WorldWideScience

Sample records for stratospheric balloon missions

  1. An Overview of Current and Future Stratospheric Balloon Mission Capabilities

    Science.gov (United States)

    Smith, Michael

    The modern stratospheric balloon has been used for a variety of missions since the late 1940's. Capabilities of these vehicles to carry larger payloads, fly to higher altitudes, and fly for longer periods of time have increased dramatically over this time. In addition to these basic performance metrics, reliability statistics for balloons have reached unprecedented levels in recent years. Balloon technology developed in the United States in the last decade has the potential to open a new era in economical space science using balloons. As always, the advantage of the balloon platform is the fact that missions can be carried out at a fraction of the cost and schedule of orbital missions. A secondary advantage is the fact that instruments can be re-flown numerous times while upgrading sensor and data processing technologies from year to year. New mission capabilities now have the potential for enabling ground breaking observations using balloons as the primary platform as opposed to a stepping stone to eventual orbital observatories. The limit of very high altitude balloon missions will be explored with respect to the current state of the art of balloon materials and fabrication. The same technological enablers will also be applied to possibilities for long duration missions at mid latitudes with payloads of several tons. The balloon types and their corresponding mission profiles will be presented in a performance matrix that will be useful for potential scientific users in planning future research programs.

  2. Ballooning for Biologists: Mission Essentials for Flying Experiments on Large NASA Balloons

    Science.gov (United States)

    Smith, David J.; Sowa, Marianne

    2017-01-01

    Despite centuries of scientific balloon flights, only a handful of experiments have produced biologically-relevant results. Yet unlike orbital spaceflight, it is much faster and cheaper to conduct biology research with balloons, sending specimens to the near space environment of Earths stratosphere. Samples can be loaded the morning of a launch and sometimes returned to the laboratory within one day after flying. The National Aeronautics and Space Administration (NASA) flies large, unmanned scientific balloons from all over the globe, with missions ranging from hours to weeks in duration. A payload in the middle portion of the stratosphere (approx. 35 km above sea level) will be exposed to an environment similar to the surface of Mars: temperatures generally around -36 C, atmospheric pressure at a thin 1 kPa, relative humidity levels <1%, and a harsh illumination of ultraviolet (UV) and cosmic radiation levels (about 100 W/sq m and 0.1 mGy/d, respectively) that can be obtained nowhere else on the surface of the Earth, including environmental chambers and particle accelerator facilities attempting to simulate space radiation effects. Considering the operational advantages of ballooning and the fidelity of space-like stressors in the stratosphere, researchers in aerobiology, astrobiology, and space biology can benefit from balloon flight experiments as an intermediary step on the extraterrestrial continuum (ground, low Earth orbit, and deep space studies). Our presentation targets biologists with no background or experience in scientific ballooning. We will provide an overview of large balloon operations, biology topics that can be uniquely addressed in the stratosphere, and a roadmap for developing payloads to fly with NASA.

  3. Euso-Balloon: A pathfinder mission for the JEM-EUSO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Osteria, Giuseppe, E-mail: osteria@na.infn.it [Istituto Nazionale di Fisica Nucleare Sezione di Napoli, Naples (Italy); Scotti, Valentina [Istituto Nazionale di Fisica Nucleare Sezione di Napoli, Naples (Italy); Università di Napoli Federico II, Dipartimento di Fisica, Naples (Italy)

    2013-12-21

    EUSO-Balloon is a pathfinder mission for JEM-EUSO, the near-UV telescope proposed to be installed on board the ISS in 2017. The main objective of this pathfinder mission is to perform a full scale end-to-end test of all the key technologies and instrumentation of JEM-EUSO detectors and to prove the entire detection chain. EUSO-Balloon will measure the atmospheric and terrestrial UV background components, in different observational modes, fundamental for the development of the simulations. Through a series of flights performed by the French Space Agency CNES, EUSO-Balloon also has the potential to detect Extensive Air Showers (EAS) from above. EUSO-Balloon will be mounted in an unpressurized gondola of a stratospheric balloon. We will describe the instrument and the electronic system which performs instrument control and data management in such a critical environment.

  4. Solar research with stratospheric balloons

    Science.gov (United States)

    Vázquez, Manuel; Wittmann, Axel D.

    Balloons, driven by hot air or some gas lighter than air, were the first artificial machines able to lift payloads (including humans) from the ground. After some pioneering flights the study of the physical properties of the terrestrial atmosphere constituted the first scientific target. A bit later astronomers realized that the turbulence of the atmospheric layers above their ground-based telescopes deteriorated the image quality, and that balloons were an appropriate means to overcome, total or partially, this problem. Some of the most highly-resolved photographs and spectrograms of the sun during the 20th century were actually obtained by balloon-borne telescopes from the stratosphere. Some more recent projects of solar balloon astronomy will also be described.

  5. Vertical sounding balloons for stratospheric photochemistry

    Science.gov (United States)

    Pommereau, J. P.

    The use of vertical sounding balloons for stratospheric photochemistry studies is illustrated by the use of a vertical piloted gas balloon for the search of NO2 diurnal variations. It is shown that the use of montgolfieres (hot air balloons) can enhance the vertical sounding technique. Particular attention is given to a sun-heated montgolfiere and to the more sophisticated infrared montgolfiere that is able to perform three to four vertical excursions per day and to remain aloft for weeks or months.

  6. Global assimilation of X Project Loon stratospheric balloon observations

    Science.gov (United States)

    Coy, L.; Schoeberl, M. R.; Pawson, S.; Candido, S.; Carver, R. W.

    2017-12-01

    Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. Results show that in middle latitudes the Loon winds and DAS winds agree well and assimilating the Loon winds have only a small impact on short-term forecasting of the Loon winds, however, in the tropics the loon winds and DAS winds often disagree substantially (8 m/s or more in magnitude) and in these cases assimilating the loon winds significantly improves the forecast of the loon winds. By highlighting cases where the Loon and DAS winds differ, these results can lead to improved understanding of stratospheric winds, especially in the tropics.

  7. VLF and X-ray Instruments for Stratospheric Balloons: ABOVE2 and EPEx

    Science.gov (United States)

    Cully, C. M.; Galts, D.; Patrick, M.; Duffin, C.; Jang, A. C.; Pitzel, J.; Trumpour, T.; McCarthy, M.; Milling, D. K.

    2017-12-01

    The ABOVE2 (2016) and EPEx (2018) stratospheric balloon missions are designed to study energetic electrons precipitating from the radiation belts into the atmosphere. The payloads include instruments that measure Very Low Frequency (VLF) magnetic and electric fields, and bremsstrahlung X-rays. The ABOVE2 VLF instrument is an FPGA-based design with >200 kHz sampling rates, sub-microsecond timing accuracy and onboard spectral processing, designed in a Cubesat-friendly format. The EPEx X-ray instrument is a hard X-ray imaging system, also in a Cubesat-friendly format, incorporating a commercially-available Cadmium-Zinc-Telluride module. The imager is sufficiently lightweight that we can launch it on-demand with low-volume latex balloons. I will discuss the design and performance of both instruments, and present data from the ABOVE2 flights.

  8. Location and data collection for long stratospheric balloon flights

    Science.gov (United States)

    Malaterre, P.

    Stratospheric balloons capable of taking a 30 kg scientific payload to an altitude of 22 to 30 km for 1 month or more were developed. In-flight experiments were used to qualify the designs of a pumpkin shaped superpressure balloon and an infrared hot air balloon. Tracking of the flights (location and transmission of the parameters measured on board) was achieved using a telemetry gondola including an ARGOS beacon adapted for operation in the low temperatures encountered.

  9. Fluorescence Lyman-Alpha Stratospheric Hygrometer (FLASH): application on meteorological balloons, long duration balloons and unmanned aerial vehicles.

    Science.gov (United States)

    Lykov, Alexey; Khaykin, Sergey; Yushkov, Vladimir; Efremov, Denis; Formanyuk, Ivan; Astakhov, Valeriy

    The FLASH instrument is based on the fluorescent method, which uses H2O molecules photodissociation at a wavelength lambda=121.6 nm (Lalpha - hydrogen emission) followed by the measurement of the fluorescence of excited OH radicals. The source of Lyman-alpha radiation is a hydrogen discharge lamp while the detector of OH fluorescence at 308 -316 nm is a photomultiplier run in photon counting mode. The intensity of the fluorescent light as well as the instrument readings is directly proportional to the water vapor mixing ratio under stratospheric conditions with negligible oxygen absorption. Initially designed for rocket-borne application, FLASH has evolved into a light-weight balloon sonde (FLASH-B) for measurements in the upper troposphere and stratosphere on board meteorological and small plastic balloons. This configuration has been used in over 100 soundings at numerous tropical mid-latitude and polar locations within various international field campaigns. An airborne version of FLASH instrument is successfully utilized onboard stratospheric M55-Geophysica aircraft and tropospheric airborne laboratory YAK42-Roshydromet. The hygrometer was modified for application onboard stratospheric long-duration balloons (FLASH-LDB version). This version was successfully used onboard CNES super-pressure balloon launched from SSC Esrange in March 2007 and flown during 10 days. Special design for polar long duration balloon PoGOLite was created for testing work during polar day in June 2013. Installation and measurement peculiarities as well as observational results are presented. Observations of water vapour using FLASH-B instrument, being of high quality are rather costly as the payload recovery is often complicated and most of the time impossible. Following the goal to find a cost-efficient solution, FLASH was adapted for use onboard Unmanned Aerial Vehicles (UAV). This solution was only possible thanks to compactness and light-weight (0.5 kg) of FLASH instrument. The

  10. Long duration balloon flights in the middle stratosphere

    Science.gov (United States)

    Malaterre, P.

    1993-02-01

    Research and development performed by the French Space Agency (CNES) over the past 10 years has given the scientific community the Infrared Montgolfiere, a balloon capable of lifting 50-kg payloads into the stratosphere for periods of several weeks. The Infrared Montgolfiere is a hot air balloon that captures infrared radiation using the earth as a heat source. Thirty flights have been launched so far, some lasting more than sixty days and circling the globe twice.

  11. Towards Mars — Stratospheric Balloons as Test-Beds for Mars Exploration

    Science.gov (United States)

    Dannenberg, K.

    2018-04-01

    The abstract deals with the possibilities to use stratospheric balloons for Mars science and technology needs, especially with the opportunities offered by the new European infrastructure project HEMERA, recently selected by the European Commission.

  12. The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-12-01

    Full Text Available The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δ13C and 119 samples for δD, increasing the previously published dataset for balloon borne samples by an order of magnitude, and more than doubling the total available stratospheric data (including aircraft samples published to date. The samples also cover a large range in mixing ratio from tropospheric values near 1800 ppb down to only 250 ppb, and the strong isotope fractionation processes accordingly increase the isotopic composition up to δ13C = −14‰ and δD = +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. The isotopic composition of CH4 in the stratosphere is affected by both chemical and dynamical processes. This severely hampers interpretation of the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D and Cl. It is shown that a formal sink partitioning using the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the lower stratosphere. Full quantitative interpretation of the CH4 isotope data in terms of the three sink reactions requires a global model.

  13. Balloon-borne stratospheric BrO measurements: comparison with Envisat/SCIAMACHY BrO limb profiles

    Directory of Open Access Journals (Sweden)

    M. Dorf

    2006-01-01

    Full Text Available For the first time, results of four stratospheric BrO profiling instruments, are presented and compared with reference to the SLIMCAT 3-dimensional chemical transport model (3-D CTM. Model calculations are used to infer a BrO profile validation set, measured by 3 different balloon sensors, for the new Envisat/SCIAMACHY (ENVIronment SATellite/SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY satellite instrument. The balloon observations include (a balloon-borne in situ resonance fluorescence detection of BrO (Triple, (b balloon-borne solar occultation DOAS measurements (Differential Optical Absorption Spectroscopy of BrO in the UV, and (c BrO profiling from the solar occultation SAOZ (Systeme d'Analyse par Observation Zenithale balloon instrument. Since stratospheric BrO is subject to considerable diurnal variation and none of the measurements are performed close enough in time and space for a direct comparison, all balloon observations are considered with reference to outputs from the 3-D CTM. The referencing is performed by forward and backward air mass trajectory calculations to match the balloon with the satellite observations. The diurnal variation of BrO is considered by 1-D photochemical model calculation along the trajectories. The 1-D photochemical model is initialised with output data of the 3-D model with additional constraints on the vertical transport, the total amount and photochemistry of stratospheric bromine as given by the various balloon observations. Total [Bry]=(20.1±2.5 pptv obtained from DOAS BrO observations at mid-latitudes in 2003, serves as an upper limit of the comparison. Most of the balloon observations agree with the photochemical model predictions within their given error estimates. First retrieval exercises of BrO limb profiling from the SCIAMACHY satellite instrument on average agree to around 20% with the photochemically-corrected balloon observations of the remote sensing instruments (SAOZ

  14. Multi-sensor Array for High Altitude Balloon Missions to the Stratosphere

    Science.gov (United States)

    Davis, Tim; McClurg, Bryce; Sohl, John

    2008-10-01

    We have designed and built a microprocessor controlled and expandable multi-sensor array for data collection on near space missions. Weber State University has started a high altitude research balloon program called HARBOR. This array has been designed to data log a base set of measurements for every flight and has room for six guest instruments. The base measurements are absolute pressure, on-board temperature, 3-axis accelerometer for attitude measurement, and 2-axis compensated magnetic compass. The system also contains a real time clock and circuitry for logging data directly to a USB memory stick. In typical operation the measurements will be cycled through in sequence and saved to the memory stick along with the clock's time stamp. The microprocessor can be reprogrammed to adapt to guest experiments with either analog or digital interfacing. This system will fly with every mission and will provide backup data collection for other instrumentation for which the primary task is measuring atmospheric pressure and temperature. The attitude data will be used to determine the orientation of the onboard camera systems to aid in identifying features in the images. This will make these images easier to use for any future GIS (geographic information system) remote sensing missions.

  15. Testing in a stratospheric balloon of a semiconductor detector altimeter

    International Nuclear Information System (INIS)

    Gilly, L.; Jourdan, P.

    1968-01-01

    An altimeter containing a semiconductor detector has been operated on flight. We have used a stratospheric balloon launched from AIRE-SUR-ADOUR with the C.N.E.S. collaboration. During this assay two apparatus have been used. The first allowed to follow the balloon during its ascension and descent, the second to follow its evolution at its maximum altitude. Informations transmitted by radio and recorded on Magnetophon, have been studied after the flight. Results are identical with these given by the barometer used by the C.N.E.S. in this essay. (authors) [fr

  16. Gondola development for CNES stratospheric balloons

    Science.gov (United States)

    Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.

    (over the line of sight) than with dedicated RF system, which requires balloon visibility from the ground station. For long duration flights (3 months) of Infra Red Montgolfieres, a house keeping gondola has been developed, using the Inmarsat C standard to have communication all around the world (up to N or S 80 ° latitude) with an automatic switching between the 4 geostationnary Inmarsat satellites. After validation flights performed from Bauru / Brazil. (2000 & 2001) and Kiruna/Sweden (2002), the first operational flights took place from Bauru in February 2003 during ENVISAT validation campaign. The next flights will be realized in the framework of the Hibiscus campaign planned in February 2004 in Bauru.. The Balloon Division was involved in the Franco / Japanese HSFD II project which consists to drop a mock-up of the Japanese HOPE-X space shuttle from a stratospheric balloon to validate its flight from the altitude of 30 km. We developed a specific gondola as a service module for the HOPE-X shuttle, providing power and GPS radio-frequency signal during the balloon flight phase, telemetry end remote control radio frequency links and separation system with pyrotechnic cutters for the drop of the shuttle. A successful flight was performed at Kiruna in July 2003. Concerning gondola with pointing system, the study of a big g-ray telescope (8 m of focal length), started by the end of 2002. For this 1 ton gondola, the telescope stabilization system will be based on control moment gyro (CMG). The CMG system has been designed and will be manufactured and validated during 2004. The first flight of this g-ray gondola is planned for 2006. The progress, status and future plans concerning these gondola developments will be presented.

  17. Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform

    International Nuclear Information System (INIS)

    Wang, H H; Yuan, Z H; Wu, J

    2006-01-01

    At present, gondola platform is one of the stratospheric balloon-borne platforms being in research focus at home and overseas. Comparing to other stratospheric balloon-borne platforms, such as airship platform, gondola platform has advantages of higher stability, rapid in motion regulation and lower energy cost but disadvantages of less supporting capacity and be incapable of fixation. While all platforms have the same goal of keeping them at accurate angle and right pose for the requirements of instruments and objects installed in the platforms, when platforms rotate round the ground level perpendicular. That is accomplishing motion control. But, platform control system has factors of low damper, excessive and uncertain disturbances by the reason of its being hung over balloon in the air, it is hard to achieve the desired control precision because platform is ease to deviate its benchmark motion. Thus, in the controlling procedure in order to get higher precision, it is crucial to perceive the platform's swing synchronously and rapidly, and restrain the influence of disturbances effectively, keep the platform's pose steadily. Furthermore, while the platform in the air regard control center in the ground as reference object, it is ultimate to select a appropriate reference frame and work out the coordinates and implement the adjustment by the PC104 controller. This paper introduces the methods of the motion control based on stratospheric balloon-borne gondola platform. Firstly, this paper compares the characteristic of the flywheel and CMG and specifies the key methods of obtaining two significant states which are 'orientation stability' state and 'orientation tracking' state for platform motion control procedure using CMG as the control actuator. These two states reduce the deviation amplitude of rotation and swing of gondola's motion relative to original motion due to stratospheric intense atmosphere disturbance. We define it as the first procedure. In next

  18. Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform

    Science.gov (United States)

    Wang, H. H.; Yuan, Z. H.; Wu, J.

    2006-10-01

    At present, gondola platform is one of the stratospheric balloon-borne platforms being in research focus at home and overseas. Comparing to other stratospheric balloon-borne platforms, such as airship platform, gondola platform has advantages of higher stability, rapid in motion regulation and lower energy cost but disadvantages of less supporting capacity and be incapable of fixation. While all platforms have the same goal of keeping them at accurate angle and right pose for the requirements of instruments and objects installed in the platforms, when platforms rotate round the ground level perpendicular. That is accomplishing motion control. But, platform control system has factors of low damper, excessive and uncertain disturbances by the reason of its being hung over balloon in the air, it is hard to achieve the desired control precision because platform is ease to deviate its benchmark motion. Thus, in the controlling procedure in order to get higher precision, it is crucial to perceive the platform's swing synchronously and rapidly, and restrain the influence of disturbances effectively, keep the platform's pose steadily. Furthermore, while the platform in the air regard control center in the ground as reference object, it is ultimate to select a appropriate reference frame and work out the coordinates and implement the adjustment by the PC104 controller. This paper introduces the methods of the motion control based on stratospheric balloon-borne gondola platform. Firstly, this paper compares the characteristic of the flywheel and CMG and specifies the key methods of obtaining two significant states which are 'orientation stability' state and 'orientation tracking' state for platform motion control procedure using CMG as the control actuator. These two states reduce the deviation amplitude of rotation and swing of gondola's motion relative to original motion due to stratospheric intense atmosphere disturbance. We define it as the first procedure. In next

  19. A stratospheric balloon experiment to test the Huygens atmospheric structure instrument (HASI)

    Science.gov (United States)

    Fulchignoni, M.; Aboudan, A.; Angrilli, F.; Antonello, M.; Bastianello, S.; Bettanini, C.; Bianchini, G.; Colombatti, G.; Ferri, F.; Flamini, E.; Gaborit, V.; Ghafoor, N.; Hathi, B.; Harri, A.-M.; Lehto, A.; Lion Stoppato, P. F.; Patel, M. R.; Zarnecki, J. C.

    2004-08-01

    We developed a series of balloon experiments parachuting a 1:1 scale mock-up of the Huygens probe from an altitude just over 30 km to simulate at planetary scale the final part of the descent of the probe through Titan's lower atmosphere. The terrestrial atmosphere represents a natural laboratory where most of the physical parameters meet quite well the bulk condition of Titan's environment, in terms of atmosphere composition, pressure and mean density ranges, though the temperature range will be far higher. The probe mock-up consists of spares of the HASI sensor packages, housekeeping sensors and other dedicated sensors, and also incorporates the Huygens Surface Science Package (SSP) Tilt sensor and a modified version of the Beagle 2 UV sensor, for a total of 77 acquired sensor channels, sampled during ascent, drift and descent phase. An integrated data acquisition and instrument control system, simulating the HASI data-processing unit (DPU), has been developed, based on PC architecture and soft-real-time application. Sensor channels were sampled at the nominal HASI data rates, with a maximum rate of 1 kHz. Software has been developed for data acquisition, onboard storage and telemetry transmission satisfying all requests for real-time monitoring, diagnostic and redundancy. The mock-up of the Huygens probe mission was successfully launched for the second time (first launch in summer 2001, see Gaborit et al., 2001) with a stratospheric balloon from the Italian Space Agency Base "Luigi Broglio" in Sicily on May 30, 2002, and recovered with all sensors still operational. The probe was lifted to an altitude of 32 km and released to perform a parachuted descent lasting 53 min, to simulate the Huygens mission at Titan. Preliminary aerodynamic study of the probe has focused upon the achievement of a descent velocity profile reproducing the expected profile of Huygens probe descent into Titan. We present here the results of this experiment discussing their relevance in

  20. The French balloon and sounding rocket space program

    Science.gov (United States)

    Coutin/Faye, S.; Sadourny, I.

    1987-08-01

    Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.

  1. Overview of and first observations from the TILDAE High-Altitude Balloon Mission

    OpenAIRE

    B. A. Maruca; R. Marino; D. Sundkvist; N. H. Godbole; S. Constantin; V. Carbone; H. Zimmerman

    2017-01-01

    Though the presence of intermittent turbulence in the stratosphere has been well established, much remains unknown about it. In situ observations of this phenomenon, which have provided the greatest details of it, have mostly been achieved via sounding balloons (i.e., small balloons which burst at peak altitude) carrying constant-temperature hot-wire anemometers (CTAs). The Turbulence and Intermittency Long-Duration Atmospheric Experiment (TILDAE) was developed to test a new...

  2. Stratospheric BrO abundance measured by a balloon-borne submillimeterwave radiometer

    Directory of Open Access Journals (Sweden)

    R. A. Stachnik

    2013-03-01

    Full Text Available Measurements of mixing ratio profiles of stratospheric bromine monoxide (BrO were made using observations of BrO rotational line emission at 650.179 GHz by a balloon-borne SIS (superconductor-insulator-superconductor submillimeterwave heterodyne limb sounder (SLS. The balloon was launched from Ft. Sumner, New Mexico (34° N on 22 September 2011. Peak mid-day BrO abundance varied from 16 ± 2 ppt at 34 km to 6 ± 4 ppt at 16 km. Corresponding estimates of total inorganic bromine (Bry, derived from BrO vmr (volume mixing ratio using a photochemical box model, were 21 ± 3 ppt and 11 ± 5 ppt, respectively. Inferred Bry abundance exceeds that attributable solely to decomposition of long-lived methyl bromide and other halons, and is consistent with a contribution from bromine-containing very short lived substances, BryVSLS, of 4 ppt to 8 ppt. These results for BrO and Bry were compared with, and found to be in good agreement with, those of other recent balloon-borne and satellite instruments.

  3. LITOS – a new balloon-borne instrument for fine-scale turbulence soundings in the stratosphere

    Directory of Open Access Journals (Sweden)

    A. Theuerkauf

    2011-01-01

    Full Text Available We have developed a new compact balloon payload called LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere for high resolution wind turbulence soundings in the stratosphere up to 35 km altitude. The wind measurements are performed using a constant temperature anemometer (CTA with a vertical resolution of ~2.5 mm, i.e. 2 kHz sampling rate at 5 m/s ascent speed. Thereby, for the first time, it is possible to study the entire turbulence spectrum down to the viscous subrange in the stratosphere. Including telemetry, housekeeping, batteries and recovery unit, the payload weighs less than 5 kg and can be launched from any radiosonde station. Since autumn 2007, LITOS has been successfully launched several times from the Leibniz-Institute of Atmospheric Physics (IAP in Kühlungsborn, Germany (54° N, 12° E. Two additional soundings were carried out in 2008 and 2009 in Kiruna, Sweden (67° N, 21° E as part of the BEXUS program (Balloon-borne EXperiments for University Students. We describe here the basic principle of CTA measurements and prove the validity of this method in the stratosphere. A first case study allows a clear distinction between non-turbulent regions and a turbulent layer with a thickness of some tens of meters. Since our measurements cover the transition between the inertial and viscous subrange, energy dissipation rates can be calculated with high reliability.

  4. A method for establishing a long duration, stratospheric platform for astronomical research

    Science.gov (United States)

    Fesen, Robert; Brown, Yorke

    2015-10-01

    During certain times of the year at middle and low latitudes, winds in the upper stratosphere move in nearly the opposite direction than the wind in the lower stratosphere. Here we present a method for maintaining a high-altitude balloon platform in near station-keeping mode that utilizes this stratospheric wind shear. The proposed method places a balloon-borne science platform high in the stratosphere connected by a lightweight, high-strength tether to a tug vehicle located in the lower or middle stratosphere. Using aerodynamic control surfaces, wind-induced aerodynamic forces on the tug can be manipulated to counter the wind drag acting on the higher altitude science vehicle, thus controlling the upper vehicle's geographic location. We describe the general framework of this station-keeping method, some important properties required for the upper stratospheric science payload and lower tug platforms, and compare this station-keeping approach with the capabilities of a high altitude airship and conventional tethered aerostat approaches. We conclude by discussing the advantages of such a platform for a variety of missions with emphasis on astrophysical research.

  5. Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems.

    Science.gov (United States)

    Davidson, Peter; Burgoyne, Chris; Hunt, Hugh; Causier, Matt

    2012-09-13

    The Royal Society report 'Geoengineering the Climate' identified solar radiation management using albedo-enhancing aerosols injected into the stratosphere as the most affordable and effective option for geoengineering, but did not consider in any detail the options for delivery. This paper provides outline engineering analyses of the options, both for batch-delivery processes, following up on previous work for artillery shells, missiles, aircraft and free-flying balloons, as well as a more lengthy analysis of continuous-delivery systems that require a pipe connected to the ground and supported at a height of 20 km, either by a tower or by a tethered balloon. Towers are shown not to be practical, but a tethered balloon delivery system, with high-pressure pumping, appears to have much lower operating and capital costs than all other delivery options. Instead of transporting sulphuric acid mist precursors, such a system could also be used to transport slurries of high refractive index particles such as coated titanium dioxide. The use of such particles would allow useful experiments on opacity, coagulation and atmospheric chemistry at modest rates so as not to perturb regional or global climatic conditions, thus reducing scale-up risks. Criteria for particle choice are discussed, including the need to minimize or prevent ozone destruction. The paper estimates the time scales and relatively modest costs required if a tethered balloon system were to be introduced in a measured way with testing and development work proceeding over three decades, rather than in an emergency. The manufacture of a tether capable of sustaining the high tensions and internal pressures needed, as well as strong winds, is a significant challenge, as is the development of the necessary pumping and dispersion technologies. The greatest challenge may be the manufacture and launch of very large balloons, but means have been identified to significantly reduce the size of such balloons or aerostats.

