon monoxide (CO and long-lived tracers in the lower tropical stratosphere allow conclusions about the rate and the variability of tropical upwelling to be drawn. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH4, N2O, CCl3F (CFC-11, CCl2F2 (CFC-12, and CO2 in the lower tropical stratosphere. For the long-lived trace substances, the boundary conditions at the surface are prescribed based on ground-based measurements in the lowest model level. The boundary condition for CO in the lower troposphere (below about 4 km is deduced from MOPITT measurements. Due to the lack of a specific representation of mixing and convective uplift in the troposphere in this model version, enhanced CO values, in particular those resulting from convective outflow are underestimated. However, in the tropical tropopause layer and the lower tropical stratosphere, there is relatively good agreement of simulated CO with in situ measurements (with the exception of the TROCCINOX campaign, where CO in the simulation is biased low ≈10–15 ppbv. Further, the model results (and therefore also the ERA-Interim winds, on which the transport in the model is based are of sufficient quality to describe large scale anomaly patterns of CO in the lower stratosphere. In particular, the zonally averaged tropical CO anomaly patterns (the so called "tape recorder" patterns simulated by this model version of CLaMS are in good agreement with observations, although the simulations show a too rapid upwelling

  6. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    Science.gov (United States)

    Li, F.; Newman, P. A.; Pawson, S.; Perlwitz, J.

    2017-12-01

    The strength of the stratospheric Brewer-Dobson circulation (BDC) in a changing climate has been extensively studied, but the relative importance of greenhouse gas (GHG) increases and stratospheric ozone depletion in driving the BDC changes remains uncertain. This study separates the impacts of GHG and stratospheric ozone forcings on stratospheric mean age of air in the 1960-2010 period using the Goddard Earth Observing System Model (GEOS) Chemistry-Climate Model (CCM). The experiment compares a set of controlled simulations using a coupled atmosphere-ocean version of the GEOS CCM, in which either GHGs, or stratospheric ozone, or both factors evolve over time. The model results show that GHGs and stratospheric ozone have about equal contributions to the simulated mean age decrease. It is also found that GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: 1) a seasonal delay in the Antarctic polar vortex breakup, that inhibits young mid-latitude air from mixing with the older air inside the vortex; and 2) enhanced Antarctic downwelling, that brings older air from middle and upper stratosphere into the lower stratosphere.

  7. An ultrahot gas-giant exoplanet with a stratosphere.

    Science.gov (United States)

    Evans, Thomas M; Sing, David K; Kataria, Tiffany; Goyal, Jayesh; Nikolov, Nikolay; Wakeford, Hannah R; Deming, Drake; Marley, Mark S; Amundsen, David S; Ballester, Gilda E; Barstow, Joanna K; Ben-Jaffel, Lotfi; Bourrier, Vincent; Buchhave, Lars A; Cohen, Ofer; Ehrenreich, David; García Muñoz, Antonio; Henry, Gregory W; Knutson, Heather; Lavvas, Panayotis; Etangs, Alain Lecavelier des; Lewis, Nikole K; López-Morales, Mercedes; Mandell, Avi M; Sanz-Forcada, Jorge; Tremblin, Pascal; Lupu, Roxana

    2017-08-02

    Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere-where temperature increases with altitude-these molecular features will be observed in emission. It has been suggested that stratospheres could form in highly irradiated exoplanets, but the extent to which this occurs is unresolved both theoretically and observationally. A previous claim for the presence of a stratosphere remains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.

  8. Climate-chemical interactions and effects of changing atmospheric trace gases

    Science.gov (United States)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  9. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven; Perlwitz, Judith

    2018-01-01

    The relative impacts of greenhouse gas (GHG) increase and stratospheric ozone depletion on stratospheric mean age of air in the 1960-2010 period are quantified using the Goddard Earth Observing System Chemistry-�Climate Model. The experiment compares controlled simulations using a coupled atmosphere-�ocean version of the Goddard Earth Observing System Chemistry-�Climate Model, in which either GHGs or ozone depleting substances, or both factors evolve over time. The model results show that GHGs and ozone-depleting substances have about equal contributions to the simulated mean age decrease, but GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. It is also found that both the acceleration of the diabatic circulation and the decrease of the mean age difference between downwelling and upwelling regions are mainly caused by GHG forcing. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: (1) a seasonal delay in the Antarctic polar vortex breakup that inhibits young midlatitude air from mixing with the older air inside the vortex, and (2) enhanced Antarctic downwelling that brings older air from middle and upper stratosphere into the lower stratosphere.

  10. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    Science.gov (United States)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  11. Stratospheric measurements of ozone-depleting substances and greenhouse gases using AirCores

    Science.gov (United States)

    Laube, Johannes; Leedham Elvidge, Emma; Kaiser, Jan; Sturges, Bill; Heikkinen, Pauli; Laurila, Tuomas; Hatakka, Juha; Kivi, Rigel; Chen, Huilin; Fraser, Paul; van der Veen, Carina; Röckmann, Thomas

    2017-04-01

    Retrieving air samples from the stratosphere has previously required aircraft or large balloons, both of which are expensive to operate. The novel "AirCore" technique (Karion et al., 2010) enables stratospheric sampling using weather balloons, which is much more cost effective. AirCores are long (up to 200 m) stainless steel tubes which are placed as a payload on a small balloon, can ascend to over 30 km and fill upon descent, collecting a vertical profile of the atmosphere. Retrieved volumes are much smaller though, which presents a challenge for trace gas analysis. To date, only the more abundant trace gases such as carnon dioxide (CO2) and methane (CH4) have been quantified in AirCores. Halogenated trace gases are also important greenhouse gases and many also deplete stratospheric ozone. Their concentrations are however much lower i.e. typically in the part per trillion (ppt) molar range. We here present the first stratospheric measurements of halocarbons in AirCores obtained using UEA's highly sensitive (detection limits of 0.01-0.1 ppt in 10 ml of air) gas chromatography mass spectrometry system. The analysed air originates from a Stratospheric Air Sub-sampler (Mrozek et al., 2016) which collects AirCore segments after the non-destructive CO2 and CH4 analysis. Successfully measured species include CFC-11, CFC-12, CFC-113, CFC-115, H-1211, H-1301, HCFC-22, HCFC-141b, HCFC-142b, HCFC-133a, and sulphur hexafluoride (SF6). We compare the observed mixing ratios and precisions with data obtained from samples collected during various high-altitude aircraft campaigns between 2009 and 2016 as well as with southern hemisphere tropospheric long-term trends. As part of the ERC-funded EXC3ITE (EXploring stratospheric Composition, Chemistry and Circulation with Innovative Techniques) project more than 40 AirCore flights are planned in the next 3 years with an expanded range of up to 30 gases in order to explore seasonal and interannual variability in the stratosphere

  12. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    Science.gov (United States)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  13. Climate-chemical interactions and effects of changing atmospheric trace gases

    International Nuclear Information System (INIS)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.; Lacis, A.; Kuhn, W.; Luther, F.; Mahlman, J.; Reck, R.; Schlesinger, M.

    1992-01-01

    The problem concerning the greenhouse effects of human activities has broadened in scope from the CO 2 -climate problem to the trace gas-climate problem. The climate effects of non-CO 2 trace gases are strongly governed by interactions between chemistry, radiation, and dynamics. The authors discuss in detail the nature of the trace gas radiative heating and describe the importance of radiative-chemical interactions within the troposphere and the stratosphere. They make an assessment of the trace gas effects on troposphere-stratosphere temperature trends for the period covering the preindustrial era to the present and for the next several decades. Non-CO 2 greenhouse gases in the atmosphere are now adding to the greenhouse effect by an amount comparable to the effect of CO 2 . The rate of decadal increase of the total greenhouse forcing is now 3-6 times greater than the mean rate for the period 1850-1960. Time-dependent calculations with a simplified one-dimensional diffusive ocean model suggest that a surface warming about 0.4-0.8 K should have occurred during 1850 to 1980. For the various trace gas scenarios considered in this study, the equilibrium surface warming for the period 1980 to 2030 ranges from 0.8 to 4.1 K. This wide range in the projected warming is due to the range in the assumed scenario as well as due to the threefold uncertainty in the sensitivity of climate models. For the 180-year period from 1850 to 2030, their analysis suggests a trace gas-induced cumulative equilibrium surface warming in the range of 1.5 to 6.1 K

  14. WASP-121b: An ultrahot gas-giant exoplanet with a stratosphere

    Science.gov (United States)

    Kataria, Tiffany; Evans, Thomas M.; Sing, David; Goyal, Jayesh; Nikolov, Nikolay; Wakeford, Hannah R.; Deming, Drake; Marley, Mark S.; PanCET Team

    2018-01-01

    Stratospheres are ubiquitous in the atmospheres of solar system planets, and provide crucial information about an atmosphere’s chemical composition, vertical temperature structure, and energy budget. While it has been suggested that stratospheres could form in highly irradiated exoplanets, the extent to which this occurs has so far been unresolved both theoretically and observationally. Here we present secondary eclipse observations of the ultra-hot (Teq ~ 2500 K) gas giant exoplanet WASP-121b made using HST/WFC3 in spectroscopic mode across the 1.12-1.64 micron wavelength range. The spectrum is inconsistent with an isothermal atmosphere and has spectrally-resolved water features in emission, providing a detection of an exoplanet stratosphere at 5-sigma confidence. WASP-121b is one of the standout exoplanets available for atmospheric characterization, both in transmission and emission, due to its large radius (1.8 Rjup), high temperature, and bright host star (H=9.4mag). As such, we will also discuss follow-up observations of WASP-121b with HST and JWST to probe the longitudinal extent of its stratosphere, and the molecular absorbers that may produce it.

  15. Stratospheric ozone - Impact of human activity

    Science.gov (United States)

    Mcelroy, Michael B.; Salawitch, Ross J.

    1989-01-01

    The current knowledge of the chemistry of the stratosphere is reviewed, with particular consideration given to the measurements from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment and from the Airborne Antarctic Ozone Experiment. Analysis of the ATMOS data at 30 deg N suggests that the current understanding of the contemporary-stratosphere chemistry at mid-latitudes is relatively complete, except for possible problems with the diurnal variations of N2O5 at low altitudes, and with ClNO3 at higher altitudes. Except for some difficulties with these two compounds, the data from ATMOS agree well with the gas phase models for nitrogen and chlorine species at 30 deg N in spring. It is emphasized that, in addition to the HOCl mechanism proposed by Solomon et al. (1986), the ClO-BrO scheme proposed by McElroy et al. (1986), and the ClO dimer mechanism introduced by Molina and Molina (1987), other processes exist that are responsible for ozone removal.

  16. Solar variations and their influence on trends in upper stratospheric ozone and temperature

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Kinnison, D.E.; Lean, J.L.

    1990-10-01

    Over the past decade, knowledge of the magnitude and temporal structure of the variations in the sun's ultraviolet irradiance has increased steadily. A number of theoretical modeling studies have shown that changes in the solar ultraviolet flux during the 11-year solar cycle can have a significant effect on stratospheric ozone concentrations. With the exception of Brasseur et al., who examined a very broad range of solar flux variations, all of these studies assumed much larger changes in the ultraviolet flux than measurements now indicate. These studies either calculated the steady-state effect at solar maximum and solar minimum or assumed sinusoidal variations in the solar flux changes with time. It is now possible to narrow the uncertainty range of the expected effects on upper stratospheric ozone and temperature resulting from the 11-year solar cycle. A more accurate representation of the solar flux changes with time is used in this analysis, as compared to previous published studies. This study also evaluates the relative roles of solar flux variations and increasing concentrations of long-lived trace gases in determining the observed trends in upper stratospheric ozone and temperature. The LLNL two-dimensional chemical-radiative-transport model of the global atmosphere is used to evaluate the combined effects on the stratosphere from changes in solar ultraviolet irradiances and trace gas concentrations over the last several decades. Derived trends in upper stratospheric ozone concentrations and temperature are then compared with available analyses of ground-based and satellite measurements over this time period

  17. Effects of the Mt. Pinatubo eruption on the chemistry, radiative, and transport processes in the stratosphere

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Kinnison, D.E.; Grant, K.E.; Connell, P.S.

    1992-09-01

    Volcanic eruptions can significantly impact trace gas distribution in the upper troposphere and lower stratosphere. Massive eruptions, produce large quantities of SO 2 , H 2 O, chlorine compounds, and particulates. Modeling the effects of these impulsive increases in traces gases and comparing the results with observations from ground and satellite measurements provide unique opportunities to test current multi-dimensional chemical-radiative-transport models of the global atmosphere. Since these models are currently being used in assessment studies for future anthropogenic emissions of trace gases quantitative understanding of the accuracy of these models is essential. In this study, we have used observed data from the Stratospheric Aerosol and Gas Experiment II (SAGE II) aboard the Earth Radiation Budget Satellite (ERBS) to realistically represent both the time dependent change in aerosol surface area density and wavelength dependent extinction values from the Mt. Pinatubo Eruption. Increases in the aerosol loading increase the rate of important heterogeneous chemical reactions converting odd nitrogen in both ClONO 2 and N 2 O 5 to HNO 3 . Radiative effects of increases aerosol optical thickness include changes to net radiative heating rates and to actinic fluxes. Changes to heating rates will indirectly change chemical reaction rates via changes in atmospheric temperatures. changes in actinic fluxes will directly modify photodissociation rates

  18. The Governing Processes and Timescales of Stratosphere-to-Troposphere Transport and its Contribution to Ozone in the Arctic Troposphere

    Science.gov (United States)

    Liang, Q.; Douglass, A. R.; Duncan, B. N.; Stolarski, R. S.; Witte, J. C.

    2009-01-01

    We used the seasonality of a combination of atmospheric trace gases and idealized tracers to examine stratosphere-to-troposphere transport and its influence on tropospheric composition in the Arctic. Maximum stratosphere-to-troposphere transport of CFCs and O3 occurs in April as driven by the Brewer-Dobson circulation. Stratosphere-troposphere exchange (STE) occurs predominantly between 40 deg N to 80 deg N with stratospheric influx in the mid-latitudes (30-70 deg N) accounting for 67.81 percent of the air of stratospheric origin in the Northern Hemisphere extratropical troposphere. Transport from the lower stratosphere to the lower troposphere (LT) takes three months on average, one month to cross the tropopause, the second month to travel from the upper troposphere (UT) to the middle troposphere (MT), and the third month to reach the LT. During downward transport, the seasonality of a trace gas can be greatly impacted by wet removal and chemistry. A comparison of idealized tracers with varying lifetimes suggests that when initialized with the same concentrations and seasonal cycles at the tropopause, trace gases that have shorter lifetimes display lower concentrations, smaller amplitudes, and earlier seasonal maxima during transport to the LT. STE contributes to O3 in the Arctic troposphere directly from the transport of O3 and indirectly from the transport of NOy . Direct transport of O3 from the stratosphere accounts for 78 percent of O3 in the Arctic UT with maximum contributions occurring from March to May. The stratospheric contribution decreases significantly in the MT/LT (20.25 percent of total O3) and shows a very weak March.April maximum. Our NOx budget analysis in the Arctic UT shows that during spring and summer, the stratospheric injection of NO y-rich air increases NOx concentrations above the 20 pptv threshold level, thereby shifting the Arctic UT from a regime of net photochemical ozone loss to one of net production with rates as high as +16 ppbv/month.

  19. The governing processes and timescales of stratosphere-to-troposphere transport and its contribution to ozone in the Arctic troposphere

    Science.gov (United States)

    Liang, Q.; Douglass, A. R.; Duncan, B. N.; Stolarski, R. S.; Witte, J. C.

    2009-05-01

    We used the seasonality of a combination of atmospheric trace gases and idealized tracers to examine stratosphere-to-troposphere transport and its influence on tropospheric composition in the Arctic. Maximum stratosphere-to-troposphere transport of CFCs and O3 occurs in April as driven by the Brewer-Dobson circulation. Stratosphere-troposphere exchange (STE) occurs predominantly between 40° N to 80° N with stratospheric influx in the mid-latitudes (30-70° N) accounting for 67-81% of the air of stratospheric origin in the Northern Hemisphere extratropical troposphere. Transport from the lower stratosphere to the lower troposphere (LT) takes three months on average, one month to cross the tropopause, the second month to travel from the upper troposphere (UT) to the middle troposphere (MT), and the third month to reach the LT. During downward transport, the seasonality of a trace gas can be greatly impacted by wet removal and chemistry. A comparison of idealized tracers with varying lifetimes suggests that when initialized with the same concentrations and seasonal cycles at the tropopause, trace gases that have shorter lifetimes display lower concentrations, smaller amplitudes, and earlier seasonal maxima during transport to the LT. STE contributes to O3 in the Arctic troposphere directly from the transport of O3 and indirectly from the transport of NOy. Direct transport of O3 from the stratosphere accounts for 78% of O3 in the Arctic UT with maximum contributions occurring from March to May. The stratospheric contribution decreases significantly in the MT/LT (20-25% of total O3) and shows a very weak March-April maximum. Our NOx budget analysis in the Arctic UT shows that during spring and summer, the stratospheric injection of NOy-rich air increases NOx concentrations above the 20 pptv threshold level, thereby shifting the Arctic UT from a regime of net photochemical ozone loss to one of net production with rates as high as +16 ppbv/month.

  20. In situ trace gas and particle measurements in the summer lower stratosphere during STREAM II. Implications for O{sub 3} production

    Energy Technology Data Exchange (ETDEWEB)

    Bregman, A; Lelieveld, J; Scheeren, H A [Institute for Marine and Atmospheric Sciences, Utrecht (Netherlands); Arnold, F; Buerger, V; Schneider, J [Max-Planck-Inst. for Nuclear Physics, Heidelberg (Germany); Fischer, H; Waibel, A [Max-Planck-Inst. fuer Chemie, Mainz (Germany); Siegmund, P C; Wauben, W M.F. [Koninklijk Nederlands Meteorologisch Inst., De Bilt (Netherlands); Stroem, J [Stockholm Univ. (Sweden). Dept. of Meteorology

    1998-12-31

    In situ aircraft measurements of O{sub 3}, CO, HNO{sub 3}, and aerosol particles are presented, performed over the North Sea region in the summer lower stratosphere during the STREAM-II campaign (Stratosphere Troposphere Experiments by Aircraft Measurements). Elevated CO mixing ratios are attributed to mixing of polluted tropospheric air into the lowermost extra-tropical stratosphere. Model calculations illustrate that the O{sub 3} production efficiency of NO{sub x} is smaller than previously assumed, under conditions with relatively high HNO{sub 3} mixing ratios, as observed during STREAM-II. The model simulations further suggest a relatively high O{sub 3} production efficiency from CO oxidation, as a result of the relatively high ambient HNO{sub 3} and NO{sub x} concentrations, implying that upward transport of CO rich air enhances O{sub 3} production in the lowermost stratosphere. (author) 13 refs.

  1. In situ trace gas and particle measurements in the summer lower stratosphere during STREAM II. Implications for O{sub 3} production

    Energy Technology Data Exchange (ETDEWEB)

    Bregman, A.; Lelieveld, J.; Scheeren, H.A. [Institute for Marine and Atmospheric Sciences, Utrecht (Netherlands); Arnold, F.; Buerger, V.; Schneider, J. [Max-Planck-Inst. for Nuclear Physics, Heidelberg (Germany); Fischer, H.; Waibel, A. [Max-Planck-Inst. fuer Chemie, Mainz (Germany); Siegmund, P.C.; Wauben, W.M.F. [Koninklijk Nederlands Meteorologisch Inst., De Bilt (Netherlands); Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1997-12-31

    In situ aircraft measurements of O{sub 3}, CO, HNO{sub 3}, and aerosol particles are presented, performed over the North Sea region in the summer lower stratosphere during the STREAM-II campaign (Stratosphere Troposphere Experiments by Aircraft Measurements). Elevated CO mixing ratios are attributed to mixing of polluted tropospheric air into the lowermost extra-tropical stratosphere. Model calculations illustrate that the O{sub 3} production efficiency of NO{sub x} is smaller than previously assumed, under conditions with relatively high HNO{sub 3} mixing ratios, as observed during STREAM-II. The model simulations further suggest a relatively high O{sub 3} production efficiency from CO oxidation, as a result of the relatively high ambient HNO{sub 3} and NO{sub x} concentrations, implying that upward transport of CO rich air enhances O{sub 3} production in the lowermost stratosphere. (author) 13 refs.

  2. Effect of Recent Sea Surface Temperature Trends on the Arctic Stratospheric Vortex

    Science.gov (United States)

    Garfinkel, Chaim I.; Oman, Luke; Hurwitz, Margaret

    2015-01-01

    The springtime Arctic polar vortex has cooled significantly over the satellite era, with consequences for ozone concentrations in the springtime transition season. The causes of this cooling trend are deduced by using comprehensive chemistry-climate model experiments. Approximately half of the satellite era early springtime cooling trend in the Arctic lower stratosphere was caused by changing sea surface temperatures (SSTs). An ensemble of experiments forced only by changing SSTs is compared to an ensemble of experiments in which both the observed SSTs and chemically- and radiatively-active trace species are changing. By comparing the two ensembles, it is shown that warming of Indian Ocean, North Pacific, and North Atlantic SSTs, and cooling of the tropical Pacific, have strongly contributed to recent polar stratospheric cooling in late winter and early spring, and to a weak polar stratospheric warming in early winter. When concentrations of ozone-depleting substances and greenhouse gases are fixed, polar ozone concentrations show a small but robust decline due to changing SSTs. Ozone changes are magnified in the presence of changing gas concentrations. The stratospheric changes can be understood by examining the tropospheric height and heat flux anomalies generated by the anomalous SSTs. Finally, recent SST changes have contributed to a decrease in the frequency of late winter stratospheric sudden warmings.

  3. Stratospheric Aerosol and Gas Experiment (SAGE) IV Pathfinder

    Data.gov (United States)

    National Aeronautics and Space Administration — The Clean Air Act mandates NASA to monitor stratospheric ozone, and stratospheric aerosol measurements are vital to our understanding of climate.  Maintaining...

  4. Tritium Records to Trace Stratospheric Moisture Inputs in Antarctica

    Science.gov (United States)

    Fourré, E.; Landais, A.; Cauquoin, A.; Jean-Baptiste, P.; Lipenkov, V.; Petit, J.-R.

    2018-03-01

    Better assessing the dynamic of stratosphere-troposphere exchange is a key point to improve our understanding of the climate dynamic in the East Antarctica Plateau, a region where stratospheric inputs are expected to be important. Although tritium (3H or T), a nuclide naturally produced mainly in the stratosphere and rapidly entering the water cycle as HTO, seems a first-rate tracer to study these processes, tritium data are very sparse in this region. We present the first high-resolution measurements of tritium concentration over the last 50 years in three snow pits drilled at the Vostok station. Natural variability of the tritium records reveals two prominent frequencies, one at about 10 years (to be related to the solar Schwabe cycles) and the other one at a shorter periodicity: despite dating uncertainty at this short scale, a good correlation is observed between 3H and Na+ and an anticorrelation between 3H and δ18O measured on an individual pit. The outputs from the LMDZ Atmospheric General Circulation Model including stable water isotopes and tritium show the same 3H-δ18O anticorrelation and allow further investigation on the associated mechanism. At the interannual scale, the modeled 3H variability matches well with the Southern Annular Mode index. At the seasonal scale, we show that modeled stratospheric tritium inputs in the troposphere are favored in winter cold and dry conditions.

  5. Long-term evolution of upper stratospheric ozone at selected stations of the Network for the Detection of Stratospheric Change (NDSC)

    NARCIS (Netherlands)

    Steinbrecht, W; Claude, H; Schönenborn, F; McDermid, I S; Leblanc, T; Godin, S; Song, T; Swart, D P J; Meijer, Y J; Bodeker, G E; Connor, B J; Kämpfer, N; Hocke, K; Calisesi, Y; Schneider, N; Noë, J de la; Parrish, A D; Boyd, I S; Brühl, C; Steil, B; Giorgetta, M A; Manzini, E; Thomason, L W; Zawodny, J M; McCormick, M P; Russell, J M; Bhartia, P K; Stolarski, R S; Hollandsworth-Frith, S M

    2006-01-01

    The long-term evolution of upper stratospheric ozone has been recorded by lidars and microwave radiometers within the ground-based Network for the Detection of Stratospheric Change (NDSC), and by the space-borne Solar Backscatter Ultra-Violet instruments (SBUV), Stratospheric Aerosol and Gas

  6. The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss

    Directory of Open Access Journals (Sweden)

    G. L. Manney

    2016-12-01

    Full Text Available The 2015/16 Northern Hemisphere winter stratosphere appeared to have the greatest potential yet seen for record Arctic ozone loss. Temperatures in the Arctic lower stratosphere were at record lows from December 2015 through early February 2016, with an unprecedented period of temperatures below ice polar stratospheric cloud thresholds. Trace gas measurements from the Aura Microwave Limb Sounder (MLS show that exceptional denitrification and dehydration, as well as extensive chlorine activation, occurred throughout the polar vortex. Ozone decreases in 2015/16 began earlier and proceeded more rapidly than those in 2010/11, a winter that saw unprecedented Arctic ozone loss. However, on 5–6 March 2016 a major final sudden stratospheric warming ("major final warming", MFW began. By mid-March, the mid-stratospheric vortex split after being displaced far off the pole. The resulting offspring vortices decayed rapidly preceding the full breakdown of the vortex by early April. In the lower stratosphere, the period of temperatures low enough for chlorine activation ended nearly a month earlier than that in 2011 because of the MFW. Ozone loss rates were thus kept in check because there was less sunlight during the cold period. Although the winter mean volume of air in which chemical ozone loss could occur was as large as that in 2010/11, observed ozone values did not drop to the persistently low values reached in 2011.We use MLS trace gas measurements, as well as mixing and polar vortex diagnostics based on meteorological fields, to show how the timing and intensity of the MFW and its impact on transport and mixing halted chemical ozone loss. Our detailed characterization of the polar vortex breakdown includes investigations of individual offspring vortices and the origins and fate of air within them. Comparisons of mixing diagnostics with lower-stratospheric N2O and middle-stratospheric CO from MLS (long-lived tracers show rapid vortex erosion and

  7. Concentrations and uncertainties of stratospheric trace species inferred from limb infrared monitor of the stratosphere data. I - Methodology and application to OH and HO2. II - Monthly averaged OH, HO2, H2O2, and HO2NO2

    Science.gov (United States)

    Kaye, J. A.; Jackman, C. H.

    1986-01-01

    Difficulties arise in connection with the verification of multidimensional chemical models of the stratosphere. The present study shows that LIMS data, together with a photochemical equilibrium model, may be used to infer concentrations of a variety of zonally averaged trace Ox, OHx, and NOx species over much of the stratosphere. In the lower stratosphere, where the photochemical equilibrium assumption for HOx species breaks down, inferred concentrations should still be accurate to about a factor of 2 for OH and 2.5 for HO2. The algebraic nature of the considered model makes it possible to see easily to the first order the effect of variation of any model input parameter or its uncertainty on the inferred concontration of the HOx species and their uncertainties.

  8. Trace gas composition in the Asian summer monsoon anticyclone: a case study based on aircraft observations and model simulations

    Science.gov (United States)

    Gottschaldt, Klaus-D.; Schlager, Hans; Baumann, Robert; Bozem, Heiko; Eyring, Veronika; Hoor, Peter; Jöckel, Patrick; Jurkat, Tina; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut

    2017-05-01

    We present in situ measurements of the trace gas composition of the upper tropospheric (UT) Asian summer monsoon anticyclone (ASMA) performed with the High Altitude and Long Range Research Aircraft (HALO) in the frame of the Earth System Model Validation (ESMVal) campaign. Air masses with enhanced O3 mixing ratios were encountered after entering the ASMA at its southern edge at about 150 hPa on 18 September 2012. This is in contrast to the presumption that the anticyclone's interior is dominated by recently uplifted air with low O3 in the monsoon season. We also observed enhanced CO and HCl in the ASMA, which are tracers for boundary layer pollution and tropopause layer (TL) air or stratospheric in-mixing respectively. In addition, reactive nitrogen was enhanced in the ASMA. Along the HALO flight track across the ASMA boundary, strong gradients of these tracers separate anticyclonic from outside air. Lagrangian trajectory calculations using HYSPLIT show that HALO sampled a filament of UT air three times, which included air masses uplifted from the lower or mid-troposphere north of the Bay of Bengal. The trace gas gradients between UT and uplifted air masses were preserved during transport within a belt of streamlines fringing the central part of the anticyclone (fringe), but are smaller than the gradients across the ASMA boundary. Our data represent the first in situ observations across the southern part and downstream of the eastern ASMA flank. Back-trajectories starting at the flight track furthermore indicate that HALO transected the ASMA where it was just splitting into a Tibetan and an Iranian part. The O3-rich filament is diverted from the fringe towards the interior of the original anticyclone, and is at least partially bound to become part of the new Iranian eddy. A simulation with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model is found to reproduce the observations reasonably well. It shows that O3-rich air is entrained by the outer streamlines of the

  9. Particle tracing code for multispecies gas

    International Nuclear Information System (INIS)

    Eaton, R.R.; Fox, R.L.; Vandevender, W.H.

    1979-06-01

    Details are presented for the development of a computer code designed to calculate the flow of a multispecies gas mixture using particle tracing techniques. The current technique eliminates the need for a full simulation by utilizing local time averaged velocity distribution functions to obtain the dynamic properties for probable collision partners. The development of this concept reduces statistical scatter experienced in conventional Monte Carlo simulations. The technique is applicable to flow problems involving gas mixtures with disparate masses and trace constituents in the Knudsen number, Kn, range from 1.0 to less than 0.01. The resulting code has previously been used to analyze several aerodynamic isotope enrichment devices

  10. Observing Trace Gases Of The Arctic And Subarctic Stratosphere By TELIS

    Science.gov (United States)

    Xu, Jian; Schreier, Franz; Doicu, Adrian; Vogt, Peter; Birk, Manfred; Wagner, Georg; Trautmann, Thomas

    2013-12-01

    The Terahertz and submillimeter Limb Sounder (TELIS) is a balloon-borne cryogenic heterodyne spectrometer developed by a consortium of European institutes, which was mounted together with the Michelson Interferometer for Passive Atmospheric Sounding - Balloon (MIPAS- B) and the mini- Differential Optical Absorption Spectroscopy (mini-DOAS) instruments on a stratospheric gondola. The TELIS instrument is designed to monitor the vertical distribution of stratospheric state parameters associated with ozone destruction and climate change in Arctic and subarctic areas. The broad spectral coverage of TELIS is achieved by utilizing three frequency channels: a tunable 1.8THz channel based on a solid state local oscillator and a hot electron bolometer as mixer, a 480-650GHz channel with the Superconducting Integrated Receiver (SIR) technology, and a highly compact 500 GHz channel developed by the German Aerospace Center (DLR), the Netherlands Institute for Space Research (SRON), and the Rutherford Apple- ton Laboratory (RAL), respectively. Furthermore, an ex- tended spectral range is observed by the combination of TELIS and MIPAS-B, which can be employed for cross validation of several gas concentrations. Between 2009 and 2011 three successful scientific flights have been launched in Kiruna, Sweden and all relevant atmospheric gas species were seen by TELIS over an altitude range of 10-32.5 km. For estimation of concentration profiles from TELIS measurements, a constrained nonlinear least squares fitting framework along with var- ious Tikhonov-type regularization methods has been developed. In this work we present recent retrieval results from latest calibrated spectra during the 2010 flight. Emphasis is placed on ozone (O3) and hydrogen chloride (HCl), and error issues pertaining to the main instrumental uncertainty terms including nonlinearity in the calibration procedure, sideband ratio and pointing offset are investigated. The retrieved profiles are validated against

  11. Stratospheric concentrations of N2O in July 1975

    International Nuclear Information System (INIS)

    Krey, P.W.; Lagomarsino, R.J.; Schonberg, M.

    1977-01-01

    The first measurement of the hemispheric distribution of N 2 O concentrations in the lower stratosphere of the Northern Hemisphere is reported for July 1975. This distribution is similar to those of CCl 3 F and SF 6 , although N 2 O is more stable in the stratosphere than either of the other trace gases. The inventory of N 2 O in the stratosphere of the Northern Hemisphere in July 1975 against which future observations can be compared is 136 Tg

  12. Measurements of HCl and HNO3 with the new research aircraft HALO - Quantification of the stratospheric contribution to the O3 and HNO3 budget in the UT/LS

    Science.gov (United States)

    Jurkat, Tina; Kaufmann, Stefan; Voigt, Christiane; Zahn, Andreas; Schlager, Hans; Engel, Andreas; Bönisch, Harald; Dörnbrack, Andreas

    2013-04-01

    Dynamic and chemical processes modify the ozone (O3) budget of the upper troposphere/lower stratosphere, leading to locally variable O3 trends. In this region, O3 acts as a strong greenhouse gas with a net positive radiative forcing. It has been suggested, that the correlation of the stratospheric tracer hydrochloric acid (HCl) with O3 can be used to quantify stratospheric O3 in the UT/LS region (Marcy et al., 2004). The question is, whether the stratospheric contribution to the nitric acid (HNO3) budget in the UT/LS can be determined by a similar approach in order to differentiate between tropospheric and stratospheric sources of HNO3. To this end, we performed in situ measurements of HCl and HNO3 with a newly developed Atmospheric chemical Ionization Mass Spectrometer (AIMS) during the TACTS (Transport and Composition in the UTLS) / ESMVal (Earth System Model Validation) mission in August/September 2012. The linear quadrupole mass spectrometer deployed aboard the new German research aircraft HALO was equipped with a new discharge source generating SF5- reagent ions and an in-flight calibration allowing for accurate, spatially highly resolved trace gas measurements. In addition, sulfur dioxide (SO2), nitrous acid (HONO) and chlorine nitrate (ClONO2) have been simultaneously detected with the AIMS instrument. Here, we show trace gas distributions of HCl and HNO3 measured during a North-South transect from Northern Europe to Antarctica (68° N to 65° S) at 8 to 15 km altitude and discuss their latitude dependence. In particular, we investigate the stratospheric ozone contribution to the ozone budget in the mid-latitude UT/LS using correlations of HCl with O3. Differences in these correlations in the subtropical and Polar regions are discussed. A similar approach is used to quantify the HNO3 budget of the UT/LS. We identify unpolluted atmospheric background distributions and various tropospheric HNO3 sources in specific regions. Our observations can be compared to

  13. Ben Macdhui High Altitude Trace Gas and Aerosol Transport Experiment

    CSIR Research Space (South Africa)

    Piketh, SJ

    1999-01-01

    Full Text Available The Ben Macdhui High Altitude Aerosol and Trace Gas Transport Experiment (BHATTEX) was started to characterize the nature and magnitude of atmospheric, aerosol and trace gas transport paths recirculation over and exiting from southern Africa...

  14. Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors

    Science.gov (United States)

    Ryan, Niall J.; Kinnison, Douglas E.; Garcia, Rolando R.; Hoffmann, Christoph G.; Palm, Mathias; Raffalski, Uwe; Notholt, Justus

    2018-02-01

    We investigate the reliability of using trace gas measurements from remote sensing instruments to infer polar atmospheric descent rates during winter within 46-86 km altitude. Using output from the Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) between 2008 and 2014, tendencies of carbon monoxide (CO) volume mixing ratios (VMRs) are used to assess a common assumption of dominant vertical advection of tracers during polar winter. The results show that dynamical processes other than vertical advection are not negligible, meaning that the transport rates derived from trace gas measurements do not represent the mean descent of the atmosphere. The relative importance of vertical advection is lessened, and exceeded by other processes, during periods directly before and after a sudden stratospheric warming, mainly due to an increase in eddy transport. It was also found that CO chemistry cannot be ignored in the mesosphere due to the night-time layer of OH at approximately 80 km altitude. CO VMR profiles from the Kiruna Microwave Radiometer and the Microwave Limb Sounder were compared to SD-WACCM output, and show good agreement on daily and seasonal timescales. SD-WACCM CO profiles are combined with the CO tendencies to estimate errors involved in calculating the mean descent of the atmosphere from remote sensing measurements. The results indicate errors on the same scale as the calculated descent rates, and that the method is prone to a misinterpretation of the direction of air motion. The true rate of atmospheric descent is seen to be masked by processes, other than vertical advection, that affect CO. We suggest an alternative definition of the rate calculated using remote sensing measurements: not as the mean descent of the atmosphere, but as an effective rate of vertical transport for the trace gas under observation.

  15. Earth Science With the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station

    Science.gov (United States)

    Zawodny, Joe; Vernier, Jean-Paul; Thomason, Larry; Roell, Marilee; Pitts, Mike; Moore, Randy; Hill, Charles; Flittner, David; Damadeo, Rob; Cisewski, Mike

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III is the fourth generation of solar occultation instruments operated by NASA, the first coming under a different acronym, to investigate the Earth's upper atmosphere. Three flight-ready SAGE III instruments were built by Ball Aerospace in the late 1990s, with one launched aboard the former Russian Aviation and Space Agency (now known as Roskosmos) Meteor-3M platform on 10 December 2001 (continuing until the platform lost power in 2006). Another of the original instruments was manifested for the ISS in the 2004 time frame, but was delayed because of budgetary considerations. Fortunately, that SAGE III/ISS mission was restarted in 2009 with a major focus upon filling an anticipated gap in ozone and aerosol observation in the second half of this decade. Here we discuss the mission architecture, its implementation, and data that will be produced by SAGE III/ISS, including their expected accuracy and coverage. The 52-degree inclined orbit of the ISS is well-suited for solar occultation and provides near-global observations on a monthly basis with excellent coverage of low and mid-latitudes. This is similar to that of the SAGE II mission (1985-2005), whose data set has served the international atmospheric science community as a standard for stratospheric ozone and aerosol measurements. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. Though in the visible portion of the spectrum the brightness of the Sun is one million times that of the full Moon, the SAGE III instrument is designed to cover this large dynamic range and also perform lunar occultations on a routine basis to augment the solar products. The standard lunar products were demonstrated during the SAGE III/M3M mission and include ozone, nitrogen dioxide & nitrogen trioxide. The operational flexibility of the SAGE III spectrometer accomplishes

  16. Stratospheric Aerosol and Gas Experiment II measurements of the quasi-biennial oscillations in ozone and nitrogen dioxide

    Science.gov (United States)

    Zawodny, Joseph M.; Mccormick, M. P.

    1991-01-01

    The first measurements ever to show a quasi-biennial oscillation (QBO) in NO2 have been made by the Stratospheric Aerosol and Gas Experiment II) (SAGE II) and are presented in this work along with observations of the well-known QBO in stratospheric ozone. The SAGE II instrument was launched aboard the Earth Radiation Budget satellite near the end of 1984. Measurements of ozone and nitrogen dioxide through early 1990 are analyzed for the presence of a quasi-biennial oscillation. The measurements show the global extent of both the O3 and NO2 QBO in the 25- to 40-km region of the stratosphere. The SAGE II QBO results for ozone compare favorably to theory and previous measurements. The QBO in NO2 is found to be consistent with the vertical and horizontal transport of NOy. Both species exhibit a QBO at extratropical latitudes consistent with strong meridional transport into the winter hemisphere.

  17. Study of photolytic aerosols at stratospheric pressures

    International Nuclear Information System (INIS)

    Delattre, Patrick.

    1975-07-01

    An experimental study of photolytic aerosol formation at stratospheric pressure (60 Torr) and laboratory temperature, was carried out previous to the exact simulation of photolytic aerosol formation in real stratospheric conditions. An experimental simulation device, techniques of generation of known mixtures of inert gases with SO 2 and NOsub(x) traces at low concentration (below 1 ppm volume) and H 2 O traces (a few ppm), and techniques for the determination and counting of aerosol particles at low pressures were perfected. The following results were achieved: the rate of vapor condensation on nuclei was reduced when total pressure decreased. At low pressure the working of condensation nuclei counters and the formation of photolytic aerosols is influenced by this phenomenon. An explanation is proposed, as well as means to avoid this unpleasant effect on the working of nuclei counters at low pressure. No photolytic aerosol production was ascertained at 60 Torr when water concentration was below 100 ppm whatever the concentration of SO 2 or NOsub(x) traces. With water concentration below 1200ppm and SO 2 trace concentration below 1ppm, the aerosol particles produced could not consist of sulfuric acid drops but probably of nitrosyl sulfate acide crystals [fr

  18. Stratospheric particles: Synchrotron x-ray fluorescence determination of trace element contents

    International Nuclear Information System (INIS)

    Sutton, S.R.; Flynn, G.J.

    1987-01-01

    The first trace element analyses on stratospheric particles using synchrotron x-ray fluorescence (SXRF) are reported. Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, Se and Br were detected. Concentrations for chondritic particle U2022G1 are within a factor of 1.7 of CI for all elements detected with the exception of Br which is 37 times CI. Chondritic particle W7029*A27 is also near CI for Cr, Mn, Fe, Ni, Cu, Zn and Ge but enriched in Ga, Se, and Br by factors of 5.8, 3.5 and 8.4, respectively. The third particle of the cosmic dust class also showed high Br enriched relative to CI by a factor of 28. Br was also detected at a high level in an aluminum-rich particle classified as probable artificial terrestrial contamination but exhibiting a chondritic Fe/Ni ratio. Br was not detected in a fifth particle also classified terrestrial and exhibiting a crustal Fe/Ni ratio. If the high Br has a pre-terrestrial origin, the ubiquity of the effect suggests that a large fraction of the chondritic interplanetary dust particles derive from a parent body (bodies) not sampled in the meteorite collection. 26 refs., 3 figs., 3 tabs

  19. Linking genes to ecosystem trace gas fluxes in a large-scale model system

    Science.gov (United States)

    Meredith, L. K.; Cueva, A.; Volkmann, T. H. M.; Sengupta, A.; Troch, P. A.

    2017-12-01

    Soil microorganisms mediate biogeochemical cycles through biosphere-atmosphere gas exchange with significant impact on atmospheric trace gas composition. Improving process-based understanding of these microbial populations and linking their genomic potential to the ecosystem-scale is a challenge, particularly in soil systems, which are heterogeneous in biodiversity, chemistry, and structure. In oligotrophic systems, such as the Landscape Evolution Observatory (LEO) at Biosphere 2, atmospheric trace gas scavenging may supply critical metabolic needs to microbial communities, thereby promoting tight linkages between microbial genomics and trace gas utilization. This large-scale model system of three initially homogenous and highly instrumented hillslopes facilitates high temporal resolution characterization of subsurface trace gas fluxes at hundreds of sampling points, making LEO an ideal location to study microbe-mediated trace gas fluxes from the gene to ecosystem scales. Specifically, we focus on the metabolism of ubiquitous atmospheric reduced trace gases hydrogen (H2), carbon monoxide (CO), and methane (CH4), which may have wide-reaching impacts on microbial community establishment, survival, and function. Additionally, microbial activity on LEO may facilitate weathering of the basalt matrix, which can be studied with trace gas measurements of carbonyl sulfide (COS/OCS) and carbon dioxide (O-isotopes in CO2), and presents an additional opportunity for gene to ecosystem study. This work will present initial measurements of this suite of trace gases to characterize soil microbial metabolic activity, as well as links between spatial and temporal variability of microbe-mediated trace gas fluxes in LEO and their relation to genomic-based characterization of microbial community structure (phylogenetic amplicons) and genetic potential (metagenomics). Results from the LEO model system will help build understanding of the importance of atmospheric inputs to

  20. Theoretical and experimental studies of the waveforms associated with stratospheric infrasonic returns

    Science.gov (United States)

    Waxler, R.; Talmadge, C. L.; Blom, P.

    2009-12-01

    Theory predicts that for ground to ground infrasound propagation along paths which travel downwind, relative to the stratospheric jet, there is a shadow zone which ends about 200 km from the source where the first return from the stratosphere strikes the earth. With increasing range the single stratospheric arrival splits into two distinct arrivals, a fast arrival with the trace velocity of the effective sound speed at the stratopause, and a slower arrival with the trace velocity of the sound speed on the ground. To test the theory we have deployed eight infrasound arrays along an approximate line directly west of the site of the US Navy's Trident Missile rocket motor eliminations. The arrays were deployed during the summer of 2009 spaced roughly 10 km apart along a segment from 180 to 260 km west of the site. Comparisons between the theoretical predictions and the received data will be presented.

  1. Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection

    Directory of Open Access Journals (Sweden)

    Gaetano Scamarcio

    2006-10-01

    Full Text Available Various applications, such as pollution monitoring, toxic-gas detection, noninvasive medical diagnostics and industrial process control, require sensitive and selectivedetection of gas traces with concentrations in the parts in 109 (ppb and sub-ppb range.The recent development of quantum-cascade lasers (QCLs has given a new aspect toinfrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLsare attractive spectroscopic sources because of their excellent properties in terms of narrowlinewidth, average power and room temperature operation. In combination with these lasersources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity,compact sensor platform, fast time-response and user friendly operation. This paper reportsrecent developments on quantum cascade laser-based photoacoustic spectroscopy for tracegas detection. In particular, different applications of a photoacoustic trace gas sensoremploying a longitudinal resonant cell with a detection limit on the order of hundred ppb ofozone and ammonia are discussed. We also report two QC laser-based photoacousticsensors for the detection of nitric oxide, for environmental pollution monitoring andmedical diagnostics, and hexamethyldisilazane, for applications in semiconductormanufacturing process.

  2. Stratospheric Aerosol Measurements

    Science.gov (United States)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  3. Stratospheric ozone measurements at Arosa (Switzerland): history and scientific relevance

    Science.gov (United States)

    Staehelin, Johannes; Viatte, Pierre; Stübi, Rene; Tummon, Fiona; Peter, Thomas

    2018-05-01

    Climatic Observatory (LKO) in Arosa (Switzerland), marking the beginning of the world's longest series of total (or column) ozone measurements. They were driven by the recognition that atmospheric ozone is important for human health, as well as by scientific curiosity about what was, at the time, an ill characterised atmospheric trace gas. From around the mid-1950s to the beginning of the 1970s studies of high atmosphere circulation patterns that could improve weather forecasting was justification for studying stratospheric ozone. In the mid-1970s, a paradigm shift occurred when it became clear that the damaging effects of anthropogenic ozone-depleting substances (ODSs), such as long-lived chlorofluorocarbons, needed to be documented. This justified continuing the ground-based measurements of stratospheric ozone. Levels of ODSs peaked around the mid-1990s as a result of a global environmental policy to protect the ozone layer, implemented through the 1987 Montreal Protocol and its subsequent amendments and adjustments. Consequently, chemical destruction of stratospheric ozone started to slow around the mid-1990s. To some extent, this raises the question as to whether continued ozone observation is indeed necessary. In the last decade there has been a tendency to reduce the costs associated with making ozone measurements globally including at Arosa. However, the large natural variability in ozone on diurnal, seasonal, and interannual scales complicates the capacity for demonstrating the success of the Montreal Protocol. Chemistry-climate models also predict a super-recovery of the ozone layer at mid-latitudes in the second half of this century, i.e. an increase of ozone concentrations beyond pre-1970 levels, as a consequence of ongoing climate change. These factors, and identifying potentially unexpected stratospheric responses to climate change, support the continued need to document stratospheric ozone changes. This is particularly valuable at the Arosa site, due

  4. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    Science.gov (United States)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  5. Stratospheric Aerosol and Gas Experiments 1 and 2: Comparisons with ozonesondes

    Science.gov (United States)

    Veiga, Robert E.; Cunnold, Derek M.; Chu, William P.; McCormick, M. Patrick

    1995-01-01

    Ozone profiles measured by the Stratospheric Aerosol and Gas Experiments (SAGE) 1 and 2 are compared with ozonesonde profiles at 24 stations over the period extending from 1979 through 1991. Ozonesonde/satellite differences at 21 stations with SAGE 2 overpasses were computed down to 11.5 km in midlatitudes, to 15.5 km in the lower latitudes, and for nine stations with SAGE 1 overpasses down to 15.5 km. The set of individual satellite and ozonesonde profile comparisons most closely colocated in time and space shows mean absolute differences relative to the satellite measurement of 6 +/- 2% for SAGE 2 and 8 +/- 3% for SAGE 1. The ensemble of ozonesonde/satellite differences, when averaged over all altitudes, shows that for SAGE 2, 70% were less than 5%, whereas for SAGE 1, 50% were less than 5%. The best agreement occurred in the altitude region near the ozone density maximum where almost all the relative differences were less than 5%. Most of the statistically significant differences occurred below the ozone maximum down to the tropopause in the region of steepest ozone gradients and typically ranged between 0 and -20%. Correlations between ozone and aerosol extinction in the northern midlatitudes indicate that aerosols had no discernible impact on the ozonesonde/satellite differences and on the SAGE 2 ozone retrieval for the levels of extinction encountered in the lower stratosphere during 1984 to mid-1991.

  6. Benefits, risks, and costs of stratospheric geoengineering

    KAUST Repository

    Robock, Alan

    2009-10-02

    Injecting sulfate aerosol precursors into the stratosphere has been suggested as a means of geoengineering to cool the planet and reduce global warming. The decision to implement such a scheme would require a comparison of its benefits, dangers, and costs to those of other responses to global warming, including doing nothing. Here we evaluate those factors for stratospheric geoengineering with sulfate aerosols. Using existing U.S. military fighter and tanker planes, the annual costs of injecting aerosol precursors into the lower stratosphere would be several billion dollars. Using artillery or balloons to loft the gas would be much more expensive. We do not have enough information to evaluate more exotic techniques, such as pumping the gas up through a hose attached to a tower or balloon system. Anthropogenic stratospheric aerosol injection would cool the planet, stop the melting of sea ice and land-based glaciers, slow sea level rise, and increase the terrestrial carbon sink, but produce regional drought, ozone depletion, less sunlight for solar power, and make skies less blue. Furthermore it would hamper Earth-based optical astronomy, do nothing to stop ocean acidification, and present many ethical and moral issues. Further work is needed to quantify many of these factors to allow informed decision-making.

  7. Stratospheric Impact of Varying Sea Surface Temperatures

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven

    2004-01-01

    The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.

  8. Evaluating fugacity models for trace components in landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Shafi, Sophie [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Sweetman, Andrew [Department of Environmental Science, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Hough, Rupert L. [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Smith, Richard [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Rosevear, Alan [Science Group - Waste and Remediation, Environment Agency, Reading RG1 8DQ (United Kingdom); Pollard, Simon J.T. [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom)]. E-mail: s.pollard@cranfield.ac.uk

    2006-12-15

    A fugacity approach was evaluated to reconcile loadings of vinyl chloride (chloroethene), benzene, 1,3-butadiene and trichloroethylene in waste with concentrations observed in landfill gas monitoring studies. An evaluative environment derived from fictitious but realistic properties such as volume, composition, and temperature, constructed with data from the Brogborough landfill (UK) test cells was used to test a fugacity approach to generating the source term for use in landfill gas risk assessment models (e.g. GasSim). SOILVE, a dynamic Level II model adapted here for landfills, showed greatest utility for benzene and 1,3-butadiene, modelled under anaerobic conditions over a 10 year simulation. Modelled concentrations of these components (95 300 {mu}g m{sup -3}; 43 {mu}g m{sup -3}) fell within measured ranges observed in gas from landfills (24 300-180 000 {mu}g m{sup -3}; 20-70 {mu}g m{sup -3}). This study highlights the need (i) for representative and time-referenced biotransformation data; (ii) to evaluate the partitioning characteristics of organic matter within waste systems and (iii) for a better understanding of the role that gas extraction rate (flux) plays in producing trace component concentrations in landfill gas. - Fugacity for trace component in landfill gas.

  9. Transport of Ice into the Stratosphere and the Humidification of the Stratosphere over the 21st Century

    Science.gov (United States)

    Dessler, A. E.; Ye, H.; Wang, T.; Schoeberl, M. R.; Oman, L. D.; Douglass, A. R.; Butler, A. H.; Rosenlof, K. H.; Davis, S. M.; Portmann, R. W.

    2016-01-01

    Climate models predict that tropical lower-stratospheric humidity will increase as the climate warms. We examine this trend in two state-of-the-art chemistry-climate models. Under high greenhouse gas emissions scenarios, the stratospheric entry value of water vapor increases by approx. 1 part per million by volume (ppmv) over this century in both models. We show with trajectory runs driven by model meteorological fields that the warming tropical tropopause layer (TTL) explains 50-80% of this increase. The remainder is a consequence of trends in evaporation of ice convectively lofted into the TTL and lower stratosphere. Our results further show that, within the models we examined, ice lofting is primarily important on long time scales - on interannual time scales, TTL temperature variations explain most of the variations in lower stratospheric humidity. Assessing the ability of models to realistically represent ice-lofting processes should be a high priority in the modeling community.

  10. A polar stratospheric cloud parameterization for the global modeling initiative three-dimensional model and its response to stratospheric aircraft

    International Nuclear Information System (INIS)

    Considine, D. B.; Douglass, A. R.; Connell, P. S.; Kinnison, D. E.; Rotman, D. A.

    2000-01-01

    We describe a new parameterization of polar stratospheric clouds (PSCs) which was written for and incorporated into the three-dimensional (3-D) chemistry and transport model (CTM) developed for NASA's Atmospheric Effects of Aviation Project (AEAP) by the Global Modeling Initiative (GMI). The parameterization was designed to respond to changes in NO y and H 2 O produced by high-speed civilian transport (HSCT) emissions. The parameterization predicts surface area densities (SADs) of both Type 1 and Type 2 PSCs for use in heterogeneous chemistry calculations. Type 1 PSCs are assumed to have a supercooled ternary sulfate (STS) composition, and Type 2 PSCs are treated as water ice with a coexisting nitric acid trihydrate (NAT) phase. Sedimentation is treated by assuming that the PSC particles obey lognormal size distributions, resulting in a realistic mass flux of condensed phase H 2 O and HNO 3 . We examine a simulation of the Southern Hemisphere high-latitude lower stratosphere winter and spring seasons driven by temperature and wind fields from a modified version of the National Center for Atmospheric Research (NCAR) Middle Atmosphere Community Climate Model Version 2 (MACCM2). Predicted PSC SADs and median radii for both Type 1 and Type 2 PSCs are consistent with observations. Gas phase HNO 3 and H 2 O concentrations in the high-latitude lower stratosphere qualitatively agree with Cryogenic Limb Array Etalon Spectrometer (CLAES) HNO 3 and Microwave Limb Sounder (MLS) H 2 O observations. The residual denitrification and dehydration of the model polar vortex after polar winter compares well with atmospheric trace molecule spectroscopy (ATMOS) observations taken during November 1994. When the NO x and H 2 O emissions of a standard 500-aircraft HSCT fleet with a NO x emission index of 5 are added, NO x and H 2 O concentrations in the Southern Hemisphere polar vortex before winter increase by up to 3%. This results in earlier onset of PSC formation, denitrification, and

  11. Chlorine activation and ozone destruction in the northern lowermost stratosphere

    NARCIS (Netherlands)

    Lelieveld, J; Bregman, A; Scheeren, HA; Strom, J; Carslaw, KS; Fischer, H; Siegmund, PC; Arnold, F

    1999-01-01

    We report aircraft measurements from the Stratosphere-Troposphere Experiments by Aircraft Measurements (STREAM) II campaign, performed during February 1995 from Kiruna, northern Sweden, near 67 degrees N latitude. We have measured trace species, e.g., O-3, nitrogen compounds, HCl, hydrocarbons, CO,

  12. Soil-atmosphere trace gas exchange in semiarid and arid zones.

    Science.gov (United States)

    Galbally, Ian E; Kirstine, Wayne V; Meyer, C P Mick; Wang, Ying Ping

    2008-01-01

    A review is presented on trace gas exchange of CH4, CO, N2O, and NOx arising from agriculture and natural sources in the world's semiarid and arid zones due to soil processes. These gases are important contributors to the radiative forcing and the chemistry of the atmosphere. Quantitative information is summarized from the available studies. Between 5 and 40% of the global soil-atmosphere exchange for these gases (CH4, CO, N2O, and NOx) may occur in semiarid and arid zones, but for each of these gases there are fewer than a dozen studies to support the individual estimates, and these are from a limited number of locations. Significant differences in the biophysical and chemical processes controlling these trace gas exchanges are identified through the comparison of semiarid and arid zones with the moist temperate or wet/dry savanna land regions. Therefore, there is a poorly quantified understanding of the contribution of these regions to the global trace gas cycles and atmospheric chemistry. More importantly, there is a poor understanding of the feedback between these exchanges, global change, and regional land use and air pollution issues. A set of research issues is presented.

  13. Applications of stable isotope analysis to atmospheric trace gas budgets

    Directory of Open Access Journals (Sweden)

    Brenninkmeijer C. A.M.

    2009-02-01

    Full Text Available Stable isotope analysis has become established as a useful method for tracing the budgets of atmospheric trace gases and even atmospheric oxygen. Several new developments are briefly discussed in a systematic way to give a practical guide to the scope of recent work. Emphasis is on applications and not on instrumental developments. Processes and reactions are less considered than applications to resolve trace gas budgets. Several new developments are promising and applications hitherto not considered to be possible may allow new uses.

  14. SAGE measurements of the stratospheric aerosol dispersion and loading from the Soufriere Volcano

    Science.gov (United States)

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1981-01-01

    Explosions of the Soufriere volcano on the Caribbean Island of St. Vincent reduced two major stratospheric plumes which the stratospheric aerosol and gas experiment (SAGE) satellite tracked to West Africa and the North Atlantic Ocean. The total mass of the stratospheric ejecta measured is less than 0.5% of the global stratospheric aerosol burden. No significant temperature or climate perturbation is expected. It is found that the movement and dispersion of the plumes agree with those deduced from high altitude meteorological data and dispersion theory. The stratospheric aerosol dispersion and loading from the Soufrier volcano was measured.

  15. Treatment of dynamical processes in two-dimensional models of the troposphere and stratosphere

    International Nuclear Information System (INIS)

    Wuebbles, D.J.

    1980-07-01

    The physical structure of the troposphere and stratosphere is the result of an intricate interplay among a large number of radiative, chemical, and dynamical processes. Because it is not possible to model the global environment in the laboratory, theoretical models must be relied on, subject to observational verification, to simulate atmospheric processes. Of particular concern in recent years has been the modeling of those processes affecting the structure of ozone and other trace species in the stratosphere and troposphere. Zonally averaged two-dimensional models with spatial resolution in the vertical and meridional directions can provide a much more realistic representation of tracer transport than one-dimensional models, yet are capable of the detailed representation of chemical and radiative processes contained in the one-dimensional models. The purpose of this study is to describe and analyze existing approaches to representing global atmospheric transport processes in two-dimensional models and to discuss possible alternatives to these approaches. A general description of the processes controlling the transport of trace constituents in the troposphere and stratosphere is given

  16. Trace Gas Retrievals from the GeoTASO Aircraft Instrument

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.

  17. Millimeter wave spectroscopic measurements of stratospheric and mesospheric constituents over the Italian Alps: stratospheric ozone

    Directory of Open Access Journals (Sweden)

    V. Romaniello

    2007-06-01

    Full Text Available Measurements of rotational lines emitted by middle atmospheric trace gases have been carried out from the Alpine station of Testa Grigia (45.9°N, 7.7°E, elev. 3500 m by means of a Ground-Based Millimeter-wave Spectrometer (GBMS. Observations of species such as O3, HNO3, CO, N2O, HCN, and HDO took place during 4 winter periods, from February 2004 to March 2007, for a total of 116 days of measurements grouped in about 18 field campaigns. By studying the pressure-broadened shape of emission lines the vertical distribution of the observed constituents is retrieved within an altitude range of ?17-75 km, constrained by the 600 MHz pass band and the 65 kHz spectral resolution of the back-end spectrometer. This work discusses the behavior of stratospheric O3 during the entire period of operation at Testa Grigia. Mid-latitude O3 columnar content as estimated using GBMS measurements can vary by large amounts over a period of very few days, with the largest variations observed in December 2005, February 2006, and March 2006, confirming that the northern winter of 2005-2006 was characterized by a particularly intense planetary wave activity. The largest rapid variation from maximum to minimum O3 column values over Testa Grigia took place in December 2006 and reached a relative value of 72% with respect to the average column content for that period. During most GBMS observation times much of the variability is concentrated in the column below 20 km, with tropospheric weather systems and advection of tropical tropospheric air into the lower stratosphere over Testa Grigia having a large impact on the observed variations in column contents. Nonetheless, a wide variability is also found in middle stratospheric GBMS O3 measurements, as expected for mid-latitude ozone. We find that O3 mixing ratios at ?32 km are very well correlated with the solar illumination experienced by air masses over the previous ?15 days, showing that already at 32 km

  18. Stratosphere-troposphere exchange in a summertime extratropical low: analysis

    Directory of Open Access Journals (Sweden)

    J. Brioude

    2006-01-01

    Full Text Available Ozone and carbon monoxide measurements sampled during two commercial flights in airstreams of a summertime midlatitude cyclone are analysed with a Lagrangian-based study (backward trajectories and a Reverse Domain Filling technique to gain a comprehensive understanding of transport effects on trace gas distributions. The study demonstrates that summertime cyclones can be associated with deep stratosphere-troposphere transport. A tropopause fold is sampled twice in its life cycle, once in the lower troposphere (O3≃100 ppbv; CO≃90 ppbv in the dry airstream of the cyclone, and again in the upper troposphere (O3≃200 ppbv; CO≃90 ppbv on the northern side of the large scale potential vorticity feature associated with baroclinic development. In agreement with the maritime development of the cyclone, the chemical composition of the anticyclonic portion of the warm conveyor belt outflow (O3≃40 ppbv; CO≃85 ppbv corresponds to the lowest mixing ratios of both ozone and carbon monoxide in the upper tropospheric airborne observations. The uncertain degree of confidence of the Lagrangian-based technique applied to a 100 km segment of upper level airborne observations with high ozone (200 ppbv and relatively low CO (80 ppbv observed northwest of the cyclone prevents identification of the ozone enrichment process of air parcels embedded in the cyclonic part of the upper level outflow of the warm conveyor belt. Different hypotheses of stratosphere-troposphere exchange are discussed.

  19. Stratospheric aerosols and precursor gases

    Science.gov (United States)

    1982-01-01

    Measurements were made of the aerosol size, height and geographical distribution, their composition and optical properties, and their temporal variation with season and following large volcanic eruptions. Sulfur-bearing gases were measured in situ in the stratosphere, and studied of the chemical and physical processes which control gas-to-particle conversion were carried out in the laboratory.

  20. Stratospheric aerosol effects from Soufriere Volcano as measured by the SAGE satellite system

    Science.gov (United States)

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1982-01-01

    During its April 1979 eruption series, Soufriere Volcano produced two major stratospheric plumes that the SAGE (Stratospheric Aerosol and Gas Experiment) satellite system tracked to West Africa and the North Atlantic Ocean. The total mass of these plumes, whose movement and dispersion are in agreement with those deduced from meteorological data and dispersion theory, was less than 0.5 percent of the global stratospheric aerosol burden; no significant temperature or climate perturbation is therefore expected.

  1. Monsoon signatures in trace gas records from Cape Rama, India

    International Nuclear Information System (INIS)

    Bhattacharya, S.K.; Jani, R.A.; Borole, D.V.; Francey, R.J.; Allison, C.E.; Masarie, K.A.

    2002-01-01

    Concentrations of trace gases CO 2 , CH 4 , CO, N 2 O and H 2 , and the stable carbon and oxygen isotopic composition of CO 2 have been measured in air samples collected from Cape Rama, a coastal station on the west coast of India, since 1993. The data show clear signatures of continental and oceanic air mass resulting in complex seasonal variation of trace gas characteristics. The regional atmospheric circulation in the Indian Ocean and Arabian Sea undergoes biannual reversal in low-level winds associated with the yearly migration of the inter-tropical convergence zone (ITCZ). From June to September, the wind is from the equatorial Indian Ocean to the Indian subcontinent (southwest monsoon) and brings in pristine marine air. From December to February, dry continental winds blow from the northeast and transport continental emissions to the ocean (northeast monsoon). Detailed transport and chemical modelling will be necessary to interpret these records, however the potential to identify and constrain the regional trace gas emissions appears to be high. (author)

  2. Development of monitoring and control technology based on trace gas monitoring. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liebowitz, B.