  6. High Altitude Infrasound Measurements using Balloon-Borne Arrays

    Science.gov (United States)

    Bowman, D. C.; Johnson, C. S.; Gupta, R. A.; Anderson, J.; Lees, J. M.; Drob, D. P.; Phillips, D.

    2015-12-01

    For the last fifty years, almost all infrasound sensors have been located on the Earth's surface. A few experiments consisting of microphones on poles and tethered aerostats comprise the remainder. Such surface and near-surface arrays likely do not capture the full diversity of acoustic signals in the atmosphere. Here, we describe results from a balloon mounted infrasound array that reached altitudes of up to 38 km (the middle stratosphere). The balloon drifted at the ambient wind speed, resulting in a near total reduction in wind noise. Signals consistent with tropospheric turbulence were detected. A spectral peak in the ocean microbarom range (0.12 - 0.35 Hz) was present on balloon-mounted sensors but not on static infrasound stations near the flight path. A strong 18 Hz signal, possibly related to building ventilation systems, was observed in the stratosphere. A wide variety of other narrow band acoustic signals of uncertain provenance were present throughout the flight, but were absent in simultaneous recordings from nearby ground stations. Similar phenomena were present in spectrograms from the last balloon infrasound campaign in the 1960s. Our results suggest that the infrasonic wave field in the stratosphere is very different from that which is readily detectable on surface stations. This has implications for modeling acoustic energy transfer between the lower and upper atmosphere as well as the detection of novel acoustic signals that never reach the ground. Our work provides valuable constraints on a proposed mission to detect earthquakes on Venus using balloon-borne infrasound sensors.

  7. Emergency medical support for a manned stratospheric balloon test program.

    Science.gov (United States)

    Blue, Rebecca S; Norton, Sean C; Law, Jennifer; Pattarini, James M; Antonsen, Erik L; Garbino, Alejandro; Clark, Jonathan B; Turney, Matthew W

    2014-10-01

    Red Bull Stratos was a commercial program that brought a test parachutist, protected by a full-pressure suit, in a stratospheric balloon with pressurized capsule to over 127,582 ft (38,969 m), from which he free fell and subsequently parachuted to the ground. Given that the major risks to the parachutist included ebullism, negative Gz (toe-to-head) acceleration exposure from an uncontrolled flat spin, and trauma, a comprehensive plan was developed to recover the parachutist under nominal conditions and to respond to any medical contingencies that might have arisen. In this report, the project medical team describes the experience of providing emergency medical support and crew recovery for the manned balloon flights of the program. The phases of flight, associated risks, and available resources were systematically evaluated. Six distinct phases of flight from an Emergency Medical Services (EMS) standpoint were identified. A Medical Support Plan was developed to address the risks associated with each phase, encompassing personnel, equipment, procedures, and communications. Despite geographical, communications, and resource limitations, the medical team was able to implement the Medical Support Plan, enabling multiple successful manned balloon flights to 71,615 ft (21,828 m), 97,221 ft (29,610 m), and 127,582 ft (38,969 m). The experience allowed refinement of the EMS and crew recovery procedures for each successive flight and could be applied to other high altitude or commercial space ventures.

  8. Solar polarimetry in the K I D2 line : A novel possibility for a stratospheric balloon

    Science.gov (United States)

    Quintero Noda, C.; Villanueva, G. L.; Katsukawa, Y.; Solanki, S. K.; Orozco Suárez, D.; Ruiz Cobo, B.; Shimizu, T.; Oba, T.; Kubo, M.; Anan, T.; Ichimoto, K.; Suematsu, Y.

    2018-03-01

    Of the two solar lines, K I D1 and D2, almost all attention so far has been devoted to the D1 line, as D2 is severely affected by an O2 atmospheric band. This, however, makes the latter appealing for balloon and space observations from above (most of) the Earth's atmosphere. We estimate the residual effect of the O2 band on the K I D2 line at altitudes typical for stratospheric balloons. Our aim is to study the feasibility of observing the 770 nm window. Specifically, this paper serves as a preparation for the third flight of the Sunrise balloon-borne observatory. The results indicate that the absorption by O2 is still present, albeit much weaker, at the expected balloon altitude. We applied the obtained O2 transmittance to K I D2 synthetic polarimetric spectra and found that in the absence of line-of-sight motions, the residual O2 has a negligible effect on the K I D2 line. On the other hand, for Doppler-shifted K I D2 data, the residual O2 might alter the shape of the Stokes profiles. However, the residual O2 absorption is sufficiently weak at stratospheric levels that it can be divided out if appropriate measurements are made, something that is impossible at ground level. Therefore, for the first time with Sunrise III, we will be able to perform polarimetric observations of the K I D2 line and, consequently, we will have improved access to the thermodynamics and magnetic properties of the upper photosphere from observations of the K I lines.

  9. Inter-comparison of stratospheric O3 and NO2 abundances retrieved from balloon borne direct sun observations and Envisat/SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Butz

    2006-01-01

    Full Text Available Stratospheric O3 and NO2 abundances measured by different remote sensing instruments are inter-compared: (1 Line-of-sight absorptions and vertical profiles inferred from solar spectra in the ultra-violet (UV, visible and infrared (IR wavelength ranges measured by the LPMA/DOAS (Limb Profile Monitor of the Atmosphere/Differential Optical Absorption Spectroscopy balloon payload during balloon ascent/descent and solar occultation are examined with respect to internal consistency. (2 The balloon borne stratospheric profiles of O3 and NO2 are compared to collocated space-borne skylight limb observations of the Envisat/SCIAMACHY satellite instrument. The trace gas profiles are retrieved from SCIAMACHY spectra using different algorithms developed at the Universities of Bremen and Heidelberg and at the Harvard-Smithsonian Center for Astrophysics. A comparison scheme is used that accounts for the spatial and temporal mismatch as well as differing photochemical conditions between the balloon and satellite borne measurements. It is found that the balloon borne measurements internally agree to within ±10% and ±20% for O3 and NO2, respectively, whereas the agreement with the satellite is ±20% for both gases in the 20 km to 30 km altitude range and in general worse below 20 km.

  10. EUSO-BALLOON a pathfinder for detecting UHECR's from the edge of space

    Directory of Open Access Journals (Sweden)

    Scotti V.

    2013-06-01

    Full Text Available EUSO-Balloon has been conceived as a pathfinder mission for JEM-EUSO, to perform an end-to-end test of the subsystems and components, and to prove the global detection chain while improving our knowledge of the atmospheric and terrestrial UV background. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as an evolutive test-bench for all the key technologies of JEM-EUSO. EUSO-Balloon also has the potential to detect Extensive Air Showers from above, marking a key milestone in the development of UHECR science, and paving the way for any future large scale, space-based UHECR observatory.

  11. Comparison of stratospheric NO2 profiles above Kiruna, Sweden retrieved from ground-based zenith sky DOAS measurements, SAOZ balloon measurements and SCIAMACHY limb observations

    Science.gov (United States)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2015-04-01

    Stratospheric NO2 not only destroys ozone but acts as a buffer against halogen catalyzed ozone loss by converting halogen species into stable nitrates. These two roles of stratospheric NO2 depend on the altitude. Hence, the objective of this study is to investigate the vertical distribution of stratospheric NO2. We compare the NO2 profiles derived from the zenith sky DOAS with those obtained from, SAOZ balloon measurements and satellite limb observations. Vertical profiles of stratospheric NO2 are retrieved from ground-based zenith sky DOAS observations operated at Kiruna, Sweden (68.84°N, 20.41°E) since 1996. To determine the profile of stratospheric NO2 measured from ground-based zenith sky DOAS, we apply the Optimal Estimation Method (OEM) to retrieval of vertical profiles of stratospheric NO2 which has been developed by IASB-BIRA. The basic principle behind this profiling approach is the dependence of the mean scattering height on solar zenith angle (SZA). We compare the retrieved profiles to two additional datasets of stratospheric NO2 profile. The first one is derived from satellite limb observations by SCIAMACHY (Scanning Imaging Absorption spectrometer for Atmospheric CHartographY) on EnviSAT. The second is derived from the SAOZ balloon measurements (using a UV/Visible spectrometer) performed at Kiruna in Sweden.

  12. Introduction (Special Issue on Scientific Balloon Capabilities and Instrumentation)

    Science.gov (United States)

    Gaskin, Jessica A.; Smith, I. S.; Jones, W. V.

    2014-01-01

    In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3,000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science.) Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.

  13. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Rosen, J.; Ivanov, V.A.

    1993-01-01

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  14. A new TDRSS Compatible Transceiver for Long Duration HIgh Altitude Scientific Balloon Missions

    Science.gov (United States)

    Stilwell, B.; Siemon, M.

    High altitude scientific balloons have been used for many years to provide scientists with access to near space at a fraction of the cost of satellite based or sounding rocket experiments. In recent years, these balloons have been successfully used for long duration missions of up to several weeks. Longer missions with durations of up to 100 days (Ultra-Long) are on the drawing board. An enabling technology for the growth of the scientific balloon missions is the use of the NASA Tracking and Data Relay Satellite System (TDRSS) for telemetering the health, status, position and payload science data to mission operations personnel. The TDRSS system provides global coverage by relaying the data through geostationary relay satellites to a single ground station in White Sands New Mexico. Data passes from the White Sands station to the user via commercial telecommunications services including the Internet. A forward command link can also be established to the balloon for real- time command and control. Early TDRSS communications equipment used by the National Scientific Balloon Facility was either unreliable or too expensive. The equipment must be a le tob endure the rigors of space flight including radiation exposure, high temperature extremes and the shock of landing and recovery. Since a payload may occasionally be lost, the cost of the TDRSS communications gear is a limiting factor in the number of missions that can be supported. Under sponsorship of the NSBF, General Dynamics Decision Systems has developed a new TDRSS compatible transceiver that reduces the size, weight and cost to approximately one half that of the prior generation of hardware. This paper describes the long and ultra-long balloon missions and the role that TDRSS communications plays in mission success. The new transceiver design is described, along with its interfaces, performance characteristics, qualification and production status. The transceiver can also be used in other space, avionics or

  15. Gravity wave spectra in the lower stratosphere diagnosed from project loon balloon trajectories

    Science.gov (United States)

    Schoeberl, M. R.; Jensen, E.; Podglajen, A.; Coy, L.; Lodha, C.; Candido, S.; Carver, R.

    2017-08-01

    Project Loon has been launching superpressure balloons since January 2013 to provide worldwide Internet coverage. These balloons typically fly between 18 and 21 km and provide measurements of winds and pressure fluctuations in the lower stratosphere. We divide 1560 Loon flights into 3405 two-day segments for gravity wave analysis. We derive the kinetic energy spectrum from the horizontal balloon motion and estimate the temperature perturbation spectrum (proportional to the potential energy spectrum) from the pressure variations. We fit the temperature (and kinetic energy) data to the functional form T'2 = T'o2[ω/ωο)α, where ω is the wave frequency, ωο is daily frequency, T'o is the base temperature amplitude, and α is the spectral slope. Both the kinetic energy and temperature spectra show -1.9 ± 0.2 power-law dependence in the intrinsic frequency window 3-50 cycles/day. The temperature spectrum slope is weakly anticorrelated with the base temperature amplitude. We also find that the wave base temperature distribution is highly skewed. The tropical modal temperature is 0.77 K. The highest amplitude waves occur over the mountainous regions, the tropics, and the high southern latitudes. Temperature amplitudes show little height variation over our 18-21 km domain. Our results are consistent with other limited superpressure balloon analyses. The modal temperature is higher than the temperature currently used in high-frequency gravity wave parameterizations.

  16. A balloon-borne prototype for demonstrating the concept of JEM-EUSO

    Science.gov (United States)

    von Ballmoos, P.; Santangelo, A.; Adams, J. H.; Barrillon, P.; Bayer, J.; Bertaina, M.; Cafagna, F.; Casolino, M.; Dagoret, S.; Danto, P.; Distratis, G.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Evrard, J.; Gorodetzky, Ph.; Haungs, A.; Jung, A.; Kawasaki, Y.; Medina-Tanco, G.; Mot, B.; Osteria, G.; Parizot, E.; Park, I. H.; Picozza, P.; Prévôt, G.; Prieto, H.; Ricci, M.; Rodríguez Frías, M. D.; Roudil, G.; Scotti, V.; Szabelski, J.; Takizawa, Y.; Tusno, K.

    2014-05-01

    EUSO-BALLOON has been conceived as a pathfinder for JEM-EUSO, a mission concept for a space-borne wide-field telescope monitoring the Earth's nighttime atmosphere with the objective of recording the ultraviolet light from tracks initiated by ultra-high energy cosmic rays. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as a test-bench for the key technologies of JEM-EUSO. EUSO-BALLOON shall perform an end-to-end test of all subsystems and components, and prove the global detection chain while improving our knowledge of the atmospheric and terrestrial ultraviolet background. The balloon-instrument also has the potential to detect for the first time UV-light generated by atmospheric air-shower from above, marking a milestone in the development of UHECR science, and paving the way for any future large scale, space-based ultra-high energy cosmic ray observatory.

  17. Data Retrieved by ARCADE-R2 Experiment On Board the BEXUS-17 Balloon

    Science.gov (United States)

    Barbetta, M.; Branz, F.; Carron, A.; Olivieri, L.; Prendin, J.; Sansone, F.; Savioli, L.; Spinello, F.; Francesconi, A.

    2015-09-01

    The Autonomous Rendezvous, Control And Docking Experiment — Reflight 2 (ARCADE-R2) is a technology demonstrator aiming to prove automatic attitude determination and control, rendezvous and docking capabilities for small scale spacecraft and aircraft. The development of such capabilities could be fundamental to create, in the near future, fleets of cooperative, autonomous unmanned aerial vehicles for mapping, surveillance, inspection and remote observation of hazardous environments; small-class satellites could also benefit from the employment of docking systems to extend and reconfigure their mission profiles. ARCADE-R2 is designed to test these technologies on a stratospheric flight on board the BEXUS-17 balloon, allowing to demonstrate them in a harsh environment subjected to gusty winds and high pressure and temperature variations. In this paper, ARCADE-R2 architecture is introduced and the main results obtained from a stratospheric balloon flight are presented.

  18. MC2: A Power Conditionning and Distribution Unit for Stratospherics Balloons

    Directory of Open Access Journals (Sweden)

    François Bonnet

    2017-01-01

    Full Text Available For long duration scientific missions with stratospheric balloons (objective of 3 month duration, renewable energy is used. Solar panels with mono crystalline silicon solar cells are mounted on both scientific and avionic gondola. A power conditioning board with Maximum Power Point Tracking (MPPT is designed and currently tested. This board is called MC2: Communicant Conditioning Module. It allows controlling a Li Ion battery charge through PWM regulators. Moreover, outlets ON/OFF commutations associated to overcurrent’s protections are implemented in this board. The battery active thermal control is made by MC2 autonomously. The main design drivers are mass, costs and efficiency. A CAN Bus between MC2 and On Board Computer allows to have a commandability and observability of MC2 through OBC. The overall avionic gondola is designed to be Single Points Failure free by using two segregated chains in order to be compatible with safety rules. The nominal chain is the main chain and use MC2 with renewable energy. The secondary chain uses a primary electrochemical cell which feeds loads in case of undervoltage of the main chain. This overall architecture allows both chains to be designed without SPF free constrains. This paper describes the overall requirements and the design of MC2. The main innovation described in this paper is the way to implement MPPT: the MPPT algorithm is performed at the output of the power converter. This MPPT extracts maximum power of both solar panel characteristics and power converter. The main advantage is that this MPPT uses only one existing sensor (output current of boost converter instead of using current and voltage sensor of each solar panel.

  19. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    Science.gov (United States)

    Potashko, Oleksandr; Viso, Michel

    The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use

  20. Scientific ballooning. Proceedings of the symposium on the scientific use of balloons and related technical problems, Innsbruck, Austria, May 29-June 10, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Riedler, W

    1979-01-01

    The book includes works on operational and technical aspects of balloon launching I and II, cooperative balloon campaigns, and new developments in scientific use of balloons. The specific topics discussed are coordinated balloon and rocket measurements of stratospheric wind shears and turbulence, ballooning in Japan and India, magnetospheric processes investigated with data taken from balloon flights, and remote sensing of middle atmosphere winds from balloon platforms.

  1. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  2. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    Science.gov (United States)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  3. Trends and variability of midlatitude stratospheric water vapour deduced from the re-evaluated Boulder balloon series and HALOE

    Directory of Open Access Journals (Sweden)

    M. Scherer

    2008-03-01

    Full Text Available This paper presents an updated trend analysis of water vapour in the lower midlatitude stratosphere from the Boulder balloon-borne NOAA frostpoint hygrometer measurements and from the Halogen Occulation Experiment (HALOE. Two corrections for instrumental bias are applied to homogenise the frostpoint data series, and a quality assessment of all soundings after 1991 is presented. Linear trend estimates based on the corrected data for the period 1980–2000 are up to 40% lower than previously reported. Vertically resolved trends and variability are calculated with a multi regression analysis including the quasi-biennal oscillation and equivalent latitude as explanatory variables. In the range of 380 to 640 K potential temperature (≈14 to 25 km, the frostpoint data from 1981 to 2006 show positive linear trends between 0.3±0.3 and 0.7±0.1%/yr. The same dataset shows trends between −0.2±0.3 and 1.0±0.3%/yr for the period 1992 to 2005. HALOE data over the same time period suggest negative trends ranging from −1.1±0.2 to −0.1±0.1%/yr. In the lower stratosphere, a rapid drop of water vapour is observed in 2000/2001 with little change since. At higher altitudes, the transition is more gradual, with slowly decreasing concentrations between 2001 and 2007. This pattern is consistent with a change induced by a drop of water concentrations at entry into the stratosphere. Previously noted differences in trends and variability between frostpoint and HALOE remain for the homogenised data. Due to uncertainties in reanalysis temperatures and stratospheric transport combined with uncertainties in observations, no quantitative inference about changes of water entering the stratosphere in the tropics could be made with the mid latitude measurements analysed here.

  4. Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations

    Science.gov (United States)

    Hoffmann, Lars; Hertzog, Albert; Rößler, Thomas; Stein, Olaf; Wu, Xue

    2017-07-01

    In this study we compared temperatures and horizontal winds of meteorological analyses in the Antarctic lower stratosphere, a region of the atmosphere that is of major interest regarding chemistry and dynamics of the polar vortex. The study covers the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis, the ERA-Interim reanalysis, the Modern-Era Retrospective analysis for Research and Applications version 1 and 2 (MERRA and MERRA-2), and the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The comparison was performed with respect to long-duration observations from 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. Most of the balloon measurements were conducted at altitudes of 17-18.5 km and latitudes of 60-85° S. We found that large-scale state temperatures of the analyses have a mean precision of 0.5-1.4 K and a warm bias of 0.4-2.1 K with respect to the balloon data. Zonal and meridional winds have a mean precision of 0.9-2.3 m s-1 and a bias below ±0.5 m s-1. Standard deviations related to small-scale fluctuations due to gravity waves are reproduced at levels of 15-60 % for temperature and 30-60 % for the horizontal winds. Considering the fact that the balloon observations have been assimilated into all analyses, except for NCEP/NCAR, notable differences found here indicate that other observations, the forecast models, and the data assimilation procedures have a significant impact on the analyses as well. We also used the balloon observations to evaluate trajectory calculations with our new Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC), where vertical motions of simulated trajectories were nudged to pressure measurements of the balloons. We found relative horizontal transport deviations of 4-12 % and error growth rates of 60-170 km day-1 for 15-day trajectories. Dispersion

  5. Overview of the Radiation Dosimetry Experiment (RaD-X) Flight Mission

    Science.gov (United States)

    Mertens, Christopher J.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5 N, 104.2 W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  6. Joint US-USSR Long duration Antarctic Mars calibration Balloon (LAMB) mission

    Science.gov (United States)

    Floyd, S. R.; Trombka, J. I.; Evans, L. G.; Starr, R.; Squyres, S. W.; Surkov, Iu. A.; Moskaleva, L. P.; Shcheglov, O.; Mitugov, A. G.; Rester, A. C.

    1991-01-01

    The Long duration Antarctic Mars calibration Balloon (LAMB) project has been established at Goddard Space Flight Center for the evaluation and cross calibration of U.S. and USSR remote sensing gamma-ray and neutron detectors. These detectors are analogs of those flown on the Soviet Phobos mission around Mars and those to be flown on the upcoming U.S. Mars Observer mission. Cosmic rays, which are normally filtered out by the atmosphere, and the earth's magnetic field, will induce gamma-ray and neutron emissions from about a half ton of simulated Mars soil aboard the gondola. The cross calibration of these instruments should greatly facilitate the data analysis from both missions and play a role in U.S.-USSR cooperation in space.

  7. Benefits, risks, and costs of stratospheric geoengineering

    KAUST Repository

    Robock, Alan

    2009-10-02

    Injecting sulfate aerosol precursors into the stratosphere has been suggested as a means of geoengineering to cool the planet and reduce global warming. The decision to implement such a scheme would require a comparison of its benefits, dangers, and costs to those of other responses to global warming, including doing nothing. Here we evaluate those factors for stratospheric geoengineering with sulfate aerosols. Using existing U.S. military fighter and tanker planes, the annual costs of injecting aerosol precursors into the lower stratosphere would be several billion dollars. Using artillery or balloons to loft the gas would be much more expensive. We do not have enough information to evaluate more exotic techniques, such as pumping the gas up through a hose attached to a tower or balloon system. Anthropogenic stratospheric aerosol injection would cool the planet, stop the melting of sea ice and land-based glaciers, slow sea level rise, and increase the terrestrial carbon sink, but produce regional drought, ozone depletion, less sunlight for solar power, and make skies less blue. Furthermore it would hamper Earth-based optical astronomy, do nothing to stop ocean acidification, and present many ethical and moral issues. Further work is needed to quantify many of these factors to allow informed decision-making.

  8. Hyperspectral Polarimeter for Monitoring Balloon Strain, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's latest generation of superpressure, ultra long duration balloons (ULDB) extend the flight time for stratospheric experiments to levels previously unattainable...

  9. Inexpensive Demonstration of Diffraction-Limited Telescope from NASA Stratospheric Balloons

    Science.gov (United States)

    Young, Elliot

    NASA s Balloon Program often flies payloads to altitudes of 120,000 ft or higher, above 99.5% of the atmosphere. At those altitudes, the imaging degradation due to atmospheric- induced wavefront errors is virtually zero. In 2009, the SUNRISE balloon mission quantified the wavefront errors with a Shack-Hartmann array and found no evidence of wavefront errors. This means that a large telescope on a balloon should be able to achieve diffraction-limited performance, provided it can be stabilized at a level that is finer than the diffraction limit. At visible wavelengths, the diffraction limit of a 1 or 2 m telescope is 0.1 arcsec or 0.05 arcsec, respectively. NASA recently demonstrated WASP (the Wallops Arc-Second Pointing system) on a balloon flight in October 2011, a coarse pointing system that kept a dummy telescope (24 ft long, 1500 lbs) stabilized at the 0.25 arcsec level. We propose to use an orthogonal transfer CCD (OTCCD) from MIT Lincoln Laboratory to improve the pointing to 0.05 arcsec, an order of magnitude better than the coarse pointing alone and sufficient to provide long integrations at the diffraction limit of a 2-m telescope. Imaging in visible wavelengths is an important new capability. Ground-based adaptive optics (AO) systems on 8-m and 10-m class telescope cannot effectively correct for atmospheric turbulence at wavelengths shorter than 1 μm; the atmospheric wavefront errors are larger at these wavelengths than in the infrared J-H-K bands. At present, only the Hubble Space Telescope can achieve 0.05 arcsec resolution images in visible wavelengths, a capability that is dramatically oversubscribed. With a camera based on an MIT/LL OTCCD, a 2-m balloon-borne telescope could match the spatial resolution of HST. Under this project (and in conjunction with a SWRI Internal Research proposal), we will perform ground tests of a motion-compensation camera based on an MIT/LL Orthogonal Transfer CCD (OTCCD). This device can shift charge in four directions

  10. Structure variations of pumpkin balloon

    Science.gov (United States)

    Yajima, N.; Izutsu, N.; Honda, H.

    2004-01-01

    A lobed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super-pressure balloon. This paper deals with extensions of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes, belts or a strut. When the original pumpkin shape is modified by these systems, the superior characteristics of the 3-D gore design, incorporating large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail. Application for ground structures are also mentioned.

  11. Deployment Instabilities of Lobed-Pumpkin Balloon

    Science.gov (United States)

    Nakashino, Kyoichi

    A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.

  12. Atmospheric Sampling of Aerosols to Stratospheric Altitudes using High Altitude Balloons

    Science.gov (United States)

    Jerde, E. A.; Thomas, E.

    2010-12-01

    Although carbon dioxide represents a long-lived atmospheric component relevant to global climate change, it is also understood that many additional contributors influence the overall climate of Earth. Among these, short-lived components are more difficult to incorporate into models due to uncertainties in the abundances of these both spatially and temporally. Possibly the most significant of these short-lived components falls under the heading of “black carbon” (BC). There are numerous overlapping definitions of BC, but it is basically carbonaceous in nature and light absorbing. Due to its potential as a climate forcer, an understanding of the BC population in the atmosphere is critical for modeling of radiative forcing. Prior measurements of atmospheric BC generally consist of airplane- and ground-based sampling, typically below 5000 m and restricted in time and space. Given that BC has a residence time on the order of days, short-term variability is easily missed. Further, since the radiative forcing is a result of BC distributed through the entire atmospheric column, aircraft sampling is by definition incomplete. We are in the process of planning a more comprehensive sampling of the atmosphere for BC using high-altitude balloons. Balloon-borne sampling is a highly reliable means to sample air through the entire troposphere and into the lower stratosphere. Our system will incorporate a balloon and a flight train of two modules. One module will house an atmospheric sampler. This sampler will be single-stage (samples all particle sizes together), and will place particles directly on an SEM sample stub for analysis. The nozzle depositing the sample will be offset from the center of the stub, placing the aerosol particles toward the edge. At various altitudes, the stub will be rotated 45 degrees, providing 6-8 sample “cuts” of particle populations through the atmospheric column. The flights will reach approximately 27 km altitude, above which the balloons

  13. A new global real-time Lagrangian diagnostic system for stratosphere-troposphere exchange: evaluation during a balloon sonde campaign in eastern Canada

    Directory of Open Access Journals (Sweden)

    M. S. Bourqui

    2012-03-01

    Full Text Available A new global real-time Lagrangian diagnostic system for stratosphere-troposphere exchange (STE developed for Environment Canada (EC has been delivering daily archived data since July 2010. The STE calculations are performed following the Lagrangian approach proposed in Bourqui (2006 using medium-range, high-resolution operational global weather forecasts. Following every weather forecast, trajectories are started from a dense three-dimensional grid covering the globe, and are calculated forward in time for six days of the forecast. All trajectories crossing either the dynamical tropopause (±2 PVU or the 380 K isentrope and having a residence time greater than 12 h are archived, and also used to calculate several diagnostics. This system provides daily global STE forecasts that can be used to guide field campaigns, among other applications. The archived data set offers unique high-resolution information on transport across the tropopause for both extra-tropical hemispheres and the tropics. This will be useful for improving our understanding of STE globally, and as a reference for the evaluation of lower-resolution models. This new data set is evaluated here against measurements taken during a balloon sonde campaign with daily launches from three stations in eastern Canada (Montreal, Egbert, and Walsingham for the period 12 July to 4 August 2010. The campaign found an unexpectedly high number of observed stratospheric intrusions: 79% (38% of the profiles appear to show the presence of stratospheric air below than 500 hPa (700 hPa. An objective identification algorithm developed for this study is used to identify layers in the balloon-sonde profiles affected by stratospheric air and to evaluate the Lagrangian STE forecasts. We find that the predictive skill for the overall intrusion depth is very good for intrusions penetrating down to 300 and 500 hPa, while it becomes negligible for intrusions penetrating below 700 hPa. Nevertheless, the

  14. Exposing Microorganisms in the Stratosphere for Planetary Protection

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth’s stratosphere is similar to the surface of Mars: rarified air which is dry, cold, and irradiated. E-MIST is a balloon payload that has 4 independently...

  15. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    Science.gov (United States)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  16. New stratospheric UV/visible radiance measurements

    Directory of Open Access Journals (Sweden)

    F. J. Marceau

    1994-01-01

    Full Text Available A stratospheric balloon was launched on 12 October 1986 from the "CNES" base at Aire sur l'Adour (France to record twilight radiance in the stratosphere. The near-UV and visible radiances were continuously monitored by a photometer during sunrise. Some observations are presented for different viewing azimuthal planes and viewing elevation angles. They show the influence of aerosols layers and clouds which can be also seen on related photographs. The results as a whole may be used for testing some radiative models, especially for twilight conditions.

  17. Balloon-Borne Infrasound Detection of Energetic Bolide Events

    Science.gov (United States)

    Young, Eliot F.; Ballard, Courtney; Klein, Viliam; Bowman, Daniel; Boslough, Mark

    2016-10-01

    Infrasound is usually defined as sound waves below 20 Hz, the nominal limit of human hearing. Infrasound waves propagate over vast distances through the Earth's atmosphere: the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization) has 48 installed infrasound-sensing stations around the world to detect nuclear detonations and other disturbances. In February 2013, several CTBTO infrasound stations detected infrasound signals from a large bolide that exploded over Chelyabinsk, Russia. Some stations recorded signals that had circumnavigated the Earth, over a day after the original event. The goal of this project is to improve upon the sensitivity of the CTBTO network by putting microphones on small, long-duration super-pressure balloons, with the overarching goal of studying the small end of the NEO population by using the Earth's atmosphere as a witness plate.A balloon-borne infrasound sensor is expected to have two advantages over ground-based stations: a lack of wind noise and a concentration of infrasound energy in the "stratospheric duct" between roughly 5 - 50 km altitude. To test these advantages, we have built a small balloon payload with five calibrated microphones. We plan to fly this payload on a NASA high-altitude balloon from Ft Sumner, NM in August 2016. We have arranged for three large explosions to take place in Socorro, NM while the balloon is aloft to assess the sensitivity of balloon-borne vs. ground-based infrasound sensors. We will report on the results from this test flight and the prospects for detecting/characterizing small bolides in the stratosphere.

  18. THERMAL AND CHEMICAL STRUCTURE VARIATIONS IN TITAN'S STRATOSPHERE DURING THE CASSINI MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Bampasidis, Georgios; Coustenis, A.; Vinatier, S. [Laboratoire d' Etudes Spatiales et d' Instrumentation en Astrophysique (LESIA), Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 5, place Jules Janssen, F-92195 Meudon Cedex (France); Achterberg, R. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Lavvas, P. [GSMA, Universite Reims Champagne-Ardenne, F-51687 Reims Cedex 2 (France); Nixon, C. A.; Jennings, D. E.; Flasar, F. M.; Carlson, R. C.; Romani, P. N.; Guandique, E. A. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Teanby, N. A. [School of Earth Sciences, University of Bristol, Bristol BS8 1RJ (United Kingdom); Moussas, X.; Preka-Papadema, P.; Stamogiorgos, S., E-mail: gbabasid@phys.uoa.gr [Faculty of Physics, National and Kapodistrian University of Athens, Panepistimioupolis, GR 15783 Zographos, Athens (Greece)

    2012-12-01

    We have developed a line-by-line Atmospheric Radiative Transfer for Titan code that includes the most recent laboratory spectroscopic data and haze descriptions relative to Titan's stratosphere. We use this code to model Cassini Composite Infrared Spectrometer data taken during the numerous Titan flybys from 2006 to 2012 at surface-intercepting geometry in the 600-1500 cm{sup -1} range for latitudes from 50 Degree-Sign S to 50 Degree-Sign N. We report variations in temperature and chemical composition in the stratosphere during the Cassini mission, before and after the Northern Spring Equinox (NSE). We find indication for a weakening of the temperature gradient with warming of the stratosphere and cooling of the lower mesosphere. In addition, we infer precise concentrations for the trace gases and their main isotopologues and find that the chemical composition in Titan's stratosphere varies significantly with latitude during the 6 years investigated here, with increased mixing ratios toward the northern latitudes. In particular, we monitor and quantify the amplitude of a maximum enhancement of several gases observed at northern latitudes up to 50 Degree-Sign N around mid-2009, at the time of the NSE. We find that this rise is followed by a rapid decrease in chemical inventory in 2010 probably due to a weakening north polar vortex with reduced lateral mixing across the vortex boundary.

  19. Polar night vortex breakdown and large-scale stirring in the southern stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Alvaro de la [Universidad Complutense de Madrid, Departamento de Geofisica y Meteorologia, Madrid (Spain); University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); Mechoso, C.R. [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); Ide, K. [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); University of Maryland, Department of Atmospheric and Oceanic Science, Collage Park, MD (United States); Walterscheid, R. [The Aerospace Corporation, Space Sciences Department, Los Angeles, CA (United States); Schubert, G. [University of California, Department of Earth and Space Sciences, Institute of Geophysics and Planetary Physics, Los Angeles, CA (United States)

    2010-11-15

    The present paper examines the vortex breakdown and large-scale stirring during the final warming of the Southern Hemisphere stratosphere during the spring of 2005. A unique set of in situ observations collected by 27 superpressure balloons (SPBs) is used. The balloons, which were launched from McMurdo, Antarctica, by the Strateole/VORCORE project, drifted for several weeks on two different isopycnic levels in the lower stratosphere. We describe balloon trajectories and compare them with simulations obtained on the basis of the velocity field from the GEOS-5 and NCEP/NCAR reanalyses performed with and without VORCORE data. To gain insight on the mechanisms responsible for the horizontal transport of air inside and outside the well-isolated vortex we examine the balloon trajectories in the framework of the Lagrangian properties of the stratospheric flow. Coherent structures of the flow are visualized by computing finite-time Lyapunov exponents (FTLE). A combination of isentropic analysis and FTLE distributions reveals that air is stripped away from the vortex's interior as stable manifolds eventually cross the vortex's edge. It is shown that two SPBs escaped from the vortex within high potential vorticity tongues that developed in association with wave breaking at locations along the vortex's edge where forward and backward FTLE maxima approximately intersect. The trajectories of three SPBs flying as a group at the same isopycnic level are examined and their behavior is interpreted in reference to the FTLE field. These results support the concept of stable and unstable manifolds governing transport of air masses across the periphery of the stratospheric polar vortex. (orig.)

  20. Observations of Stratospheric Gravity Waves During the WB57F Aerosol Mission and Modeling with Mesoscale Model 5

    Science.gov (United States)

    Mahoney, M.; Hicke, J.; Rosenlof, K.; Tuck, A.; Hovde, S.

    2000-01-01

    On April 11, 1998 WB57F aircraft flew northwest at lower stratospheric altitudes from Houston, Texas, over eastern Wyoming as part of the WB57F Aerosol Mission to sample a vortex filament forecast to pass over that region.

  1. Seasonal to Decadal Variations of Water Vapor in the Tropical Lower Stratosphere Observed with Balloon-Borne Cryogenic Frost Point Hygrometers

    Science.gov (United States)

    Fujiwara, M.; Voemel, H.; Hasebe, F.; Shiotani, M.; Ogino, S.-Y.; Iwasaki, S.; Nishi, N.; Shibata, T.; Shimizu, K.; Nishimoto, E.; hide

    2010-01-01

    We investigated water vapor variations in the tropical lower stratosphere on seasonal, quasi-biennial oscillation (QBO), and decadal time scales using balloon-borne cryogenic frost point hygrometer data taken between 1993 and 2009 during various campaigns including the Central Equatorial Pacific Experiment (March 1993), campaigns once or twice annually during the Soundings of Ozone and Water in the Equatorial Region (SOWER) project in the eastern Pacific (1998-2003) and in the western Pacific and Southeast Asia (2001-2009), and the Ticosonde campaigns and regular sounding at Costa Rica (2005-2009). Quasi-regular sounding data taken at Costa Rica clearly show the tape recorder signal. The observed ascent rates agree well with the ones from the Halogen Occultation Experiment (HALOE) satellite sensor. Average profiles from the recent five SOWER campaigns in the equatorial western, Pacific in northern winter and from the three Ticosonde campaigns at Costa Rica (10degN) in northern summer clearly show two effects of the QBO. One is the vertical displacement of water vapor profiles associated with the QBO meridional circulation anomalies, and the other is the concentration variations associated with the QBO tropopause temperature variations. Time series of cryogenic frost point hygrometer data averaged in a lower stratospheric layer together with HALOE and Aura Microwave Limb Sounder data show the existence of decadal variations: The mixing ratios were higher and increasing in the 1990s, lower in the early 2000s, and probably slightly higher again or recovering after 2004. Thus linear trend analysis is not appropriate to investigate the behavior of the tropical lower stratospheric water vapor.

  2. Upper limits for stratospheric H2O2 and HOCl from high resolution balloon-borne infrared solar absorption spectra

    Science.gov (United States)

    Larsen, J. C.; Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.

    1985-01-01

    Solar absorption spectra from two stratospheric balloon flights have been analyzed for the presence of H2O2 and HOCl absorption in the 1230.0 to 1255.0 per cm region. The data were recorded at 0.02 per cm resolution during sunset with the University of Denver interferometer system on October 27, 1978 and March 23, 1981. Selected spectral regions were analyzed with the technique of nonlinear least squares spectral curve fitting. Upper limits of 0.33 ppbv for H2O2 and 0.36 ppbv for HOCl near 28 km are derived from the 1978 flight data while upper limits of 0.44 ppbv for H2O2 and 0.43 ppbv for HOCl at 29.5 km are obtained from the 1981 flight data.

  3. Space dosimetry measurements in the stratosphere using different active and passive dosimetry systems

    International Nuclear Information System (INIS)

    Zabori, Balazs; Hirn, Attila; Deme, Sandor; Apathy, Istvan; Csoke, Antal; Pazmandi, Tamas; Szanto, Peter

    2016-01-01

    Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research aeroplanes. However, there is only limited information about that between 15 and 30 km altitudes. In order to study the radiation environment in the stratosphere, an experiment was built by students from Hungarian universities that flew on board the BEXUS (Balloon Experiments for University Students) stratospheric balloon in Northern Sweden, from the ESRANGE Space Center. The main technical goals of the experiment were to test at the first time the TRITEL 3D silicon detector telescope system in close to space conditions and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TRITEL system to determine dosimetric and radiation quantities during the balloon flight and to intercompare the TRITEL and Pille results to provide a correction factor for the Pille measurements. To fulfil the scientific and technological objectives, several different dosimeter systems were included in the experiment: an advanced version of the TRITEL silicon detector telescope, Geiger-Mueller (GM) counters and Pille thermoluminescent dosimeters. The float altitude of the BEXUS balloon was ∼28.6 km; the total flight time was ∼4 h. Measurement data from the active instruments were received in real time by the ground team during the mission. There were no failures in the operation of the system; everything worked as expected. This article presents the scientific goals and results in detail. From the TRITEL measurements, the linear energy transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined. Estimations for the uncertainty in the TRITEL measurements were given. The deposited energy spectra

  4. Montgolfiere balloon missions from Mars and Titan

    Science.gov (United States)

    Jones, Jack A.

    2005-01-01

    Montgolfieres, which are balloons that are filled with heated ambient atmospheric gas, appear promising for the exploration of Mars as well as of Saturn's moon, Titan. On Earth, Montgolfieres are also known as 'hot air balloons'. Commercial versions are typically heated by burning propane, although a number of radiant and solar-heated Montgolfieres have been flown on earth by CNES.

  5. Development of a Super-Pressure Balloon with an Improved Design

    Science.gov (United States)

    Izutsu, Naoki; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Nakada, Takashi; Nonaka, Naoki; Saito, Yoshitaka; Takada, Atsushi; Tamura, Keisuke; Yamada, Kazuhiko; Yoshida, Tetsuya

    A zero-pressure balloon used for scientific observation in the stratosphere has an unmanageable limitation that its floating altitude decreases during a nighttime because of temperature drop of the lifting gas. Since a super-pressure balloon may not change its volume, the lifetime can extend very long. We had introduced so called the ‘lobed-pumpkin’ type of super-pressure balloon that can realize a full-scale long-duration balloon and it will be in practical use in the very near future. As for larger super-pressure balloons, however, we still have some potential difficulties to be resolved. We here propose a new design suitable for a larger super-pressure balloon, which is roughly ‘lobed pumpkin with lobed cylinder’ and can adapt a single design for balloons of a wide range of volumes. Indoor inflation tests were successfully carried out with balloons designed and made by the method. It has been shown that the limit of the resisting pressure differential for a new designed balloon is same as that of a normal lobed-pumpkin balloon.

  6. The Polar Stratosphere in a Changing Climate (POLSTRACC): Mission overview and first results

    Science.gov (United States)

    Oelhaf, Hermann; Sinnhuber, Björn-Martin; Woiwode, Wolfgang; Rapp, Markus; Dörnbrack, Andreas; Engel, Andreas; Bönisch, Harald

    2016-04-01

    The POLSTRACC mission aims at providing new scientific knowledge on the Arctic lowermost stratosphere and upper troposphere under the present load of halogens and state of climate variables. POLSTRACC employs the German High Altitude and LOng Range Research Aircraft (HALO) and is the only HALO mission dedicated to study the UTLS at high latitudes several years after the last intensive Arctic campaigns. The scientific scope of POLSTRACC is broadened by its combination with the SALSA (Seasonality of Air mass transport and origin in the Lowermost Stratosphere using the HALO Aircraft) and GW-LCYCLE (Gravity Wave Life Cycle Experiment, a BMBF/ROMIC project) missions, which address complementary scientific goals sharing the same HALO payload. POLSTRACC, SALSA and GW-LCYCLE offer the unique opportunity to study the bottom of the polar vortex and the high-latitude UTLS along with their impact on lower latitudes throughout an entire winter/spring cycle. The payload for the combined POLSTRACC, SALSA and GW-LCYCLE campaigns comprises an innovative combination of remote sensing techniques providing 2- and 3-D distributions of temperature and a large number of substances, and precise in-situ instruments measuring T, O3, H2O, tracers of different lifetimes and chemically active species at the aircraft level with high time-resolution. Drop sondes will add information about temperature, humidity and wind in the atmosphere underneath the aircraft. The POLSTRACC consortium includes national (KIT, Forschungszentrum Jülich, DLR, Universities of Frankfurt, Heidelberg, Mainz and Wuppertal; PTB) and international partners (e.g. NASA). The field campaign is divided into three phases for addressing (i) the early polar vortex and its wide-scale vicinity in December 2015 (from Oberpfaffenhofen, Germany), (ii) the mid-winter vortex from January to March 2016 (from Kiruna, Sweden), and (iii) the late dissipating vortex and its wide-scale vicinity in March 2016 (from Kiruna and

  7. Stratospheric measurements of ozone-depleting substances and greenhouse gases using AirCores

    Science.gov (United States)

    Laube, Johannes; Leedham Elvidge, Emma; Kaiser, Jan; Sturges, Bill; Heikkinen, Pauli; Laurila, Tuomas; Hatakka, Juha; Kivi, Rigel; Chen, Huilin; Fraser, Paul; van der Veen, Carina; Röckmann, Thomas

    2017-04-01

    Retrieving air samples from the stratosphere has previously required aircraft or large balloons, both of which are expensive to operate. The novel "AirCore" technique (Karion et al., 2010) enables stratospheric sampling using weather balloons, which is much more cost effective. AirCores are long (up to 200 m) stainless steel tubes which are placed as a payload on a small balloon, can ascend to over 30 km and fill upon descent, collecting a vertical profile of the atmosphere. Retrieved volumes are much smaller though, which presents a challenge for trace gas analysis. To date, only the more abundant trace gases such as carnon dioxide (CO2) and methane (CH4) have been quantified in AirCores. Halogenated trace gases are also important greenhouse gases and many also deplete stratospheric ozone. Their concentrations are however much lower i.e. typically in the part per trillion (ppt) molar range. We here present the first stratospheric measurements of halocarbons in AirCores obtained using UEA's highly sensitive (detection limits of 0.01-0.1 ppt in 10 ml of air) gas chromatography mass spectrometry system. The analysed air originates from a Stratospheric Air Sub-sampler (Mrozek et al., 2016) which collects AirCore segments after the non-destructive CO2 and CH4 analysis. Successfully measured species include CFC-11, CFC-12, CFC-113, CFC-115, H-1211, H-1301, HCFC-22, HCFC-141b, HCFC-142b, HCFC-133a, and sulphur hexafluoride (SF6). We compare the observed mixing ratios and precisions with data obtained from samples collected during various high-altitude aircraft campaigns between 2009 and 2016 as well as with southern hemisphere tropospheric long-term trends. As part of the ERC-funded EXC3ITE (EXploring stratospheric Composition, Chemistry and Circulation with Innovative Techniques) project more than 40 AirCore flights are planned in the next 3 years with an expanded range of up to 30 gases in order to explore seasonal and interannual variability in the stratosphere

  8. Wind-Driven Montgolfiere Balloons for Mars

    Science.gov (United States)

    Jones, Jack A.; Fairbrother, Debora; Lemieux, Aimee; Lachenmeier, Tim; Zubrin, Robert

    2005-01-01

    Solar Montgolfiere balloons, or solar-heated hot air balloons have been evaluated by use on Mars for about 5 years. In the past, JPL has developed thermal models that have been confirmed, as well as developed altitude control systems to allow the balloons to float over the landscape or carry ground sampling instrumentation. Pioneer Astronautics has developed and tested a landing system for Montgolfieres. JPL, together with GSSL. have successfully deployed small Montgolfieres (<15-m diameter) in the earth's stratosphere, where conditions are similar to a Mars deployment. Two larger Montgolfieres failed, however, and a series of larger scale Montgolfieres is now planned using stronger, more uniform polyethylene bilaminate, combined with stress-reducing ripstitch and reduced parachute deceleration velocities. This program, which is presently under way, is a joint effort between JPL, WFF, and GSSL, and is planned for completion in three years.

  9. A balloon borne telescope for planetary observations with a fine pointing technology

    Science.gov (United States)

    Shoji, Yasuhiro; Onishi, Tomoya; Battazzo, Steve; Yoshimura, Atsushi; Sakamoto, Yuji; Yoshida, Kazuya; Takahashi, Yukihiro; Taguchi, Makoto

    A balloon borne telescope is one of the effective observation methods for planets under space environment. A telescope is carried up to the stratosphere at an altitude of higher than 32 km where the air density is as thin as 1/100 of that at the ground. The thin atmosphere gives a telescope better observation conditions: fine seeing, stable weather, and high transmittance especially in the infrared region. Moreover there is a chance that a planet can be continuously seen for a window longer than 24 hours from the polar stratosphere. The authors have been developing a balloon borne telescope system for years to take finer images of planets in the solar system., The first object is Venus, of which atmospheric motions are derived by tracking the changes of cloud patterns with bands of UV, visible and NIR. Highly precise pointing control within the error of sub-arcseconds is required so that the balloon borne telescope achieves its diffraction-limited spatial resolution. The flight system is equipped with a three-stage attitude and pointing control system in order to realize the desired pointing control precision. In 2009, the flight system was built and tested in various ground tests and an actual balloon flight. Although the balloon experiment failed due to trouble with an onboard computer, the ground tests before the flight operation have verified that the pointing control system can achieve pointing error of less than 0.2 arcseconds. The balloon borne telescope is being redesigned for a sequential observation of Venus, Mars and Jupiter in the summer of 2011. This flight will be a step for a long-duration observation in the polar stratosphere. Additionally, an observation of the sodium tail of Mercury with a small telescope and a wide field of view has been under consideration. Mercury has very thin atmosphere called a surface-bounded exosphere. Past observations by spacecraft and ground-based telescopes revealed that one of the atmospheric components, gaseous

  10. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    Science.gov (United States)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  11. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study

    Science.gov (United States)

    van Wynsberghe, Erinn; Turak, Ayse

    2016-11-01

    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  12. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    International Nuclear Information System (INIS)

    Holzworth, R.H.

    1981-01-01

    Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. (author)

  13. Demonstration of free-space optical communication for long-range data links between balloons on Project Loon

    Science.gov (United States)

    Moision, Bruce; Erkmen, Baris; Keyes, Edward; Belt, Todd; Bowen, Oliver; Brinkley, Devin; Csonka, Paul; Eglington, Michael; Kazmierski, Andrei; Kim, Nam-hyong; Moody, John; Tu, Thanh; Vermeer, William

    2017-02-01

    Internet connectivity is limited and in some cases non-existent for a significant part of the world's population. Project Loon aims to address this with a network of high-altitude balloons traveling in the stratosphere, at an altitude of approximately 20 km. The balloons navigate by using the stratified wind layers at different altitudes, adjusting the balloon's altitude to catch winds in a desired direction. Data transfer is achieved by 1) uplinking a signal from an Internet-connected ground station to a balloon terminal, 2) crosslinking the signal through the balloon network to reach the geographic area of the users, and 3) downlinking the signal directly to the end-users' phones or other LTE-enabled devices. We describe Loon's progress on utilizing free-space optical communications (FSOC) for the inter-balloon crosslinks. FSOC, offering high data rates and long communication ranges, is well-suited for communication between high-altitude platforms. A stratospheric link is sufficiently high to be above weather events (clouds, fog, rain, etc.), and the impact of atmospheric turbulence is significantly weaker than at ground level. In addition, being in the stratosphere as opposed to space helps avoid the typical challenges faced by space-based systems, namely operation in a vacuum environment with significant radiation. Finally, the angular pointing disturbances introduced by a floating balloon-based platform are notably less than any propelled platform, which simplifies the disturbance rejection requirements on the FSOC system. We summarize results from Project Loon's early-phase experimental inter-balloon links at 20 km altitude, demonstrating full duplex 130 Mbps throughput at distances in excess of 100 km over the course of several-day flights. The terminals utilize a monostatic design, with dual wavelengths for communication and a dedicated wide-angle beacon for pointing, acquisition, and tracking. We summarize the constraints on the terminal design, and the

  14. Monte Carlo evaluation of a CZT 3D spectrometer suitable for a Hard X- and soft-γ rays polarimetry balloon borne experiment

    DEFF Research Database (Denmark)

    Caroli, E.; De Cesare, G.; Curado da Silva, R. M.

    2015-01-01

    will be to provide high sensitivity for polarimetric measurements. In this framework, we have presented the concept of a small high-performance imaging spectrometer optimized for polarimetry between 100 and 600 keV suitable for a stratospheric balloon-borne payload and as a pathfinder for a future satellite mission....... The detector with 3D spatial resolution is based on a CZT spectrometer in a highly segmented configuration designed to operate simultaneously as a high performance scattering polarimeter. Herein, we report results of a Monte Carlo study devoted to optimize the configuration of the detector for polarimetry...

  15. Air Revitalization System Enables Excursions to the Stratosphere

    Science.gov (United States)

    2015-01-01

    Paragon Space Development Corporation, based in Tucson, Arizona has had a long history of collaboration with NASA, including developing a modular air purification system under the Commercial Crew Development Program, designed to support the commercial space sector. Using that device and other NASA technology, startup company World View is now gearing up to take customers on helium balloon rides to the stratosphere.

  16. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    Directory of Open Access Journals (Sweden)

    A. Gallice

    2011-10-01

    Full Text Available A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30–35 km altitude is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s−1 in the troposphere and 0.2 m s−1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects

  17. Survival of Halophilic Archaea in the Stratosphere as a Mars Analog: A Transcriptomic Approach

    Science.gov (United States)

    DasSarma, S.; DasSarma, P.; Laye, V.; Harvey, J.; Reid, C.; Shultz, J.; Yarborough, A.; Lamb, A.; Koske-Phillips, A.; Herbst, A.; Molina, F.; Grah, O.; Phillips, T.

    2016-05-01

    On Earth, halophilic Archaea tolerate multiple extreme conditions similar to those on Mars. In order to study their survival, we launched live cultures into Earth’s stratosphere on helium balloons. The effects on survival and transcriptomes were interrogated in the lab.

  18. Towards constraining the stratosphere-troposphere exchange of radiocarbon: strategies of stratospheric 14CO2 measurements using AirCore

    Science.gov (United States)

    Chen, Huilin; Paul, Dipayan; Meijer, Harro; Miller, John; Kivi, Rigel; Krol, Maarten

    2016-04-01

    Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the stratosphere due to the cosmogenic production. To this end, better understanding the stratospheric radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, stratospheric 14C observations have been very limited so that there are large uncertainties on the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14C measurements using AirCore samples from Sodankylä, Northern Finland. AirCore is an innovative atmospheric sampling system, which passively collects atmospheric air samples into a long piece of coiled stainless steel tubing during the descent of a balloon flight. Due to the relatively low cost of the consumables, there is a potential to make such AirCore profiling in other parts of the world on a regular basis. In this study, we simulate the 14C in the atmosphere and assess the stratosphere-troposphere exchange of radiocarbon using the TM5 model. The Sodankylä radiocarbon measurements will be used to verify the performance of the model at high latitude. Besides this, we will also evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere exchange, and based on the results design a strategy to set up a 14C measurement program using AirCore.