    1997-07-01

    Trace gases are generated by many biological reactions. During anaerobic decomposition, trace levels of hydrogen (H{sub 2}) and carbon monoxide (CO) gases are produced. It was shown previously that these trace gases are intrinsically related to the biochemical reactions occurring and, therefore, offer promise for on-line process monitoring and control. This work was designed to test how effectively hydrogen and CO could be to monitor high-rate anaerobic systems that has significant mass transfer and complex hydraulics. An experimental program was designed to examine the behavior of an upflow anaerobic sludge blanket (UASB) reactor system under steady state and in response to organic loading perturbations. The responses of trace gases CO and H{sub 2} were tracked using an on-line, real-time gas-monitoring system linked to a computer-controlled data acquisition package. Data on conventional process parameters such as pH, chemical oxygen demand (COD), volatile fatty acids (VFAs) were concurrently collected. Monitoring of conventional process indicators (i.e., pH, VFA, gas production) and trace gas (H{sub 2} and CO) indicators was conducted using a matrix of nine different steady-state OLRs (4-23 kg COD/m{sup 3} -d) and system HRTs (0.5 to 2.5 days) was performed to determine any correlation among the indicators. Of OLR, HRT, and influent COD, only OLR had any significant influence on the process indicators examined. All parameters except methane increased with increases in OLR; methane decreased with increased OLR. The OLR and gas production rate (GP) were observed to be linearly correlated.

  3. Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)

    Science.gov (United States)

    Carr, E. S.; Harwood, R. S.; Mote, P. W.; Peckham, G. E.; Suttie, R. A.; Lahoz, W. A.; O'Neill, A.; Froidevaux, L.; Jarnot, R. F.; Read, W. G.

    1995-01-01

    The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.

  4. Impact of Convection and Long Range Transport on Short-Lived Trace Gases in the UT/LS

    Science.gov (United States)

    Atlas, E. L.; Schauffler, S.; Navarro, M. A.; Lueb, R.; Hendershot, R.; Ueyama, R.

    2017-12-01

    Chemical composition of the air in the upper troposphere/lower stratosphere is controlled by a balance of transport, photochemistry, and physical processes, such as interactions with clouds, ice, and aerosol. The chemistry of the air masses that reach the upper troposphere can potentially have profound impacts on the chemistry in the near tropopause region. For example, the transport of reactive organic halogens and their transformation to inorganic halogen species, e.g., Br, BrO, etc., can have a significant impact on ozone budgets in this region and even deeper the stratosphere. Trace gas measurements in the region near the tropopause can also indicate potential sources of surface emissions that are transported to high altitudes. Measurement of trace gases, including such compounds as non-methane hydrocarbons, hydrochlorofluorocarbons, halogenated solvents, methyl halides, etc., can be used to characterize source emissions from industrial, urban, biomass burning, or marine origins. Recent airborne research campaigns have been conducted to better characterize the chemical composition and variations in the UT/LS region. This presentation will discuss these measurements, with a special emphasis on the role of convection and transport in modifying the chemical composition of the UT/LS.

  5. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Rosen, J.; Ivanov, V.A.

    1993-01-01

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  6. Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.

    Science.gov (United States)

    Nikodem, Michal; Wysocki, Gerard

    2012-11-28

    In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented.

  7. Effects of stratospheric aerosol surface processes on the LLNL two-dimensional zonally averaged model

    International Nuclear Information System (INIS)

    Connell, P.S.; Kinnison, D.E.; Wuebbles, D.J.; Burley, J.D.; Johnston, H.S.

    1992-01-01

    We have investigated the effects of incorporating representations of heterogeneous chemical processes associated with stratospheric sulfuric acid aerosol into the LLNL two-dimensional, zonally averaged, model of the troposphere and stratosphere. Using distributions of aerosol surface area and volume density derived from SAGE 11 satellite observations, we were primarily interested in changes in partitioning within the Cl- and N- families in the lower stratosphere, compared to a model including only gas phase photochemical reactions

  8. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  9. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    Science.gov (United States)

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-03

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A novel gridding algorithm to create regional trace gas maps from satellite observations

    Science.gov (United States)

    Kuhlmann, G.; Hartl, A.; Cheung, H. M.; Lam, Y. F.; Wenig, M. O.

    2014-02-01

    The recent increase in spatial resolution for satellite instruments has made it feasible to study distributions of trace gas column densities on a regional scale. For this application a new gridding algorithm was developed to map measurements from the instrument's frame of reference (level 2) onto a longitude-latitude grid (level 3). The algorithm is designed for the Ozone Monitoring Instrument (OMI) and can easily be employed for similar instruments - for example, the upcoming TROPOspheric Monitoring Instrument (TROPOMI). Trace gas distributions are reconstructed by a continuous parabolic spline surface. The algorithm explicitly considers the spatially varying sensitivity of the sensor resulting from the instrument function. At the swath edge, the inverse problem of computing the spline coefficients is very sensitive to measurement errors and is regularised by a second-order difference matrix. Since this regularisation corresponds to the penalty term for smoothing splines, it similarly attenuates the effect of measurement noise over the entire swath width. Monte Carlo simulations are conducted to study the performance of the algorithm for different distributions of trace gas column densities. The optimal weight of the penalty term is found to be proportional to the measurement uncertainty and the width of the instrument function. A comparison with an established gridding algorithm shows improved performance for small to moderate measurement errors due to better parametrisation of the distribution. The resulting maps are smoother and extreme values are more accurately reconstructed. The performance improvement is further illustrated with high-resolution distributions obtained from a regional chemistry model. The new algorithm is applied to tropospheric NO2 column densities measured by OMI. Examples of regional NO2 maps are shown for densely populated areas in China, Europe and the United States of America. This work demonstrates that the newly developed gridding

  11. A novel gridding algorithm to create regional trace gas maps from satellite observations

    Directory of Open Access Journals (Sweden)

    G. Kuhlmann

    2014-02-01

    Full Text Available The recent increase in spatial resolution for satellite instruments has made it feasible to study distributions of trace gas column densities on a regional scale. For this application a new gridding algorithm was developed to map measurements from the instrument's frame of reference (level 2 onto a longitude–latitude grid (level 3. The algorithm is designed for the Ozone Monitoring Instrument (OMI and can easily be employed for similar instruments – for example, the upcoming TROPOspheric Monitoring Instrument (TROPOMI. Trace gas distributions are reconstructed by a continuous parabolic spline surface. The algorithm explicitly considers the spatially varying sensitivity of the sensor resulting from the instrument function. At the swath edge, the inverse problem of computing the spline coefficients is very sensitive to measurement errors and is regularised by a second-order difference matrix. Since this regularisation corresponds to the penalty term for smoothing splines, it similarly attenuates the effect of measurement noise over the entire swath width. Monte Carlo simulations are conducted to study the performance of the algorithm for different distributions of trace gas column densities. The optimal weight of the penalty term is found to be proportional to the measurement uncertainty and the width of the instrument function. A comparison with an established gridding algorithm shows improved performance for small to moderate measurement errors due to better parametrisation of the distribution. The resulting maps are smoother and extreme values are more accurately reconstructed. The performance improvement is further illustrated with high-resolution distributions obtained from a regional chemistry model. The new algorithm is applied to tropospheric NO2 column densities measured by OMI. Examples of regional NO2 maps are shown for densely populated areas in China, Europe and the United States of America. This work demonstrates that the newly

  12. Determination of the trace TBP in industrial feed liquid by gas chromatography

    International Nuclear Information System (INIS)

    Gao Yuehua; Jiang Junqing; Mu Ling; Yang Songtao

    2012-01-01

    The determination of the trace TBP in kerosene of the industrial feed liquid by gas chromatography is studied in the paper. It first takes the purification treatment for the kerosene containing trace TBP. The plutonium is removed by 0.2 mol/L ferrous sulfamate-1 mol/L nitric acid using the back-extraction. The uranium and the nitric acid in the organic phase are removed by the deionized water. The impurity which affect the measurement of the TBP and is harmful to the gas chromatograph are eliminated. Then the content of the TBP of the organic phase can be determined by gas chromatography. Results show that the measuring range of the content of the TBP is 0.02% ∼ 2%. The precision of the method is better than 5% and the recovery is between 95%∼106%. (authors)

  13. NASA Experiment on Tropospheric-Stratospheric Water Vapor Transport in the Intertropical Convergence Zone

    Science.gov (United States)

    Page, William A.

    1982-01-01

    The following six papers report preliminary results obtained from a field experiment designed to study the role of tropical cumulo-nimbus clouds in the transfer of water vapor from the troposphere to the stratosphere over the region of Panama. The measurements were made utilizing special NOAA enhanced IR satellite images, radiosonde-ozonesondes and a NASA U-2 aircraft carrying. nine experiments. The experiments were provided by a group of NASA, NOAA, industry, and university scientists. Measurements included atmospheric humidity, air and cloud top temperatures, atmospheric tracer constituents, cloud particle characteristics and cloud morphology. The aircraft made a total of eleven flights from August 30 through September 18, 1980, from Howard Air Force Base, Panama; the pilots obtained horizontal and vertical profiles in and near convectively active regions and flew around and over cumulo-nimbus towers and through the extended anvils in the stratosphere. Cumulo-nimbus clouds in the tropics appear to play an important role in upward water vapor transport and may represent the principal source influencing the stratospheric water vapor budget. The clouds provide strong vertical circulation in the troposphere, mixing surface air and its trace materials (water vapor, CFM's sulfur compounds, etc.) quickly up to the tropopause. It is usually assumed that large scale mean motions or eddy scale motions transport the trace materials through the tropopause and into the stratosphere where they are further dispersed and react with other stratospheric constituents. The important step between the troposphere and stratosphere for water vapor appears to depend upon the processes occurring at or near the tropopause at the tops of the cumulo-nimbus towers. Several processes have been sugested: (1) The highest towers penetrate the tropopause and carry water in the form of small ice particles directly into the stratosphere. (2) Water vapor from the tops of the cumulonimbus clouds is

  14. Photoacoustic trace gas sensing : application to fruit and insects

    NARCIS (Netherlands)

    Persijn, Stefan Timotheüs

    2001-01-01

    A novel photoacoustic spectrometer has been applied to study trace gas emissions by fruit and insects. The spectrometer is based on a newly designed CO laser that can operate on 400 laser lines between 5.1-8.0 and 2.8-4.1 micrometer (delta v=1 and 2 mode, respectively). The spectrometer is equipped

  15. ATMOS Stratospheric Deuterated Water and Implications for Tropospheric-Stratospheric Transport

    Science.gov (United States)

    Moyer, Elisabeth J.; Irion, Fredrick W.; Yung, Yuk L.; Gunson, Michael R.

    1996-01-01

    Measurements of the isotopic composition of stratospheric water by the ATMOS instrument are used to infer the convective history of stratospheric air. The average water vapor entering the stratosphere is found to be highly depleted of deuterium, with delta-D(sub w) of -670 +/- 80 (67% deuterium loss). Model calculations predict, however, that under conditions of thermodynamic equilibrium, dehydration to stratospheric mixing ratios should produce stronger depletion to delta-D(sub w) of -800 to 900 (80-90% deuterium loss). Deuterium enrichment of water vapor in ascending parcels can occur only in conditions of rapid convection; enrichments persisting into the stratosphere require that those conditions continue to near-tropopause altitudes. We conclude that either the predominant source of water vapor to the uppermost troposphere is enriched convective water, most likely evaporated cloud ice, or troposphere-stratosphere transport occurs closely associated with tropical deep convection.

  16. Impact of lower stratospheric ozone on seasonal prediction systems

    Directory of Open Access Journals (Sweden)

    Kelebogile Mathole

    2014-03-01

    Full Text Available We conducted a comparison of trends in lower stratospheric temperatures and summer zonal wind fields based on 27 years of reanalysis data and output from hindcast simulations using a coupled ocean-atmospheric general circulation model (OAGCM. Lower stratospheric ozone in the OAGCM was relaxed to the observed climatology and increasing greenhouse gas concentrations were neglected. In the reanalysis, lower stratospheric ozone fields were better represented than in the OAGCM. The spring lower stratospheric/ upper tropospheric cooling in the polar cap observed in the reanalysis, which is caused by a direct ozone depletion in the past two decades and is in agreement with previous studies, did not appear in the OAGCM. The corresponding summer tropospheric response also differed between data sets. In the reanalysis, a statistically significant poleward trend of the summer jet position was found, whereas no such trend was found in the OAGCM. Furthermore, the jet position in the reanalysis exhibited larger interannual variability than that in the OAGCM. We conclude that these differences are caused by the absence of long-term lower stratospheric ozone changes in the OAGCM. Improper representation or non-inclusion of such ozone variability in a prediction model could adversely affect the accuracy of the predictability of summer rainfall forecasts over South Africa.

  17. Tiny Ultraviolet Polarimeter for Earth Stratosphere from Space Investigation

    Science.gov (United States)

    Nevodovskyi, P. V.; Morozhenko, O. V.; Vidmachenko, A. P.; Ivakhiv, O.; Geraimchuk, M.; Zbrutskyi, O.

    2015-09-01

    One of the reasons for climate change (i.e., stratospheric ozone concentrations) is connected with the variations in optical thickness of aerosols in the upper sphere of the atmosphere (at altitudes over 30 km). Therefore, aerosol and gas components of the atmosphere are crucial in the study of the ultraviolet (UV) radiation passing upon the Earth. Moreover, a scrupulous study of aerosol components of the Earth atmosphere at an altitude of 30 km (i.e., stratospheric aerosol), such as the size of particles, the real part of refractive index, optical thickness and its horizontal structure, concentration of ozone or the upper border of the stratospheric ozone layer is an important task in the research of the Earth climate change. At present, the Main Astronomical Observatory of the National Academy of Sciences (NAS) of Ukraine, the National Technical University of Ukraine "KPI"and the Lviv Polytechnic National University are engaged in the development of methodologies for the study of stratospheric aerosol by means of ultraviolet polarimeter using a microsatellite. So fare, there has been created a sample of a tiny ultraviolet polarimeter (UVP) which is considered to be a basic model for carrying out space experiments regarding the impact of the changes in stratospheric aerosols on both global and local climate.

  18. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    Science.gov (United States)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  19. Planar Laser-Based QEPAS Trace Gas Sensor

    Directory of Open Access Journals (Sweden)

    Yufei Ma

    2016-06-01

    Full Text Available A novel quartz enhanced photoacoustic spectroscopy (QEPAS trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation.

  20. Trace gas fluxes from northern peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Moore, T [McGill Univ., Montreal (Canada). Geography Dept.

    1997-12-31

    Peatlands cover large areas in northern environments: 1.1, 0.1 and 1.7 x 10{sup 4} km{sup 2} in Canada, Finland and the former Soviet Union, respectively. Interest has been generated into the role these extensive areas of peatlands play in controlling the chemistry of the atmosphere. In particular, it has become established that peatlands can be a source of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), and a sink of carbon dioxide (CO{sub 2}), the latter through the rates of plant production exceeding the rate of decomposition of plant material and peat. In this presentation the recent advances in trace gas flux measurements in northern peatlands are presented. (16 refs.)

  1. Trace gas fluxes from northern peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Moore, T. [McGill Univ., Montreal (Canada). Geography Dept.

    1996-12-31

    Peatlands cover large areas in northern environments: 1.1, 0.1 and 1.7 x 10{sup 4} km{sup 2} in Canada, Finland and the former Soviet Union, respectively. Interest has been generated into the role these extensive areas of peatlands play in controlling the chemistry of the atmosphere. In particular, it has become established that peatlands can be a source of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), and a sink of carbon dioxide (CO{sub 2}), the latter through the rates of plant production exceeding the rate of decomposition of plant material and peat. In this presentation the recent advances in trace gas flux measurements in northern peatlands are presented. (16 refs.)

  2. Seasonal Trace Gas Dynamics on Minerotrophic Fen Peatlands in NE-Germany

    Science.gov (United States)

    Giebels, Michael; Beyer, Madlen; Augustin, Jürgen; Minke, Merten; Juszczak, Radoszlav; Serba, Tomasz

    2010-05-01

    In Germany more than 99 % of fens have lost their carbon and nutrient sink function due to heavy drainage and agricultural land use especially during the last decades and thus resulted in compression and heavy peat loss (CHARMAN 2002; JOOSTEN & CLARKE 2002; SUCCOW & JOOSTEN 2001; AUGUSTIN et al. 1996; KUNTZE 1993). Therefore fen peatlands play an important part (4-5 %) in the national anthropogenic trace gas budget. But only a small part of drained and agricultural used fens in NE Germany can be restored. Knowledge of the influence of land use to trace gas exchange is important for mitigation of the climate impact of the anthropogenic peatland use. We study carbon exchanges of several fen peatland use areas between soil and atmosphere at different sites in NE-Germany. Our research covers peatlands of supposed strongly climate forcing land use (cornfield and intensive pasture) and of probably less forcing, alternative types (meadow and extensive pasture) as well as rewetted (formerly drained) areas and near-natural sites like a low-degraded fen and a wetted alder woodland. We measured trace gas fluxes with manual and automatic chambers in periodic routines since spring 2007. The used chamber technique bases on DROESLER (2005). In total we now do research at 22 sites situated in 5 different locations covering agricultural, varying states of rewetted and near-natural treatments. We present results of at least 2 years of measurements and show significant differences in their annual trace gas balances depending on the genesis of the observed sites and the seasonal dynamics. Crosswise comparison of different site treatments combined with the seasonal environmental observations give good hints for the identification of main flux driving parameters. That is that a reduced intensity in land use as a supposed mitigating treatment did not show the expected effect, though a normal meadow treatment surprisingly resulted in the lowest balances in both years. For implementing a

  3. Geochemical prerequisites of petroleum-gas formation in the Mesozoic-Cenozoic sedimentary layer of the world's oceans

    Energy Technology Data Exchange (ETDEWEB)

    Trotsyuk, V Ya

    1979-05-01

    A summarization is given of the latest material on the geochemistry of trace organic matter of Mesozoic-Cenozoic deposits of the world's oceans, obtained as a result of deep-sea drilling. Trace organic matter was found to be present in the sedimentary layers of the ocean outskirts in amounts near that found in the continental stratosphere, but that content was five times less in the interior region of the oceans. The trace organic matter of deposits in the marginal region of the oceans was found to have a significant petroleum-gas matrix potential with respect to the level of content and composition characteristics. The distribution of organic carbon was found to be uneven in variously aged horizons of the Mesozoic-Cenozoic. The maximum content of organic carbon was noted in the Neogene-Quaternary and lower Cretaceous deposits. An elevated content of trace organic matter was found to be characteristic of the oceanic stratisphere in lithological mixed sediments: terrigenous-carbonate and terrigenous-silicons was 1.5 times greater than the trace organic matter in clays. Fundamental geochemical propagation laws were formulated, possibly for petroleum-gas-bearing sediment basins under the ocean bottom and beyond the shelf. 18 references, 3 figures.

  4. Synchrotron x-ray fluorescence analyses of stratospheric cosmic dust: New results for chondritic and nickel-depleted particles

    International Nuclear Information System (INIS)

    Flynn, G.J.; Sutton, S.R.

    1989-06-01

    Trace element abundance determinations were performed using synchrotron x-ray fluorescence on nine particles collected from the stratosphere and classified as ''cosmic''. Improvements to the Synchrotron Light Source allowed the detection of all elements between Cr and Mo, with the exceptions of Co and As, in our largest particle. The minor and trace element abundance patterns of three Ni-depleted particles were remarkably similar to those of extraterrestrial igneous rocks. Fe/Ni and Fe/Mn ratios suggest that one of these may be of lunar origin. All nine particles exhibited an enrichment in Br, ranging form 1.3 to 38 times the Cl concentration. Br concentrations were uncorrelated with particle size, as would be expected for a surface correlated component acquires from the stratosphere. 27 refs., 4 figs., 2 tabs

  5. Laboratory chemistry and stratospheric clouds

    Science.gov (United States)

    Molina, Mario J.

    1989-01-01

    Results are presented from laboratory experiments on the chemistry of ice particles to study the role of HCl and ClONO2 from CFCs in stratospheric ozone depletion over Antarctica. It is found that gaseous HCl is scavenged with high efficiency by the ice and the gas phase chlorine nitrate may react with the HCL-containing ice to produce Cl2. Also, consideration is given ot the behavior of solid nitric acid trihydrate and sulfuric acid aerosols.

  6. Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy

    Science.gov (United States)

    Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.

    2009-04-01

    "Green" hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H2) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H2 that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H2 can occur along the whole hydrogen process chain which increase the tropospheric H2 burden. Across the tropical tropopause H2 reaches the stratosphere where it is oxidised and forms water vapour (H2O). This causes increased IR-emissions into space and hence a cooling of the stratosphere. Both effects, the increase of stratospheric H2O and the cooling, enhances the potential of chlorine activation on liquid sulfate aerosol and polar stratospheric clouds (PSCs), which increase polar ozone destruction. Hence a global hydrogen economy could provoke polar ozone loss and could lead to a substantial delay of the current projected recovery of the stratospheric ozone layer. Our investigations show that even if 90% of the current global fossil primary energy input could be replaced by hydrogen and approximately 9.5% of the product gas would leak to the atmosphere, the ozone loss would be increased between 15 to 26 Dobson Units (DU) if the stratospheric CFC loading would retain unchanged. A consistency check of the used approximation methods with the Chemical Lagrangian Model of the Stratosphere (CLaMS) shows that this additional ozone loss can probably be treated as an upper limit. Towards more realistic future H2 leakage rate assumptions (< 3%) the additional ozone loss would be rather small (? 10 DU). However, in all cases the full damage would only occur if stratospheric CFC-levels would retain unchanged. Due to the CFC-prohibition as a result of the Montreal Protocol the forecasts suggest a decline of the stratospheric CFC loading about 50% until 2050. In this case our calculations

  7. Sudden Stratospheric Warming Compendium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden Stratospheric Warming Compendium (SSWC) data set documents the stratospheric, tropospheric, and surface climate impacts of sudden stratospheric warmings. This...

  8. Drift-corrected Odin-OSIRIS ozone product: algorithm and updated stratospheric ozone trends

    Directory of Open Access Journals (Sweden)

    A. E. Bourassa

    2018-01-01

    Full Text Available A small long-term drift in the Optical Spectrograph and Infrared Imager System (OSIRIS stratospheric ozone product, manifested mostly since 2012, is quantified and attributed to a changing bias in the limb pointing knowledge of the instrument. A correction to this pointing drift using a predictable shape in the measured limb radiance profile is implemented and applied within the OSIRIS retrieval algorithm. This new data product, version 5.10, displays substantially better both long- and short-term agreement with Microwave Limb Sounder (MLS ozone throughout the stratosphere due to the pointing correction. Previously reported stratospheric ozone trends over the time period 1984–2013, which were derived by merging the altitude–number density ozone profile measurements from the Stratospheric Aerosol and Gas Experiment (SAGE II satellite instrument (1984–2005 and from OSIRIS (2002–2013, are recalculated using the new OSIRIS version 5.10 product and extended to 2017. These results still show statistically significant positive trends throughout the upper stratosphere since 1997, but at weaker levels that are more closely in line with estimates from other data records.

  9. Development of a new method for hydrogen isotope analysis of trace hydrocarbons in natural gas samples

    Directory of Open Access Journals (Sweden)

    Xibin Wang

    2016-12-01

    Full Text Available A new method had been developed for the analysis of hydrogen isotopic composition of trace hydrocarbons in natural gas samples by using solid phase microextraction (SPME combined with gas chromatography-isotope ratio mass spectrometry (GC/IRMS. In this study, the SPME technique had been initially introduced to achieve the enrichment of trace content of hydrocarbons with low abundance and coupled to GC/IRMS for hydrogen isotopic analysis. The main parameters, including the equilibration time, extraction temperature, and the fiber type, were systematically optimized. The results not only demonstrated that high extraction yield was true but also shows that the hydrogen isotopic fractionation was not observed during the extraction process, when the SPME device fitted with polydimethylsiloxane/divinylbenzene/carbon molecular sieve (PDMS/DVB/CAR fiber. The applications of SPME-GC/IRMS method were evaluated by using natural gas samples collected from different sedimentary basins; the standard deviation (SD was better than 4‰ for reproducible measurements; and also, the hydrogen isotope values from C1 to C9 can be obtained with satisfying repeatability. The SPME-GC/IRMS method fitted with PDMS/DVB/CAR fiber is well suited for the preconcentration of trace hydrocarbons, and provides a reliable hydrogen isotopic analysis for trace hydrocarbons in natural gas samples.

  10. Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama

    Directory of Open Access Journals (Sweden)

    A. L. Matson

    2017-07-01

    Full Text Available Tropical lowland forest soils are significant sources and sinks of trace gases. In order to model soil trace gas flux for future climate scenarios, it is necessary to be able to predict changes in soil trace gas fluxes along natural gradients of soil fertility and climatic characteristics. We quantified trace gas fluxes in lowland forest soils at five locations in Panama, which encompassed orthogonal precipitation and soil fertility gradients. Soil trace gas fluxes were measured monthly for 1 (NO or 2 (CO2, CH4, N2O years (2010–2012 using vented dynamic (for NO only or static chambers with permanent bases. Across the five sites, annual fluxes ranged from 8.0 to 10.2 Mg CO2-C, −2.0 to −0.3 kg CH4-C, 0.4 to 1.3 kg N2O-N and −0.82 to −0.03 kg NO-N ha−1 yr−1. Soil CO2 emissions did not differ across sites, but they did exhibit clear seasonal differences and a parabolic pattern with soil moisture across sites. All sites were CH4 sinks; within-site fluxes were largely controlled by soil moisture, whereas fluxes across sites were positively correlated with an integrated index of soil fertility. Soil N2O fluxes were low throughout the measurement years, but the highest emissions occurred at a mid-precipitation site with high soil N availability. Net negative NO fluxes at the soil surface occurred at all sites, with the most negative fluxes at the low-precipitation site closest to Panama City; this was likely due to high ambient NO concentrations from anthropogenic sources. Our study highlights the importance of both short-term (climatic and long-term (soil and site characteristics factors in predicting soil trace gas fluxes.

  11. Impact of land convection on troposphere-stratosphere exchange in the tropics

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    2007-11-01

    Full Text Available The mechanism of troposphere-stratosphere exchange in the tropics was investigated from space-borne observations of the horizontal distributions of tropospheric-origin long-lived species, nitrous oxide (N2O, methane (CH4 and carbon monoxide (CO, from 150 to 70 hPa in March-April-May by the ODIN/Sub-Millimeter Radiometer (SMR, the Upper Atmosphere Research Satellite (UARS/Halogen Occultation Experiment (HALOE and the TERRA/Measurements Of Pollution In The Troposphere (MOPITT instruments in 2002–2004, completed by recent observations of the AURA/Microwave Limb Sounder (MLS instrument during the same season in 2005. The vertical resolution of the satellite measurements ranges from 2 to 4 km. The analysis has been performed on isentropic surfaces: 400 K (lower stratosphere for all the species and 360 K (upper troposphere only for CO. At 400 K (and 360 K for CO, all gases show significant longitudinal variations with peak-to-trough values of ~5–11 ppbv for N2O, 0.07–0.13 ppmv for CH4, and ~10 ppbv for CO (~40 ppbv at 360 K. The maximum amounts are primarily located over Africa and, depending on the species, secondary more or less pronounced maxima are reported above northern South America and South-East Asia. The lower stratosphere over the Western Pacific deep convective region where the outgoing longwave radiation is the lowest, the tropopause the highest and the coldest, appears as a region of minimum concentration of tropospheric trace species. The possible impact on trace gas concentration at the tropopause of the inhomogeneous distribution and intensity of the sources, mostly continental, of the horizontal and vertical transports in the troposphere, and of cross-tropopause transport was explored with the MOCAGE Chemistry Transport Model. In the simulations, significant longitudinal variations were found on the medium-lived CO (2-month lifetime with peak-to-trough value of ~20 ppbv at 360 K and

  12. Gas-to-particle conversion in the atmospheric environment by radiation-induced and photochemical reactions

    International Nuclear Information System (INIS)

    Vohra, K.G.

    1975-01-01

    During the last few years a fascinating new area of research involving ionizing radiations and photochemistry in gas-to-particle conversion in the atmosphere has been developing at a rapid pace. Two problems of major interest and concern in which this is of paramount importance are: (1) radiation induced and photochemical aerosol formation in the stratosphere and, (2) role of radiations and photochemistry in smog formation. The peak in cosmic ray intensity and significant solar UV flux in the stratosphere lead to complex variety of reactions involving major and trace constituents in this region of the atmosphere, and some of these reactions are of vital importance in aerosol formation. The problem is of great current interest because the pollutant gases from industrial sources and future SST operations entering the stratosphere could increase the aerosol burden in the stratosphere and affect the solar energy input of the troposphere with consequent ecological and climatic changes. On the other hand, in the nuclear era, the atmospheric releases from reactors and processing plants could lead to changes in the cloud nucleation behaviour of the environment and possible increase in smog formation in the areas with significant levels of radiations and conventional pollutants. A review of the earlier work, current status of the problem, and conventional pollutants. A review of the earlier work, current status of the problem, and some recent results of the experiments conducted in the author's laboratory are presented. The possible mechanisms of gas-to-particle conversion in the atmosphere have been explained

  13. On the cryogenic removal of NOy from the Antarctic polar stratosphere

    Directory of Open Access Journals (Sweden)

    S. Smyshlyaev

    2003-06-01

    Full Text Available We review current knowledge about the annual cycle of transport of nitrogen oxides to, and removal from, the polar stratosphere, with particular attention to Antarctica where the annual winter denitrifi cation process is both regular in occurrence and severe in effect. Evidence for a large downward fl ux of NOy from the mesosphere to the stratosphere, fi rst seen briefl y in the Limb Infrared Monitor of the Stratosphere (LIMS data from the Arctic winter of 1978-1979, has been found during the 1990s in both satellite and ground-based observations, though this still seems to be omitted from many atmospheric models. When incorporated in the Stony Brook- St. Petersburg two dimensional (2D transport and chemistry model, more realistic treatment of the NOy fl ux, along with sulfate transport from the mesosphere, sulfate aerosol formation where temperature is favorable, and the inclusion of a simple ion-cluster reaction, leads to good agreement with observed HNO3 formation in the mid-winter middle to upper stratosphere. To further emphasize the importance of large fl uxes of thermospheric and mesospheric NOy into the polar stratosphere, we have used observations, supplemented with model calculations, to defi ne new altitude dependent correlation curves between N2O and NOy. These are more suitable than those previously used in the literature to represent conditions within the Antarctic vortex region prior to and during denitrifi cation by Polar Stratospheric Cloud (PSC particles. Our NOy -N2O curves lead to a 40% increase in the average amount of NOy removed during the Antarctic winter with respect to estimates calculated using NOy-N2O curves from the Atmospheric Trace Molecule Spectroscopy (ATMOS/ATLAS-3 data set.

  14. Airborne mapping of Seoul's atmosphere: Trace gas measurements from GeoTASO during KORUS-AQ

    Science.gov (United States)

    Nowlan, C. R.; Al-Saadi, J. A.; Castellanos, P.; Chance, K.; Gonzalez Abad, G.; Janz, S. J.; Judd, L.; Kowalewski, M. G.; Liu, X.

    2017-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a pushbroom airborne remote sensing instrument capable of making measurements of air quality and ocean color using backscattered UV and visible light. GeoTASO is an airborne test-bed for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, which will measure air quality over North America and Asia, respectively. GeoTASO also acts as a satellite analogue during field campaigns. GeoTASO flew on the NASA Langley Research Center UC-12 aircraft during the Korea-United States Air Quality Study in May-June 2016, collecting spectra over South Korea during 30 flights over 19 flight days. These observations can be used to derive 2-D maps of tropospheric trace gases including ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, nitrous acid and glyoxal below the aircraft at spatial resolutions between 250 m x 250 m and 1 km x 1 km, depending on the gas. We present spatially resolved trace gas retrievals over Seoul and its surrounding industrial regions, and comparisons with correlative satellite and campaign data.

  15. Stratospheric NO2 vertical profile retrieved from ground-based Zenith-Sky DOAS observations at Kiruna, Sweden

    Science.gov (United States)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2014-05-01

    Stratospheric NO2 destroys ozone and acts as a buffer against halogen-catalyzed ozone loss through the formation of reservoir species (ClONO2, BrONO2). Since the importance of both mechanisms depends on the altitude, the investigation of stratospheric NO2 vertical distribution can provide more insight into the role of nitrogen compounds in the destruction of ozone. Here we present stratospheric NO2 vertical profiles retrieved from twilight ground-based zenith-sky DOAS observations at Kiruna, Sweden (68.84°N, 20.41°E) covering 1997 - 2013 periods. This instrument observes zenith scattered sunlight. The sensitivity for stratospheric trace gases is highest during twilight due to the maximum altitude of the scattering profile and the light path through the stratosphere, which vary with the solar zenith angle. The profiling algorithm, based on the Optimal Estimation Method, has been developed by IASB-BIRA and successfully applied at other stations (Hendrick et al., 2004). The basic principle behind this profiling approach is that during twilight, the mean Rayleigh scattering altitude scans the stratosphere rapidly, providing height-resolved information on the absorption by stratospheric NO2. In this study, the long-term evolution of the stratospheric NO2 profile at polar latitude will be investigated. Hendrick, F., B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Mazière, F. Goutail, C. Hermans, J.-C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons, Atmospheric Chemistry and Physics, 4, 2091-2106, 2004

  16. Stratospheric aerosol geoengineering

    Energy Technology Data Exchange (ETDEWEB)

    Robock, Alan [Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 (United States)

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  17. Stratospheric aerosol geoengineering

    International Nuclear Information System (INIS)

    Robock, Alan

    2015-01-01

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming

  18. Mechanism and Kinetics of the Formation and Transport of Aerosol Particles in the Lower Stratosphere

    Science.gov (United States)

    Aloyan, A. E.; Ermakov, A. N.; Arutyunyan, V. O.

    2018-03-01

    Field and laboratory observation data on aerosol particles in the lower stratosphere are considered. The microphysics of their formation, mechanisms of heterogeneous chemical reactions involving reservoir gases (e.g., HCl, ClONO2, etc.) and their kinetic characteristics are analyzed. A new model of global transport of gaseous and aerosol admixtures in the lower stratosphere is described. The preliminary results from a numerical simulation of the formation of sulfate particles of the Junge layer and particles of polar stratospheric clouds (PSCs, types Ia, Ib, and II) are presented, and their effect on the gas and aerosol composition is analyzed.

  19. Improvement and validation of trace gas retrieval from ACAM aircraft observation

    Science.gov (United States)

    Liu, C.; Liu, X.; Kowalewski, M. G.; Janz, S. J.; Gonzalez Abad, G.; Pickering, K. E.; Chance, K.; Lamsal, L. N.

    2014-12-01

    The ACAM (Airborne Compact Atmospheric Mapper) instrument, flown on board the NASA UC-12 aircraft during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaigns, was designed to provide remote sensing observations of tropospheric and boundary layer pollutants and help understand some of the most important pollutants that directly affect the health of the population. In this study, slant column densities (SCD) of trace gases (O3, NO2, HCHO) are retrieved from ACAM measurements during the Baltimore-Washington D.C. 2011 campaign by the Basic Optical Absorption Spectroscopy (BOAS) trace gas fitting algorithm using a nonlinear least-squares (NLLS) inversion technique, and then are converted to vertical column densities (VCDs) using the Air Mass Factors (AMF) calculated with the VLIDORT (Vector Linearized Discrete Ordinate Radiative Transfer) model and CMAQ (Community Multi-scale Air Quality) model simulations of trace gas profiles. For surface treatment in the AMF, we use high-resolution MODIS climatological BRDF product (Bidirectional Reflectance Distribution Function) at 470 nm for NO2, and use high-resolution surface albedo derived by combining MODIS and OMI albedo databases for HCHO and O3. We validate ACAM results with coincident ground-based PANDORA, aircraft (P3B) spiral and satellite (OMI) measurements and find out generally good agreement especially for NO2 and O3

  20. Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis

    Directory of Open Access Journals (Sweden)

    Martin J. Süess

    2016-04-01

    Full Text Available We report on the dynamic behavior of dual-wavelength distributed feedback (DFB quantum cascade lasers (QCLs in continuous wave and intermittent continuous wave operation. We investigate inherent etaloning effects based on spectrally resolved light-current-voltage (LIV characterization and perform time-resolved spectral analysis of thermal chirping during long (>5 µs current pulses. The theoretical aspects of the observed behavior are discussed using a combination of finite element method simulations and transfer matrix method calculations of dual-section DFB structures. Based on these results, we demonstrate how the internal etaloning can be minimized using anti-reflective (AR coatings. Finally, the potential and benefits of these devices for high precision trace gas analysis are demonstrated using a laser absorption spectroscopic setup. Thereby, the atmospherically highly relevant compounds CO2 (including its major isotopologues, CO and N2O are simultaneously determined with a precision of 0.16 ppm, 0.22 ppb and 0.26 ppb, respectively, using a 1-s integration time and an optical path-length of 36 m. This creates exciting new opportunities in the development of compact, multi-species trace gas analyzers.

  1. Online Continuous Trace Process Analytics Using Multiplexing Gas Chromatography.

    Science.gov (United States)

    Wunsch, Marco R; Lehnig, Rudolf; Trapp, Oliver

    2017-04-04

    The analysis of impurities at a trace level in chemical products, nutrition additives, and drugs is highly important to guarantee safe products suitable for consumption. However, trace analysis in the presence of a dominating component can be a challenging task because of noncompatible linear detection ranges or strong signal overlap that suppresses the signal of interest. Here, we developed a technique for quantitative analysis using multiplexing gas chromatography (mpGC) for continuous and completely automated process trace analytics exemplified for the analysis of a CO 2 stream in a production plant for detection of benzene, toluene, ethylbenzene, and the three structural isomers of xylene (BTEX) in the concentration range of 0-10 ppb. Additional minor components are methane and methanol with concentrations up to 100 ppm. The sample is injected up to 512 times according to a pseudorandom binary sequence (PRBS) with a mean frequency of 0.1 Hz into a gas chromatograph equipped with a flame ionization detector (FID). A superimposed chromatogram is recorded which is deconvoluted into an averaged chromatogram with Hadamard transformation. Novel algorithms to maintain the data acquisition rate of the detector by application of Hadamard transformation and to suppress correlation noise induced by components with much higher concentrations than the target substances are shown. Compared to conventional GC-FID, the signal-to-noise ratio has been increased by a factor of 10 with mpGC-FID. Correspondingly, the detection limits for BTEX in CO 2 have been lowered from 10 to 1 ppb each. This has been achieved despite the presence of detectable components (methane and methanol) with a concentration about 1000 times higher than the target substances. The robustness and reliability of mpGC has been proven in a two-month field test in a chemical production plant.

  2. Stratospheric Aerosol and Gas Experiment, SAGE III on ISS, An Earth Science Mission on the International Space Station, Schedule Risk Analysis, A Project Perspective

    Science.gov (United States)

    Bonine, Lauren

    2015-01-01

    The presentation provides insight into the schedule risk analysis process used by the Stratospheric Aerosol and Gas Experiment III on the International Space Station Project. The presentation focuses on the schedule risk analysis process highlighting the methods for identification of risk inputs, the inclusion of generic risks identified outside the traditional continuous risk management process, and the development of tailored analysis products used to improve risk informed decision making.

  3. Air mass origins and troposphere-to-stratosphere exchange associated with mid-latitude cyclogenesis and tropopause folding inferred from Be-7 measurements

    Science.gov (United States)

    Kritz, Mark A.; Rosner, Stefan W.; Danielsen, Edwin F.; Selkirk, Henry B.

    1991-01-01

    The 1984 extratropical mission of NASA's Stratosphere-Troposphere Exchange Project (STEP) studied cross-jet transport in regions of cyclogenesis and tropopause folding. Correlations of Be-7, ozone, water vapor, and potential vorticity measured on a NASA U-2 research aircraft flying in high shear regions above the jet core are indicative of mixing between the cyclonic and the anticyclonic sides of the jet and are consistent with the hypothesis that small-scale entrainments of upper tropospheric air into the lower stratosphere during cyclogenesis are important in maintaining the vertical gradients of Be-7, ozone, water vapor and other trace constituents in the lower few kilometers of the midlatitude stratosphere. Correlations between Be-7, and ozone suggest a lower tropical stratospheric origin for the ozone-poor lamina observed above the jet core.

  4. The global warming potential of methane reassessed with combined stratosphere and troposphere chemistry

    Science.gov (United States)

    Holmes, C. D.; Archibald, A. T.; Eastham, S. D.; Søvde, O. A.

    2017-12-01

    Methane is a direct and indirect greenhouse gas. The direct greenhouse effect comes from the radiation absorbed and emitted by methane itself. The indirect greenhouse effect comes from radiatively active gases that are produced during methane oxidation: principally O3, H2O, and CO2. Methane also suppresses tropospheric OH, which indirectly affects numerous greenhouses gases and aerosols. Traditionally, the methane global warming potential (GWP) has included the indirect effects on tropospheric O3 and OH and stratospheric H2O, with these effects estimated independently from unrelated tropospheric and stratospheric chemistry models and observations. Using this approach the CH4 is about 28 over 100 yr (without carbon cycle feedbacks, IPCC, 2013). Here we present a comprehensive analysis of the CH4 GWP in several 3-D global atmospheric models capable of simulating both tropospheric and stratospheric chemistry (GEOS-Chem, Oslo CTM3, UKCA). This enables us to include, for the first time, the indirect effects of CH4 on stratospheric O3 and stratosphere-troposphere coupling. We diagnose the GWP from paired simulations with and without a 5% perturbation to tropospheric CH4 concentrations. Including stratospheric chemistry nearly doubles the O3 contribution to CH4 GWP because of O3 production in the lower stratosphere and because CH4 inhibits Cl-catalyzed O3 loss in the upper stratosphere. In addition, stratosphere-troposphere coupling strengthens the chemical feedback on its own lifetime. In the stratosphere, this feedback operates by a CH4 perturbation thickening the stratospheric O3 layer, which impedes UV-driven OH production in the troposphere and prolongs the CH4 lifetime. We also quantify the impact of CH4-derived H2O on the stratospheric HOx cycles but these effects are small. Combining all of the above, these models suggest that the 100-yr GWP of CH4 is over 33.5, a 20% increase over the latest IPCC assessment.

  5. Causes and impacts of changes in the stratospheric meridional circulation in a chemistry-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Hella

    2011-05-13

    The stratospheric meridional circulation is projected to be subject to changes due to enhanced greenhouse-gas concentrations in the atmosphere. This study aims to diagnose and explain long-term changes in the stratospheric meridional circulation using the chemistry-climate model E39CA. The diagnosed strengthening of the circulation is found to be driven by increases in tropical sea surface temperatures which lead to a strengthening and upward shift of the subtropical jets. This enables enhanced vertical propagation of large scale waves into the lower stratosphere, and therefore stronger local wave forcing of the meridional circulation in the tropical lower stratosphere. The impact of changes in transport on the ozone layer is analysed using a newly developed method that allows the separation of the effects of transport and chemistry changes on ozone. It is found that future changes of mean stratospheric ozone concentrations are largely determined by changes in chemistry, while changes in transport of ozone play a minor role. (orig.)

  6. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    Science.gov (United States)

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  7. Upper Troposphere Lower Stratosphere structure during convective systems using GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo

    The deep convective systems play a fundamental role in atmospheric circulation and climate. Thunderstorms and meso-scale convective systems produce fast vertical transport, redistributing water vapor and trace gases and influencing the thermal structure of the upper troposphere and lower...... stratosphere (UTLS) contributing to the troposphere-stratosphere transport and affecting the Earth global circulation and the climate changes. The Global Positioning System (GPS) Radio Occultation (RO) technique enables measurement of atmospheric density structure in any meteorological condition...... to the analysis of tropical storms for the future mission ACES will also be evaluated. Using data from the past and ongoing GPS RO missions we have defined an algorithm to detect the clouds top of the convective systems and their thermal structure. Other satellite and in-situ measurements co-located with GPS ROs...

  8. Monitoring of trace chloride ions at different stages of the gas production process

    Directory of Open Access Journals (Sweden)

    A.Y. El Naggar

    2015-01-01

    Full Text Available Fifty gas and liquid samples at different stages of Obaiyed gas plant in Egypt were selected and subjected for determining chloride ion and hydrocarbon compositions. The trace levels of chloride in the water extracted from natural gas, condensate, Benfield and glycol samples were achieved using ion chromatograph (IC, electrical, conductivity and potentiometric methods, respectively. The hydrocarbon compositions were analyzed and evaluated using capillary gas chromatography. The chloride ions in natural gas and condensate are a function of water content and their concentration mainly depends on the separation efficiency. Variability in natural gas and condensate compositions seasonally is not an uncommon occurrence. Our aim is monitoring of chloride ion to select and optimize the conditions of sweetening and dehydration regenerators in order to follow and prevent their gradient in gas plant.

  9. Trace Atmospheric Gas Analyzer (TAGA) Dispersant Data for BP Spil/Deepwater Horizon - August 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  10. Trace gas emissions from burning Florida wetlands

    Science.gov (United States)

    Cofer, Wesley R.; Levine, Joel S.; Winstead, Edward L.; Lebel, Peter J.; Koller, Albert M.; Hinkle, C. Ross

    1990-02-01

    Measurements of biomass burn-produced trace gases are presented that were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide (CO2) normalized emission ratios (ΔX/ΔCO2; V/V; where X is trace gas) for carbon monoxide (CO), hydrogen (H2), methane (CH4), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N2O) were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak (Quercus spp) and saw palmetto (Screnoa repens) were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. We believe that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes (both small-size fuels) burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly diminished.

  11. Prediction of trace gas emissions and their climatic impacts. Some geographical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, S E [Florida State Univ., Dept. ofMeteorology, Tallahassee, FL (United States)

    1993-12-31

    This paper examines two major areas of uncertainty in the prediction of the impact of trace gas emissions on climate. The first is socioeconomic factors which determine the rate of such processes as resource use, industrial production or land conversion. The second is the feedback between the earth`s land surface and climate. Since the land surface is the source of trace gas emissions, both natural and anthropogenic changes of vegetation will affect the nature and quantity of emissions. This paper demonstrates large-scale land surface changes which have taken place naturally or from human activities, either intentionally or inadvertently, and describes the dwindling availability of natural resources, using water as an example. Vegetation is also examined as both a response to and a determining factor in climate. Hence, the intricate feedback between vegetation and climate complicates any attempt to predict climatic change. Better quantitative assessment of all relationships and processes is required to achieve realistic forecasts of global change. (au) 31 refs.

  12. Vertical sounding balloons for stratospheric photochemistry

    Science.gov (United States)

    Pommereau, J. P.

    The use of vertical sounding balloons for stratospheric photochemistry studies is illustrated by the use of a vertical piloted gas balloon for the search of NO2 diurnal variations. It is shown that the use of montgolfieres (hot air balloons) can enhance the vertical sounding technique. Particular attention is given to a sun-heated montgolfiere and to the more sophisticated infrared montgolfiere that is able to perform three to four vertical excursions per day and to remain aloft for weeks or months.

  13. Estimation of viscoelastic attenuation of real seismic data by use of ray tracing software: Application to the detection of gas hydrates and free gas

    Czech Academy of Sciences Publication Activity Database

    Bouchaala, Fateh; Guennou, C.

    2012-01-01

    Roč. 344, č. 2 (2012), s. 57-66 ISSN 1631-0713 Institutional research plan: CEZ:AV0Z30120515 Keywords : viscoelastic attenuation * gas hydrates * free gas * ray tracing Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.401, year: 2012

  14. Tibetan Plateau glacier and hydrological change under stratospheric aerosol injection

    Science.gov (United States)

    Ji, D.

    2017-12-01

    As an important inland freshwater resource, mountain glaciers are highly related to human life, they provide water for many large rivers and play a very important role in regional water cycles. The response of mountain glaciers to future climate change is a topic of concern especially to the many people who rely on glacier-fed rivers for purposes such as irrigation. Geoengineering by stratospheric aerosol injection is a method of offsetting the global temperature rise from greenhouse gases. How the geoengineering by stratospheric aerosol injection affects the mass balance of mountain glaciers and adjacent river discharge is little understood. In this study, we use regional climate model WRF and catchment-based river model CaMa-Flood to study the impacts of stratospheric aerosol injection to Tibetan Plateau glacier mass balance and adjacent river discharge. To facilitate mountain glacier mass balance study, we improve the description of mountain glacier in the land surface scheme of WRF. The improvements include: (1) a fine mesh nested in WRF horizontal grid to match the highly non-uniform spatial distribution of the mountain glaciers, (2) revising the radiation flux at the glacier surface considering the surrounding terrain. We use the projections of five Earth system models for CMIP5 rcp45 and GeoMIP G4 scenarios to drive the WRF and CaMa-Flood models. The G4 scenario, which uses stratospheric aerosols to reduce the incoming shortwave while applying the rcp4.5 greenhouse gas forcing, starts stratospheric sulfate aerosol injection at a rate of 5 Tg per year over the period 2020-2069. The ensemble projections suggest relatively slower glacier mass loss rates and reduced river discharge at Tibetan Plateau and adjacent regions under geoengineering scenario by stratospheric aerosol injection.

  15. Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection

    Science.gov (United States)

    Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu

    2018-01-01

    We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.

  16. Photochemistry of materials in the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.S. [Lawrence Berkeley Laboratories, CA (United States)

    1993-12-01

    This research is concerned with global change in the atmosphere, including photochemical modeling and, in the past, experimental gas-phase photochemistry involving molecular dynamics and laboratory study of atmospheric chemical reactions. The experimental work on this project concluded in August 1991, but there is a back-log of several journal articles to be written and submitted for publication. The theoretical work involves photochemical modeling in collaboration with Lawrence Livermore National Laboratory (LLNL) and advising the Upper Atmosphere Research Program on Atmospheric Effects of Stratospheric Aircraft, National Aeronautics and Space Administration (NASA).

  17. Investigation of the temporal development of the stratospheric ozone layer with an interactively coupled chemistry-climate model; Untersuchung der zeitlichen Entwicklung der stratosphaerischen Ozonschicht mit einem interaktiv gekoppelten Klima-Chemie-Modell

    Energy Technology Data Exchange (ETDEWEB)

    Schnadt, C

    2001-07-01

    The impact of climate change and stratospheric chlorine loading on the stratospheric ozone layer is estimated by evaluating three multi-annual simulations of the interactively coupled global chemistry-climate model ECUAM4.L39 (DLR)/CHEM. Two experiments of the near past were carried out representing the early 1980s and 1990s, respectively. An additional scenario was conducted which is characterised by increased greenhouse gas concentrations and a slightly reduced stratospheric chlorine loading with respect to its value measured in the year 1990, according to current projections. The model is able to describe dynamic and chemical processes of the 1980s and 1990s realistically, and it is capable in reproducing the observed stratospheric temperature, water vapour, and ozone temperature trends of this time period. With increasing greenhouse gas concentrations, the model produces an enhancing stratospheric cooling for the years 1980 to 2015. Despite the reduced stratospheric chlorine loading in 2015, the decreased stratospheric temperatures will cause a continued reduction of stratospheric ozone in the southern hemisphere. In the northern hemisphere, tropospheric warming results in a changed excitation of planetary waves. Their vertical propagation and breaking in the stratosphere causes the polar vortex to become more unstable in 2015. This overcompensates the radiative stratospheric cooling so that stratospheric ozone recovers. (orig.)

  18. Polar-night O3, NO2 and NO3 distributions during sudden stratospheric warmings in 2003–2008 as seen by GOMOS/Envisat

    Directory of Open Access Journals (Sweden)

    E. Kyrölä

    2012-01-01

    Full Text Available Sudden stratospheric warmings (SSW are large-scale transient events, which have a profound effect on the Northern Hemisphere stratospheric circulation in winter. During the SSW events the temperature in stratosphere increases by several tens of Kelvins and zonal winds decelerate or reverse in direction. Changes in temperature and dynamics significantly affect the chemical composition of the middle atmosphere. In this paper, the response of the middle-atmosphere trace gases during several sudden stratospheric warmings in 2003–2008 is investigated using measurements from the GOMOS (Global Ozone Monitoring by Occultation of Stars instrument on board the Envisat satellite. We have analyzed spatial and temporal changes of NO2 and NO3 in the stratosphere, and of ozone in the whole middle atmosphere. To facilitate our analyses, we have used the temperature profiles data from the MLS (Microwave Limb Sounder instrument on board the Aura satellite, as well as simulations by the FinROSE chemistry-transport model and the Sodankylä Ion and Neutral Chemistry model (SIC. NO3 observations in the polar winter stratosphere during SSWs are reported for the first time. Changes in chemical composition are found not to be restricted to the stratosphere, but to extend to mesosphere and lower thermosphere. They often exhibit a complicated structure, because the distribution of trace gases is affected by changes in both chemistry and dynamics. The tertiary ozone maximum in the mesosphere often disappears with the onset of SSW, probably because of strong mixing processes. The strong horizontal mixing with outside-vortex air is well observed also in NO2 data, especially in cases of enhanced NO2 inside the polar vortex before SSW. Almost in all of the considered events, ozone near the secondary maximum decreases with onset of SSW. In both experimental data and FinROSE modelling, ozone changes are positively correlated with temperature changes in the lower stratosphere

  19. Numerical predictions of the separation of heavy components inside the trace gas concentrator

    International Nuclear Information System (INIS)

    Mo, J.D.

    1995-01-01

    The component with a heavier molecular weight can be separated from the one with a lighter molecular weight in a binary mixture by applying an appropriate pressure gradient. A centrifugal force field effectively generates the required pressure gradient and a favorable flow field along the radial direction in a trace gas concentrator for such an application. This paper presents the numerical predictions of the mass separation inside a trace gas concentrator, which enriches Xenon in air. A Navier-Stokes solver in primitive variables using a pressure based algorithm has been applied to solve for the flow fields. Subsequently, the transport equations with a strong centrifugal field are solved for the mass concentration. This study is the continued effort for the proof-of-concept of centrifugal separation of components with a considerable difference in their molecular weight in a binary mixture. The significant effects of rotational speed, flow field, and the geometrical configuration on the mass separation are presented in this paper

  20. Assessment of diffusive isotopic fractionation in polar firn, and application to ice core trace gas records

    DEFF Research Database (Denmark)

    Buizert, C.; Sowers, T.; Blunier, T.

    2013-01-01

    During rapid variations of the atmospheric mixing ratio of a trace gas, diffusive transport in the porous firn layer atop ice sheets and glaciers alters the isotopic composition of that gas relative to the overlying atmosphere. Records of past atmospheric trace gas isotopic composition from ice...... cores and firn need to be corrected for this diffusive fractionation artifact. We present a novel, semi-empirical method to accurately estimate the magnitude of the diffusive fractionation in the ice core record. Our method (1) consists of a relatively simple analytical calculation; (2) requires only...... commonly available ice core data; (3) is not subject to the uncertainties inherent to estimating the accumulation rate, temperature, close-off depth and depth-diffusivity relationship back in time; (4) does not require knowledge of the true atmospheric variations, but uses the smoothed records obtained...

  1. Numerical Simulation of Simultaneous Electrostatic Precipitation and Trace Gas Adsorption: Electrohydrodynamic Effects

    International Nuclear Information System (INIS)

    Clack, Herek L.

    2017-01-01

    Electrostatic precipitators (ESPs) are now being tasked with simultaneously removing particulate matter (PM) and trace gas-phase pollutants such as mercury released during coal combustion. This represents a significant expansion of their original operational mission, one which is not captured by decades old quasi-1-D analytical expressions developed from first principles for predicting PM removal alone. At the same time, technological advances in ESP power supplies have led to steady increases over the years in the applied voltage achievable in new or refurbished ESPs. In light of these industry trends, the present study extends our previous study to examine the multiphase flow phenomena that may occur during such ESP operations, specifically the effects of electrohydrodynamic (EHD) fluid flow phenomena that can emerge when electrical current densities are high and/or fluid velocities are low. The results show good agreement at low current densities between the present numerical simulation results and ESP performance predictions obtained from classical analytical expressions, with increasing divergence in predicted performance at higher current densities. Under the influence of EHD phenomena, the acceleration of the fluid by electric body forces effectively increases average fluid velocities through the ESP channel with a commiserate reduction in PM removal efficiency. The impact on trace gas-phase pollutant removal is mixed, with EHD phenomena found to variously promote or inhibit gas-phase pollutant removal.

  2. Numerical Simulation of Simultaneous Electrostatic Precipitation and Trace Gas Adsorption: Electrohydrodynamic Effects

    Energy Technology Data Exchange (ETDEWEB)

    Clack, Herek L., E-mail: hclack@umich.edu [Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI (United States)

    2017-03-21

    Electrostatic precipitators (ESPs) are now being tasked with simultaneously removing particulate matter (PM) and trace gas-phase pollutants such as mercury released during coal combustion. This represents a significant expansion of their original operational mission, one which is not captured by decades old quasi-1-D analytical expressions developed from first principles for predicting PM removal alone. At the same time, technological advances in ESP power supplies have led to steady increases over the years in the applied voltage achievable in new or refurbished ESPs. In light of these industry trends, the present study extends our previous study to examine the multiphase flow phenomena that may occur during such ESP operations, specifically the effects of electrohydrodynamic (EHD) fluid flow phenomena that can emerge when electrical current densities are high and/or fluid velocities are low. The results show good agreement at low current densities between the present numerical simulation results and ESP performance predictions obtained from classical analytical expressions, with increasing divergence in predicted performance at higher current densities. Under the influence of EHD phenomena, the acceleration of the fluid by electric body forces effectively increases average fluid velocities through the ESP channel with a commiserate reduction in PM removal efficiency. The impact on trace gas-phase pollutant removal is mixed, with EHD phenomena found to variously promote or inhibit gas-phase pollutant removal.

  3. Temperature thresholds for chlorine activation and ozone loss in the polar stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Drdla, K. [NASA Ames Research Center, Moffett Field, CA (United States); Mueller, R. [Forschungszentrum Juelich (DE). Inst. of Energy and Climate Research (IEK-7)

    2012-07-01

    Low stratospheric temperatures are known to be responsible for heterogeneous chlorine activation that leads to polar ozone depletion. Here, we discuss the temperature threshold below which substantial chlorine activation occurs. We suggest that the onset of chlorine activation is dominated by reactions on cold binary aerosol particles, without the formation of polar stratospheric clouds (PSCs), i.e. without any significant uptake of HNO{sub 3} from the gas phase. Using reaction rates on cold binary aerosol in a model of stratospheric chemistry, a chlorine activation threshold temperature, T{sub ACL}, is derived. At typical stratospheric conditions, T{sub ACL} is similar in value to T{sub NAT} (within 1-2 K), the highest temperature at which nitric acid trihydrate (NAT) can exist. T{sub NAT} is still in use to parameterise the threshold temperature for the onset of chlorine activation. However, perturbations can cause T{sub ACL} to differ from T{sub NAT}: T{sub ACL} is dependent upon H{sub 2} O and potential temperature, but unlike T{sub NAT} is not dependent upon HNO3. Furthermore, in contrast to T{sub NAT}, T{sub ACL} is dependent upon the stratospheric sulfate aerosol loading and thus provides a means to estimate the impact on polar ozone of strong volcanic eruptions and some geo-engineering options, which are discussed. A parameterisation of T{sub ACL} is provided here, allowing it to be calculated for low solar elevation (or high solar zenith angle) over a comprehensive range of stratospheric conditions. Considering T{sub ACL} as a proxy for chlorine activation cannot replace a detailed model calculation, and polar ozone loss is influenced by other factors apart from the initial chlorine activation. However, T{sub ACL} provides a more accurate description of the temperature conditions necessary for chlorine activation and ozone loss in the polar stratosphere than T{sub NAT}. (orig.)

  4. How stratospheric are deep stratospheric intrusions? LUAMI 2008

    Directory of Open Access Journals (Sweden)

    T. Trickl

    2016-07-01

    Full Text Available A large-scale comparison of water-vapour vertical-sounding instruments took place over central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison. The measurements were carried out at four observational sites: Payerne (Switzerland, Bilthoven (the Netherlands, Lindenberg (north-eastern Germany, and the Zugspitze mountain (Garmisch-Partenkichen, German Alps, and by an airborne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with a minimum mixing ratios of 0 to 35 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg. The dryness hardens the findings of a preceding study (“Part 1”, Trickl et al., 2014 that, e.g., 73 % of deep intrusions reaching the German Alps and travelling 6 days or less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the source region were transferred to central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow from the stratosphere just above the dynamical tropopause, for the first time confirming the conclusions in “Part 1” from the Zugspitze CO observations. The

  5. Trace Gas Emissions From the Production and Use of Biofuels in the African Tropics

    Science.gov (United States)

    Bertschi, I.; Yokelson, R. J.; Ward, D. E.; Christian, T. J.; Hao, W. M.

    2001-12-01

    Biomass burning is an important source of many atmospheric trace gases and particles that play a significant role in regional-global, tropospheric and stratospheric chemical processes, and in the global climate. About 80% of biomass burning is thought to occur in the tropics in association with traditional land management practices and domestic biofuel use. More than 220 Tg (1 Tg = 1 x 1012 g) of fuel-wood and 11 Tg of charcoal are consumed annually for domestic heating and cooking in tropical Africa alone. Approximately 90% of the fuel-wood is consumed in open fires in rural areas. Previously, the emissions for fuel-wood fires and charcoal use and production in the tropics were known for only a limited number of chemical species. During SAFARI-2000 we conducted field experiments in remote Zambian villages and observed most of the major trace gases emitted from the production and use of biofuels using open-path Fourier transform infrared (OP-FTIR) spectroscopy, which provides an artifact-free overview of the trace gases present above several ppbv. Our OP-FTIR was deployed for several spot measurements over the course of an earthen kiln charcoal-making process and of several open wood and charcoal fires, all of which were built and tended by local inhabitants. We quantified the emissions of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitrogen oxides (NOx), ammonia (NH3), non-methane hydrocarbons (NMHC), and oxygenated volatile organic compounds (OVOC). Our results also show much higher emission factors for methanol (CH3OH), acetic acid (CH3COOH), and formaldehyde (CH2O) from domestic biofuel production and use than from savanna fires in southern Africa. Thus, these year-round OVOC emissions will play an important role in the photochemistry of the troposphere and in the acidity of aerosols and precipitation especially in tropical regions.

  6. THERMAL AND CHEMICAL STRUCTURE VARIATIONS IN TITAN'S STRATOSPHERE DURING THE CASSINI MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Bampasidis, Georgios; Coustenis, A.; Vinatier, S. [Laboratoire d' Etudes Spatiales et d' Instrumentation en Astrophysique (LESIA), Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 5, place Jules Janssen, F-92195 Meudon Cedex (France); Achterberg, R. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Lavvas, P. [GSMA, Universite Reims Champagne-Ardenne, F-51687 Reims Cedex 2 (France); Nixon, C. A.; Jennings, D. E.; Flasar, F. M.; Carlson, R. C.; Romani, P. N.; Guandique, E. A. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Teanby, N. A. [School of Earth Sciences, University of Bristol, Bristol BS8 1RJ (United Kingdom); Moussas, X.; Preka-Papadema, P.; Stamogiorgos, S., E-mail: gbabasid@phys.uoa.gr [Faculty of Physics, National and Kapodistrian University of Athens, Panepistimioupolis, GR 15783 Zographos, Athens (Greece)

    2012-12-01

    We have developed a line-by-line Atmospheric Radiative Transfer for Titan code that includes the most recent laboratory spectroscopic data and haze descriptions relative to Titan's stratosphere. We use this code to model Cassini Composite Infrared Spectrometer data taken during the numerous Titan flybys from 2006 to 2012 at surface-intercepting geometry in the 600-1500 cm{sup -1} range for latitudes from 50 Degree-Sign S to 50 Degree-Sign N. We report variations in temperature and chemical composition in the stratosphere during the Cassini mission, before and after the Northern Spring Equinox (NSE). We find indication for a weakening of the temperature gradient with warming of the stratosphere and cooling of the lower mesosphere. In addition, we infer precise concentrations for the trace gases and their main isotopologues and find that the chemical composition in Titan's stratosphere varies significantly with latitude during the 6 years investigated here, with increased mixing ratios toward the northern latitudes. In particular, we monitor and quantify the amplitude of a maximum enhancement of several gases observed at northern latitudes up to 50 Degree-Sign N around mid-2009, at the time of the NSE. We find that this rise is followed by a rapid decrease in chemical inventory in 2010 probably due to a weakening north polar vortex with reduced lateral mixing across the vortex boundary.