  19. Comparative study of proliferation kinetics of paramecium tetraurelia aboard a satellite and a balloon flight

    Energy Technology Data Exchange (ETDEWEB)

    Tixador, R.; Richoilley, G.; Gasset, G.; Planel, H. (Faculte de Medecine, Toulouse-Purpan (France))

    1982-05-17

    A possible effect of cosmic rays on cell proliferation was investigated in cultures of Paramecium tetraurelia during a stratospheric balloon flight, with the techniques already used for the CYTOS experiments, performed aboard the orbital station Salyut 6. The results show that the stimulating effect of space on cell proliferation, reported in the CYTOS experiments, also occurs in the balloon flight. The respective roles of cosmic rays and weightlesness in the biological responses are discussed.

  20. Comparative study of proliferation kinetics of paramecium tetraurelia aboard a satellite and a balloon flight

    International Nuclear Information System (INIS)

    Tixador, Rene; Richoilley, Gerard; Gasset, Gilbert; Planel, Hubert

    1982-01-01

    A possible effect of cosmic rays on cell proliferation was investigated in cultures of Paramecium tetraurelia during a stratospheric balloon flight, with the techniques already used for the CYTOS experiments, performed aboard the orbital station Salyut 6. The results show that the stimulating effect of space on cell proliferation, reported in the CYTOS experiments, also occurs in the balloon flight. The respective roles of cosmic rays and weightlesness in the biological responses are discussed [fr

  1. Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL from high-resolution balloon observations

    Directory of Open Access Journals (Sweden)

    S. M. Khaykin

    2016-09-01

    Full Text Available High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3° S in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv and aerosol at the 425 K (18.5 km level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20° S. A signature of local cross-tropopause transport of water is observed in

  2. Infrared emission high spectral resolution atlas of the stratospheric limb

    Science.gov (United States)

    Maguire, William C.; Kunde, Virgil G.; Herath, Lawrence W.

    1989-01-01

    An atlas of high resolution infrared emission spectra identifies a number of gaseous atmospheric features significant to stratospheric chemistry in the 770-900/cm and 1100-1360/cm regions at six zenith angles from 86.7 to 95.1 deg. A balloon-borne Michelson interferometer was flown to obtain about 0.03/cm resolution spectra. Two 10/cm extracts are presented here.

  3. Telescopes in Near Space: Balloon Exoplanet Nulling Interferometer (BigBENI)

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Mauk, Robin

    2012-01-01

    A significant and often overlooked path to advancing both science and technology for direct imaging and spectroscopic characterization of exosolar planets is to fly "near space" missions, i.e. balloon borne exosolar missions. A near space balloon mission with two or more telescopes, coherently combined, is capable of achieving a subset of the mission science goals of a single large space telescope at a small fraction of the cost. Additionally such an approach advances technologies toward flight readiness for space flight. Herein we discuss the feasibility of flying two 1.2 meter telescopes, with a baseline separation of 3.6 meters, operating in visible light, on a composite boom structure coupled to a modified visible nulling coronagraph operating to achieve an inner working angle of 60 milli-arcseconds. We discuss the potential science return, atmospheric residuals at 135,000 feet, pointing control and visible nulling and evaluate the state-or-art of these technologies with regards to balloon missions.

  4. Advanced Onboard Energy Storage Solution for Balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Balloon Programs at NASA are looking for a potential 100 day missions at mid-altitudes. These balloons would be powered by solar panels to take advantage of...

  5. Detecting Seismic Infrasound Signals on Balloon Platforms

    Science.gov (United States)

    Krishnamoorthy, S.; Komjathy, A.; Cutts, J. A.; Pauken, M.; Garcia, R.; Mimoun, D.; Jackson, J. M.; Kedar, S.; Smrekar, S. E.; Hall, J. L.

    2017-12-01

    The determination of the interior structure of a planet requires detailed seismic investigations - a process that entails the detection and characterization of seismic waves due to geological activities (e.g., earthquakes, volcanoes, etc.). For decades, this task has primarily been performed on Earth by an ever-expanding network of terrestrial seismic stations. However, on planets such as Venus, where the surface pressure and temperature can reach as high as 90 atmospheres and 450 degrees Celsius respectively, placing seismometers on the planet's surface poses a vexing technological challenge. However, the upper layers of the Venusian atmosphere are more benign and capable of hosting geophysical payloads for longer mission lifetimes. In order to achieve the aim of performing geophysical experiments from an atmospheric platform, JPL and its partners (ISAE-SUPAERO and California Institute of Technology) are in the process of developing technologies for detection of infrasonic waves generated by earthquakes from a balloon. The coupling of seismic energy into the atmosphere critically depends on the density differential between the surface of the planet and the atmosphere. Therefore, the successful demonstration of this technique on Earth would provide ample reason to expect success on Venus, where the atmospheric impedance is approximately 60 times that of Earth. In this presentation, we will share results from the first set of Earth-based balloon experiments performed in Pahrump, Nevada in June 2017. These tests involved the generation of artificial sources of known intensity using a seismic hammer and their detection using a complex network of sensors, including highly sensitive micro-barometers suspended from balloons, GPS receivers, geophones, microphones, and seismometers. This experiment was the first of its kind and was successful in detecting infrasonic waves from the earthquakes generated by the seismic hammer. We will present the first comprehensive analysis

  6. A 3D CZT hard x-ray polarimeter for a balloon-borne payload

    DEFF Research Database (Denmark)

    Caroli, E.; Alvarez, J. M.; Auricchio, N.

    2012-01-01

    be optimized also for this type of measurement. In this framework, we present the concept of a small high-performance spectrometer designed for polarimetry between 100 and 1000 keV suitable as a stratospheric balloon-borne payload dedicated to perform an accurate and reliable measurement of the polarization...

  7. Stratospheric experiments on curing of composite materials

    Science.gov (United States)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  8. High Altitude Balloons as a Platform for Space Radiation Belt Science

    Science.gov (United States)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  9. Scientific Ballooning in India - Recent Developments

    Science.gov (United States)

    Manchanda, R. K.; Srinivasan, S.; Subbarao, J. V.

    Established in 1972, the National Balloon Facility operated by TIFR in Hyderabad, India is is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, Research and Development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is a hallmark of the Hyderabad balloon facility. In the past few years we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to size of 780,000 M^3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.

  10. Correlative measurements of the stratospheric aerosols

    Science.gov (United States)

    Santer, R.; Brogniez, C.; Herman, M.; Diallo, S.; Ackerman, M.

    1992-12-01

    Joint experiments were organized or available during stratospheric flights of a photopolarimeter, referred to as RADIBAL (radiometer balloon). In May 1984, RADIBAL flew simultaneously with another balloonborne experiment conducted by the Institut d'Aeronomie Spatiale de Belgique (IASB), which provides multiwavelength vertical profiles of the aerosol scattering coefficient. At this time, the El Chichon layer was observable quite directly from mountain sites. A ground-based station set up at Pic du Midi allowed an extensive description of the aerosol optical properties. The IASB and the Pic du Midi observations are consistent with the aerosol properties derived from the RADIBAL measurement analysis.

  11. Scientific ballooning in India Recent developments

    Science.gov (United States)

    Manchanda, R. K.

    Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m 3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.

  12. Solar Hot Air Balloons: A Low Cost, Multi-hour Flight System for Lightweight Scientific Instrumentation Packages

    Science.gov (United States)

    Bowman, D. C.; Albert, S.; Dexheimer, D.; Murphy, S.; Mullen, M.

    2017-12-01

    Existing scientific ballooning solutions for multi hour flights in the upper troposphere/lower stratosphere are expensive and/or technically challenging. In contrast, solar hot air balloons are inexpensive and simple to construct. These balloons, which rely solely on sunlight striking a darkened envelope, can deliver payloads to 22 km altitude and maintain level flight until sunset. We describe an experimental campaign in which five solar hot air balloons launched in 45 minutes created a free flying infrasound (low frequency sound) microphone network that remained in the air for over 12 hours. We discuss the balloons' trajectory, maximum altitude, and stability as well as present results from the infrasound observations. We assess the performance and limitations of this design for lightweight atmospheric instrumentation deployments that require multi-hour flight times. Finally, we address the possibilities of multi day flights during the polar summer and on other planets.

  13. The rocky road to the upper atmosphere; NASA's quest to create long-term platforms in the stratosphere

    NARCIS (Netherlands)

    Pagitz, M.

    2011-01-01

    A recent program by NASA aims to develop balloons capable of carrying payloads of several tonnes to above 99% of the Earth's atmosphere for up to a hundred days. However, the road to the stratosphere turned out to be much harder and longer than expected

  14. National Report on the NASA Sounding Rocket and Balloon Programs

    Science.gov (United States)

    Eberspeaker, Philip; Fairbrother, Debora

    2013-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to

  15. Stratospheric minor species vertical distributions during polar winter by balloon borne UV-Vis spectrometry

    Science.gov (United States)

    Pommereau, J. P.; Piquard, J.

    1994-01-01

    A light, relatively cheap and easy to operate balloonborne UV-visible spectrometer was designed for investigating ozone photochemistry in the Arctic winter. The instrument was flown 11 times during the European Arctic Stratospheric Ozone Experiment (EASOE) in winter 1991-92 in Northern Scandinavia. The first simultaneous measurements of vertical distributions of aerosols, PSC's, O3, NO2 and OClO inside the vortex during flight no. 6 on 16 January, in cold conditions are reported, which show that nitrogen oxides were almost absent (lower than 100 ppt) in the stratosphere below 22 km, while a layer of relatively large OClO concentration (15 ppt) was present at the altitude of the minimum temperature.

  16. Observations of volcanic plumes using small balloon soundings

    Science.gov (United States)

    Voemel, H.

    2015-12-01

    Eruptions of volcanoes are very difficult to predict and for practical purposes may occur at any time. Any observing system intending to observe volcanic eruptions has to be ready at any time. Due to transport time scales, emissions of large volcanic eruptions, in particular injections into the stratosphere, may be detected at locations far from the volcano within days to weeks after the eruption. These emissions may be observed using small balloon soundings at dedicated sites. Here we present observations of particles of the Icelandic Grimsvotn eruption at the Meteorological Observatory Lindenberg, Germany in the months following the eruption and observations of opportunity of other volcanic particle events. We also present observations of the emissions of SO2 from the Turrialba volcano at San Jose, Costa Rica. We argue that dedicated sites for routine observations of the clean and perturbed atmosphere using small sounding balloons are an important element in the detection and quantification of emissions from future volcanic eruptions.

  17. Satellite studies of the stratospheric aerosol

    International Nuclear Information System (INIS)

    McCormick, M.P.; Hamill, P.; Pepin, T.J.; Chu, W.P.; Swissler, T.J.; McMaster, L.R.

    1979-01-01

    The potential climatological and environmental importance of the stratospheric aerosol layer has prompted great interest in measuring the properties of this aerosol. In this paper we report on two recently deployed NASA satellite systems (SAM II and SAGE) that are monitoring the stratospheric aerosol. The satellite orbits are such that nearly global coverage is obtained. The instruments mounted in the spacecraft are sun photometers that measure solar intensity at specific wavelengths as it is moderated by atmospheric particulates and gases during each sunrise and sunset encountered by the satellites. The data obtained are ''inverted'' to yield vertical aerosol and gaseous (primarily ozone) extinction profiles with 1 km vertical resolution. Thus, latitudinal, longitudinal, and temporal variations in the aerosol layer can be evaluated. The satellite systems are being validated by a series of ground truth experiments using airborne and ground lidar, balloon-borne dustsondes, aircraft-mounted impactors, and other correlative sensors. We describe the SAM II and SAGE satellite systems, instrument characteristics, and mode of operation; outline the methodology of the experiments; and describe the ground truth experiments. We present preliminary results from these measurements

  18. Heavy ion beam test results of the silicon charge detector for the CREAM cosmic ray balloon mission

    International Nuclear Information System (INIS)

    Park, I.H.; Ahn, H.S.; Bok, J.B.; Ganel, O.; Hahn, J.H.; Han, W.; Hyun, H.J.; Kim, H.J.; Kim, M.Y.; Kim, Y.J.; Lee, J.K.; Lee, M.H.; Lutz, L.; Min, K.W.; Malinine, A.; Nam, S.W.; Nam, W.; Park, H.; Park, N.H.; Seo, E.S.; Seon, K.I.; Sone, J.H.; Yang, J.; Zinn, S.Y.

    2004-01-01

    The Cosmic Ray Energetics And Mass (CREAM) experiment is designed to measure cosmic ray elemental spectra to help understand the source and acceleration mechanisms of ultra-high-energy cosmic rays. The payload is planned to launch in December 2004 from McMurdo Station, Antarctica as a balloon mission. A Silicon Charge Detector (SCD) was designed and constructed for the CREAM experiment to provide precision charge measurements of incident cosmic rays with a resolution of 0.2 charge unit or better. The SCD was exposed to heavy ion beams at CERN's H2 beam line in November 2003. The results reported here show the SCD performs as designed

  19. Heavy ion beam test results of the silicon charge detector for the CREAM cosmic ray balloon mission

    CERN Document Server

    Park, I H; Bok, J B; Ganel, O; Hahn, J H; Han, W; Hyun, H J; Kim, H J; Kim, M Y; Kim, Y J; Lee, J K; Lutz, L; Malinine, A; Min, K W; Nam, S W; Nam, W; Park, H; Park, N H; Seo, E S; Seon, K I; Sone, J H; Yang, J; Zinn, S Y

    2004-01-01

    The Cosmic Ray Energetics And Mass (CREAM) experiment is designed to measure cosmic ray elemental spectra to help understand the source and acceleration mechanisms of ultra-high-energy cosmic rays. The payload is planned to launch in December 2004 from McMurdo Station, Antarctica as a balloon mission. A Silicon Charge Detector (SCD) was designed and constructed for the CREAM experiment to provide precision charge measurements of incident cosmic rays with a resolution of 0.2 charge unit or better. The SCD was exposed to heavy ion beams at CERN's H2 beam line in November 2003. The results reported here show the SCD performs as designed.

  20. Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity

    Science.gov (United States)

    Rand, J. L.; Wakefield, D. S.

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may

  1. Performance Assessment of Balloon-Borne Trace Gas Sounding with the Terahertz Channel of TELIS

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2018-02-01

    Full Text Available Short-term variations in the atmospheric environment over polar regions are attracting increasing attention with respect to the reliable analysis of ozone loss. Balloon-borne remote sensing instruments with good vertical resolution and flexible sampling density can act as a prototype to overcome the potential technical challenges in the design of new spaceborne atmospheric sensors and represent a valuable tool for validating spaceborne observations. A multi-channel cryogenic heterodyne spectrometer known as the TErahertz and submillimeter LImb Sounder (TELIS has been developed. It allows limb sounding of the upper troposphere and stratosphere (10–40 km within the far infrared (FIR and submillimeter spectral regimes. This paper describes and assesses the performance of the profile retrieval scheme for TELIS with a focus on the ozone (O3, hydrogen chloride (HCl, carbon monoxide (CO, and hydroxyl radical (OH measured during three northern polar campaigns in 2009, 2010, and 2011, respectively. The corresponding inversion diagnostics reveal that some forward/instrument model parameters play important roles in the total retrieval error. The accuracy of the radiometric calibration and the spectroscopic knowledge has a significant impact on retrieval at higher altitudes, whereas the pointing accuracy dominates the total error at lower altitudes. The TELIS retrievals achieve a vertical resolution of ∼2–3 km through most of the stratosphere below the balloon height. Dominant water vapor (H2O contamination and low abundances of the target species reduce the retrieval sensitivity at the lowermost altitudes measured by TELIS. An extensive comparison shows that the TELIS profiles are consistent with profiles obtained by other limb sounders. The comparison appears to be very promising, except for discrepancies in the upper troposphere due to numerical regularization. This study not only consolidates the validity of balloon-borne TELIS FIR measurements

  2. Design and flight test results of high speed optical bidirectional link between stratospheric platforms for aerospace applications

    Science.gov (United States)

    Briatore, S.; Akhtyamov, R.; Golkar, A.

    2017-08-01

    As small and nanosatellites become increasingly relevant in the aerospace industry1, 2, the need of efficient, lightweight and cost-effective networking solutions drives the need for the development of lightweight and low cost networking and communication terminals. In this paper we propose the design and prototype results of a hybrid optical and radio communication architecture developed to fit the coarse pointing capabilities of nanosatellites, tested through a proxy flight experiment on stratospheric balloons. This system takes advantage of the higher data-rate offered by optical communication channels while relying on the more mature and stable technology of conventional radio systems for link negotiation and low-speed data exchange. Such architecture allows the user to overcome the licensing requirements and scarce availability of high data-rate radio frequency channels in the commonly used bands. Outlined are the architecture, development and test of the mentioned terminal, with focus on the communication part and supporting technologies, including the navigation algorithm, the developed fail-safe approach, and the evolution of the pointing system continuing previous work done in 3. The system has been built with commercial-off-the-shelf components and demonstrated on a stratospheric balloon launch campaign. The paper outlines the results of an in-flight demonstration, where the two platforms successfully established an optical link at stratospheric altitudes. The results are then analyzed and contextualized in plans of future work for nanosatellite implementations.

  3. Aerial Deployment and Inflation System for Mars Helium Balloons

    Science.gov (United States)

    Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.

    2009-01-01

    A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.

  4. Technologies developed by CNES balloon team

    Science.gov (United States)

    Sosa-Sesma, Sergio; Charbonnier, Jean-Marc; Deramecourt, Arnaud

    CNES balloon team develops and operates all the components of this kind of vehicle: it means envelope and gondola. This abstract will point out only developments done for envelope. Nowadays CNES offers to scientists four types of envelops that cover a large range of mission demands. These envelops are: 1. Zero pressure balloons: Size going from 3,000m3 to 600,000m3, this kind of envelop is ideal for short duration flights (a few hours) but if we use an intelligent management of ballast consumption and if we chose the best launch site, it is possible to perform medium duration flights (10/20 days depending on the ballast on board). Flight train mass starts at 50kg for small balloons and reach 1000kg for larger ones. Zero pressure balloons are inflated with helium gas. 2. Super pressure balloons: Diameter going from 2.5m to 12m, this kind of envelop is ideal for long duration flights (1 to 6 months). Flight train is inside the envelop for small balloons, it means 2.5 diameter meters which is usually called BPCL (Super pressure balloon for Earth boundary layer) and it is about 3kg of mass. Larger ones could lift external flight trains about 50kg of mass. Super pressure balloons are inflated with helium gas. 3. MIR balloons: Size going from 36,000m3 to 46,000m3. Ceiling is reach with helium gas but after three days helium is no longer present inside and lift force is produced by difference of temperature between air inside and air of atmosphere. Flight trains must not be over 50kg. 4. Aero Clipper balloons: A concept to correlate measurements done in oceans and in nearest layers of atmosphere simultaneously. Flight train is made by a "fish" that drags inside water and an atmospheric gondola few meters above "fish", both pushed by a balloon which profits of the wind force. Materials used for construction and assembling depend on balloon type; they are usually made of polyester or polyethylene. Thickness varies from 12 micrometers to 120 micrometers. Balloon assembling

  5. A New Approach on Sampling Microorganisms from the Lower Stratosphere

    Science.gov (United States)

    Gunawan, B.; Lehnen, J. N.; Prince, J.; Bering, E., III; Rodrigues, D.

    2017-12-01

    University of Houston's Undergraduate Student Instrumentation Project (USIP) astrobiology group will attempt to provide a cross-sectional analysis of microorganisms in the lower stratosphere by collecting living microbial samples using a sterile and lightweight balloon-borne payload. Refer to poster by Dr. Edgar Bering in session ED032. The purpose of this research is two-fold: first, to design a new system that is capable of greater mass air intake, unlike the previous iterations where heavy and power-intensive pumps are used; and second, to provide proof of concept that live samples are accumulated in the upper atmosphere and are viable for extensive studies and consequent examination for their potential weather-altering characteristics. Multiple balloon deployments will be conducted to increase accuracy and to provide larger set of data. This paper will also discuss visual presentation of the payload along with analyzed information of the captured samples. Design details will be presented to NASA investigators for professional studies

  6. TMBM: Tethered Micro-Balloons on Mars

    Science.gov (United States)

    Sims, M. H.; Greeley, R.; Cutts, J. A.; Yavrouian, A. H.; Murbach, M.

    2000-01-01

    The use of balloons/aerobots on Mars has been under consideration for many years. Concepts include deployment during entry into the atmosphere from a carrier spacecraft, deployment from a lander, use of super-pressurized systems for long duration flights, 'hot-air' systems, etc. Principal advantages include the ability to obtain high-resolution data of the surface because balloons provide a low-altitude platform which moves relatively slowly. Work conducted within the last few years has removed many of the technical difficulties encountered in deployment and operation of balloons/aerobots on Mars. The concept proposed here (a tethered balloon released from a lander) uses a relatively simple approach which would enable aspects of Martian balloons to be tested while providing useful and potentially unique science results. Tethered Micro-Balloons on Mars (TMBM) would be carried to Mars on board a future lander as a stand-alone experiment having a total mass of one to two kilograms. It would consist of a helium balloon of up to 50 cubic meters that is inflated after landing and initially tethered to the lander. Its primary instrumentation would be a camera that would be carried to an altitude of up to tens of meters above the surface. Imaging data would be transmitted to the lander for inclusion in the mission data stream. The tether would be released in stages allowing different resolutions and coverage. In addition during this staged release a lander camera system may observe the motion of the balloon at various heights above he lander. Under some scenarios upon completion of the primary phase of TMBM operations, the tether would be cut, allowing TMBM to drift away from the landing site, during which images would be taken along the ground.

  7. Balloon measurements of the cosmic microwave background strongly favor a flat cosmos

    International Nuclear Information System (INIS)

    Schwarzschild, Bertram

    2000-01-01

    In 1998 two related but independent groups sent balloon-borne microwave telescopes aloft to study fluctuations in the cosmic microwave background (CMB) at fine angular resolution. In August of that year, the Maxima telescope spent one night at 40 km above Texas. And at the end of the year, its ''sister'' telescope, called Boomerang, took advantage of the steady circumpolar winds of the austral summer to complete a 10-day stratospheric circumnavigation of Antarctica. (c) 2000 American Institute of Physics

  8. A coherent polarimeter array for the Large Scale Polarization Explorer balloon experiment

    OpenAIRE

    Bersanelli, M.; Mennella, A.; Morgante, G.; Zannoni, M.; Addamo, G.; Baschirotto, A.; Battaglia, P.; Baù, A.; Cappellini, B.; Cavaliere, F.; Cuttaia, F.; Del Torto, F.; Donzelli, S.; Farooqui, Z.; Frailis, M.

    2012-01-01

    We discuss the design and expected performance of STRIP (STRatospheric Italian Polarimeter), an array of coherent receivers designed to fly on board the LSPE (Large Scale Polarization Explorer) balloon experiment. The STRIP focal plane array comprises 49 elements in Q band and 7 elements in W-band using cryogenic HEMT low noise amplifiers and high performance waveguide components. In operation, the array will be cooled to 20 K and placed in the focal plane of a $\\sim 0.6$ meter telescope prov...

  9. On particles in the Arctic stratosphere

    Directory of Open Access Journals (Sweden)

    T. S. Jørgensen

    2003-06-01

    Full Text Available Soon after the discovery of the Antarctic ozone hole it became clear that particles in the polar stratosphere had an infl uence on the destruction of the ozone layer. Two major types of particles, sulphate aerosols and Polar Stratospheric Clouds (PSCs, provide the surfaces where fast heterogeneous chemical reactions convert inactive halogen reservoir species into potentially ozone-destroying radicals. Lidar measurements have been used to classify the PSCs. Following the Mt. Pinatubo eruption in June 1991 it was found that the Arctic stratosphere was loaded with aerosols, and that aerosols observed with lidar and ozone observed with ozone sondes displayed a layered structure, and that the aerosol and ozone contents in the layers frequently appeared to be negatively correlated. The layered structure was probably due to modulation induced by the dynamics at the edge of the polar vortex. Lidar observations of the Mt. Pinatubo aerosols were in several cases accompanied by balloon-borne backscatter soundings, whereby backscatter measurements in three different wavelengths made it possible to obtain information about the particle sizes. An investigation of the infl uence of synoptic temperature histories on the physical properties of PSC particles has shown that most of the liquid type 1b particles were observed in the process of an ongoing, relatively fast, and continuous cooling from temperatures clearly above the nitric acid trihydrate condensation temperature (TNAT. On the other hand, it appeared that a relatively long period, with a duration of at least 1-2 days, at temperatures below TNAT provide the conditions which may lead to the production of solid type 1a PSCs.

  10. A comparison of calculated and measured background noise rates in hard X-ray telescopes at balloon altitude

    Science.gov (United States)

    Dean, A. J.; Dipper, N. A.; Lewis, R. A.; Perotti, F.

    1985-01-01

    An actively shielded hard X-ray astronomical telescope has been flown on stratospheric balloons. An attempt is made to compare the measured spectral distribution of the background noise counting rates over the energy loss range 20-300 keV with the contributions estimated from a series of Monte Carlo and other computations. The relative contributions of individual particle interactions are assessed.

  11. Balloon-borne ozonesonde and rocket temperature and wind data gathered during the July 1977 intertropical convergence zone experiment

    Science.gov (United States)

    Schmidlin, F. J.; Kloos, G.

    1979-01-01

    In middle latitudes, it is possible for large concentrations of stratospheric air to be brought down to the tropopause through folds or breaks in the tropopause. The exchange of air from the tropopause into higher altitudes is not well understood. Thus, the ITCZ (Intertropical Convergence Zone) experiment, conducted from July 16 through July 31, 1977, included a series of balloon-borne ozone soundings. The results of these soundings are presented and explain in the vertical exchange of air and provide information on the short vertical scales-of-motion. Rocketsonde data was also gathered in the ITCZ experiment in support of a stratospheric scales-of-motion study. The investigation was to determine whether rocketsonde and satellite information currently used yield information on the stratospheric horizontal wave spectrum and its importance with respect to tropospheric and mesospheric interaction and transport.

  12. Titan Exploration Using a Radioisotopically-Heated Montgolfiere Balloon

    Science.gov (United States)

    Elliott, John O.; Reh, Kim; Spilker, Tom

    2007-01-01

    This paper describes results of a recent Titan exploration mission study; one which includes an aerial vehicle in the form of a hot air balloon, or montgolfiere. Unlike terrestrial montgolfieres which require burning fuel, the dual use of MMRTGs to provide a continuous source of heat as well as electrical power would give the balloon an inherent ability to float for a very long time in the atmosphere of Titan. It would ride with the easterly winds at a cruising altitude of about 10,000 km, occasionally changing altitude to take advantage of possible reverse wind directions and even descending to the surface to physically sample sites of interest. Seasonal and tidal north-south winds would allow the mission to explore different latitudes, which Cassini data have shown to be amazingly diverse in geologic nature. Communication from the aerial vehicle would be relayed through an accompanying orbiter spacecraft, as well as transmitted directly to Earth, providing the potential for data return from Titan's surface equivalent to that provided by many comparable orbiter missions at much closer destinations.

  13. Stratospheric Platforms for Monitoring Purposes

    International Nuclear Information System (INIS)

    Konigorski, D.; Gratzel, U.; Obersteiner, M.; Schneidereit, M.

    2010-01-01

    Stratospheric platforms are emerging systems based on challenging technology. Goal is to create a platform, payload, and mission design which is able to complement satellite services on a local scale. Applications are close to traditional satellite business in telecommunication, navigation, science, and earth observation and include for example mobile telecommunications, navigation augmentation, atmospheric research, or border control. Stratospheric platforms could potentially support monitoring activities related to safeguards, e.g. by imagery of surfaces, operational conditions of nuclear facilities, and search for undeclared nuclear activities. Stratospheric platforms are intended to be flown in an altitude band between 16 and 30 km, above 16-20 km to take advantage of usually lower winds facilitating station keeping, below 30 km to limit the challenges to achieve a reasonable payload at acceptable platform sizes. Stratospheric platforms could substitute satellites which are expensive and lack upgrade capabilities for new equipment. Furthermore they have practically an unlimited time over an area of interest. It is intended to keep the platforms operational and maintenance free on a 24/7 basis with an average deployment time of 3 years. Geostationary satellites lack resolution. Potential customers like Armed Forces, National Agencies and commercial customers have indicated interest in the use of stratospheric platforms. Governmental entities are looking for cheaper alternatives to communications and surveillance satellites and stratospheric platforms could offer the following potential advantages: Lower operational cost than satellite or UAV (Unmanned Aerial Vehicles) constellation (fleet required); Faster deployment than satellite constellation; Repositioning capability and ability to loiter as required; Persistent long-term real-time services over a fairly large regional spot; Surge capability: Able to extend capability (either monitoring or communications

  14. A new project, SPIRALE. Balloon-borne in situ multi-component measurement using infrared diode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, G.; Pirre, M.; Robert, C. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France); Rosier, B.; Louvet, Y.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales, 91 - Palaiseau (France); Peyret, C.C. [Universite Pierre et Marie Curie, 75 - Paris (France); Macleod, Y. [Universite Pierreet Marie Curie, 75 - Paris (France); Courtois, D. [Reims Univ., 51 (France). Faculte des Sciences

    1997-12-31

    The scientific goals and the description of a new experiment for stratospheric studies SPIRALE are presented which is a balloon-borne instrument, able to measure in situ several air components (up to 10). Infrared diode laser spectroscopy is applied for monitoring simultaneously atmospheric trace gases at high rate. Its specificity, sensitivity, and wide range of compounds to which it can be applied is described. (R.P.) 5 refs.

  15. A new project, SPIRALE. Balloon-borne in situ multi-component measurement using infrared diode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, G; Pirre, M; Robert, C [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France); Rosier, B; Louvet, Y; Ramaroson, R [Office National d` Etudes et de Recherches Aerospatiales, 91 - Palaiseau (France); Peyret, C C [Universite Pierre et Marie Curie, 75 - Paris (France); Macleod, Y [Universite Pierreet Marie Curie, 75 - Paris (France); Courtois, D [Reims Univ., 51 (France). Faculte des Sciences

    1998-12-31

    The scientific goals and the description of a new experiment for stratospheric studies SPIRALE are presented which is a balloon-borne instrument, able to measure in situ several air components (up to 10). Infrared diode laser spectroscopy is applied for monitoring simultaneously atmospheric trace gases at high rate. Its specificity, sensitivity, and wide range of compounds to which it can be applied is described. (R.P.) 5 refs.

  16. Stratonauts pioneers venturing into the stratosphere

    CERN Document Server

    Ehrenfried, Manfred "Dutch"

    2014-01-01

    Stratonauts chronicles humankind’s quest for ever higher altitudes from ancient times to the present. It is based upon history, science and technology, and tells some interesting and fascinating stories along the way. It pays tribute to those killed while attempting to reach the stratosphere over the past several centuries.   “Dutch” von Ehrenfried uses his personal experience as a NASA sensor operator on the RB-57F, flying to an altitude of 70,000 feet, as well as the input and experience from other RB-57F, U-2, A-12, SR-71 and F-104 pilots. Although many of the aircraft and balloons are described, more emphasis is placed on the crews and what they went through. This book is intended for aviators of all kinds and flying enthusiasts in general.

  17. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    Science.gov (United States)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  18. Odin-OSIRIS stratospheric aerosol data product and SAGE III intercomparison

    Directory of Open Access Journals (Sweden)

    A. E. Bourassa

    2012-01-01

    Full Text Available The scattered sunlight measurements made by the Optical Spectrograph and InfraRed Imaging System (OSIRIS on the Odin spacecraft are used to retrieve vertical profiles of stratospheric aerosol extinction at 750 nm. The recently released OSIRIS Version 5 data product contains the first publicly released stratospheric aerosol extinction retrievals, and these are now available for the entire Odin mission, which extends from the present day back to launch in 2001. A proof-of-concept study for the retrieval of stratospheric aerosol extinction from limb scatter measurements was previously published and the Version 5 data product retrievals are based on this work, but incorporate several important improvements to the algorithm. One of the primary changes is the use of a new retrieval vector that greatly improves the sensitivity to aerosol scattering by incorporating a forward modeled calculation of the radiance from a Rayleigh atmosphere. Additional improvements include a coupled retrieval of the effective albedo, a new method for normalization of the retrieval vector to improve signal-to-noise, and the use of an initial guess that is representative of very low background aerosol loading conditions, which allows for maximal retrieval range. Furthermore, the Version 5 data set is compared to Stratospheric Aerosol and Gas Experiment (SAGE III 755 nm extinction profiles during the almost four years of mission overlap from 2002 to late 2005. The vertical structure in coincident profile measurements is well correlated and the statistics on a relatively large set of tight coincident measurements show agreement between the measurements from the two instruments to within approximately 10% throughout the 15 to 25 km altitude range, which covers the bulk of the stratospheric aerosol layer for the mid and high latitude cases studied here.

  19. First Polarimetric GNSS-R Measurements from a Stratospheric Flight over Boreal Forests

    Directory of Open Access Journals (Sweden)

    Hugo Carreno-Luengo

    2015-10-01

    Full Text Available The first-ever dual-frequency multi-constellation Global Navigation Satellite Systems Reflectometry (GNSS-R polarimetric measurements over boreal forests and lakes from the stratosphere are presented. Data were collected during the European Space Agency (ESA sponsored Balloon Experiments for University Students (BEXUS 19 stratospheric balloon experiment using the P(Y and C/A Reflect Ometer (PYCARO instrument operated in closed-loop mode. Maps of the polarimetric ratio for L1 and L2 Global Positioning System (GPS and GLObal Navigation Satellite System (GLONASS, and for E1 Galileo signals are derived from the float phase at 27,000 m height, and the specular points are geolocalized on the Earth’s surface. Polarimetric ratio ( maps over boreal forests are shown to be in the range 2–16 dB for the different GNSS codes. This result suggests that the scattering is taking place not only over the soil, but over the different forests elements as well. Additionally to the interpretation of the experimental results a theoretical investigation of the different contributions to the total reflectivity over boreal forests is performed using a bistatic scattering model. The simulated cross- (reflected Left Hand Circular Polarization LHCP and co-polar (reflected Right Hand Circular Polarization RHCP reflectivities are evaluated for the soil, the canopy, and the canopy–soil interactions for three different biomass densities: 725 trees/ha, 150 trees/ha and 72 trees/ha. For elevation angles larger than the Brewster angle, it is found that the cross-polar signal is dominant when just single reflections over the forests are evaluated, while in the case of multiple reflections the co-polar signal becomes the largest one. The first-ever dual-frequency multi-constellation Global Navigation Satellite Systems Reflectometry (GNSS-R polarimetric measurements over boreal forests and lakes from the stratosphere are presented. Data were collected during the European Space

  20. GUSTO: Gal/Xgal U/LDB Spectroscopic-Stratospheric TeraHertz Observatory

    Science.gov (United States)

    Kidd Walker, Christopher; Kulesa, Craig; Goldsmith, Paul; Groppi, Christopher; Helmich, Frank; Hollenbach, David; Kawamura, Jonathan; Langer, William; Melnick, Gary; Neufeld, David; Pineda, Jorge; Stacey, Gordon; Stark, Antony; Tielens, Alexander; Wolfire, Mark; Yorke, Harold; Young, Erick

    2018-01-01

    GUSTO is a recently selected NASA Explorer mission that will map in unprecedented detail the structure, dynamics, energy balance, and evolution of the interstellar medium within the Milky Way and Large Magellanic Cloud. GUSTO is a balloon-borne, 0.85-m on-axis telescope that will observe in three important interstellar lines: [CII], [OI], and [NII] at 158, 63, and 205 microns, respectively. With its 60" angular resolution, high-velocity resolution, and efficient “On-The-Fly” mapping strategy, GUSTO will address key unanswered questions about the stellar life cycle and provide new insights into the birth and evolution of stars and galaxies. From its Ultra-Long-Duration Balloon (ULDB) platform at an altitude of 33 km, GUSTO will survey ~100 deg2 of the Milky Way and 24 deg2 of the LMC at 60" angular resolution using three 8-pixel heterodyne array receivers. The GUSTO receivers provide sub-km/s velocity resolution and bandwidths sufficiently wide to track all clouds orbiting in the Milky Way and LMC. GUSTO will detect and locate in three dimensions every important interstellar cloud (AV > 0.5–1) in the surveyed regions. The baseline mission of 100 days can be completed in one ULDB Antarctic balloon flight, and an extended mission of up to 169 days is possible. GUSTO’s observing campaign comprises three distinct surveys: GPS: A Galactic Plane Survey (42 days); LMCS: An LMC Survey (36 days); TDS: Targeted Deep Surveys of selected regions in the Galaxy and LMC (18 days). In our presentation we will discuss both the science goals of GUSTO and the mission implementation.

  1. Upper Troposphere Lower Stratosphere structure during convective systems using GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo

    The deep convective systems play a fundamental role in atmospheric circulation and climate. Thunderstorms and meso-scale convective systems produce fast vertical transport, redistributing water vapor and trace gases and influencing the thermal structure of the upper troposphere and lower...... stratosphere (UTLS) contributing to the troposphere-stratosphere transport and affecting the Earth global circulation and the climate changes. The Global Positioning System (GPS) Radio Occultation (RO) technique enables measurement of atmospheric density structure in any meteorological condition...... to the analysis of tropical storms for the future mission ACES will also be evaluated. Using data from the past and ongoing GPS RO missions we have defined an algorithm to detect the clouds top of the convective systems and their thermal structure. Other satellite and in-situ measurements co-located with GPS ROs...

  2. Stratospheric controlled perturbation experiment (SCoPEx): overview, status, and results from related laboratory experiments

    Science.gov (United States)

    Keith, D.; Dykema, J. A.; Keutsch, F. N.

    2017-12-01

    Stratospheric Controlled Perturbation Experiment (SCoPEx), is a scientific experiment to advance understanding of stratospheric aerosols. It aims to make quantitative measurements of aerosol microphysics and atmospheric chemistry to improve large-scale models used to assess the risks and benefits of solar geoengineering. A perturbative experiment requires: (a) means to create a well-mixed, small perturbed volume, and (b) observation of time evolution of chemistry and aerosols in the volume. SCoPEx will used a propelled balloon gondola containing all instruments and drive system. The propeller wake forms a well-mixed volume (roughly 1 km long and 100 meters in diameter) that serves as an experimental `beaker' into which aerosols (e.g., budget, etc; (d) results from CFD simulation of propeller wake and simulation of chemistry and aerosol microphysics; and finally (e) proposed concept of operations and schedule. We will also provide an overview of the plans for governance including management of health safety and environmental risks, transparency, public engagement, and larger questions about governance of solar geoengineering experiments. Finally, we will briefly present results of laboratory experiments of the interaction of chemical such as ClONO2 and HCl on particle surfaces relevant for stratospheric solar geoengineering.

  3. The Asian Tropopause Aerosol Layer: Balloon-Borne Measurements, Satellite Observations and Modeling Approaches

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.

  4. Iridium: Global OTH data communications for high altitude scientific ballooning

    Science.gov (United States)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several

  5. Tethered balloons for radio detection of ultra high energy cosmic neutrinos in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Besson, D. [Department of Physics and Astronomy, University of Kansas, Lawrence 66045, KS (United States); Dagkesamanskii, R.; Kravchenko, E. [Radio Astronomy Observatory LPI RAS, Pushchino 142290, Moscow Region (Russian Federation); Kravchenko, I., E-mail: ikrav@cern.ch [Department of Physics and Astronomy, University of Nebraska, Lincoln, 68588, NE (United States); Zheleznykh, I. [Institute for Nuclear Research RAS, Moscow 117312 (Russian Federation)

    2012-01-11

    We present a brief overview of experimental efforts in Antarctica to search for radio pulses from electron-hadron cascades produced by cosmic ultrahigh-energy neutrinos in Antarctic ice. Thus far, the essential features (energy thresholds, effective recording volumes, etc.) of Antarctic neutrino radio experiments can be classified according to the deployment scheme employed: either (1) on the surface of the glacier - RAMAND-type, (2) in holes in the ice at depths of several hundred meters - RICE-type or (3) on board of a stratospheric balloon at an altitude of 40 km - ANITA-type. We herein propose an alternative possibility, namely to use tethered balloons for placing the radio antennas at modest (compared to ANITA) altitudes above the ice surface (1-2 km). This configuration of antennas will reduce (as compared to ANITA) the energy threshold for detection of neutrinos and increase the observation time.

  6. Tethered balloons for radio detection of ultra high energy cosmic neutrinos in Antarctica

    International Nuclear Information System (INIS)

    Besson, D.; Dagkesamanskii, R.; Kravchenko, E.; Kravchenko, I.; Zheleznykh, I.

    2012-01-01

    We present a brief overview of experimental efforts in Antarctica to search for radio pulses from electron-hadron cascades produced by cosmic ultrahigh-energy neutrinos in Antarctic ice. Thus far, the essential features (energy thresholds, effective recording volumes, etc.) of Antarctic neutrino radio experiments can be classified according to the deployment scheme employed: either (1) on the surface of the glacier - RAMAND-type, (2) in holes in the ice at depths of several hundred meters - RICE-type or (3) on board of a stratospheric balloon at an altitude of 40 km - ANITA-type. We herein propose an alternative possibility, namely to use tethered balloons for placing the radio antennas at modest (compared to ANITA) altitudes above the ice surface (1-2 km). This configuration of antennas will reduce (as compared to ANITA) the energy threshold for detection of neutrinos and increase the observation time.

  7. Lower stratospheric observations from aircraft and satellite during the 2015/2016 El Nino

    Science.gov (United States)

    Rosenlof, K. H.; Avery, M. A.; Davis, S. M.; Gao, R. S.; Thornberry, T. D.

    2016-12-01

    Winter 2015/2016 experienced a strong El Nino that was heavily observed by aircraft, radiosonde and satellite platforms. During the National Oceanographic and Atmospheric Administration's (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT)/El Nino Rapid Response (ENRR) flights of the NASA Global Hawk, in situ ozone measurements were made in the lower stratosphere over the Pacific. These will be contrasted with ozone measurements taken during La Nina and ENSO neutral conditions during past Global Hawk aircraft campaigns. Additionally, lower stratospheric water vapor and ozone measurements from the Microwave Limb Sounder satellite instrument and stratospheric ice measurements above the tropopause from the Cloud-Aerosol Aerosol Lidar with Orthogonal Polarization (CALIOP) will be presented. Our aircraft ozone measurements are higher for the El Nino flights than during other missions previously sampled, while zonally averaged lower stratospheric water vapor and central Pacific ice path above the tropopause reached record highs. Implications and possible reasons for these anomalous observations will be discussed. Winter 2015/2016 experienced a strong El Nino that was heavily observed by aircraft, radiosonde and satellite platforms. During the National Oceanographic and Atmospheric Administration's (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT)/El Nino Rapid Response (ENRR) flights of the NASA Global Hawk, in situ ozone measurements were made in the upper troposphere and lower stratosphere (UTLS) over the Pacific. These will be contrasted with ozone measurements made during La Nina and ENSO neutral conditions during past Global Hawk aircraft campaigns. Additionally, UTLS water vapor and ozone measurements from the Microwave Limb Sounder (MLS) satellite instrument and stratospheric ice measurements above the tropopause from the Cloud-Aerosol Aerosol Lidar with Orthogonal Polarization (CALIOP) will be presented. Our aircraft ozone

  8. Age and gravitational separation of the stratospheric air over Indonesia

    Directory of Open Access Journals (Sweden)

    S. Sugawara

    2018-02-01

    Full Text Available The gravitational separation of major atmospheric components, in addition to the age of air, would provide additional useful information about stratospheric circulation. However, observations of the age of air and gravitational separation are still geographically sparse, especially in the tropics. In order to address this issue, air samples were collected over Biak, Indonesia in February 2015 using four large plastic balloons, each loaded with two compact cryogenic samplers. With a vertical resolution of better than 2 km, air samples from seven different altitudes were analyzed for CO2 and SF6 mole fractions, δ15N of N2, δ18O of O2, and δ(Ar∕N2 to examine the vertically dependent age and gravitational separation of air in the tropical tropopause layer (TTL and the equatorial stratosphere. By comparing their measured mole fractions with aircraft observations in the upper tropical troposphere, we have found that CO2 and SF6 ages increase gradually with increasing altitude from the TTL to 22 km, and then rapidly from there up to 29 km. The CO2 and SF6 ages agree well with each other in the TTL and in the lower stratosphere, but show a significant difference above 24 km. The average values of δ15N of N2, δ18O of O2, and δ(Ar∕N2 all show a small but distinct upward decrease due to the gravitational separation effect. Simulations with a two-dimensional atmospheric transport model indicate that the gravitational separation effect decreases as tropical upwelling is enhanced. From the model calculations with enhanced eddy mixing, it is also found that the upward increase in air age is magnified by horizontal mixing. These model simulations also show that the gravitational separation effect remains relatively constant in the lower stratosphere. The results of this study strongly suggest that the gravitational separation, combined with the age of air, can be used to diagnose air transport processes in the stratosphere.

  9. Horizontal maps of echo power in the lower stratosphere using the MU radar

    Directory of Open Access Journals (Sweden)

    M. Hirono

    2004-03-01

    Full Text Available In recent works, zenithal and azimuthal angle variations of echo power measured by VHF Stratosphere-Troposphere (ST radars have been analyzed in detail using different radar multi-beam configurations. It was found that the azimuthal angle corresponding to maximum echo power is closely related to the direction of the horizontal wind shear. These properties indicate that local wind shear affects the tilt of the scatterers. Moreover, horizontal maps of echo power collected using a large set of beams steered pulse-to-pulse up to 40 degrees off zenith revealed that the power distribution pattern in the troposphere is often skewed. In this work, a three-dimensional description of echo power variations up to 24 degrees off zenith is shown for measurements in the lower stratosphere (i.e. up to approximately 20km using a "sequential multi-beam" (SMB configuration. Such a description was not possible above the tropopause with classical multi-beam configurations because of the loss of radar sensitivity due to the limited integration time by the use of a large number of beams. This work attempts to complete previous descriptions of the phenomenon by some observations in the lower stratosphere discussed in association with complementary balloon measurements. Key words. Meteorology and atmospheric dynamics (turbulence – Radio Science (remote sensing

  10. WAVE-E: The WAter Vapour European-Explorer Mission

    Science.gov (United States)

    Jimenez-LLuva, David; Deiml, Michael; Pavesi, Sara

    2017-04-01

    In the last decade, stratosphere-troposphere coupling processes in the Upper Troposphere Lower Stratosphere (UTLS) have been increasingly recognized to severely impact surface climate and high-impact weather phenomena. Weakened stratospheric circumpolar jets have been linked to worldwide extreme temperature and high-precipitation events, while anomalously strong stratospheric jets can lead to an increase in surface winds and tropical cyclone intensity. Moreover, stratospheric water vapor has been identified as an important forcing for global decadal surface climate change. In the past years, operational weather forecast and climate models have adapted a high vertical resolution in the UTLS region in order to capture the dynamical processes occurring in this highly stratified region. However, there is an evident lack of available measurements in the UTLS region to consistently support these models and further improve process understanding. Consequently, both the IPCC fifth assessment report and the ESA-GEWEX report 'Earth Observation and Water Cycle Science Priorities' have identified an urgent need for long-term observations and improved process understanding in the UTLS region. To close this gap, the authors propose the 'WAter Vapour European - Explorer' (WAVE-E) space mission, whose primary goal is to monitor water vapor in the UTLS at 1 km vertical, 25 km horizontal and sub-daily temporal resolution. WAVE-E consists of three quasi-identical small ( 500 kg) satellites (WAVE-E 1-3) in a constellation of Sun-Synchronous Low Earth Orbits, each carrying a limb sounding and cross-track scanning mid-infrared passive spectrometer (824 cm-1 to 829 cm-1). The core of the instruments builds a monolithic, field-widened type of Michelson interferometer without any moving parts, rendering it rigid and fault tolerant. Synergistic use of WAVE-E and MetOp-NG operational satellites is identified, such that a data fusion algorithm could provide water vapour profiles from the

  11. Design of a rocket-borne radiometer for stratospheric ozone measurements

    International Nuclear Information System (INIS)

    Barnes, R.A.; Simeth, P.G.

    1989-01-01

    A four-filter ultraviolet radiometer for measuring stratospheric ozone is described. The payload is launched aboard a Super-Loki rocket to an apogee of 70 km. The instrument measures the solar ultraviolet irradiance over its filter wavelengths as it descends on a parachute. The amount of ozone in the path between the radiometer and the sun is calculated from the attenuation of solar flux using the Beer-Lambert law. Radar at the launch site measures the height of the instrument throughout its flight. The fundamental ozone value measured by the ROCOZ-A radiometer is the vertical ozone overburden as a function of geometric altitude. Ozone measurements are obtained for altitudes from 55 to 20 km, extending well above the altitude range of balloon-borne ozone-measuring instruments. The optics and electronics in the radiometer have been designed within relatively severe size and weight limitations imposed by the launch vehicle. The electronics in the improved rocket ozonesonde (ROCOZ-A) provide essentially drift-free outputs throughout 40-min ozone soundings at stratospheric temperatures. The modest cost of the payload precludes recovery and makes the instrument a versatile tool compared to larger ozonesondes

  12. ATMOS Stratospheric Deuterated Water and Implications for Tropospheric-Stratospheric Transport

    Science.gov (United States)

    Moyer, Elisabeth J.; Irion, Fredrick W.; Yung, Yuk L.; Gunson, Michael R.

    1996-01-01

    Measurements of the isotopic composition of stratospheric water by the ATMOS instrument are used to infer the convective history of stratospheric air. The average water vapor entering the stratosphere is found to be highly depleted of deuterium, with delta-D(sub w) of -670 +/- 80 (67% deuterium loss). Model calculations predict, however, that under conditions of thermodynamic equilibrium, dehydration to stratospheric mixing ratios should produce stronger depletion to delta-D(sub w) of -800 to 900 (80-90% deuterium loss). Deuterium enrichment of water vapor in ascending parcels can occur only in conditions of rapid convection; enrichments persisting into the stratosphere require that those conditions continue to near-tropopause altitudes. We conclude that either the predominant source of water vapor to the uppermost troposphere is enriched convective water, most likely evaporated cloud ice, or troposphere-stratosphere transport occurs closely associated with tropical deep convection.

  13. Energetics of small scale turbulence in the lower stratosphere from high resolution radar measurements

    Directory of Open Access Journals (Sweden)

    J. Dole

    2001-08-01

    Full Text Available Very high resolution radar measurements were performed in the troposphere and lower stratosphere by means of the PROUST radar. The PROUST radar operates in the UHF band (961 MHz and is located in St. Santin, France (44°39’ N, 2°12’ E. A field campaign involving high resolution balloon measurements and the PROUST radar was conducted during April 1998. Under the classical hypothesis that refractive index inhomogeneities at half radar wavelength lie within the inertial subrange, assumed to be isotropic, kinetic energy and temperature variance dissipation rates were estimated independently in the lower stratosphere. The dissipation rate of temperature variance is proportional to the dissipation rate of available potential energy. We therefore estimate the ratio of dissipation rates of potential to kinetic energy. This ratio is a key parameter of atmospheric turbulence which, in locally homogeneous and stationary conditions, is simply related to the flux Richardson number, Rf .Key words. Meteorology and atmospheric dynamics (turbulence – Radio science (remote sensing

  14. Extended observations of volcanic SO2 and sulfate aerosol in the stratosphere

    NARCIS (Netherlands)

    Carn, S.A.; Krotkov, N.A.; Yang, Kai; Hoff, R.M.; Prata, A.J.; Krueger, A.J.; Loughlin, S.C.; Levelt, P.F.

    2007-01-01

    Sulfate aerosol produced after injection of sulfur dioxide (SO2) into the stratosphere by volcanic eruptions can trigger climate change. We present new satellite data from the Ozone Monitoring Instrument (OMI) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) missions

  15. Special Considerations for Qualifying Thin Films for Supper Pressure Pumpkin Ultra Long Duration Balloon (ULDB) Missions

    Science.gov (United States)

    Said, M.