  7. Inter-comparison of stratospheric O3 and NO2 abundances retrieved from balloon borne direct sun observations and Envisat/SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Butz

    2006-01-01

    Full Text Available Stratospheric O3 and NO2 abundances measured by different remote sensing instruments are inter-compared: (1 Line-of-sight absorptions and vertical profiles inferred from solar spectra in the ultra-violet (UV, visible and infrared (IR wavelength ranges measured by the LPMA/DOAS (Limb Profile Monitor of the Atmosphere/Differential Optical Absorption Spectroscopy balloon payload during balloon ascent/descent and solar occultation are examined with respect to internal consistency. (2 The balloon borne stratospheric profiles of O3 and NO2 are compared to collocated space-borne skylight limb observations of the Envisat/SCIAMACHY satellite instrument. The trace gas profiles are retrieved from SCIAMACHY spectra using different algorithms developed at the Universities of Bremen and Heidelberg and at the Harvard-Smithsonian Center for Astrophysics. A comparison scheme is used that accounts for the spatial and temporal mismatch as well as differing photochemical conditions between the balloon and satellite borne measurements. It is found that the balloon borne measurements internally agree to within ±10% and ±20% for O3 and NO2, respectively, whereas the agreement with the satellite is ±20% for both gases in the 20 km to 30 km altitude range and in general worse below 20 km.

  8. SEASONAL DISAPPEARANCE OF FAR-INFRARED HAZE IN TITAN'S STRATOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Donald E.; Anderson, C. M.; Flasar, F. M.; Cottini, V. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Samuelson, R. E.; Nixon, C. A.; Kunde, V. G.; Achterberg, R. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); De Kok, R. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Coustenis, A.; Vinatier, S. [LESIA, Observatoire de Paris-Meudon, 92195 Meudon Cedex (France); Calcutt, S. B., E-mail: donald.e.jennings@nasa.gov [Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2012-07-20

    A far-infrared emission band attributed to volatile or refractory haze in Titan's stratosphere has been decreasing in intensity since Cassini's arrival in 2004. The 220 cm{sup -1} feature, first seen by the Voyager Infrared Interferometer Spectrometer, has only been found in Titan's winter polar region. The emission peaks at about 140 km altitude near the winter stratospheric temperature minimum. Observations recorded over the period 2004-2012 by the Composite Infrared Spectrometer on Cassini show a decrease in the intensity of this feature by about a factor of four. Possible seasonal causes of this decline are an increase in photolytic destruction of source chemicals at high altitude, a lessening of condensation as solar heating increased, or a weakening of downwelling of vapors. As of early 2012, the 220 cm{sup -1} haze has not yet been detected in the south. The haze composition is unknown, but its decrease is similar to that of HC{sub 3}N gas in Titan's polar stratosphere, pointing to a nitrile origin.

  9. Sensitivity of simulated convection-driven stratosphere-troposphere exchange in WRF-Chem to the choice of physical and chemical parameterization

    Science.gov (United States)

    Phoenix, Daniel B.; Homeyer, Cameron R.; Barth, Mary C.

    2017-08-01

    Tropopause-penetrating convection is capable of rapidly transporting air from the lower troposphere to the upper troposphere and lower stratosphere (UTLS), where it can have important impacts on chemistry, the radiative budget, and climate. However, obtaining in situ measurements of convection and convective transport is difficult and such observations are historically rare. Modeling studies, on the other hand, offer the advantage of providing output related to the physical, dynamical, and chemical characteristics of storms and their environments at fine spatial and temporal scales. Since these characteristics of simulated convection depend on the chosen model design, we examine the sensitivity of simulated convective transport to the choice of physical (bulk microphysics or BMP and planetary boundary layer or PBL) and chemical parameterizations in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). In particular, we simulate multiple cases where in situ observations are available from the recent (2012) Deep Convective Clouds and Chemistry (DC3) experiment. Model output is evaluated using ground-based radar observations of each storm and in situ trace gas observations from two aircraft operated during the DC3 experiment. Model results show measurable sensitivity of the physical characteristics of a storm and the transport of water vapor and additional trace gases into the UTLS to the choice of BMP. The physical characteristics of the storm and transport of insoluble trace gases are largely insensitive to the choice of PBL scheme and chemical mechanism, though several soluble trace gases (e.g., SO2, CH2O, and HNO3) exhibit some measurable sensitivity.

  10. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.

    Science.gov (United States)

    Wang, Qiang; Wang, Zhen; Chang, Jun; Ren, Wei

    2017-06-01

    We demonstrated a novel trace gas sensing method based on fiber-ring laser intracavity photoacoustic spectroscopy. This spectroscopic technique is a merging of photoacoustic spectroscopy (PAS) with a fiber-ring cavity for sensitive and all-fiber gas detection. A transmission-type PAS gas cell (resonant frequency f0=2.68  kHz) was placed inside the fiber-ring laser to fully utilize the intracavity laser power. The PAS signal was excited by modulating the laser wavelength at f0/2 using a custom-made fiber Bragg grating-based modulator. We used this spectroscopic technique to detect acetylene (C2H2) at 1531.6 nm as a proof of principle. With a low Q-factor (4.9) of the PAS cell, our sensor achieved a good linear response (R2=0.996) to C2H2 concentration and a minimum detection limit of 390 ppbv at 2-s response time.

  11. Status of GeoTASO Trace Gas Data Analysis for the KORUS-AQ Campaign

    Science.gov (United States)

    Janz, S. J.; Nowlan, C. R.; Lamsal, L. N.; Kowalewski, M. G.; Judd, L. M.; Wang, J.

    2017-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument measures spectrally resolved backscattered solar radiation at high spatial resolution. The instrument completed 30 sorties on board the NASA LaRC UC-12 aircraft during the KORUS-AQ deployment in May-June of 2016. GeoTASO collects spatially resolved spectra with sufficient sensitivity to retrieve column amounts of the trace gas molecules NO2, SO2, H2CO, O3, and C2H2O2 as well as aerosol products. Typical product retrievals are done in 250 m2 bins with multiple overpasses of key ground sites, allowing for detailed spatio-temporal analysis. Flight patterns consisted of both contiguous overlapping grid patterns to simulate satellite observational strategies in support of future geostationary satellite algorithm development, and "race-track" sampling to perform calibration and validation with the in-situ DC-8 platform as well as ground based assets. We will summarize the status of the radiance data set as well as ongoing analysis from our co-Investigators.

  12. ACCENT-BIAFLUX workshop 2005, trace gas and aerosol flux measurement and techniques. Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Werner, A.; Soerensen, L.L. (eds.)

    2005-04-01

    The woorkshop trace gas and aerosol flux measurement techniques in the second meeting within the Biosphere Atmosphere Exchange of Pollutions (BIAFLUX) group in the EU-network project Atmospheric Composition Change (ACCENT). The goal of the workshop is to obtain an overview of techniques for measurements of gas and aerosol fluxes and to gather the knowledge of uncertainties in flux measurements and calculations. The workshop is funded by ACCENT. The abstract book presents abstracts of 21 oral presentations and 26 poster presentations. (LN)

  13. Odin-OSIRIS stratospheric aerosol data product and SAGE III intercomparison

    Directory of Open Access Journals (Sweden)

    A. E. Bourassa

    2012-01-01

    Full Text Available The scattered sunlight measurements made by the Optical Spectrograph and InfraRed Imaging System (OSIRIS on the Odin spacecraft are used to retrieve vertical profiles of stratospheric aerosol extinction at 750 nm. The recently released OSIRIS Version 5 data product contains the first publicly released stratospheric aerosol extinction retrievals, and these are now available for the entire Odin mission, which extends from the present day back to launch in 2001. A proof-of-concept study for the retrieval of stratospheric aerosol extinction from limb scatter measurements was previously published and the Version 5 data product retrievals are based on this work, but incorporate several important improvements to the algorithm. One of the primary changes is the use of a new retrieval vector that greatly improves the sensitivity to aerosol scattering by incorporating a forward modeled calculation of the radiance from a Rayleigh atmosphere. Additional improvements include a coupled retrieval of the effective albedo, a new method for normalization of the retrieval vector to improve signal-to-noise, and the use of an initial guess that is representative of very low background aerosol loading conditions, which allows for maximal retrieval range. Furthermore, the Version 5 data set is compared to Stratospheric Aerosol and Gas Experiment (SAGE III 755 nm extinction profiles during the almost four years of mission overlap from 2002 to late 2005. The vertical structure in coincident profile measurements is well correlated and the statistics on a relatively large set of tight coincident measurements show agreement between the measurements from the two instruments to within approximately 10% throughout the 15 to 25 km altitude range, which covers the bulk of the stratospheric aerosol layer for the mid and high latitude cases studied here.

  14. Climate-chemical interactions and greenhouse effects of trace gases

    Science.gov (United States)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  15. Convective Transport of Very-short-lived Bromocarbons to the Stratosphere

    Science.gov (United States)

    Liang, Qing; Atlas, Elliot Leonard; Blake, Donald Ray; Dorf, Marcel; Pfeilsticker, Klaus August; Schauffler, Sue Myhre

    2014-01-01

    We use the NASA GEOS Chemistry Climate Model (GEOSCCM) to quantify the contribution of two most important brominated very short-lived substances (VSLS), bromoform (CHBr3) and dibromomethane (CH2Br2), to stratospheric bromine and its sensitivity to convection strength. Model simulations suggest that the most active transport of VSLS from the marine boundary layer through the tropopause occurs over the tropical Indian Ocean, the Western Pacific warm pool, and off the Pacific coast of Mexico. Together, convective lofting of CHBr3 and CH2Br2 and their degradation products supplies 8 ppt total bromine to the base of the Tropical Tropopause Layer (TTL, 150 hPa), similar to the amount of VSLS organic bromine available in the marine boundary layer (7.8-8.4 ppt) in the above active convective lofting regions. Of the total 8 ppt VSLS-originated bromine that enters the base of TTL at 150 hPa, half is in the form of source gas injection (SGI) and half as product gas injection (PGI). Only a small portion (Br2, together, contribute 7.7 pptv to the present-day inorganic bromine in the stratosphere. However, varying model deep convection strength between maximum and minimum convection conditions can introduce a 2.6 pptv uncertainty in the contribution of VSLS to inorganic bromine in the stratosphere (BryVSLS). Contrary to the conventional wisdom, minimum convection condition leads to a larger BryVSLS as the reduced scavenging in soluble product gases, thus a significant increase in PGI (2-3 ppt), greatly exceeds the relative minor decrease in SGI (a few 10ths ppt.

  16. Solar research with stratospheric balloons

    Science.gov (United States)

    Vázquez, Manuel; Wittmann, Axel D.

    Balloons, driven by hot air or some gas lighter than air, were the first artificial machines able to lift payloads (including humans) from the ground. After some pioneering flights the study of the physical properties of the terrestrial atmosphere constituted the first scientific target. A bit later astronomers realized that the turbulence of the atmospheric layers above their ground-based telescopes deteriorated the image quality, and that balloons were an appropriate means to overcome, total or partially, this problem. Some of the most highly-resolved photographs and spectrograms of the sun during the 20th century were actually obtained by balloon-borne telescopes from the stratosphere. Some more recent projects of solar balloon astronomy will also be described.

  17. Infrared laser spectroscopic trace gas sensing

    Science.gov (United States)

    Sigrist, Markus

    2016-04-01

    -lived species like nitrous acid (HONO) with a QCL-based QEPAS system where the small gas sampling volume and hence short gas residence time are of particular importance [3]. A true analysis of gas mixtures has been performed with a widely tunable DFG system in a medical application that could also be adapted to atmospheric species [4]. It is demonstrated that a laser-based narrowband system with broad tunability combined with an appropriate detection scheme is feasible for the chemical analysis of multi-component gas mixtures even with an a priori unknown composition. Most recent examples will further confirm the great potential of infrared laser-based devices for trace species sensing. References 1. D. Marinov and M.W. Sigrist: "Monitoring of road-traffic emission with mobile photoacoustic system", Photochem. and Photobiol. Sciences 2, 774-778 (2003) 2. J.M. Rey, M. Fill, F. Felder and M.W. Sigrist: "Broadly tunable mid-infrared VECSEL for multiple components hydrocarbons gas sensing", Appl. Phys. B 117, 935-939 (2014) 3. H. Yi, R. Maamary, X. Gao, M.W. Sigrist, E. Fertein, and W. Chen: "Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy", Appl. Phys. Lett. 106, 101109 (2015) 4. M. Gianella and M.W. Sigrist: "Chemical Analysis of Surgical Smoke by Infrared Laser Spectroscopy", Appl. Phys. B 109, 485-496 (2012)

  18. An Estimation of the Climatic Effects of Stratospheric Ozone Losses during the 1980s. Appendix K

    Science.gov (United States)

    MacKay, Robert M.; Ko, Malcolm K. W.; Shia, Run-Lie; Yang, Yajaing; Zhou, Shuntai; Molnar, Gyula

    1997-01-01

    In order to study the potential climatic effects of the ozone hole more directly and to assess the validity of previous lower resolution model results, the latest high spatial resolution version of the Atmospheric and Environmental Research, Inc., seasonal radiative dynamical climate model is used to simulate the climatic effects of ozone changes relative to the other greenhouse gases. The steady-state climatic effect of a sustained decrease in lower stratospheric ozone, similar in magnitude to the observed 1979-90 decrease, is estimated by comparing three steady-state climate simulations: 1) 1979 greenhouse gas concentrations and 1979 ozone, II) 1990 greenhouse gas concentrations with 1979 ozone, and III) 1990 greenhouse gas concentrations with 1990 ozone. The simulated increase in surface air temperature resulting from nonozone greenhouse gases is 0.272 K. When changes in lower stratospheric ozone are included, the greenhouse warming is 0.165 K, which is approximately 39% lower than when ozone is fixed at the 1979 concentrations. Ozone perturbations at high latitudes result in a cooling of the surface-troposphere system that is greater (by a factor of 2.8) than that estimated from the change in radiative forcing resulting from ozone depiction and the model's 2 x CO, climate sensitivity. The results suggest that changes in meridional heat transport from low to high latitudes combined with the decrease in the infrared opacity of the lower stratosphere are very important in determining the steady-state response to high latitude ozone losses. The 39% compensation in greenhouse warming resulting from lower stratospheric ozone losses is also larger than the 28% compensation simulated previously by the lower resolution model. The higher resolution model is able to resolve the high latitude features of the assumed ozone perturbation, which are important in determining the overall climate sensitivity to these perturbations.

  19. Impact of H{sub 2} emissions of a global hydrogen economy on the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Grooss, Jens-Uwe; Feck, Thomas; Vogel, Baerbel; Riese, Martin [Forschungszentrum Juelich (Germany)

    2010-07-01

    ''Green'' hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H{sub 2}) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H{sub 2} that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H{sub 2} can occur along the whole hydrogen process chain which increase the tropospheric H{sub 2} burden. The impact of these emissions is investigated. Figure 1 is a sketch that clarifies the path way and impact of hydrogen in the stratosphere. The air follows the Brewer-Dobson circulation in which air enters the stratosphere through the tropical tropopause, ascends then to the upper stratosphere and finally descends in polar latitudes within a typical transport time frame of 4 to 8 years. (orig.)

  20. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    Science.gov (United States)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  1. On recent progress using QCLs for molecular trace gas detection - from basic research to industrial applicaitons

    NARCIS (Netherlands)

    Röpcke, J.; Davies, P.; Hempel, F.; Hübner, M.; Glitsch, S.; Lang, N.; Nägele, M.; Rousseau, A.; Wege, S.; Welzel, S.

    2010-01-01

    Quantum Cascade Lasers offer attractive options for applications of MIR absorption spectroscopy for basic research and industrial process control. The contribution reviews applications for plasma diagnostics and trace gas monitoring in research and industry.

  2. New enhanced sensitivity infrared laser spectroscopy techniques applied to reactive plasmas and trace gas detection

    NARCIS (Netherlands)

    Welzel, S.

    2009-01-01

    Infrared laser absorption spectroscopy (IRLAS) employing both tuneable diode and quantum cascade lasers (TDLs, QCLs) has been applied with both high sensitivity and high time resolution to plasma diagnostics and trace gas measurements. TDLAS combined with a conventional White type multiple pass cell

  3. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - June 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  4. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - August 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  5. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - July 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  6. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - May 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  7. The ASSET intercomparison of stratosphere and lower mesosphere humidity analyses

    Directory of Open Access Journals (Sweden)

    H. E. Thornton

    2009-02-01

    Full Text Available This paper presents results from the first detailed intercomparison of stratosphere-lower mesosphere water vapour analyses; it builds on earlier results from the EU funded framework V "Assimilation of ENVISAT Data" (ASSET project. Stratospheric water vapour plays an important role in many key atmospheric processes and therefore an improved understanding of its daily variability is desirable. With the availability of high resolution, good quality Michelson Interferometer for Passive Atmospheric Sounding (MIPAS water vapour profiles, the ability of four different atmospheric models to assimilate these data is tested. MIPAS data have been assimilated over September 2003 into the models of the European Centre for Medium Range Weather Forecasts (ECMWF, the Belgian Institute for Space and Aeronomy (BIRA-IASB, the French Service d'Aéronomie (SA-IPSL and the UK Met Office. The resultant middle atmosphere humidity analyses are compared against independent satellite data from the Halogen Occultation Experiment (HALOE, the Polar Ozone and Aerosol Measurement (POAM III and the Stratospheric Aerosol and Gas Experiment (SAGE II. The MIPAS water vapour profiles are generally well assimilated in the ECMWF, BIRA-IASB and SA systems, producing stratosphere-mesosphere water vapour fields where the main features compare favourably with the independent observations. However, the models are less capable of assimilating the MIPAS data where water vapour values are locally extreme or in regions of strong humidity gradients, such as the southern hemisphere lower stratosphere polar vortex. Differences in the analyses can be attributed to the choice of humidity control variable, how the background error covariance matrix is generated, the model resolution and its complexity, the degree of quality control of the observations and the use of observations near the model boundaries. Due to the poor performance of the Met Office analyses the results are not included in

  8. The ASSET intercomparison of stratosphere and lower mesosphere humidity analyses

    Science.gov (United States)

    Thornton, H. E.; Jackson, D. R.; Bekki, S.; Bormann, N.; Errera, Q.; Geer, A. J.; Lahoz, W. A.; Rharmili, S.

    2009-02-01

    This paper presents results from the first detailed intercomparison of stratosphere-lower mesosphere water vapour analyses; it builds on earlier results from the EU funded framework V "Assimilation of ENVISAT Data" (ASSET) project. Stratospheric water vapour plays an important role in many key atmospheric processes and therefore an improved understanding of its daily variability is desirable. With the availability of high resolution, good quality Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) water vapour profiles, the ability of four different atmospheric models to assimilate these data is tested. MIPAS data have been assimilated over September 2003 into the models of the European Centre for Medium Range Weather Forecasts (ECMWF), the Belgian Institute for Space and Aeronomy (BIRA-IASB), the French Service d'Aéronomie (SA-IPSL) and the UK Met Office. The resultant middle atmosphere humidity analyses are compared against independent satellite data from the Halogen Occultation Experiment (HALOE), the Polar Ozone and Aerosol Measurement (POAM III) and the Stratospheric Aerosol and Gas Experiment (SAGE II). The MIPAS water vapour profiles are generally well assimilated in the ECMWF, BIRA-IASB and SA systems, producing stratosphere-mesosphere water vapour fields where the main features compare favourably with the independent observations. However, the models are less capable of assimilating the MIPAS data where water vapour values are locally extreme or in regions of strong humidity gradients, such as the southern hemisphere lower stratosphere polar vortex. Differences in the analyses can be attributed to the choice of humidity control variable, how the background error covariance matrix is generated, the model resolution and its complexity, the degree of quality control of the observations and the use of observations near the model boundaries. Due to the poor performance of the Met Office analyses the results are not included in the intercomparison

  9. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    Science.gov (United States)

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  10. Elemental concentrations in tropospheric and lower stratospheric air in a Northeastern region of Poland

    Science.gov (United States)

    Braziewicz, Janusz; Kownacka, Ludwika; Majewska, Urszula; Korman, Andrzej

    Element concentrations of K, Ca, Ti, Cr, Fe, Ni, Cu, Zn, Se, Br, Sr and Pb as well as the activity of natural radionuclides 210Pb and 226Ra in air were measured. The aerosol samples were collected during tropospheric and stratospheric aircraft flights over the Northeastern region of Poland, which is mostly an agricultural and wooded area. The air volumes were filtered using Petrianov filters at 1, 3, 6, 9, 12 and 15 km above the ground level by special equipment attached to a jet plane. Aircraft flights were provided from September 1997 to August 1998 in 5 separate sampling runs. The long sampling distances served as a good representation of mean aerosol composition and distribution. Concentrations of the same elements were also measured using stationary equipment near the ground level at the outskirts of Warsaw. The vertical profiles of element concentration were obtained and the elemental compositions for the tropospheric and stratospheric aerosols were compared with those from the near-ground level. Contribution of K, Ca, Ti and Fe, which are the main components of soil, in total mass of all detected ones was estimated. Relative concentrations of all measured elements, which show any differences in the composition of the aerosol were calculated. The results obtained confirm the fact that the stratospheric reservoir is observed in the bottom stratosphere. The XRF method based on molybdenum X-ray tube was used as an analytical tool in the determination of aerosols trace elements. The altitude distributions of radioactivity of 226Ra and 210Pb were determined using radiochemical methods.

  11. Laboratory studies of stratospheric aerosol chemistry

    Science.gov (United States)

    Molina, Mario J.

    1996-01-01

    In this report we summarize the results of the two sets of projects funded by the NASA grant NAG2-632, namely investigations of various thermodynamic and nucleation properties of the aqueous acid system which makes up stratospheric aerosols, and measurements of reaction probabilities directly on ice aerosols with sizes corresponding to those of polar stratospheric cloud particles. The results of these investigations are of importance for the assessment of the potential stratospheric effects of future fleets of supersonic aircraft. In particular, the results permit to better estimate the effects of increased amounts of water vapor and nitric acid (which forms from nitrogen oxides) on polar stratospheric clouds and on the chemistry induced by these clouds.

  12. Stratospheric Temperature Trends Observed by TIMED/SABER

    Science.gov (United States)

    Xian, T.; Tan, R.

    2017-12-01

    Trends in the stratospheric temperature are studied based on the temperature profile observation from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). The spatially trends are evaluated in different time scales ranging from decadal to monthly resolved. The results indicate a signature of BDC acceleration. There are strong warming trends (up to 9 K/decade) in the middle to upper stratosphere in the high latitude spring, summer, and autumn seasons, accompanied by strong cooling trends in the lower stratosphere. Besides, strong warming trends occurs through the whole stratosphere over the Southern Hemisphere, which confirms Antarctic ozone layer healing since 2000. In addition, the results demonstrate a significant warming trends in the middle of tropical stratosphere, which becomes strongest during June-July-August.

  13. Oxidative stress and pathogenic attack in plants, studied by laser based photoacoustic trace gas detection

    NARCIS (Netherlands)

    Santosa, Ignatius Edi

    2002-01-01

    Photoacoustic detection has proven to be a sensitive method, which is suitable for trace gas measurement. In this thesis, we improved the photoacoustic detection system to measure new biologically interesting gases, ethane (C2H6) and nitric oxide (NO). A new design of grating holder is incorporated

  14. Towards the interaction between calcium carbide and water during gas-chromatographic determination of trace moisture in ultra-high purity ammonia.

    Science.gov (United States)

    Trubyanov, Maxim M; Mochalov, Georgy M; Suvorov, Sergey S; Puzanov, Egor S; Petukhov, Anton N; Vorotyntsev, Ilya V; Vorotyntsev, Vladimir M

    2018-05-16

    The current study focuses on the processes involved during the flow conversion of water into acetylene in a calcium carbide reaction cell for the trace moisture analysis of ammonia by reaction gas chromatography. The factors negatively affecting the reproducibility and the accuracy of the measurements are suggested and discussed. The intramolecular reaction of the HOCaCCH intermediate was found to be a side reaction producing background acetylene during the contact of wet ammonia gas with calcium carbide. The presence of the HOCaCCH intermediate among the reaction products is confirmed by an FTIR spectral study of calcium carbide powder exposed to wet gas. The side reaction kinetics is evaluated experimentally and its influence on the results of the gas chromatographic measurements is discussed in relation to the determination of the optimal operating parameters for ammonia analysis. The reaction gas chromatography method for the trace moisture measurements in an ammonia matrix was experimentally compared to an FTIR long-path length gas cell technique to evaluate the accuracy limitations and the resource intensity. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Evaluation of stratospheric age of air from CF4, C2F6, C3F8, CHF3, HFC-125, HFC-227ea and SF6; implications for the calculations of halocarbon lifetimes, fractional release factors and ozone depletion potentials

    Science.gov (United States)

    Leedham Elvidge, Emma; Bönisch, Harald; Brenninkmeijer, Carl A. M.; Engel, Andreas; Fraser, Paul J.; Gallacher, Eileen; Langenfelds, Ray; Mühle, Jens; Oram, David E.; Ray, Eric A.; Ridley, Anna R.; Röckmann, Thomas; Sturges, William T.; Weiss, Ray F.; Laube, Johannes C.

    2018-03-01

    In a changing climate, potential stratospheric circulation changes require long-term monitoring. Stratospheric trace gas measurements are often used as a proxy for stratospheric circulation changes via the mean age of air values derived from them. In this study, we investigated five potential age of air tracers - the perfluorocarbons CF4, C2F6 and C3F8 and the hydrofluorocarbons CHF3 (HFC-23) and HFC-125 - and compare them to the traditional tracer SF6 and a (relatively) shorter-lived species, HFC-227ea. A detailed uncertainty analysis was performed on mean ages derived from these new tracers to allow us to confidently compare their efficacy as age tracers to the existing tracer, SF6. Our results showed that uncertainties associated with the mean age derived from these new age tracers are similar to those derived from SF6, suggesting that these alternative compounds are suitable in this respect for use as age tracers. Independent verification of the suitability of these age tracers is provided by a comparison between samples analysed at the University of East Anglia and the Scripps Institution of Oceanography. All five tracers give younger mean ages than SF6, a discrepancy that increases with increasing mean age. Our findings qualitatively support recent work that suggests that the stratospheric lifetime of SF6 is significantly less than the previous estimate of 3200 years. The impact of these younger mean ages on three policy-relevant parameters - stratospheric lifetimes, fractional release factors (FRFs) and ozone depletion potentials - is investigated in combination with a recently improved methodology to calculate FRFs. Updates to previous estimations for these parameters are provided.

  16. Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements

    Science.gov (United States)

    Malinina, Elizaveta; Rozanov, Alexei; Rozanov, Vladimir; Liebing, Patricia; Bovensmann, Heinrich; Burrows, John P.

    2018-04-01

    health, stratospheric aerosol plays an important role in atmospheric chemistry and climate change. In particular, information about the amount and distribution of stratospheric aerosols is required to initialize climate models, as well as validate aerosol microphysics models and investigate geoengineering. In addition, good knowledge of stratospheric aerosol loading is needed to increase the retrieval accuracy of key trace gases (e.g. ozone or water vapour) when interpreting remote sensing measurements of the scattered solar light. The most commonly used characteristics to describe stratospheric aerosols are the aerosol extinction coefficient and Ångström coefficient. However, the use of particle size distribution parameters along with the aerosol number density is a more optimal approach. In this paper we present a new retrieval algorithm to obtain the particle size distribution of stratospheric aerosol from space-borne observations of the scattered solar light in the limb-viewing geometry. While the mode radius and width of the aerosol particle size distribution are retrieved, the aerosol particle number density profile remains unchanged. The latter is justified by a lower sensitivity of the limb-scattering measurements to changes in this parameter. To our knowledge this is the first data set providing two parameters of the particle size distribution of stratospheric aerosol from space-borne measurements of scattered solar light. Typically, the mode radius and w can be retrieved with an uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N-20° S) for 10 years (2002-2012) of SCIAMACHY observations in limb-viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size distribution parameters showed clear increases in the mode radius after the tropical volcanic eruptions, whereas no distinct behaviour of the absolute distribution width could be identified. A tape recorder

  17. Cloud sensitivity studies for stratospheric and lower mesospheric ozone profile retrievals from measurements of limb-scattered solar radiation

    Directory of Open Access Journals (Sweden)

    T. Sonkaew

    2009-11-01

    Full Text Available Clouds in the atmosphere play an important role in reflection, absorption and transmission of solar radiation and thus affect trace gas retrievals. The main goal of this paper is to examine the sensitivity of stratospheric and lower mesospheric ozone retrievals from limb-scattered radiance measurements to clouds using the SCIATRAN radiative transfer model and retrieval package. The retrieval approach employed is optimal estimation, and the considered clouds are vertically and horizontally homogeneous. Assuming an aerosol-free atmosphere and Mie phase functions for cloud particles, we compute the relative error of ozone profile retrievals in a cloudy atmosphere if clouds are neglected in the retrieval. To access altitudes from the lower stratosphere up to the lower mesosphere, we combine the retrievals in the Chappuis and Hartley ozone absorption bands. We find significant cloud sensitivity of the limb ozone retrievals in the Chappuis bands at lower stratospheric altitudes. The relative error in the retrieved ozone concentrations gradually decreases with increasing altitude and becomes negligible above approximately 40 km. The parameters with the largest impact on the ozone retrievals are cloud optical thickness, ground albedo and solar zenith angle. Clouds with different geometrical thicknesses or different cloud altitudes have a similar impact on the ozone retrievals for a given cloud optical thickness value, if the clouds are outside the field of view of the instrument. The effective radius of water droplets has a small influence on the error, i.e., less than 0.5% at altitudes above the cloud top height. Furthermore, the impact of clouds on the ozone profile retrievals was found to have a rather small dependence on the solar azimuth angle (less than 1% for all possible azimuth angles. For the most frequent cloud types, the total error is below 6% above 15 km altitude, if clouds are completely neglected in the retrieval. Neglecting clouds in

  18. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-07-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed.

  19. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    International Nuclear Information System (INIS)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung

    2009-01-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed

  20. Stratospheric changes caused by geoengineering applications: potential repercussions and uncertainties

    Science.gov (United States)

    Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.

    2009-04-01

    Anthropogenic greenhouse gas emissions tend to warm the global climate, calling for significant rapid emission reductions. As potential support measures various ideas for geoengineering are currently being discussed. The assessment of the possible manifold and as yet substantially unexplored repercussions of implementing geoengineering ideas to ameliorate climate change poses enormous challenges not least in the realm of aerosol-cloud-climate interactions. Sulphur aerosols cool the Earth's surface by reflecting short wave radiation. By increasing the amount of sulphur aerosols in the stratosphere, for example by sulphur dioxide injections, part of the anthropogenic climate warming might be compensated due to enhanced albedo. However, we are only at the beginning of understanding possible side effects. One such effect that such aerosol might have is the warming of the tropical tropopause and consequently the increase of the amount of stratospheric water vapour. Using the 2D AER Aerosol Model we calculated the aerosol distributions for yearly injections of 1, 2, 5 and 10 Mt sulphur into the lower tropical stratosphere. The results serve as input for the 3D chemistry-climate model SOCOL, which allows calculating the aerosol effect on stratospheric temperatures and chemistry. In the injection region the continuously formed sulphuric acid condensates rapidly on sulphate aerosol, which eventually grow to such extent that they sediment down to the tropical tropopause region. The growth of the aerosol particles depends on non-linear processes: the more sulphur is emitted the faster the particles grow. As a consequence for the scenario with continuous sulphur injection of totally 10 Mt per year, only 6 Mt sulphur are in the stratosphere if equilibrium is reached. According to our model calculations this amount of sulphate aerosols leads to a net surface forcing of -3.4 W/m2, which is less then expected radiative forcing by doubling of carbon dioxide concentration. Hence

  1. Comparison of the impact of volcanic eruptions and aircraft emissions on the aerosol mass loading and sulfur budget in the stratosphere

    Science.gov (United States)

    Yue, Glenn K.; Poole, Lamont R.

    1992-01-01

    Data obtained by the Stratospheric Aerosol and Gas Experiment (SAGE) 1 and 2 were used to study the temporal variation of aerosol optical properties and to assess the mass loading of stratospheric aerosols from the eruption of volcanos Ruiz and Kelut. It was found that the yearly global average of optical depth at 1.0 micron for stratospheric background aerosols in 1979 was 1.16 x 10(exp -3) and in 1989 was 1.66 x 10(exp -3). The eruptions of volcanos Ruiz and Kelut ejected at least 5.6 x 10(exp 5) and 1.8 x 10(exp 5) tons of materials into the stratosphere, respectively. The amount of sulfur emitted per year from the projected subsonic and supersonic fleet is comparable to that contained in the background aerosol particles in midlatitudes from 35 deg N to 55 deg N.

  2. LBA-ECO TG-07 Soil Trace Gas Flux and Root Mortality, Tapajos National Forest

    Science.gov (United States)

    R.K. Varner; M.M. Keller

    2009-01-01

    This data set reports the results of an experiment that tested the short-term effects of root mortality on the soil-atmosphere fluxes of nitrous oxide, nitric oxide, methane, and carbon dioxide in a tropical evergreen forest. Weekly trace gas fluxes are provided for treatment and control plots on sand and clay tropical forest soils in two comma separated ASCII files....

  3. Stratospheric Platforms for Monitoring Purposes

    International Nuclear Information System (INIS)

    Konigorski, D.; Gratzel, U.; Obersteiner, M.; Schneidereit, M.

    2010-01-01

    Stratospheric platforms are emerging systems based on challenging technology. Goal is to create a platform, payload, and mission design which is able to complement satellite services on a local scale. Applications are close to traditional satellite business in telecommunication, navigation, science, and earth observation and include for example mobile telecommunications, navigation augmentation, atmospheric research, or border control. Stratospheric platforms could potentially support monitoring activities related to safeguards, e.g. by imagery of surfaces, operational conditions of nuclear facilities, and search for undeclared nuclear activities. Stratospheric platforms are intended to be flown in an altitude band between 16 and 30 km, above 16-20 km to take advantage of usually lower winds facilitating station keeping, below 30 km to limit the challenges to achieve a reasonable payload at acceptable platform sizes. Stratospheric platforms could substitute satellites which are expensive and lack upgrade capabilities for new equipment. Furthermore they have practically an unlimited time over an area of interest. It is intended to keep the platforms operational and maintenance free on a 24/7 basis with an average deployment time of 3 years. Geostationary satellites lack resolution. Potential customers like Armed Forces, National Agencies and commercial customers have indicated interest in the use of stratospheric platforms. Governmental entities are looking for cheaper alternatives to communications and surveillance satellites and stratospheric platforms could offer the following potential advantages: Lower operational cost than satellite or UAV (Unmanned Aerial Vehicles) constellation (fleet required); Faster deployment than satellite constellation; Repositioning capability and ability to loiter as required; Persistent long-term real-time services over a fairly large regional spot; Surge capability: Able to extend capability (either monitoring or communications

  4. Trace analysis in the food and beverage industry by capillary gas chromatography: system performance and maintenance.

    Science.gov (United States)

    Hayes, M A

    1988-04-01

    Gas chromatography (GC) is the most widely used analytical technique in the food and beverage industry. This paper addresses the problems of sample preparation and system maintenance to ensure the most sensitive, durable, and efficient results for trace analysis by GC in this industry.

  5. Atmospheric CO{sub 2}, trace gas and CN concentrations in Vaerrioe

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, T; Aalto, P; Kulmala, M; Rannik, U; Vesala, T [Helsinki Univ. (Finland). Dept. of Physics; Hari, P; Pohja, T [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The Vaerrioe environmental measurement station is founded in 1991. The aim of the station is to obtain more information on air quality influenced by Kola industrial areas and effects of pollutants on photosynthesis in subarctic climate. In the station air quality and meteorological quantities are measured together with photosynthesis, which makes it quite unique in comparison with other measurement stations located in northern Finland. The measurements also provide information of aerosol and trace gas concentrations in order to study the direct and indirect aerosol effects on climate. These measurements also increase the knowledge of atmospheric chemistry and deposition in subarctic conditions

  6. Atmospheric CO{sub 2}, trace gas and CN concentrations in Vaerrioe

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, T.; Aalto, P.; Kulmala, M.; Rannik, U.; Vesala, T. [Helsinki Univ. (Finland). Dept. of Physics; Hari, P.; Pohja, T. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1995-12-31

    The Vaerrioe environmental measurement station is founded in 1991. The aim of the station is to obtain more information on air quality influenced by Kola industrial areas and effects of pollutants on photosynthesis in subarctic climate. In the station air quality and meteorological quantities are measured together with photosynthesis, which makes it quite unique in comparison with other measurement stations located in northern Finland. The measurements also provide information of aerosol and trace gas concentrations in order to study the direct and indirect aerosol effects on climate. These measurements also increase the knowledge of atmospheric chemistry and deposition in subarctic conditions

  7. Chlorine in the stratosphere

    OpenAIRE

    VON CLARMANN, T.

    2013-01-01

    This paper reviews the various aspects of chlorine compounds in the stratosphere, both their roles as reactants and as tracers of dynamical processes. In the stratosphere, reactive chlorine is released from chlorofluorocarbons and other chlorine-containing organic source gases. To a large extent reactive chlorine is then sequestered in reservoir species ClONO2 and HCl. Re-activation of chlorine happens predominantly in polar winter vortices by heterogeneous reaction in combination with sunlig...

  8. LBA-ECO TG-07 Trace Gas Fluxes, Undisturbed and Logged Sites, Para, Brazil: 2000-2002

    Science.gov (United States)

    M.M. Keller; R.K. Varner; J.D. Dias; H.S. Silva; P.M. Crill; Jr. de Oliveira; G.P. Asner

    2009-01-01

    Trace gas fluxes of carbon dioxide, methane, nitrous oxide, and nitric oxide were measured manually at undisturbed and logged forest sites in the Tapajos National Forest, near Santarem, Para, Brazil. Manual measurements were made approximately weekly at both the undisturbed and logged sites. Fluxes from clay and sand soils were completed at the undisturbed sites....

  9. Concentrations of ethane (C2H6) in the lower stratosphere and upper troposphere and acetylene (C2H2) in the upper troposphere deduced from Atmospheric Trace Molecule Spectroscopy/Spacelab 3 spectra

    Science.gov (United States)

    Rinsland, C. P.; Russell, J. M., III; Zander, R.; Farmer, C. B.; Norton, R. H.

    1987-01-01

    This paper reports the results of the spectroscopic analysis of C2H6 and C2H2 absorption spectra obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument flown on the Shuttle as part of the Spacelab 3 mission. The spectra were recorded during sunset occultations occurring between 25 deg N and 31 deg N latitudes, yielding volume-mixing ratio profiles of C2H6 in the lower stratosphere and the upper troposphere, and an upper tropospheric profile of C2H2. These results compare well with previous in situ and remote sounding data obtained at similar latitudes and with model calculations. The results demonstrate the feasibility of the ATMOS instrument to sound the lower atmosphere from space.

  10. Condensed Acids In Antartic Stratospheric Clouds

    Science.gov (United States)

    Pueschel, R. F.; Snetsinger, K. G.; Toon, O. B.; Ferry, G. V.; Starr, W. L.; Oberbeck, V. R.; Chan, K. R.; Goodman, J. K.; Livingston, J. M.; Verma, S.; hide

    1992-01-01

    Report dicusses nitrate, sulfate, and chloride contents of stratospheric aerosols during 1987 Airborne Antarctic Ozone Experiment. Emphasizes growth of HNO3*3H2O particles in polar stratospheric clouds. Important in testing theories concerning Antarctic "ozone hole".

  11. Stratospheric HTO perturbations 1980-1983

    Science.gov (United States)

    Mason, A. S.

    1985-02-01

    Three perturbations of the stratospheric tritiated water burden have occurred. An atmospheric nuclear detonation in 1980 injected about 2.1 MCi. The massive eruptions of the volcano El Chichon may have contributed to a doubling of the removal rate in 1982. An unusually large wintertime exchange with the upper stratosphere may have occurred between 1982 and 1983.

  12. Volcanic-aerosol-induced changes in stratospheric ozone following the eruption of Mount Pinatubo

    Science.gov (United States)

    Grant, W. B.; Browell, E. V.; Fishman, J.; Brackett, V. G.; Fenn, M. A.; Butler, C. F.; Nganga, D.; Minga, A.; Cros, B.; Mayor, S. D.

    1994-01-01

    Measurements of lower stratospheric ozone in the Tropics using electrochemical concentrations cell (ECC) sondes and the airborne UV Differential Absorption Lidar (DIAL) system after the eruption of Mt. Pinatubo are compared with the Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) and ECC sonde measurements from below the eruption to determine what changes have occurred as a result. Aerosol data from the Advanced Very High Resolution Radiometer (AVHRR) and the visible and IR wavelengths of the lidar system are used to examine the relationship between aerosols and ozone changes. Ozone decreases of 30 percent at altitudes between 19 and 26 km, partial column (16-28 km) decreases of about 27 D.U., and slight increases (5.4 D.U.) between 28 and 31 km are found in comparison with SAGE 2 climatological values.

  13. What Controls the Arctic Lower Stratosphere Temperature?

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The temperature of the Arctic lower stratosphere is critical for understanding polar ozone levels. As temperatures drop below about 195 K, polar stratospheric clouds form, which then convert HCl and ClONO2 into reactive forms that are catalysts for ozone loss reactions. Hence, the lower stratospheric temperature during the March period is a key parameter for understanding polar ozone losses. The temperature is basically understood to be a result of planetary waves which drive the polar temperature away from a cold "radiative equilibrium" state. This is demonstrated using NCEP/NCAR reanalysis calculations of the heat flux and the mean polar temperature. The temperature during the March period is fundamentally driven by the integrated impact of large scale waves moving from the troposphere to the stratosphere during the January through February period. We will further show that the recent cold years in the northern polar vortex are a result of this weakened wave driving of the stratosphere.

  14. Stratospheric H2O

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.

    1979-01-01

    Documentation of the extreme aridity (approx. 3% relative humidity) of the lower stratosphere and the rapid decrease of mixing ratio with height just above the polar tropopause (20-fold in the 1st km) was begun by Dobson et al., (1946) in 1943. They recognized that this extreme and persistent aridity must be dynamically maintained else it would have been wiped out by turbulent diffusion. This led Brewer (1949) to hypothesize a stratospheric circulation in which all air enters through the tropical tropopause where it is freeze dried to a mass mixing ratio of 2 to 3 ppM. This dry air then spreads poleward and descends through the polar tropopauses overpowering upward transport of water vapor by diffusion which would otherwise be permitted by the much warmer temperatures of the polar tropopauses. Questions can indeed be raised as to the absolute magnitudes of stratospheric mixing ratios, the effective temperature of the tropical tropopause cold trap, the reality of winter pole freeze-dry sinks and the representativeness of the available observations suggesting an H 2 O mixing ratio maximum just above the tropical tropopause and a constant mixing ratio from the tropopause to 30 to 35 km. However, no model that better fits all of the available data is available, than does the Brewer (1949) hypothesis coupled with a lower stratosphere winter pole, freeze-dry sink, at least over Antarctica

  15. A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behaviour at eleven polar sites

    Directory of Open Access Journals (Sweden)

    E. Witrant

    2012-12-01

    Full Text Available Insoluble trace gases are trapped in polar ice at the firn-ice transition, at approximately 50 to 100 m below the surface, depending primarily on the site temperature and snow accumulation. Models of trace gas transport in polar firn are used to relate firn air and ice core records of trace gases to their atmospheric history. We propose a new model based on the following contributions. First, the firn air transport model is revised in a poromechanics framework with emphasis on the non-homogeneous properties and the treatment of gravitational settling. We then derive a nonlinear least square multi-gas optimisation scheme to calculate the effective firn diffusivity (automatic diffusivity tuning. The improvements gained by the multi-gas approach are investigated (up to ten gases for a single site are included in the optimisation process. We apply the model to four Arctic (Devon Island, NEEM, North GRIP, Summit and seven Antarctic (DE08, Berkner Island, Siple Dome, Dronning Maud Land, South Pole, Dome C, Vostok sites and calculate their respective depth-dependent diffusivity profiles. Among these different sites, a relationship is inferred between the snow accumulation rate and an increasing thickness of the lock-in zone defined from the isotopic composition of molecular nitrogen in firn air (denoted δ15N. It is associated with a reduced diffusivity value and an increased ratio of advective to diffusive flux in deep firn, which is particularly important at high accumulation rate sites. This has implications for the understanding of δ15N of N2 records in ice cores, in relation with past variations of the snow accumulation rate. As the snow accumulation rate is clearly a primary control on the thickness of the lock-in zone, our new approach that allows for the estimation of the lock-in zone width as a function of accumulation may lead to a better constraint on the age difference between the ice and entrapped gases.

  16. Studying Stratospheric Temperature Variation with Cosmic Ray Measurements

    Science.gov (United States)

    Zhang, Xiaohang; He, Xiaochun

    2015-04-01

    The long term stratospheric cooling in recent decades is believed to be equally important as surface warming as evidence of influences of human activities on the climate system. Un- fortunatly, there are some discrepancies among different measurements of stratospheric tem- peratures, which could be partially caused by the limitations of the measurement techniques. It has been known for decades that cosmic ray muon flux is sensitive to stratospheric temperature change. Dorman proposed that this effect could be used to probe the tempera- ture variations in the stratophere. In this talk, a method for reconstructing stratospheric temperature will be discussed. We verify this method by comparing the stratospheric tem- perature measured by radiosonde with the ones derived from cosmic ray measurement at multiple locations around the globe.

  17. Direct observation of two dimensional trace gas distributions with an airborne Imaging DOAS instrument

    Directory of Open Access Journals (Sweden)

    K.-P. Heue

    2008-11-01

    Full Text Available In many investigations of tropospheric chemistry information about the two dimensional distribution of trace gases on a small scale (e.g. tens to hundreds of metres is highly desirable. An airborne instrument based on imaging Differential Optical Absorption Spectroscopy has been built to map the two dimensional distribution of a series of relevant trace gases including NO2, HCHO, C2H2O2, H2O, O4, SO2, and BrO on a scale of 100 m.

    Here we report on the first tests of the novel aircraft instrument over the industrialised South African Highveld, where large variations in NO2 column densities in the immediate vicinity of several sources e.g. power plants or steel works, were measured. The observed patterns in the trace gas distribution are interpreted with respect to flux estimates, and it is seen that the fine resolution of the measurements allows separate sources in close proximity to one another to be distinguished.

  18. Application of acoustic micro-resonators in quartz-enhanced photoacoustic spectroscopy for trace gas analysis

    Science.gov (United States)

    Zheng, Huadan; Dong, Lei; Wu, Hongpeng; Yin, Xukun; Xiao, Liantuan; Jia, Suotang; Curl, Robert F.; Tittel, Frank K.

    2018-01-01

    During the past 15 years since the first report of quartz enhanced photoacoustic spectroscopy (QEPAS), QEPAS has become one of the leading optical techniques for trace chemical gas sensing. This paper is a review of the current state-of-the art of QEPAS. QEPAS based spectrophones with different acoustic micro-resonators (AmR) configurations employing both standard quartz tuning forks (QTFs) and custom-made QTFs are summarized and discussed in detail.

  19. Laboratory Investigations of Stratospheric Halogen Chemistry

    Science.gov (United States)

    Wine, Paul H.; Nicovich, J. Michael; Stickel, Robert E.; Hynes, Anthony J.

    1997-01-01

    A final report for the NASA-supported project on laboratory investigations of stratospheric halogen chemistry is presented. In recent years, this project has focused on three areas of research: (1) kinetic, mechanistic, and thermochemical studies of reactions which produce weakly bound chemical species of atmospheric interest; (2) development of flash photolysis schemes for studying radical-radical reactions of stratospheric interest; and (3) photochemistry studies of interest for understanding stratospheric chemistry. The first section of this paper contains a discussion of work which has not yet been published. All subsequent chapters contain reprints of published papers that acknowledge support from this grant.

  20. Aerosol-associated changes in tropical stratospheric ozone following the eruption of Mount Pinatubo

    Science.gov (United States)

    Grant, William B.; Browell, Edward V.; Fishman, Jack; Brackett, Vincent G.; Veiga, Robert E.; Nganga, Dominique; Minga, A.; Cros, Bernard; Butler, Carolyn F.; Fenn, Marta A.

    1994-01-01

    The large amount of sulfuric acid aerosol formed in the stratosphere by conversion of sulfur dioxide emitted by the eruption of Mount Pinatubo (15.14 deg N, 120.35 deg E) in the Philippines around June 15, 1991, has had a pronounced effect on lower stratospheric ozone in the tropics. Measurements of stratospheric ozone in the tropics using electrochemical concentration cell (ECC) sondes before and after the eruption and the airborne UV differential absorption lidar (DIAL) system after the eruption are compared with Stratospheric Aerosol and Gas Experiment II (SAGE II) measurements from several years before the eruption and ECC sonde measurements from the year prior to the eruption to determine the resulting changes. Ozone decreases of up to 33 % compared with SAGE II climatological values were found to be directly correlated with altitude regions of enhanced aerosol loading in the 16- to 28-km range. A maximum partial-column decrease of 29 +/- Dobson units (DU) was found over the 16- to 28-km range in September 1991 along with small increases (to 5.9 +/- 2 DU) from 28 to 31.5 km. A large decrease of ozone was also found at 4 deg to 8 deg S from May to August 1992, with a maximum decrease of 33 +/- 7 DU found above Brazzaville in July. Aerosol data form the visible channel of the advanced very high resolution radiometer (AVHRR) and the visible wavelength of the UV DIAL system were used to examine the relationship between aerosol (surface area) densities and ozone changes. The tropical stratospheric ozone changes we observed in 1991 and 1992 are likely be explained by a combination of dynamical (vertical transport) perturbations, radiative perturbations on ozone photochemistry, and heterogeneous chemistry.

  1. Application of physical adsorption thermodynamics to heterogeneous chemistry on polar stratospheric clouds

    Science.gov (United States)

    Elliott, Scott; Turco, Richard P.; Toon, Owen B.; Hamill, Patrick

    1991-01-01

    Laboratory isotherms for the binding of several nonheterogeneously active atmospheric gases and for HCl to water ice are translated into adsorptive equilibrium constants and surface enthalpies. Extrapolation to polar conditions through the Clausius Clapeyron relation yields coverage estimates below the percent level for N2, Ar, CO2, and CO, suggesting that the crystal faces of type II stratospheric cloud particles may be regarded as clean with respect to these species. For HCl, and perhaps HF and HNO3, estimates rise to several percent, and the adsorbed layer may offer acid or proton sources alternate to the bulk solid for heterogeneous reactions with stratospheric nitrates. Measurements are lacking for many key atmospheric molecules on water ice, and almost entirely for nitric acid trihydrate as substrate. Adsorptive equilibria enter into gas to particle mass flux descriptions, and the binding energy determines rates for desorption of, and encounter between, potential surface reactants.

  2. Towards constraining the stratosphere-troposphere exchange of radiocarbon: strategies of stratospheric 14CO2 measurements using AirCore

    Science.gov (United States)

    Chen, Huilin; Paul, Dipayan; Meijer, Harro; Miller, John; Kivi, Rigel; Krol, Maarten

    2016-04-01

    Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the stratosphere due to the cosmogenic production. To this end, better understanding the stratospheric radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, stratospheric 14C observations have been very limited so that there are large uncertainties on the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14C measurements using AirCore samples from Sodankylä, Northern Finland. AirCore is an innovative atmospheric sampling system, which passively collects atmospheric air samples into a long piece of coiled stainless steel tubing during the descent of a balloon flight. Due to the relatively low cost of the consumables, there is a potential to make such AirCore profiling in other parts of the world on a regular basis. In this study, we simulate the 14C in the atmosphere and assess the stratosphere-troposphere exchange of radiocarbon using the TM5 model. The Sodankylä radiocarbon measurements will be used to verify the performance of the model at high latitude. Besides this, we will also evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere exchange, and based on the results design a strategy to set up a 14C measurement program using AirCore.

  3. A global space-based stratospheric aerosol climatology: 1979-2016

    Science.gov (United States)

    Thomason, Larry W.; Ernest, Nicholas; Millán, Luis; Rieger, Landon; Bourassa, Adam; Vernier, Jean-Paul; Manney, Gloria; Luo, Beiping; Arfeuille, Florian; Peter, Thomas

    2018-03-01

    We describe the construction of a continuous 38-year record of stratospheric aerosol optical properties. The Global Space-based Stratospheric Aerosol Climatology, or GloSSAC, provided the input data to the construction of the Climate Model Intercomparison Project stratospheric aerosol forcing data set (1979-2014) and we have extended it through 2016 following an identical process. GloSSAC focuses on the Stratospheric Aerosol and Gas Experiment (SAGE) series of instruments through mid-2005, and on the Optical Spectrograph and InfraRed Imager System (OSIRIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data thereafter. We also use data from other space instruments and from ground-based, air, and balloon borne instruments to fill in key gaps in the data set. The end result is a global and gap-free data set focused on aerosol extinction coefficient at 525 and 1020 nm and other parameters on an "as available" basis. For the primary data sets, we developed a new method for filling the post-Pinatubo eruption data gap for 1991-1993 based on data from the Cryogenic Limb Array Etalon Spectrometer. In addition, we developed a new method for populating wintertime high latitudes during the SAGE period employing a latitude-equivalent latitude conversion process that greatly improves the depiction of aerosol at high latitudes compared to earlier similar efforts. We report data in the troposphere only when and where it is available. This is primarily during the SAGE II period except for the most enhanced part of the Pinatubo period. It is likely that the upper troposphere during Pinatubo was greatly enhanced over non-volcanic periods and that domain remains substantially under-characterized. We note that aerosol levels during the OSIRIS/CALIPSO period in the lower stratosphere at mid- and high latitudes is routinely higher than what we observed during the SAGE II period. While this period had nearly continuous low-level volcanic activity, it

  4. Simulation of trace gas redistribution by convective clouds - Liquid phase processes

    Directory of Open Access Journals (Sweden)

    Y. Yin

    2001-01-01

    Full Text Available A two-dimensional dynamic cloud model with detailed microphysics and a spectral treatment of gas scavenging was used to simulate trace gas vertical redistribution in precipitating continental and maritime clouds. A general picture of gas transport in such clouds has been developed by examining the sensitivity to a range of parameters, including cloud dynamic and microphysical structure, gas solubility, and the method of calculating gas uptake by droplets. Gases with effective Henry's law constants (H* ranging from zero to greater than 109 mol dm-3 atm-1 were simulated. The abundance of highly soluble gases in the uppermost parts (top 1 km or so of continental precipitating clouds was found to be as much as 20-50% of that of the insoluble tracer under conditions where the mixing ratio of the tracer was approximately 5% of its boundary layer value. The abundance of highly soluble gases was approximately 6 times higher in the uppermost parts of the continental cloud than in the maritime cloud, due to differences in wet removal efficiency in the two cloud types. A fully kinetic calculation of gas uptake, as opposed to assuming Henry's law equilibrium, was found to have a significant effect on gas transport, with the abundance of highly soluble gases in the uppermost parts of the cloud being a factor of 5 lower in the equilibrium simulations. The temperature dependence of the Henry's law constant was also found to be an important parameter in determining the abundance of soluble gases at cloud top, with the abundance of moderately soluble gases being as much as 70% lower when the temperature dependence of H* was included. This reduction in abundance was found to be equivalent to increasing the temperature-independent solubility by a factor of 7. The vertical transport of soluble gases could be parameterized in large-scale models by normalizing against the transport of tracers. However, our results suggest that there is no straightforward scaling

  5. Isolating the Roles of Different Forcing Agents in Global Stratospheric Temperature Changes Using Model Integrations with Incrementally Added Single Forcings

    Science.gov (United States)

    Aquila, V.; Swartz, W. H.; Waugh, D. W.; Colarco, P. R.; Pawson, S.; Polvani, L. M.; Stolarski, R. S.

    2016-01-01

    Satellite instruments show a cooling of global stratospheric temperatures over the whole data record (1979-2014). This cooling is not linear and includes two descending steps in the early 1980s and mid-1990s. The 1979-1995 period is characterized by increasing concentrations of ozone depleting substances (ODS) and by the two major volcanic eruptions of El Chichon (1982) and Mount Pinatubo (1991). The 1995-present period is characterized by decreasing ODS concentrations and by the absence of major volcanic eruptions. Greenhouse gas (GHG) concentrations increase over the whole time period. In order to isolate the roles of different forcing agents in the global stratospheric temperature changes, we performed a set of AMIP-style simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). We find that in our model simulations the cooling of the stratosphere from 1979 to present is mostly driven by changes in GHG concentrations in the middle and upper stratosphere and by GHG and ODS changes in the lower stratosphere. While the cooling trend caused by increasing GHGs is roughly constant over the satellite era, changing ODS concentrations cause a significant stratospheric cooling only up to the mid-1990s, when they start to decrease because of the implementation of the Montreal Protocol. Sporadic volcanic events and the solar cycle have a distinct signature in the time series of stratospheric temperature anomalies but do not play a statistically significant role in the long-term trends from 1979 to 2014. Several factors combine to produce the step-like behavior in the stratospheric temperatures: in the lower stratosphere, the flattening starting in the mid-1990s is due to the decrease in ozone-depleting substances; Mount Pinatubo and the solar cycle cause the abrupt steps through the aerosol-associated warming and the volcanically induced ozone depletion. In the middle and upper stratosphere, changes in solar irradiance are largely

  6. Triton - Stratospheric molecules and organic sediments

    Science.gov (United States)

    Thompson, W. Reid; Singh, Sushil K.; Khare, B. N.; Sagan, Carl

    1989-01-01

    Continuous-flow plasma discharge techniques show production rates of hydrocarbons and nitriles in N2 + CH4 atmospheres appropriate to the stratosphere of Titan, and indicate that a simple eddy diffusion model together with the observed electron flux quantitatively matches the Voyager IRIS observations for all the hydrocarbons, except for the simplest ones. Charged particle chemistry is very important in Triton's stratosphere. In the more CH4-rich case of Titan, many hydrocarbons and nitriles are produced in high yield. If N2 is present, the CH4 fraction is low, but hydrocarbons and nitriles are produced in fair yield, abundances of HCN and C2H2 in Triton's stratosphere exceed 10 to the 19th molecules/sq cm per sec, and NCCN, C3H4, and other species are predicted to be present. These molecules may be detected by IRIS if the stratosphere is as warm as expected. Both organic haze and condensed gases will provide a substantial UV and visible opacity in Triton's atmosphere.

  7. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality

    Science.gov (United States)

    Nowack, Peer Johannes; Abraham, Nathan Luke; Braesicke, Peter; Pyle, John Adrian

    2016-03-01

    Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere-ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  8. Multi-species trace gas sensing with dual-wavelength QCLs

    Science.gov (United States)

    Hundt, P. Morten; Tuzson, Béla; Aseev, Oleg; Liu, Chang; Scheidegger, Philipp; Looser, Herbert; Kapsalidis, Filippos; Shahmohammadi, Mehran; Faist, Jérôme; Emmenegger, Lukas

    2018-06-01

    Instrumentation for environmental monitoring of gaseous pollutants and greenhouse gases tends to be complex, expensive, and energy demanding, because every compound measured relies on a specific analytical technique. This work demonstrates an alternative approach based on mid-infrared laser absorption spectroscopy with dual-wavelength quantum cascade lasers (QCLs). The combination of two dual- and one single-DFB QCL yields high-precision measurements of CO (0.08 ppb), CO2 (100 ppb), NH3 (0.02 ppb), NO (0.4 ppb), NO2 (0.1 ppb), N2O (0.045 ppb), and O3 (0.11 ppb) simultaneously in a compact setup (45 × 45 cm2). The lasers are driven time-multiplexed in intermittent continuous wave mode with a repetition rate of 1 kHz. The individual spectra are real-time averaged (1 s) by an FPGA-based data acquisition system. The instrument was assessed for environmental monitoring and benchmarked with reference instrumentation to demonstrate its potential for compact multi-species trace gas sensing.

  9. Trajectory tracking control for underactuated stratospheric airship

    Science.gov (United States)

    Zheng, Zewei; Huo, Wei; Wu, Zhe

    2012-10-01

    Stratospheric airship is a new kind of aerospace system which has attracted worldwide developing interests for its broad application prospects. Based on the trajectory linearization control (TLC) theory, a novel trajectory tracking control method for an underactuated stratospheric airship is presented in this paper. Firstly, the TLC theory is described sketchily, and the dynamic model of the stratospheric airship is introduced with kinematics and dynamics equations. Then, the trajectory tracking control strategy is deduced in detail. The designed control system possesses a cascaded structure which consists of desired attitude calculation, position control loop and attitude control loop. Two sub-loops are designed for the position and attitude control loops, respectively, including the kinematics control loop and dynamics control loop. Stability analysis shows that the controlled closed-loop system is exponentially stable. Finally, simulation results for the stratospheric airship to track typical trajectories are illustrated to verify effectiveness of the proposed approach.

  10. Modulations of stratospheric ozone by volcanic eruptions

    Science.gov (United States)

    Blanchette, Christian; Mcconnell, John C.

    1994-01-01

    We have used a time series of aerosol surface based on the measurements of Hofmann to investigate the modulation of total column ozone caused by the perturbation to gas phase chemistry by the reaction N2O5(gas) + H2O(aero) yields 2HNO3(gas) on the surface of stratospheric aerosols. We have tested a range of values for its reaction probability, gamma = 0.02, 0.13, and 0.26 which we compared to unperturbed homogeneous chemistry. Our analysis spans a period from Jan. 1974 to Oct. 1994. The results suggest that if lower values of gamma are the norm then we would expect larger ozone losses for highly enhanced aerosol content that for larger values of gamma. The ozone layer is more sensitive to the magnitude of the reaction probability under background conditions than during volcanically active periods. For most conditions, the conversion of NO2 to HNO3 is saturated for reaction probability in the range of laboratory measurements, but is only absolutely saturated following major volcanic eruptions when the heterogeneous loss dominates the losses of N2O5. The ozone loss due to this heterogeneous reaction increases with the increasing chlorine load. Total ozone losses calculated are comparable to ozone losses reported from TOMS and Dobson data.

  11. Tunable Far Infrared Studies in Support of Stratospheric Measurements

    Science.gov (United States)

    Chance, Kelly V.; Park, K.; Nolt, I. G.; Evenson, K. M.

    2001-01-01

    This report summarizes research done under NASA Grant NAG5-4653. The research performed under this grant has been a collaboration between institutions including the Smithsonian Astrophysical Observatory, the National Institute of Standards and Technology, the University of Oregon, and the NASA Langley Research Center. The program has included fully line-resolved measurements of submillimeter and far infrared spectroscopic line parameters (pressure broadening coefficients and their temperature dependences, and line positions) for the analysis of field measurements of stratospheric constituents, far infrared database improvements, and studies for improved satellite measurements of the Earth's atmosphere. This research program is designed to enable the full utilization of spectra obtained in far infrared/submillimeter field measurements, such as FIRS-2, FILOS, IBEX, SLS, EosMLS, and proposed European Space Agency measurements of OH (e.g., PIRAMHYD and SFINX) for the retrieval of accurate stratospheric altitude profiles of key trace gases involved in ozone layer photochemistry. For the analysis of the spectra obtained in the stratosphere from far infrared measurements it is necessary to have accurate values of the molecular parameters (line positions, strengths, and pressure broadening coefficients) for the measured molecules and for possible interfering species. Knowledge of line positions is in increasingly good shape, with some notable exceptions. The increase in position information includes research that has been performed in the present program of research on HO2, H2O, H2O2, O3, HCl, HF, HBr, HI, CO, OH, and ClO. Examples where further line position studies are necessary include hot band and minor isotopomer lines of some of the major trace species (H2O, O3) and normal lines of some triatomic and larger molecules (NO2). Knowledge of strengths is in generally good shape, since most of the lines are from electric dipole transitions whose intensities are well

  12. Comment on "Tropospheric temperature response to stratospheric ozone recovery in the 21st century" by Hu et al. (2011

    Directory of Open Access Journals (Sweden)

    C. McLandress

    2012-03-01

    Full Text Available In a recent paper Hu et al. (2011 suggest that the recovery of stratospheric ozone during the first half of this century will significantly enhance free tropospheric and surface warming caused by the anthropogenic increase of greenhouse gases, with the effects being most pronounced in Northern Hemisphere middle and high latitudes. These surprising results are based on a multi-model analysis of CMIP3 model simulations with and without prescribed stratospheric ozone recovery. Hu et al. suggest that in order to properly quantify the tropospheric and surface temperature response to stratospheric ozone recovery, it is necessary to run coupled atmosphere-ocean climate models with stratospheric ozone chemistry. The results of such an experiment are presented here, using a state-of-the-art chemistry-climate model coupled to a three-dimensional ocean model. In contrast to Hu et al., we find a much smaller Northern Hemisphere tropospheric temperature response to ozone recovery, which is of opposite sign. We suggest that their result is an artifact of the incomplete removal of the large effect of greenhouse gas warming between the two different sets of models.

  13. The retrieval of profile and chemical information from ground-based UV-visible spectroscopic measurements

    International Nuclear Information System (INIS)

    Schofield, R.; Connor, B.J.; Kreher, K.; Johnston, P.V.; Rodgers, C.D.

    2004-01-01

    An algorithm has been developed to retrieve altitude information at different diurnal stages for trace gas species by combining direct-sun and zenith-sky UV-visible differential slant column density (DSCD) measurements. DSCDs are derived here using differential optical absorption spectroscopy. Combining the complementary zenith-sky measurements (sensitive to the stratosphere) with direct-sun measurements (sensitive to the troposphere) allows this vertical distinction. Trace gas species such as BrO and NO 2 have vertical profiles with strong diurnal dependence. Information about the diurnal variation is simultaneously retrieved with the altitude distribution of the trace gas. The retrieval is a formal optimal estimation profile retrieval, allowing a complete assessment of information content and errors

  14. An "island" in the stratosphere - on the enhanced annual variation of water vapour in the middle and upper stratosphere in the southern tropics and subtropics

    Science.gov (United States)

    Lossow, Stefan; Garny, Hella; Jöckel, Patrick

    2017-09-01

    The amplitude of the annual variation in water vapour exhibits a distinct isolated maximum in the middle and upper stratosphere in the southern tropics and subtropics, peaking typically around 15° S in latitude and close to 3 hPa (˜ 40.5 km) in altitude. This enhanced annual variation is primarily related to the Brewer-Dobson circulation and hence also visible in other trace gases. So far this feature has not gained much attention in the literature and the present work aims to add more prominence. Using Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding) observations and ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulations we provide a dedicated illustration and a full account of the reasons for this enhanced annual variation.

  15. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.; Bessho, Naoki; Koros, William J.

    2013-01-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  16. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.

    2013-05-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  17. A global space-based stratospheric aerosol climatology: 1979–2016

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2018-03-01

    Full Text Available We describe the construction of a continuous 38-year record of stratospheric aerosol optical properties. The Global Space-based Stratospheric Aerosol Climatology, or GloSSAC, provided the input data to the construction of the Climate Model Intercomparison Project stratospheric aerosol forcing data set (1979–2014 and we have extended it through 2016 following an identical process. GloSSAC focuses on the Stratospheric Aerosol and Gas Experiment (SAGE series of instruments through mid-2005, and on the Optical Spectrograph and InfraRed Imager System (OSIRIS and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO data thereafter. We also use data from other space instruments and from ground-based, air, and balloon borne instruments to fill in key gaps in the data set. The end result is a global and gap-free data set focused on aerosol extinction coefficient at 525 and 1020 nm and other parameters on an "as available" basis. For the primary data sets, we developed a new method for filling the post-Pinatubo eruption data gap for 1991–1993 based on data from the Cryogenic Limb Array Etalon Spectrometer. In addition, we developed a new method for populating wintertime high latitudes during the SAGE period employing a latitude-equivalent latitude conversion process that greatly improves the depiction of aerosol at high latitudes compared to earlier similar efforts. We report data in the troposphere only when and where it is available. This is primarily during the SAGE II period except for the most enhanced part of the Pinatubo period. It is likely that the upper troposphere during Pinatubo was greatly enhanced over non-volcanic periods and that domain remains substantially under-characterized. We note that aerosol levels during the OSIRIS/CALIPSO period in the lower stratosphere at mid- and high latitudes is routinely higher than what we observed during the SAGE II period. While this period had nearly continuous low

  18. The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate

    Directory of Open Access Journals (Sweden)

    C. Brühl

    2012-02-01

    Full Text Available Globally, carbonyl sulphide (COS is the most abundant sulphur gas in the atmosphere. Our chemistry-climate model (CCM of the lower and middle atmosphere with aerosol module realistically simulates the background stratospheric sulphur cycle, as observed by satellites in volcanically quiescent periods. The model results indicate that upward transport of COS from the troposphere largely controls the sulphur budget and the aerosol loading of the background stratosphere. This differs from most previous studies which indicated that short-lived sulphur gases are also important. The model realistically simulates the modulation of the particulate and gaseous sulphur abundance in the stratosphere by the quasi-biennial oscillation (QBO. In the lowermost stratosphere organic carbon aerosol contributes significantly to extinction. Further, using a chemical radiative convective model and recent spectra, we compute that the direct radiative forcing efficiency by 1 kg of COS is 724 times that of 1 kg CO2. Considering an anthropogenic fraction of 30% (derived from ice core data, this translates into an overall direct radiative forcing by COS of 0.003 W m−2. The direct global warming potentials of COS over time horizons of 20 and 100 yr are GWP(20 yr = 97 and GWP(100 yr = 27, respectively (by mass. Furthermore, stratospheric aerosol particles produced by the photolysis of COS (chemical feedback contribute to a negative direct solar radiative forcing, which in the CCM amounts to −0.007 W m−2 at the top of the atmosphere for the anthropogenic fraction, more than two times the direct warming forcing of COS. Considering that the lifetime of COS is twice that of stratospheric aerosols the warming and cooling tendencies approximately cancel.

  19. Environmental Measurements Laboratory. Environmental report, September 1, 1980-March 1, 1981

    International Nuclear Information System (INIS)

    Hardy, E.P. Jr.

    1981-01-01

    This report presents current information from the EML environmental programs, the Air Monitoring Section of the Bhabha Atomic Research Centre in India, the NASA Lewis Research Center and the Radiological and Environmental Research Division at Argonne National Laboratory. The initial section consists of interpretive reports and notes dealing with global movement of radioactive debris from nuclear tests, vertical distribution of short-lived radionuclides in the lower stratosphere at the end of 1980, stratospheric radionuclide and trace gas inventories, plutonium isotopes in stratospheric filtered air, sulfur dioxide measurements in New York City, estimates of lead, manganese, aluminum and iron in atmospheric deposition at American Samoa, chemical composition of deposition at seven US locations, intercomparison of trace element analyses of commercially available reference materials, evaluation of analytical methods for polycyclic aromatic hydrocarbons in sediment, and quality control assessments of radionuclide analyses of surface air filters, biological and deposition samples and of chemical analyses of precipitation. Subsequent sections include tabulations of Sr-90 fallout, chemical constituents of wet and dry deposition, radionuclides and trace metals in surface air, radioactivity and trace gases sampled in the stratosphere by aircraft and balloons, Sr-90 in San Francisco and New York diet, milk and tap water, and Cs-137 in Chicago foods. A bibliography of recent publications related to environmental studies is also presented

  20. Stratospheric effects on trends of mesospheric ice clouds (Invited)

    Science.gov (United States)

    Luebken, F.; Baumgarten, G.; Berger, U.

    2009-12-01

    Ice layers in the summer mesosphere at middle and polar latitudes appear as `noctilucent clouds' (NLC) and `polar mesosphere clouds'(PMC) when observed by optical methods from the ground or from satellites, respectively. A newly developed model of the atmosphere called LIMA (Leibniz Institute Middle Atmosphere Model) nicely reproduces the mean conditions of the summer mesopause region and is used to study the ice layer morphology (LIMA/ice). LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and ice cloud morphology. Since ice layer formation is very sensitive to the thermal structure of the mesopause region the morphology of NLC and PMC is frequently discussed in terms of long term variations. Model runs of LIMA/ice are now available for 1961 until 2008. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. We present results regarding inter-annual variability of upper mesosphere temperatures, water vapor, and ice clouds, and also long term variations. We compare our model results with satellite borne and lidar observations including some record high NLC parameters measured in the summer season of 2009. The latitudinal dependence of trends and ice layer parameters is discussed, including a NH/SH comparison. We will present an explanation of the trends in the background atmosphere and ice layer parameters.

  1. Stratospheric BrONO2 observed by MIPAS

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2009-03-01

    Full Text Available The first measurements of stratospheric bromine nitrate (BrONO2 are reported. Bromine nitrate has been clearly identified in atmospheric infrared emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS aboard the European Envisat satellite, and stratospheric concentration profiles have been determined for different conditions (day and night, different latitudes. The BrONO2 concentrations show strong day/night variations, with much lower concentrations during the day. Maximum volume mixing ratios observed during night are 20 to 25 pptv. The observed concentration profiles are in agreement with estimations from photochemical models and show that the current understanding of stratospheric bromine chemistry is generally correct.

  2. Stratospheric dryness: model simulations and satellite observations

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2007-01-01

    Full Text Available The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of comprehensive models which are able to reproduce the observations. Here we examine results from the coupled lower-middle atmosphere chemistry general circulation model ECHAM5/MESSy1 together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent the seasonal and inter-annual variability of water vapor. The model reproduces the very low water vapor mixing ratios (below 2 ppmv periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured. Our results confirm that the entry of tropospheric air into the tropical stratosphere is forced by large-scale wave dynamics, whereas radiative cooling regionally decelerates upwelling and can even cause downwelling. Thin cirrus forms in the cold air above cumulonimbus clouds, and the associated sedimentation of ice particles between 100 and 200 hPa reduces water mass fluxes by nearly two orders of magnitude compared to air mass fluxes. Transport into the stratosphere is supported by regional net radiative heating, to a large extent in the outer tropics. During summer very deep monsoon convection over Southeast Asia, centered over Tibet, moistens the stratosphere.

  3. Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles

    NARCIS (Netherlands)

    Wagner-Riddle, Claudia; Congreves, Katelyn A.; Abalos Rodriguez, Diego; Berg, Aaron A.; Brown, Shannon E.; Ambadan, Jaison Thomas; Gao, Xiaopeng; Tenuta, Mario

    2017-01-01

    Seasonal freezing induces large thaw emissions of nitrous oxide, a trace gas that contributes to stratospheric ozone destruction and atmospheric warming. Cropland soils are by far the largest anthropogenic source of nitrous oxide. However, the global contribution of seasonal freezing to nitrous

  4. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality

    Directory of Open Access Journals (Sweden)

    P. J. Nowack

    2016-03-01

    Full Text Available Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM. Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere–ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  5. Trace Gas Measurements from the GeoTASO and GCAS Airborne Instruments: An Instrument and Algorithm Test-Bed for Air Quality Observations from Geostationary Orbit

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.

    2016-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.

  6. Dynamical response of the Arctic winter stratosphere to global warming

    Science.gov (United States)

    Karpechko, A.; Manzini, E.

    2017-12-01

    Climate models often simulate dynamical warming of the Arctic stratosphere as a response to global warming in association with a strengthening of the deep branch of the Brewer-Dobson circulation; however until now, no satisfactory mechanism for such a response has been suggested. Here we investigate the role of stationary planetary waves in the dynamical response of the Arctic winter stratosphere circulation to global warming by analysing simulations performed with atmosphere-only Coupled Model Intercomparison Project Phase 5 (CMIP5) models driven by prescribed sea surface temperatures (SSTs). We focus on December-February (DJF) because this is the period when the troposphere and stratosphere are strongly coupled. When forced by increased SSTs, all the models analysed here simulate Arctic stratosphere dynamical warming, mostly due to increased upward propagation of quasi-stationary wave number 1, as diagnosed by the meridional eddy heat flux. By analysing intermodel spread in the response we show that the stratospheric warming and increased wave flux to the stratosphere correlate with the strengthening of the zonal winds in subtropics and mid-latitudes near the tropopause- a robust response to global warming. These results support previous studies of future Arctic stratosphere changes and suggest a dynamical warming of the Arctic wintertime polar vortex as the most likely response to global warming.

  7. Trace Gas Emissions in Temperate Forests and Impact of Forest Conversion

    Science.gov (United States)

    Butterbach-Bahl, K.; Papen, H.

    2003-12-01

    Temperate forest ecosystems play a significant role as sources and sinks for primarily and secondarily active trace gases such as N2O, NO and CH4. In recent decades the magnitude of the biosphere-atmosphere exchange of these trace gases has been substantially altered due to direct and indirect anthropogenic activities. E.g. measurements at different forest sites across Europe exposed to different loads of atmospheric N-deposition clearly show, that N-oxides emissions are positively correlated to N-deposition, whereas CH4 uptake rates are negatively affected. Furthermore, stand properties such as tree species composition as well as stand age have also been demonstrated to strongly affect the exchange of these trace gases. Results of continuous measurements of N-oxide emissions at the Hoglwald Forest site, Germany, show that e.g. NO-emissions from a spruce site are approx. 6 fold higher (5-7 kg NO-N ha-1 yr-1) than N2O emissions (0.5-1 kg N2O-N ha-1 yr-1), whereas at an adjacent beech site -stocking on a comparable soil- N2O-emissions are 3-5 kg N2O-N ha-1 yr-1 and NO emissions are 2-2.5 kg NO-N ha-1 yr-1. These results are further supported by microbiological process studies, which show that the forest type can alter the magnitude of the key microbial processes mineralization and nitrification by its effect on soil moisture conditions and substrate quality. However, estimates of trace gas exchange between temperate forest soils and the atmosphere remain fragmentary if the effect of direct anthropogenic management activities such as clear cutting and reforestation are neglected. Therefore, in 1999 we started a multi-year experiment at the H”glwald Forest, Bavaria, in which we investigated the effect of the conversion of a spruce forest into a beech forest either by clear cutting or selected cutting on N2O, NO and CH4 emission/ deposition. The results of this study show, that clear cutting strongly enhanced N2O emissions from approx. 0.5 kg N2O-N ha-1 yr-1 to >5 kg

  8. Is there any chlorine monoxide in the stratosphere?

    Science.gov (United States)

    Mumma, M. J.; Rogers, J. D.; Kostiuk, T.; Deming, D.; Hillman, J. J.; Zipoy, D.

    1983-01-01

    A ground-based search for stratospheric 35-ClO was carried out using an infrared heterodyne spectrometer in the solar absorption mode. Lines due to stratospheric HNO3 and tropospheric OCS were detected at about 0.2 percent absorptance levels, but the expected 0.1 percent lines of ClO in this same region were not seen. We find that stratospheric ClO is at least a factor of seven less abundant than is indicated by in situ measurements, and we set an upper limit of 2.3 x 10 to the 13th molecules/sq cm at the 95 percent confidence level for the integrated vertical column density of ClO. Our results imply that the release of chlorofluorocarbons may be significantly less important for the destruction of stratospheric ozone (O3) than is currently thought. Previously announced in STAR as N83-27518

  9. A 4 U Laser Heterodyne Radiometer for Methane (CH4) and Carbon Dioxide (CO2) Measurements from an Occultation-Viewing CubSat

    Science.gov (United States)

    Wilson, Emily L.; DiGregorio, A. J.; Riot, Vincent J.; Ammons, Mark S.; Bruner, WIlliam W.; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E.; Oman, Luke D.; hide

    2017-01-01

    We present a design for a 4 U (20 cm 20 cm 10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH4), carbon dioxide (CO2) and water vapor(H2O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO2, CH4, and H2O absorption features. Upper troposphere lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone.

  10. Stratospheric sulfuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chichon

    Science.gov (United States)

    Hofmann, D. J.; Rosen, J. M.

    1983-01-01

    The stratospheric sulfuric acid fraction and mass for the 1982 volcanic eruptions of El Chichon are investigated using data from balloon soundings at Laramie (41 deg N) and in southern Texas (27-29 deg N). The total stratospheric mass of these eruptions is estimated to be approximately 8 Tg about 6.5 months after the eruption with possibly as much as 20 Tg in the stratosphere about 45 days after the eruption. Observations of the aerosol in Texas revealed two primary layers, both highly volatile at 150 C. Aerosol in the upper layer at about 25 km was composed of an approximately 80 percent H2SO4 solution while the lower layer at approximately 18 km was composed of a 60-65 percent H2SO4 solution aerosol. It is calculated that an H2SO4 vapor concentration of at least 3 x 10 to the 7th molecules/cu cm is needed to sustain the large droplets in the upper layer. An early bi-modal nature in the size distribution indicates droplet nucleation from the gas phase during the first 3 months, while the similarity of the large particle profiles 2 months apart shows continued particle growth 6.5 months after the explosion.

  11. Sources and sinks of stratospheric water vapor

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.

    1979-11-01

    A tutorial review of the understanding of stratospheric H 2 O and the processes controlling it is presented. Paradoxes posed by currently available observational data are cited and suggestions made as to how they might be resolved. Such resolution appears to require: that the bulk of our current data provides unrepresentative and misleading vertical and latitudinal H 2 O gradients immediately downstream from the tropical tropopause; and, that there exists within the troposphere a mechanism different from or in addition to the tropical tropopause cold trap for drying air to the mixing ratios found in the lower stratosphere. Satisfaction of these requirements will reconcile much heretofore puzzling observational data and will obviate the necessity for a stratospheric sink for H 2 O

  12. Stratospheric ozone: History and concepts and interactions with climate

    Directory of Open Access Journals (Sweden)

    Bekki S.

    2009-02-01

    Full Text Available Although in relatively low concentration of a few molecules per million of e e air molecules, atmospheric ozone (trioxygen O3 is essential to sustaining life on the surface of the Earth. Indeed, by absorbing solar radiation between 240 and 320 nm, it shields living organisms including humans from the very harmful ultraviolet radiation UV-B. About 90% of the ozone resides in the stratosphere, a region that extends from the tropopause, whose altitude ranges from 7 km at the poles to 17 km in the tropics, to the stratopause located at about 50 km altitude. Stratospheric ozone is communally referred as the « ozone layer ». Unlike the atmosphere surrounding it, the stratosphere is vertically stratified and stable because the temperature increases with height within it. This particularity originates from heating produced by the absorption of UV radiation by stratospheric ozone. The present chapter describes the main mechanisms that govern the natural balance of ozone in the stratosphere, and its disruption under the influence of human activities.

  13. A sensitivity analysis of volcanic aerosol dispersion in the stratosphere. [Mt. Fuego, Guatemala eruptions

    Science.gov (United States)

    Butler, C. F.

    1979-01-01

    A computer sensitivity analysis was performed to determine the uncertainties involved in the calculation of volcanic aerosol dispersion in the stratosphere using a 2 dimensional model. The Fuego volcanic event of 1974 was used. Aerosol dispersion processes that were included are: transport, sedimentation, gas phase sulfur chemistry, and aerosol growth. Calculated uncertainties are established from variations in the stratospheric aerosol layer decay times at 37 latitude for each dispersion process. Model profiles are also compared with lidar measurements. Results of the computer study are quite sensitive (factor of 2) to the assumed volcanic aerosol source function and the large variations in the parameterized transport between 15 and 20 km at subtropical latitudes. Sedimentation effects are uncertain by up to a factor of 1.5 because of the lack of aerosol size distribution data. The aerosol chemistry and growth, assuming that the stated mechanisms are correct, are essentially complete in several months after the eruption and cannot explain the differences between measured and modeled results.

  14. Design, Aufbau, Test und Integration der Empfänger-Optik des Stratospheric Terahertz Observatory

    OpenAIRE

    Brasse, Michael

    2014-01-01

    Als Interstellares Medium (ISM) werden die Gas- und Staubwolken bezeichnet, die sich innerhalb einer Galaxie zwischen den Sternen befinden. Im ISM findet die Sternentstehung und -entwicklung in einer Galaxie statt. Es trägt damit zur Evolution einer Galaxie bei. Das “Stratospheric Terahertz Observatory“ (STO) ist ein ballongestütztes Observatorium gewesen, dessen Aufgabe in der großflächigen Kartierung von ionisiertem Kohlenstoff, C+, und ionisiertem Stickstoff, N+, im ISM der Milchstraße ...

  15. Spatial and Temporal Variations of Trace Species in Titan's Stratosphere

    Science.gov (United States)

    Coustenis, Athena; Jennings, D.; Nixon, C.; Achterberg, R.; Vinatier, S.; Bjoraker, G.; Teanby, N.; Romani, P.; Carlson, R.; Flasar, F.

    2008-09-01

    Four years into the Cassini-Huygens mission, we present results obtained on Titan's chemical composition by analyzing CIRS data in the far-and mid-IR region. With respect to previous publications (Coustenis et al., 2007, Teanby et al., 2006, 2008; Vinatier et al., 2007) we improved our analysis by exploiting a considerably larger number of nadir spectra, in particular at high resolution (0.53 cm-1). The more complete coverage of Titan's disk, combined with the larger number of spectra at high resolution, allows for the inference of more precise abundances for the trace gases and for a more adequate definition of meridional variations, in particular in the northern regions. The retrievals of the meridional variations of the trace constituents show an enhancement for some of them towards the North pole. Molecules showing a significant enhancement at northern latitudes are the nitriles (HC3N, HCN) and the complex hydrocarbons (C4H2, C3H4). To a lesser degree, acetylene and ethane also exhibit abundance increases by factors of 1.5-2. The results are tied to predictions by dynamical-photochemical models (Rannou et al., 2005; Lavvas et al., 2008a,b and references therein). The D/H ratio on Titan was also determined from the CH3D band at 8.6 micron and the C2HD band at 678 cm-1 (Coustenis et al., 2008). We compare our results with previous inferences from earlier CIRS and Voyager1/IRIS data and from ISO data taken in 1997. References Coustenis, A., et al., 2007, Icarus 189, 35-62 ; 2008 : DOI : 10.1007/s10686-008-9103-z. Lavvas, P. P., et al., 2008a. Plan. Space Sci. 56, 27-66 ; 2008b. Plan. Space Sci. 56, 67-99. Rannou, P., et al., 2005. Adv. Space Res. 36, 2194-2198. Teanby, N. A., et al., 2006. Icarus 181, 243-255; 2008. Icarus 193, 595-611. Vinatier, S., et al., 2007. Icarus 188, 120-138.

  16. Finding the Missing Stratospheric Br(sub y): A Global Modeling Study of CHBr3 and CH2Br2

    Science.gov (United States)

    Liang, Q.; Stolarski, R. S.; Kawa, S. R.; Nielsen, J. E.; Douglass, A. R.; Rodriguez, J. M.; Blake, D. R.; Atlas, E. L.; Ott, L. E.

    2010-01-01

    Recent in situ and satellite measurements suggest a contribution of 5 pptv to stratospheric inorganic bromine from short-lived bromocarbons. We conduct a modeling study of the two most important short-lived bromocarbons, bromoform (CHBr3) and dibromomethane (CH2Br2), with the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to account for this missing stratospheric bromine. We derive a "top-down" emission estimate of CHBr3 and CH2Br2 using airborne measurements in the Pacific and North American troposphere and lower stratosphere obtained during previous NASA aircraft campaigns. Our emission estimate suggests that to reproduce the observed concentrations in the free troposphere, a global oceanic emission of 425 Gg Br yr(exp -1) for CHBr3 and 57 Gg Br yr(exp -l) for CH2Br2 is needed, with 60% of emissions from open ocean and 40% from coastal regions. Although our simple emission scheme assumes no seasonal variations, the model reproduces the observed seasonal variations of the short-lived bromocarbons with high concentrations in winter and low concentrations in summer. This indicates that the seasonality of short-lived bromocarbons is largely due to seasonality in their chemical loss and transport. The inclusion of CHBr3 and CH2Br2 contributes 5 pptv bromine throughout the stratosphere. Both the source gases and inorganic bromine produced from source gas degradation (BrSLS) in the troposphere are transported into the stratosphere, and are equally important. Inorganic bromine accounts for half (2.5 pptv) of the bromine from the inclusion of CHBr3 and CHzBr2 near the tropical tropopause and its contribution rapidly increases to 100% as altitude increases. More than 85% of the wet scavenging of Br(sub y)(sup VSLS) occurs in large-scale precipitation below 500 hPa. Our sensitivity study with wet scavenging in convective updrafts switched off suggests that Br(sub y)(sup SLS) in the stratosphere is not sensitive to convection. Convective scavenging only

  17. What Controls the Temperature of the Arctic Stratosphere during the Spring?

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Rosenfield, Joan E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding the mechanisms that control the temperature of the polar lower stratosphere during spring is key to understanding ozone loss in the Arctic polar vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by the formation of polar stratospheric clouds, and the conversion of chlorine species to reactive forms on these cloud particle surfaces. In this paper, we study those factors that control temperatures in the polar lower stratosphere. We use the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis data covering the last two decades to investigate how planetary wave driving of the stratosphere is connected to polar temperatures. In particular, we show that planetary waves forced in the troposphere in mid- to late winter (January-February) are principally responsible for the mean polar temperature during the March period. These planetary waves are forced by both thermal and orographic processes in the troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early spring, while weak mid-winter forcing leads to cooler Arctic temperatures.

  18. Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere

    Directory of Open Access Journals (Sweden)

    F. Ploeger

    2017-06-01

    Full Text Available Pollution transport from the surface to the stratosphere within the Asian monsoon circulation may cause harmful effects on stratospheric chemistry and climate. Here, we investigate air mass transport from the monsoon anticyclone into the stratosphere using a Lagrangian chemistry transport model. We show how two main transport pathways from the anticyclone emerge: (i into the tropical stratosphere (tropical pipe, and (ii into the Northern Hemisphere (NH extratropical lower stratosphere. Maximum anticyclone air mass fractions reach around 5 % in the tropical pipe and 15 % in the extratropical lowermost stratosphere over the course of a year. The anticyclone air mass fraction correlates well with satellite hydrogen cyanide (HCN and carbon monoxide (CO observations, confirming that pollution is transported deep into the tropical stratosphere from the Asian monsoon anticyclone. Cross-tropopause transport occurs in a vertical chimney, but with the pollutants transported quasi-horizontally along isentropes above the tropopause into the tropics and NH.

  19. The Relation Between Atmospheric Humidity and Temperature Trends for Stratospheric Water

    Science.gov (United States)

    Fueglistaler, S.; Liu, Y. S.; Flannaghan, T. J.; Haynes, P. H.; Dee, D. P.; Read, W. J.; Remsberg, E. E.; Thomason, L. W.; Hurst, D. F.; Lanzante, J. R.; hide

    2013-01-01

    We analyze the relation between atmospheric temperature and water vapor-a fundamental component of the global climate system-for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980-2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective-Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual anomalies of the model predictions show periods of fairly regular oscillations, alternating with more quiescent periods and a few large-amplitude oscillations. They all agree well (correlation coefficients 0.9 and larger) with observations for higherfrequency variations (periods up to 2-3 years). Differences between SWV observations, and temperature data, respectively, render analysis of the model minus observation residual difficult. However, we find fairly well-defined periods of drifts in the residuals. For the 1980s, model predictions differ most, and only the calculation with ERA-Interim temperatures is roughly within observational uncertainties. All model predictions show a drying relative to HALOE in the 1990s, followed by a moistening in the early 2000s. Drifts to NOAA-FPH are similar (but stronger), whereas no drift is present against SAGE II. As a result, the model calculations have a less pronounced drop in SWV in 2000 than HALOE. From the mid-2000s onward, models and observations agree reasonably, and some differences can be traced to problems in the temperature data. These results indicate that both SWV and temperature data may still suffer

  20. The Temperature of the Arctic and Antarctic Lower Stratosphere

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The temperature of the polar lower stratosphere during spring is the key factor in changing the magnitude of ozone loss in the polar vortices. In this talk, we will review the results of Newman et al. [2000] that quantitatively demonstrate that the polar lower stratospheric temperature is primarily controlled by planetary-scale waves. In particular, the tropospheric eddy heat flux in middle to late winter (January--February) is highly correlated with the mean polar stratospheric temperature during March. Strong midwinter planetary wave forcing leads to a warmer spring Arctic lower stratosphere in early spring, while weak midwinter forcing leads to cooler spring Arctic temperatures. In addition, this planetary wave driving also has a strong impact on the strength of the polar vortex. These results from the Northern Hemisphere will be contrasted with the Southern Hemisphere.

  1. Stratospheric experiments on curing of composite materials

    Science.gov (United States)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  2. Feasibility of gas-discharge and optical methods of creating artificial ozone layers of the earth

    International Nuclear Information System (INIS)

    Batanov, G.M.; Kossyi, I.A.; Matveev, A.A.; Silakov, V.P.

    1996-01-01

    Gas-discharge (microwave) and optical (laser) methods of generating large-scale artificial ozone layers in the stratosphere are analyzed. A kinetic model is developed to calculate the plasma-chemical consequences of discharges localized in the stratosphere. Computations and simple estimates indicate that, in order to implement gas-discharge and optical methods, the operating power of ozone-producing sources should be comparable to or even much higher than the present-day power production throughout the world. Consequently, from the engineering and economic standpoints, microwave and laser methods cannot be used to repair large-scale ozone 'holes'

  3. Sulphur-rich volcanic eruptions and stratospheric aerosols

    Science.gov (United States)

    Rampino, M. R.; Self, S.

    1984-01-01

    Data from direct measurements of stratospheric optical depth, Greenland ice-core acidity, and volcanological studies are compared, and it is shown that relatively small but sulfur-rich volcanic eruptions can have atmospheric effects equal to or even greater than much larger sulfur-poor eruptions. These small eruptions are probably the most frequent cause of increased stratospheric aerosols. The possible sources of the excess sulfur released in these eruptions are discussed.

  4. Influence of isentropic transport on seasonal ozone variations in the lower stratosphere and subtropical upper troposphere

    Science.gov (United States)

    Jing, P.; Cunnold, D. M.; Yang, E.-S.; Wang, H.-J.

    2005-01-01

    The isentropic cross-tropopause ozone transport has been estimated in both hemispheres in 1999 based on the potential vorticity mapping of Stratospheric Aerosol and Gas Experiment 11 ozone measurements and contour advection calculations using the NASA Goddard Space Flight Center Global and Modeling Assimilation Office analysis. The estimated net isentropic stratosphere-to-troposphere ozone flux is approx.118 +/- 61 x 10(exp9)kg/yr globally within the layer between 330 and 370 K in 1999; 60% of it is found in the Northern Hemisphere, and 40% is found in the Southern Hemisphere. The monthly average ozone fluxes are strongest in summer and weakest in winter in both hemispheres. The seasonal variations of ozone in the lower stratosphere (LS) and upper troposphere (UT) have been analyzed using ozonesonde observations from ozonesonde stations in the extratropics and subtropics, respectively. It is shown that observed ozone levels increase in the UT over subtropical ozonesonde stations and decrease in the LS over extratropical stations in late spring/early summer and that the ozone increases in the summertime subtropical UT are unlikely to be explained by photochemical ozone production and diabatic transport alone. We conclude that isentropic transport is a significant contributor to ozone levels in the subtropical upper troposphere, especially in summer.

  5. Influence of an Internally-Generated QBO on Modeled Stratospheric Dynamics and Ozone

    Science.gov (United States)

    Hurwitz, M. M.; Newman, P. A.; Song, I. S.

    2011-01-01

    A GEOS V2 CCM simulation with an internally generated quasi-biennial oscillation (QBO) signal is compared to an otherwise identical simulation without a QBO. In a present-day climate, inclusion of the modeled QBO makes a significant difference to stratospheric dynamics and ozone throughout the year. The QBO enhances variability in the tropics, as expected, but also in the polar stratosphere in some seasons. The modeled QBO also affects the mean stratospheric climate. Because tropical zonal winds in the baseline simulation are generally easterly, there is a relative increase in zonal wind magnitudes in tropical lower and middle stratosphere in the QBO simulation. Extra-tropical differences between the QBO and 'no QBO' simulations thus reflect a bias toward the westerly phase of the QBO: a relative strengthening and poleward shifting the polar stratospheric jets, and a reduction in Arctic lower stratospheric ozone.

  6. An “island” in the stratosphere – on the enhanced annual variation of water vapour in the middle and upper stratosphere in the southern tropics and subtropics

    Directory of Open Access Journals (Sweden)

    S. Lossow

    2017-09-01

    Full Text Available The amplitude of the annual variation in water vapour exhibits a distinct isolated maximum in the middle and upper stratosphere in the southern tropics and subtropics, peaking typically around 15° S in latitude and close to 3 hPa (∼  40.5 km in altitude. This enhanced annual variation is primarily related to the Brewer–Dobson circulation and hence also visible in other trace gases. So far this feature has not gained much attention in the literature and the present work aims to add more prominence. Using Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding observations and ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System Atmospheric Chemistry (EMAC simulations we provide a dedicated illustration and a full account of the reasons for this enhanced annual variation.

  7. The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Science.gov (United States)

    Korablev, O.; Montmessin, F.; Trokhimovskiy, A.; Fedorova, A. A.; Shakun, A. V.; Grigoriev, A. V.; Moshkin, B. E.; Ignatiev, N. I.; Forget, F.; Lefèvre, F.; Anufreychik, K.; Dzuban, I.; Ivanov, Y. S.; Kalinnikov, Y. K.; Kozlova, T. O.; Kungurov, A.; Makarov, V.; Martynovich, F.; Maslov, I.; Merzlyakov, D.; Moiseev, P. P.; Nikolskiy, Y.; Patrakeev, A.; Patsaev, D.; Santos-Skripko, A.; Sazonov, O.; Semena, N.; Semenov, A.; Shashkin, V.; Sidorov, A.; Stepanov, A. V.; Stupin, I.; Timonin, D.; Titov, A. Y.; Viktorov, A.; Zharkov, A.; Altieri, F.; Arnold, G.; Belyaev, D. A.; Bertaux, J. L.; Betsis, D. S.; Duxbury, N.; Encrenaz, T.; Fouchet, T.; Gérard, J.-C.; Grassi, D.; Guerlet, S.; Hartogh, P.; Kasaba, Y.; Khatuntsev, I.; Krasnopolsky, V. A.; Kuzmin, R. O.; Lellouch, E.; Lopez-Valverde, M. A.; Luginin, M.; Määttänen, A.; Marcq, E.; Martin Torres, J.; Medvedev, A. S.; Millour, E.; Olsen, K. S.; Patel, M. R.; Quantin-Nataf, C.; Rodin, A. V.; Shematovich, V. I.; Thomas, I.; Thomas, N.; Vazquez, L.; Vincendon, M.; Wilquet, V.; Wilson, C. F.; Zasova, L. V.; Zelenyi, L. M.; Zorzano, M. P.

    2018-02-01

    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7-1.6 μm spectral range with a resolving power of ˜20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2-4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7-17 μm with apodized resolution varying from 0.2 to 1.3 cm-1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ˜60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of

  8. New stratospheric UV/visible radiance measurements

    Directory of Open Access Journals (Sweden)

    F. J. Marceau

    1994-01-01

    Full Text Available A stratospheric balloon was launched on 12 October 1986 from the "CNES" base at Aire sur l'Adour (France to record twilight radiance in the stratosphere. The near-UV and visible radiances were continuously monitored by a photometer during sunrise. Some observations are presented for different viewing azimuthal planes and viewing elevation angles. They show the influence of aerosols layers and clouds which can be also seen on related photographs. The results as a whole may be used for testing some radiative models, especially for twilight conditions.

  9. Technical Note: Intercomparison of ILAS-II version 2 and 1.4 trace species with MIPAS-B measurements

    Directory of Open Access Journals (Sweden)

    G. Wetzel

    2008-02-01

    Full Text Available The Improved Limb Atmospheric Spectrometer (ILAS-II sensor aboard the Japanese ADEOS-II satellite was launched into its sun-synchronous orbit on 14 December 2002 and performed solar occultation measurements of trace species, aerosols, temperature, and pressure in the polar stratosphere until 25 October 2003. Vertical trace gas profiles obtained with the balloon version of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B provide one of the sparse data sets for validating ILAS-II version 2 and 1.4 data. The MIPAS-B limb emission spectra were collected on 20 March 2003 over Kiruna (Sweden, 68° N at virtually the same location that has been sounded by ILAS-II about 5.5 h prior to the sampling of MIPAS-B. The intercomparison of the new ILAS-II version 2 (Northern Hemispheric sunrise data to MIPAS-B vertical trace gas profiles shows a good to excellent agreement within the combined error limits for the species O3, N2O, CH4, H2O (above 21 km, HNO3, ClONO2, and CFC-11 (CCl3F in the compared altitude range between 16 and 31 km such that these data appear to be very useful for scientific analysis. With regard to the previous version 1.4 ILAS-II data, significant improvements in the consistency with MIPAS-B are obvious especially for the species CH4 and H2O, but also for O3, HNO3, ClONO2, NO2, and N2O5. However, comparing gases like NO2, N2O5, and CFC-12 (CCl2F2 exhibits only poor agreement with MIPAS-B such that these species cannot be assumed to be validated at the present time.

  10. Stable Water Isotopologues in the Stratosphere Retrieved from Odin/SMR Measurements

    Directory of Open Access Journals (Sweden)

    Tongmei Wang

    2018-01-01

    Full Text Available Stable Water Isotopologues (SWIs are important diagnostic tracers for understanding processes in the atmosphere and the global hydrological cycle. Using eight years (2002–2009 of retrievals from Odin/SMR (Sub-Millimetre Radiometer, the global climatological features of three SWIs, H216O, HDO and H218O, the isotopic composition δD and δ18O in the stratosphere are analysed for the first time. Spatially, SWIs are found to increase with altitude due to stratospheric methane oxidation. In the tropics, highly depleted SWIs in the lower stratosphere indicate the effect of dehydration when the air comes through the cold tropopause, while, at higher latitudes, more enriched SWIs in the upper stratosphere during summer are produced and transported to the other hemisphere via the Brewer–Dobson circulation. Furthermore, we found that more H216O is produced over summer Northern Hemisphere and more HDO is produced over summer Southern Hemisphere. Temporally, a tape recorder in H216O is observed in the lower tropical stratosphere, in addition to a pronounced downward propagating seasonal signal in SWIs from the upper to the lower stratosphere over the polar regions. These observed features in SWIs are further compared to SWI-enabled model outputs. This helped to identify possible causes of model deficiencies in reproducing main stratospheric features. For instance, choosing a better advection scheme and including methane oxidation process in a specific model immediately capture the main features of stratospheric water vapor. The representation of other features, such as the observed inter-hemispheric difference of isotopic component, is also discussed.

  11. A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat

    International Nuclear Information System (INIS)

    Wilson, Emily L; Oman, Luke D; DiGregorio, A J; Garner, Richard M; Riot, Vincent J; Ammons, Mark S; Bruner, William W; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E; Hoffman, Christine

    2017-01-01

    We present a design for a 4 U (20 cm  ×  20 cm  ×  10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH 4 ), carbon dioxide (CO 2 ) and water vapor (H 2 O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO 2 , CH 4 , and H 2 O absorption features. Upper troposphere/lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone. (paper)

  12. A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat

    Science.gov (United States)

    Wilson, Emily L.; DiGregorio, A. J.; Riot, Vincent J.; Ammons, Mark S.; Bruner, William W.; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E.; Oman, Luke D.; Hoffman, Christine; Garner, Richard M.

    2017-03-01

    We present a design for a 4 U (20 cm  ×  20 cm  ×  10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH4), carbon dioxide (CO2) and water vapor (H2O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO2, CH4, and H2O absorption features. Upper troposphere/lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone.

  13. Towards uncertainty estimates in global operational forecasts of trace gases in the Copernicus Atmosphere Monitoring System

    Science.gov (United States)

    Huijnen, V.; Bouarar, I.; Chabrillat, S. H.; Christophe, Y.; Thierno, D.; Karydis, V.; Marecal, V.; Pozzer, A.; Flemming, J.

    2017-12-01

    Operational atmospheric composition analyses and forecasts such as developed in the Copernicus Atmosphere Monitoring Service (CAMS) rely on modules describing emissions, chemical conversion, transport and removal processing, as well as data assimilation methods. The CAMS forecasts can be used to drive regional air quality models across the world. Critical analyses of uncertainties in any of these processes are continuously needed to advance the quality of such systems on a global scale, ranging from the surface up to the stratosphere. With regard to the atmospheric chemistry to describe the fate of trace gases, the operational system currently relies on a modified version of the CB05 chemistry scheme for the troposphere combined with the Cariolle scheme to describe stratospheric ozone, as integrated in ECMWF's Integrated Forecasting System (IFS). It is further constrained by assimilation of satellite observations of CO, O3 and NO2. As part of CAMS we have recently developed three fully independent schemes to describe the chemical conversion throughout the atmosphere. These parameterizations originate from parent model codes in MOZART, MOCAGE and a combination of TM5/BASCOE. In this contribution we evaluate the correspondence and elemental differences in the performance of the three schemes in an otherwise identical model configuration (excluding data-assimilation) against a large range of in-situ and satellite-based observations of ozone, CO, VOC's and chlorine-containing trace gases for both troposphere and stratosphere. This analysis aims to provide a measure of model uncertainty in the operational system for tracers that are not, or poorly, constrained by data assimilation. It aims also to provide guidance on the directions for further model improvement with regard to the chemical conversion module.

  14. Trace gas fluxes from intensively managed rice and soybean fields across three growing seasons in the Brazilian Amazon

    Science.gov (United States)

    R.C. Oliveira Junior; Michael Keller; P. Crill; T. Beldini; J. Van Haren; P. Camargo

    2015-01-01

    The emission of gases that may potentially intensify the greenhouse effect has received special attention due to their ability to raise global temperatures and possibly modify conditions for life on earth. The objectives of this study were the quantification of trace gas flux (N2O, CO2 and CH4) in soils of the lower Amazon basin that are planted with rice and soybean,...

  15. Measuring trace gas emission from multi-distributed sources using vertical radial plume mapping (VRPM) and backward Lagrangian stochastic (bLS) techniques

    Science.gov (United States)

    Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The accuracy of the vertical radial plume mapping (VRPM) and the backward Lagrangian (bLS) techniques with an open-path optical spectrosco...

  16. Variability of Irreversible Poleward Transport in the Lower Stratosphere

    Science.gov (United States)

    Olsen, Mark; Douglass, Anne; Newman, Paul; Nash, Eric; Witte, Jacquelyn; Ziemke, Jerry

    2011-01-01

    The ascent and descent of the Brewer-Dobson circulation plays a large role in determining the distributions of many constituents in the extratropical lower stratosphere. However, relatively fast, quasi-horizontal transport out of the tropics and polar regions also significantly contribute to determining these distributions. The tropical tape recorder signal assures that there must be outflow from the tropics into the extratropical lower stratosphere. The phase of the quasi-biennial oscillation (QBO) and state of the polar vortex are known to modulate the transport from the tropical and polar regions, respectively. In this study we examine multiple years of ozone distributions in the extratropical lower stratosphere observed by the Aura Microwave Limb Sounder (MLS) and the Aura High Resolution Dynamic Limb Sounder (HIRDLS). The distributions are compared with analyses of irreversible, meridional isentropic transport. We show that there is considerable year-to-year seasonal variability in the amount of irreversible transport from the tropics, which is related to both the phase of the QBO and the state of the polar vortex. The reversibility of the transport is consistent with the number of observed breaking waves. The variability of the atmospheric index of refraction in the lower stratosphere is shown to be significantly correlated with the wave breaking and amount of irreversible transport. Finally, we will show that the seasonal extratropical stratosphere to troposphere transport of ozone can be substantially modulated by the amount of irreversible meridional transport in the lower stratosphere and we investigate how observable these differences are in data of tropospheric ozone.

  17. The Limb Infrared Monitor of the Stratosphere (LIMS) experiment

    Science.gov (United States)

    Russell, J. M.; Gille, J. C.

    1978-01-01

    The Limb Infrared Monitor of the Stratosphere is used to obtain vertical profiles and maps of temperature and the concentration of ozone, water vapor, nitrogen dioxide, and nitric acid for the region of the stratosphere bounded by the upper troposphere and the lower mesosphere.

  18. Tropospheric chemistry over the lower Great Plains of the United States. 2. Trace gas profiles and distributions

    Science.gov (United States)

    Luke, Winston T.; Dickerson, Russell R.; Ryan, William F.; Pickering, Kenneth E.; Nunnermacker, Linda J.

    1992-12-01

    Convective clouds and thunderstorms redistribute air pollutants vertically, and by altering the chemistry and radiative balance of the upper troposphere, these local actions can have global consequences. To study these effects, measurements of trace gases ozone, O3, carbon monoxide, CO, and odd nitrogen were made aboard the NCAR Sabreliner on 18 flights over the southern Great Plains during June 1985. To demonstrate chemical changes induced by vertical motions in the atmosphere and to facilitate comparison with computer model calculations, these data were categorized according to synoptic flow patterns. Part 1 of this two-part paper details the alternating pulses of polar and maritime air masses that dominate the vertical mixing in this region. In this paper, trace gas measurements are presented as altitude profiles (0-12 km) with statistical distributions of mixing ratios for each species in each flow pattern. The polar flow regime is characterized by northwesterly winds, subsiding air, and convective stability. Concentrations of CO and total odd nitrogen (NOy) are relatively high in the shallow planetary boundary layer (PBL) but decrease rapidly with altitude. Ozone, on the other hand, is uniformly distributed, suggesting limited photochemical production; in fact, nitric oxide, NO, mixing ratios fell below 10 ppt (parts per 1012 by volume) in the midtroposphere. The maritime regime is characterized by southerly surface winds, convective instability, and a deep PBL; uniformly high concentrations of trace gases were found up to 4 km on one flight. Severe storms occur in maritime flow, especially when capped by a dry layer, and they transport large amounts of CO, O3, and NOy into the upper troposphere. Median NO levels at high altitude exceeded 300 ppt. Lightning produces spikes of NO (but not CO) with mixing ratios sometimes exceeding 1000 ppt. This flow pattern tends to leave the midtroposphere relatively clean with concentrations of trace gases similar to those

  19. Fate of alkali and trace metals in biomass gasification

    International Nuclear Information System (INIS)

    Salo, K.; Mojtahedi, W.

    1998-01-01

    The fate of alkali metals (Na, K) and eleven toxic trace elements (Hg, Cd, Be, Se, Sb, As, Pb, Zn, Cr, Co, Ni) in biomass gasification have been extensively investigated in Finland in the past ten years. The former due to the gas turbine requirements and the latter to comply with environmental regulations. In this paper the results of several experimental studies to measure Na and K in the vapor phase after the gas cooler of a simplified (air-blown) Integrated Gasification Combined-Cycle (IGCC) system are reported. Also, trace element emissions from an IGCC plant using alfalfa as the feedstock are discussed and the concentration of a few toxic trace metals in the vapor phase in the gasifier product gas are reported. (author)

  20. Laboratory investigation of nitrile ices of Titan's stratospheric clouds

    Science.gov (United States)

    Nna Mvondo, D.; Anderson, C. M.; McLain, J. L.; Samuelson, R. E.

    2017-09-01

    Titan's mid to lower stratosphere contains complex cloud systems of numerous organic ice particles comprised of both hydrocarbon and nitrile compounds. Most of these stratospheric ice clouds form as a result of vapor condensation formation processes. However, there are additional ice emission features such as dicyanoacetylene (C4N2) and the 220 cm-1 ice emission feature (the "Haystack") that are difficult to explain since there are no observed vapor emission features associated with these ices. In our laboratory, using a high-vacuum chamber coupled to a FTIR spectrometer, we are engaged in a dedicated investigation of Titan's stratospheric ices to interpret and constrain Cassini Composite InfraRed Spectrometer (CIRS) far-IR data. We will present laboratory transmittance spectra obtained for propionitrile (CH3CH2CN), cyanogen (C2N2) and hydrogen cyanide (HCN) ices, as well as various combinations of their mixtures, to better understand the cloud chemistry occurring in Titan's stratosphere.

  1. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben

    2009-07-28

    We used a general circulation model of Earth\\'s climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  2. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben; Robock, Alan; Oman, Luke; Stenchikov, Georgiy L.; Marquardt, Allison B.

    2009-01-01

    We used a general circulation model of Earth's climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  3. Estimated SAGE II ozone mixing ratios in early 1993 and comparisons with Stratospheric Photochemistry, Aerosols and Dynamic Expedition measurements

    Science.gov (United States)

    Yue, G. K.; Veiga, R. E.; Poole, L. R.; Zawodny, J. M.; Proffitt, M. H.

    1994-01-01

    An empirical time-series model for estimating ozone mixing ratios based on Stratospheric Aerosols and Gas Experiment II (SAGE II) monthly mean ozone data for the period October 1984 through June 1991 has been developed. The modeling results for ozone mixing ratios in the 10- to 30- km region in early months of 1993 are presented. In situ ozone profiles obtained by a dual-beam UV-absorption ozone photometer during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) campaign, May 1-14, 1993, are compared with the model results. With the exception of two profiles at altitudes below 16 km, ozone mixing ratios derived by the model and measured by the ozone photometer are in relatively good agreement within their individual uncertainties. The identified discrepancies in the two profiles are discussed.

  4. Stratospheric impact on tropospheric ozone variability and trends: 1990–2009

    Directory of Open Access Journals (Sweden)

    P. G. Hess

    2013-01-01

    Full Text Available The influence of stratospheric ozone on the interannual variability and trends in tropospheric ozone is evaluated between 30 and 90° N from 1990–2009 using ozone measurements and a global chemical transport model, the Community Atmospheric Model with chemistry (CAM-chem. Long-term measurements from ozonesondes, at 150 and 500 hPa, and the Measurements of OZone and water vapour by in-service Airbus aircraft programme (MOZAIC, at 500 hPa, are analyzed over Japan, Canada, the Eastern US and Northern and Central Europe. The measurements generally emphasize northern latitudes, although the simulation suggests that measurements over the Canadian, Northern and Central European regions are representative of the large-scale interannual ozone variability from 30 to 90° N at 500 hPa. CAM-chem is run with input meteorology from the National Center for Environmental Prediction; a tagging methodology is used to identify the stratospheric contribution to tropospheric ozone concentrations. A variant of the synthetic ozone tracer (synoz is used to represent stratospheric ozone. Both the model and measurements indicate that on large spatial scales stratospheric interannual ozone variability drives significant tropospheric variability at 500 hPa and the surface. In particular, the simulation and the measurements suggest large stratospheric influence at the surface sites of Mace Head (Ireland and Jungfraujoch (Switzerland as well as many 500 hPa measurement locations. Both the measurements and simulation suggest the stratosphere has contributed to tropospheric ozone trends. In many locations between 30–90° N 500 hPa ozone significantly increased from 1990–2000, but has leveled off since (from 2000–2009. The simulated global ozone budget suggests global stratosphere-troposphere exchange increased in 1998–1999 in association with a global ozone anomaly. Discrepancies between the simulated and measured ozone budget include a large underestimation of

  5. Stratospheric Water and OzOne Satellite Homogenized (SWOOSH) data set

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) data set is a merged record of stratospheric ozone and water vapor measurements taken by a number of...

  6. STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere

    Directory of Open Access Journals (Sweden)

    B. Grassi

    2002-06-01

    Full Text Available A three-dimensional (3-D Chemical Transport Model (CTM of the stratosphere has been developed and used for a test study of the evolution of chemical species in the arctic lower stratosphere during winter 1996/97. This particular winter has been chosen for testing the model’s capabilities for its remarkable dynamical situation (very cold and strong polar vortex along with the availability of sparse chlorine, HNO3 and O3 data, showing also very low O3 values in late March/April. Due to those unusual features, the winter 1996/97 can be considered an excellent example of the impact of both dynamics and heterogeneous reactions on the chemistry of the stratosphere. Model integration has been performed from January to March 1997 and the resulting long-lived and short-lived tracer fields compared with available measurements. The model includes a detailed gas phase chemical scheme and a parameterization of the heterogeneous reactions occurring on liquid aerosol and polar stratospheric cloud (PSC surfaces. The transport is calculated using a semi-lagrangian flux scheme, forced by meteorological analyses. In such form, the STRATAQ CTM model is suitable for short-term integrations to study transport and chemical evolution related to "real" meteorological situations. Model simulation during the chosen winter shows intense PSC formation, with noticeable local HNO3 capture by PSCs, and the activation of vortex air leading to chlorine production and subsequent O3 destruction. The resulting model fields show generally good agreement with satellite data (MLS and TOMS, although the available observations, due to their limited number and time/space sparse nature, are not enough to effectively constraint the model. In particular, the model seems to perform well in reproducing the rapid processing of air inside the polar vortex on PSC converting reservoir species in active chlorine. In addition, it satisfactorily reproduces the morphology of the continuous O3

  7. STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere

    Directory of Open Access Journals (Sweden)

    B. Grassi

    Full Text Available A three-dimensional (3-D Chemical Transport Model (CTM of the stratosphere has been developed and used for a test study of the evolution of chemical species in the arctic lower stratosphere during winter 1996/97. This particular winter has been chosen for testing the model’s capabilities for its remarkable dynamical situation (very cold and strong polar vortex along with the availability of sparse chlorine, HNO3 and O3 data, showing also very low O3 values in late March/April. Due to those unusual features, the winter 1996/97 can be considered an excellent example of the impact of both dynamics and heterogeneous reactions on the chemistry of the stratosphere. Model integration has been performed from January to March 1997 and the resulting long-lived and short-lived tracer fields compared with available measurements. The model includes a detailed gas phase chemical scheme and a parameterization of the heterogeneous reactions occurring on liquid aerosol and polar stratospheric cloud (PSC surfaces. The transport is calculated using a semi-lagrangian flux scheme, forced by meteorological analyses. In such form, the STRATAQ CTM model is suitable for short-term integrations to study transport and chemical evolution related to "real" meteorological situations. Model simulation during the chosen winter shows intense PSC formation, with noticeable local HNO3 capture by PSCs, and the activation of vortex air leading to chlorine production and subsequent O3 destruction. The resulting model fields show generally good agreement with satellite data (MLS and TOMS, although the available observations, due to their limited number and time/space sparse nature, are not enough to effectively constraint the model. In particular, the model seems to perform well in reproducing the rapid processing of air inside the polar vortex on PSC converting reservoir species in active chlorine. In addition, it

  8. Measuring Trace Hydrocarbons in Silanes

    Science.gov (United States)

    Lesser, L. A.

    1984-01-01

    Technique rapid and uses standard analytical equipment. Silane gas containing traces of hydrocarbons injected into carrier gas of moist nitrogen having about 0.2 percent water vapor. Carrier, water and silane pass through short column packed with powdered sodium hydroxide which combines moisture and silane to form nonvolatile sodium silicate. Carrier gas free of silane but containing nonreactive hydrocarbons, pass to silica-gel column where chromatographic separation takes place. Hydrocarbons measured by FID.

  9. Stratospheric Ozone Distribution and Tropospheric General Circulation: Interconnections in the UTLS Region

    Science.gov (United States)

    Barodka, S.; Krasovsky, A.; Shalamyansky, A.

    2014-12-01

    The height of the tropopause, which divided the stratosphere and the troposphere, is a result of two rival categories of processes: the tropospheric vertical convection and the radiative heating of the stratosphere resulting from the ozone cycle. Hence, it is natural that tropospheric and stratospheric phenomena can have effect each other in manifold processes of stratosphere-troposphere interactions. In the present study we focus our attention to the "top-down" side of the interaction: the impact of stratospheric ozone distribution on the features of tropospheric circulation and the associated weather patterns and regional climate conditions. We proceed from analyzes of the observational data performed at the A.I. Voeikov Main Geophysical Observatory, which suggest a distinct correlation between stratospheric ozone distribution, synoptic formations and air-masses boundaries in the upper troposphere and the temperature field of the lower stratosphere [1]. Furthermore, we analyze local features of atmospheric general circulation and stratospheric ozone distribution from the atmospheric reanalyses and general circulation model data, focusing our attention to instantaneous positions of subtropical and polar stationary atmospheric fronts, which define regional characteristics of the general circulation cells in the troposphere and separate global tropospheric air-masses, correspond to distinct meteorological regimes in the TOC field [2, 3]. We assume that by altering the tropopause height, stratospheric ozone-related processes can have an impact on the location of the stationary atmospheric fronts, thereby exerting influence on circulation processes in troposphere and lower stratosphere. For midlatitudes, the tropopause height controls the position of the polar stationary front, which has a direct impact on the trajectory of motion of active vortices on synoptic tropospheric levels, thereby controlling weather patterns in that region and the regional climate. This

  10. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Directory of Open Access Journals (Sweden)

    I. A. Mironova

    2012-01-01

    Full Text Available Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III, and Optical Spectrograph and Infrared Imaging System (OSIRIS, we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak

  11. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Science.gov (United States)

    Mironova, I. A.; Usoskin, I. G.; Kovaltsov, G. A.; Petelina, S. V.

    2012-01-01

    Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP) event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III), and Optical Spectrograph and Infrared Imaging System (OSIRIS), we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak-moderate events. The present

  12. Comparing Simultaneous Stratospheric Aerosol and Ozone Lidar Measurements with SAGE 2 Data after the Mount Pinatubo Eruption

    Science.gov (United States)

    Yue, G. K.; Poole, L. R.; McCormick, M. P.; Veiga, R. E.; Wang, P.-H.; Rizi, V.; Masci, F.; DAltorio, A.; Visconti, G.

    1995-01-01

    Stratospheric aerosol and ozone profiles obtained simultaneously from the lidar station at the University of L'Aquila (42.35 deg N, 13.33 deg E, 683 m above sea level) during the first 6 months following the eruption of Mount Pinatubo are compared with corresponding nearby Stratospheric Aerosol and Gas Experiment (SAGE) 2 profiles. The agreement between the two data sets is found to be reasonably good. The temporal change of aerosol profiles obtained by both techniques showed the intrusion and growth of Pinatubo aerosols. In addition, ozone concentration profiles derived from an empirical time-series model based on SAGE 2 ozone data obtained before the Pinatubo eruption are compared with measured profiles. Good agreement is shown in the 1991 profiles, but ozone concentrations measured in January 1992 were reduced relative to time-series model estimates. Possible reasons for the differences between measured and model-based ozone profiles are discussed.

  13. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  14. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Science.gov (United States)

    Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan

    2017-10-01

    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion

  15. SWIFT: Semi-empirical and numerically efficient stratospheric ozone chemistry for global climate models

    OpenAIRE

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2015-01-01

    The SWIFT model is a fast yet accurate chemistry scheme for calculating the chemistry of stratospheric ozone. It is mainly intended for use in Global Climate Models (GCMs), Chemistry Climate Models (CCMs) and Earth System Models (ESMs). For computing time reasons these models often do not employ full stratospheric chem- istry modules, but use prescribed ozone instead. This can lead to insufficient representation between stratosphere and troposphere. The SWIFT stratospheric ozone chem...

  16. Forcing of stratospheric chemistry and dynamics during the Dalton Minimum

    Science.gov (United States)

    Anet, J. G.; Muthers, S.; Rozanov, E.; Raible, C. C.; Peter, T.; Stenke, A.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Schmutz, W.

    2013-11-01

    The response of atmospheric chemistry and dynamics to volcanic eruptions and to a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere-ocean chemistry general circulation model SOCOL-MPIOM (modeling tools for studies of SOlar Climate Ozone Links-Max Planck Institute Ocean Model) covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric dynamics in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15%, which represents the presently discussed highest estimate of UV irradiance change caused by solar activity changes, causes global ozone decrease below the stratopause reaching as much as 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the mid-stratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere, allowing more water vapour to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx, leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation

  17. Climate change projections and stratosphere-troposphere interaction

    Energy Technology Data Exchange (ETDEWEB)

    Scaife, Adam A.; Fereday, David R.; Butchart, Neal; Hardiman, Steven C. [Met Office Hadley Centre, Exeter (United Kingdom); Spangehl, Thomas; Cubasch, Ulrich; Langematz, Ulrike [Freie Universitaet Berlin, Berlin (Germany); Akiyoshi, Hideharu [National Institute for Environmental Studies, Tsukuba (Japan); Bekki, Slimane [LATMOS-IPSL, UVSQ, UPMC, CNRS/INSU, Paris (France); Braesicke, Peter [University of Cambridge, Cambridge (United Kingdom); Chipperfield, Martyn P. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Gettelman, Andrew [National Center for Atmospheric Research, Boulder, CO (United States); Michou, Martine [GAME/CNRM (Meteo France, CNRS), Toulouse (France); Rozanov, Eugene [PMOD/WRC and ETHZ, Davos (Switzerland); Shepherd, Theodore G. [University of Toronto, Toronto, ON (Canada)

    2012-05-15

    Climate change is expected to increase winter rainfall and flooding in many extratropical regions as evaporation and precipitation rates increase, storms become more intense and storm tracks move polewards. Here, we show how changes in stratospheric circulation could play a significant role in future climate change in the extratropics through an additional shift in the tropospheric circulation. This shift in the circulation alters climate change in regional winter rainfall by an amount large enough to significantly alter regional climate change projections. The changes are consistent with changes in stratospheric winds inducing a change in the baroclinic eddy growth rate across the depth of the troposphere. A change in mean wind structure and an equatorward shift of the tropospheric storm tracks relative to models with poor stratospheric resolution allows coupling with surface climate. Using the Atlantic storm track as an example, we show how this can double the predicted increase in extreme winter rainfall over Western and Central Europe compared to other current climate projections. (orig.)

  18. Impact of major volcanic eruptions on stratospheric water vapour

    Directory of Open Access Journals (Sweden)

    M. Löffler

    2016-05-01

    Full Text Available Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry–climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg – Modular Earth Submodel System (ECHAM/MESSy Atmospheric Chemistry (EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño–Southern Oscillation (ENSO are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  19. A method for establishing a long duration, stratospheric platform for astronomical research

    Science.gov (United States)

    Fesen, Robert; Brown, Yorke

    2015-10-01

    During certain times of the year at middle and low latitudes, winds in the upper stratosphere move in nearly the opposite direction than the wind in the lower stratosphere. Here we present a method for maintaining a high-altitude balloon platform in near station-keeping mode that utilizes this stratospheric wind shear. The proposed method places a balloon-borne science platform high in the stratosphere connected by a lightweight, high-strength tether to a tug vehicle located in the lower or middle stratosphere. Using aerodynamic control surfaces, wind-induced aerodynamic forces on the tug can be manipulated to counter the wind drag acting on the higher altitude science vehicle, thus controlling the upper vehicle's geographic location. We describe the general framework of this station-keeping method, some important properties required for the upper stratospheric science payload and lower tug platforms, and compare this station-keeping approach with the capabilities of a high altitude airship and conventional tethered aerostat approaches. We conclude by discussing the advantages of such a platform for a variety of missions with emphasis on astrophysical research.

  20. The natural stratosphere of 1974. CIAP monograph 1. Final report

    International Nuclear Information System (INIS)

    1975-09-01

    The Climatic Impact Assessment Program (CIAP) of the U.S. Department of Transportation is charged with the 'assessment' of the impact of future aircraft fleets and other vehicles operating in, or transiting through, the stratosphere. CIAP monograph 1 gives a survey, largely from an experimental standpoint, of what is known in 1974 about the unperturbed stratosphere with respect to an application to stratospheric flight. It reviews the overall structure of the stratosphere, its origin in terms of ozone photochemistry, solar irradiance and overall radiative energy balance, other chemically reactive minor species, and atmospheric motions on a variety of scales of time and distance. The limitations of our understanding are emphasized in the presentation. Also, the monograph examines briefly what is known about the effect of massive injections of nitrogen oxides (from atmospheric nuclear explosions) and sulfur oxides (from major volcanic eruptions)

  1. Development of a climate record of tropospheric and stratospheric column ozone from satellite remote sensing: evidence of an early recovery of global stratospheric ozone

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2012-07-01

    Full Text Available Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI and Aura Microwave Limb Sounder (MLS are used to evaluate the accuracy of the Cloud Slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and for studying their long-term changes. Using this technique, we have produced a 32-yr (1979–2010 long record of tropospheric and stratospheric column ozone from the combined Total Ozone Mapping Spectrometer (TOMS and OMI. Analyses of these time series suggest that the quasi-biennial oscillation (QBO is the dominant source of inter-annual variability of stratospheric ozone and is clearest in the Southern Hemisphere during the Aura time record with related inter-annual changes of 30–40 Dobson Units. Tropospheric ozone for the long record also indicates a QBO signal in the tropics with peak-to-peak changes varying from 2 to 7 DU. The most important result from our study is that global stratospheric ozone indicates signature of a recovery occurring with ozone abundance now approaching the levels of year 1980 and earlier. The negative trends in stratospheric ozone in both hemispheres during the first 15 yr of the record are now positive over the last 15 yr and with nearly equal magnitudes. This turnaround in stratospheric ozone loss is occurring about 20 yr earlier than predicted by many chemistry climate models. This suggests that the Montreal Protocol which was first signed in 1987 as an international agreement to reduce ozone destroying substances is working well and perhaps better than anticipated.