    Pumpkin type super pressure balloons require much less stringent mechanical requirements on the envelope film material when compared to spherical super pressure type balloons. However, since suitable thin films are typically viscoelastic in nature, their creep characteristics must be fully characterized and must not exceed specific and predetermined design limits. Proper assessment of materials limits to meet these design limits requires creep-load-temperature data that characterizes the performance of the material over a time that exceeds the duration of the design service life by some specified margin. Contrary to the behavior of materials with purely elastic response, visco-elastic materials such as these considered for the ULDB design, change their geometry under sustained loading over time. This change is usually reflected by exhibiting a significant visco-elastic component over the service life of the mission. For that regime of large visco-elastic response, where the material is highly nonlinear, a certain load-temperature threshold can be reached where the creep is limited by an asymptote that depends on both the temperature and load level. Such creep is recoverable, although the recovery period may be much longer than the 100 day design service life of the ULDB structure plus the factor of safety required for the design. For a typical flight, the most significant creep occurs at the highest temperature, which also produces the highest internal pressure. At mid- latitudes a significant portion of the service life is spent at night, i.e. at low temperature and low load; for the ULDB film, this nighttime contribution to creep is insignificant in comparison to any daytime contribution. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This response behavior must be sufficiently characterized to serve the needs of the structural design and performance predictions of the vehicle in

  16. A method for sampling microbial aerosols using high altitude balloons.

    Science.gov (United States)

    Bryan, N C; Stewart, M; Granger, D; Guzik, T G; Christner, B C

    2014-12-01

    Owing to the challenges posed to microbial aerosol sampling at high altitudes, very little is known about the abundance, diversity, and extent of microbial taxa in the Earth-atmosphere system. To directly address this knowledge gap, we designed, constructed, and tested a system that passively samples aerosols during ascent through the atmosphere while tethered to a helium-filled latex sounding balloon. The sampling payload is ~ 2.7 kg and comprised of an electronics box and three sampling chambers (one serving as a procedural control). Each chamber is sealed with retractable doors that can be commanded to open and close at designated altitudes. The payload is deployed together with radio beacons that transmit GPS coordinates (latitude, longitude and altitude) in real time for tracking and recovery. A cut mechanism separates the payload string from the balloon at any desired altitude, returning all equipment safely to the ground on a parachute. When the chambers are opened, aerosol sampling is performed using the Rotorod® collection method (40 rods per chamber), with each rod passing through 0.035 m3 per km of altitude sampled. Based on quality control measurements, the collection of ~ 100 cells rod(-1) provided a 3-sigma confidence level of detection. The payload system described can be mated with any type of balloon platform and provides a tool for characterizing the vertical distribution of microorganisms in the troposphere and stratosphere. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Evaluation of balloon and satellite water vapour measurements in the Southern tropical and subtropical UTLS during the HIBISCUS campaign

    Science.gov (United States)

    Montoux, N.; Hauchecorne, A.; Pommereau, J.-P.; Lefèvre, F.; Durry, G.; Jones, R. L.; Rozanov, A.; Dhomse, S.; Burrows, J. P.; Morel, B.; Bencherif, H.

    2009-07-01

    Balloon water vapour in situ and remote measurements in the tropical upper troposphere and lower stratosphere (UTLS) obtained during the HIBISCUS campaign around 20° S in Brazil in February-March 2004 using a tunable diode laser (μSDLA), a surface acoustic wave (SAW) and a Vis-NIR solar occultation spectrometer (SAOZ) on a long duration balloon, have been used for evaluating the performances of satellite borne remote water vapour instruments available at the same latitude and measurement period. In the stratosphere, HALOE displays the best precision (2.5%), followed by SAGE II (7%), MIPAS (10%), SAOZ (20-25%) and SCIAMACHY (35%), all of which show approximately constant H2O mixing ratios between 20-25 km. Compared to HALOE of ±10% accuracy between 0.1-100 hPa, SAGE II and SAOZ show insignificant biases, MIPAS is wetter by 10% and SCIAMACHY dryer by 20%. The currently available GOMOS profiles of 25% precision show a positive vertical gradient in error for identified reasons. Compared to these, the water vapour of the Reprobus Chemistry Transport Model, forced at pressures higher than 95 hPa by the ECMWF analyses, is dryer by about 1 ppmv (20%). In the lower stratosphere between 16-20 km, most notable features are the steep degradation of MIPAS precision below 18 km, and the appearance of biases between instruments far larger than their quoted total uncertainty. HALOE and SAGE II (after spectral adjustment for reducing the bias with HALOE at northern mid-latitudes) both show decreases of water vapour with a minimum at the tropopause not seen by other instruments or the model, possibly attributable to an increasing error in the HALOE altitude registration. Between 16-18 km where the water vapour concentration shows little horizontal variability, and where the μSDLA balloon measurements are not perturbed by outgassing, the average mixing ratios reported by the remote sensing instruments are substantially lower than the 4-5 ppmv observed by the μSDLA. Differences

  18. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  19. Evidence for long-lived polar vortex air in the mid-latitude summer stratosphere from in situ laser diode CH4 and H2O measurements

    Directory of Open Access Journals (Sweden)

    G. Durry

    2005-01-01

    Full Text Available A balloon borne diode laser spectrometer was launched in southern France in June 2000 to yield in situ stratospheric CH4 and H2O measurements. In the altitude region ranging from 20km to 25km, striking large spatial structures were observed in the vertical concentration profiles of both species. We suggest these patterns are due to the presence of long-lived remnants of the wintertime polar vortex in the mid-latitude summer stratosphere. To support this interpretation, a high resolution advection model for potential vorticity is used to investigate the evolution of the Arctic vortex after its breakdown phase in spring 2000.

  20. Horizontal maps of echo power in the lower stratosphere using the MU radar

    Directory of Open Access Journals (Sweden)

    M. Hirono

    2004-03-01

    Full Text Available In recent works, zenithal and azimuthal angle variations of echo power measured by VHF Stratosphere-Troposphere (ST radars have been analyzed in detail using different radar multi-beam configurations. It was found that the azimuthal angle corresponding to maximum echo power is closely related to the direction of the horizontal wind shear. These properties indicate that local wind shear affects the tilt of the scatterers. Moreover, horizontal maps of echo power collected using a large set of beams steered pulse-to-pulse up to 40 degrees off zenith revealed that the power distribution pattern in the troposphere is often skewed. In this work, a three-dimensional description of echo power variations up to 24 degrees off zenith is shown for measurements in the lower stratosphere (i.e. up to approximately 20km using a "sequential multi-beam" (SMB configuration. Such a description was not possible above the tropopause with classical multi-beam configurations because of the loss of radar sensitivity due to the limited integration time by the use of a large number of beams. This work attempts to complete previous descriptions of the phenomenon by some observations in the lower stratosphere discussed in association with complementary balloon measurements.

    Key words. Meteorology and atmospheric dynamics (turbulence – Radio Science (remote sensing

  1. Titan Orbiter with Aerorover Mission (TOAM)

    Science.gov (United States)

    Sittler, Edward C.; Cooper, J. F.; Mahaffey, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; TOAM Team

    2006-12-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG 500 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan’s atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  2. Stratospheric sulfuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chichon

    Science.gov (United States)

    Hofmann, D. J.; Rosen, J. M.

    1983-01-01

    The stratospheric sulfuric acid fraction and mass for the 1982 volcanic eruptions of El Chichon are investigated using data from balloon soundings at Laramie (41 deg N) and in southern Texas (27-29 deg N). The total stratospheric mass of these eruptions is estimated to be approximately 8 Tg about 6.5 months after the eruption with possibly as much as 20 Tg in the stratosphere about 45 days after the eruption. Observations of the aerosol in Texas revealed two primary layers, both highly volatile at 150 C. Aerosol in the upper layer at about 25 km was composed of an approximately 80 percent H2SO4 solution while the lower layer at approximately 18 km was composed of a 60-65 percent H2SO4 solution aerosol. It is calculated that an H2SO4 vapor concentration of at least 3 x 10 to the 7th molecules/cu cm is needed to sustain the large droplets in the upper layer. An early bi-modal nature in the size distribution indicates droplet nucleation from the gas phase during the first 3 months, while the similarity of the large particle profiles 2 months apart shows continued particle growth 6.5 months after the explosion.

  3. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    Science.gov (United States)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential

  4. Sudden Stratospheric Warming Compendium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden Stratospheric Warming Compendium (SSWC) data set documents the stratospheric, tropospheric, and surface climate impacts of sudden stratospheric warmings. This...

  5. Mars Solar Balloon Landed Gas Chromatograph Mass Spectrometer

    Science.gov (United States)

    Mahaffy, P.; Harpold, D.; Niemann, H.; Atreya, S.; Gorevan, S.; Israel, G.; Bertaux, J. L.; Jones, J.; Owen, T.; Raulin, F.

    1999-01-01

    A Mars surface lander Gas Chromatograph Mass Spectrometer (GCMS) is described to measure the chemical composition of abundant and trace volatile species and isotope ratios for noble gases and other elements. These measurements are relevant to the study of atmospheric evolution and past climatic conditions. A Micromission plan is under study where a surface package including a miniaturized GCMS would be delivered to the surface by a solar heated hot air balloon based system. The balloon system would be deployed about 8 km above the surface of Mars, wherein it would rapidly fill with Martian atmosphere and be heated quickly by the sun. The combined buoyancy and parachuting effects of the solar balloon result in a surface package impact of about 5 m/sec. After delivery of the package to the surface, the balloon would ascend to about 4 km altitude, with imaging and magnetometry data being taken for the remainder of the daylight hours as the balloon is blown with the Martian winds. Total atmospheric entry mass of this mission is estimated to be approximately 50 kg, and it can fit as an Ariane 5 piggyback payload. The GCMS would obtain samples directly from the atmosphere at the surface and also from gases evolved from solid phase material collected from well below the surface with a Sample Acquisition and Transport Mechanism (SATM). The experiment envisioned in the Mars Micromission described would obtain samples from a much greater depth of up to one meter below the surface, and would search for organic molecules trapped in ancient stratified layers well below the oxidized surface. Insitu instruments on upcoming NASA missions working in concert with remote sensing measurement techniques have the potential to provide a more detailed investigation of mineralogy and the extent of simple volatiles such as CO2 and H2O in surface and subsurface solid phase materials. Within the context of subsequent mission opportunities such as those provided by the Ariane 5 piggyback

  6. A global space-based stratospheric aerosol climatology: 1979-2016

    Science.gov (United States)

    Thomason, Larry W.; Ernest, Nicholas; Millán, Luis; Rieger, Landon; Bourassa, Adam; Vernier, Jean-Paul; Manney, Gloria; Luo, Beiping; Arfeuille, Florian; Peter, Thomas

    2018-03-01

    We describe the construction of a continuous 38-year record of stratospheric aerosol optical properties. The Global Space-based Stratospheric Aerosol Climatology, or GloSSAC, provided the input data to the construction of the Climate Model Intercomparison Project stratospheric aerosol forcing data set (1979-2014) and we have extended it through 2016 following an identical process. GloSSAC focuses on the Stratospheric Aerosol and Gas Experiment (SAGE) series of instruments through mid-2005, and on the Optical Spectrograph and InfraRed Imager System (OSIRIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data thereafter. We also use data from other space instruments and from ground-based, air, and balloon borne instruments to fill in key gaps in the data set. The end result is a global and gap-free data set focused on aerosol extinction coefficient at 525 and 1020 nm and other parameters on an "as available" basis. For the primary data sets, we developed a new method for filling the post-Pinatubo eruption data gap for 1991-1993 based on data from the Cryogenic Limb Array Etalon Spectrometer. In addition, we developed a new method for populating wintertime high latitudes during the SAGE period employing a latitude-equivalent latitude conversion process that greatly improves the depiction of aerosol at high latitudes compared to earlier similar efforts. We report data in the troposphere only when and where it is available. This is primarily during the SAGE II period except for the most enhanced part of the Pinatubo period. It is likely that the upper troposphere during Pinatubo was greatly enhanced over non-volcanic periods and that domain remains substantially under-characterized. We note that aerosol levels during the OSIRIS/CALIPSO period in the lower stratosphere at mid- and high latitudes is routinely higher than what we observed during the SAGE II period. While this period had nearly continuous low-level volcanic activity, it

  7. Energetics of small scale turbulence in the lower stratosphere from high resolution radar measurements

    Directory of Open Access Journals (Sweden)

    J. Dole

    Full Text Available Very high resolution radar measurements were performed in the troposphere and lower stratosphere by means of the PROUST radar. The PROUST radar operates in the UHF band (961 MHz and is located in St. Santin, France (44°39’ N, 2°12’ E. A field campaign involving high resolution balloon measurements and the PROUST radar was conducted during April 1998. Under the classical hypothesis that refractive index inhomogeneities at half radar wavelength lie within the inertial subrange, assumed to be isotropic, kinetic energy and temperature variance dissipation rates were estimated independently in the lower stratosphere. The dissipation rate of temperature variance is proportional to the dissipation rate of available potential energy. We therefore estimate the ratio of dissipation rates of potential to kinetic energy. This ratio is a key parameter of atmospheric turbulence which, in locally homogeneous and stationary conditions, is simply related to the flux Richardson number, Rf .

    Key words. Meteorology and atmospheric dynamics (turbulence – Radio science (remote sensing

  8. Time-dependent strains and stresses in a pumpkin balloon

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  9. Development of an Interferometric Phased Array Trigger for Balloon-Borne Detection of the Highest Energy Cosmic Particles

    Science.gov (United States)

    Vieregg, Abigail

    interferometric phased array trigger for these impulsive radio detectors, a new type of trigger that will improve sensitivity substantially and expedite the discovery of the highest energy particles in our universe. We have developed an 8- channel interferometric trigger board for ground-based applications that will be deployed in December 2017 with the ground-based Askaryan Radio Array (ARA) experiment at the South Pole. Preliminary Monte Carlo simulations indicate that the cosmogenic neutrino event rate will go up by a factor of 3 with the new trigger. The true power of the interferometric trigger is in scaling to large numbers of channels, and the discovery space that is only available from a balloon platform at the highest energies is extremely appealing. We will build on and extend the NASA investment in the ANITA Long Duration Balloon (LDB) mission and the many other complementary particle astrophysics LDB missions by developing the electronics required to bring a large-scale radio interferometric trigger to a balloon platform, extending the scientific reach of any future LDB or Super Pressure Balloon (SPB) mission for radio detection of the highest energy cosmic particles. We will develop an interferometric trigger system that is scalable to O(100) channels and suitable for use on a balloon platform. Under this proposal, we will: 1) Design and fabricate interferometric trigger hardware for balloon-borne cosmic particle detectors that is scalable to large numbers of channels O(100) by reducing the power consumption per channel, increasing the number of channels per board, and developing high-speed communication capability between boards. 2) Perform a trade study and inform design decisions for future balloon missions by further developing our Monte Carlo simulation and adapting it to balloon geometries.

  10. Potential of balloon payloads for in flight validation of direct and nulling interferometry concepts

    Science.gov (United States)

    Demangeon, Olivier; Ollivier, Marc; Le Duigou, Jean-Michel; Cassaing, Frédéric; Coudé du Foresto, Vincent; Mourard, Denis; Kern, Pierre; Lam Trong, Tien; Evrard, Jean; Absil, Olivier; Defrere, Denis; Lopez, Bruno

    2010-07-01

    While the question of low cost / low science precursors is raised to validate the concepts of direct and nulling interferometry space missions, balloon payloads offer a real opportunity thanks to their relatively low cost and reduced development plan. Taking into account the flight capabilities of various balloon types, we propose in this paper, several concepts of payloads associated to their flight plan. We also discuss the pros and cons of each concepts in terms of technological and science demonstration power.

  11. Balance of the tropospheric ozone and its relation to stratospheric intrusions indicated by cosmogenic radionuclides. Technical progress report, 1 November 1978-30 June 1979

    International Nuclear Information System (INIS)

    Reiter, R.; Kanter, H.J.; Poetzl, K.; Sladkovic, R.; Jaeger, H.; Mueller, H.

    The balance of the tropospheric ozone as a function of atmospheric pollutants, tropospheric transport, and stratospheric intrusions is under active investigation. Continuous recordings of the ozone concentration at three levels (3000 m, 1800 m, and 700 m a.s.l.) and of the cosmogenic radionuclides Be 7 , P 32 , P 33 , and the CO 2 are available and used for subject purposes. Results of a statistical evaluation concerning the frequency of high concentrations (> 70 ppB) of the tropospheric ozone are presented and possible sources discussed. Observations of changes in the fine structure of the ozone profile in the lower stratosphere after solar events are shown by balloon-borne ozone soundings up to 35 km altitude and discussed in connection with parameters of the stratospheric-tropospheric exchange. Monitoring of the stratospheric aerosol layer by lidar was continued. The accuracy of these measurements was considerably enhanced by significant system improvements. Intercomparisons with the results of nearby Dobson stations allowed conclusions to be drawn on the suitability of a filter spectrophotometer for the determination of the total ozone. Solar-terrestrial relationships were investigated and are discussed

  12. Introduction

    Science.gov (United States)

    Gaskin, J. A.; Smith, I. S.; Jones, W. V.

    In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science). Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.

  13. Effects of Stratospheric Conditions on the Viability, Metabolism and Proteome of Prokaryotic Cells

    Directory of Open Access Journals (Sweden)

    Dagmar Chudobova

    2015-08-01

    Full Text Available The application of ultraviolet (UV radiation to inhibit bacterial growth is based on the principle that the exposure of DNA to UV radiation results in the formation of cytotoxic lesions, leading to inactivation of microorganisms. Herein, we present the impacts of UV radiation on bacterial cultures’ properties from the biological, biochemical and molecular biological perspective. For experiments, commercial bacterial cultures (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Escherichia coli and Salmonella typhimurium and isolates from patients with bacterial infections (Proteus mirabilis and Pseudomonas aeruginosa were employed. The above-mentioned strains were exposed to UV using a laboratory source and to stratospheric UV using a 3D printed probe carried by a stratospheric balloon. The length of flight was approximately two hours, and the probe was enriched by sensors for the external environment (temperature, pressure and relative humidity. After the landing, bacterial cultures were cultivated immediately. Experimental results showed a significant effect of UV radiation (both laboratory UV and UV from the stratosphere on the growth, reproduction, behavior and structure of bacterial cultures. In all parts of the experiment, UV from the stratosphere showed stronger effects when compared to the effects of laboratory UV. The growth of bacteria was inhibited by more than 50% in all cases; moreover, in the case of P. aeruginosa, the growth was even totally inhibited. Due to the effect of UV radiation, an increased susceptibility of bacterial strains to environmental influences was also observed. By using commercial tests for biochemical markers of Gram-positive and Gram-negative strains, significant disparities in exposed and non-exposed strains were found. Protein patterns obtained using MALDI-TOF mass spectrometry revealed that UV exposure is able to affect the proteins’ expression, leading to their downregulation, observed

  14. Airborne Arctic Stratospheric Expedition II: An overview

    Science.gov (United States)

    Anderson, James G.; Toon, Owen B.

    1993-11-01

    The sudden onset of ozone depletion in the antarctic vortex set a precedent for both the time scale and the severity of global change. The Airborne Antarctic Ozone Experiment (AAOE), staged from Punta Arenas, Chile, in 1987, established that CFCs, halons, and methyl bromide, the dominant sources of chlorine and bromine radicals in the stratosphere, control the rate of ozone destruction over the Antarctic; that the vortex is depleted in reactive nitrogen and water vapor; and that diabatic cooling during the Antarctic winter leads to subsidence within the vortex core, importing air from higher altitudes and lower latitudes. This last conclusion is based on observed dramatic distortion in the tracer fields, most notably N2O.In 1989, the first Airborne Arctic Stratospheric Expedition (AASE-I), staged from Stavanger, Norway, and using the same aircraft employed for AAOE (the NASA ER-2 and the NASA DC-8), discovered that while NOx and to some degree NOy were perturbed within the arctic vortex, there was little evidence for desiccation. Under these (in contrast to the antarctic) marginally perturbed conditions, however, ClO was found to be dramatically enhanced such that a large fraction of the available (inorganic) chlorine resided in the form of ClO and its dimer ClOOCl.This leaves two abiding issues for the northern hemisphere and the mission of the second Airborne Arctic Stratospheric Expedition (AASE-II): (1) Will significant ozone erosion occur within the arctic vortex in the next ten years as chlorine loading in the stratosphere exceeds four parts per billion by volume? (2) Which mechanisms are responsible for the observed ozone erosion poleward of 30°N in the winter/spring northern hemisphere reported in satellite observations?

  15. GHOST balloons around Antarctica

    Science.gov (United States)

    Stearns, Charles R.

    1988-01-01

    The GHOST balloon position as a function of time data shows that the atmospheric circulation around the Antarctic Continent at the 100 mb and 200 mb levels is complex. The GHOST balloons supposedly follow the horizontal trajectory of the air at the balloon level. The position of GHOST balloon 98Q for a three month period in 1968 is shown. The balloon moved to within 2 deg of the South Pole on 1 October 1968 and then by 9 December 1968 was 35 deg from the South Pole and close to its position on 1 September 1968. The balloon generally moved from west to east but on two occasions moved in the opposite direction for a few days. The latitude of GHOST balloons 98Q and 149Z which was at 200 mb is given. Both balloons tended to get closer to the South Pole in September and October. Other GHOST balloons at the same pressure and time period may not indicate similar behavior.

  16. A global space-based stratospheric aerosol climatology: 1979–2016

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2018-03-01

    Full Text Available We describe the construction of a continuous 38-year record of stratospheric aerosol optical properties. The Global Space-based Stratospheric Aerosol Climatology, or GloSSAC, provided the input data to the construction of the Climate Model Intercomparison Project stratospheric aerosol forcing data set (1979–2014 and we have extended it through 2016 following an identical process. GloSSAC focuses on the Stratospheric Aerosol and Gas Experiment (SAGE series of instruments through mid-2005, and on the Optical Spectrograph and InfraRed Imager System (OSIRIS and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO data thereafter. We also use data from other space instruments and from ground-based, air, and balloon borne instruments to fill in key gaps in the data set. The end result is a global and gap-free data set focused on aerosol extinction coefficient at 525 and 1020 nm and other parameters on an "as available" basis. For the primary data sets, we developed a new method for filling the post-Pinatubo eruption data gap for 1991–1993 based on data from the Cryogenic Limb Array Etalon Spectrometer. In addition, we developed a new method for populating wintertime high latitudes during the SAGE period employing a latitude-equivalent latitude conversion process that greatly improves the depiction of aerosol at high latitudes compared to earlier similar efforts. We report data in the troposphere only when and where it is available. This is primarily during the SAGE II period except for the most enhanced part of the Pinatubo period. It is likely that the upper troposphere during Pinatubo was greatly enhanced over non-volcanic periods and that domain remains substantially under-characterized. We note that aerosol levels during the OSIRIS/CALIPSO period in the lower stratosphere at mid- and high latitudes is routinely higher than what we observed during the SAGE II period. While this period had nearly continuous low

  17. Observing Trace Gases Of The Arctic And Subarctic Stratosphere By TELIS

    Science.gov (United States)

    Xu, Jian; Schreier, Franz; Doicu, Adrian; Vogt, Peter; Birk, Manfred; Wagner, Georg; Trautmann, Thomas

    2013-12-01

    The Terahertz and submillimeter Limb Sounder (TELIS) is a balloon-borne cryogenic heterodyne spectrometer developed by a consortium of European institutes, which was mounted together with the Michelson Interferometer for Passive Atmospheric Sounding - Balloon (MIPAS- B) and the mini- Differential Optical Absorption Spectroscopy (mini-DOAS) instruments on a stratospheric gondola. The TELIS instrument is designed to monitor the vertical distribution of stratospheric state parameters associated with ozone destruction and climate change in Arctic and subarctic areas. The broad spectral coverage of TELIS is achieved by utilizing three frequency channels: a tunable 1.8THz channel based on a solid state local oscillator and a hot electron bolometer as mixer, a 480-650GHz channel with the Superconducting Integrated Receiver (SIR) technology, and a highly compact 500 GHz channel developed by the German Aerospace Center (DLR), the Netherlands Institute for Space Research (SRON), and the Rutherford Apple- ton Laboratory (RAL), respectively. Furthermore, an ex- tended spectral range is observed by the combination of TELIS and MIPAS-B, which can be employed for cross validation of several gas concentrations. Between 2009 and 2011 three successful scientific flights have been launched in Kiruna, Sweden and all relevant atmospheric gas species were seen by TELIS over an altitude range of 10-32.5 km. For estimation of concentration profiles from TELIS measurements, a constrained nonlinear least squares fitting framework along with var- ious Tikhonov-type regularization methods has been developed. In this work we present recent retrieval results from latest calibrated spectra during the 2010 flight. Emphasis is placed on ozone (O3) and hydrogen chloride (HCl), and error issues pertaining to the main instrumental uncertainty terms including nonlinearity in the calibration procedure, sideband ratio and pointing offset are investigated. The retrieved profiles are validated against

  18. On-line in-situ measurements in the boundary layer: Manned hydrogen balloons as quasi Lagrange platforms

    Energy Technology Data Exchange (ETDEWEB)

    Rappengluck, B.; Fabian, P. [Ludwig-Maximilian Univ., Dept. of Bioclimatology and Emission Research, Munich (Germany); Euskirchen, J. [Inst. for Scientific Balloonflight e.V., Waidhofen (Germany)

    1999-11-01

    In-situ measurements of atmospheric trace constituents such as nitrogen dioxide, ozone, peroxy acetyl nitrate (PAN), and non-methane hydrocarbon compounds (NMHC) are essential parameters for understanding photochemical processes. This paper discusses some of the lessons learned and some of the results of a field measurement project dubbed BERLIOZ (for Berlin Ozone), carried out in July/August 1998 in the Greater Berlin Area to investigate several key questions concerning the evolution of photochemical smog within an urban plume, and the role of advection and turbulence for oxidants. A comprehensive network of ground-based measurement sites, vertical sounding techniques such as tethered balloons and laser-based radar, mobile stations for profile measurements, five aircraft and one manned free-balloon were used in the project. BERLIOZ was the first major atmospheric research project to use a hydrogen balloon platform for quasi-Lagrangian measurements. It confirmed the balloon`s suitability as a tool for better understanding of large area information gathered by remote sensing missions. 5 refs., 6 figs.

  19. Turbulent vertical diffusivity in the sub-tropical stratosphere

    Directory of Open Access Journals (Sweden)

    I. Pisso

    2008-02-01

    Full Text Available Vertical (cross-isentropic mixing is produced by small-scale turbulent processes which are still poorly understood and paramaterized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Centre for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS. We focus on a case study in subtropical latitudes using data from HIBISCUS campaign. An upper bound on the vertical diffusivity is found in this case study to be of the order of 0.5 m2 s−1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.

  20. The High Altitude Sampling Program: Radioactivity in the stratosphere: Final report

    International Nuclear Information System (INIS)

    Leifer, R.; Juzdan, Z.R.

    1986-12-01

    Radioactivity data are presented from Project Airstream (aircraft) for the year 1983 and for Project Ashcan (balloon) for the years 1982 and 1984. Due to budgetary constraints both Projects Airstream and Ashcan have been terminated. This will be the final report containing radioactivity data collected during projects airstream and ashcan. Included are gross gamma, gamma spectral and radiochemical analyses of filter samples. Quality control samples submitted along with the air filter samples were analyzed and the results are presented. Low activity on many of the filters precludes the estimation of the stratospheric inventories of /sup 239,240/Pu and 90 Sr. Based on data with count errors 90 Sr and /sup 239,240/Pu concentration for November 1983 was 0.2 +- 0.1 and 0.009 +- 0.006 Bq/1000 scm, respectively

  1. DUSTER: collection of meteoric CaO and carbon smoke particles in the upper stratosphere .

    Science.gov (United States)

    Della Corte, V.; Rietmeijer, F. J. M.; Rotundi, A.; Ferrari, M.; Palumbo, P.