  2. Modeling the interaction of ozone with chloroform and bromoform under conditions close to stratospheric

    Science.gov (United States)

    Strokova, N. E.; Yagodovskaya, T. V.; Savilov, S. V.; Lukhovitskaya, E. E.; Vasil'ev, E. S.; Morozov, I. I.; Lunin, V. V.

    2013-02-01

    The reactions of ozone with chloroform and bromoform are studied using a flow gas discharge vacuum unit under conditions close to stratospheric (temperature range, 77-250 K; pressure, 10-3-0.1 Torr in the presence of nitrate ice). It is shown that the reaction with bromoform begins at 160 K; the reaction with chloroform, at 190 K. The reaction products are chlorine and bromine oxides of different composition, identified by low-temperature FTIR spectroscopy. The presence of nitrate ice raises the temperature of reaction onset to 210 K.

  3. Expansion of the acceptance program: nitrous oxide scavenging equipment and nitrous oxide trace gas monitoring equipment

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The Acceptance Program for dental materials and devices and the general guidelines for submission of products have been reported in the Journal (88:615 March 1974). At its April 1977 meeting, the Council included equipment for scavenging and monitoring trace nitrous oxide gas in its Acceptance Program. The Council has established the effective date for classification of products under these two sets of guidelines as one year from the date of publication of this announcement. After that date, classification of a product will be required before promotion or exhibition in Association media.

  4. Stratospheric chlorine: Blaming it on nature

    International Nuclear Information System (INIS)

    Taube, G.

    1993-01-01

    Much of the bitter public debate over ozone depletion has centered on the claim that chlorofluorocarbons (CFCs) pale into insignificance alongside natural sources of chlorine in the stratosphere. If so, goes the argument, chlorine could not be depleting ozone as atmospheric scientists claim, because the natural sources have been around since time immemorial, and the ozone layer is still there. The claim, put forward in a book by Rogelio Maduro and Ralf Schauerhammer, has since been touted by former Atomic Energy Commissioner Dixy Lee Ray and talk-show host Rush Limbaugh, and it forms the basis of much of the backlash now being felt by atmospheric scientists. The argument is simple: Maduro and Schauerhammer calculate that 600 million tons of chlorine enters the atmosphere annually from seawater, 36 million tons from volcanoes, 8.4 million tons from biomass burning, and 5 million tons from ocean biota. In contrast, CFCs account for a mere 750,000 tons of atmospheric chlorine a year. Besides disputing the numbers, scientists have both theoretical and observational bases for doubting that much of this chlorine is getting into the stratosphere, where it could affect the ozone layer. Linwood Callis of the National Aeronautics and Space Administration's (NASA) Langley Research Center points out one crucial problem with the argument: Chlorine from natural sources is soluble, and so it gets rained out of the lower atmosphere. CFCs, in contrast, are insoluble and inert and thus make it to the stratosphere to release their chlorine. What's more, observations of stratospheric chemistry don't support the idea that natural sources are contributing much to the chlorine there

  5. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  6. Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John; hide

    2018-01-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  7. A Miniaturized QEPAS Trace Gas Sensor with a 3D-Printed Acoustic Detection Module

    Directory of Open Access Journals (Sweden)

    Xiaotao Yang

    2017-07-01

    Full Text Available A 3D printing technique was introduced to a quartz-enhanced photoacoustic spectroscopy (QEPAS sensor and is reported for the first time. The acoustic detection module (ADM was designed and fabricated using the 3D printing technique and the ADM volume was compressed significantly. Furthermore, a small grin lens was used for laser focusing and facilitated the beam adjustment in the 3D-printed ADM. A quartz tuning fork (QTF with a low resonance frequency of 30.72 kHz was used as the acoustic wave transducer and acetylene (C2H2 was chosen as the analyte. The reported miniaturized QEPAS trace gas sensor is useful in actual sensor applications.

  8. Global two-channel AVHRR aerosol climatology: effects of stratospheric aerosols and preliminary comparisons with MODIS and MISR retrievals

    International Nuclear Information System (INIS)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.; Liu Li; Remer, Lorraine

    2004-01-01

    We present an update on the status of the global climatology of the aerosol column optical thickness and Angstrom exponent derived from channel-1 and -2 radiances of the Advanced Very High Resolution Radiometer (AVHRR) in the framework of the Global Aerosol Climatology Project (GACP). The latest version of the climatology covers the period from July 1983 to September 2001 and is based on an adjusted value of the diffuse component of the ocean reflectance as derived from extensive comparisons with ship sun-photometer data. We use the updated GACP climatology and Stratospheric Aerosol and Gas Experiment (SAGE) data to analyze how stratospheric aerosols from major volcanic eruptions can affect the GACP aerosol product. One possible retrieval strategy based on the AVHRR channel-1 and -2 data alone is to infer both the stratospheric and the tropospheric aerosol optical thickness while assuming fixed microphysical models for both aerosol components. The second approach is to use the SAGE stratospheric aerosol data in order to constrain the AVHRR retrieval algorithm. We demonstrate that the second approach yields a consistent long-term record of the tropospheric aerosol optical thickness and Angstrom exponent. Preliminary comparisons of the GACP aerosol product with MODerate resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectro-Radiometer aerosol retrievals show reasonable agreement, the GACP global monthly optical thickness being lower than the MODIS one by approximately 0.03. Larger differences are observed on a regional scale. Comparisons of the GACP and MODIS Angstrom exponent records are less conclusive and require further analysis

  9. Chromatographic methods of the measurements of the chloride compounds in troposphere and stratosphere

    International Nuclear Information System (INIS)

    Lasa, J.; Rosiek, J.

    1992-01-01

    The paper contains a description of various chromatographic techniques used for the analysis of the tropospheric techniques used for the analysis of the tropospheric and stratospheric halogenated compounds. The types of the column packings used for separation of halogenated compounds are described. Model chromatograms illustrating the separation of halogenated compounds are presented. The methods of the air sampling and injection for the packed and capillary columns were described. The methods of the preparation of gas calibration mixtures are presented. Operational conditions for electron capture detector used by the authors of quoted paper are also given. (author). 66 refs, 29 figs, 13 tabs

  10. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    Science.gov (United States)

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  11. Airborne In-Situ Trace Gas Measurements of Multiple Wildfires in California (2013-2014)

    Science.gov (United States)

    Iraci, L. T.; Yates, E. L.; Tanaka, T.; Roby, M.; Gore, W.; Clements, C. B.; Lareau, N.; Ambrosia, V. G.; Quayle, B.; Schroeder, W.

    2014-12-01

    Biomass burning emissions are an important source of a wide range of trace gases and particles that can impact local, regional and global air quality, climate forcing, biogeochemical cycles and human health. In the western US, wildfires dominate over prescribed fires, contributing to atmospheric trace gas budgets and regional and local air pollution. Limited sampling of emissions from wildfires means western US emission estimates rely largely on data from prescribed fires, which may not be a suitable proxy for wildfire emissions. We report here in-situ measurements of carbon dioxide, methane, ozone and water vapor from the plumes of a variety of wildfires sampled in California in the fire seasons of 2013 and 2014. Included in the analysis are the Rim Fire (August - October 2013, near Yosemite National Park), the Morgan Fire (September 2013, near Clayton, CA), and the El Portal Fire (July - August 2014, in Yosemite National Park), among others. When possible, fires were sampled on multiple days. Emission ratios and estimated emission factors will be presented and discussed in the context of fuel composition, plume structure, and fire phase. Correlations of plume chemical composition to MODIS/VIIRS Fire Radiative Power (FRP) and other remote sensing information will be explored. Furthermore, the role of plumes in delivery of enhanced ozone concentrations to downwind municipalities will be discussed.

  12. Time-Series Analysis: A Cautionary Tale

    Science.gov (United States)

    Damadeo, Robert

    2015-01-01

    Time-series analysis has often been a useful tool in atmospheric science for deriving long-term trends in various atmospherically important parameters (e.g., temperature or the concentration of trace gas species). In particular, time-series analysis has been repeatedly applied to satellite datasets in order to derive the long-term trends in stratospheric ozone, which is a critical atmospheric constituent. However, many of the potential pitfalls relating to the non-uniform sampling of the datasets were often ignored and the results presented by the scientific community have been unknowingly biased. A newly developed and more robust application of this technique is applied to the Stratospheric Aerosol and Gas Experiment (SAGE) II version 7.0 ozone dataset and the previous biases and newly derived trends are presented.

  13. Impacts of Stratospheric Sulfate Geoengineering on PM2.5

    Science.gov (United States)

    Robock, A.; Xia, L.; Tilmes, S.; Mills, M. J.; Richter, J.; Kravitz, B.; MacMartin, D.

    2017-12-01

    Particulate matter (PM) includes sulfate, nitrate, organic carbon, elemental carbon, soil dust, and sea salt. The first four components are mostly present near the ground as fine particulate matter with a diameter less than 2.5 µm (PM2.5), and these are of the most concern for human health. PM is efficiently scavenged by precipitation, which is its main atmospheric sink. Here we examine the impact of stratospheric climate engineering on this important pollutant and health risk, taking advantage of two sets of climate model simulations conducted at the National Center for Atmospheric Research. We use the full tropospheric and stratospheric chemistry version of the Community Earth System Model - Community Atmospheric Model 4 (CESM CAM4-chem) with a horizontal resolution of 0.9° x 1.25° lat-lon to simulate a stratospheric sulfate injection climate intervention of 8 Tg SO2 yr-1 combined with an RCP6.0 global warming forcing, the G4 Specified Stratospheric Aerosol (G4SSA) scenario. We also analyze the output from a 20-member ensemble of Community Earth System Model, version 1 with the Whole Atmosphere Community Climate Model as its atmospheric component (CESM1(WACCM)) simulations, also at 0.9° x 1.25° lat-lon resolution, with sulfur dioxide injection at 15°N, 15°S, 30°N, and 30°S varying in time to balance RCP8.5 forcing. While the CESM CAM4-chem model has full tropospheric and stratospheric chemistry, CESM1(WACCM) has an internally generated quasi-biennial oscillation and a comprehensive tropospheric and stratospheric sulfate aerosol treatment, but only stratospheric chemistry. For G4SSA, there are a global temperature reduction of 0.8 K and global averaged precipitation decrease of 3% relative to RCP6.0. The global averaged surface PM2.5 reduces about 1% compared with RCP6.0, mainly over Eurasian and East Asian regions in Northern Hemisphere winter. The PM2.5 concentration change is a combination of effects from tropospheric chemistry and precipitation

  14. A refined method for calculating equivalent effective stratospheric chlorine

    Science.gov (United States)

    Engel, Andreas; Bönisch, Harald; Ostermöller, Jennifer; Chipperfield, Martyn P.; Dhomse, Sandip; Jöckel, Patrick

    2018-01-01

    Chlorine and bromine atoms lead to catalytic depletion of ozone in the stratosphere. Therefore the use and production of ozone-depleting substances (ODSs) containing chlorine and bromine is regulated by the Montreal Protocol to protect the ozone layer. Equivalent effective stratospheric chlorine (EESC) has been adopted as an appropriate metric to describe the combined effects of chlorine and bromine released from halocarbons on stratospheric ozone. Here we revisit the concept of calculating EESC. We derive a refined formulation of EESC based on an advanced concept of ODS propagation into the stratosphere and reactive halogen release. A new transit time distribution is introduced in which the age spectrum for an inert tracer is weighted with the release function for inorganic halogen from the source gases. This distribution is termed the release time distribution. We show that a much better agreement with inorganic halogen loading from the chemistry transport model TOMCAT is achieved compared with using the current formulation. The refined formulation shows EESC levels in the year 1980 for the mid-latitude lower stratosphere, which are significantly lower than previously calculated. The year 1980 is commonly used as a benchmark to which EESC must return in order to reach significant progress towards halogen and ozone recovery. Assuming that - under otherwise unchanged conditions - the EESC value must return to the same level in order for ozone to fully recover, we show that it will take more than 10 years longer than estimated in this region of the stratosphere with the current method for calculation of EESC. We also present a range of sensitivity studies to investigate the effect of changes and uncertainties in the fractional release factors and in the assumptions on the shape of the release time distributions. We further discuss the value of EESC as a proxy for future evolution of inorganic halogen loading under changing atmospheric dynamics using simulations from

  15. Improved stratospheric atmosphere forecasts in the general circulation model through a methane oxidation parametrization

    Science.gov (United States)

    Wang, S.; Jun, Z.

    2017-12-01

    Climatic characteristics of tropical stratospheric methane have been well researched using various satellite data, and numerical simulations have furtherly conducted using chemical climatic models, while the impact of stratospheric methane oxidation on distribution of water vapor is not paid enough attention in general circulation models. Simulated values of water vapour in the tropical upper stratosphere, and throughout much of the extratropical stratosphere, were too low. Something must be done to remedy this deficiency in order to producing realistic stratospheric water vapor using a general circulation model including the whole stratosphere. Introduction of a simple parametrization of the upper-stratospheric moisture source due to methane oxidation and a sink due to photolysis in the mesosphere was conducted. Numerical simulations and analysis of the influence of stratospheric methane on the prediction of tropical stratospheric moisture and temperature fields were carried out. This study presents the advantages of methane oxidation parametrization in producing a realistic distribution of water vapour in the tropical stratosphere and analyzes the impact of methane chemical process on the general circulation model using two storm cases including a heavy rain in South China and a typhoon caused tropical storm.It is obvious that general circulation model with methane oxidation parametrization succeeds in simulating the water vapor and temperature in stratosphere. The simulating rain center value of contrast experiment is increased up to 10% than that of the control experiment. Introduction of methane oxidation parametrization has modified the distribution of water vapour and then producing a broadly realistic distribution of temperature. Objective weather forecast verifications have been performed using simulating results of one month, which demonstrate somewhat positive effects on the model skill. There is a certain extent impact of methane oxidation

  16. Next Generation Offline Approaches to Trace Gas-Phase Organic Compound Speciation: Sample Collection and Analysis

    Science.gov (United States)

    Sheu, R.; Marcotte, A.; Khare, P.; Ditto, J.; Charan, S.; Gentner, D. R.

    2017-12-01

    Intermediate-volatility and semi-volatile organic compounds (I/SVOCs) are major precursors to secondary organic aerosol, and contribute to tropospheric ozone formation. Their wide volatility range, chemical complexity, behavior in analytical systems, and trace concentrations present numerous hurdles to characterization. We present an integrated sampling-to-analysis system for the collection and offline analysis of trace gas-phase organic compounds with the goal of preserving and recovering analytes throughout sample collection, transport, storage, and thermal desorption for accurate analysis. Custom multi-bed adsorbent tubes are used to collect samples for offline analysis by advanced analytical detectors. The analytical instrumentation comprises an automated thermal desorption system that introduces analytes from the adsorbent tubes into a gas chromatograph, which is coupled with an electron ionization mass spectrometer (GC-EIMS) and other detectors. In order to optimize the collection and recovery for a wide range of analyte volatility and functionalization, we evaluated a variety of commercially-available materials, including Res-Sil beads, quartz wool, glass beads, Tenax TA, and silica gel. Key properties for optimization include inertness, versatile chemical capture, minimal affinity for water, and minimal artifacts or degradation byproducts; these properties were assessed with a diverse mix of traditionally-measured and functionalized analytes. Along with a focus on material selection, we provide recommendations spanning the entire sampling-and-analysis process to improve the accuracy of future comprehensive I/SVOC measurements, including oxygenated and other functionalized I/SVOCs. We demonstrate the performance of our system by providing results on speciated VOCs-SVOCs from indoor, outdoor, and chamber studies that establish the utility of our protocols and pave the way for precise laboratory characterization via a mix of detection methods.

  17. Artificially ionized region as a source of ozone in the stratosphere

    International Nuclear Information System (INIS)

    Gurevich, Aleksandr V; Litvak, Aleksandr G; Vikharev, A L; Ivanov, O A; Borisov, Nikolai D; Sergeichev, Konstantin F

    2000-01-01

    A set of physical and chemical processes occurring in a microwave stratospheric discharge of nanosecond duration is discussed in connection with the effect they may have locally on the ozone layer in the artificially ionized region (AIR) in the stratosphere. The AIR, to be created at altitudes of 18 - 20 km by the microwave breakdown of air with ground-produced powerful electromagnetic wave beams, is planned for use in the natural physical experiment aimed at active monitoring of the ozone layer (its internal state and a set of plasma-chemical and photochemical processes) by controllably generating a considerable amount of ozone in the stratosphere. Results of relevant theoretical studies are presented, as are those of a large series of laboratory experiments performed under conditions similar to those prevailing in the stratosphere. Discharge regimes securing the efficient growth of ozone concentration are identified and studied in detail. It is demonstrated that such a stratospheric ozonizer is about as efficient as the best ground-based ozonizers used at present. For typical stratospheric conditions (low pressures and temperatures T ∼ 200 - 220 K), it is shown that the intense generation of ozone in a microwave breakdown effected by groups of short nanosecond pulses does not virtually increase the density of nitrogen oxides - gases that play a vital role in catalytic ozone-decomposing reactions. The possibility of effectively producing ozone in prebreakdown electric fields is established experimentally. It is demonstrated that due to its long lifetime, ozone produced locally at altitudes of 18 - 20 km may spread widely under the action of winds and turbulent diffusion, thus leading to an additional - artificial - ozonization of the stratosphere. (reviews of topical problems)

  18. Lidar observations and transfer of stratospheric aerosol over Tomsk in summer period

    Science.gov (United States)

    Novikov, P. V.; Cheremisin, A. A.; Marichev, V. N.; Barashkov, T. O.

    2015-11-01

    The analysis of the stratospheric aerosol origin was carried out by the method of Lagrangian particle trajectories. Stratospheric aerosol was registered by lidar sounding of atmosphere above Tomsk in 2008-2013 in summer time. The analysis of the results had shown that the aerosol content at altitudes of 13-125 km with maximum at 16-18 km can be associated with aerosol transfer from tropical stratospheric reservoir.

  19. Measurement of gas/water uptake coefficients for trace gases active in the marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, P. (Boston Coll., Chestnut Hill, MA (United States). Dept. of Chemistry); Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. (Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics)

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean's surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry's law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  20. Simultaneous Photoacoustic and Photopyroelectric Detection of Trace Gas Emissions from Some Plant Parts and Their Related Essential Oils in a Combined Detection Cell

    Science.gov (United States)

    Abu-Taha, M. I.; Abu-Teir, M. M.; Al-Jamal, A. J.; Eideh, H.

    The aim of this work was to establish the feasibility of the combined photoacoustic (PA) and photopyroelectric (PPE) detection of the vapours emitted from essential oils and their corresponding uncrushed leaves or flowers. Gas traces of jasmine (Jessamine (Jasminum)), mint (Mentha arvensis L.) and Damask rose (Rosa damascena Miller) and their essential oils were tested using a combined cell fitted with both a photopyroelectric film (PVDF) and a microphone in conjunction with a pulsed wideband infrared source (PWBS) source. Infrared PA and PPE absorbances were obtained simultaneously at room temperatures with excellent reproducibility and high signal-to-noise ratios. Significant similarities found between the PA and PPE spectra of the trace gas emissions of plant parts, i.e., flowers or leaves and their related essential oils show the good correlation of their emissions and that both effects are initiated by the same absorbing molecules.

  1. Reduction of photosynthetically active radiation under extreme stratospheric-aerosol loads

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1981-01-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10 16 g is sufficient to reduce photosynthesis to 10 3 of normal. We also infer from this result that the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al., is thus shown to be a possible extinction mechanism, even with smaller size asteroids or comets than previously estimated

  2. Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1981-08-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10 1 g is sufficient to reduce photosynthesis to 10 -3 of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated

  3. Possible effects of volcanic eruptions on stratospheric minor constituent chemistry

    Science.gov (United States)

    Stolarski, R. S.; Butler, D. M.

    1979-01-01

    Although stratosphere penetrating volcanic eruptions have been infrequent during the last half century, periods have existed in the last several hundred years when such eruptions were significantly more frequent. Several mechanisms exist for these injections to affect stratospheric minor constituent chemistry, both on the long-term average and for short-term perturbations. These mechanisms are reviewed and, because of the sensitivity of current models of stratospheric ozone to chlorine perturbations, quantitative estimates are made of chlorine injection rates. It is found that, if chlorine makes up as much as 0.5 to 1% of the gases released and if the total gases released are about the same magnitude as the fine ash, then a major stratosphere penetrating eruption could deplete the ozone column by several percent. The estimate for the Agung eruption of 1963 is just under 1% an amount not excluded by the ozone record but complicated by the peak in atmospheric nuclear explosions at about the same time.

  4. The annual cycle of stratospheric water vapor in a general circulation model

    Science.gov (United States)

    Mote, Philip W.

    1995-01-01

    The application of general circulation models (GCM's) to stratospheric chemistry and transport both permits and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the Community Climate Model (CCM2), to enable studies of the chemistry and transport of tracers including water vapor; the importance of water vapor to the climate and chemistry of the stratosphere requires that it be better understood in the atmosphere and well represented in the model. In this study, methane is carried as a tracer and converted to water; this simple chemistry provides an adequate representation of the upper stratospheric water vapor source. The cold temperature bias in the winter polar stratosphere, which the CCM2 shares with other GCM's, produces excessive dehydration in the southern hemisphere, but this dry bias can be ameliorated by setting a minimum vapor pressure. The CCM2's water vapor distribution and seasonality compare favorably with observations in many respects, though seasonal variations including the upper stratospheric semiannual oscillation are generally too small. Southern polar dehydration affects midlatitude water vapor mixing ratios by a few tenths of a part per million, mostly after the demise of the vortex. The annual cycle of water vapor in the tropical and northern midlatitude lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a longer adjustment time than methane and had not reached equilibrium at the end of the 9 years simulated here.

  5. Effects of stratospheric perturbations on the solar radiation budget

    International Nuclear Information System (INIS)

    Luther, F.M.

    1978-04-01

    The changes in solar absorption and in local heating rates due to perturbations to O 3 and NO 2 concentrations caused by stratospheric injection of NO/sub x/ and CFM pollutants are assessed. The changes in species concentration profiles are derived from theoretical calculations using a transport-kinetics model. Because of significant changes in our understanding of stratospheric chemistry during the past year, the assessment of the effect of stratospheric perturbations on the solar radiation budget differs from previous assessments. Previously, a reduction in O 3 due to an NO/sub x/ injection caused a net decrease in the gaseous solar absorption;now the same perturbation leads to a net increase. The implication of these changes on the surface temperature is also discussed

  6. A Fourier transform infrared trace gas and isotope analyser for atmospheric applications

    Directory of Open Access Journals (Sweden)

    D. W. T. Griffith

    2012-10-01

    Full Text Available Concern in recent decades about human impacts on Earth's climate has led to the need for improved and expanded measurement capabilities of greenhouse gases in the atmosphere. In this paper we describe in detail an in situ trace gas analyser based on Fourier Transform Infrared (FTIR spectroscopy that is capable of simultaneous and continuous measurements of carbon dioxide (CO2, methane (CH4, carbon monoxide (CO, nitrous oxide (N2O and 13C in CO2 in air with high precision. High accuracy is established by reference to measurements of standard reference gases. Stable water isotopes can also be measured in undried airstreams. The analyser is automated and allows unattended operation with minimal operator intervention. Precision and accuracy meet and exceed the compatibility targets set by the World Meteorological Organisation – Global Atmosphere Watch for baseline measurements in the unpolluted troposphere for all species except 13C in CO2.

    The analyser is mobile and well suited to fixed sites, tower measurements, mobile platforms and campaign-based measurements. The isotopic specificity of the optically-based technique and analysis allows its application in isotopic tracer experiments, for example in tracing variations of 13C in CO2 and 15N in N2O. We review a number of applications illustrating use of the analyser in clean air monitoring, micrometeorological flux and tower measurements, mobile measurements on a train, and soil flux chamber measurements.

  7. Space-time patterns of trends in stratospheric constituents derived from UARS measurements

    Science.gov (United States)

    Randel, William J.; Wu, Fei; Russell, James M.; Waters, Joe

    1999-02-01

    The spatial and temporal behavior of low-frequency changes (trends) in stratospheric constituents measured by instruments on the Upper Atmosphere Research Satellite (UARS) during 1991-98 is investigated. The data include CH4, H2O, HF, HCl, O3, and NO2 from the Halogen Occultation Experiment (HALOE), and O3, ClO, and HNO3 from the Microwave Limb Sounder (MLS). Time series of global anomalies are analyzed by linear regression and empirical orthogonal function analysis. Each of the constituents show significant linear trends over at least some region of the stratosphere, and the spatial patterns exhibit coupling between the different species. Several of the constituents (namely CH4, H2O, HF, HCl, O3, and NO2) exhibit a temporal change in trend rates, with strong changes prior to 1996 and weaker (or reversed) trends thereafter. Positive trends are observed in upper stratospheric ClO, with a percentage rate during 1993-97 consistent with stratospheric HCl increases and with tropospheric chlorine emission rates. Significant negative trends in ozone in the tropical middle stratosphere are found in both HALOE and MLS data during 1993-97, together with positive trends in the tropics near 25 km. These trends are very different from the decadal-scale ozone trends observed since 1979, and this demonstrates the variability of trends calculated over short time periods. Positive trends in NO2 are found in the tropical middle stratosphere, and spatial coincidence to the observed ozone decreases suggests the ozone is responding to the NO2 increase. Significant negative trends in HNO3 are found in the lower stratosphere of both hemispheres. These coupled signatures offer a fingerprint of chemical evolution in the stratosphere for the UARS time frame.

  8. Measurements of trace contaminants in closed-type plant cultivation chambers

    Science.gov (United States)

    Tani, A.; Kiyota, M.; Aiga, I.; Nitta, K.; Tako, Y.; Ashida, A.; Otsubo, K.; Saito, T.

    Trace contaminants generated in closed facilities can cause abnormal plant growth. We present measurement data of trace contaminants released from soils, plants, and construction materials. We mainly used two closed chambers, a Closed-type Plant and Mushroom Cultivation Chamber (PMCC) and Closed-type Plant Cultivation Equipment (CPCE). Although trace gas budgets from soils obtained in this experiment are only one example, the results indicate that the budgets of trace gases, as well as CO_2 and O_2, change greatly with the degree of soil maturation and are dependent on the kind of substances in the soil. Both in the PMCC and in the CPCE, trace gases such as dioctyl phthalate (DOP), dibutyl phthalate (DBP), toluene and xylene were detected. These gases seemed to be released from various materials used in the construction of these chambers. The degree of increase in these trace gas levels was dependent on the relationship between chamber capacity and plant quantity. Results of trace gas measurement in the PMCC, in which lettuce and shiitake mushroom were cultivated, showed that ethylene was released both from lettuce and from the mushroom culture bed. The release rates were about 90 ng bed^-1 h^-1 for the shiitake mushroom culture bed (volume is 1700 cm^3) and 4.1 ~ 17.3 ng dm^-2h^-1 (leaf area basis) for lettuce. Higher ethylene release rates per plant and per unit leaf area were observed in mature plants than in young plants.

  9. Equatorial waves in the stratosphere of Uranus

    Science.gov (United States)

    Hinson, David P.; Magalhaes, Julio A.

    1991-01-01

    Analyses of radio occultation data from Voyager 2 have led to the discovery and characterization of an equatorial wave in the Uranus stratosphere. The observed quasi-periodic vertical atmospheric density variations are in close agreement with theoretical predictions for a wave that propagates vertically through the observed background structure of the stratosphere. Quantitative comparisons between measurements obtained at immersion and at emersion yielded constraints on the meridional and zonal structure of the wave; the fact that the two sets of measurements are correlated suggests a wave of planetary scale. Two equatorial wave models are proposed for the wave.

  10. On the detection of the solar signal in the tropical stratosphere

    Directory of Open Access Journals (Sweden)

    G. Chiodo

    2014-06-01

    Full Text Available We investigate the relative role of volcanic eruptions, El Niño–Southern Oscillation (ENSO, and the quasi-biennial oscillation (QBO in the quasi-decadal signal in the tropical stratosphere with regard to temperature and ozone commonly attributed to the 11 \\unit{yr} solar cycle. For this purpose, we perform transient simulations with the Whole Atmosphere Community Climate Model forced from 1960 to 2004 with an 11 yr solar cycle in irradiance and different combinations of other forcings. An improved multiple linear regression technique is used to diagnose the 11 yr solar signal in the simulations. One set of simulations includes all observed forcings, and is thereby aimed at closely reproducing observations. Three idealized sets exclude ENSO variability, volcanic aerosol forcing, and QBO in tropical stratospheric winds, respectively. Differences in the derived solar response in the tropical stratosphere in the four sets quantify the impact of ENSO, volcanic events and the QBO in attributing quasi-decadal changes to the solar cycle in the model simulations. The novel regression approach shows that most of the apparent solar-induced lower-stratospheric temperature and ozone increase diagnosed in the simulations with all observed forcings is due to two major volcanic eruptions (i.e., El Chichón in 1982 and Mt. Pinatubo in 1991. This is caused by the alignment of these eruptions with periods of high solar activity. While it is feasible to detect a robust solar signal in the middle and upper tropical stratosphere, this is not the case in the tropical lower stratosphere, at least in a 45 yr simulation. The present results suggest that in the tropical lower stratosphere, the portion of decadal variability that can be unambiguously linked to the solar cycle may be smaller than previously thought.

  11. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region

    Science.gov (United States)

    Thankamani Akhil Raj, Sivan; Venkat Ratnam, Madineni; Narayana Rao, Daggumati; Venkata Krishna Murthy, Boddam

    2018-01-01

    We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993-2005), Aura Microwave Limb Sounder (MLS, 2004-2015), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002-2015) on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics)) observations covering the period 1993-2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E) and New Delhi (28° N, 77° E), covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E), for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (-1.71 ± 0.49 K decade-1) and New Delhi (-1.15 ± 0.55 K decade-1). The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998-2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (˜ 10 hPa) and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.

  12. Lidar observations of stratospheric aerosol layer after the Mt. Pinatubo volcanic eruption

    International Nuclear Information System (INIS)

    Nagai, Tomohiro; Uchino, Osamu; Fujimoto, Toshifumi.

    1992-01-01

    The volcano Mt. Pinatubo located on the Luzon Island, Philippines, had explosively erupted on June 15, 1991. The volcanic eruptions such as volcanic ash, SO2 and H2O reached into the stratosphere over 30 km altitude by the NOAA-11 satellite observation and this is considered one of the biggest volcanic eruptions in this century. A grandiose volcanic eruption influences the atmosphere seriously and causes many climatic effects globally. There had been many impacts on radiation, atmospheric temperature and stratospheric ozone after some past volcanic eruptions. The main cause of volcanic influence depends on stratospheric aerosol, that stay long enough to change climate and other meteorological conditions. Therefore it is very important to watch stratospheric aerosol layers carefully and continuously. Standing on this respect, we do not only continue stratospheric aerosol observation at Tsukuba but also have urgently developed another lidar observational point at Naha in Okinawa Island. This observational station could be thought valuable since there is no lidar observational station in this latitudinal zone and it is much nearer to Mt. Pinatubo. Especially, there is advantage to link up these two stations on studying the transportation mechanism in the stratosphere. In this paper, we present the results of lidar observations at Tsukuba and Naha by lidar systems with Nd:YAG laser

  13. Lidar Observations of Stratospheric Aerosol Layer After the Mt. Pinatubo Volcanic Eruption

    Science.gov (United States)

    Nagai, Tomohiro; Uchino, Osamu; Fujimoto, Toshifumi

    1992-01-01

    The volcano Mt. Pinatubo located on the Luzon Island, Philippines, had explosively erupted on June 15, 1991. The volcanic eruptions such as volcanic ash, SO2 and H2O reached into the stratosphere over 30 km altitude by the NOAA-11 satellite observation and this is considered one of the biggest volcanic eruptions in this century. A grandiose volcanic eruption influences the atmosphere seriously and causes many climatic effects globally. There had been many impacts on radiation, atmospheric temperature and stratospheric ozone after some past volcanic eruptions. The main cause of volcanic influence depends on stratospheric aerosol, that stay long enough to change climate and other meteorological conditions. Therefore it is very important to watch stratospheric aerosol layers carefully and continuously. Standing on this respect, we do not only continue stratospheric aerosol observation at Tsukuba but also have urgently developed another lidar observational point at Naha in Okinawa Island. This observational station could be thought valuable since there is no lidar observational station in this latitudinal zone and it is much nearer to Mt. Pinatubo. Especially, there is advantage to link up these two stations on studying the transportation mechanism in the stratosphere. In this paper, we present the results of lidar observations at Tsukuba and Naha by lidar systems with Nd:YAG laser.

  14. Northern Winter Climate Change: Assessment of Uncertainty in CMIP5 Projections Related to Stratosphere-Troposphere Coupling

    Science.gov (United States)

    Manzini, E.; Karpechko, A.Yu.; Anstey, J.; Shindell, Drew Todd; Baldwin, M.P.; Black, R.X.; Cagnazzo, C.; Calvo, N.; Charlton-Perez, A.; Christiansen, B.; hide

    2014-01-01

    Future changes in the stratospheric circulation could have an important impact on northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) multimodel ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification, and the stratospheric wind change on SLP. We find that the intermodel spread in stratospheric wind change contributes substantially to the intermodel spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.

  15. Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks.

    Science.gov (United States)

    Ma, Yufei; Yu, Guang; Zhang, Jingbo; Yu, Xin; Sun, Rui; Tittel, Frank K

    2015-03-27

    A sensitive trace gas sensor platform based on quartz-enhanced photoacoustic spectroscopy (QEPAS) is reported. A 1.395 μm continuous wave (CW), distributed feedback pigtailed diode laser was used as the excitation source and H2O was selected as the target analyte. Two kinds of quartz tuning forks (QTFs) with a resonant frequency (f0) of 30.72 kHz and 38 kHz were employed for the first time as an acoustic wave transducer, respectively for QEPAS instead of a standard QTF with a f0 of 32.768 kHz. The QEPAS sensor performance using the three different QTFs was experimentally investigated and theoretically analyzed. A minimum detection limit of 5.9 ppmv and 4.3 ppmv was achieved for f0 of 32.768 kHz and 30.72 kHz, respectively.

  16. Quartz Enhanced Photoacoustic Spectroscopy Based Trace Gas Sensors Using Different Quartz Tuning Forks

    Directory of Open Access Journals (Sweden)

    Yufei Ma

    2015-03-01

    Full Text Available A sensitive trace gas sensor platform based on quartz-enhanced photoacoustic spectroscopy (QEPAS is reported. A 1.395 μm continuous wave (CW, distributed feedback pigtailed diode laser was used as the excitation source and H2O was selected as the target analyte. Two kinds of quartz tuning forks (QTFs with a resonant frequency (f0 of 30.72 kHz and 38 kHz were employed for the first time as an acoustic wave transducer, respectively for QEPAS instead of a standard QTF with a f0 of 32.768 kHz. The QEPAS sensor performance using the three different QTFs was experimentally investigated and theoretically analyzed. A minimum detection limit of 5.9 ppmv and 4.3 ppmv was achieved for f0 of 32.768 kHz and 30.72 kHz, respectively.

  17. Measurements of size and composition of particles in polar stratospheric clouds from infrared solar absorption spectra

    International Nuclear Information System (INIS)

    Kinne, S.; Toon, O.B.; Toon, G.C.; Farmer, C.B.; Browell, E.V.; McCormick, M.P.

    1989-01-01

    The attenuation of solar radiation between 1.8- and 15-μm wavelength was measured with the airborne Jet Propulsion Laboratory Mark IV interferometer during the Airborne Antarctic Ozone Expedition in 1987. The measurements not only provide information about the abundance of stratospheric gases, but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption. The spectral dependence of the PSC optical depth contains information about PSC particle size and particle composition. Thirty-three PSC cases were analyzed and categorized into two types. Type I clouds contain particles with radii of about 0.5 μm and nitric acid concentrations greater than 40%. Type II clouds contain particles composed of water ice with radii of 6 μm and larger. Cloud altitudes were determined from 1.064-μm backscattering observations of the airborne Langley DIAL lidar system. Based on the PSC geometrical thickness, both mass and particle density were estimated. Type I clouds typically had visible wavelength optical depths of about 0.008, mass densities of about 20 ppb, and about 2 particles/cm 3 . The observed type II clouds had optical depths of about 0.03, mass densities of about 400 ppb mass, and about 0.03 particles/cm 3 . The detected PSC type I clouds extended to altitudes of 21 km and were nearly in the ozone-depleted region of the polar stratosphere. The observed type II cases during September were predominantly found at altitudes below 15 km

  18. MODELING THE EFFECTS OF CLIMATE AND LAND USE CHANGE ON CARBON AND TRACE GAS BUDGETS OVER THE AMAZON REGION USING NASA SATELLITE PRODUCTS

    Science.gov (United States)

    As part of the LBA-ECO Phase III synthesis efforts for remote sensing and predictive modeling of Amazon carbon, water, and trace gas fluxes, we are evaluating results from the regional ecosystem model called NASA-CASA (Carnegie-Ames Stanford Approach). The NASA-CASA model has bee...

  19. Investigations of Trace Oxygenates in Middle Distillate Fuels using Gas Chromatography

    OpenAIRE

    RENEE LOUISE WEBSTER

    2017-01-01

    There can be up to one million different compounds in aviation or diesel fuels, making the analysis of trace components within the complex matrix highly challenging. Many trace oxygenated compounds may be present in fuels and can have dramatic effects on the fuel’s properties. Advanced analytical chemistry techniques have been used to contribute a critical understanding of the role of trace oxygenates on the chemistry of both emerging alternate and fossil fuels. Knowledge of these molecular s...

  20. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?

    Directory of Open Access Journals (Sweden)

    J.-U. Grooß

    2011-12-01

    Full Text Available Balloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS. As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

  1. Titan's Stratospheric Condensibles at High Northern Latitudes During Northern Winter

    Science.gov (United States)

    Anderson, Carrie; Samuelson, R.; Achterberg, R.

    2012-01-01

    The Infrared Interferometer Spectrometer (IRIS) instrument on board Voyager 1 caught the first glimpse of an unidentified particulate feature in Titan's stratosphere that spectrally peaks at 221 per centimeter. Until recently, this feature that we have termed 'the haystack,' has been seen persistently at high northern latitudes with the Composite Infrared Spectrometer (CIRS) instrument onboard Cassini, The strength of the haystack emission feature diminishes rapidly with season, becoming drastically reduced at high northern latitudes, as Titan transitions from northern winter into spring, In contrast to IRIS whose shortest wavenumber was 200 per centimeter, CIRS extends down to 10 per centimeter, thus revealing an entirely unexplored spectral region in which nitrile ices have numerous broad lattice vibration features, Unlike the haystack, which is only found at high northern latitudes during northern winter/early northern spring, this geometrically thin nitrile cloud pervades Titan's lower stratosphere, spectrally peaking at 160 per centimeter, and is almost global in extent spanning latitudes 85 N to 600 S, The inference of nitrile ices are consistent with the highly restricted altitude ranges over which these features are observed, and appear to be dominated by a mixture of HCN and HC3N, The narrow range in altitude over which the nitrile ices extend is unlike the haystack, whose vertical distribution is significantly broader, spanning roughly 70 kilometers in altitude in Titan's lower stratosphere, The nitrile clouds that CIRS observes are located in a dynamically stable region of Titan's atmosphere, whereas CH4 clouds, which ordinarily form in the troposphere, form in a more dynamically unstable region, where convective cloud systems tend to occur. In the unusual situation where Titan's tropopause cools significantly from the HASI 70.5K temperature minimum, CH4 should condense in Titan's lower stratosphere, just like the aforementioned nitrile clouds, although

  2. Temperature and Concentration Traces of Spray Flows During Motion in a Flame

    Directory of Open Access Journals (Sweden)

    Antonov Dmitry V.

    2016-01-01

    Full Text Available Heat and mass transfer models are developed on the base of experimental data and using Ansys Fluent software. These models allow prediction of the temperature and concentration traces of droplets. Transfer mechanisms of water droplets from different flames of flammable liquid (ethanol, kerosene И benzine with temperature gases 450–850 К are analyzed. The paper considers aerosol flows with droplets sizes of 0.04–0.4 mm and concentration of 3.8·10-5 –10.3·10-5 m3 of droplets/m3 of gas. The maximum gas temperature reduction in the trace of a moving liquid is ranged from 850 K to 600 K. The times of keeping the low temperature of the gas-vapor mixture in the droplets trace are from 13 s to 25 s relative to the initial gas temperature.

  3. The 'surf zone' in the stratosphere

    Science.gov (United States)

    McIntyre, M. E.; Palmer, T. N.

    Synoptic, coarse-grain, isentropic maps of Ertel's potential vorticity Q for the northern middle stratosphere, estimated using a large-Richardson-number approximation, are presented for a number of days in January-February 1979, together with some related isentropic trajectory calculations The effects of substituting FGGE for NMC base data are noted, as well as some slight corrections to maps published earlier. The combined evidence from the observations and from dynamical models strongly indicates the existence of planetary-wave breaking, a process in which material contours are rapidly and irreversibly deformed. In the winter stratosphere this occurs most spectacularly in a gigantic 'nonlinear critical layer', or 'surf zone', which surrounds the main polar vortex, and which tends to erode the vortex when wave amplitudes become large. Some of the FGGE-based Q maps suggest that we may be seeing glimpses of local dynamical instabilities and vortex-rollup phenomena within breaking planetary waves. Related phenomena in the troposphere are discussed. An objective definition of the area A( t) of the main vortex, as it appears on isentropic Q maps, is proposed. A smoothed time series of daily values of A( t) should be a statistically powerful 'circulation index' for the state of the winter-time middle stratosphere, which avoids the loss of information incurred by Eulerian space and time averaging.

  4. Stratospheric mean ages and transport rates from observations of CO{sub 2} and N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Boering, K A; Wofsy, S C; Daube, B C; Schneider, H R [Harvard Univ., Cambridge, MA (United States). Div. of Engineering and Applied Sciences; Loewenstein, M; Podolske, J R [NASA Ames Research Center, Moffett Field, CA (United States); Conway, T J [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1998-12-31

    Measurements of CO{sub 2} and N{sub 2}O concentrations are reported and analyzed to investigate stratospheric transport rates. Temporal variations in tropospheric CO{sub 2} are observed to propagate into the stratosphere, showing that tropospheric air enters the lower tropical stratosphere continuously, ascends, and is transported rapidly (in less than 1 month) to both hemispheres. The mean age of stratospheric air determined from CO{sub 2} data is approximately 5 years in the mid-stratosphere. It is shown that the mean age is mathematically equivalent to a conserved tracer analogous to exhaust from stratospheric aircraft. Comparison of the mean age from models and observations indicates that current model simulations likely underestimate pollutant concentrations from proposed stratospheric aircraft by 25-100%. (author) 36 refs.

  5. Stratospheric mean ages and transport rates from observations of CO{sub 2} and N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Boering, K.A.; Wofsy, S.C.; Daube, B.C.; Schneider, H.R. [Harvard Univ., Cambridge, MA (United States). Div. of Engineering and Applied Sciences; Loewenstein, M.; Podolske, J.R. [NASA Ames Research Center, Moffett Field, CA (United States); Conway, T.J. [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1997-12-31

    Measurements of CO{sub 2} and N{sub 2}O concentrations are reported and analyzed to investigate stratospheric transport rates. Temporal variations in tropospheric CO{sub 2} are observed to propagate into the stratosphere, showing that tropospheric air enters the lower tropical stratosphere continuously, ascends, and is transported rapidly (in less than 1 month) to both hemispheres. The mean age of stratospheric air determined from CO{sub 2} data is approximately 5 years in the mid-stratosphere. It is shown that the mean age is mathematically equivalent to a conserved tracer analogous to exhaust from stratospheric aircraft. Comparison of the mean age from models and observations indicates that current model simulations likely underestimate pollutant concentrations from proposed stratospheric aircraft by 25-100%. (author) 36 refs.

  6. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region

    Directory of Open Access Journals (Sweden)

    S. T. Akhil Raj

    2018-01-01

    Full Text Available We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993–2005, Aura Microwave Limb Sounder (MLS, 2004–2015, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002–2015 on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics observations covering the period 1993–2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E and New Delhi (28° N, 77° E, covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E, for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (−1.71 ± 0.49 K decade−1 and New Delhi (−1.15 ± 0.55 K decade−1. The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998–2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (∼ 10 hPa and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.

  7. Performance Assessment of Balloon-Borne Trace Gas Sounding with the Terahertz Channel of TELIS

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2018-02-01

    Full Text Available Short-term variations in the atmospheric environment over polar regions are attracting increasing attention with respect to the reliable analysis of ozone loss. Balloon-borne remote sensing instruments with good vertical resolution and flexible sampling density can act as a prototype to overcome the potential technical challenges in the design of new spaceborne atmospheric sensors and represent a valuable tool for validating spaceborne observations. A multi-channel cryogenic heterodyne spectrometer known as the TErahertz and submillimeter LImb Sounder (TELIS has been developed. It allows limb sounding of the upper troposphere and stratosphere (10–40 km within the far infrared (FIR and submillimeter spectral regimes. This paper describes and assesses the performance of the profile retrieval scheme for TELIS with a focus on the ozone (O3, hydrogen chloride (HCl, carbon monoxide (CO, and hydroxyl radical (OH measured during three northern polar campaigns in 2009, 2010, and 2011, respectively. The corresponding inversion diagnostics reveal that some forward/instrument model parameters play important roles in the total retrieval error. The accuracy of the radiometric calibration and the spectroscopic knowledge has a significant impact on retrieval at higher altitudes, whereas the pointing accuracy dominates the total error at lower altitudes. The TELIS retrievals achieve a vertical resolution of ∼2–3 km through most of the stratosphere below the balloon height. Dominant water vapor (H2O contamination and low abundances of the target species reduce the retrieval sensitivity at the lowermost altitudes measured by TELIS. An extensive comparison shows that the TELIS profiles are consistent with profiles obtained by other limb sounders. The comparison appears to be very promising, except for discrepancies in the upper troposphere due to numerical regularization. This study not only consolidates the validity of balloon-borne TELIS FIR measurements

  8. Titan's Stratospheric chemistry: Spatial And Temporal Variations Of Trace Species

    Science.gov (United States)

    Coustenis, A.; Jennings, D. E.; Nixon, C. A.; Vinatier, S.; Bjoraker, G.; Lavvas, P.; Teanby, N.; Lellouch, E.; Flasar, M.; Simon-Miller, A.

    2009-04-01

    Four years into the Cassini-Huygens mission, we present results obtained on Titan's chemical composition by analyzing CIRS data in the far-and mid-IR region. With respect to previous publications (Flasar et al., 2005; Coustenis et al., 2007, 2008b; Teanby et al., 2006, 2008; Vinatier et al., 2007) we improved our analysis by exploiting a considerably larger number of nadir spectra, in particular at high resolution (0.53 cm-1). The more complete coverage of Titan's disk, combined with the larger number of spectra at high resolution, allows for the inference of more precise abundances for the trace gases and for a more adequate definition of meridional variations, in particular in the northern regions. The retrievals of the meridional variations of the trace constituents show an enhancement for some of them towards the North pole. Molecules showing a significant enhancement at northern latitudes are the nitriles (HC3N, HCN) and the complex hydrocarbons (C4H2, C3H4). To a lesser degree, acetylene and ethane also exhibit abundance increases by factors of 1.5-2. Isotopic ratios in carbon, nitrogen and oxygen have been determined (Jennings et al., 2008, Nixon et al., 2008a,b). The D/H ratio on Titan was also determined from the CH3D band at 8.6 micron and the C2HD band at 678 cm-1 (Coustenis et al., 2008a). We compare our results with previous inferences from earlier CIRS and Voyager1/IRIS data and from ISO data taken in 1997. The results are tied to predictions by dynamical-photochemical models (Rannou et al., 2005; Lavvas et al., 2008a,b, Crespin et al., 2008 and references therein). Finally, we will present the case for future observations from space (e.g. with the TSSM mission, http://www.lesia.obspm.fr/cosmicvision/tssm/tssm-public/ which will comprise instruments such as a Thermal Infrared Spectrometer (TIRS) or a SubMillimeter Sounder (SMS)) or from the ground, which could improve our current understanding of Titan's neutral chemistry. References 1. Coustenis, A

  9. A general method for the calculation of absolute trace gas concentrations in air and breath from selected ion flow tube mass spectrometry data

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Dryahina, Kseniya; Smith, D.

    249-250, - (2006), s. 230-239 ISSN 1387-3806 R&D Projects: GA ČR GA202/03/0827 Institutional research plan: CEZ:AV0Z40400503 Keywords : selected ion flow tube * mass spectrometry * SIFT-MS * trace gas analysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.337, year: 2006

  10. Decade of stratospheric sulfate measurements compared with observations of volcanic eruptions

    International Nuclear Information System (INIS)

    Sedlacek, W.A.; Mroz, E.J.; Lazrus, A.L.; Gandrud, B.W.

    1983-01-01

    Sulfate aerosol concentrations in the stratosphere have been measured for 11 years (1971--1981) using portions of filters collected by the Department of Energy's High Altitude Sampling Program. Data collected seasonally at altitudes between 13 km and 20 km spanning latitudes from 75 0 N to 51 0 S are reported. These data are compared with the reported altitudes of volcanic eruption plumes during the same decade. From this comparison it is concluded that (1) several unreported volcanic eruptions or eruptions to altitudes higher than reported did occur during the decade, (2) the e-fold removal time for sulfate aerosol from the stratosphere following the eruption of Volcan Fuego in 1974 was 11.2 +- 1.2 months, (3) the volcanic contribution to the average stratospheric sulfate concentration over the decade was greater than 50%, and (4) there may be evidence for an anthropogenic contribution to stratospheric sulfate that increases at the rate of 6 to 8% per year

  11. Changes in Trace Gas Nitrogen Emissions as a Response to Ecosystem Type Conversion in a Semi-Arid Climate.

    Science.gov (United States)

    Andrews, H.; Eberwein, J. R.; Jenerette, D.

    2016-12-01

    As humans continue to introduce exotic plants and to alter climate and fire regimes in semi-arid ecosystems, many plant communities have begun to shift from perennial forbs and shrubs to annual grasses with different functional traits. Shifts in plant types are also associated with shifts in microclimate, microbial activity, and litter inputs, all of which contribute to the efficiency of nitrogen processing and the magnitude of trace gas emissions (NOx and N2O), which are increasingly important fluxes in water-limited systems. Here, we explored how changes in plant litter impact trace gas emissions, asking the question: How does conversion from a native shrubland to exotic grassland ecosystem alter NOx and N2O fluxes in a semi-arid climate? We posed two hypotheses to explain the impacts of different types of litter on soils disturbed by exotic grasses and those that were still considered shrublands: 1.) Soils that have undergone conversion by exotic grasses release higher amounts of NOx and N2O than do those of unconverted shrublands, due to disruptions of native plant and soil processes by exotic grasses, and 2.) Because litter of exotic grasses has lower C:N than that of shrubs, litter inputs from exotic grasses will increase NOx and N2O emissions from soils more than will litter inputs from shrubs. As a preliminary study, we experimentally wetted mesocosms in a laboratory incubation containing converted and unconverted soils that had been mixed with no litter or either exotic grass or coastal sage scrub (CSS) litter. We measured N2O fluxes from mesocosms over a 48-hour period. 24 hours after wetting, samples with grass litter produced higher amounts of N2O than those with CSS litter; similarly, converted soils produced higher amounts of N2O than unconverted soils. These two effects combined resulted in exotic grassland conditions (converted soils with exotic grass litter) producing 10 times the amount of N2O as those containing native shrubland conditions

  12. DAYCENT Simulations to Test the Influence of Fire Regime and Fire Suppression on Trace Gas Fluxes and Nitrogen Biogeochemistry of Colorado Forests

    Directory of Open Access Journals (Sweden)

    Mark A. Gathany

    2012-07-01

    Full Text Available Biological activity and the physical environment regulate greenhouse gas fluxes (CH4, N2O and NO from upland soils. Wildfires are known to alter these factors such that we collected daily weather records, fire return intervals, or specific fire years, and soil data of four specific sites along the Colorado Front Range. These data were used as primary inputs into DAYCENT. In this paper we test the ability of DAYCENT to simulate four forested sites in this area and to address two objectives: (1 to evaluate the short-term influence of fire on trace gas fluxes from burned landscapes; and (2 to compare trace gas fluxes among locations and between pre-/post- fire suppression. The model simulations indicate that CH4 oxidation is relatively unaffected by wildfire. In contrast, gross nitrification rates were reduced by 13.5–37.1% during the fire suppression period. At two of the sites, we calculated increases in gross nitrification rates (>100%, and N2O and NO fluxes during the year of fire relative to the year before a fire. Simulated fire suppression exhibited decreased gross nitrification rates presumably as nitrogen is immobilized. This finding concurs with other studies that highlight the importance of forest fires to maintain soil nitrogen availability.

  13. Application of copper sulfate pentahydrate as an ammonia removal reagent for the determination of trace impurities in ammonia by gas chromatography.

    Science.gov (United States)

    Aomura, Yoko; Kobayashi, Yoshihiko; Miyazawa, Yuzuru; Shimizu, Hideharu

    2010-03-12

    Rapid analysis of trace permanent gas impurities in high purity ammonia gas for the microelectronics industry is described, using a gas chromatograph equipped with a phtoionization detector. Our system incorporates a reactive precolumn in combination with the analytical column to remove the ammonia matrix peak that otherwise would complicate the measurements due to baseline fluctuations and loss of analytes. The performance of 21 precolumn candidate materials was evaluated. Copper sulfate pentahydrate (CuSO(4).5H(2)O) was shown to selectively react with ammonia at room temperature and atmospheric column pressures, without affecting the hydrogen, oxygen, nitrogen, methane or carbon monoxide peak areas. To prevent loss of trace carbon dioxide, an additional boron trioxide reactant layer was inserted above the copper sulfate pentahydrate bed in the reactive precolumn. Using the combined materials, calibration curves for carbon dioxide proved to be equivalent in both ammonia and helium matrix gases. These curves were equivalent in both matrix gases. The quantitative performance of the system was also evaluated. Peak repeatabilities, based on eight injections, were in the range of 4.1-8.2% relative standard deviation; and detection limits were 6.9 ppb for H(2), 1.8 ppb for O(2), 1.6 ppb for N(2), 6.4 ppb for CH(4), 13 ppb for CO, and 5.4 ppb for CO(2). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Key aspects of stratospheric tracer modeling using assimilated winds

    Directory of Open Access Journals (Sweden)

    B. Bregman

    2006-01-01

    Full Text Available This study describes key aspects of global chemistry-transport models and their impact on stratospheric tracer transport. We concentrate on global models that use assimilated winds from numerical weather predictions, but the results also apply to tracer transport in general circulation models. We examined grid resolution, numerical diffusion, air parcel dispersion, the wind or mass flux update frequency, and time interpolation. The evaluation is performed with assimilated meteorology from the "operational analyses or operational data" (OD from the European Centre for Medium-Range Weather Forecasts (ECMWF. We also show the effect of the mass flux update frequency using the ECMWF 40-year re-analyses (ERA40. We applied the three-dimensional chemistry-transport Tracer Model version 5 (TM5 and a trajectory model and performed several diagnoses focusing on different transport regimes. Covering different time and spatial scales, we examined (1 polar vortex dynamics during the Arctic winter, (2 the large-scale stratospheric meridional circulation, and (3 air parcel dispersion in the tropical lower stratosphere. Tracer distributions inside the Arctic polar vortex show considerably worse agreement with observations when the model grid resolution in the polar region is reduced to avoid numerical instability. The results are sensitive to the diffusivity of the advection. Nevertheless, the use of a computational cheaper but diffusive advection scheme is feasible for tracer transport when the horizontal grid resolution is equal or smaller than 1 degree. The use of time interpolated winds improves the tracer distributions, particularly in the middle and upper stratosphere. Considerable improvement is found both in the large-scale tracer distribution and in the polar regions when the update frequency of the assimilated winds is increased from 6 to 3 h. It considerably reduces the vertical dispersion of air parcels in the tropical lower stratosphere. Strong

  15. A Semi-empirical Model of the Stratosphere in the Climate System

    Science.gov (United States)

    Sodergren, A. H.; Bodeker, G. E.; Kremser, S.; Meinshausen, M.; McDonald, A.

    2014-12-01

    Chemistry climate models (CCMs) currently used to project changes in Antarctic ozone are extremely computationally demanding. CCM projections are uncertain due to lack of knowledge of future emissions of greenhouse gases (GHGs) and ozone depleting substances (ODSs), as well as parameterizations within the CCMs that have weakly constrained tuning parameters. While projections should be based on an ensemble of simulations, this is not currently possible due to the complexity of the CCMs. An inexpensive but realistic approach to simulate changes in stratospheric ozone, and its coupling to the climate system, is needed as a complement to CCMs. A simple climate model (SCM) can be used as a fast emulator of complex atmospheric-ocean climate models. If such an SCM includes a representation of stratospheric ozone, the evolution of the global ozone layer can be simulated for a wide range of GHG and ODS emissions scenarios. MAGICC is an SCM used in previous IPCC reports. In the current version of the MAGICC SCM, stratospheric ozone changes depend only on equivalent effective stratospheric chlorine (EESC). In this work, MAGICC is extended to include an interactive stratospheric ozone layer using a semi-empirical model of ozone responses to CO2and EESC, with changes in ozone affecting the radiative forcing in the SCM. To demonstrate the ability of our new, extended SCM to generate projections of global changes in ozone, tuning parameters from 19 coupled atmosphere-ocean general circulation models (AOGCMs) and 10 carbon cycle models (to create an ensemble of 190 simulations) have been used to generate probability density functions of the dates of return of stratospheric column ozone to 1960 and 1980 levels for different latitudes.

  16. Evidence for Dynamical Coupling of Stratosphere-MLT during recent minor Stratospheric Warmings in Southern Hemisphere

    Science.gov (United States)

    Kim, Yongha; Sunkara, Eswaraiah; Hong, Junseok; Ratnam, Venkat; Chandran, Amal; Rao, Svb; Riggin, Dennis

    2015-04-01

    The mesosphere-lower thermosphere (MLT) response to extremely rare minor sudden stratospheric warming (SSW) events was observed for the first time in the southern hemisphere (SH) during 2010 and is investigated using the meteor radar located at King Sejong Station (62.22°S, 58.78°W), Antarctica. Three episodic SSWs were noticed from early August to late October 2010. The mesospheric wind field was found to significantly differ from normal years due to enhanced planetary wave (PW) activity before the SSWs and secondary PWs in the MLT afterwards. The zonal winds in the mesosphere reversed approximately a week before the SSW occurrence in the stratosphere as has been observed 2002 major SSW, suggesting the downward propagation of disturbance during minor SSWs as well. Signatures of mesospheric cooling (MC) in association with SSWs are found in the Microwave Limb Sounder (MLS) measurements. SD-WACCM simulations are able to produce these observed features.

  17. The Origins of Air Parcels Uplifted in a Two Dimensional Gravity Wave in the Tropical Upper Troposphere During the NASA Stratosphere Troposphere Exchange Project (STEP)

    Science.gov (United States)

    Selkirk, Henry B.; Pfister, Leonhard; Chan, K. Roland; Kritz, Mark; Kelly, Ken

    1989-01-01

    During January and February 1987, as part of the Stratosphere-Troposphere Exchange Project, the NASA ER-2 made 11 flights from Darwin, Australia to investigate dehydration mechanisms in the vicinity of the tropical tropopause. After the monsoon onset in the second week of January, steady easterly flow of 15-25 ms (exp -1) was established in the upper troposphere and lower stratosphere over northern Australia and adjacent seas. Penetrating into this regime were elements of the monsoon convection such as overshooting convective turrets and extensive anvils including cyclone cloud shields. In cases of the latter, the resulting flow obstructions tended to produce mesoscale gravity waves. In several instances the ER- 2 meteorological and trace constituent measurements provide a detailed description of the structure of these gravity waves. Among these was STEP Flight 6, 22-23 January. It is of particular interest to STEP because of the close proximity of ice-laden and dehydrated air on the same isentropic surfaces. Convective events inject large amounts of ice into the upper troposphere and lower stratosphere which may not be completely removed by local precipitation processes. In the present instance, a gravity wave for removed from the source region appears to induce relativity rapid upward motion in the ice-laden air and subsequent dessication. Potential mechanisms for such a localized removal process are under investigation.

  18. Airborne Arctic Stratospheric Expedition II: An overview

    Science.gov (United States)

    Anderson, James G.; Toon, Owen B.

    1993-11-01

    The sudden onset of ozone depletion in the antarctic vortex set a precedent for both the time scale and the severity of global change. The Airborne Antarctic Ozone Experiment (AAOE), staged from Punta Arenas, Chile, in 1987, established that CFCs, halons, and methyl bromide, the dominant sources of chlorine and bromine radicals in the stratosphere, control the rate of ozone destruction over the Antarctic; that the vortex is depleted in reactive nitrogen and water vapor; and that diabatic cooling during the Antarctic winter leads to subsidence within the vortex core, importing air from higher altitudes and lower latitudes. This last conclusion is based on observed dramatic distortion in the tracer fields, most notably N2O.In 1989, the first Airborne Arctic Stratospheric Expedition (AASE-I), staged from Stavanger, Norway, and using the same aircraft employed for AAOE (the NASA ER-2 and the NASA DC-8), discovered that while NOx and to some degree NOy were perturbed within the arctic vortex, there was little evidence for desiccation. Under these (in contrast to the antarctic) marginally perturbed conditions, however, ClO was found to be dramatically enhanced such that a large fraction of the available (inorganic) chlorine resided in the form of ClO and its dimer ClOOCl.This leaves two abiding issues for the northern hemisphere and the mission of the second Airborne Arctic Stratospheric Expedition (AASE-II): (1) Will significant ozone erosion occur within the arctic vortex in the next ten years as chlorine loading in the stratosphere exceeds four parts per billion by volume? (2) Which mechanisms are responsible for the observed ozone erosion poleward of 30°N in the winter/spring northern hemisphere reported in satellite observations?

  19. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    Science.gov (United States)

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  20. MJO-Related Tropical Convection Anomalies Lead to More Accurate Stratospheric Vortex Variability in Subseasonal Forecast Models.

    Science.gov (United States)

    Garfinkel, C I; Schwartz, C

    2017-10-16

    The effect of the Madden-Julian Oscillation (MJO) on the Northern Hemisphere wintertime stratospheric polar vortex in the period preceding stratospheric sudden warmings is evaluated in operational subseasonal forecasting models. Reforecasts which simulate stronger MJO-related convection in the Tropical West Pacific also simulate enhanced heat flux in the lowermost stratosphere and a more realistic vortex evolution. The time scale on which vortex predictability is enhanced lies between 2 and 4 weeks for nearly all cases. Those stratospheric sudden warmings that were preceded by a strong MJO event are more predictable at ∼20 day leads than stratospheric sudden warmings not preceded by a MJO event. Hence, knowledge of the MJO can contribute to enhanced predictability, at least in a probabilistic sense, of the Northern Hemisphere polar stratosphere.

  1. Mortality tradeoff between air quality and skin cancer from changes in stratospheric ozone

    Science.gov (United States)

    Eastham, Sebastian D.; Keith, David W.; Barrett, Steven R. H.