    Nanometer- to micrometer-size particles present in the upper stratosphere are a mixture of terrestrial and extra-terrestrial origins. They can be extraterrestrial particles condensed after meteor ablation. Meteoric dust in bolides is occasionally deposited into the lower stratosphere around 20 km altitude. Nanometer CaO and pure carbon smoke particles were collected at 38 km altitude in the upper stratosphere in the Arctic during June 2008 using DUSTER (Dust in the Upper Stratosphere Tracking Experiment and Retrieval), a balloon-borne instrument for the non-destructive collection of solid particles between 200 nm to 40 microns. We report the collection of micron sized CaCO_3 (calcite) grains. Their morphologies show evidence of melting and condensation after vaporization suggest at temperatures of approximately 3500 K. The formation environment of the collected grains was probably a dense dust cloud formed by the disintegration of a carbonaceous meteoroid during deceleration in the Earth� atmosphere. For the first time, DUSTER collected meteor ablation products that were presumably associated with the disintegration of a bolide crossing the Earth's atmosphere. The collected mostly CaO and pure carbon nanoparticles from the debris cloud of a fireball, included: 1) intact fragments; 2) quenched melted grains; and 3) vapor phase condensation products. The DUSTER project was funded by the Italian Space Agency (ASI), PRIN2008/MIUR (Ministero dell'Istruzione dell'Universitá e della Ricerca), PNRA 2013(Piano Nazionale Ricerca Antartide). CNES graciously provided this flight opportunity. We thank E. Zona and S. Inarta at the Laboratorio di Fisica Cosmica INAF, Osservatorio Astronomico di Capodimonte-Universitá di Napoli Parthenope. F.J.M.R. was supported by grant NNX07AI39G from the NASA Cosmochemistry Program. We thank three anonymous reviewers who assisted us in introducing our new instrument.

  2. Energy from solar balloons

    Energy Technology Data Exchange (ETDEWEB)

    Grena, Roberto [C. R. Casaccia, via Anguillarese 301, 00123 Roma (Italy)

    2010-04-15

    Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)

  3. The Rocket Balloon (Rocketball): Applications to Science, Technology, and Education

    Science.gov (United States)

    Esper, Jaime

    2009-01-01

    Originally envisioned to study upper atmospheric phenomena, the Rocket Balloon system (or Rocketball for short) has utility in a range of applications, including sprite detection and in-situ measurements, near-space measurements and calibration correlation with orbital assets, hurricane observation and characterization, technology testing and validation, ground observation, and education. A salient feature includes the need to reach space and near-space within a critical time-frame and in adverse local meteorological conditions. It can also provide for the execution of technology validation and operational demonstrations at a fraction of the cost of a space flight. In particular, planetary entry probe proof-of-concepts can be examined. A typical Rocketball operational scenario consists of a sounding rocket launch and subsequent deployment of a balloon above a desired location. An obvious advantage of this combination is the additional mission 'hang-time' rendered by the balloon once the sounding rocket flight is completed. The system leverages current and emergent technologies at the NASA Goddard Space Flight Center and other organizations.

  4. A fiery birth of aluminosilica analogs of refractory dust in the upper stratosphere

    Science.gov (United States)

    Rietmeijer, F. J. M.; Ferrari, M.; Della Corte, V.; Rotundi, A.; Palumbo, P.; De Angelis, S.; Galluzzi, V.

    2017-11-01

    Following a successful dust collection flight in the upper stratosphere our DUSTER (Dust in the Upper Stratosphere Tracking Experiment and Retrieval) made a safe remote landing at its assigned location on Baffin Island during early June 2009. When the balloon payload that included DUSTER was retrieved it was found part of the payload had experienced a lithium-sparked fire while the payload was being dragged across the landing site. In this process the housing of DUSTER had developed a pin-sized hole that allowed smoke of the fire to enter the collector. Numerous smoke particles were found covering both the DUSTER collection and blank collector surfaces an indication that our experiment to collect upper stratospheric dust had failed! Both collector surfaces were covered by numerous carbon smoke and amorphous, aluminosilica nanoparticles. The compositions of vast majority of these aluminosilica nanoparticles, Al2O3 = 49 wt% and SiO2 = 51 wt%, was both surprising and unique because it was an exact match of the Deep Metastable Eutectic (DME) nanoparticles found in vapor phase condensation experiments. These vapor phase condensation experiments were conducted to explore the formation of extraterrestrial dust particles. We are not claiming an extraterrestrial origin for these particles from this DUSTER experiment. We submit that given the appropriate conditions of high temperature alumina and silica vapors and rapid quenching in a contained natural environment, DME aluminosilica nanoparticles will likely condense. This serendipitous result can be used to explore nanoparticle formation inside incandescent clouds associated with bolides and fireballs.

  5. Measurements of atmospheric and gamma rays-balloon experiments at subantartic region

    International Nuclear Information System (INIS)

    Jayanthi, U.B.; Correa, R.V.; Blanco, F.G.

    1986-01-01

    The results of two stratospheric balloon experiments conducted to measure the atmospheric X and gamma rays are presented. These experiments, conducted at Comandante Ferraz base in subantarctic region, have provided the spectrum of ground radioactivity in gamma rays (0.2 to 2.9 MeV) and atmospheric X-ray spectra at different altitudes. We specifically chose to discuss the observed ceiling spectrum of X-rays in the 28 to 180KeV region observed at 7.0 g. cm -2 . We have utilized the data of other experiments with different telescope geometries, to evaluate the builup effects due to cosmic ray secondaries in atmosphere. This behaviour, previoulsy studied for atmospheric gamma rays, permitted to compare the up/down flux rations to explain the observed atmospheric X-ray spectrum. (Author) [pt

  6. Stratospheric Aerosol Measurements

    Science.gov (United States)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  7. Air mass origins and troposphere-to-stratosphere exchange associated with mid-latitude cyclogenesis and tropopause folding inferred from Be-7 measurements

    Science.gov (United States)

    Kritz, Mark A.; Rosner, Stefan W.; Danielsen, Edwin F.; Selkirk, Henry B.

    1991-01-01

    The 1984 extratropical mission of NASA's Stratosphere-Troposphere Exchange Project (STEP) studied cross-jet transport in regions of cyclogenesis and tropopause folding. Correlations of Be-7, ozone, water vapor, and potential vorticity measured on a NASA U-2 research aircraft flying in high shear regions above the jet core are indicative of mixing between the cyclonic and the anticyclonic sides of the jet and are consistent with the hypothesis that small-scale entrainments of upper tropospheric air into the lower stratosphere during cyclogenesis are important in maintaining the vertical gradients of Be-7, ozone, water vapor and other trace constituents in the lower few kilometers of the midlatitude stratosphere. Correlations between Be-7, and ozone suggest a lower tropical stratospheric origin for the ozone-poor lamina observed above the jet core.

  8. Off-The-Shelf and Free Software Technologies for Spacecraft Control & Command: An Example, Balloon-Borne Stabilised Gondolas

    National Research Council Canada - National Science Library

    Laurens, Andre

    2005-01-01

    Balloons are low-cost, short development time space vehicles for science missions and technology in-flight experiments that need out-of-atmosphere or in-situ measurements, thus being complementary to the satellite...

  9. Investigation of Tropospheric Pollutants and Stratospheric Ozone Using Infrared Fourier Transform Spectrometers from the Ground, Space and Balloons

    Science.gov (United States)

    Griffin, Debora

    This thesis focusses on transport and composition of boreal fire plumes, evolution of trace gases in the Arctic, multi-year comparisons of ground-based and satellite-borne instruments, and depletion of Arctic ozone. Two similar Fourier Transform Spectrometer (FTS) instruments were utilized: (1) the ground-based and balloon-borne Portable Atmospheric Research Interferometric Spectrometer for the InfraRed (PARIS-IR) and (2) the space-borne Atmospheric Chemistry Experiment (ACE) FTS. Additional datasets, from other satellite and ground-based instruments, as well as Chemical Transport Models (CTMs) complemented the analysis. Transport and composition of boreal fire plumes were analysed with PARIS-IR measurements taken in Halifax, Nova Scotia. This study analysed the retrievals of different FTSs and investigated transport and composition of a smoke plume utilizing various models. The CO retrievals of three different FTSs (PARIS-IR, DA8, and IASI) were consistent and detected a smoke plume between 19 and 21 July 2011. These measurements were similar to the concentrations computed by GEOS-Chem ( 3% for CO and 8% for C2H6). Multi-year comparisons (2006-2013) of ground-based and satellite-borne FTSs near Eureka, Nunavut were carried out utilizing measurements from PARIS-IR, the Bruker 125HR and ACEFTS. The mean and interannual differences between the datasets were investigated for eight species (ozone, HCl, HNO3, HF, CH4, N2O, CO, and C2H6) and good agreement between these instruments was found. Furthermore, the evolution of the eight gases was investigated and increasing ozone, HCl, HF, CH4 and C2H6 were found. Springtime Arctic ozone depletion was studied, where six different methods to estimate ozone depletion were evaluated using the ACE-FTS dataset. It was shown that CH4, N2O, HF, and CCl2F2 are suitable tracers to estimate the ozone loss. The loss estimates (mixing ratio and partial column) are consistent for all six methods. Finally, PARIS-IR was prepared for a

  10. Gamma radiation measurement, through a spark chamber put aboard of a stratospheric balloon

    International Nuclear Information System (INIS)

    Santo, C.M.E.; Rao, K.R.

    1982-06-01

    For determining the diffuse component of gamma rays in the 15 to 75 Mev range arriving from near the galactic center, a digitized spark chamber was launched aboard two balloons from Resende, Brazil, on 19 November and 3 December 1975. In each flight the detector reached an altitude of 2,2 g/cm 2 . Based on these data, a diffuse gamma ray flux 6,0x10 - 5 , 2,0x10 - 5 , 4,6x10 - 6 and 1,3x10 - 6 photons (cm 2 .s.sterad.Mev) at energies of 21, 36, 52, 67 Mev respectively was obtained. These values give a power law spectrum with spectral index equal to -3,3. The dependence of this radiation with the galactic latitude and longitude in the interval -5 0 0 and 325 0 0 was also obtained. Finally, our results were compared with other experiments' results. (Author) [pt

  11. Characterizing the Asian Tropopause Aerosol Layer using in situ balloon measurements: the BATAL campaigns of 2014-2017

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J. P.; Deshler, T.; Pandit, A. K.; Ratnam, M. V.; Gadhavi, H. S.; Liu, H.; Natarajan, M.; Jayaraman, A.; Kumar, S.; Singh, A. K.; Stenchikov, G. L.; Wienhold, F.; Vignelles, D.; Bedka, K. M.; Avery, M. A.

    2017-12-01

    We present in situ balloon observations of the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with Asian Summer Monsoon (ASM). The ATAL was first revealed by CALIPSO satellite data, and has been linked with deep convection of boundary layer pollution into the UTLS. The ATAL has potential implications for regional cloud properties, radiative transfer, and chemical processes in the UTLS. The "Balloon measurements of the Asian Tropopause Aerosol Layer (BATAL)" field campaigns to India and Saudi Arabia in were designed to characterize the physical and optical properties of the ATAL, to explore its composition, and its relationship with clouds in the UTLS. We launched 55 balloon flights from 4 locations, in summers 2014-2016. We return to India to make more balloon flights in summer 2017. Balloon payloads range from 500g to 50 kg, making measurements of meteorological parameters, ozone, water vapor, aerosol optical properties, concentration, volatility, and composition in the UTLS region. This project represents the most important effort to date to study UTLS aerosols during the ASM, given few in situ observations. We complement the in situ data presented with 3-d chemical transport simulations, designed to further explore the ATAL's chemical composition, the sensitivity of such to scavenging in parameterized deep convection, and the relative contribution of regional vs. rest-of-the-world pollution sources. The BATAL project has been a successful partnership between institutes in the US, India, Saudi Arabia, and Europe, and continues for the next 3-4 years, sponsored by the NASA Upper Atmosphere Research program. This partnership may provide a foundation for potential high-altitude airborne measurement studies during the ASM in the future.

  12. Clefting in pumpkin balloons

    Science.gov (United States)

    Baginski, F.; Schur, W.

    NASA's effort to develop a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, focuses on a pumpkin shape super-pressure design. It has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired stable state instead. Hoop stress considerations in the pumpkin design leads to choosing the lowest possible bulge radius, while robust deployment is favored by a large bulge radius. Some qualitative understanding of design aspects on undesired equilibria in pumpkin balloons has been obtained via small-scale balloon testing. Poorly deploying balloons have clefts, but most gores away from the cleft deploy uniformly. In this paper, we present models for pumpkin balloons with clefts. Long term success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and means for quantitative assessment of measures that prevent their occurrence. This paper attempts to determine numerical thresholds of design parameters that distinguish between properly deploying designs and improperly deploying designs by analytically investigating designs in the vicinity of criticality. Design elements which may trigger the onset undesired equilibria and remedial measures that ensure deployment are discussed.

  13. Implications of Wind-Assisted Aerial Navigation for Titan Mission Planning and Science Exploration

    Science.gov (United States)

    Elfes, A.; Reh, K.; Beauchamp, P.; Fathpour, N.; Blackmore, L.; Newman, C.; Kuwata, Y.; Wolf, M.; Assad, C.

    2010-01-01

    The recent Titan Saturn System Mission (TSSM) proposal incorporates a montgolfiere (hot air balloon) as part of its architecture. Standard montgolfiere balloons generate lift through heating of the atmospheric gases inside the envelope, and use a vent valve for altitude control. A Titan aerobot (robotic aerial vehicle) would have to use radioisotope thermoelectric generators (RTGs) for electric power, and the excess heat generated can be used to provide thermal lift for a montgolfiere. A hybrid montgolfiere design could have propellers mounted on the gondola to generate horizontal thrust; in spite of the unfavorable aerodynamic drag caused by the shape of the balloon, a limited amount of lateral controllability could be achieved. In planning an aerial mission at Titan, it is extremely important to assess how the moon-wide wind field can be used to extend the navigation capabilities of an aerobot and thereby enhance the scientific return of the mission. In this paper we explore what guidance, navigation and control capabilities can be achieved by a vehicle that uses the Titan wind field. The control planning approach is based on passive wind field riding. The aerobot would use vertical control to select wind layers that would lead it towards a predefined science target, adding horizontal propulsion if available. The work presented in this paper is based on aerodynamic models that characterize balloon performance at Titan, and on TitanWRF (Weather Research and Forecasting), a model that incorporates heat convection, circulation, radiation, Titan haze properties, Saturn's tidal forcing, and other planetary phenomena. Our results show that a simple unpropelled montgolfiere without horizontal actuation will be able to reach a broad array of science targets within the constraints of the wind field. The study also indicates that even a small amount of horizontal thrust allows the balloon to reach any area of interest on Titan, and to do so in a fraction of the time needed

  14. Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder.

    Science.gov (United States)

    Hurst, Dale F; Read, William G; Vömel, Holger; Selkirk, Henry B; Rosenlof, Karen H; Davis, Sean M; Hall, Emrys G; Jordan, Allen F; Oltmans, Samuel J

    2016-09-08

    Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites - Boulder, Colorado (40.0° N); Hilo, Hawaii (19.7° N); and Lauder, New Zealand (45.0° S) - from August 2004 through December 2012 not only demonstrated agreement better than 1% between 68 and 26 hPa but also exposed statistically significant biases of 2 to 10% at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FP-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites - Lindenberg, Germany (52.2° N), and San José, Costa Rica (10.0° N) - that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year -1 (0.6 to 1.5% year -1 ) from ~2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980-2010) average growth rate of stratospheric water vapor (~ 1% year -1 ) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.

  15. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    Science.gov (United States)

    Li, F.; Newman, P. A.; Pawson, S.; Perlwitz, J.

    2017-12-01

    The strength of the stratospheric Brewer-Dobson circulation (BDC) in a changing climate has been extensively studied, but the relative importance of greenhouse gas (GHG) increases and stratospheric ozone depletion in driving the BDC changes remains uncertain. This study separates the impacts of GHG and stratospheric ozone forcings on stratospheric mean age of air in the 1960-2010 period using the Goddard Earth Observing System Model (GEOS) Chemistry-Climate Model (CCM). The experiment compares a set of controlled simulations using a coupled atmosphere-ocean version of the GEOS CCM, in which either GHGs, or stratospheric ozone, or both factors evolve over time. The model results show that GHGs and stratospheric ozone have about equal contributions to the simulated mean age decrease. It is also found that GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: 1) a seasonal delay in the Antarctic polar vortex breakup, that inhibits young mid-latitude air from mixing with the older air inside the vortex; and 2) enhanced Antarctic downwelling, that brings older air from middle and upper stratosphere into the lower stratosphere.

  16. Gravitational separation of major atmospheric components observed in the stratosphere over Syowa Station, Antarctica, Kiruna, Sweden and Sanriku, Japan.

    Directory of Open Access Journals (Sweden)

    Shigeyuki Ishidoya

    2010-12-01

    Full Text Available To investigate the gravitational separation of atmospheric components in the stratosphere, air samples collected using an aircraft during the Arctic Airborne Measurement Program 2002 (AAMP02 were analyzed for the O_2 N_2 ratios (δ(O_2 N_2, δ^N of N_2, δ^O of O_2 and Ar N_2 ratio (δ(Ar N_2. The relationship between observed stratospheric δ^N of N_2, δ^O of O_2 and δ(Ar N_2 over the Svalbard Islands and Barrow showed mass-dependent fractionation of atmospheric components in the stratosphere, which suggested that gravitational separation could be observable in the lowermost stratosphere inside the polar vortex. By examining the rates of change in δ(O_2 Nv and δ^C of CO_2 relative to the CO_2 concentration, such observed correlations were bound to be mainly attributable to upward propagation of their seasonal cycles produced in the troposphere and height-dependent air age as well as gravitational separation in the stratosphere. Air samples collected over Syowa Station, Antarctica, Kiruna, Sweden and Sanriku, Japan using balloon-borne cryogenic air samplers were analyzed for δ^N of Nv and δ^O of O_2. Strength of the gravitational separation was a function of latitude, showing the largest separation inside the polar vortex over Kiruna. It is suggested that information on increase of gravitational separation with height is useful in understanding the vertical transport of air masses in the stratosphere. By comparing the gravitational separations, mean age of air and N_2O concentration at two height intervals with N_2O concentrations > 125 ppb and < 45 ppb, the effect of descending air was found to be more significant over Kiruna than over Syowa Station and Sanriku. The variation in the gravitational separation with height is found to be weaker in the region with N_2O concentrations between 45 and 125 ppb than in other regions, which might suggest that vertical mixing of air occurred in this region.

  17. Low Cost Balloon programme of Indian Centre for Space Physics

    Science.gov (United States)

    Chakrabarti, Sandip Kumar

    2016-07-01

    Indian Centre for Space Physics has launched 89 Missions to near space using single or multiple weather balloons or very light plastic balloons. Basic goal was to capitalize miniaturization of equipments in modern ages. Our typical payload of less than 4kg weight consists of GPS, video camera, cosmic ray detectors, Attitude measurement unit, sunsensor and most importantly a 50-100sqcm X-ray/Gamma-ray detector (usually a scintillator type). The main purpose of the latter is to study spectra of secondary cosmic ray spectra (till our ceiling altitude of 36-42km) over the years and their seasonal variation or variation with solar cycle. We also study solar X-ray spectra, especially of solar flares. We have detected a Gamma Ray Burst (GRB) and pulsars. Our observation of black hole candidates did not yield satisfactory result yet mainly because of poor collimation (~ 10 deg x 10 deg) by lead collimator which introduces strong background also. Our effort with multiple balloon flights enabled us to have long duration flights. We believe that our procedure is very futuristic and yet at an affordable cost.

  18. Balloon sinuplasty

    OpenAIRE

    Ahmad, Zahoor

    2010-01-01

    Balloon sinuplasty is a technique in endoscopic sinus surgery that involves minimally invasive procedures to dilate the obstructed or stenosed anatomical sinus pathways. Procedure is derived from the well-recognized techinique of angioplasty. This article highlights the procedural methods with review of literature and my personal experience in balloon sinupalsty.

  19. How stratospheric are deep stratospheric intrusions? LUAMI 2008

    Directory of Open Access Journals (Sweden)

    T. Trickl

    2016-07-01

    Full Text Available A large-scale comparison of water-vapour vertical-sounding instruments took place over central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison. The measurements were carried out at four observational sites: Payerne (Switzerland, Bilthoven (the Netherlands, Lindenberg (north-eastern Germany, and the Zugspitze mountain (Garmisch-Partenkichen, German Alps, and by an airborne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with a minimum mixing ratios of 0 to 35 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg. The dryness hardens the findings of a preceding study (“Part 1”, Trickl et al., 2014 that, e.g., 73 % of deep intrusions reaching the German Alps and travelling 6 days or less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the source region were transferred to central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow from the stratosphere just above the dynamical tropopause, for the first time confirming the conclusions in “Part 1” from the Zugspitze CO observations. The

  20. Status of the NASA Balloon Program

    Science.gov (United States)

    Needleman, H. C.; Nock, R. S.; Bawcom, D. W.

    1993-02-01

    In the early 1980's the U.S. National Aeronautics and Space Administration (NASA) Balloon Program was faced with a problem of catastrophic balloon failures. In 1986 a balloon recovery program was initiated. This program included qualification of new balloon films, and investigations into materials, processing, structures and performance of balloons. This recovery program has been very successful. To date, more than 100 balloons manufactured of newly developed films have been flown with unprecedented success. There has been much progress made across the spectrum of balloon related disciplines. A new design philosophy has been developed and is being used for all NASA balloons. An updated balloon reliability and quality assurance program is in effect. The long duration balloon development project has been initiated with the first flight test having been conducted in December 1989 from Antarctica. A comprehensive research and development (R&D) effort has been initiated and is progressing well. The progress, status and future plans for these and other aspects of the NASA program, along with a description of the comprehensive balloon R&D activity, will be presented.

  1. Progressing science, technology, engineering, and math (STEM) education in North Dakota with near-space ballooning

    Science.gov (United States)

    Saad, Marissa Elizabeth

    The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the

  2. Modular and Reusable Power System Design for the BRRISON Balloon Telescope

    Science.gov (United States)

    Truesdale, Nicholas A.

    High altitude balloons are emerging as low-cost alternatives to orbital satellites in the field of telescopic observation. The near-space environment of balloons allows optics to perform near their diffraction limit. In practice, this implies that a telescope similar to the Hubble Space Telescope could be flown for a cost of tens of millions as opposed to billions. While highly feasible, the design of a balloon telescope to rival Hubble is limited by funding. Until a prototype is proven and more support for balloon science is gained, projects remain limited in both hardware costs and man hours. Thus, to effectively create and support balloon payloads, engineering designs must be efficient, modular, and if possible reusable. This thesis focuses specifically on a modular power system design for the BRRISON comet-observing balloon telescope. Time- and cost-saving techniques are developed that can be used for future missions. A modular design process is achieved through the development of individual circuit elements that span a wide range of capabilities. Circuits for power conversion, switching and sensing are designed to be combined in any configuration. These include DC-DC regulators, MOSFET drivers for switching, isolated switches, current sensors and voltage sensing ADCs. Emphasis is also given to commercially available hardware. Pre-fabricated DC-DC converters and an Arduino microcontroller simplify the design process and offer proven, cost-effective performance. The design of the BRRISON power system is developed from these low-level circuits elements. A board for main power distribution supports the majority of flight electronics, and is extensible to additional hardware in future applications. An ATX computer power supply is developed, allowing the use of a commercial ATX motherboard as the flight computer. The addition of new capabilities is explored in the form of a heater control board. Finally, the power system as a whole is described, and its overall

  3. Investigation of hot air balloon fatalities.

    Science.gov (United States)

    McConnell, T S; Smialek, J E; Capron, R G

    1985-04-01

    The rising popularity of the sport of hot air ballooning has been accompanied by several recent incidents, both in this country and other parts of the world, where mechanical defects and the improper operation of balloons have resulted in several fatalities. A study was conducted to identify the location and frequency of hot air ballooning accidents. Furthermore, the study attempted to identify those accidents that were the result of improper handling on the part of the balloon operators and those that were related to specific defects in the construction of the balloon. This paper presents a background of the sport of hot air ballooning, together with an analysis of the construction of a typical hot air balloon, pointing out the specific areas where defects may occur that could result in a potential fatal balloon crash. Specific attention is given to the two recent balloon crashes that occurred in Albuquerque, N.M., hot air balloon capital of the world, and that resulted in multiple fatalities.

  4. Cleft formation in pumpkin balloons

    Science.gov (United States)

    Baginski, Frank E.; Brakke, Kenneth A.; Schur, Willi W.

    NASA’s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. Success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and developing of means for the quantitative assessment of design measures that prevent the occurrence of undesired equilibrium. In this paper, we will use the concept of stability to classify cyclically symmetric equilibrium states at full inflation and pressurization. Our mathematical model for a strained equilibrium balloon, when applied to a shape that mimics the Phase IV-A balloon of Flight 517, predicts instability at float. Launched in Spring 2003, this pumpkin balloon failed to deploy properly. Observations on pumpkin shape type super-pressure balloons that date back to the 1980s suggest that within a narrowly defined design class of pumpkin shape super-pressure balloons where individual designs are fully described by the number of gores ng and by a single measure of the bulging gore shape, the designs tend to become more vulnerable with the growing number of gores and with the diminishing size of the bulge radius rB Weight efficiency considerations favor a small bulge radius, while robust deployment into the desired cyclically symmetrical configuration becomes more likely with an increased bulge radius. In an effort to quantify this dependency, we will explore the stability of a family of balloon shapes parametrized by (ng, rB) which includes a design that is very similar, but not identical, to the balloon of Flight 517. In addition, we carry out a number of simulations that demonstrate other aspects related to multiple equilibria of pumpkin balloons.

  5. Weather Balloon Ascent Rate

    Science.gov (United States)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  6. A global, space-based stratospheric aerosol climatology: 1979 to 2014

    Science.gov (United States)

    Thomason, L. W.; Vernier, J. P.; Bourassa, A. E.; Millan, L.; Manney, G. L.