    2018-03-01

    Skin cancer mortality resulting from stratospheric ozone depletion has been widely studied. Similarly, there is a deep body of literature on surface ozone and its health impacts, with modeling and observational studies demonstrating that surface ozone concentrations can be increased when stratospheric air mixes to the Earth’s surface. We offer the first quantitative estimate of the trade-off between these two effects, comparing surface air quality benefits and UV-related harms from stratospheric ozone depletion. Applying an idealized ozone loss term in the stratosphere of a chemistry-transport model for modern-day conditions, we find that each Dobson unit of stratospheric ozone depletion results in a net decrease in the global annual mortality rate of ~40 premature deaths per billion population (d/bn/DU). The impacts are spatially heterogeneous in sign and magnitude, composed of a reduction in premature mortality rate due to ozone exposure of ~80 d/bn/DU concentrated in Southeast Asia, and an increase in skin cancer mortality rate of ~40 d/bn/DU, mostly in Western Europe. This is the first study to quantify air quality benefits of stratospheric ozone depletion, and the first to find that marginal decreases in stratospheric ozone around modern-day values could result in a net reduction in global mortality due to competing health impact pathways. This result, which is subject to significant methodological uncertainty, highlights the need to understand the health and environmental trade-offs involved in policy decisions regarding anthropogenic influences on ozone chemistry over the 21st century.

  2. Instantons and the trace anomaly condition

    International Nuclear Information System (INIS)

    Dowrick, N.; McDougall, N.A.

    1988-01-01

    In the past, it has been claimed that instanton dynamics evaluated using the dilute-gas-approximation with a cut-off do not satisfy the trace anomaly condition, and that inter-instanton interactions were required to correct this. However, they show that any model for instanton dynamics automatically satisfies the trace anomlay condition provided no dimensionful parameter other than the QCD scale Λ is introduced during the calculation, and they explain the origin of the previous (incorrect) conclusion

  3. On the Climate Impacts of Upper Tropospheric and Lower Stratospheric Ozone

    Science.gov (United States)

    Xia, Yan; Huang, Yi; Hu, Yongyun

    2018-01-01

    The global warming simulations of the general circulation models (GCMs) are generally performed with different ozone prescriptions. We find that the differences in ozone distribution, especially in the upper tropospheric and lower stratospheric (UTLS) region, account for important model discrepancies shown in the ozone-only historical experiment of the Coupled Model Intercomparison Project Phase 5 (CMIP5). These discrepancies include global high cloud fraction, stratospheric temperature, and stratospheric water vapor. Through a set of experiments conducted by an atmospheric GCM with contrasting UTLS ozone prescriptions, we verify that UTLS ozone not only directly radiatively heats the UTLS region and cools the upper parts of the stratosphere but also strongly influences the high clouds due to its impact on relative humidity and static stability in the UTLS region and the stratospheric water vapor due to its impact on the tropical tropopause temperature. These consequences strongly affect the global mean effective radiative forcing of ozone, as noted in previous studies. Our findings suggest that special attention should be paid to the UTLS ozone when evaluating the climate effects of ozone depletion in the 20th century and recovery in the 21st century. UTLS ozone difference may also be important for understanding the intermodel discrepancy in the climate projections of the CMIP6 GCMs in which either prescribed or interactive ozone is used.

  4. Effects of intense stratospheric ionisation events

    International Nuclear Information System (INIS)

    Reid, G.C.; McAfee, J.R.; Crutzen, P.J.

    1978-01-01

    High levels of ionising radiation in the Earth's stratosphere will lead to increased concentrations of nitrogen oxides and decreased concentrations of ozone. Changes in the surface environment will include an increased level, of biologically harmful UV radiation, caused by the ozone depletion, and a decreased level of visible solar radiation, due to the presence of major enhancements in the stratospheric concentration of nitrogen dioxide. These changes have been studied quantitatively, using the passage of the Solar System through a supernova remnant shell as an example. Some of the potential environmental changes are a substantial global cooling, abnormally dry conditions, a reduction in global photosynthesis and a large increase in the flux of atmospheric fixed nitrogen to the surface of the Earth. Such events might have been the cause of mass extinctions in the distant past. (Author)

  5. Towards a Theory of Tropical/Midlatitude Mass Exchange from the Earth's Surface through the Stratosphere

    Science.gov (United States)

    Hartley, Dana

    1998-01-01

    The main findings of this research project have been the following: (1) there is a significant feedback from the stratosphere on tropospheric dynamics, and (2) a detailed analysis of the interaction between tropical and polar wave breaking in controlling stratospheric mixing. Two papers are were written and are included. The first paper is titled, "A New Perspective on the Dynamical Link Between the Stratosphere and Troposphere." Atmospheric processes of tropospheric origin can perturb the stratosphere, but direct feedback in the opposite direction is usually assumed to be negligible, despite the troposphere's sensitivity to changes in the release of wave activity into the stratosphere. Here, however, we present evidence that such a feedback exists and can be significant. We find that if the wintertime Arctic polar stratospheric vortex is distorted, either by waves propagating upward from the troposphere or by eastward-travelling stratospheric waves, then there is a concomitant redistribution of stratospheric potential vorticity that induces perturbations in key meteorological fields in the upper troposphere. The feedback is large despite the much greater mass of the troposphere: it can account for up to half of the geopotential height anomaly at the tropopause. Although the relative strength of the feedback is partly due to a cancellation between contributions to these anomalies from lower altitudes, our results imply that stratospheric dynamics and its feedback on the troposphere are more significant for climate modelling and data assimilation than was previously assumed. The second article is titled "Diagnosing the Polar Excitation of Subtropical Waves in the Stratosphere". The poleward migration of planetary scale tongues of subtropical air has often been associated with intense polar vortex disturbances in the stratosphere. This question of vortex influence is reexamined from a potential vorticity (PV) perspective. Anomalous geopotential height and wind fields

  6. A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements

    Directory of Open Access Journals (Sweden)

    K. Gierens

    1999-09-01

    Full Text Available Data from three years of MOZAIC measurements made it possible to determine a distribution law for the relative humidity in the upper troposphere and lower stratosphere. Data amounting to 13.5% of the total were obtained in regions with ice supersaturation. Troposphere and stratosphere are distinguished by an ozone concentration of 130 ppbv as threshold. The probability of measuring a certain amount of ice supersaturation in the troposphere decreases exponentially with the degree of ice supersaturation. The probability of measuring a certain relative humidity in the stratosphere (both with respect to water and ice decreases exponentially with the relative humidity. A stochastic model that naturally leads to the exponential distribution is provided. Mean supersaturation in the troposphere is about 15%, whereas ice nucleation requires 30% supersaturation on the average. This explains the frequency of regions in which aircraft induce persistent contrails but which are otherwise free of clouds. Ice supersaturated regions are 3-4 K colder and contain more than 50% more vapour than other regions in the upper troposphere. The stratospheric air masses sampled are dry, as expected, having mean relative humidity over water of 12% and over ice of 23%, respectively. However, 2% of the stratospheric data indicate ice supersaturation. As the MOZAIC measurements have been obtained on commercial flights mainly between Europe and North America, the data do not provide a complete global picture, but the exponential character of the distribution laws found is probably valid globally. Since water vapour is the most important greenhouse gas and since it might enhance the anthropogenic greenhouse effects via positive feedback mechanisms, it is important to represent its distribution correctly in climate models. The discovery of the distribution law of the relative humidity makes possible simple tests to show whether the hydrological cycle in climate models is

  7. Brief communication "Stratospheric winds, transport barriers and the 2011 Arctic ozone hole"

    Directory of Open Access Journals (Sweden)

    M. J. Olascoaga

    2012-12-01

    Full Text Available The Arctic stratosphere throughout the late winter and early spring of 2011 was characterized by an unusually severe ozone loss, resulting in what has been described as an ozone hole. The 2011 ozone loss was made possible by unusually cold temperatures throughout the Arctic stratosphere. Here we consider the issue of what constitutes suitable environmental conditions for the formation and maintenance of a polar ozone hole. Our discussion focuses on the importance of the stratospheric wind field and, in particular, the importance of a high latitude zonal jet, which serves as a meridional transport barrier both prior to ozone hole formation and during the ozone hole maintenance phase. It is argued that stratospheric conditions in the boreal winter/spring of 2011 were highly unusual inasmuch as in that year Antarctic-like Lagrangian dynamics led to the formation of a boreal ozone hole.

  8. A two-dimensional model study of past trends in global ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Kinnison, D.E.

    1988-08-01

    Emissions and atmospheric concentrations of several trace gases important to atmospheric chemistry are known to have increased substantially over recent decades. Solar flux variations and the atmospheric nuclear test series are also likely to have affected stratospheric ozone. In this study, the LLNL two-dimensional chemical-radiative-transport model of the troposphere and stratosphere has been applied to an analysis of the effects that these natural and anthropogenic influences may have had on global ozone concentrations over the last three decades. In general, model determined species distributions and the derived ozone trends agree well with published analyses of land-based and satellite-based observations. Also, the total ozone and ozone distribution trends derived from CFC and other trace gas effects have a different response with latitude than the derived trends from solar flux variations, thus providing a ''signature'' for anthropogenic effects on ozone. 24 refs., 5 figs

  9. An investigation of the processes controlling ozone in the upper stratosphere

    International Nuclear Information System (INIS)

    Patten, K.O. Jr.; Connell, P.S.; Kinnison, D.E.; Wuebbles, D.J.; Waters, J.; Froidevaux, L.; Slanger, T.G.

    1992-01-01

    Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory 2-D zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based upon recent information on vibrational distributions of excited oxygen and upon preliminary studies of energy transfer from the excited oxygen. When the energy transfer rate constants of previous work are assumed, increases in model ozone concentrations of up to 40 percent in the upper stratosphere are found, and the ozone concentrations of the model agree with measurements, including data from the Upper Atmosphere Research Satellite. However, the increase is about 0.4 percent when the larger energy transfer rate constants suggested by more recent experimental work are applied in the model. This indicates the importance of obtaining detailed information on vibrationally excited oxygen properties, particularly the state-specific energy transfer rate constants, to evaluation of tills precess for stratospheric modeling

  10. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    Science.gov (United States)

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  11. Stratospheric ozone reduction and its relation to natural and man made sources

    Energy Technology Data Exchange (ETDEWEB)

    Isaksen, I S [Oslo Univ. (Norway). Dept. of Geophysics

    1996-12-31

    Approximately 90 % of the total ozone mass is in the stratosphere (between approximately 12 and 50 km), the rest is in the troposphere (below 12 km). The global distribution of ozone in the stratosphere and its variation over time have been studied extensively over several decades. These studies include observations by ground based instruments (e.g. Dobson instruments), instruments on airborne platforms (e.g. ozone sondes) and on satellites, and model studies which simulate the chemical and dynamical behaviour of the stratosphere. These studies have given good information about the processes which determine the ozone distribution, and how man made emissions affect the distribution. Observations have revealed that there are large year to year variations in stratospheric ozone above a particular location. These variations are difficult to predict as they are connected to irregular weather patterns. However, the observations have shown that there has been a long term decrease in stratospheric ozone on a global scale during the last two decades. The decrease has been most pronounced during the last five to six years and is seen both in the Northern and the Southern Hemispheres. The strong decrease in stratospheric ozone over the Antarctic continent, which has been observed since the mid 80s, and which has reduced the total ozone column with more than 50 % compared with earlier observations, is proven to be a result of increased man made emissions of CFCs. There are also mounting evidences that Northern Hemispheric ozone reductions observed since 1980 are connected to man made emissions of CFCs

  12. Stratospheric ozone reduction and its relation to natural and man made sources

    Energy Technology Data Exchange (ETDEWEB)

    Isaksen, I.S. [Oslo Univ. (Norway). Dept. of Geophysics

    1995-12-31

    Approximately 90 % of the total ozone mass is in the stratosphere (between approximately 12 and 50 km), the rest is in the troposphere (below 12 km). The global distribution of ozone in the stratosphere and its variation over time have been studied extensively over several decades. These studies include observations by ground based instruments (e.g. Dobson instruments), instruments on airborne platforms (e.g. ozone sondes) and on satellites, and model studies which simulate the chemical and dynamical behaviour of the stratosphere. These studies have given good information about the processes which determine the ozone distribution, and how man made emissions affect the distribution. Observations have revealed that there are large year to year variations in stratospheric ozone above a particular location. These variations are difficult to predict as they are connected to irregular weather patterns. However, the observations have shown that there has been a long term decrease in stratospheric ozone on a global scale during the last two decades. The decrease has been most pronounced during the last five to six years and is seen both in the Northern and the Southern Hemispheres. The strong decrease in stratospheric ozone over the Antarctic continent, which has been observed since the mid 80s, and which has reduced the total ozone column with more than 50 % compared with earlier observations, is proven to be a result of increased man made emissions of CFCs. There are also mounting evidences that Northern Hemispheric ozone reductions observed since 1980 are connected to man made emissions of CFCs

  13. On the aliasing of the solar cycle in the lower stratospheric tropical temperature

    Science.gov (United States)

    Kuchar, Ales; Ball, William T.; Rozanov, Eugene V.; Stenke, Andrea; Revell, Laura; Miksovsky, Jiri; Pisoft, Petr; Peter, Thomas

    2017-09-01

    The double-peaked response of the tropical stratospheric temperature profile to the 11 year solar cycle (SC) has been well documented. However, there are concerns about the origin of the lower peak due to potential aliasing with volcanic eruptions or the El Niño-Southern Oscillation (ENSO) detected using multiple linear regression analysis. We confirm the aliasing using the results of the chemistry-climate model (CCM) SOCOLv3 obtained in the framework of the International Global Atmospheric Chemisty/Stratosphere-troposphere Processes And their Role in Climate Chemistry-Climate Model Initiative phase 1. We further show that even without major volcanic eruptions included in transient simulations, the lower stratospheric response exhibits a residual peak when historical sea surface temperatures (SSTs)/sea ice coverage (SIC) are used. Only the use of climatological SSTs/SICs in addition to background stratospheric aerosols removes volcanic and ENSO signals and results in an almost complete disappearance of the modeled solar signal in the lower stratospheric temperature. We demonstrate that the choice of temporal subperiod considered for the regression analysis has a large impact on the estimated profile signal in the lower stratosphere: at least 45 consecutive years are needed to avoid the large aliasing effect of SC maxima with volcanic eruptions in 1982 and 1991 in historical simulations, reanalyses, and observations. The application of volcanic forcing compiled for phase 6 of the Coupled Model Intercomparison Project (CMIP6) in the CCM SOCOLv3 reduces the warming overestimation in the tropical lower stratosphere and the volcanic aliasing of the temperature response to the SC, although it does not eliminate it completely.

  14. The behaviour of stratospheric and upper tropospheric ozone in high and mid latitudes; the role of ozone as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Kyroe, M; Rummukainen, M; Kivi, R; Turunen, T; Karhu, J [Finnish Meteorological Inst., Sodankylae (Finland); Taalas, P [Finnish Meteorological Inst., Helsinki (Finland)

    1997-12-31

    During the past few years, the dual role that ozone plays in climate change has been becoming increasingly obvious. First, continuous thinning of the ozone layer has been evident, even in the high and middle latitudes in the northern hemisphere. Secondly, ozone is also a greenhouse gas, affecting radiative transfer. Increases in tropospheric ozone have a positive forcing, whereas decreases in stratospheric ozone cause a negative forcing. During the last six years, measurements on total ozone and the vertical distribution of ozone have been performed at the Sodankylae Observatory. At Jokioinen Observatory, measurements on total ozone have been performed since 1990 and measurements on the vertical distribution of ozone since 1993. The overall project has focused on extending the national data series on total ozone and the vertical distribution of ozone. At the same time, the study has contributed to the study of interannual variability of the ozone layer. This SILMU project took part in the large-scale research activities, in addition to performing national studies. The results confirm that there has been fast chemical ozone destruction in the high latitudes in the northern hemisphere. This was particularly evident in the last two winters, 1994/95 and 1995/96. The new data also allows better trend analyses to be made on ozone in high and mid latitudes

  15. The behaviour of stratospheric and upper tropospheric ozone in high and mid latitudes; the role of ozone as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Kyroe, M.; Rummukainen, M.; Kivi, R.; Turunen, T.; Karhu, J. [Finnish Meteorological Inst., Sodankylae (Finland); Taalas, P. [Finnish Meteorological Inst., Helsinki (Finland)

    1996-12-31

    During the past few years, the dual role that ozone plays in climate change has been becoming increasingly obvious. First, continuous thinning of the ozone layer has been evident, even in the high and middle latitudes in the northern hemisphere. Secondly, ozone is also a greenhouse gas, affecting radiative transfer. Increases in tropospheric ozone have a positive forcing, whereas decreases in stratospheric ozone cause a negative forcing. During the last six years, measurements on total ozone and the vertical distribution of ozone have been performed at the Sodankylae Observatory. At Jokioinen Observatory, measurements on total ozone have been performed since 1990 and measurements on the vertical distribution of ozone since 1993. The overall project has focused on extending the national data series on total ozone and the vertical distribution of ozone. At the same time, the study has contributed to the study of interannual variability of the ozone layer. This SILMU project took part in the large-scale research activities, in addition to performing national studies. The results confirm that there has been fast chemical ozone destruction in the high latitudes in the northern hemisphere. This was particularly evident in the last two winters, 1994/95 and 1995/96. The new data also allows better trend analyses to be made on ozone in high and mid latitudes

  16. Application of environmental isotope tracing technology to geothermal geochemistry

    International Nuclear Information System (INIS)

    Shang Yingnan

    2006-01-01

    This paper reviews the recent application and development of environmental isotope tracing technology to geothermal geochemistry in the following aspects: gas isotopes (He, C) tracing of warm springs; H, O isotope tracing on the origin and cause of geothermal water, environmental isotope dating of geothermal water, and the advantage of excess parameter of deuterium (d) in geothermal research. The author also suggests that isotope method should combine with other geological methods to expand its advantage. (authors)

  17. Solar wind control of stratospheric temperatures in Jupiter's auroral regions?

    Science.gov (United States)

    Sinclair, James Andrew; Orton, Glenn; Kasaba, Yasumasa; Sato, Takao M.; Tao, Chihiro; Waite, J. Hunter; Cravens, Thomas; Houston, Stephen; Fletcher, Leigh; Irwin, Patrick; Greathouse, Thomas K.

    2017-10-01

    Auroral emissions are the process through which the interaction of a planet’s atmosphere and its external magnetosphere can be studied. Jupiter exhibits auroral emission at a multitude of wavelengths including the X-ray, ultraviolet and near-infrared. Enhanced emission of CH4 and other stratospheric hydrocarbons is also observed coincident with Jupiter’s shorter-wavelength auroral emission (e.g. Caldwell et al., 1980, Icarus 44, 667-675, Kostiuk et al., 1993, JGR 98, 18823). This indicates that auroral processes modify the thermal structure and composition of the auroral stratosphere. The exact mechanism responsible for this auroral-related heating of the stratosphere has however remained elusive (Sinclair et al., 2017a, Icarus 292, 182-207, Sinclair et al., 2017b, GRL, 44, 5345-5354). We will present an analysis of 7.8-μm images of Jupiter measured by COMICS (Cooled Mid-Infrared Camera and Spectrograph, Kataza et al., 2000, Proc. SPIE(4008), 1144-1152) on the Subaru telescope. These images were acquired on January 11th, 12th, 13th, 14th, February 4, 5th and May 17th, 18th, 19th and 20th in 2017, allowing the daily variability of Jupiter’s auroral-related stratospheric heating to be tracked. Preliminary results suggest lower stratospheric temperatures are directly forced by the solar wind dynamical pressure. The southern auroral hotspot exhibited a significant increase in brightness temperature over a 24-hour period. Over the same time period, a solar wind propagation model (Tao et al. 2005, JGR 110, A11208) predicts a strong increase in the solar wind dynamical pressure at Jupiter.

  18. A consistent definition of the Arctic polar vortex breakup in both the lower and upper stratosphere

    Science.gov (United States)

    Choi, W.; Seo, J.

    2014-12-01

    Breakup of the polar vortex is a dominant feature of the seasonal transition from winter to summer in the stratosphere, which significantly affects stratospheric O3 concentration and tropospheric weather. Previously several criteria for the vortex breakup have been suggested based on the potential vorticity (PV) and wind speed, however, those mainly have focused on the lower stratospheric vortex of which spatiotemporal evolution and decay are more continuous than those of the upper stratospheric vortex. To find a consistent criterion for the vortex breakup in both the lower and upper stratosphere, the present study defined a polar vortex breakup day as when PV gradient at the polar vortex edge becomes lower than that at the subtropical edge on the area equivalent latitude based on PV. With applying the new definition to the UK Met Office reanalysis data, the breakup days of the Arctic polar vortices on 18 isentropic levels from 450 K to 1300 K were calculated for the period of 1993-2005. In comparison with CH4, N2O and O3 measured by the ILAS and POAM II/III satellite instruments, the breakup days are well consistent with changes in the distribution of such tracers as well as their zonal standard deviations associated with the vortex structure breaking and irreversible mixing. The vortex breakup in the upper stratosphere occurs more or less a month prior to that in the middle and lower stratosphere while the stratospheric final warming events occurs simultaneously in the upper and lower stratosphere.

  19. Reevaluation of Stratospheric Ozone Trends From SAGE II Data Using a Simultaneous Temporal and Spatial Analysis

    Science.gov (United States)

    Damadeo, R. P.; Zawodny, J. M.; Thomason, L. W.

    2014-01-01

    This paper details a new method of regression for sparsely sampled data sets for use with time-series analysis, in particular the Stratospheric Aerosol and Gas Experiment (SAGE) II ozone data set. Non-uniform spatial, temporal, and diurnal sampling present in the data set result in biased values for the long-term trend if not accounted for. This new method is performed close to the native resolution of measurements and is a simultaneous temporal and spatial analysis that accounts for potential diurnal ozone variation. Results show biases, introduced by the way data is prepared for use with traditional methods, can be as high as 10%. Derived long-term changes show declines in ozone similar to other studies but very different trends in the presumed recovery period, with differences up to 2% per decade. The regression model allows for a variable turnaround time and reveals a hemispheric asymmetry in derived trends in the middle to upper stratosphere. Similar methodology is also applied to SAGE II aerosol optical depth data to create a new volcanic proxy that covers the SAGE II mission period. Ultimately this technique may be extensible towards the inclusion of multiple data sets without the need for homogenization.

  20. Analysis of trace levels of impurities and hydrogen isotopes in helium purge gas using gas chromatography for tritium extraction system of an Indian lead lithium ceramic breeder test blanket module.

    Science.gov (United States)

    Devi, V Gayathri; Sircar, Amit; Yadav, Deepak; Parmar, Jayraj

    2018-01-12

    In the fusion fuel cycle, the accurate analysis and understanding of the chemical composition of any gas mixture is of great importance for the efficient design of a tritium extraction and purification system or any tritium handling system. Methods like laser Raman spectroscopy and gas chromatography with thermal conductivity detector have been considered for hydrogen isotopes analyses in fuel cycles. Gas chromatography with a cryogenic separation column has been used for the analysis of hydrogen isotopes gas mixtures in general due to its high reliability and ease of operation. Hydrogen isotopes gas mixture analysis with cryogenic columns has been reported earlier using different column materials for percentage level composition. In the present work, trace levels of hydrogen isotopes (∼100 ppm of H 2 and D 2 ) have been analyzed with a Zeolite 5A and a modified γ-Al 2 O 3 column. Impurities in He gas (∼10 ppm of H 2 , O 2 , and N 2 ) have been analyzed using a Zeolite 13-X column. Gas chromatography with discharge ionization detection has been utilized for this purpose. The results of these experiments suggest that the columns developed were able to separate ppm levels of the desired components with a small response time (<6 min) and good resolution in both cases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tropospheric trace gas measurement by tunable diode laser spectroscopy. Final report. Messung troposphaerischer Spurengase mittels Dioden-Laser-Spektroskopie. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, J P; Crutzen, P J; Harris, G W; Klemp, D; Johnson, T J; Perner, D; Wienhold, F G; Zenker, T

    1991-01-01

    This final report is concerned with tropospheric trace gas measurements by Tunable Diode Laser Spectroscopy (TDLAS). A TDLAS instrument was built which simultaneously measures four selected trace gases and is sufficiently sensitive for use in 'clean' air conditions. The instrument is the first of its kind to be used for measurements aboard ship platforms in clean marine air. In order to guarantee that the instrument function continuously for several weeks at a time under the difficult conditions encountered at sea, a variety of innovative technical developments were necessary. The TDLAS instrument was used to investigate boundary layer tropospheric chemistry in one engineering test and four field campaigns. Three of the field campaigns took place on board the German research vessels. The measurements on board the research vessels enabled different types of tropospheric air to be investigated: (i) clean maritime air; (ii) maritime regions influenced by continental sources of trace gases and pollutants, in particular the coastal region around the west coast of Africa was thoroughly investigated under downwind conditions. A large set of data of simultaneous measurements of key tropospheric trace gases (NO{sub 2}, CO, HCHO, H{sub 2}O{sub 2} and O{sub 3}) were obtained which help paint a more complete picture of tropospheric oxidation cycles. The first measurements of H{sub 2}O{sub 2} in the remote marine boundary layer are reported. In selected regions successful TDLAS measurements of HCl and COS were obtained, results in themselves of importance. Intercomparisons of TDLAS and other measurement techniques were successfully undertaken. (orig./BBR).

  2. Trace amount analysis using spark mass spectrometry

    International Nuclear Information System (INIS)

    Stefani, Rene

    1975-01-01

    Characteristics of spark mass spectrometers (ion source, properties of the ion beam, ion optics, and performance) and their use in qualitative and quantitative analysis are described. This technique is very interesting for the semi-quantitative analysis of trace amounts, down to 10 -8 atoms. Examples of applications such as the analysis of high purity materials and non-conducting mineral samples, and determination of carbon and gas trace amounts are presented. (50 references) [fr

  3. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    Science.gov (United States)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  4. Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection

    Directory of Open Access Journals (Sweden)

    A. C. Jones

    2016-03-01

    Full Text Available In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020–2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (> +70 °C and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 °C. As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions.

  5. Measurement of gas/water uptake coefficients for trace gases active in the marine environment. [Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, P. [Boston Coll., Chestnut Hill, MA (United States). Dept. of Chemistry; Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean`s surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry`s law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  6. The Impact of Stratospheric Circulation Extremes on Minimum Arctic Sea Ice Extent

    Science.gov (United States)

    Smith, K. L.; Polvani, L. M.; Tremblay, B.

    2017-12-01

    The interannual variability of summertime Arctic sea ice extent (SIE) is anti-correlated with the leading mode of extratropical atmospheric variability in preceding winter, the Arctic Oscillation (AO). Given this relationship and the need for better seasonal predictions of Arctic SIE, we here examine the role of stratospheric circulation extremes and stratosphere-troposphere coupling in linking the AO and Arctic SIE variability. We show that extremes in the stratospheric circulation during the winter season, namely stratospheric sudden warming (SSW) and strong polar vortex (SPV) events, are associated with significant anomalies in sea ice concentration in the Bering Straight and the Sea of Okhotsk in winter, the Barents Sea in spring and along the Eurasian coastline in summer in both observations and a fully-coupled, stratosphere-resolving general circulation model. The accompanying figure shows the composite mean sea ice concentration anomalies from the Whole Atmosphere Community Climate Model (WACCM) for SSWs (N = 126, top row) and SPVs (N = 99, bottom row) for winter (a,d), spring (b,e) and summer (c,f). Consistent with previous work on the AO, we find that SSWs, which are followed by the negative phase of the AO at the surface, result in sea ice growth, whereas SPVs, which are followed by the positive phase of the AO at the surface, result in sea ice loss, although the dynamic and thermodynamic processes driving these sea ice anomalies in the three Arctic regions, noted above, are different. Our analysis suggests that the presence or absence of stratospheric circulation extremes in winter may play a non-trivial role in determining total September Arctic SIE when combined with other factors.

  7. Decadal-Scale Responses in Middle and Upper Stratospheric Ozone From SAGE II Version 7 Data

    Science.gov (United States)

    Remsberg, E. E.

    2014-01-01

    Stratospheric Aerosol and Gas Experiment (SAGE II) version 7 (v7) ozone profiles are analyzed for their decadal-scale responses in the middle and upper stratosphere for 1991 and 1992-2005 and compared with those from its previous version 6.2 (v6.2). Multiple linear regression (MLR) analysis is applied to time series of its ozone number density vs. altitude data for a range of latitudes and altitudes. The MLR models that are fit to the time series data include a periodic 11 yr term, and it is in-phase with that of the 11 yr, solar UV (Ultraviolet)-flux throughout most of the latitude/ altitude domain of the middle and upper stratosphere. Several regions that have a response that is not quite in-phase are interpreted as being affected by decadal-scale, dynamical forcings. The maximum minus minimum, solar cycle (SClike) responses for the ozone at the low latitudes are similar from the two SAGE II data versions and vary from about 5 to 2.5% from 35 to 50 km, although they are resolved better with v7. SAGE II v7 ozone is also analyzed for 1984-1998, in order to mitigate effects of end-point anomalies that bias its ozone in 1991 and the analyzed results for 1991-2005 or following the Pinatubo eruption. Its SC-like ozone response in the upper stratosphere is of the order of 4%for 1984-1998 vs. 2.5 to 3%for 1991-2005. The SAGE II v7 results are also recompared with the responses in ozone from the Halogen Occultation Experiment (HALOE) that are in terms of mixing ratio vs. pressure for 1991-2005 and then for late 1992- 2005 to avoid any effects following Pinatubo. Shapes of their respective response profiles agree very well for 1992-2005. The associated linear trends of the ozone are not as negative in 1992-2005 as in 1984-1998, in accord with a leveling off of the effects of reactive chlorine on ozone. It is concluded that the SAGE II v7 ozone yields SC-like ozone responses and trends that are of better quality than those from v6.2.

  8. Early work on the stratospheric ozone depletion-CFC issue

    Science.gov (United States)

    Molina, M.

    2012-12-01

    I became involved with the atmospheric chemistry of chlorofluorocarbons (CFCs) shortly after joining Sherry Rowland's research group at the University of California, Irvine, in 1973. CFCs had been detected in the troposphere by James Lovelock in 1971, and the question we set out to answer was the fate of these compounds of industrial origin in the environment, as well as possibly identifying any consequences of their accumulation in the atmosphere. After examining many potential sinks for these compounds we realized that because of their unusual stability the most likely destruction process was photolysis in the stratosphere. I carried out measurements of the absorption spectra of these compounds in the near ultraviolet; previous work involved only spectra in the far ultraviolet, not relevant for atmospheric chemistry. The results indicated that photolysis would take place in the upper stratosphere. I subsequently carried out calculations using one-dimensional atmospheric models to estimate their atmospheric residence times, which turned out to be many decades. We realized that the chlorine atoms generated by photolysis of the CFCs would participate in a catalytic chain reaction that would efficiently destroy ozone. Furthermore, we estimated that the amount of CFCs produced industrially was comparable to the amount of nitric oxide produced naturally in the stratosphere by the decomposition of nitrous oxide; work by Paul Crutzen and Harold Johnston had indicated that the abundance of ozone in the stratosphere was controlled by nitric oxide. We then formulated the hypothesis that the continued release of CFCs to the environment posed a threat to the stability of the ozone layer, and published our results in the journal Nature in 1974. The publication was noticed almost exclusively by the community of experts in stratospheric chemistry, and hence Sherry Rowland and I decided at that time that it was our responsibility to communicate this finding to society at large

  9. Land-Use Change, Soil Process and Trace Gas Fluxes in the Brazilian Amazon Basin

    Science.gov (United States)

    Melillo, Jerry M.; Steudler, Paul A.

    1997-01-01

    We measured changes in key soil processes and the fluxes of CO2, CH4 and N2O associated with the conversion of tropical rainforest to pasture in Rondonia, a state in the southwest Amazon that has experienced rapid deforestation, primarily for cattle ranching, since the late 1970s. These measurements provide a comprehensive quantitative picture of the nature of surface soil element stocks, C and nutrient dynamics, and trace gas fluxes between soils and the atmosphere during the entire sequence of land-use change from the initial cutting and burning of native forest, through planting and establishment of pasture grass and ending with very old continuously-pastured land. All of our work is done in cooperation with Brazilian scientists at the Centro de Energia Nuclear na Agricultura (CENA) through an extant official bi-lateral agreement between the Marine Biological Laboratory and the University of Sao Paulo, CENA's parent institution.

  10. Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy.

    Science.gov (United States)

    He, Yabai; Kan, Ruifeng; Englich, Florian V; Liu, Wenqing; Orr, Brian J

    2010-09-13

    The greenhouse-gas molecules CO(2), CH(4), and H(2)O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this technique depends, is evaluated. Our instrument is both sensitive and compact, as needed for reliable environmental monitoring with high absolute accuracy to detect trace concentrations of greenhouse gases in outdoor air.

  11. Stratospheric ozone: an introduction to its study

    International Nuclear Information System (INIS)

    Nicolet, M.

    1975-01-01

    An analysis is made of the various reactions in which ozone and atomic oxygen are involved in the stratosphere. At the present time, hydrogen, nitrogen, and chlorine compounds in the ranges parts per million, parts per billion, and parts per trillion may have significant chemical effects. In the upper stratosphere, above the ozone peak, where there is no strong departure from photochemical equilibrium conditions, the action of hydroxyl and hydroperoxyl radicals of nitrogen dioxide and chlorine monoxide on atomic oxygen and of atomic chlorine on ozone can be introduced. A precise determination of their exact effects requires knowledge of the vertical distribution of the H 2 O, CH 4 , and H 2 dissociation by reaction of these molecules with electronically excited oxygen atom O( 1 D); the ratio of the OH and HO 2 concentrations and their absolute values, which depend on insufficiently known rate coefficients; the various origins of nitric oxide production, with their vertical distributions related to latitude and season; and the various sources giving different chlorine compounds that may be dissociated in the stratosphere. In the lower stratosphere, below the ozone peak, there is no important photochemical production of O 3 , but there exist various possibilities of transport. The predictability of the action of chemical reactions depends strongly on important interactions between OH and HO 2 radicals with CO and NO, respectively, which affect the ratio n(OH)/n(HO 2 ) at the tropopause level; between OH and NO 2 , which lead to the formation of nitric acid with its downward transport toward the troposphere; between NO and HO 2 , which lead to NO 2 and its subsequent photodissociation; between ClO and NO, which also lead to NO 2 and become more important than the reaction of ClO with O; and between Cl and various molecules, such as CH 4 and H 2 , which lead to HCl with its downward transportation toward the troposphere

  12. Detection and mapping of polar stratospheric clouds using limb scattering observations

    Directory of Open Access Journals (Sweden)

    C. von Savigny

    2005-01-01

    Full Text Available Satellite-based measurements of Visible/NIR limb-scattered solar radiation are well suited for the detection and mapping of polar stratospheric clouds (PSCs. This publication describes a method to detect PCSs from limb scattering observations with the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY on the European Space Agency's Envisat spacecraft. The method is based on a color-index approach and requires a priori knowledge of the stratospheric background aerosol loading in order to avoid false PSC identifications by stratospheric background aerosol. The method is applied to a sample data set including the 2003 PSC season in the Southern Hemisphere. The PSCs are correlated with coincident UKMO model temperature data, and with very few exceptions, the detected PSCs occur at temperatures below 195–198 K. Monthly averaged PSC descent rates are about 1.5 km/month for the −50° S to −75° S latitude range and assume a maximum between August and September with a value of about 2.5 km/month. The main cause of the PSC descent is the slow descent of the lower stratospheric temperature minimum.

  13. Tracing the Origin of Black Hole Accretion Through Numerical Hydrodynamic Simulations

    Science.gov (United States)

    Spicer, Sandy; Somerville, Rachel; Choi, Ena; Brennan, Ryan

    2018-01-01

    It is now widely accepted that supermassive black holes co-evolve with galaxies, and may play an important role in galaxy evolution. However, the origin of the gas that fuels black hole accretion, and the resulting observable radiation, is not well understood or quantified. We use high-resolution "zoom-in" cosmological numerical hydrodynamic simulations including modeling of black hole accretion and feedback to trace the inflow and outflow of gas within galaxies from the early formation period up to present day. We track gas particles that black holes interact with over time to trace the origin of the gas that feeds supermassive black holes. These gas particles can come from satellite galaxies, cosmological accretion, or be a result of stellar evolution. We aim to track the origin of the gas particles that accrete onto the central black hole as a function of halo mass and cosmic time. Answering these questions will help us understand the connection between galaxy and black hole evolution.

  14. Unexpected variations in the triple oxygen isotope composition of stratospheric carbon dioxide

    Science.gov (United States)

    Wiegel, Aaron A.; Cole, Amanda S.; Hoag, Katherine J.; Atlas, Elliot L.; Schauffler, Sue M.; Boering, Kristie A.

    2013-10-01

    We report observations of stratospheric CO2 that reveal surprisingly large anomalous enrichments in 17O that vary systematically with latitude, altitude, and season. The triple isotope slopes reached 1.95 ± 0.05(1σ) in the middle stratosphere and 2.22 ± 0.07 in the Arctic vortex versus 1.71 ± 0.03 from previous observations and a remarkable factor of 4 larger than the mass-dependent value of 0.52. Kinetics modeling of laboratory measurements of photochemical ozone-CO2 isotope exchange demonstrates that non-mass-dependent isotope effects in ozone formation alone quantitatively account for the 17O anomaly in CO2 in the laboratory, resolving long-standing discrepancies between models and laboratory measurements. Model sensitivities to hypothetical mass-dependent isotope effects in reactions involving O3, O(1D), or CO2 and to an empirically derived temperature dependence of the anomalous kinetic isotope effects in ozone formation then provide a conceptual framework for understanding the differences in the isotopic composition and the triple isotope slopes between the laboratory and the stratosphere and between different regions of the stratosphere. This understanding in turn provides a firmer foundation for the diverse biogeochemical and paleoclimate applications of 17O anomalies in tropospheric CO2, O2, mineral sulfates, and fossil bones and teeth, which all derive from stratospheric CO2.

  15. The stratospheric ozone and the ozone layer

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez Jesus Antonio

    2000-01-01

    An overview is presented of the principal characteristics of the stratospheric ozone in the Earth's atmosphere, with particular emphasis on the tropics and the ozone hole over the poles. Some effects produced in the atmosphere as a consequence of the different human activities will be described, and some data on stratospheric ozone will be shown. We point out the existence of a nucleus of least ozone in the tropics, stretching from South America to central Africa, with annual mean values less than 240 DU, a value lower than in the middle latitudes and close to the mean values at the South Pole. The existence of such a minimum is confirmed by mean values from measurements made on satellites or with earthbound instruments, for different sectors in Colombia, like Medellin, Bogota and Leticia

  16. Reactive hydro- end chlorocarbons in the troposphere and lower stratosphere : sources, distributions, and chemical impact

    Science.gov (United States)

    Scheeren, H. A.

    2003-09-01

    The work presented in this thesis focuses on measurements of chemical reactive C2 C7 non-methane hydrocarbons (NMHC) and C1 C2 chlorocarbons with atmospheric lifetimes of a few hours up to about a year. The group of reactive chlorocarbons includes the most abundant atmospheric species with large natural sources, which are chloromethane (CH3Cl), dichloromethane (CH2Cl2), and trichloromethane (CHCl3), and tetrachloroethylene (C2Cl4) with mainly anthropogenic sources. The NMHC and chlorocarbons are present at relatively low quantities in our atmosphere (10-12 10-9 mol mol-1 of air). Nevertheless, they play a key role in atmospheric photochemistry. For example, the oxidation of NMHC plays a dominant role in the formation of ozone in the troposphere, while the photolysis of chlorocarbons contributes to enhanced ozone depletion in the stratosphere. In spite of their important role, however, their global source and sinks budgets are still poorly understood. Hence, this study aims at improving our understanding of the sources, distribution, and chemical role of reactive NMHC and chlorocarbons in the troposphere and lower stratosphere. To meet this aim, a comprehensive data set of selected C2 C7 NMHC and chlorocarbons has been analyzed, derived from six aircraft measurement campaigns with two different jet aircrafts (the Dutch TUD/NLR Cessna Citation PH-LAB, and the German DLR Falcon) conducted between 1995 and 2001 (STREAM 1995 and 1997 and 1998, LBA-CLAIRE 1998, INDOEX 1999, MINOS 2001). The NMHC and chlorocarbons have been detected by gas-chromatography (GC-FID/ECD) in pre-concentrated whole air samples collected in stainless steel canister on-board the measurement aircrafts. The measurement locations include tropical (Maldives/Indian Ocean and Surinam), midlatitude (Western Europe and Canada) and polar regions (Lapland/northern Sweden) between the equator to about 70ºN, covering different seasons and pollution levels in the troposphere and lower stratosphere. Of

  17. Stratospheric tritium sampling. Final progress report

    International Nuclear Information System (INIS)

    Mason, A.S.; Oestlund, H.G.

    1985-09-01

    Stratospheric tritium sampling was part of Project Airstream (sponsored by the US Department of Energy) between 1975 and 1983. Data from the final deployment in November 1983 are reported here, and the results of the 9 years of effort are summarized. 9 refs., 2 figs., 2 tabs

  18. Effect of coupled anthropogenic perturbations on stratospheric ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Luther, F.M.; Penner, J.E.

    1992-01-01

    Since 1976 the greatest concern about potential perturbations to stratospheric ozone has been in regard to the atmospheric release of chlorofluorocarbons. Consequently, atmospheric measurements of ozone have usually been compared with model calculations in which only chlorocarbon perturbations are considered. However, in order to compare theoretical calculations with recent measurements of ozone and to project expected changes to atmospheric ozone levels over the next few decades, one must consider the effect from other perturbations as well. In this paper, the authors consider the coupling between several possible anthropogenic atmospheric perturbations. Namely, they examine the effects of past and possible future increases of chlorocarbons, CO 2 , N 2 O, and NO x . The focus of these calculations is on the potential changes in ozone due to chlorocarbon emissions, how other anthropogenic perturbations may have influenced the actual change in ozone over the last decade, and how these perturbations may influence future changes in ozone. Although calculations including future chlorocarbon emissions alone result in significant reductions in ozone, there is very little change in total ozone over the coming decades when other anthropogenic sources are included. Increasing CO 2 concentrations have the largest offsetting effect on the change in total ozone due to chlorocarbons. Owing to the necessity of considering emissions from a number of trace gases simultaneously, determining expected global-scale chemical and climatic effects is more complex than was previously recognized

  19. Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century

    Science.gov (United States)

    Banerjee, Antara; Maycock, Amanda C.; Pyle, John A.

    2018-02-01

    The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry-climate model (UK Met Office's Unified Model containing the United Kingdom Chemistry and Aerosols sub-model). Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of -0.09 W m-2. This is opposed by a positive ozone RF of 0.05 W m-2 due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario) is found to drive an ozone RF of 0.18 W m-2, which would greatly outweigh the climate benefits of non-methane tropospheric ozone precursor reductions. A small fraction (˜ 15 %) of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes) is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m-2) for RCP4.5 and a negative RF (-0.07 W m-2) for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02| W m-2) for the stratospheric, tropospheric and whole-atmosphere RFs.

  20. A warming tropical central Pacific dries the lower stratosphere

    Science.gov (United States)

    Ding, Qinghua; Fu, Qiang

    2018-04-01

    The amount of water vapor in the tropical lower stratosphere (TLS), which has an important influence on the radiative energy budget of the climate system, is modulated by the temperature variability of the tropical tropopause layer (TTL). The TTL temperature variability is caused by a complex combination of the stratospheric quasi-biennial oscillation (QBO), tropospheric convective processes in the tropics, and the Brewer-Dobson circulation (BDC) driven by mid-latitude and subtropical atmospheric waves. In 2000, the TLS water vapor amount exhibited a stepwise transition to a dry phase, apparently caused by a change in the BDC. In this study, we present observational and modeling evidence that the epochal change of water vapor between the periods of 1992-2000 and 2001-2005 was also partly caused by a concurrent sea surface temperature (SST) warming in the tropical central Pacific. This SST warming cools the TTL above by enhancing the equatorial wave-induced upward motion near the tropopause, which consequently reduces the amount of water vapor entering the stratosphere. The QBO affects the TLS water vapor primarily on inter-annual timescales, whereas a classical El Niño southern oscillation (ENSO) event has small effect on tropical mean TLS water vapor because its responses are longitudinally out of phase. This study suggests that the tropical central Pacific SST is another driver of TLS water vapor variability on inter-decadal timescales and the tropical SST changes could contribute to about 30% of the step-wise drop of the lower stratospheric water vapor from 1992-2000 to 2001-2005.

  1. A new formulation of equivalent effective stratospheric chlorine (EESC

    Directory of Open Access Journals (Sweden)

    P. A. Newman

    2007-09-01

    Full Text Available Equivalent effective stratospheric chlorine (EESC is a convenient parameter to quantify the effects of halogens (chlorine and bromine on ozone depletion in the stratosphere. We show, discuss, and analyze a new formulation of EESC that now includes the effects of age-of-air dependent fractional release values and an age-of-air spectrum. This EESC can be more appropriately applied to various parts of the stratosphere because of this dependence on mean age-of-air. This new formulation provides quantitative estimates of EESC that can be directly related to inorganic chlorine and bromine throughout the stratosphere. In this paper, we first provide a detailed description of the EESC calculation. We then use this EESC formulation to estimate that human-produced ozone depleting substances will recover to 1980 levels in 2041 in the midlatitudes, and 2067 over Antarctica. These recovery dates are based upon the assumption that the international agreements for regulating ozone-depleting substances are adhered to. In addition to recovery dates, we also estimate the uncertainties and possible problems in the estimated times of recovery. The midlatitude recovery of 2041 has a 95% confidence uncertainty from 2028 to 2049, while the 2067 Antarctic recovery has a 95% confidence uncertainty from 2056 to 2078. The principal uncertainties are from the estimated mean age-of-air and fractional release values, and the assumption that these quantities are time independent. Using other model estimates of age decrease due to climate change, we estimate that midlatitude recovery may be significantly accelerated.

  2. Organic trace gas composition of the marine boundary layer over the northwest Indian Ocean in April 2000

    Energy Technology Data Exchange (ETDEWEB)

    Warneke, C.; Gouw, J.A. de [University of Utrecht (Netherlands). Institute for Marine and Atmospheric Research

    2001-07-01

    In April 2000 atmospheric trace gas measurements were performed on the western Indian Ocean on a cruise of the Dutch research vessel Pelagia from the Seychelles (5 {sup o}S, 55 {sup o}E) to Djibouti (12 {sup o}N, 43 {sup o}E). The measurements included analysis of dimethyl sulfide (DMS), acetone and acetonitrile every 40s using PTR-MS (proton-transfer-reaction mass spectrometry) and gas chromatographic analyses of C{sub 2}-C{sub 7} hydrocarbons in air samples taken during the cruise. The measurements took place at the end of the winter monsoon season and the sampled air masses came predominantly from the Southern Hemisphere, resulting in low concentrations of some long-lived hydrocarbons, halocarbons, acetone (350pptv) and acetonitrile (120pptv). On three consecutive days a diurnal cycle in DMS concentration was observed, which was used to estimate the emission of DMS (1.5 {+-} 0.7 x 10{sup 13}moleculesm{sup -2}s{sup -1}) and the 24h averaged concentration of hydroxyl (OH) radicals (1.4 {+-} 0.7 x 10{sup 6}moleculescm{sup -3}). A strongly increased DMS concentration was found at a location where upwelling of deeper ocean waters took place, coinciding with a marked decrease in acetone and acetonitrile. In the northwestern Indian Ocean a slight increase of some trace gases was noticed showing a small influence of pollution from Asia and from northeast Africa as indicated with back trajectory calculations. The air masses from Asia had elevated acetonitrile concentrations showing some influence of biomass burning as was also found during the 1999 Indian Ocean Experiment, whereas the air masses from northeast Africa seemed to have other sources of pollution. (Author)

  3. Stratospheric role in interdecadal changes of El Niño impacts over Europe

    Science.gov (United States)

    Ayarzagüena, B.; López-Parages, J.; Iza, M.; Calvo, N.; Rodríguez-Fonseca, B.

    2018-04-01

    The European precipitation response to El Niño (EN) has been found to present interdecadal changes, with alternated periods of important or negligible EN impact in late winter. These periods are associated with opposite phases of multi-decadal sea surface temperature (SST) variability, which modifies the tropospheric background and EN teleconnections. In addition, other studies have shown how SST anomalies in the equatorial Pacific, and in particular, the location of the largest anomalous SST, modulate the stratospheric response to EN. Nevertheless, the role of the stratosphere on the stationarity of EN response has not been investigated in detail so far. Using reanalysis data, we present a comprehensive study of EN teleconnections to Europe including the role of the ocean background and the stratosphere in the stationarity of the signal. The results reveal multidecadal variability in the location of EN-related SST anomalies that determines different teleconnections. In periods with relevant precipitation signal over Europe, the EN SST pattern resembles Eastern Pacific EN and the stratospheric pathway plays a key role in transmitting the signal to Europe in February, together with two tropospheric wavetrains that transmit the signal in February and April. Conversely, the stratospheric pathway is not detected in periods with a weak EN impact on European precipitation, corresponding to EN-related SST anomalies primarily located over the central Pacific. SST mean state and its associated atmospheric background control the location of EN-related SST anomalies in different periods and modulate the establishment of the aforementioned stratospheric pathway of EN teleconnection to Europe too.

  4. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion.

    Science.gov (United States)

    McConnell, Joseph R; Burke, Andrea; Dunbar, Nelia W; Köhler, Peter; Thomas, Jennie L; Arienzo, Monica M; Chellman, Nathan J; Maselli, Olivia J; Sigl, Michael; Adkins, Jess F; Baggenstos, Daniel; Burkhart, John F; Brook, Edward J; Buizert, Christo; Cole-Dai, Jihong; Fudge, T J; Knorr, Gregor; Graf, Hans-F; Grieman, Mackenzie M; Iverson, Nels; McGwire, Kenneth C; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H; Saltzman, Eric S; Severinghaus, Jeffrey P; Steffensen, Jørgen Peder; Taylor, Kendrick C; Winckler, Gisela

    2017-09-19

    Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

  5. On particles in the Arctic stratosphere

    Directory of Open Access Journals (Sweden)

    T. S. Jørgensen

    2003-06-01

    Full Text Available Soon after the discovery of the Antarctic ozone hole it became clear that particles in the polar stratosphere had an infl uence on the destruction of the ozone layer. Two major types of particles, sulphate aerosols and Polar Stratospheric Clouds (PSCs, provide the surfaces where fast heterogeneous chemical reactions convert inactive halogen reservoir species into potentially ozone-destroying radicals. Lidar measurements have been used to classify the PSCs. Following the Mt. Pinatubo eruption in June 1991 it was found that the Arctic stratosphere was loaded with aerosols, and that aerosols observed with lidar and ozone observed with ozone sondes displayed a layered structure, and that the aerosol and ozone contents in the layers frequently appeared to be negatively correlated. The layered structure was probably due to modulation induced by the dynamics at the edge of the polar vortex. Lidar observations of the Mt. Pinatubo aerosols were in several cases accompanied by balloon-borne backscatter soundings, whereby backscatter measurements in three different wavelengths made it possible to obtain information about the particle sizes. An investigation of the infl uence of synoptic temperature histories on the physical properties of PSC particles has shown that most of the liquid type 1b particles were observed in the process of an ongoing, relatively fast, and continuous cooling from temperatures clearly above the nitric acid trihydrate condensation temperature (TNAT. On the other hand, it appeared that a relatively long period, with a duration of at least 1-2 days, at temperatures below TNAT provide the conditions which may lead to the production of solid type 1a PSCs.

  6. Northern Hemisphere Winter Climate Response to Greenhouse Gas, Ozone, Solar and Volcanic Forcing

    Science.gov (United States)

    Shindell, Drew T.; Schmidt, Gavin A.; Miller, Ron L.; Rind, David; Hansen, James E. (Technical Monitor)

    2001-01-01

    The Goddard Institute for Space Studies (GISS) climate/middle atmosphere model has been used to study the impacts of increasing greenhouse gases, polar ozone depletion, volcanic eruptions, and solar cycle variability. We focus on the projection of the induced responses onto Northern Hemisphere winter surface climate. Changes in the model's surface climate take place largely through enhancement of existing variability patterns, with greenhouse gases, polar ozone depletion and volcanic eruptions primarily affecting the Arctic Oscillation (AO) pattern. Perturbations descend from the stratosphere to the surface in the model by altering the propagation of planetary waves coming up from the surface, in accord with observational evidence. Models lacking realistic stratospheric dynamics fail to capture these wave flux changes. The results support the conclusion that the stratosphere plays a crucial role in recent AO trends. We show that in our climate model, while ozone depletion has a significant effect, greenhouse gas forcing is the only one capable of causing the large, sustained increase in the AO observed over recent decades. This suggests that the AO trend, and a concurrent strengthening of the stratospheric vortex over the Arctic, are very likely anthropogenic in origin.

  7. The influence of regional Arctic sea-ice decline on stratospheric and tropospheric circulation

    Science.gov (United States)

    McKenna, Christine; Bracegirdle, Thomas; Shuckburgh, Emily; Haynes, Peter

    2016-04-01

    Arctic sea-ice extent has rapidly declined over the past few decades, and most climate models project a continuation of this trend during the 21st century in response to greenhouse gas forcing. A number of recent studies have shown that this sea-ice loss induces vertically propagating Rossby waves, which weaken the stratospheric polar vortex and increase the frequency of sudden stratospheric warmings (SSWs). SSWs have been shown to increase the probability of a negative NAO in the following weeks, thereby driving anomalous weather conditions over Europe and other mid-latitude regions. In contrast, other studies have shown that Arctic sea-ice loss strengthens the polar vortex, increasing the probability of a positive NAO. Sun et al. (2015) suggest these conflicting results may be due to the region of sea-ice loss considered. They find that if only regions within the Arctic Circle are considered in sea-ice projections, the polar vortex weakens; if only regions outwith the Arctic Circle are considered, the polar vortex strengthens. This is because the anomalous Rossby waves forced in the former/latter scenario constructively/destructively interfere with climatological Rossby waves, thus enhancing/suppressing upward wave propagation. In this study, we investigate whether Sun et al.'s results are robust to a different model. We also divide the regions of sea-ice loss they considered into further sub-regions, in order to examine the regional differences in more detail. We do this by using the intermediate complexity climate model, IGCM4, which has a well resolved stratosphere and does a good job of representing stratospheric processes. Several simulations are run in atmosphere only mode, where one is a control experiment and the others are perturbation experiments. In the control run annually repeating historical mean surface conditions are imposed at the lower boundary, whereas in each perturbation run the model is forced by SST perturbations imposed in a specific

  8. Benefits, risks, and costs of stratospheric geoengineering

    KAUST Repository

    Robock, Alan; Marquardt, Allison; Kravitz, Ben; Stenchikov, Georgiy L.

    2009-01-01

    Injecting sulfate aerosol precursors into the stratosphere has been suggested as a means of geoengineering to cool the planet and reduce global warming. The decision to implement such a scheme would require a comparison of its benefits, dangers

  9. Lower stratospheric observations from aircraft and satellite during the 2015/2016 El Nino

    Science.gov (United States)

    Rosenlof, K. H.; Avery, M. A.; Davis, S. M.; Gao, R. S.; Thornberry, T. D.

    2016-12-01

    Winter 2015/2016 experienced a strong El Nino that was heavily observed by aircraft, radiosonde and satellite platforms. During the National Oceanographic and Atmospheric Administration's (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT)/El Nino Rapid Response (ENRR) flights of the NASA Global Hawk, in situ ozone measurements were made in the lower stratosphere over the Pacific. These will be contrasted with ozone measurements taken during La Nina and ENSO neutral conditions during past Global Hawk aircraft campaigns. Additionally, lower stratospheric water vapor and ozone measurements from the Microwave Limb Sounder satellite instrument and stratospheric ice measurements above the tropopause from the Cloud-Aerosol Aerosol Lidar with Orthogonal Polarization (CALIOP) will be presented. Our aircraft ozone measurements are higher for the El Nino flights than during other missions previously sampled, while zonally averaged lower stratospheric water vapor and central Pacific ice path above the tropopause reached record highs. Implications and possible reasons for these anomalous observations will be discussed. Winter 2015/2016 experienced a strong El Nino that was heavily observed by aircraft, radiosonde and satellite platforms. During the National Oceanographic and Atmospheric Administration's (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT)/El Nino Rapid Response (ENRR) flights of the NASA Global Hawk, in situ ozone measurements were made in the upper troposphere and lower stratosphere (UTLS) over the Pacific. These will be contrasted with ozone measurements made during La Nina and ENSO neutral conditions during past Global Hawk aircraft campaigns. Additionally, UTLS water vapor and ozone measurements from the Microwave Limb Sounder (MLS) satellite instrument and stratospheric ice measurements above the tropopause from the Cloud-Aerosol Aerosol Lidar with Orthogonal Polarization (CALIOP) will be presented. Our aircraft ozone

  10. Study nonlinear dynamics of stratospheric ozone concentration at Pakistan Terrestrial region

    Science.gov (United States)

    Jan, Bulbul; Zai, Muhammad Ayub Khan Yousuf; Afradi, Faisal Khan; Aziz, Zohaib

    2018-03-01

    This study investigates the nonlinear dynamics of the stratospheric ozone layer at Pakistan atmospheric region. Ozone considered now the most important issue in the world because of its diverse effects on earth biosphere, including human health, ecosystem, marine life, agriculture yield and climate change. Therefore, this paper deals with total monthly time series data of stratospheric ozone over the Pakistan atmospheric region from 1970 to 2013. Two approaches, basic statistical analysis and Fractal dimension (D) have adapted to study the nature of nonlinear dynamics of stratospheric ozone level. Results obtained from this research have shown that the Hurst exponent values of both methods of fractal dimension revealed an anti-persistent behavior (negatively correlated), i.e. decreasing trend for all lags and Rescaled range analysis is more appropriate as compared to Detrended fluctuation analysis. For seasonal time series all month follows an anti-persistent behavior except in the month of November which shown persistence behavior i.e. time series is an independent and increasing trend. The normality test statistics also confirmed the nonlinear behavior of ozone and the rejection of hypothesis indicates the strong evidence of the complexity of data. This study will be useful to the researchers working in the same field in the future to verify the complex nature of stratospheric ozone.

  11. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks.

    Science.gov (United States)

    Woellner, Michelle; Hausdorf, Steffen; Klein, Nicole; Mueller, Philipp; Smith, Martin W; Kaskel, Stefan

    2018-06-19

    The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Analysis of pollutants in air and water using gas chromatography and headspace gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, H.

    1980-01-01

    The combination 'personal sampling' with headspace gas chromatography to determine traces of formaldehyde, phenol and benzene in air is investigated in this work, with the aim of developing maximum workplace concentration values (MWL values). Further possible applications of gas chromatography in trace analysis in the environmentally protected area. The analysis of chromium in waste waters (Cr III as acetyl acetonate complex) is investigated as further possible application, whereby optimum conditions are obtained. A modified flame ionization detector was used to increase the detection sensitivity.

  13. Simulating the Snowball Stratosphere and Its Influence On CO2 Inference

    Science.gov (United States)

    Graham, R. J.; Shaw, T.; Abbot, D. S.

    2017-12-01

    According to the snowball Earth hypothesis, a large quantity of CO2 must build up during an event in order to cause eventual deglaciation. One prediction of this model is a depletion in atmospheric oxygen-17 as a result of stratospheric chemical reactions, which has been observed in preserved barite minerals. This represents one of the most dramatic and compelling pieces of evidence in support of the snowball Earth hypothesis. The inference of anomalous atmospheric oxygen-17 based on measurements of barite minerals, however, was made by assuming that the stratosphere-troposphere mass exchange rate and mixing within the stratosphere were the same as the present. In this contribution we test these assumptions with simulations of modern and snowball atmospheric conditions using the global climate model ECHAM5. Our simulations are still running, but we will have results to report by December.

  14. Dynamics and transport in the stratosphere : Simulations with a general circulation mode

    Science.gov (United States)

    van Aalst, Maarten Krispijn

    2005-01-01

    The middle atmosphere is strongly affected by two of the world's most important environmental problems: global climate change and stratospheric ozone depletion, caused by anthropogenic emissions of greenhouse gases and chlorofluorocarbons (CFCs), respectively. General circulation models with coupled chemistry are a key tool to advance our understanding of the complex interplay between dynamics, chemistry and radiation in the middle atmosphere. A key problem of such models is that they generate their own meteorology, and thus cannot be used for comparisons with instantaneous measurements. This thesis presents the first application of a simple data assimilation method, Newtonian relaxation, to reproduce realistic synoptical conditions in a state-of-the-art middle atmosphere general circulation model, MA-ECHAM. By nudging the model's meteorology slightly towards analyzed observations from a weather forecasting system (ECMWF), we have simulated specific atmospheric processes during particular meteorological episodes, such as the 1999/2000 Arctic winter. The nudging technique is intended to interfere as little as possible with the model's own dynamics. In fact, we found that we could even limit the nudging to the troposphere, leaving the middle atmosphere entirely free. In that setup, the model realistically reproduced many aspects of the instantaneous meteorology of the middle atmosphere, such as the unusually early major warming and breakup of the 2002 Antarctic vortex. However, we found that this required careful interpolation of the nudging data, and a correct choice of nudging parameters. We obtained the best results when we first projected the nudging data onto the model's normal modes so that we could filter out the (spurious) fast components. In a four-year simulation, for which we also introduced an additional nudging of the stratospheric quasi-biennial oscillation, we found that the model reproduced much of the interannual variability throughout the

  15. Post-entry and volcanic contaminant abundances of zinc, copper, selenium, germanium and gallium in stratospheric micrometeorites

    Science.gov (United States)

    Rietmeijer, Frans J. M.

    1995-01-01

    Some fraction of Zn, Cu, Se, Ga and Ge in chondritic interplanetary dust particles (IDPs) collected in the lower stratosphere between 1981 May and 1984 June has a volcanic origin. I present a method to evaluate the extent of this unavoidable type of stratospheric contamination for individual particles. The mass-normalized abundances for Cu and Ge as a function of mass-normalized stratospheric residence time show their time-integrated stratospheric aerosol abundances. The Zn, Se and Ga abundances show a subdivision into two groups that span approximately two-year periods following the eruptions of the Mount St. Helens (1980 May) and El Chichon (1982 April) volcanoes. Elemental abundances in particles collected at the end of each two-year period indicate low, but not necessarily ambient, volcanic stratospheric abundances. Using this time-integrated baseline, I calculate the straospheric contaminant fractions in nine IDPs and show that Zn, SE and Ga abundances in chondritic IDPs derive in part from stratospheric aerosol contaminants. Post-entry elemental abundances (i.e., the amount that survived atmospheric entry heating of the IDP) show enrichments relative to the CI abundances but in a smaller number of particles than previously suggested.

  16. Radioactive krypton gas separation

    International Nuclear Information System (INIS)

    Martin, J.R.

    1976-01-01

    Radioactive krypton is separated from a gas mixture comprising nitrogen and traces of carbon dioxide and radioactive krypton by selective adsorption and then cryogenic distillation of the prepurified gas against nitrogen liquid to produce krypton bottoms concentrate liquid, using the nitrogen gas from the distillation for two step purging of the adsorbent. 16 Claims, 8 Drawing Figures

  17. Global assimilation of X Project Loon stratospheric balloon observations

    Science.gov (United States)

    Coy, L.; Schoeberl, M. R.; Pawson, S.; Candido, S.; Carver, R. W.

    2017-12-01

    Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. Results show that in middle latitudes the Loon winds and DAS winds agree well and assimilating the Loon winds have only a small impact on short-term forecasting of the Loon winds, however, in the tropics the loon winds and DAS winds often disagree substantially (8 m/s or more in magnitude) and in these cases assimilating the loon winds significantly improves the forecast of the loon winds. By highlighting cases where the Loon and DAS winds differ, these results can lead to improved understanding of stratospheric winds, especially in the tropics.

  18. A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    Science.gov (United States)

    Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, G.; Jin, J. J.; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such

  19. Stratospheric General Circulation with Chemistry Model (SGCCM)

    Science.gov (United States)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  20. Age and gravitational separation of the stratospheric air over Indonesia

    Directory of Open Access Journals (Sweden)

    S. Sugawara

    2018-02-01

    Full Text Available The gravitational separation of major atmospheric components, in addition to the age of air, would provide additional useful information about stratospheric circulation. However, observations of the age of air and gravitational separation are still geographically sparse, especially in the tropics. In order to address this issue, air samples were collected over Biak, Indonesia in February 2015 using four large plastic balloons, each loaded with two compact cryogenic samplers. With a vertical resolution of better than 2 km, air samples from seven different altitudes were analyzed for CO2 and SF6 mole fractions, δ15N of N2, δ18O of O2, and δ(Ar∕N2 to examine the vertically dependent age and gravitational separation of air in the tropical tropopause layer (TTL and the equatorial stratosphere. By comparing their measured mole fractions with aircraft observations in the upper tropical troposphere, we have found that CO2 and SF6 ages increase gradually with increasing altitude from the TTL to 22 km, and then rapidly from there up to 29 km. The CO2 and SF6 ages agree well with each other in the TTL and in the lower stratosphere, but show a significant difference above 24 km. The average values of δ15N of N2, δ18O of O2, and δ(Ar∕N2 all show a small but distinct upward decrease due to the gravitational separation effect. Simulations with a two-dimensional atmospheric transport model indicate that the gravitational separation effect decreases as tropical upwelling is enhanced. From the model calculations with enhanced eddy mixing, it is also found that the upward increase in air age is magnified by horizontal mixing. These model simulations also show that the gravitational separation effect remains relatively constant in the lower stratosphere. The results of this study strongly suggest that the gravitational separation, combined with the age of air, can be used to diagnose air transport processes in the stratosphere.

  1. The heating rate in the tropical tropopause region; Die Erwaermungsrate in der tropischen Tropopausenregion

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Ulrich

    2010-07-01

    The major part of the movement of air masses from the troposphere to the stratosphere takes place in the tropics. The conveyed air mass is transported with the Brewer-Dobson circulation poleward and therefore influences the global stratospheric composition. An important cause variable for the transport of air through the tropical tropopause layer (TTL) is the radiative heating, which is investigated in this work. The influence of trace gases, temperature, and cloudiness on the heating rate is quantified, especially the effect of the overlap of several cloud layers is discussed. The heating rate in the tropics is simulated for one year. Regional differences of the heating rate profile appear between convective and stably stratified regions. By means of trace gas concentrations, temperature, and heating rates it is determined that an enhanced transport of air through the TTL took place between January and April 2007. The comparison with previous works shows that accurate input data sets of trace gases, temperature, and cloudiness and exact methods for the simulation of the radiative transfer are indispensable for modeling of the heating rate with the required accuracy. (orig.)

  2. An Atlantic streamer in stratospheric ozone observations and SD-WACCM simulation data

    Science.gov (United States)

    Hocke, Klemens; Schranz, Franziska; Maillard Barras, Eliane; Moreira, Lorena; Kämpfer, Niklaus

    2017-03-01

    Observation and simulation of individual ozone streamers are important for the description and understanding of non-linear transport processes in the middle atmosphere. A sudden increase in mid-stratospheric ozone occurred above central Europe on 4 December 2015. The GROund-based Millimeter-wave Ozone Spectrometer (GROMOS) and the Stratospheric Ozone MOnitoring RAdiometer (SOMORA) in Switzerland measured an ozone enhancement of about 30 % at 34 km altitude (8.3 hPa) from 1 to 4 December. A similar ozone increase is simulated by the Specified Dynamics Whole Atmosphere Community Climate (SD-WACCM) model. Further, the global ozone fields at 34 km altitude (8.3 hPa) from SD-WACCM and the satellite experiment Aura/MLS show a remarkable agreement for the location and timing of an ozone streamer (large-scale tongue-like structure) extending from the subtropics in northern America over the Atlantic to central Europe. This agreement indicates that SD-WACCM can inform us about the wind inside the Atlantic ozone streamer. SD-WACCM shows an eastward wind of about 100 m s-1 inside the Atlantic streamer in the mid-stratosphere. SD-WACCM shows that the Atlantic streamer flows along the edge of the polar vortex. The Atlantic streamer turns southward at an erosion region of the polar vortex located above the Caspian Sea. The spatial distribution of stratospheric water vapour indicates a filament outgoing from this erosion region. The Atlantic streamer, the polar vortex erosion region and the water vapour filament belong to the process of planetary wave breaking in the so-called surf zone of the northern midlatitude winter stratosphere.

  3. Stratospheric contribution to the global bomb radiocarbon inventory: Model versus observation

    International Nuclear Information System (INIS)

    Broecker, W.S.; Peng, T.H.

    1994-01-01

    An attempt is made, through modeling, to account for the decline in the 14 C/C ratio in atmospheric CO 2 after its bomb-test induced peak in 1963. The model suggests that as of 1964 about one third of the bomb 14 C remained in the stratosphere and that it was released to the troposphere with an e-folding time of about seven years. By contrast, measurements carried out in the stratosphere suggest that at that time the excess was closer to one quarter of the total and that e-folding time for its decline was 3±1 years. The anomaly between model and observation cannot be attributed solely to an inadequacy in the representation of the terrestrial biosphere. Rather, it must reflect either an inadequacy in the ocean model or in the measured stratospheric inventories. 24 refs., 9 figs., 4 tabs

  4. TRACING COLD H I GAS IN NEARBY, LOW-MASS GALAXIES

    International Nuclear Information System (INIS)

    Warren, Steven R.; Skillman, Evan D.; Stilp, Adrienne M.; Dalcanton, Julianne J.; Ott, Jürgen; Walter, Fabian; Petersen, Eric A.; Koribalski, Bärbel; West, Andrew A.

    2012-01-01

    We analyze line-of-sight atomic hydrogen (H I) line profiles of 31 nearby, low-mass galaxies selected from the Very Large Array—ACS Nearby Galaxy Survey Treasury (VLA-ANGST) and The H I Nearby Galaxy Survey (THINGS) to trace regions containing cold (T ∼ –1 . Our galaxy sample spans four orders of magnitude in total H I mass and nine magnitudes in M B . We fit single and multiple component functions to each spectrum to isolate the cold, neutral medium given by a low-dispersion ( –1 ) component of the spectrum. Most H I spectra are adequately fit by a single Gaussian with a dispersion of 8-12 km s –1 . Cold H I is found in 23 of 27 (∼85%) galaxies after a reduction of the sample size due to quality-control cuts. The cold H I contributes ∼20% of the total line-of-sight flux when found with warm H I. Spectra best fit by a single Gaussian, but dominated by cold H I emission (i.e., have velocity dispersions of –1 ), are found primarily beyond the optical radius of the host galaxy. The cold H I is typically found in localized regions and is generally not coincident with the very highest surface density peaks of the global H I distribution (which are usually areas of recent star formation). We find a lower limit for the mass fraction of cold-to-total H I gas of only a few percent in each galaxy.

  5. Trace element emissions from coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    Trace elements are emitted during coal combustion. The quantity, in general, depends on the physical and chemical properties of the element itself, the concentration of the element in the coal, the combustion conditions and the type of particulate control device used, and its collection efficiency as a function of particle size. Some trace elements become concentrated in certain particle streams following combustion such as bottom ash, fly ash, and flue gas particulate matter, while others do not. Various classification schemes have been developed to describe this partitioning behaviour. These classification schemes generally distinguish between: Class 1: elements that are approximately equally concentrated in the fly ash and bottom ash, or show little or no fine particle enrichment, examples include Mn, Be, Co and Cr; Class 2: elements that are enriched in the fly ash relative to bottom ash, or show increasing enrichment with decreasing particle size, examples include As, Cd, Pb and Sb; Class 3: elements which are emitted in the gas phase (primarily Hg (not discussed in this review), and in some cases, Se). Control of class 1 trace elements is directly related to control of total particulate matter emissions, while control of the class 2 elements depends on collection of fine particulates. Due to the variability in particulate control device efficiencies, emission rates of these elements can vary substantially. The volatility of class 3 elements means that particulate controls have only a limited impact on the emissions of these elements.

  6. The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-12-01

    Full Text Available The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δ13C and 119 samples for δD, increasing the previously published dataset for balloon borne samples by an order of magnitude, and more than doubling the total available stratospheric data (including aircraft samples published to date. The samples also cover a large range in mixing ratio from tropospheric values near 1800 ppb down to only 250 ppb, and the strong isotope fractionation processes accordingly increase the isotopic composition up to δ13C = −14‰ and δD = +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. The isotopic composition of CH4 in the stratosphere is affected by both chemical and dynamical processes. This severely hampers interpretation of the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D and Cl. It is shown that a formal sink partitioning using the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the lower stratosphere. Full quantitative interpretation of the CH4 isotope data in terms of the three sink reactions requires a global model.

  7. Influence of Aerosol Heating on the Stratospheric Transport of the Mt. Pinatubo Eruption

    Science.gov (United States)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.

    2011-01-01

    On June 15th, 1991 the eruption of Mt. Pinatubo (15.1 deg. N, 120.3 Deg. E) in the Philippines injected about 20 Tg of sulfur dioxide in the stratosphere, which was transformed into sulfuric acid aerosol. The large perturbation of the background aerosol caused an increase in temperature in the lower stratosphere of 2-3 K. Even though stratospheric winds climatological]y tend to hinder the air mixing between the two hemispheres, observations have shown that a large part of the SO2 emitted by Mt. Pinatubo have been transported from the Northern to the Southern Hemisphere. We simulate the eruption of Mt. Pinatubo with the Goddard Earth Observing System (GEOS) version 5 global climate model, coupled to the aerosol module GOCART and the stratospheric chemistry module StratChem, to investigate the influence of the eruption of Mt. Pinatubo on the stratospheric transport pattern. We perform two ensembles of simulations: the first ensemble consists of runs without coupling between aerosol and radiation. In these simulations the plume of aerosols is treated as a passive tracer and the atmosphere is unperturbed. In the second ensemble of simulations aerosols and radiation are coupled. We show that the set of runs with interactive aerosol produces a larger cross-equatorial transport of the Pinatubo cloud. In our simulations the local heating perturbation caused by the sudden injection of volcanic aerosol changes the pattern of the stratospheric winds causing more intrusion of air from the Northern into the Southern Hemisphere. Furthermore, we perform simulations changing the injection height of the cloud, and study the transport of the plume resulting from the different scenarios. Comparisons of model results with SAGE II and AVHRR satellite observations will be shown.

  8. Ability of the CCSR-NIES atmospheric general circulation model in the stratosphere. Chapter 3

    International Nuclear Information System (INIS)

    Sugata, S.

    1997-01-01

    A quantitative evaluation of climate change such as global warming is impossible without a high-quality numerical model which describes the dynamics of the climate system and the circulation of energy and materials. The Center for Climate Research - National Institute for Environmental Studies (CCSR-NIES) atmospheric general circulation model (hereafter, GCM for a general circulation model) has been developed to obtain such a high-quality model. The emphasis of the development has been laid on the troposphere and the lower stratosphere below about 30 km altitude. This is natural because human beings live on the Earth's surface and the condition of the lower atmosphere directly affects human life. However, the stratosphere and the upper atmosphere beyond it have recently been the focus even in investigations of climate change, because they are relevant to many issues which relate closely to tropospheric climate change, such as the ozone hole, material exchange between the stratosphere and the troposphere, and physical interaction between the stratosphere and troposphere. This study extended the region of the CCSR-NIES GCM to the lower mesosphere (about 70 km from the surface). This is our first attempt to investigate this GCM's climatology in the upper atmosphere, although some studies for QBO in the middle and lower stratosphere had been done with the GCM

  9. Exposing Microorganisms in the Stratosphere for Planetary Protection

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth’s stratosphere is similar to the surface of Mars: rarified air which is dry, cold, and irradiated. E-MIST is a balloon payload that has 4 independently...

  10. A stratospheric aerosol increase

    Science.gov (United States)

    Rosen, J. M.; Hofmann, D. J.

    1980-01-01

    Large disturbances were noted in the stratospheric aerosol content in the midlatitude Northern Hemisphere commencing about 7 months after the eruption of La Soufriere and less than 1 month after the eruption of Sierra Negra. The aerosol was characterized by a very steep size distribution in the 0.15 to 0.25 micron radius range and contained a volatile component. Measurements near the equator and at the South Pole indicate that the disturbance was widespread. These observations were made before the May 18 eruption of Mt. St. Helens.

  11. Stratospheric ethane on Neptune - Comparison of groundbased and Voyager IRIS retrievals

    Science.gov (United States)

    Kostiuk, Theodor; Romani, Paul; Espenak, Fred; Bezard, Bruno

    1992-01-01

    Near-simultaneous ground and spacecraft measurements of 12-micron ethane emission spectra during the Voyager encounter with Neptune have furnished bases for the determination of stratospheric ethane abundance and the testing and constraining of Neptune methane-photochemistry models. The ethane retrievals were sensitive to the thermal profile used. Contribution functions for warm thermal profiles peaked at higher altitudes, as expected, with the heterodyne functions covering lower-pressure regions. Both constant- and nonconstant-with-height profiles remain candidate distributions for Neptune's stratospheric ethane.

  12. Computation and analysis of backward ray-tracing in aero-optics flow fields.

    Science.gov (United States)

    Xu, Liang; Xue, Deting; Lv, Xiaoyi

    2018-01-08

    A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.

  13. The effect of stratospheric sulfur from Mount Pinatubo on tropospheric oxidizing capacity and methane

    NARCIS (Netherlands)

    Banda, Narcissa; Krol, Maarten; van Noije, Twan; van Weele, Michiel; Williams, Jason E.; Sager, Philippe Le; Niemeier, Ulrike; Thomason, Larry; Röckmann, Thomas

    2015-01-01

    The eruption of Mount Pinatubo in 1991 injected a large amount of SO2 into the stratosphere, which formed sulfate aerosols. Increased scattering and absorption of UV radiation by the enhanced stratospheric SO2 and aerosols decreased the amount of UV radiation reaching the troposphere, causing

  14. Contrasting Effects of Central Pacific and Eastern Pacific El Nino on Stratospheric Water Vapor

    Science.gov (United States)

    Garfinkel, Chaim I.; Hurwitz, Margaret M.; Oman, Luke D.; Waugh, Darryn W.

    2013-01-01

    Targeted experiments with a comprehensive chemistry-climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv.

  15. Measurements of stratospheric Pinatubo aerosol extinction profiles by a Raman lidar

    International Nuclear Information System (INIS)

    Abo, Makoto; Nagasawa, Chikao.

    1992-01-01

    The Raman lidar has been used for remote measurements of water vapor, ozone and atmospheric temperature in the lower troposphere because the Raman cross section is three orders smaller than the Rayleigh cross section. The authors estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman lidar. If the precise aerosol extinction coefficients are derived, the backscatter coefficient of a Mie scattering lidar will be more accurately estimated. The Raman lidar has performed to measure density profiles of some species using Raman scattering. Here the authors used a frequency-doubled Nd:YAG laser for transmitter and received nitrogen vibrational Q-branch Raman scattering signal. Ansmann et al. (1990) derived tropospherical aerosol extinction profiles with a Raman lidar. The authors think that this method can apply to dense stratospheric aerosols such as Pinatubo volcanic aerosols. As dense aerosols are now accumulated in the stratosphere by Pinatubo volcanic eruption, the error of Ramen lidar signal regarding the fluctuation of air density can be ignored

  16. Impact and mitigation of stratospheric ozone depletion by chemical rockets

    International Nuclear Information System (INIS)

    Mcdonald, A.J.

    1992-03-01

    The American Institute of Aeronautics and Astronautics (AIAA) conducted a workshop in conjunction with the 1991 AIAA Joint Propulsion Conference in Sacramento, California, to assess the impact of chemical rocket propulsion on the environment. The workshop included recognized experts from the fields of atmospheric physics and chemistry, solid rocket propulsion, liquid rocket propulsion, government, and environmental agencies, and representatives from several responsible environmental organizations. The conclusion from this workshop relative to stratospheric ozone depletion was that neither solid nor liquid rocket launchers have a significant impact on stratospheric ozone depletion, and that there is no real significant difference between the two

  17. Interannual and Decadal Variations of Planetary Wave Activity, Stratospheric Cooling, and Northern Hemisphere Annular Mode.

    Science.gov (United States)

    Hu, Yongyun; Kit Tung, Ka

    2002-07-01

    Using NCEP-NCAR 51-yr reanalysis data, the interannual and decadal variations of planetary wave activity and its relationship to stratospheric cooling, and the Northern Hemisphere Annular mode (NAM), are studied. It is found that winter stratospheric polar temperature is highly correlated on a year-to-year basis with the Eliassen-Palm (E-P) wave flux from the troposphere, implying a dynamical control of the former by the latter, as often suggested. Greater (lower) wave activity from the troposphere implies larger (smaller) poleward heat flux into the polar region, which leads to warmer (colder) polar temperature. A similar highly correlated antiphase relationship holds for E-P flux divergence and the strength of the polar vortex in the stratosphere. It is tempting to extrapolate these relationships found for interannual timescales to explain the recent stratospheric polar cooling trend in the past few decades as caused by decreased wave activity in the polar region. This speculation is not supported by the data. On timescales of decades the cooling trend is not correlated with the trend in planetary wave activity. In fact, it is found that planetary wave amplitude, E-P flux, and E-P flux convergence all show little statistical evidence of decrease in the past 51 yr, while the stratosphere is experiencing a cooling trend and the NAM index has a positive trend during the past 30 yr. This suggests that the trends in the winter polar temperature and the NAM index can reasonably be attributed to the radiative cooling of the stratosphere, due possibly to increasing greenhouse gases and ozone depletion. It is further shown that the positive trend of the NAM index in the past few decades is not through the inhibition of upward planetary wave propagation from the troposphere to the stratosphere, as previously suggested.

  18. How does Interactive Chemistry Influence the Representation of Stratosphere-Troposphere Coupling in a Climate Model?

    Science.gov (United States)

    Haase, S.; Matthes, K. B.

    2017-12-01

    Changes in stratospheric ozone can trigger tropospheric circulation changes. In the Southern hemisphere (SH), the observed shift of the Southern Annular Mode was attributed to the observed trend in lower stratospheric ozone. In the Northern Hemisphere (NH), a recent study showed that extremely low stratospheric ozone conditions during spring produce robust anomalies in the troposphere (zonal wind, temperature and precipitation). This could only be reproduced in a coupled chemistry climate model indicating that chemical-dynamical feedbacks are also important on the NH. To further investigate the importance of interactive chemistry for surface climate, we conducted a set of experiments using NCAR's Community Earth System Model (CESM1) with the Whole Atmosphere Community Climate Model (WACCM) as the atmosphere component. WACCM contains a fully interactive stratospheric chemistry module in its standard configuration. It also allows for an alternative configuration, referred to as SC-WACCM, in which the chemistry (O3, NO, O, O2, CO2 and chemical and shortwave heating rates) is specified as a 2D field in the radiation code. A comparison of the interactive vs. the specified chemistry version enables us to evaluate the relative importance of interactive chemistry by systematically inhibiting the feedbacks between chemistry and dynamics. To diminish the effect of temporal interpolation when prescribing ozone, we use daily resolved zonal mean ozone fields for the specified chemistry run. Here, we investigate the differences in stratosphere-troposphere coupling between the interactive and specified chemistry simulations for the mainly chemically driven SH as well as for the mainly dynamically driven NH. We will especially consider years that are characterized by extremely low stratospheric ozone on the one hand and by large dynamical disturbances, i.e. Sudden Stratospheric Warmings, on the other hand.

  19. Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP

    Science.gov (United States)

    Davis, Sean M.; Hegglin, Michaela I.; Fujiwara, Masatomo; Dragani, Rossana; Harada, Yayoi; Kobayashi, Chiaki; Long, Craig; Manney, Gloria L.; Nash, Eric R.; Potter, Gerald L.; Tegtmeier, Susann; Wang, Tao; Wargan, Krzysztof; Wright, Jonathon S.

    2017-10-01

    Reanalysis data sets are widely used to understand atmospheric processes and past variability, and are often used to stand in as "observations" for comparisons with climate model output. Because of the central role of water vapor (WV) and ozone (O3) in climate change, it is important to understand how accurately and consistently these species are represented in existing global reanalyses. In this paper, we present the results of WV and O3 intercomparisons that have been performed as part of the SPARC (Stratosphere-troposphere Processes and their Role in Climate) Reanalysis Intercomparison Project (S-RIP). The comparisons cover a range of timescales and evaluate both inter-reanalysis and observation-reanalysis differences. We also provide a systematic documentation of the treatment of WV and O3 in current reanalyses to aid future research and guide the interpretation of differences amongst reanalysis fields.The assimilation of total column ozone (TCO) observations in newer reanalyses results in realistic representations of TCO in reanalyses except when data coverage is lacking, such as during polar night. The vertical distribution of ozone is also relatively well represented in the stratosphere in reanalyses, particularly given the relatively weak constraints on ozone vertical structure provided by most assimilated observations and the simplistic representations of ozone photochemical processes in most of the reanalysis forecast models. However, significant biases in the vertical distribution of ozone are found in the upper troposphere and lower stratosphere in all reanalyses.In contrast to O3, reanalysis estimates of stratospheric WV are not directly constrained by assimilated data. Observations of atmospheric humidity are typically used only in the troposphere, below a specified vertical level at or near the tropopause. The fidelity of reanalysis stratospheric WV products is therefore mainly dependent on the reanalyses' representation of the physical drivers that

  20. Godiva, a European Project for Ozone and Trace Gas Measurements from GOME

    Science.gov (United States)

    Goede, A. P. H.; Tanzi, C. P.; Aben, I.; Burrows, J. P.; Weber, M.; Perner, D.; Monks, P. S.; Llewellyn-Jones, D.; Corlett, G. K.; Arlander, D. W.; Platt, U.; Wagner, T.; Pfeilsticker, K.; Taalas, P.; Kelder, H.; Piters, A.

    GODIVA (GOME Data Interpretation, Validation and Application) is a European Commission project aimed at the improvement of GOME (Global Ozone Monitoring Experiment) data products. Existing data products include global ozone, NO2 columns and (ir)radiances. Advanced data products include O3 profiles, BrO, HCHO and OCIO columns. These data are validated by ground-based and balloon borne instruments. Calibration issues are investigated by in-flight monitoring using several complementary calibration sources, as well as an on-ground replica of the GOME instrument. The results will lead to specification of operational processing of the EUMETSAT ozone Satellite Application Facility as well as implementation of the improved and new GOME data products in the NILU database for use in the European THESEO (Third European Stratospheric Experiment on Ozone) campaign of 1999

  1. PANTHER Data from SOLVE-II Through CR-AVE: A Contrast Between Long and Short Lived Compounds.

    Science.gov (United States)

    Moore, F. L.; Dutton, G. S.; Elkins, J. W.; Hall, B. D.; Hurst, D. F.; Nance, J. D.; Thompson, T. M.

    2006-12-01

    PANTHER (PAN and other Trace Hydrohalocarbons ExpeRiment) is an airborne 6-channel gas chromatograph that measures approximately 20 important atmospheric trace gases whose changing burdens impact air quality, climate change and both stratospheric and tropospheric ozone. In this presentation we will contrast measurements of the long-lived compounds against the short-lived compounds. The long-lived compounds tend to have well-defined troposphere boundary conditions and develop spatial gradients due to stratospheric processing. These measurements have played a major role in quantifying stratospheric transport, stratosphere- troposphere exchange, and ozone loss. In contrast the short-lived species develop spatial and temporal gradients in the tropical tropopause layer (TTL), due to variations in the surface boundary layer concentrations and the coupling of this surface boundary layer to the TTL via convective processes. Deep convection acts like a "conveyor belt" between the source region in the boundary layer and the relatively stable TTL region, often bypassing the free troposphere where scavenging of these short lived species takes place. Loss rates due to reaction with OH and thermal decomposition are reduced in the cold, dry air of the TTL, resulting in longer survival times. Isolation of the TTL region from the free troposphere can last from days to over a month. Significant amounts of these short-lived compound and their byproducts can therefore be transported into the lower stratosphere (LS). Of particular interest are compounds that contain bromine, iodine, and sulfur, not only because of their intrinsic harmful effects in the atmosphere, but also because they have unique source and sink regions that can help to de- convolve transport.

  2. The effect of stratospheric sulfur from Mount Pinatubo on tropospheric oxidizing capacity and methane

    NARCIS (Netherlands)

    Bândə, Narcisa; Krol, Maarten; Noije, Van Twan; Weele, Van Michiel; Williams, Jason E.; Sager, Philippe Le; Niemeier, Ulrike; Thomason, Larry; Röckmann, Thomas

    2015-01-01

    The eruption of Mount Pinatubo in 1991 injected a large amount of SO2 into the stratosphere, which formed sulfate aerosols. Increased scattering and absorption of UV radiation by the enhanced stratospheric SO2 and aerosols decreased the amount of UV radiation reaching the

  3. A New Formulation of Equivalent Effective Stratospheric Chlorine (EESC)

    Science.gov (United States)

    Newman, P. A.; Daniel, J. S.; Waugh, D. W.; Nash, E. R.

    2007-01-01

    Equivalent effective stratospheric chlorine (EESC) is a convenient parameter to quantify the effects of halogens (chlorine and bromine) on ozone depletion in the stratosphere. We show and discuss a new formulation of EESC that now includes the effects of age-of-air dependent fractional release values and an age-of-air spectrum. This new formulation provides quantitative estimates of EESC that can be directly related to inorganic chlorine and bromine throughout the stratosphere. Using this EESC formulation, we estimate that human-produced ozone depleting substances will recover to 1980 levels in 2041 in the midlatitudes, and 2067 over Antarctica. These recovery dates are based upon the assumption that the international agreements for regulating ozone-depleting substances are adhered to. In addition to recovery dates, we also estimate the uncertainties in the estimated time of recovery. The midlatitude recovery of 2041 has a 95% confidence uncertainty from 2028 to 2049, while the 2067 Antarctic recovery has a 95% confidence uncertainty from 2056 to 2078. The principal uncertainties are from the estimated mean age-of-air, and the assumption that the mean age-of-air and fractional release values are time independent. Using other model estimates of age decrease due to climate change, we estimate that midlatitude recovery may be accelerated from 2041 to 2031.

  4. Variations in the free chlorine content of the stratosphere (1991-1997): Anthropogenic, volcanic, and methane influences

    International Nuclear Information System (INIS)

    Froidevaux, L.; Waters, J. W.; Read, W. G.; Connell, P. S.; Kinnison, D. E.; Russell, J. M. III

    2000-01-01

    Remote sensing of chlorine monoxide (ClO) by the Microwave Limb Sounder experiment aboard the Upper Atmosphere Research Satellite (UARS) has provided global measurements of variations in stratospheric free chlorine for 1991-1997. Linear trends were obtained from a multiple regression analysis of this data set at low latitudes and midlatitudes. ClO increases in the upper stratosphere (2 hPa) are significantly larger than expected from trends in chlorine source gases alone. Much of the upper stratospheric ClO variability can be explained by changes in CH 4 , as measured by the UARS Halogen Occultation Experiment. Decreasing ClO in the lower stratosphere is consistent with a relaxation from a chemically perturbed state attributed to the 1991 Mt. Pinatubo eruption. (c) 2000 American Geophysical Union

  5. Trace Contaminant Monitor for Air in Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A need exists for analyzers that can measure trace contaminants in air on board spacecraft. Toxic gas buildup can endanger the crew particularly during long...

  6. A global analysis of the ozone deficit in the upper stratosphere and lower mesosphere

    Science.gov (United States)

    Eluszkiewicz, Janusz; Allen, Mark

    1993-01-01

    The global measurements of temperature, ozone, water vapor, and nitrogen dioxide acquired by the Limb Infrared Monitor of the Stratosphere (LIMS), supplemented by a precomputed distribution of chlorine monoxide, are used to test the balance between odd oxygen production and loss in the upper stratosphere and lower mesosphere. An efficient photochemical equilibrium model, whose validity is ascertained by comparison with the results from a fully time-dependent one-dimensional model at selected latitudes, is used in the calculations. The computed ozone abundances are systematically lower than observations for May 1-7, 1979, which suggests, contrary to the conclusions of other recent studies, a real problem in model simulations of stratospheric ozone.

  7. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  8. Stratospheric temperatures and tracer transport in a nudged 4-year middle atmosphere GCM simulation

    Science.gov (United States)

    van Aalst, M. K.; Lelieveld, J.; Steil, B.; Brühl, C.; Jöckel, P.; Giorgetta, M. A.; Roelofs, G.-J.

    2005-02-01

    We have performed a 4-year simulation with the Middle Atmosphere General Circulation Model MAECHAM5/MESSy, while slightly nudging the model's meteorology in the free troposphere (below 113 hPa) towards ECMWF analyses. We show that the nudging 5 technique, which leaves the middle atmosphere almost entirely free, enables comparisons with synoptic observations. The model successfully reproduces many specific features of the interannual variability, including details of the Antarctic vortex structure. In the Arctic, the model captures general features of the interannual variability, but falls short in reproducing the timing of sudden stratospheric warmings. A 10 detailed comparison of the nudged model simulations with ECMWF data shows that the model simulates realistic stratospheric temperature distributions and variabilities, including the temperature minima in the Antarctic vortex. Some small (a few K) model biases were also identified, including a summer cold bias at both poles, and a general cold bias in the lower stratosphere, most pronounced in midlatitudes. A comparison 15 of tracer distributions with HALOE observations shows that the model successfully reproduces specific aspects of the instantaneous circulation. The main tracer transport deficiencies occur in the polar lowermost stratosphere. These are related to the tropopause altitude as well as the tracer advection scheme and model resolution. The additional nudging of equatorial zonal winds, forcing the quasi-biennial oscillation, sig20 nificantly improves stratospheric temperatures and tracer distributions.

  9. Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century

    Directory of Open Access Journals (Sweden)

    A. Banerjee

    2018-02-01

    Full Text Available The ozone radiative forcings (RFs resulting from projected changes in climate, ozone-depleting substances (ODSs, non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry–climate model (UK Met Office's Unified Model containing the United Kingdom Chemistry and Aerosols sub-model. Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of −0.09 W m−2. This is opposed by a positive ozone RF of 0.05 W m−2 due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario is found to drive an ozone RF of 0.18 W m−2, which would greatly outweigh the climate benefits of non-methane tropospheric ozone precursor reductions. A small fraction (∼ 15 % of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m−2 for RCP4.5 and a negative RF (−0.07 W m−2 for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02| W m−2 for the stratospheric, tropospheric and whole-atmosphere RFs.

  10. Mass spectrometric investigation of the isotopes of ozone in the laboratory and the stratosphere

    International Nuclear Information System (INIS)

    Mauersberger, K.; Morton, J.; Schueler, B.

    1991-01-01

    During the last few years information on the isotope anomalies of ozone has substantially increased. Whenever ozone is formed in a gas phase reaction, an enhancement in its heavy isotopes is found of magnitude 12-14% ( 50 O 3 ) above the statistically expected values. The mass-independent enhancement decreases toward higher pressures and also shows a pronounced temperature dependence. Toward lower temperatures the enhancement becomes less. Studies of all possible ozone isotopes have shown that molecular symmetry plays a major role. Even large enhancements, above the laboratory results, have been occasionally measured in the stratosphere using a number of different experimental techniques. A correlation between very high heavy ozone enhancement (> 30%) and high solar activity may exist. The behavior of ozone isotopes will provide information about the ozone formation process

  11. Analytical study of a gas of gluonic quasiparticles at high temperature: Effective mass, pressure, and trace anomaly

    International Nuclear Information System (INIS)

    Giacosa, Francesco

    2011-01-01

    The thermodynamical properties of a pure Yang-Mills theory SU(N) is described by a gas of gluonic quasiparticles with temperature-dependent mass m(T) and a bag function B(T). The analytic behavior of m(T) and the pressure p in the temperature range 2.5-5T c are derived and constraints on the parameters defining B(T) are discussed. The trace anomaly θ=ρ-3p is evaluated in the high T domain: it is dominated by a quadratic behavior θ=nKT 2 , where n=2(N 2 -1) is the number of degrees of freedom and K is an integration constant which does not depend on the bag function B(T). The quadratic rise of θ is in good agreement with recent lattice simulations.

  12. Role of Stratospheric Water Vapor in Global Warming from GCM Simulations Constrained by MLS Observation

    Science.gov (United States)

    Wang, Y.; Stek, P. C.; Su, H.; Jiang, J. H.; Livesey, N. J.; Santee, M. L.

    2014-12-01

    Over the past century, global average surface temperature has warmed by about 0.16°C/decade, largely due to anthropogenic increases in well-mixed greenhouse gases. However, the trend in global surface temperatures has been nearly flat since 2000, raising a question regarding the exploration of the drivers of climate change. Water vapor is a strong greenhouse gas in the atmosphere. Previous studies suggested that the sudden decrease of stratospheric water vapor (SWV) around 2000 may have contributed to the stall of global warming. Since 2004, the SWV observed by Microwave Limb Sounder (MLS) on Aura satellite has shown a slow recovery. The role of recent SWV variations in global warming has not been quantified. We employ a coupled atmosphere-ocean climate model, the NCAR CESM, to address this issue. It is found that the CESM underestimates the stratospheric water vapor by about 1 ppmv due to limited representations of the stratospheric dynamic and chemical processes important for water vapor variabilities. By nudging the modeled SWV to the MLS observation, we find that increasing SWV by 1 ppmv produces a robust surface warming about 0.2°C in global-mean when the model reaches equilibrium. Conversely, the sudden drop of SWV from 2000 to 2004 would cause a surface cooling about -0.08°C in global-mean. On the other hand, imposing the observed linear trend of SWV based on the 10-year observation of MLS in the CESM yields a rather slow surface warming, about 0.04°C/decade. Our model experiments suggest that SWV contributes positively to the global surface temperature variation, although it may not be the dominant factor that drives the recent global warming hiatus. Additional sensitivity experiments show that the impact of SWV on surface climate is mostly governed by the SWV amount at 100 hPa in the tropics. Furthermore, the atmospheric model simulations driven by observed sea surface temperature (SST) show that the inter-annual variation of SWV follows that of SST

  13. Satellite studies of the stratospheric aerosol

    International Nuclear Information System (INIS)

    McCormick, M.P.; Hamill, P.; Pepin, T.J.; Chu, W.P.; Swissler, T.J.; McMaster, L.R.

    1979-01-01

    The potential climatological and environmental importance of the stratospheric aerosol layer has prompted great interest in measuring the properties of this aerosol. In this paper we report on two recently deployed NASA satellite systems (SAM II and SAGE) that are monitoring the stratospheric aerosol. The satellite orbits are such that nearly global coverage is obtained. The instruments mounted in the spacecraft are sun photometers that measure solar intensity at specific wavelengths as it is moderated by atmospheric particulates and gases during each sunrise and sunset encountered by the satellites. The data obtained are ''inverted'' to yield vertical aerosol and gaseous (primarily ozone) extinction profiles with 1 km vertical resolution. Thus, latitudinal, longitudinal, and temporal variations in the aerosol layer can be evaluated. The satellite systems are being validated by a series of ground truth experiments using airborne and ground lidar, balloon-borne dustsondes, aircraft-mounted impactors, and other correlative sensors. We describe the SAM II and SAGE satellite systems, instrument characteristics, and mode of operation; outline the methodology of the experiments; and describe the ground truth experiments. We present preliminary results from these measurements

  14. Development of the Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) Instrument

    Science.gov (United States)

    DeLand, M. T.; Colarco, P. R.; Kowalewski, M. G.; Gorkavyi, N.; Ramos-Izquierdo, L.

    2017-12-01

    Aerosol particles in the stratosphere ( 15-25 km altitude), both produced naturally and perturbed by volcanic eruptions and anthropogenic emissions, continue to be a source of significant uncertainty in the Earth's energy budget. Stratospheric aerosols can offset some of the warming effects caused by greenhouse gases. These aerosols are currently monitored using measurements from the Ozone Mapping and Profiling Suite (OMPS) Limb Profiler (LP) instrument on the Suomi NPP satellite. In order to improve the sensitivity and spatial coverage of these aerosol data, we are developing an aerosol-focused compact version of the OMPS LP sensor called Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) to fly on a 3U Cubesat satellite, using a NASA Instrument Incubator Program (IIP) grant. This instrument will make limb viewing measurements of the atmosphere in multiple directions simultaneously, and uses only a few selected wavelengths to reduce size and cost. An initial prototype version has been constructed using NASA GSFC internal funding and tested in the laboratory. Current design work is targeted towards a preliminary field test in Spring 2018. We will discuss the scientific benefits of MASTAR and the status of the project.

  15. Forecast, observation and modelling of a deep stratospheric intrusion event over Europe

    Directory of Open Access Journals (Sweden)

    P. Zanis

    2003-01-01

    Full Text Available A wide range of measurements was carried out in central and southeastern Europe within the framework of the EU project STACCATO (Influence of Stratosphere-Troposphere Exchange in a Changing Climate on Atmospheric Transport and Oxidation Capacity with the principle goal to create a comprehensive data set on stratospheric air intrusions into the troposphere along a rather frequently observed pathway over central Europe from the North Sea to the Mediterranean Sea. The measurements were based on predictions by suitable quasi-operational trajectory calculations using ECMWF forecast data. A predicted deep Stratosphere to Troposphere Transport (STT event, encountered during the STACCATO period on 20-21 June 2001, was followed by the measurements network almost from its inception. Observations provide evidence that the intrusion affected large parts of central and southeastern Europe. Especially, the ozone lidar observations on 20-21 June 2001 at Garmisch-Partenkirchen, Germany captured the evolution of two marked tongues of high ozone with the first one descending to nearly 2 km, thus providing an excellent data set for model intercomparisons and validation. In addition, for the first time to our knowledge concurrent surface measurements of the cosmogenic radionuclides 10Be and 7Be and their ratio 10Be/7Be are presented together as stratospheric tracers in a case study of a stratospheric intrusion. The ozone tracer columns calculated with the FLEXPART model were found to be in good agreement with water vapour satellite images, capturing the evolution of the observed dry streamers of stratospheric origin. Furthermore, the time-height cross section of ozone tracer simulated with FLEXPART over Garmisch-Partenkirchen captures many details of the evolution of the two observed high-ozone filaments measured with the IFU lidar, thus demonstrating the considerable progress in model simulations. Finally, the modelled ozone (operationally available since October

  16. Equatorial Oscillation and Planetary Wave Activity in Saturn's Stratosphere Through the Cassini Epoch

    Science.gov (United States)

    Guerlet, S.; Fouchet, T.; Spiga, A.; Flasar, F. M.; Fletcher, L. N.; Hesman, B. E.; Gorius, N.

    2018-01-01

    Thermal infrared spectra acquired by Cassini/Composite InfraRed Spectrometer (CIRS) in limb-viewing geometry in 2015 are used to derive 2-D latitude-pressure temperature and thermal wind maps. These maps are used to study the vertical structure and evolution of Saturn's equatorial oscillation (SEO), a dynamical phenomenon presenting similarities with the Earth's quasi-biennal oscillation (QBO) and semi-annual oscillation (SAO). We report that a new local wind maximum has appeared in 2015 in the upper stratosphere and derive the descent rates of other wind extrema through time. The phase of the oscillation observed in 2015, as compared to 2005 and 2010, remains consistent with a ˜15 year period. The SEO does not propagate downward at a regular rate but exhibits faster descent rate in the upper stratosphere, combined with a greater vertical wind shear, compared to the lower stratosphere. Within the framework of a QBO-type oscillation, we estimate the absorbed wave momentum flux in the stratosphere to be on the order of ˜7 × 10-6 N m-2. On Earth, interactions between vertically propagating waves (both planetary and mesoscale) and the mean zonal flow drive the QBO and SAO. To broaden our knowledge on waves potentially driving Saturn's equatorial oscillation, we searched for thermal signatures of planetary waves in the tropical stratosphere using CIRS nadir spectra. Temperature anomalies of amplitude 1-4 K and zonal wave numbers 1 to 9 are frequently observed, and an equatorial Rossby (n = 1) wave of zonal wave number 3 is tentatively identified in November 2009.

  17. The extrapolar SWIFT-model: Fast stratospheric ozone chemistry for global climate models

    OpenAIRE

    Kreyling, Daniel

    2016-01-01

    The goal of this PhD-thesis was the development of a fast yet accurate chemistry scheme for an interactive calculation of the extrapolar stratospheric ozone layer. The SWIFT-model is mainly intended for use in Global Climate Models (GCMs). For computing-time reasons GCMs often do not employ full stratospheric chemistry modules, but use prescribed ozone instead. This method does not consider the interaction between atmospheric dynamics and the ozone layer and can neither resolve the inter-annu...

  18. CERN: Antiprotons probe the nuclear stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-06-15

    The outer periphery of heavy stable nuclei is notoriously difficult to study experimentally. While the well understood electromagnetic interaction between electrons (or muons) and protons has given the nuclear charge (or proton) distribution with high precision for almost all stable nuclei, neutron distribution studies are much less precise. This is especially true for large nuclear distances, where the nuclear density is small. A few previous experiments probing the nuclear ''stratosphere'' suggested that far from the centre of the nucleus (of the order of 2 nuclear radii) this stratosphere may be composed predominantly of neutrons. At the end of the sixties the term ''neutron halo'' was introduced to describe this phenomenon, but experimental evidence was scarce or even controversial, and remained so for almost a quarter of a century. Recently, the Warsaw/Munich/Berlin collaboration working within the PS203 experiment at CERN's LEAR low energy antiproton ring, proposed a new method to study the nuclear periphery using stopped antiprotons. The halo now looks firmer. A 200 MeV/c beam of antiprotons was slowed down by interactions with atomic electrons. When antiproton kinetic energy drops well below 1 keV, the particles are captured in the outermost orbits of ''exotic atoms'', where the antiprotons take the place of the usual orbital electrons. With the lower orbits in this antiprotonic atom empty, the antiproton drops toward the nuclear surface, first emitting Auger electrons and later predominantly antiprotonic X-rays. Due to the strong interaction between antiprotons and nucleons, the antiproton succumbs to annihilation with a nucleon in the rarified nuclear stratosphere, far above the innermost Bohr orbit of the atom. The annihilation probability in heavy nuclei is maximal where the nuclear density is about 3% of its central value and extends to densities many orders of magnitude smaller. Antiproton annihilation on a proton or on a neutron at the nuclear

  19. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kasting, James F.; Kopparapu, Ravi K. [Department of Geosciences, The Pennsylvania State University, State College, PA 16801 (United States); Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  20. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    International Nuclear Information System (INIS)

    Kasting, James F.; Kopparapu, Ravi K.; Chen, Howard

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models

  1. A compact high resolution ion mobility spectrometer for fast trace gas analysis.

    Science.gov (United States)

    Kirk, Ansgar T; Allers, Maria; Cochems, Philipp; Langejuergen, Jens; Zimmermann, Stefan

    2013-09-21

    Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak. This theoretical analysis shows that the SNR is not a function of the initial ion packet width, meaning that compact drift tube IMS with both very high resolution and extremely low limits of detection can be designed. Based on these implications, an optimized combination of a compact drift tube with a length of just 10 cm and a transimpedance amplifier has been constructed with a resolution of 183 measured for the positive reactant ion peak (RIP(+)), which is sufficient to e.g. separate the RIP(+) from the protonated acetone monomer, even though their drift times only differ by a factor of 1.007. Furthermore, the limits of detection (LODs) for acetone are 180 pptv within 1 s of averaging time and 580 pptv within only 100 ms.

  2. Major Influence of Tropical Volcanic Eruptions on the Stratospheric Aerosol Layer During the Last Decade

    Science.gov (United States)

    Vernier, Jean-Paul; Thomason, Larry W.; Pommereau, J.-P.; Bourassa, Adam; Pelon, Jacques; Garnier, Anne; Hauchecorne, A.; Blanot, L.; Trepte, Charles R.; Degenstein, Doug; hide

    2011-01-01

    The variability of stratospheric aerosol loading between 1985 and 2010 is explored with measurements from SAGE II, CALIPSO, GOMOS/ENVISAT, and OSIRIS/Odin space-based instruments. We find that, following the 1991 eruption of Mount Pinatubo, stratospheric aerosol levels increased by as much as two orders of magnitude and only reached background levels between 1998 and 2002. From 2002 onwards, a systematic increase has been reported by a number of investigators. Recently, the trend, based on ground-based lidar measurements, has been tentatively attributed to an increase of SO2 entering the stratosphere associated with coal burning in Southeast Asia. However, we demonstrate with these satellite measurements that the observed trend is mainly driven by a series of moderate but increasingly intense volcanic eruptions primarily at tropical latitudes. These events injected sulfur directly to altitudes between 18 and 20 km. The resulting aerosol particles are slowly lofted into the middle stratosphere by the Brewer-Dobson circulation and are eventually transported to higher latitudes.

  3. Trace explosives sensor testbed (TESTbed)

    Science.gov (United States)

    Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.

    2017-03-01

    A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

  4. Measuring Dark Molecular Gas

    Science.gov (United States)

    Li, Di; Heiles, Carl E.

    2017-01-01

    It is now well known that a substantial fraction of Galactic molecular gas cannot be traced by CO emission. The thus dubbed CO dark molecular gas (DMG) occupy a large volume of ISM with intermediate extinction, where CO is either not self-shielded and/or subthermally excited. We explore the utilities of simple hydrides, such OH, CH, etc., in tracing DMG. We mapped and modeled the transition zone cross a cloud boundary and derived emperical OH abundance and DMG distribution formulae. We also obtained absorption measurements of various species using Arecibo, VLA, ATCA, and ALMA. The absorption technique has the potential to provide systematic quantification of DMG in the next few years.

  5. Potential for acid emissions affecting trace element nutrition of livestock

    International Nuclear Information System (INIS)

    Smart, M.E.

    1992-01-01

    The role of sour gas emissions in trace element nutrition of livestock is discussed. Trace mineral nutrition and the evaluation of factors affecting it is very complex. Some trace minerals are antagonistic to each other, for example a dietary sulfur content of greater than 0.4% will suppress the availability of copper to ruminants. Dietary plants, age, pregnancy, and disease can all alter trace element concentrations. Species and breed of animal play a significant role in copper metabolism. Clinical signs associated with copper and zinc deficiency are discussed. These symptoms include lameness, lack of hair pigmentation, infertility, and scouring. Some of these symptoms may be caused by excess molybdenum. Clinical features associated with zinc deficiency include parakeratosis and inflammation of the skin. 4 figs., 1 tab

  6. The effects of the Indo-Pacific warm pool on the stratosphere

    Science.gov (United States)

    Zhou, Xin; Li, Jianping; Xie, Fei; Ding, Ruiqiang; Li, Yanjie; Zhao, Sen; Zhang, Jiankai; Li, Yang

    2017-03-01

    Sea surface temperature (SST) in the Indo-Pacific warm pool (IPWP) plays a key role in influencing East Asian climate, and even affects global-scale climate change. This study defines IPWP Niño and IPWP Niña events to represent the warm and cold phases of IPWP SST anomalies, respectively, and investigates the effects of these events on stratospheric circulation and temperature. Results from simulations forced by observed SST anomalies during IPWP Niño and Niña events show that the tropical lower stratosphere tends to cool during IPWP Niño events and warm during IPWP Niña events. The responses of the northern and southern polar vortices to IPWP Niño events are fairly symmetric, as both vortices are significantly warmed and weakened. However, the responses of the two polar vortices to IPWP Niña events are of opposite sign: the northern polar vortex is warmed and weakened, but the southern polar vortex is cooled and strengthened. These features are further confirmed by composite analysis using reanalysis data. A possible dynamical mechanism connecting IPWP SST to the stratosphere is suggested, in which IPWP Niño and Niña events excite teleconnections, one similar to the Pacific-North America pattern in the Northern Hemisphere and a Rossby wave train in the Southern Hemisphere, which project onto the climatological wave in the mid-high latitudes, intensifying the upward propagation of planetary waves into the stratosphere and, in turn, affecting the polar vortex.

  7. Different Stratospheric Polar Vortex States linked to Cold-Spells in North America and Northern Eurasia

    Science.gov (United States)

    Kretschmer, M.; Cohen, J. L.; Runge, J.; Coumou, D.

    2017-12-01

    The stratospheric polar vortex in boreal winter can influence the tropospheric circulation and thereby surface weather in the mid-latitudes. Weak states of the vortex, e.g. associated with Sudden Stratospheric Warmings (SSWs), often precede a negative phase of the North Atlantic Oscillation (NAO), and thus increase the risk of mid-latitude cold-spells especially over Eurasia. Here we show using cluster analysis that next to the well-documented relationship between a zonally symmetric disturbed vortex and a negative NAO, there exists a zonally asymmetric pattern linked to a negative Western Pacific Oscillation (WPO) and cold-spells in the northeastern US, like for example observed in February 2014. The latter is more synoptic in time-scale but occurs more frequently than SSWs. A causal effect network (CEN) approach gives insights into the underlying physical pathways and time-lags showing that high-pressure around Greenland leads to vertical wave activity over eastern Siberia leading to downward propagating waves over Alaska and high pressure over the North Pacific. Moreover, composites propose that a rather strong mid-stratospheric vortex seems to be favorable for this zonally asymmetric and reflective mechanism. Overall, the mutual relationship between stratospheric circulation and high-latitude blocking in both the Pacific and Atlantic Oceans is complex and involves mechanisms operating at different time-scales. Our results suggest that the stratospheric influence on winter circulation should not exclusively be analyzed in terms of a downward propagating Northern Annular Mode (NAM) signal and SSWs. In particular when studying the stratospheric impacts on North American temperature it is crucial to also consider the more transient and zonally asymmetric events which might help to improve seasonal winter predictions for this region.

  8. Is climate influenced by biogenic atmospheric sulfur compounds. Beeinflussen biogene atmosphaerische Schwefelverbindungen das Klima

    Energy Technology Data Exchange (ETDEWEB)

    Georgii, H W

    1990-01-01

    About 10 years ago, traces of gaseous sulfur compounds were detected in the atmosphere which are of mainly biogenic origin and are formed in large areas in the oceans by phytoplankton. Continental sources, too, are important. These gases - dimethyl sulfide, carbon bisulfide and carbonyl sulfide - provide an important, if not the main, part to the natural sulfur budget of the atmosphere. While dimethyl sulfide and carbon bisulfide are quickly oxidized in the lower atmosphere forming sulfate particles in the process, carbonyl sulfide is an inert gas which is oxidized only after reaching the stratosphere. Lately, the relevance of these trace components to climate is being discussed. Conceivably, they might influence the radiation budget of the earth via the formation of aerosol particles: While, in the case of dimethyl sulfide, these would change the microphysical parameters of maritime clouds, an increase in the production of carbonyl sulfide would entail a strengthening of the stratospheric sulfate particle layer. Both processes might have a stabilizing effect on the climate as they act in opposite direction to the much discussed greenhouse effect. (orig.).

  9. Quantifying the temperature-independent effect of stratospheric aerosol geoengineering on global-mean precipitation in a multi-model ensemble

    International Nuclear Information System (INIS)

    Ferraro, Angus J; Griffiths, Hannah G

    2016-01-01

    The reduction in global-mean precipitation when stratospheric aerosol geoengineering is used to counterbalance global warming from increasing carbon dioxide (CO 2 ) concentrations has been mainly attributed to the temperature-independent effect of CO 2 on atmospheric radiative cooling. We demonstrate here that stratospheric sulphate aerosol itself also acts to reduce global-mean precipitation independent of its effects on temperature. The temperature-independent effect of stratospheric aerosol geoenginering on global-mean precipitation is calculated by removing temperature-dependent effects from climate model simulations of the Geoengineering Model Intercomparison Project (GeoMIP). When sulphate aerosol is injected into the stratosphere at a rate of 5 Tg SO 2 per year the aerosol reduces global-mean precipitation by approximately 0.2 %, though multiple ensemble members are required to separate this effect from internal variability. For comparison, the precipitation reduction from the temperature-independent effect of increasing CO 2 concentrations under the RCP4.5 scenario of the future is approximately 0.5 %. The temperature-independent effect of stratospheric sulphate aerosol arises from the aerosol’s effect on tropospheric radiative cooling. Radiative transfer calculations show this is mainly due to increasing downward emission of infrared radiation by the aerosol, but there is also a contribution from the stratospheric warming the aerosol causes. Our results suggest climate model simulations of solar dimming can capture the main features of the global-mean precipitation response to stratospheric aerosol geoengineering. (letter)

  10. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  11. Strong modification of stratospheric ozone forcing by cloud and sea-ice adjustments

    Directory of Open Access Journals (Sweden)

    Y. Xia

    2016-06-01

    Full Text Available We investigate the climatic impact of stratospheric ozone recovery (SOR, with a focus on the surface temperature change in atmosphere–slab ocean coupled climate simulations. We find that although SOR would cause significant surface warming (global mean: 0.2 K in a climate free of clouds and sea ice, it causes surface cooling (−0.06 K in the real climate. The results here are especially interesting in that the stratosphere-adjusted radiative forcing is positive in both cases. Radiation diagnosis shows that the surface cooling is mainly due to a strong radiative effect resulting from significant reduction of global high clouds and, to a lesser extent, from an increase in high-latitude sea ice. Our simulation experiments suggest that clouds and sea ice are sensitive to stratospheric ozone perturbation, which constitutes a significant radiative adjustment that influences the sign and magnitude of the global surface temperature change.

  12. Results of an interactively coupled atmospheric chemistry - general circulation model. Comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Hein, R.; Dameris, M.; Schnadt, C. [and others

    2000-01-01

    An interactively coupled climate-chemistry model which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks is presented. This is the first model, which interactively combines a general circulation model based on primitive equations with a rather complex model of stratospheric and tropospheric chemistry, and which is computational efficient enough to allow long-term integrations with currently available computer resources. The applied model version extends from the Earth's surface up to 10 hPa with a relatively high number (39) of vertical levels. We present the results of a present-day (1990) simulation and compare it to available observations. We focus on stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. The current model version ECHAM4.L39(DLR)/CHEM can realistically reproduce stratospheric dynamics in the Arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to formerly applied model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their interhemispheric differences are reproduced. The consideration of the chemistry feedback on dynamics results in an improved representation of the spatial distribution of stratospheric water vapor concentrations, i.e., the simulated meriodional water vapor gradient in the stratosphere is realistic. The present model version constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas emissions, and the future evolution of the ozone layer. (orig.)

  13. Dust ablation on the giant planets: Consequences for stratospheric photochemistry

    Science.gov (United States)

    Moses, Julianne I.; Poppe, Andrew R.

    2017-11-01

    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  14. Wind tunnel tests of stratospheric airship counter rotating propellers

    Directory of Open Access Journals (Sweden)

    Yaxi Chen

    2015-01-01

    Full Text Available Aerodynamic performance of the high-altitude propeller, especially the counter rotation effects, is experimentally studied. Influences of different configurations on a stratospheric airship, included 2-blade counter-rotating propeller (CRP, dual 2-blade single rotation propellers (SRPs and 4-blade SRP, are also indicated. This research indicates that the effect of counter rotation can greatly improve the efficiency. It shows that the CRP configuration results in a higher efficiency than the dual 2-blade SRPs configuration or 4-blade SRP configuration under the same advance ratio, and the CRP configuration also gains the highest efficiency whether under the situation of providing the same trust or absorbing the same power. It concludes that, for a stratospheric airship, the CRP configuration is better than the multiple SRPs configuration or a multi-blade SRP one.

  15. Technical and Scientific Aspects of the JET Trace-Tritium Experimental Campaign

    International Nuclear Information System (INIS)

    Jones, T.T.C.; Brennan, D; Pearce, R.J.H.; Stork, D.; Zastrow, K.-D.; Balshaw, N.; Bell, A.C.; Bertalot, L.; Boyer, H.; Butcher, P.R.; Challis, C.D.; Ciric, D.; Clarke, R.; Conroy, S.; Darke, A.C.; Davies, N.; Edlington, T.; Ericsson, G.; Gibbons, C.; Hackett, L.J.; Haupt, T.; Hitchin, M.; Kaye, A.S.; King, R.; Kiptily, V.G.; Knipe, S.; Lawrence, G.; Lobel, R.; Mason, A.; Morgan, P.D.; Patel, B.; Popovichev, S.; Stamp, M.; Surrey, E.; Terrington, A.; Worth, L.; Young, D.

    2005-01-01

    The JET Trace Tritium (TTE) programme marked the first use of tritium in experiments under the managerial control of UKAEA, which operates the JET Facility on behalf of EFDA. The introduction of tritium into the plasma by gas fuelling and neutral beam injection, even in trace quantities, required the mobilisation of gram-quantities of tritium gas from the Active Gas Handling System (AGHS) product storage units into the supply lines connected to the torus gas valve and the neutral beam injectors. All systems for DT gas handling, recovery and reprocessing were therefore recommissioned and operating procedures re-established, involving extensive operations staff training. The validation of Key Safety Related Equipment (KSRE) is described with reference to specific examples. The differences between requirements for TTE and full DT operations are shown to be relatively small. The scientific motivation for TTE, such as the possibility to obtain high-quality measurements in key areas such as fuel-ion transport and fast ion dynamics, is described, and the re-establishment and development of JET's 14MeV neutron diagnostic capability for TTE and future DT campaigns are outlined. Some scientific highlights from the TTE campaign are presented

  16. Evaluation of model-simulated source contributions to tropospheric ozone with aircraft observations in the factor-projected space

    Directory of Open Access Journals (Sweden)

    Y. Yoshida

    2008-03-01

    Full Text Available Trace gas measurements of TOPSE and TRACE-P experiments and corresponding global GEOS-Chem model simulations are analyzed with the Positive Matrix Factorization (PMF method for model evaluation purposes. Specially, we evaluate the model simulated contributions to O3 variability from stratospheric transport, intercontinental transport, and production from urban/industry and biomass burning/biogenic sources. We select a suite of relatively long-lived tracers, including 7 chemicals (O3, NOy, PAN, CO, C3H8, CH3Cl, and 7Be and 1 dynamic tracer (potential temperature. The largest discrepancy is found in the stratospheric contribution to 7Be. The model underestimates this contribution by a factor of 2–3, corresponding well to a reduction of 7Be source by the same magnitude in the default setup of the standard GEOS-Chem model. In contrast, we find that the simulated O3 contributions from stratospheric transport are in reasonable agreement with those derived from the measurements. However, the springtime increasing trend over North America derived from the measurements are largely underestimated in the model, indicating that the magnitude of simulated stratospheric O3 source is reasonable but the temporal distribution needs improvement. The simulated O3 contributions from long-range transport and production from urban/industry and biomass burning/biogenic emissions are also in reasonable agreement with those derived from the measurements, although significant discrepancies are found for some regions.

  17. Seasonal Evolution of Titan's Stratosphere Near the Poles

    Science.gov (United States)

    Coustenis, A.; Jennings, D. E.; Achterberg, R. K.; Bampasidis, G.; Nixon, C. A.; Lavvas, P.; Cottini, V.; Flasar, F. M.

    2018-02-01

    In this Letter, we report the monitoring of seasonal evolution near Titan’s poles. We find Titan’s south pole to exhibit since 2010 a strong temperature decrease and a dramatic enhancement of several trace species such as complex hydrocarbons and nitriles (HC3N and C6H6 in particular) previously only observed at high northern latitudes. This results from the seasonal change on Titan going from winter (2002) to summer (2017) in the north and, at the same time, the onset of winter in the south pole. During this transition period atmospheric components with longer chemical lifetimes linger in the north, undergoing slow photochemical destruction, while those with shorter lifetimes decrease and reappear in the south. An opposite effect was expected in the north, but not observed with certainty until now. We present here an analysis of high-resolution nadir spectra acquired by Cassini/Cassini Composite Infrared Spectrometer in the past years and describe the temperature and composition variations near Titan’s poles. From 2013 until 2016, the northern polar region has shown a temperature increase of 10 K, while the south has shown a more significant decrease (up to 25 K) in a similar period of time. While the south polar region has been continuously enhanced since about 2012, the chemical content in the north is finally showing a clear depletion for most molecules only since 2015. This is indicative of a non-symmetrical response to the seasons in Titan’s stratosphere that can set constraints on photochemical and GCM models.

  18. Tracing the External Origin of the AGN Gas Fueling Reservoir

    Directory of Open Access Journals (Sweden)

    Sandra I. Raimundo

    2018-01-01

    Full Text Available Near-infrared observations of the active galaxy MCG–6-30-15 provide strong evidence that its molecular gas fueling reservoir is of external origin. MCG–6-30-15 has a counter-rotating core of stars within its central 400 pc and a counter-rotating disc of molecular gas that extends as close as ~50–100 pc from the central black hole. The gas counter-rotation establishes that the gas reservoir in the center of the galaxy originates from a past external accretion event. In this contribution we discuss the gas and stellar properties of MCG–6-30-15, its past history and how the findings on this galaxy can be used to understand AGN fueling in S0 galaxies with counter-rotating structures.

  19. Toward a combined SAGE II-HALOE aerosol climatology: an evaluation of HALOE version 19 stratospheric aerosol extinction coefficient observations

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2012-09-01

    Full Text Available Herein, the Halogen Occultation Experiment (HALOE aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 μm is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 μm is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 μm aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40 μm aerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 μm channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived

  20. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    Science.gov (United States)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  1. Future changes in large-scale transport and stratosphere-troposphere exchange

    Science.gov (United States)

    Abalos, M.; Randel, W. J.; Kinnison, D. E.; Garcia, R. R.

    2017-12-01

    Future changes in large-scale transport are investigated in long-term (1955-2099) simulations of the Community Earth System Model - Whole Atmosphere Community Climate Model (CESM-WACCM) under an RCP6.0 climate change scenario. We examine artificial passive tracers in order to isolate transport changes from future changes in emissions and chemical processes. The model suggests enhanced stratosphere-troposphere exchange in both directions (STE), with decreasing tropospheric and increasing stratospheric tracer concentrations in the troposphere. Changes in the different transport processes are evaluated using the Transformed Eulerian Mean continuity equation, including parameterized convective transport. Dynamical changes associated with the rise of the tropopause height are shown to play a crucial role on future transport trends.

  2. Persistent gravity wave coupling from the stratosphere to the MLT versus secondary wave generation in Antarctica

    Science.gov (United States)

    Zhao, J.; Geraghty, I.; Chu, X.; Vadas, S.; Becker, E.; Harvey, V. L.; Jones, R. M.; Chen, C.; Lu, X.

    2017-12-01

    After Antarctic persistent gravity waves (GWs) in the Mesosphere and Lower Thermosphere (MLT) were discovered from lidar observations [Chen et al., 2013, 2016], secondary wave generation theory was proposed to explain the source. Here we perform a source investigation of such persistent GWs through analyzing both stratospheric and MLT GWs at McMurdo using temperature measurements (30 - 50 km, year 2011 - 2015) obtained by Fe Boltzmann lidar. In the stratosphere, GW vertical wavelengths (λ) and periods exhibit seasonal cycles with winter maxima and summer minima, which linearly correlated with mean zonal wind velocities. GWs dissipate more in winter than in summer due to larger wave amplitudes. The potential energy density (Ep) are anti-correlated with wind rotation angles but positively correlated with surface and stratospheric winds. Critical level filtering, in-situ generation of GWs, and wave saturation changes play roles in Ep seasonal variations (winter maxima and summer minima). The large increase of Ep from summer to winter possibly results from the decrease in critical level filtering. The gradual variations of Ep from Mar to Oct are likely related both to the increased λ towards winter, allowing larger wave amplitudes before saturation, and to in-situ GW generation via geostrophic adjustment, secondary GW generation. Large Ep occur when McMurdo is inside the jet stream core 5-24º poleward from vortex edge. In winter MLT, the persistent GWs cause larger temperature perturbations (± 30 K, compared to ± 10 K in the stratosphere) with longer λ (23.5 km) and larger vertical phase speeds (1.8 m/s). More waves (95.4%) show downward phase progression compared to the stratospheric GWs (70.4%). Since the inferred horizontal wavelength of stratospheric GWs (350 - 450 km) are much shorter than those of the persistent GWs in the MLT (1000 - 2000 km), the dominant stratospheric GWs are not the direct source of the MLT persistent GWs. Secondary wave generation

  3. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions

    Science.gov (United States)

    Fiore, A. M.; Lin, M.; Cooper, O. R.; Horowitz, L. W.; Naik, V.; Levy, H.; Langford, A. O.; Johnson, B. J.; Oltmans, S. J.; Senff, C. J.

    2011-12-01

    As the National Ambient Air Quality (NAAQS) standard for ozone (O_{3}) is lowered, it pushes closer to policy-relevant background levels (O_{3} concentrations that would exist in the absence of North American anthropogenic emissions), making attainment more difficult with local controls. We quantify the Asian and stratospheric components of this North American background, with a primary focus on the western United States. Prior work has identified this region as a hotspot for deep stratospheric intrusions in spring. We conduct global simulations at 200 km and 50 km horizontal resolution with the GFDL AM3 model, including a stratospheric O_{3} tracer and two sensitivity simulations with anthropogenic emissions from Asia and North America turned off. The model is evaluated with a suite of in situ and satellite measurements during the NOAA CalNex campaign (May-June 2010). The model reproduces the principle features in the observed surface to near tropopause distribution of O_{3} along the California coast, including its latitudinal variation and the development of regional high-O_{3} episodes. Four deep tropopause folds are diagnosed and we find that the remnants of these stratospheric intrusions are transported to the surface of Southern California and Western U.S. Rocky Mountains, contributing 10-30 ppbv positive anomalies relative to the simulated campaign mean stratospheric component in the model surface layer. We further examine the contribution of North American background, including its stratospheric and Asian components, to the entire distribution of observed MDA8 O_{3} at 12 high-elevation CASTNet sites in the Mountain West. We find that the stratospheric O_{3} tracer constitutes 50% of the North American background, and can enhance surface maximum daily 8-hour average (MDA8) O_{3} by 20 ppb when observed surface O_{3} is in the range of 60-80 ppbv. Our analysis highlights the potential for natural sources such as deep stratospheric intrusions to contribute

  4. A Laser-Induced Fluorescence Instrument for Aircraft Measurements of Sulfur Dioxide in the Upper Troposphere and Lower Stratosphere

    Science.gov (United States)

    Rollins, Andrew W.; Thornberry, Troy D.; Ciciora, Steven J.; McLaughlin, Richard J.; Watts, Laurel A.; Hanisco, Thomas F.; Baumann, Esther; Giorgetta, Fabrizio R.; Bui, Thaopaul V.; Fahey, David W.

    2016-01-01

    This work describes the development and testing of a new instrument for in situ measurements of sulfur dioxide (SO2) on airborne platforms in the upper troposphere and lower stratosphere (UTLS). The instrument is based on the laser-induced fluorescence technique and uses the fifth harmonic of a tunable fiber-amplified semiconductor diode laser system at 1084.5 nm to excite SO2 at 216.9 nm. Sensitivity and background checks are achieved in flight by additions of SO2 calibration gas and zero air, respectively. Aircraft demonstration was performed during the NASA Volcano Plume Investigation Readiness and Gas-Phase and Aerosol Sulfur (VIRGAS) experiment, which was a series of flights using the NASA WB-57F during October 2015 based at Ellington Field and Harlingen, Texas. During these flights, the instrument successfully measured SO2 in the UTLS at background (non-volcanic) conditions with a precision of 2 ppt at 10 s and an overall uncertainty determined primarily by instrument drifts of +/- (16% + 0.9 ppt).

  5. Simulations of physics and chemistry of polar stratospheric clouds with a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, J.

    2005-04-20

    A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H{sub 2}O and HNO{sub 3} redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been

  6. Satellite Detection of Orographic Gravity-wave Activity in the Winter Subtropical Stratosphere over Australia and Africa

    Science.gov (United States)

    Eckermann, S. D.; Wu, D. L.

    2012-01-01

    Orographic gravity-wave (OGW) parameterizations in models produce waves over subtropical mountain ranges in Australia and Africa that propagate into the stratosphere during austral winter and deposit momentum, affecting weather and climate. Satellite sensors have measured stratospheric GWs for over a decade, yet find no evidence of these waves. So are parameterizations failing here? Here we argue that the short wavelengths of subtropical OGWs place them near or below the detection limits of satellite sensors. To test this hypothesis, we reanalyze nine years of stratospheric radiances from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite during austral winter, applying new averaging techniques to maximize signal-to-noise and improve thresholds for OGW detection. Deep climatological enhancements in stratospheric OGW variance over specific mountain ranges in Australia and southern Africa are revealed for the first time, which exhibit temporal and vertical variations consistent with predicted OGW responses to varying background winds.

  7. Tracer Equivalent Latitude: A Diagnostic Tool for Isentropic Transport Studies.

    Science.gov (United States)

    Allen, Douglas R.; Nakamura, Noboru

    2003-01-01

    Area equivalent latitude based on potential vorticity (PV) is a widely used diagnostic for isentropic transport in the stratosphere and upper troposphere. Here, an alternate method for calculating equivalent latitude is explored, namely, a numerical synthesis of a PV-like tracer from a long-term integration of the advection-diffusion equation on isentropic surfaces. It is found that the tracer equivalent latitude (TrEL) behaves much like the traditional PV equivalent latitude (PVEL) despite the simplified governing physics; this is evidenced by examining the kinematics of the Arctic lower stratospheric vortex. Yet in some cases TrEL performs markedly better as a coordinate for long-lived trace species such as ozone. These instances include analysis of lower stratospheric ozone during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment (SOLVE) campaign and three-dimensional reconstruction of total column ozone during November-December 1999 from fitted ozone-equivalent latitude relationship. It is argued that the improvement is due to the tracer being free from the diagnostic errors and certain diabatic processes that affect PV. The sensitivity of TrEL to spatial and temporal resolution, advection scheme, and driving winds is also examined.

  8. Persistence of Antarctic polar stratospheric clouds

    Science.gov (United States)

    Mccormick, M. Patrick; Trepte, C. R.

    1988-01-01

    The persistence of Polar Stratospheric Clouds (PSCs) observed by the Stratospheric Aerosol Measurement (SAM) 2 satellite sensor over a 9-year period is compared and contrasted. Histograms of the SAM 2 1.0 micron extinction ratio data (aerosol extinction normalized by the molecular extinction) at an altitude of 18 km in the Antarctic have been generated for three 10-day periods in the month of September. Statistics for eight different years (1979 to 1982 and 1984 to 1987) are shown in separate panels for each figure. Since the SAM 2 system is a solar occultation experiment, observations are limited to the edge of the polar night and no measurements are made deep within the vortex where temperatures could be colder. For this reason, use is made of the NMC global gridded fields and the known temperature-extinction relationship to infer additional information on the occurrence and areal coverage of PSCs. Calculations of the daily areal coverage of the 195 K isotherm will be presented for this same period of data. This contour level lies in the range of the predicted temperature for onset of the Type 1 particle enhancement mode at 50 mb (Poole and McCormick, 1988b) and should indicate approximately when formation of the binary HNO3-H2O particles begins.

  9. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    International Nuclear Information System (INIS)

    Holzworth, R.H.

    1981-01-01

    Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. (author)

  10. Real-time trace gas sensor using a multimode diode laser and multiple-line integrated cavity enhanced absorption spectroscopy.

    Science.gov (United States)

    Karpf, Andreas; Rao, Gottipaty N

    2015-07-01

    We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400  mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively.

  11. Study of stratosphere-troposphere exchange via 10Be/7Be isotope ratios

    International Nuclear Information System (INIS)

    Priller, A.; Berger, M.; Golser, R.; Kutschera, W.; Steier, P.; Vockenhuber, C.; Wild, E.M.

    2001-01-01

    Full text: The present study is part of the European project STACCATO (influence of stratosphere-troposphere exchange in a changing climate on atmospheric transport and oxidation capacity). Stratosphere-troposphere exchange (STE) is one of the key factors controlling the budgets of ozone, water vapor and other substances in both the troposphere and the lower stratosphere. However, its contribution to their ozone budget relative to photo-chemical ozone formation from natural and anthropogenic precursor emissions is still uncertain. An international effort is made to estimate the strength of STE and its impact on tropospheric chemistry. The two cosmogenic radioisotopes of beryllium, 10 Be and 7 Be have very different half-lives of 1.51 Ma and 53.4 d, respectively. The combination of production rates, half-lives and different residence times in the stratosphere and troposphere, respectively, results in 10 Be/ 7 Be isotope ratios which can be used as fingerprints for STE. This ratio helps to give a much improved estimate of STE. However, only few 10 Be measurements exist, because its detection requires the rather elaborate method of accelerator mass spectrometry (AMS). At the AMS facility VERA we are now measuring the 10 Be content of air filters from the high-alpine stations 'Hoher Sonnblick', Austria, and 'Zugspitze', Germany. The TBe content is measured separately by decay counting. In this presentation, we want to describe the method of measuring 10 Be with AMS, and to discuss the results of first 10 Be/ 7 Be ratios. (author)

  12. Mercury Removal from Natural Gas in Egypt

    International Nuclear Information System (INIS)

    Korkor, H.; AI-Alf, A.; EI-Behairy, S.

    2004-01-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems

  13. Mercury Removal from Natural Gas in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Korkor, H; AI-Alf, A; EI-Behairy, S [EGAS, Cairo (Egypt)

    2004-07-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems.

  14. Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone

    Science.gov (United States)

    Yu, Pengfei; Rosenlof, Karen H.; Liu, Shang; Telg, Hagen; Thornberry, Troy D.; Rollins, Andrew W.; Portmann, Robert W.; Bai, Zhixuan; Ray, Eric A.; Duan, Yunjun; Pan, Laura L.; Toon, Owen B.; Bian, Jianchun; Gao, Ru-Shan

    2017-07-01

    An enhanced aerosol layer near the tropopause over Asia during the June-September period of the Asian summer monsoon (ASM) was recently identified using satellite observations. Its sources and climate impact are presently not well-characterized. To improve understanding of this phenomenon, we made in situ aerosol measurements during summer 2015 from Kunming, China, then followed with a modeling study to assess the global significance. The in situ measurements revealed a robust enhancement in aerosol concentration that extended up to 2 km above the tropopause. A climate model simulation demonstrates that the abundant anthropogenic aerosol precursor emissions from Asia coupled with rapid vertical transport associated with monsoon convection leads to significant particle formation in the upper troposphere within the ASM anticyclone. These particles subsequently spread throughout the entire Northern Hemispheric (NH) lower stratosphere and contribute significantly (˜15%) to the NH stratospheric column aerosol surface area on an annual basis. This contribution is comparable to that from the sum of small volcanic eruptions in the period between 2000 and 2015. Although the ASM contribution is smaller than that from tropical upwelling (˜35%), we find that this region is about three times as efficient per unit area and time in populating the NH stratosphere with aerosol. With a substantial amount of organic and sulfur emissions in Asia, the ASM anticyclone serves as an efficient smokestack venting aerosols to the upper troposphere and lower stratosphere. As economic growth continues in Asia, the relative importance of Asian emissions to stratospheric aerosol is likely to increase.

  15. Methane as a Diagnostic Tracer of Changes in the Brewer-Dobson Circulation of the Stratosphere

    Science.gov (United States)

    Remsberg, E. E.

    2015-01-01

    This study makes use of time series of methane (CH4/ data from the Halogen Occultation Experiment (HALOE) to detect whether there were any statistically significant changes of the Brewer-Dobson circulation (BDC) within the stratosphere during 1992-2005. The HALOE CH4 profiles are in terms of mixing ratio versus pressure altitude and are binned into latitude zones within the Southern Hemisphere and the Northern Hemisphere. Their separate time series are then analyzed using multiple linear regression (MLR) techniques. The CH4 trend terms for the Northern Hemisphere are significant and positive at 10 N from 50 to 7 hPa and larger than the tropospheric CH4 trends of about 3%decade(exp -1) from 20 to 7 hPa. At 60 N the trends are clearly negative from 20 to 7 hPa. Their combined trends indicate an acceleration of the BDC in the middle stratosphere of the Northern Hemisphere during those years, most likely due to changes from the effects of wave activity. No similar significant BDC acceleration is found for the Southern Hemisphere. Trends from HALOE H2O are analyzed for consistency. Their mutual trends with CH4 are anti-correlated qualitatively in the middle and upper stratosphere, where CH4 is chemically oxidized to H2O. Conversely, their mutual trends in the lower stratosphere are dominated by their trends upon entry to the tropical stratosphere. Time series residuals for CH4 in the lower mesosphere also exhibit structures that are anti-correlated in some instances with those of the tracer-like species HCl. Their occasional aperiodic structures indicate the effects of transport following episodic, wintertime wave activity. It is concluded that observed multi-year, zonally averaged distributions of CH4 can be used to diagnose major instances of wave-induced transport in the middle atmosphere and to detect changes in the stratospheric BDC.

  16. A stochastic model with a low-frequency amplification feedback for the stratospheric northern annular mode

    Science.gov (United States)

    Yu, Yueyue; Cai, Ming; Ren, Rongcai

    2017-08-01

    We consider three indices to measure the polar stratospheric mass and stratospheric meridional mass circulation variability: anomalies of (1) total mass in the polar stratospheric cap (60-90°N, above the isentropic surface 400 K, PSM), (2) total adiabatic mass transport across 60°N into the polar stratosphere cap (AMT), (3) and total diabetic mass transport across 400 K from the polar stratosphere into the troposphere below (DMT). It is confirmed that the negative stratospheric Northern Annular Mode (NAM) and PSM indices have a nearly indistinguishable temporal evolution and a similar red-noise-like spectrum with a de-correlation timescale of 4 weeks. This enables us to examine the low-frequency nature of the NAM in the framework of mass circulation, namely, d/{dt}{PSM}={AMT} - {DMT} . The DMT index tends to be positively correlated with the PSM with a red-noise-like spectrum, representing slow radiative cooling processes giving rise to a de-correlation timescale of 3-4 weeks. The AMT is nearly perfectly correlated with the day-to-day tendency of PSM, reflecting a robust quasi 90° out-of-phase relation between the AMT and PSM at all frequency bands. Variations of vertically westward tilting of planetary waves contribute mainly to the high-frequency portion of AMT. It is the wave amplitude's slow vacillation that plays the leading role in the quasi 90° out-of-phase relation between the AMT and PSM. Based on this, we put forward a linear stochastic model with a low-frequency amplification feedback from low-frequency amplitude vacillations of planetary waves to explain the amplified low-frequency response of PSM/NAM to a stochastic forcing from the westward tilting variability.

  17. Particulate sulfur in the upper troposphere and lowermost stratosphere – sources and climate forcing

    Directory of Open Access Journals (Sweden)

    B. G. Martinsson

    2017-09-01

    Full Text Available This study is based on fine-mode aerosol samples collected in the upper troposphere (UT and the lowermost stratosphere (LMS of the Northern Hemisphere extratropics during monthly intercontinental flights at 8.8–12 km altitude of the IAGOS-CARIBIC platform in the time period 1999–2014. The samples were analyzed for a large number of chemical elements using the accelerator-based methods PIXE (particle-induced X-ray emission and PESA (particle elastic scattering analysis. Here the particulate sulfur concentrations, obtained by PIXE analysis, are investigated. In addition, the satellite-borne lidar aboard CALIPSO is used to study the stratospheric aerosol load. A steep gradient in particulate sulfur concentration extends several kilometers into the LMS, as a result of increasing dilution towards the tropopause of stratospheric, particulate sulfur-rich air. The stratospheric air is diluted with tropospheric air, forming the extratropical transition layer (ExTL. Observed concentrations are related to the distance to the dynamical tropopause. A linear regression methodology handled seasonal variation and impact from volcanism. This was used to convert each data point into stand-alone estimates of a concentration profile and column concentration of particulate sulfur in a 3 km altitude band above the tropopause. We find distinct responses to volcanic eruptions, and that this layer in the LMS has a significant contribution to the stratospheric aerosol optical depth and thus to its radiative forcing. Further, the origin of UT particulate sulfur shows strong seasonal variation. We find that tropospheric sources dominate during the fall as a result of downward transport of the Asian tropopause aerosol layer (ATAL formed in the Asian monsoon, whereas transport down from the Junge layer is the main source of UT particulate sulfur in the first half of the year. In this latter part of the year, the stratosphere is the clearly dominating source of

  18. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric

  19. Global Distributions of Temperature Variances At Different Stratospheric Altitudes From Gps/met Data

    Science.gov (United States)

    Gavrilov, N. M.; Karpova, N. V.; Jacobi, Ch.

    The GPS/MET measurements at altitudes 5 - 35 km are used to obtain global distribu- tions of small-scale temperature variances at different stratospheric altitudes. Individ- ual temperature profiles are smoothed using second order polynomial approximations in 5 - 7 km thick layers centered at 10, 20 and 30 km. Temperature inclinations from the averaged values and their variances obtained for each profile are averaged for each month of year during the GPS/MET experiment. Global distributions of temperature variances have inhomogeneous structure. Locations and latitude distributions of the maxima and minima of the variances depend on altitudes and season. One of the rea- sons for the small-scale temperature perturbations in the stratosphere could be internal gravity waves (IGWs). Some assumptions are made about peculiarities of IGW gener- ation and propagation in the tropo-stratosphere based on the results of GPS/MET data analysis.

  20. An Investigation of Multi-Satellite Stratospheric Measurements on Tropospheric Weather Predictions over Continental United States

    Science.gov (United States)

    Shao, Min

    The troposphere and stratosphere are the two closest atmospheric layers to the Earth's surface. These two layers are separated by the so-called tropopause. On one hand, these two layers are largely distinguished, on the other hand, lots of evidences proved that connections are also existed between these two layers via various dynamical and chemical feedbacks. Both tropospheric and stratospheric waves can propagate through the tropopause and affect the down streams, despite the fact that this propagation of waves is relatively weaker than the internal interactions in both atmospheric layers. Major improvements have been made in numerical weather predictions (NWP) via data assimilation (DA) in the past 30 years. From optimal interpolation to variational methods and Kalman Filter, great improvements are also made in the development of DA technology. The availability of assimilating satellite radiance observation and the increasing amount of satellite measurements enabled the generation of better atmospheric initials for both global and regional NWP systems. The selection of DA schemes is critical for regional NWP systems. The performance of three major data assimilation (3D-Var, Hybrid, and EnKF) schemes on regional weather forecasts over the continental United States during winter and summer is investigated. Convergence rate in the variational methods can be slightly accelerated especially in summer by the inclusion of ensembles. When the regional model lid is set at 50-mb, larger improvements (10˜20%) in the initials are obtained over the tropopause and lower troposphere. Better forecast skills (˜10%) are obtained in all three DA schemes in summer. Among these three DA schemes, slightly better (˜1%) forecast skills are obtained in Hybrid configuration than 3D-Var. Overall better forecast skills are obtained in summer via EnKF scheme. An extra 22% skill in predicting summer surface pressure but 10% less skills in winter are given by EnKF when compared to 3D

  1. Climatology of the northern hemisphere stratosphere derived from Berlin analyses. Pt. 1. Monthly means

    International Nuclear Information System (INIS)

    Pawson, S.; Labitzke, K.; Lenschow, R.; Naujokat, B.; Rajewski, B.; Wiesner, M.; Wohlfart, R.C.

    1993-01-01

    This work presents a climatology of the northern hemisphere lower and middle stratosphere derived from daily radiosonde observations subjectively analysed in the Stratospheric Research Group of the 'Meteorologisches Institut der Freien Universitaet Berlin'. Previous climatologies from these data were presented by Labitzke (1972), van Loon et al. (1972), and by Labitzke and Goretzki (1982). Although some more recent climatological fields have been presented in several works by members of the group, no complete atlas has been compiled for some time. The work is intended to serve as a reference for people interested in the stratosphere and, particularly, the climate analysis and modelling communities, which require contemporary analyses of the available data in order to interpret their products. In this first part of the climatological atlas, monthly mean data are presented. (orig./KW)

  2. H2SO4-HNO3-H2O ternary system in the stratosphere

    Science.gov (United States)

    Kiang, C. S.; Hamill, P.

    1974-01-01

    Estimation of the equilibrium vapor pressure over the ternary system H2SO4-HNO3-H2O to study the possibility of stratospheric aerosol formation involving HNO3. It is shown that the vapor pressures for the ternary system H2SO4-HNO3-H2O with weight composition around 70-80% H2SO4, 10-20% HNO3, 10-20% H2O at -50 C are below the order of 10 to the minus 8th mm Hg. It is concluded that there exists more than sufficient nitric acid and water vapor in the stratosphere to participate in ternary system aerosol formation at -50 C. Therefore, HNO3 should be present in stratospheric aerosols, provided that H2SO4 is also present.

  3. Climatology of the northern hemisphere stratosphere derived from Berlin analyses. Pt. 1. Monthly means

    Energy Technology Data Exchange (ETDEWEB)

    Pawson, S; Labitzke, K; Lenschow, R; Naujokat, B; Rajewski, B; Wiesner, M; Wohlfart, R C

    1933-01-01

    This work presents a climatology of the northern hemisphere lower and middle stratosphere derived from daily radiosonde observations subjectively analysed in the Stratospheric Research Group of the 'Meteorologisches Institut der Freien Universitaet Berlin'. Previous climatologies from these data were presented by Labitzke (1972), van Loon et al. (1972), and by Labitzke and Goretzki (1982). Although some more recent climatological fields have been presented in several works by members of the group, no complete atlas has been compiled for some time. The work is intended to serve as a reference for people interested in the stratosphere and, particularly, the climate analysis and modelling communities, which require contemporary analyses of the available data in order to interpret their products. In this first part of the climatological atlas, monthly mean data are presented. (orig./KW)

  4. Eight years of stratospheric ozone observations at Marambio, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Damski, J; Taalas, P [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research

    1996-12-31

    In this work behaviour of the stratospheric ozone using the total ozone and ozone sounding measurements from Marambio (64 deg 14`S, 56 deg 37`W) at Antarctic Peninsula has been studied. The effects of depleted stratospheric ozone to the UV-B-radiation are investigated employing a radiative transfer model, and the Marambio total ozone measurements. The levels of UV-B radiation have been studied from the point of the erythemal UV-B-doses on the horizontal human epidermis. The low values of total ozone at Marambio are also reflected to the received UV-doses which have increased roughly 20-80% (compared to long term average) during austral spring and summer. In respective to the total amount of ozone, the model calculations show that during October the UV-B-doses can be at the same level they should be during normal summer

  5. Eight years of stratospheric ozone observations at Marambio, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Damski, J.; Taalas, P. [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research

    1995-12-31

    In this work behaviour of the stratospheric ozone using the total ozone and ozone sounding measurements from Marambio (64 deg 14`S, 56 deg 37`W) at Antarctic Peninsula has been studied. The effects of depleted stratospheric ozone to the UV-B-radiation are investigated employing a radiative transfer model, and the Marambio total ozone measurements. The levels of UV-B radiation have been studied from the point of the erythemal UV-B-doses on the horizontal human epidermis. The low values of total ozone at Marambio are also reflected to the received UV-doses which have increased roughly 20-80% (compared to long term average) during austral spring and summer. In respective to the total amount of ozone, the model calculations show that during October the UV-B-doses can be at the same level they should be during normal summer

  6. The Evolution and Fate of Saturn's Stratospheric Vortex: Infrared Spectroscopy from Cassini

    Science.gov (United States)

    Fletcher, Leigh N.; Hesman, B. E.; Arhterberg, R. K.; Bjoraker, G.; Irwin, P. G. J.; Hurley, J.; Sinclair, J.; Gorius, N.; Orton, G. S.; Read, P. L.; hide

    2012-01-01

    The planet-encircling springtime storm in Saturn's troposphere (December 2010-July 2011) produced dramatic perturbations to stratospheric temperatures, winds and composition at mbar pressures that persisted long after the tropospheric disturbance had abated. Observations from the Cassini Composite Infrared Spectrometer (CIRS), supported by ground-based imaging from the VISIR instrument on the Very Large Telescope,is used to track the evolution of a large, hot stratospheric anticyclone between January 2011 and the present day. The evolutionary sequence can be divided into three phases: (I) the formation and intensification of two distinct warm airmasses near 0.5 mbar between 25 and 35N (one residing directly above the convective storm head) between January-April 2011, moving westward with different zonal velocities; (II) the merging of the warm airmasses to form the large single 'stratospheric beacon' near 40N between April and June 2011, dissociated from the storm head and at a higher pressure (2 mbar) than the original beacons; and (III) the mature phase characterized by slow cooling and longitudinal shrinkage of the anticyclone since July 2011, moving west with a near-constant velocity of 2.70+/-0.04 deg/day (-24.5+/-0.4 m/s at 40N). Peak temperatures of 220 K at 2 mbar were measured on May 5th 2011 immediately after the merger, some 80 K warmer than the quiescent surroundings. Thermal winds hear calculations in August 2011 suggest clockwise peripheral velocities of 200400 mls at 2 mbar, defining a peripheral collar with a width of 65 degrees longitude (50,000 km in diameter) and 25 degrees latitude. Stratospheric acetylene (C2H2) was uniformly enhanced by a factor of three within the vortex, whereas ethane (C2H6) remained unaffected. We will discuss the thermal and chemical characteristics of Saturn's beacon in its mature phase, and implications for stratospheric vortices on other giant planets.

  7. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  8. Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-04-01

    Full Text Available An extensive observational data set, consisting of more than 106 SF6 vertical profiles from MIPAS measurements distributed over the whole globe has been condensed into monthly zonal means of mean age of air for the period September 2002 to January 2010, binned at 10° latitude and 1–2 km altitude. The data were analysed with respect to their temporal variation by fitting a regression model consisting of a constant and a linear increase term, 2 proxies for the QBO variation, sinusoidal terms for the seasonal and semi-annual variation and overtones for the correction of the shapes to the observed data set. The impact of subsidence of mesospheric SF6-depleted air and in-mixing into non-polar latitudes on mid-latitudinal absolute age of air and its linear increase was assessed and found to be small.

    The linear increase of mean age of stratospheric air was found to be positive and partly larger than the trend derived by Engel et al. (2009 for most of the Northern mid-latitudes, the middle stratosphere in the tropics, and parts of the Southern mid-latitudes, as well as for the Southern polar upper stratosphere. Multi-year decrease of age of air was found for the lowermost and the upper stratospheric tropics, for parts of Southern mid-latitudes, and for the Northern polar regions. Analysis of the amplitudes and phases of the seasonal variation shed light on the coupling of stratospheric regions to each other. In particular, the Northern mid-latitude stratosphere is well coupled to the tropics, while the Northern lowermost mid-latitudinal stratosphere is decoupled, confirming the separation of the shallow branch of the Brewer-Dobson circulation from the deep branch. We suggest an overall increased tropical upwelling, together with weakening of mixing barriers, especially in the Northern Hemisphere, as a hypothetical model to explain the observed pattern of linear multi-year increase/decrease, and amplitudes

  9. Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC.

    Science.gov (United States)

    Brühl, C; Lelieveld, J; Tost, H; Höpfner, M; Glatthor, N

    2015-03-16

    Multiyear simulations with the atmospheric chemistry general circulation model EMAC with a microphysical modal aerosol module at high vertical resolution demonstrate that the sulfur gases COS and SO 2 , the latter from low-latitude and midlatitude volcanic eruptions, predominantly control the formation of stratospheric aerosol. Marine dimethyl sulfide (DMS) and other SO 2 sources, including strong anthropogenic emissions in China, are found to play a minor role except in the lowermost stratosphere. Estimates of volcanic SO 2 emissions are based on satellite observations using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument for total injected mass and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat or Stratospheric Aerosol and Gases Experiment for the spatial distribution. The 10 year SO 2 and COS data set of MIPAS is also used for model evaluation. The calculated radiative forcing of stratospheric background aerosol including sulfate from COS and small contributions by DMS oxidation, and organic aerosol from biomass burning, is about 0.07W/m 2 . For stratospheric sulfate aerosol from medium and small volcanic eruptions between 2005 and 2011 a global radiative forcing up to 0.2W/m 2 is calculated, moderating climate warming, while for the major Pinatubo eruption the simulated forcing reaches 5W/m 2 , leading to temporary climate cooling. The Pinatubo simulation demonstrates the importance of radiative feedback on dynamics, e.g., enhanced tropical upwelling, for large volcanic eruptions.

  10. On the statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter

    International Nuclear Information System (INIS)

    Perlwitz, J.; Graf, H.F.

    1994-01-01

    The associated anomaly patterns of the stratospheric geopotential height field and the tropospheric geopotential and temperature height fields of the northern hemisphere are determined applying the Canonical Correlation Analysis (CCA). With this linear multivariate technique the coupled modes of variability of time series of two fields are isolated in the EOF space. The one data set is the 50 hPa geopotential field, the other set consists of different height fields of the tropospheric pressure levels (200 hPa, 500 hPa, 700 hPa, 850 hPa) and the temperature of the 850 hPa pressure level. For the winter months (December, January, February) two natural coupled modes, a barotropic and a baroclinic one, of linear relationship between stratospheric and tropospheric circulation are found. The baroclinic mode describes a connection between the strength of the stratospheric cyclonic winter vortex and the tropospheric circulation over the North Atlantic. The corresponding temperature pattern for an anomalously strong stratospheric cyclonic vortex is characterized by positive temperature anomalies over higher latitudes of Eurasia. These 'Winter Warmings' are observed e.g. after violent volcanic eruptions. The barotropic mode is characterized by a zonal wave number one in the lower stratosphere and by a PNA-like pattern in the troposphere. It was shown by Labitzke and van Loon (1987) that this mode can be enhanced e.g. by El Ninos via the intensification of the Aleutian low. (orig.)

  11. Low-Power Architecture for an Optical Life Gas Analyzer

    Science.gov (United States)

    Pilgrim, Jeffrey; Vakhtin, Andrei

    2012-01-01

    Analog and digital electronic control architecture has been combined with an operating methodology for an optical trace gas sensor platform that allows very low power consumption while providing four independent gas measurements in essentially real time, as well as a user interface and digital data storage and output. The implemented design eliminates the cross-talk between the measurement channels while maximizing the sensitivity, selectivity, and dynamic range for each measured gas. The combination provides for battery operation on a simple camcorder battery for as long as eight hours. The custom, compact, rugged, self-contained design specifically targets applications of optical major constituent and trace gas detection for multiple gases using multiple lasers and photodetectors in an integrated package.

  12. CERN: Antiprotons probe the nuclear stratosphere

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The outer periphery of heavy stable nuclei is notoriously difficult to study experimentally. While the well understood electromagnetic interaction between electrons (or muons) and protons has given the nuclear charge (or proton) distribution with high precision for almost all stable nuclei, neutron distribution studies are much less precise. This is especially true for large nuclear distances, where the nuclear density is small. A few previous experiments probing the nuclear ''stratosphere'' suggested that far from the centre of the nucleus (of the order of 2 nuclear radii) this stratosphere may be composed predominantly of neutrons. At the end of the sixties the term ''neutron halo'' was introduced to describe this phenomenon, but experimental evidence was scarce or even controversial, and remained so for almost a quarter of a century. Recently, the Warsaw/Munich/Berlin collaboration working within the PS203 experiment at CERN's LEAR low energy antiproton ring, proposed a new method to study the nuclear periphery using stopped antiprotons. The halo now looks firmer. A 200 MeV/c beam of antiprotons was slowed down by interactions with atomic electrons. When antiproton kinetic energy drops well below 1 keV, the particles are captured in the outermost orbits of ''exotic atoms'', where the antiprotons take the place of the usual orbital electrons. With the lower orbits in this antiprotonic atom empty, the antiproton drops toward the nuclear surface, first emitting Auger electrons and later predominantly antiprotonic X-rays. Due to the strong interaction between antiprotons and nucleons, the antiproton succumbs to annihilation with a nucleon in the rarified nuclear stratosphere, far above the innermost Bohr orbit of the atom. The annihilation probability in heavy nuclei is maximal where the nuclear density is about 3% of its central value and extends to densities many orders of magnitude smaller

  13. Hydrogen emissions and their effects on the arctic ozone losses. Risk analysis of a global hydrogen economy; Wasserstoff-Emissionen und ihre Auswirkungen auf den arktischen Ozonverlust. Risikoanalyse einer globalen Wasserstoffwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Feck, Thomas

    2009-07-01

    Hydrogen (H{sub 2}) could be used as one of the major components in our future energy supply in an effort to avoid greenhouse gas emissions. ''Green'' hydrogen in particular, which is produced from renewable energy sources, should significantly reduce emissions that damage the climate. Despite this basically environmentally-friendly property, however, the complex chain of interactions of hydrogen with other compounds means that the implications for the atmosphere must be analysed in detail. For example, H{sub 2} emissions, which could increase the tropospheric H{sub 2} inventory, can be released throughout the complete hydrogen process chain. H{sub 2} enters the stratosphere via the tropical tropopause and is oxidised there to form water vapour (H{sub 2}O). This extra water vapour causes increased radiation in the infrared region of the electromagnetic spectrum and thus causes the stratosphere to cool down. Both the increase in H{sub 2}O and the resulting cooling down of the stratosphere encourage the formation of polar stratospheric clouds (PSC) and liquid sulphate aerosols, which facilitate the production of reactive chlorine, which in turn currently leads to dramatic ozone depletion in the polar stratosphere. In the future, H{sub 2} emissions from a global hydrogen economy could therefore encourage stratospheric ozone depletion in the polar regions and thus inhibit the ozone layer in recovering from the damage caused by chlorofluorocarbons (CFCs). In addition to estimating possible influences on the trace gas composition of the stratosphere, one of the main aims of this thesis is to evaluate the risk associated with increased polar ozone depletion caused by additional H{sub 2} emissions. Studies reported on here have shown that even if around 90% of today's fossil primary energy input was to be replaced by hydrogen and if around 9.5% of the gas was to escape in a ''worst-case'' scenario, the additional ozone loss for unchanged CFC loading in the stratosphere

  14. Climatology and energy budget of the northern hemisphere middle stratosphere during 1972

    Energy Technology Data Exchange (ETDEWEB)

    Tahnk, W R [Air Force Geophysics Lab., Bedforo, MA; Newell, R E

    1975-01-01

    The 10-2 mb (approx. 30 to 40 km) layer of the atmosphere in winter receives energy from two different sources: mechanical energy is carried up from the troposphere and lower stratosphere while energy is generated in situ by the gradients of radiative heating and cooling. We show here from data for 1972 that the latter primarily governs the energy budget of the middle stratosphere in early winter while the former becomes of comparable size, and often dominates, in the middle and late winter. Radiative energy sources for the summer hemisphere are very small, as there is considerable compensation between solar heating through ozone absorption and infrared cooling by carbon dioxide and ozone. Standing and travelling waves are quite clear-cut at 5 and 2 mb in winter, as much of the chaos of lower regions is filtered out in the lower stratosphere; the standing waves at 2 mb may reflect surface properties more effectively than flow patterns at lower levels. A westward-travelling wave, with a period of about a month, was evident in early 1972.

  15. Comparison of the long-term trends in stratospheric dynamics of four reanalyses

    Directory of Open Access Journals (Sweden)

    M. Kozubek

    2017-02-01

    Full Text Available Since the long-term trends of different atmospheric parameters have been already studied separately in many papers, this study is focused on the stratospheric wind (zonal and meridional components and temperature over the whole globe at 10 hPa during 1979–2015. We present the trends for the whole winter (October–March, for each individual month of winter and separately for the period before and after the ozone trend turnaround during the mid-1990s. The change of ozone trends has a clear impact on trends in other investigated stratospheric parameters. Four reanalyses (MERRA, ERA-Interim, JRA-55 and NCEP-DOE are used for comparison. Every grid point is analysed, not zonal averages. The comparison of trends in meridional wind, which is closely connected with Brewer–Dobson circulation, shows a good agreement for all four reanalyses (main features and amplitudes of the trends in terms of winter averages, but there are some differences in individual months, particularly in trend amplitude. These results could be important for studying dynamics (transport in the whole stratosphere.

  16. Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bohua; Kinter, James L. [George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Hu, Zeng-Zhen [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Climate Prediction Center (suite 605), NCEP/NWS/NOAA, Camp Springs, MD (United States); Wu, Zhaohua [Florida State University, Department of Earth, Ocean, and Atmospheric Science, and Center for Ocean-Atmospheric Prediction Studies, Tallahassee, FL (United States); Kumar, Arun [Climate Prediction Center (suite 605), NCEP/NWS/NOAA, Camp Springs, MD (United States)

    2012-01-15

    The stratospheric quasi-biennial oscillation (QBO) and its association with the interannual variability in the stratosphere and troposphere, as well as in tropical sea surface temperature anomalies (SSTA), are examined in the context of a QBO life cycle. The analysis is based on the ERA40 and NCEP/NCAR reanalyses, radiosonde observations at Singapore, and other observation-based datasets. Both reanalyses reproduce the QBO life cycle and its associated variability in the stratosphere reasonably well, except that some long-term changes are detected only in the NCEP/NCAR reanalysis. In order to separate QBO from variability on other time scales and to eliminate the long-term changes, a scale separation technique [Ensemble Empirical Mode Decomposition (EEMD)] is applied to the raw data. The QBO component of zonal wind anomalies at 30 hPa, extracted using the EEMD method, is defined as a QBO index. Using this index, the QBO life cycle composites of stratosphere and troposphere variables, as well as SSTA, are constructed and examined. The composite features in the stratosphere are generally consistent with previous investigations. The correlations between the QBO and tropical Pacific SSTA depend on the phase in a QBO life cycle. On average, cold (warm) SSTA peaks about half a year after the maximum westerlies (easterlies) at 30 hPa. The connection of the QBO with the troposphere seems to be associated with the differences of temperature anomalies between the stratosphere and troposphere. While the anomalies in the stratosphere propagate downward systematically, some anomalies in the troposphere develop and expand vertically. Therefore, it is possible that the temperature difference between the troposphere and stratosphere may alter the atmospheric stability and tropical deep convection, which modulates the Walker circulation and SSTA in the equatorial Pacific Ocean. (orig.)

  17. Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle

    Science.gov (United States)

    Huang, Bohua; Hu, Zeng-Zhen; Kinter, James L.; Wu, Zhaohua; Kumar, Arun

    2012-01-01

    The stratospheric quasi-biennial oscillation (QBO) and its association with the interannual variability in the stratosphere and troposphere, as well as in tropical sea surface temperature anomalies (SSTA), are examined in the context of a QBO life cycle. The analysis is based on the ERA40 and NCEP/NCAR reanalyses, radiosonde observations at Singapore, and other observation-based datasets. Both reanalyses reproduce the QBO life cycle and its associated variability in the stratosphere reasonably well, except that some long-term changes are detected only in the NCEP/NCAR reanalysis. In order to separate QBO from variability on other time scales and to eliminate the long-term changes, a scale separation technique [Ensemble Empirical Mode Decomposition (EEMD)] is applied to the raw data. The QBO component of zonal wind anomalies at 30 hPa, extracted using the EEMD method, is defined as a QBO index. Using this index, the QBO life cycle composites of stratosphere and troposphere variables, as well as SSTA, are constructed and examined. The composite features in the stratosphere are generally consistent with previous investigations. The correlations between the QBO and tropical Pacific SSTA depend on the phase in a QBO life cycle. On average, cold (warm) SSTA peaks about half a year after the maximum westerlies (easterlies) at 30 hPa. The connection of the QBO with the troposphere seems to be associated with the differences of temperature anomalies between the stratosphere and troposphere. While the anomalies in the stratosphere propagate downward systematically, some anomalies in the troposphere develop and expand vertically. Therefore, it is possible that the temperature difference between the troposphere and stratosphere may alter the atmospheric stability and tropical deep convection, which modulates the Walker circulation and SSTA in the equatorial Pacific Ocean.

  18. Epidemic contact tracing via communication traces.

    Directory of Open Access Journals (Sweden)

    Katayoun Farrahi

    Full Text Available Traditional contact tracing relies on knowledge of the interpersonal network of physical interactions, where contagious outbreaks propagate. However, due to privacy constraints and noisy data assimilation, this network is generally difficult to reconstruct accurately. Communication traces obtained by mobile phones are known to be good proxies for the physical interaction network, and they may provide a valuable tool for contact tracing. Motivated by this assumption, we propose a model for contact tracing, where an infection is spreading in the physical interpersonal network, which can never be fully recovered; and contact tracing is occurring in a communication network which acts as a proxy for the first. We apply this dual model to a dataset covering 72 students over a 9 month period, for which both the physical interactions as well as the mobile communication traces are known. Our results suggest that a wide range of contact tracing strategies may significantly reduce the final size of the epidemic, by mainly affecting its peak of incidence. However, we find that for low overlap between the face-to-face and communication interaction network, contact tracing is only efficient at the beginning of the outbreak, due to rapidly increasing costs as the epidemic evolves. Overall, contact tracing via mobile phone communication traces may be a viable option to arrest contagious outbreaks.

  19. Epidemic contact tracing via communication traces.

    Science.gov (United States)

    Farrahi, Katayoun; Emonet, Rémi; Cebrian, Manuel

    2014-01-01

    Traditional contact tracing relies on knowledge of the interpersonal network of physical interactions, where contagious outbreaks propagate. However, due to privacy constraints and noisy data assimilation, this network is generally difficult to reconstruct accurately. Communication traces obtained by mobile phones are known to be good proxies for the physical interaction network, and they may provide a valuable tool for contact tracing. Motivated by this assumption, we propose a model for contact tracing, where an infection is spreading in the physical interpersonal network, which can never be fully recovered; and contact tracing is occurring in a communication network which acts as a proxy for the first. We apply this dual model to a dataset covering 72 students over a 9 month period, for which both the physical interactions as well as the mobile communication traces are known. Our results suggest that a wide range of contact tracing strategies may significantly reduce the final size of the epidemic, by mainly affecting its peak of incidence. However, we find that for low overlap between the face-to-face and communication interaction network, contact tracing is only efficient at the beginning of the outbreak, due to rapidly increasing costs as the epidemic evolves. Overall, contact tracing via mobile phone communication traces may be a viable option to arrest contagious outbreaks.

  20. Interpretation of DIAL Measurements of Lower Stratospheric Ozone in Regions with Pinatubo Aerosols

    Science.gov (United States)

    Grant, William B.; Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Brackett, Vincent G.; Veiga, Robert E.; Mayor, Shane D.; Fishman, Jack; Nganga, D.; Minga, A.

    1992-01-01

    The influence of volcanic aerosols on stratospheric ozone is a topic of current interest, especially with the June 15, 1991 eruption of Mt. Pinatubo in the Philippines. Lidar has been used in the past to provide aerosol profiles which could be compared with ozone profiles measured using ozonesondes to look for coincidences between volcanic aerosols and ozone decreases. The differential absorption lidar (DIAL) technique has the advantages of being able to measure ozone and aerosol profiles simultaneously as well as being able to cover large geographical regions rapidly. While there are problems associated with correcting the ozone profiles for the presence of aerosols, the corrections can be made reliably when the wavelengths are closely spaced and the Bernoulli method is applied. The DIAL measurements considered in this paper are those obtained in the tropical stratosphere in January 1992 during the Airborne Arctic Stratospheric Expedition (AASE-II). The determination of ozone profiles in the presence of Pinatubo aerosols is discussed in a companion paper.

  1. Summary of the LLNL one-dimensional transport-kinetics model of the troposphere and stratosphere: 1981

    International Nuclear Information System (INIS)

    Wuebbles, D.J.

    1981-09-01

    Since the LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere was originally developed in 1972 (Chang et al., 1974), there have been many changes to the model's representation of atmospheric physical and chemical processes. A brief description is given of the current LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere

  2. Method for detecting trace impurities in gases

    Science.gov (United States)

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  3. Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources

    Directory of Open Access Journals (Sweden)

    Vincenzo Spagnolo

    2009-12-01

    Full Text Available The paper provides an overview on the use of photoacoustic sensors based on semiconductor laser sources for the detection of trace gases. We review the results obtained using standard, differential and quartz enhanced photoacoustic techniques.

  4. A 10-year Ground-Based Radar Climatology of Convective Penetration of Stratospheric Intrusions and Associated Large-Scale Transport over the CONUS

    Science.gov (United States)

    Homeyer, C. R.

    2017-12-01

    Deep convection reaching the upper troposphere and lower stratosphere (UTLS) and its impact on atmospheric composition through rapid vertical transport of lower troposphere air and stratosphere-troposphere exchange has received increasing attention in the past 5-10 years. Most efforts focused on convection have been directed toward storms that reach and/or penetrate the coincident environmental lapse-rate tropopause. However, convection has also been shown to reach into large-scale stratospheric intrusions (depressions of stratospheric air lying well below the lapse-rate tropopause on the cyclonic side of upper troposphere jet streams). Such convective penetration of stratospheric intrusions is not captured by studies of lapse-rate tropopause-penetrating convection. In this presentation, it will be shown using hourly, high-quality mergers of ground-based radar observations from 2004 to 2013 in the contiguous United States (CONUS) and forward large-scale trajectory analysis that convective penetration of stratospheric intrusions: 1) is more frequent than lapse-rate tropopause-penetrating convection, 2) occurs over a broader area of the CONUS than lapse-rate tropopause-penetrating convection, and 3) can influence the composition of the lower stratosphere through large-scale advection of convectively influenced air to altitudes above the lapse-rate tropopause, which we find to occur for about 8.5% of the intrusion volumes reached by convection.

  5. Simulation of the impact of thunderstorm activity on atmospheric gas composition

    Science.gov (United States)

    Smyshlyaev, S. P.; Mareev, E. A.; Galin, V. Ya.

    2010-08-01

    A chemistry-climate model of the lower and middle atmosphere has been used to estimate the sensitivity of the atmospheric gas composition to the rate of thunderstorm production of nitrogen oxides at upper tropospheric and lower stratospheric altitudes. The impact that nitrogen oxides produced by lightning have on the atmospheric gas composition is treated as a subgrid-scale process and included in the model parametrically. The natural uncertainty in the global production rate of nitrogen oxides in lightning flashes was specified within limits from 2 to 20 Tg N/year. Results of the model experiments have shown that, due to the variability of thunderstorm-produced nitrogen oxides, their concentration in the upper troposphere and lower stratosphere can vary by a factor of 2 or 3, which, given the influence of nitrogen oxides on ozone and other gases, creates the potential for a strong perturbation of the atmospheric gas composition and thermal regime. Model calculations have shown the strong sensitivity of ozone and the OH hydroxyl to the amount of lightning nitrogen oxides at different atmospheric altitudes. These calculations demonstrate the importance of nitrogen oxides of thunderstorm origin for the balance of atmospheric odd ozone and gases linked to it, such as ozone and hydroxyl radicals. Our results demonstrate that one important task is to raise the accuracy of estimates of the rate of nitrogen oxide production by lightning discharges and to use physical parametrizations that take into account the local lightning effects and feedbacks arising in this case rather than climatological data in models of the gas composition and general circulation of the atmosphere.

  6. Sulfate Aerosols from Non-Explosive Volcanoes: Chemical-Radiative Effects in the Troposphere and Lower Stratosphere

    Directory of Open Access Journals (Sweden)

    Giovanni Pitari

    2016-06-01

    Full Text Available SO2 and H2S are the two most important gas-phase sulfur species emitted by volcanoes, with a global amount from non-explosive emissions of the order 10 Tg-S/yr. These gases are readily oxidized forming SO42− aerosols, which effectively scatter the incoming solar radiation and cool the surface. They also perturb atmospheric chemistry by enhancing the NOx to HNO3 heterogeneous conversion via hydrolysis on the aerosol surface of N2O5 and Br-Cl nitrates. This reduces formation of tropospheric O3 and the OH to HO2 ratio, thus limiting the oxidation of CH4 and increasing its lifetime. In addition to this tropospheric chemistry perturbation, there is also an impact on the NOx heterogeneous chemistry in the lower stratosphere, due to vertical transport of volcanic SO2 up to the tropical tropopause layer. Furthermore, the stratospheric O3 formation and loss, as well as the NOx budget, may be slightly affected by the additional amount of upward diffused solar radiation and consequent increase of photolysis rates. Two multi-decadal time-slice runs of a climate-chemistry-aerosol model have been designed for studying these chemical-radiative effects. A tropopause mean global net radiative flux change (RF of −0.23 W·m−2 is calculated (including direct and indirect aerosol effects with a 14% increase of the global mean sulfate aerosol optical depth. A 5–15 ppt NOx decrease is found in the mid-troposphere subtropics and mid-latitudes and also from pole to pole in the lower stratosphere. The tropospheric NOx perturbation triggers a column O3 decrease of 0.5–1.5 DU and a 1.1% increase of the CH4 lifetime. The surface cooling induced by solar radiation scattering by the volcanic aerosols induces a tropospheric stabilization with reduced updraft velocities that produce ice supersaturation conditions in the upper troposphere. A global mean 0.9% decrease of the cirrus ice optical depth is calculated with an indirect RF of −0.08 W·m−2.

  7. Hygienic estimation of population doses due to stratospheric fallout

    International Nuclear Information System (INIS)

    Marej, A.N.; Knizhnikov, V.A.

    1980-01-01

    The hygienic estimation of external and internal irradiation of the USSR population due to stratospheric global fallouts of fission products after nuclear explosions and weapon tests, is carried out. Numerical values which characterize the dose-effect dependence in the case of radiation of marrow, bone tissue and whole body are presented. Values of mean individual and population doses of irradiation due to global fallouts within 1963-1975, types of injury and the number of mortal cases due to malignant neoplasms are presented. A conclusion is made that the contribution of radiation due to stratospheric fallouts in the mortality due to malignant neoplasms is insignificant. Annual radiation doses, conditioned by global fallouts within the period of 1963-1975 constitute but several percent from the dose of radiation of the natural radiation background. Results of estimation of genetic consequences of irradiation due to atmospheric fallouts are presented

  8. Stratospheric chlorine injection by volcanic eruptions - HCl scavenging and implications for ozone

    Science.gov (United States)

    Tabazadeh, A.; Turco, R. P.

    1993-01-01

    Because the output of volatile chlorine during a major volcanic event can greatly exceed the annual anthropogenic emissions of chlorine to the atmosphere, the fate of volcanic chlorine must be known. Although numerous observations have shown that volcanoes do not significantly contribute to the stratospheric chlorine burden, no quantitative explanation has been published. Hydrogen chloride (HCl) scavenging processes during the early phases of a volcanic eruption are discussed. A plume dynamics and thermodynamics model is used to show that HCl removal in condensed supercooled water can reduce HCl vapor concentrations by up to four orders of magnitude, preventing substantial stratospheric chlorine injection.

  9. The model evaluation of subsonic aircraft effect on the ozone and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, E.; Zubov, V.; Egorova, T.; Ozolin, Y. [Main Geophysical Observatory, St.Petersburg (Russian Federation)

    1997-12-31

    Two dimensional transient zonally averaged model was used for the evaluation of the effect of subsonic aircraft exhausts upon the ozone, trace gases and radiation in the troposphere and lower stratosphere. The mesoscale transformation of gas composition was included on the base of the box model simulations. It has been found that the transformation of the exhausted gases in sub-grid scale is able to influence the results of the modelling. The radiative forcing caused by gas, sulfate aerosol, soot and contrails changes was estimated as big as 0.12-0.15 W/m{sup 2} (0.08 W/m{sup 2} globally and annually averaged). (author) 10 refs.

  10. The model evaluation of subsonic aircraft effect on the ozone and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, E; Zubov, V; Egorova, T; Ozolin, Y [Main Geophysical Observatory, St.Petersburg (Russian Federation)

    1998-12-31

    Two dimensional transient zonally averaged model was used for the evaluation of the effect of subsonic aircraft exhausts upon the ozone, trace gases and radiation in the troposphere and lower stratosphere. The mesoscale transformation of gas composition was included on the base of the box model simulations. It has been found that the transformation of the exhausted gases in sub-grid scale is able to influence the results of the modelling. The radiative forcing caused by gas, sulfate aerosol, soot and contrails changes was estimated as big as 0.12-0.15 W/m{sup 2} (0.08 W/m{sup 2} globally and annually averaged). (author) 10 refs.

  11. Diffusion probe for gas sampling in undisturbed soil

    DEFF Research Database (Denmark)

    Petersen, Søren O

    2014-01-01

    Soil-atmosphere fluxes of trace gases such as methane (CH4) and nitrous oxide (N2O) are determined by complex interactions between biological activity and soil conditions. Soil gas concentration profiles may, in combination with other information about soil conditions, help to understand emission...... controls. This note describes a simple and robust diffusion probe for soil gas sampling as part of flux monitoring programs. It can be deployed with minimum disturbance of in-situ conditions, also at sites with a high or fluctuating water table. Separate probes are used for each sampling depth...... on peat soils used for grazing showed soil gas concentrations of CH4 and N2O as influenced by topography, site conditions, and season. The applicability of the diffusion probe for trace gas monitoring is discussed....

  12. Products of random matrices from fixed trace and induced Ginibre ensembles

    Science.gov (United States)

    Akemann, Gernot; Cikovic, Milan

    2018-05-01

    We investigate the microcanonical version of the complex induced Ginibre ensemble, by introducing a fixed trace constraint for its second moment. Like for the canonical Ginibre ensemble, its complex eigenvalues can be interpreted as a two-dimensional Coulomb gas, which are now subject to a constraint and a modified, collective confining potential. Despite the lack of determinantal structure in this fixed trace ensemble, we compute all its density correlation functions at finite matrix size and compare to a fixed trace ensemble of normal matrices, representing a different Coulomb gas. Our main tool of investigation is the Laplace transform, that maps back the fixed trace to the induced Ginibre ensemble. Products of random matrices have been used to study the Lyapunov and stability exponents for chaotic dynamical systems, where the latter are based on the complex eigenvalues of the product matrix. Because little is known about the universality of the eigenvalue distribution of such product matrices, we then study the product of m induced Ginibre matrices with a fixed trace constraint—which are clearly non-Gaussian—and M  ‑  m such Ginibre matrices without constraint. Using an m-fold inverse Laplace transform, we obtain a concise result for the spectral density of such a mixed product matrix at finite matrix size, for arbitrary fixed m and M. Very recently local and global universality was proven by the authors and their coworker for a more general, single elliptic fixed trace ensemble in the bulk of the spectrum. Here, we argue that the spectral density of mixed products is in the same universality class as the product of M independent induced Ginibre ensembles.

  13. Future Applications in Quantitative Isotopic Tracing using Homogeneously Carbon-13 Labelled Plant Material

    International Nuclear Information System (INIS)

    Slaets, Johanna I.F.; Chen, Janet; Resch, Christian; Mayr, Leopold; Weltin, Georg; Heiling, Maria; Gruber, Roman; Dercon, Gerd

    2017-01-01

    Carbon-13 ("1"3C) and nitrogen-15 ("1"5N) labelled plant material is increasingly being used to trace the fate of plant-derived C and N into the atmosphere, soil, water and organisms in many studies, including those investigating the potential of soils to store greenhouse gases belowground. Storage of C in soils can offset and even reduce atmospheric levels of the greenhouse gas, CO_2, and interest in such studies is growing due to problems associated with anthropogenic greenhouse gas emissions impacting climate change. Reduction of N loss in soils is also of great interest, as it reduces release of the greenhouse gas, N_2O, into the atmosphere. However, accurate quantitative tracing of plant-derived C and N in such research is only possible if plant material is labelled both homogeneously and in sufficient quantities.

  14. Evaluation of the tropospheric flows to a major Southern Hemisphere stratospheric warming event using NCEP/NCAR Reanalysis data with a PSU/NCAR nudging MM5V3 model

    Science.gov (United States)

    Wang, K.

    2008-04-01

    Previous studies of the exceptional 2002 Southern Hemisphere (SH) stratospheric warming event lead to some uncertainty, namely the question of whether excessive heat fluxes in the upper troposphere and lower stratosphere are a symptom or cause of the 2002 SH warming event. In this work, we use a hemispheric version of the MM5 model with nudging capability and we devised a novel approach to separately test the significance of the stratosphere and troposphere for this year. We paired the flow conditions from 2002 in the stratosphere and troposphere, respectively, against the conditions in 1998 (a year with displaced polar vortex) and in 1948 (a year with strong polar vortex that coincided with the geographical South Pole). Our experiments show that the flow conditions from below determine the stratospheric flow features over the polar region. Regardless of the initial stratospheric conditions in 1998 or 1948, when we simulated these past stratospheres with the troposphere/lower stratosphere conditions constrained to 2002 levels, the simulated middle stratospheres resemble those observed in 2002 stratosphere over the polar region. On the other hand, when the 2002 stratosphere was integrated with the troposphere/lower stratosphere conductions constrained to 1948 and 1998, respectively, the simulated middle stratospheric conditions over the polar region shift toward those of 1948 and 1998. Thus, our experiments further support the wave-forcing theory as the cause of the 2002 SH warming event.

  15. Solar UV radiation variations and their stratospheric and climatic effects

    Science.gov (United States)

    Donnelly, R. F.; Heath, D. F.

    1985-01-01

    Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.

  16. Chemical characterization of local and stratospheric plutonium in Ohio soils

    International Nuclear Information System (INIS)

    Muller, R.N.

    1978-01-01

    The chemical nature of plutonium derived from stratospheric fallout and industrial sources was studied in three agricultural soils. The majority of the soil plutonium was associated with a reductant-soluble, hydrous oxide phase that, under most conditions of terrestrial ecosystems, remains essentially immobile. The proportion of plutonium associated with organic matter (0.1N NaOH-extractable) varied among soils, and increased with decreasing particle size in the same soil. In a soil containing 238 Pu from a local fabrication facility and 239 , 240 Pu from stratospheric fallout, isotopic ratios between the NaOH-extractable and residual phases were essentially constant, indicating that, in these soils, plutonium from both sources behaves similarly. The distribution of soil plutonium with particle size appears to be most directly related to the mass of the soil particle

  17. A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS: linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine

    Directory of Open Access Journals (Sweden)

    R. Hossaini

    2016-07-01

    Full Text Available The first concerted multi-model intercomparison of halogenated very short-lived substances (VSLS has been performed, within the framework of the ongoing Atmospheric Tracer Transport Model Intercomparison Project (TransCom. Eleven global models or model variants participated (nine chemical transport models and two chemistry–climate models by simulating the major natural bromine VSLS, bromoform (CHBr3 and dibromomethane (CH2Br2, over a 20-year period (1993–2012. Except for three model simulations, all others were driven offline by (or nudged to reanalysed meteorology. The overarching goal of TransCom-VSLS was to provide a reconciled model estimate of the stratospheric source gas injection (SGI of bromine from these gases, to constrain the current measurement-derived range, and to investigate inter-model differences due to emissions and transport processes. Models ran with standardised idealised chemistry, to isolate differences due to transport, and we investigated the sensitivity of results to a range of VSLS emission inventories. Models were tested in their ability to reproduce the observed seasonal and spatial distribution of VSLS at the surface, using measurements from NOAA's long-term global monitoring network, and in the tropical troposphere, using recent aircraft measurements – including high-altitude observations from the NASA Global Hawk platform. The models generally capture the observed seasonal cycle of surface CHBr3 and CH2Br2 well, with a strong model–measurement correlation (r  ≥  0.7 at most sites. In a given model, the absolute model–measurement agreement at the surface is highly sensitive to the choice of emissions. Large inter-model differences are apparent when using the same emission inventory, highlighting the challenges faced in evaluating such inventories at the global scale. Across the ensemble, most consistency is found within the tropics where most of the models (8 out of 11 achieve best agreement to

  18. The maintenance of elevated active chlorine levels in the Antarctic lower stratosphere through HCl null cycles

    Science.gov (United States)

    Müller, Rolf; Grooß, Jens-Uwe; Mannan Zafar, Abdul; Robrecht, Sabine; Lehmann, Ralph

    2018-03-01

    The Antarctic ozone hole arises from ozone destruction driven by elevated levels of ozone destroying (active) chlorine in Antarctic spring. These elevated levels of active chlorine have to be formed first and then maintained throughout the period of ozone destruction. It is a matter of debate how this maintenance of active chlorine is brought about in Antarctic spring, when the rate of formation of HCl (considered to be the main chlorine deactivation mechanism in Antarctica) is extremely high. Here we show that in the heart of the ozone hole (16-18 km or 85-55 hPa, in the core of the vortex), high levels of active chlorine are maintained by effective chemical cycles (referred to as HCl null cycles hereafter). In these cycles, the formation of HCl is balanced by immediate reactivation, i.e. by immediate reformation of active chlorine. Under these conditions, polar stratospheric clouds sequester HNO3 and thereby cause NO2 concentrations to be low. These HCl null cycles allow active chlorine levels to be maintained in the Antarctic lower stratosphere and thus rapid ozone destruction to occur. For the observed almost complete activation of stratospheric chlorine in the lower stratosphere, the heterogeneous reaction HCl + HOCl is essential; the production of HOCl occurs via HO2 + ClO, with the HO2 resulting from CH2O photolysis. These results are important for assessing the impact of changes of the future stratospheric composition on the recovery of the ozone hole. Our simulations indicate that, in the lower stratosphere, future increased methane concentrations will not lead to enhanced chlorine deactivation (through the reaction CH4 + Cl → HCl + CH3) and that extreme ozone destruction to levels below ≈ 0.1 ppm will occur until mid-century.

  19. The Effects of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in an AOGCM

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven; Waugh, Darryn

    2014-01-01

    Stratospheric ozone depletion has played a dominant role in driving Antarctic climate change in the last decades. In order to capture the stratospheric ozone forcing, many coupled atmosphere-ocean general circulation models (AOGCMs) prescribe the Antarctic ozone hole using monthly and zonally averaged ozone field. However, the prescribed ozone hole has a high ozone bias and lacks zonal asymmetry. The impacts of these biases on model simulations, particularly on Southern Ocean and the Antarctic sea ice, are not well understood. The purpose of this study is to determine the effects of using interactive stratospheric chemistry instead of prescribed ozone on Antarctic and Southern Ocean climate change in an AOGCM. We compare two sets of ensemble simulations for the 1960-2010 period using different versions of the Goddard Earth Observing System 5 - AOGCM: one with interactive stratospheric chemistry, and the other with prescribed monthly and zonally averaged ozone and 6 other stratospheric radiative species calculated from the interactive chemistry simulations. Consistent with previous studies using prescribed sea surface temperatures and sea ice concentrations, the interactive chemistry runs simulate a deeper Antarctic ozone hole and consistently larger changes in surface pressure and winds than the prescribed ozone runs. The use of a coupled atmosphere-ocean model in this study enables us to determine the impact of these surface changes on Southern Ocean circulation and Antarctic sea ice. The larger surface wind trends in the interactive chemistry case lead to larger Southern Ocean circulation trends with stronger changes in northerly and westerly surface flow near the Antarctica continent and stronger upwelling near 60S. Using interactive chemistry also simulates a larger decrease of sea ice concentrations. Our results highlight the importance of using interactive chemistry in order to correctly capture the influences of stratospheric ozone depletion on climate

  20. Signals of El Niño Modoki in the tropical tropopause layer and stratosphere

    Directory of Open Access Journals (Sweden)

    F. Xie

    2012-06-01

    Full Text Available The effects of El Niño Modoki events on the tropical tropopause layer (TTL and on the stratosphere were investigated using European Center for Medium Range Weather Forecasting (ECMWF reanalysis data, oceanic El Niño indices, and general climate model outputs. El Niño Modoki events tend to depress convective activities in the western and eastern Pacific but enhance convective activities in the central and northern Pacific. Consequently, during El Niño Modoki events, negative water vapor anomalies occur in the western and eastern Pacific upper troposphere, whereas there are positive anomalies in the central and northern Pacific upper troposphere. The spatial patterns of the outgoing longwave radiation (OLR and upper tropospheric water vapor anomalies exhibit a tripolar form. The empirical orthogonal function (EOF analysis of the OLR and upper tropospheric water vapor anomalies reveals that canonical El Niño events are associated with the leading mode of the EOF, while El Niño Modoki events correspond to the second mode. The composite analysis based on ERA-interim data indicate that El Niño Modoki events have a reverse effect on middle-high latitudes stratosphere, as compared with the effect of typical El Niño events, i.e., the northern polar vortex is stronger and colder but the southern polar vortex is weaker and warmer during El Niño Modoki events. According to the simulation' results, we found that the reverse effect on the middle-high latitudes stratosphere is resulted from a complicated interaction between quasi-biennial oscillation (QBO signal of east phase and El Niño Modoki signal. This interaction is not a simply linear overlay of QBO signal and El Niño Modoki signal in the stratosphere, it is El Niño Modoki that leads to different tropospheric zonal wind anomalies with QBO forcing from that caused by typical El Niño, thus, the planetary wave propagation from troposphere to the stratosphere during El Niño Modoki events is