    2016-12-01

    Herein, we report on a global space-based stratospheric aerosol climatology (GloSSAC) that has been developed to support Coupled Model Intercomparison Project Phase 6 (CMIP6) (REF to CMIP6 and ETH work). GloSSAC is most closely related to the ASAP[SPARC, 2006] and CCMI data sets and follows a similar approach used to produce those data sets. It is primarily built using space-based measurements by a number of instruments including the SAGE series, OSIRIS, CALIPSO, CLAES and HALOE. The data set is presented as monthly depictions for 80S to 80N and from at least the tropopause to 40 km. The data set consists primarily of measurements by the instruments at their native wavelength and measurement type (e.g., extinction coefficient). However, every bin in these monthly grids receives measured or indirectly inferred values for aerosol extinction coefficient at 525 and 1020 nm. Generally, bins where no data are available are filled via simple linear interpolation in time only. The exceptions are in the SAGE I/II gap from 1982 to 1984 where data from SAM II and ground-based and airborne lidar data sets are used to span the 3 years between the end of the SAGE I mission in November 1981 and the beginning of the SAGE II mission in October 1984. Ground-based lidar also supplements space-based data in the months following the Pinatubo eruption when much of the lower stratosphere is too optically opaque for occultation measurements. This data set includes total aerosol surface area density and volume estimates based on Thomason et al.[2008] though these should be interpreted as bounding values (low and high) rather than functional aerosol parameters that are generally produced from this and predecessor data sets by other parties. Unlike previous versions of this data set, GloSSAC has been permanently archived at NASA's Atmospheric Science Data Center and a digital object identifier (doi) for GloSSAC is available. SPARC (2006), Assessment of Stratospheric Aerosol Properties (ASAP

  7. B-MINE, the balloon-borne microcalorimeter nuclear line explorer

    International Nuclear Information System (INIS)

    Silver, E.; Schnopper, H.; Jones, C.; Forman, W.; Bandler, S.; Murray, S.; Romaine, S.; Slane, P.; Grindlay, J.; Madden, N.; Beeman, J.; Haller, E.E.; Smith, D.; Barbera, M.; Collura, A.; Christensen, F.; Ramsey, B.; Woosley, S.; Diehl, R.; Tucker, G.

    2001-01-01

    B-MINE is a concept for a balloon mission designed to probe the deepest regions of a supernova explosion by detecting 44 Ti emission at 68 keV with spatial and spectral resolutions that are sufficient to determine the extent and velocity distribution of the 44 Ti emitting region. The payload introduces the concept of focusing optics and microcalorimeter spectroscopy to nuclear line emission astrophysics. B-MINE has a thin, plastic foil telescope multilayered to maximize the reflectivity in a 20 keV band centered at 68 keV and a microcalorimeter array optimized for the same energy band. This combination provides a reduced background, an energy resolution of 50 eV and a 3σ sensitivity in 10 6 s of 3.3x10 -7 ph cm -2 s -1 at 68 keV. During the course of a long duration balloon flight, B-MINE could carry out a detailed study of the 44 Ti emission line centroid and width in CAS A

  8. Unique Programme of Indian Centre for Space Physics using large rubber Balloons

    Science.gov (United States)

    Chakrabarti, Sandip Kumar; Sarkar, Ritabrata; Bhowmick, Debashis; Chakraborty, Subhankar

    Indian Centre for Space Physics (ICSP) has developed a unique capability to pursue space based studies at a very low cost. Here, large rubber balloons are sent to near space (~ 40km) with payloads of less than 4kg weight. These payloads can be cosmic ray detectors, X-ray detectors, muon detectors apart from communication device, GPS, and nine degrees of freedom measuring capabilities. With two balloons in orbiter-launcher configuration, ICSP has been able to conduct long duration flights upto 12 hours. ICSP has so far sent 56 Dignity missions to near space and obtained Cosmic Ray and muon variation on a regular basis, dynamical spectrum of solar flares and gamma ray burst apart from other usual parameters such as wind velocity components, temperature and pressure variations etc. Since all the payloads are retrieved by parachutes, the cost per mission remains very low, typically around USD1000.00. The preparation time is low. Furthermore, no special launching area is required. In principle, such experiments can be conducted on a daily basis, if need be. Presently, we are also incorporating studies relating to earth system science such as Ozone, aerosols, micro-meteorites etc.

  9. Technical Note: Validation of Odin/SMR limb observations of ozone, comparisons with OSIRIS, POAM III, ground-based and balloon-borne instruments

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2008-06-01

    Full Text Available The Odin satellite carries two instruments capable of determining stratospheric ozone profiles by limb sounding: the Sub-Millimetre Radiometer (SMR and the UV-visible spectrograph of the OSIRIS (Optical Spectrograph and InfraRed Imager System instrument. A large number of ozone profiles measurements were performed during six years from November 2001 to present. This ozone dataset is here used to make quantitative comparisons with satellite measurements in order to assess the quality of the Odin/SMR ozone measurements. In a first step, we compare Swedish SMR retrievals version 2.1, French SMR ozone retrievals version 222 (both from the 501.8 GHz band, and the OSIRIS retrievals version 3.0, with the operational version 4.0 ozone product from POAM III (Polar Ozone Atmospheric Measurement. In a second step, we refine the Odin/SMR validation by comparisons with ground-based instruments and balloon-borne observations. We use observations carried out within the framework of the Network for Detection of Atmospheric Composition Change (NDACC and balloon flight missions conducted by the Canadian Space Agency (CSA, the Laboratoire de Physique et de Chimie de l'{}Environnement (LPCE, Orléans, France, and the Service d'Aéronomie (SA, Paris, France. Coincidence criteria were 5° in latitude×10° in longitude, and 5 h in time in Odin/POAM III comparisons, 12 h in Odin/NDACC comparisons, and 72 h in Odin/balloons comparisons. An agreement is found with the POAM III experiment (10–60 km within −0.3±0.2 ppmv (bias±standard deviation for SMR (v222, v2.1 and within −0.5±0.2 ppmv for OSIRIS (v3.0. Odin ozone mixing ratio products are systematically slightly lower than the POAM III data and show an ozone maximum lower by 1–5 km in altitude. The comparisons with the NDACC data (10–34 km for ozonesonde, 10–50 km for lidar, 10–60 for microwave instruments yield a good agreement within −0.15±0.3 ppmv for the SMR data and −0.3±0.3 ppmv

  10. Certification and safety aspects relating to the transport of passengers on high altitude balloons in Europe

    Science.gov (United States)

    Schoenmaker, Annelie

    2014-07-01

    High-altitude balloons typically fly between 25 and 50 km in altitude, which, while below the Karman line of 100 km, is yet far above the altitudes typically flown by aircraft. For example, the highest-flying commercial aircraft - the Concorde - had a maximum cruising altitude of only 18 km. zero2infinity, a Spanish company, is currently developing a pressurized pod named “bloon” which will be capable of lifting six people, including two pilot crew members and four paying passengers, to an altitude of 36 km through the use of high-altitude balloons. The boundary between Airspace and Outer Space has never been legally defined, mostly because of the lack of activities taking place between the altitude where airplanes fly and the lowest orbiting spacecraft. High-altitude balloons do fly at these in-between altitudes and the prospect of commercializing access to these parts of the stratosphere poses some questions in a new light. Given the relatively low altitude at which they fly, it may well be that these types of balloons would be considered to operate exclusively within air space. However, given the technology involved in crewed high altitude balloon flights, which is more similar to spacecraft engineering than to traditional hot-air or gas ballooning, it is necessary to evaluate the various legal regimes, codes, and regulations that would apply to such flights, especially regarding licenses and liabilities. For high altitude balloon flights commencing in Europe, the European Aviation Safety Agency (EASA) would very likely be the competent certification or licensing agency for these flights, although there would likely be input from various national aviation authorities as well. However, because the European Commission (EC) has not yet issued regulations regarding commercial spaceflight, particularly the use of high altitude balloons, new rules and regulations governing such flights may still need to be drafted and promulgated. With the development of

  11. Low-cost Citizen Science Balloon Platform for Measuring Air Pollutants to Improve Satellite Retrieval Algorithms

    Science.gov (United States)

    Potosnak, M. J.; Beck-Winchatz, B.; Ritter, P.

    2016-12-01

    High-altitude balloons (HABs) are an engaging platform for citizen science and formal and informal STEM education. However, the logistics of launching, chasing and recovering a payload on a 1200 g or 1500 g balloon can be daunting for many novice school groups and citizen scientists, and the cost can be prohibitive. In addition, there are many interesting scientific applications that do not require reaching the stratosphere, including measuring atmospheric pollutants in the planetary boundary layer. With a large number of citizen scientist flights, these data can be used to constrain satellite retrieval algorithms. In this poster presentation, we discuss a novel approach based on small (30 g) balloons that are cheap and easy to handle, and low-cost tracking devices (SPOT trackers for hikers) that do not require a radio license. Our scientific goal is to measure air quality in the lower troposphere. For example, particulate matter (PM) is an air pollutant that varies on small spatial scales and has sources in rural areas like biomass burning and farming practices such as tilling. Our HAB platform test flight incorporates an optical PM sensor, an integrated single board computer that records the PM sensor signal in addition to flight parameters (pressure, location and altitude), and a low-cost tracking system. Our goal is for the entire platform to cost less than $500. While the datasets generated by these flights are typically small, integrating a network of flight data from citizen scientists into a form usable for comparison to satellite data will require big data techniques.

  12. The Polar Stratosphere in a Changing Climate (POLSTRACC)

    Science.gov (United States)

    Oelhaf, Hermann; Sinnhuber, Björn-Martin; Woiwode, Wolfgang; Rapp, Markus; Dörnbrack, Andreas; Engel, Andreas; Boenisch, Harald

    2015-04-01

    The POLSTRACC mission aims at providing new scientific knowledge on the Arctic lowermost stratosphere (LMS) and upper troposphere under the present load of halogens and state of climate variables. POLSTRACC is the only HALO (High Altitude and LOng Range Research Aircraft, German Research Community) mission dedicated to study the UTLS at high latitudes several years after the last intensive Arctic campaigns. The scientific scope of POLSTRACC will be broadened by its combination with the SALSA (Seasonality of Air mass transport and origin in the Lowermost Stratosphere using the HALO Aircraft) and GW-LCYCLE (Gravity Wave Life Cycle Experiment, a BMBF/ROMIC project) missions, which address complementary scientific goals sharing the same HALO payload. POLSTRACC, SALSA and GW-LCYCLE will offer the unique opportunity to study the bottom of the polar vortex and the high-latitude UTLS along with their impact on lower latitudes throughout an entire winter/spring cycle. The POLSTRACC consortium includes national (KIT, Forschungszentrum Jülich, DLR, Max Planck Institute for Chemistry, Universities of Frankfurt, Heidelberg, Mainz and Wuppertal) and international partners (e.g. NASA). The payload for the combined POLSTRACC, SALSA and GW-LCYCLE campaigns comprises an innovative combination of remote sensing techniques providing 2- and 3-D distributions of temperature and a large number of substances, and precise in-situ instruments measuring T, O3, H2O, tracers of different lifetimes and chemically active species at the aircraft level with high time-resolution. Drop sondes will add information about temperature, humidity and wind in the atmosphere underneath the aircraft. The field campaign will be divided into three phases for addressing (i) the early polar vortex and its wide-scale vicinity in December 2015 (from Oberpfaffenhofen, Germany), (ii) the mid-winter vortex from January to March 2016 (from Kiruna, Sweden), and (iii) the late dissipating vortex and its wide

  13. The Relation Between Atmospheric Humidity and Temperature Trends for Stratospheric Water

    Science.gov (United States)

    Fueglistaler, S.; Liu, Y. S.; Flannaghan, T. J.; Haynes, P. H.; Dee, D. P.; Read, W. J.; Remsberg, E. E.; Thomason, L. W.; Hurst, D. F.; Lanzante, J. R.; hide

    2013-01-01

    We analyze the relation between atmospheric temperature and water vapor-a fundamental component of the global climate system-for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980-2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective-Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual anomalies of the model predictions show periods of fairly regular oscillations, alternating with more quiescent periods and a few large-amplitude oscillations. They all agree well (correlation coefficients 0.9 and larger) with observations for higherfrequency variations (periods up to 2-3 years). Differences between SWV observations, and temperature data, respectively, render analysis of the model minus observation residual difficult. However, we find fairly well-defined periods of drifts in the residuals. For the 1980s, model predictions differ most, and only the calculation with ERA-Interim temperatures is roughly within observational uncertainties. All model predictions show a drying relative to HALOE in the 1990s, followed by a moistening in the early 2000s. Drifts to NOAA-FPH are similar (but stronger), whereas no drift is present against SAGE II. As a result, the model calculations have a less pronounced drop in SWV in 2000 than HALOE. From the mid-2000s onward, models and observations agree reasonably, and some differences can be traced to problems in the temperature data. These results indicate that both SWV and temperature data may still suffer

  14. Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection

    Science.gov (United States)

    Herman, Robert L.; Ray, Eric A.; Rosenlof, Karen H.; Bedka, Kristopher M.; Schwartz, Michael J.; Read, William G.; Troy, Robert F.; Chin, Keith; Christensen, Lance E.; Fu, Dejian; Stachnik, Robert A.; Bui, T. Paul; Dean-Day, Jonathan M.

    2017-05-01

    The NASA ER-2 aircraft sampled the lower stratosphere over North America during the field mission for the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS). This study reports observations of convectively influenced air parcels with enhanced water vapor in the overworld stratosphere over the summertime continental United States and investigates three case studies in detail. Water vapor mixing ratios greater than 10 ppmv, which is much higher than the background 4 to 6 ppmv of the overworld stratosphere, were measured by the JPL Laser Hygrometer (JLH Mark2) at altitudes between 16.0 and 17.5 km (potential temperatures of approximately 380 to 410 K). Overshooting cloud tops (OTs) are identified from a SEAC4RS OT detection product based on satellite infrared window channel brightness temperature gradients. Through trajectory analysis, we make the connection between these in situ water measurements and OT. Back trajectory analysis ties enhanced water to OT 1 to 7 days prior to the intercept by the aircraft. The trajectory paths are dominated by the North American monsoon (NAM) anticyclonic circulation. This connection suggests that ice is convectively transported to the overworld stratosphere in OT events and subsequently sublimated; such events may irreversibly enhance stratospheric water vapor in the summer over Mexico and the United States. A regional context is provided by water observations from the Aura Microwave Limb Sounder (MLS).

  15. Exploring the Cosmic Ray Spectrum with the CREAM Experiment

    CERN Document Server

    Anderson, Tyler B

    The Cosmic Ray Energetics and Mass (CREAM) project endeavors to resolve the cosmic-ray spectrum in an energy range between 10^{10} and 10^{15} eV for all particles with charges in the range Z = 1 (hydrogen) to Z = 26 (iron). From 2004 to 2011, the CREAM instrument was flown in a succession of long-duration balloon (LDB) missions over the Antarctic continent. To date, it has completed six successful campaigns, for a cumulative 161 days in flight. Starting in 2011, CREAM began a process of reconguration in order to prepare for ISSCREAM a three-year mission bound for the International Space Station in 2014. In addition, a subset of detectors from CREAM's balloon flights have been upgraded and reassembled for the Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) mission, which will mount a new LDB campaign during the 2013-2014 Antarctic summer season. The CREAM project is presented, with a special emphasis on the design, construction, and performance of CREAM's (and BACCUS') Timing Charge Detector (...

  16. The Role of Overshooting Convection in Elevated Stratospheric Water Vapor over the Summertime Continental United States

    Science.gov (United States)

    Herman, R. L.; Ray, E. A.; Rosenlof, K. H.; Bedka, K. M.; Schwartz, M. J.; Read, W. G.; Troy, R. F.

    2016-12-01

    The NASA ER-2 aircraft sampled the UTLS region over North America during the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission. On four flights targeting convectively-influenced air parcels, in situ measurements of enhanced water vapor in the lower stratosphere over the summertime continental United States were made using the JPL Laser Hygrometer (JLH Mark2). Water vapor mixing ratios greater than 10 ppmv, twice the stratospheric background levels, were measured at pressure levels between 80 and 160 hPa. Through satellite observations and analysis, we make the connection between these in situ water measurements and overshooting cloud tops. The overshooting tops (OT) are identified from a SEAC4RS OT detection product based on satellite infrared window channel brightness temperature gradients. Back-trajectory analysis ties enhanced water to OT one to seven days prior to the intercept by the aircraft. The trajectory paths are dominated by the North American Monsoon (NAM) anticyclonic circulation. This connection suggests that ice is convectively transported to the overworld stratosphere in OT events and subsequently sublimated; such events may irreversibly enhance stratospheric water vapor in the summer over Mexico and the United States. Regional context is provided by water observations from the Aura Microwave Limb Sounder (MLS).

  17. Simulation study for the Stratospheric Inferred Wind (SIW) sub-millimeter limb sounder

    Science.gov (United States)

    Baron, Philippe; Murtagh, Donal; Eriksson, Patrick; Ochiai, Satoshi

    2017-04-01

    The Stratospheric Inferred Wind is a micro satellite mission studied within the Swedish Innosat program. The objective of the Innosat program is to launch a scientific satellite every two years [1]. SIW has been selected together with two other missions as a candidate for the 2nd launch planned in 2020. If realized, SIW will be the first sub-millimetre (SMM) satellite mission designed for measuring horizontal wind between 30-80 km. It has been shown that such systems can provide relevant wind information in this altitude range where other satellite techniques lack sensitivity [2,3]. The other objective of the mission will be to continue the stratospheric monitoring at a time in which the current observing systems will probably be ended. SIW is equipped with a small payload (40x40x44 cm3, 17 kg and power of 47 W) consisting of a radiometer cooled to 70 K, an auto-correlator spectrometer (8 GHz bandwidth, 1 MHz resolution), and an antenna of 30 cm. The atmospheric limb will be scanned from 10 to 80 km at two perpendicular directions in order to reconstruct the horizontal wind vectors from the measured line-of-sight winds. Those are obtained from the small Doppler shift of molecular lines contained in two spectral bands simultaneously measured with the double-side band radiometer. One of the bands is centred at 655 GHz to measure a cluster of strong O3 lines. It is the best spectral band for wind measurements [4]. The second band is centred near 625 GHz, and together with the first band, it will allow us to measure a large number of molecules relevant for studying the stratospheric dynamics and chemistry (N2O, H2O, ClO, HCl, BrO, NO, HNO3,...). The 655 GHz O3 lines also provide temperature between 10-80 km with similar performances as those obtained if an oxygen line would have been used instead. In this presentation we will introduce SIW and discuss the measurement performances derived from simulations studies. [1] http://www.ohb.de/press-releases-details/ohb-sweden-and-aac-microtec-to-develop-the-innosat-platform-and-implement-its-first-mission

  18. 21 CFR 874.4100 - Epistaxis balloon.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Epistaxis balloon. 874.4100 Section 874.4100 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a) Identification. An epistaxis balloon is a device consisting of an inflatable balloon intended to control internal...

  19. Lidar- and balloon-borne particle counter comparisons following recent volcanic eruptions

    Science.gov (United States)

    Hofmann, D. J.; Rosen, J. M.; Reiter, R.; Jager, H.

    1983-01-01

    Balloon-borne particle counter measurements at Laramie, Wyoming (41 deg N) are used to calculate the expected lidar backscatter at 0.694 micron wavelength from July 1979 to February 1982, a period which included at least four detectable perturbations of the stratospheric aerosol layer due to volcanic eruptions. These calculations are compared with lidar measurements conducted at Garmisch-Partenkirchen (47.5 deg N) during the same period. While the agreement is generally good using only the main mode in the particle size distribution (radius about 0.07 micron) during approximately the first 6 months following a major volcanic eruption, a measured secondary mode near 1 micron radius, when included, improves the agreement. Calculations of the expected backscatter at 25-30 km reveal that substantial number of particles diffuse into this high altitude region about 7 months after a major eruption, and these particles should be taken into account when normalizing lidar at these altitudes.

  20. Launching Garbage-Bag Balloons.

    Science.gov (United States)

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  1. Zodiac II: Debris Disk Science from a Balloon

    Science.gov (United States)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  2. Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2011-05-01

    Full Text Available This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS altitude range from space-borne observations of the scattered solar light made in limb viewing geometry. First results using measurements from SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY aboard ENVISAT (Environmental Satellite are presented here. In previous publications, the retrieval of water vapor vertical distributions has been achieved exploiting either the emitted radiance leaving the atmosphere or the transmitted solar radiation. In this study, the scattered solar radiation is used as a new source of information on the water vapor content in the UTLS region. A recently developed retrieval algorithm utilizes the differential absorption structure of the water vapor in 1353–1410 nm spectral range and yields the water vapor content in the 11–25 km altitude range. In this study, the retrieval algorithm is successfully applied to SCIAMACHY limb measurements and the resulting water vapor profiles are compared to in situ balloon-borne observations. The results from both satellite and balloon-borne instruments are found to agree typically within 10 %.

  3. Laboratory studies of stratospheric aerosol chemistry

    Science.gov (United States)

    Molina, Mario J.

    1996-01-01

    In this report we summarize the results of the two sets of projects funded by the NASA grant NAG2-632, namely investigations of various thermodynamic and nucleation properties of the aqueous acid system which makes up stratospheric aerosols, and measurements of reaction probabilities directly on ice aerosols with sizes corresponding to those of polar stratospheric cloud particles. The results of these investigations are of importance for the assessment of the potential stratospheric effects of future fleets of supersonic aircraft. In particular, the results permit to better estimate the effects of increased amounts of water vapor and nitric acid (which forms from nitrogen oxides) on polar stratospheric clouds and on the chemistry induced by these clouds.

  4. JACEE long duration balloon flights

    International Nuclear Information System (INIS)

    Burnett, T.; Iwai, J.; Lord, J.J.; Strausz, S.; Wilkes, R.J.; Dake, S.; Oda, H.; Miyamura, O.; Fuki, M.; Jones, W.V.; Gregory, J.; Hayashi, T.; Takahashi, U.; Tominaga, Y.; Wefel, J.P.; Fountain, W.; Derrickson, J.; Parnell, T.A.; Roberts, E.; Tabuki, T.; Watts, J.W.

    1989-01-01

    JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1-100A TeV. Experience with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed. 5 refs., 2 figs

  5. Stratospheric Temperature Trends Observed by TIMED/SABER

    Science.gov (United States)

    Xian, T.; Tan, R.

    2017-12-01

    Trends in the stratospheric temperature are studied based on the temperature profile observation from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). The spatially trends are evaluated in different time scales ranging from decadal to monthly resolved. The results indicate a signature of BDC acceleration. There are strong warming trends (up to 9 K/decade) in the middle to upper stratosphere in the high latitude spring, summer, and autumn seasons, accompanied by strong cooling trends in the lower stratosphere. Besides, strong warming trends occurs through the whole stratosphere over the Southern Hemisphere, which confirms Antarctic ozone layer healing since 2000. In addition, the results demonstrate a significant warming trends in the middle of tropical stratosphere, which becomes strongest during June-July-August.

  6. Fasting and meal-suppressed ghrelin levels before and after intragastric balloons and balloon-induced weight loss

    NARCIS (Netherlands)

    Mathus-Vliegen, E. M. H.; Eichenberger, R. I.

    2014-01-01

    Intragastric balloons may be an option for obese patients with weight loss failure. Its mode of action remains enigmatic. We hypothesised depressed fasting ghrelin concentrations and enhanced meal suppression of ghrelin secretion by the gastric fundus through balloon contact and balloon-induced

  7. The influences of Wildfires and Stratospheric-Tropospheric exchange on ozone during SEACIONS mission over St. Louis, MO

    Science.gov (United States)

    Wilkins, J. L.

    2015-12-01

    A series of 32 ozonesondes were launched from St. Louis, Missouri, from 8 Aug - 23 Sept 2013, as part of the SouthEast American Consortium for Intensive Ozone Network Study (SEACIONS) mission. The time during which this site operated coincided with two large wildfires, Idaho's Beaver Creek fire and California's RIM fire, in addition to widespread agricultural fires in the Midwest. As part of our analyses, we examined multiple satellite-derived products that have been used in the analysis of tropospheric pollution, fires, and air mass flow patterns. The Fire Locating and Modeling of Burning Emissions (FLAMBE) inventory was used as an input to FLEXPART-WRF to quantify the contribution of particle trajectories and injection heights from the various sources. Trajectories from the sonde launch sites and fire locations were used as input for the two FLEXPART-WRF Model simulations to determine the origins of pollution plumes. The first simulation was conducted to model fire emissions within the planetary boundary layer (<3500m), while the second was added to investigate transportation effects from locations identified to have pyro-convective cumulonimbus. The Goddard Earth Observing System Model, Version 5 (GEOS-5) potential vorticity was used to analyze the stratospheric component of ozone enhancements. We examined three meteorological test cases: 1) a cut-off low, 2) a blocking high pressure, and 3) a frontal passage, which involve mixed-layer O3 enhancements, which can be spotted at several sites within SEACIONS. We look to quantify the contribution of these ozone enhancement sources to local air quality.

  8. The influences of wildfires and stratospheric-tropospheric exchange on ozone during seacions mission over St. Louis

    Science.gov (United States)

    Wilkins, Joseph L.

    The influence of wildfire biomass burning and stratospheric air mass transport on tropospheric ozone (O3) concentrations in St. Louis during the SEAC4RS and SEACIONS-2013 measurement campaigns has been investigated. The Lagrangian particle dispersion model FLEXPART-WRF analysis reveals that 55% of ozonesonde profiles during SEACIONS were effected by biomass burning. Comparing ozonesonde profiles with numerical simulations show that as biomass burning plumes age there is O3 production aloft. A new plume injection height technique was developed based on the Naval Research Laboratory's (NRL) detection algorithm for pyro-convection. The NRL method identified 29 pyro-cumulonimbus events that occurred during the summer of 2013, of which 13 (44%) impacted the SEACIONS study area, and 4 (14%) impacted the St. Louis area. In this study, we investigate wildfire plume injection heights using model simulations and the FLAMBE emissions inventory using 2 different algorithms. In the first case, wildfire emissions are injected at the surface and allowed to mix within the boundary layer simulated by the meteorological model. In the second case, the injection height of wildfire emissions is determined by a guided deep-convective pyroCb run using the NRL detection algorithm. Results show that simulations using surface emissions were able to represent the transport of carbon monoxide plumes from wildfires when the plumes remained below 5 km or occurred during large convective systems, but that the surface effects were over predicted. The pyroCb cases simulated the long-range transport of elevated plumes above 5 km 68% of the time. In addition analysis of potential vorticity suggests that stratospheric intrusions or tropopause folds affected 13 days (48%) when there were sonde launches and 27 days (44%) during the entire study period. The largest impact occurred on September 12, 2013 when ozone-rich air impacted the nocturnal boundary layer. By analyzing ozonesonde profiles with

  9. A high-energy Compton polarimeter for the POET SMEX mission

    Science.gov (United States)

    Bloser, Peter F.; McConnell, Mark L.; Legere, Jason S.; Ertley, Camden D.; Hill, Joanne E.; Kippen, Marc; Ryan, James M.

    2014-07-01

    The primary science goal of the Polarimeters for Energetic Transients (POET) mission is to measure the polarization of gamma-ray bursts over a wide energy range, from X rays to soft gamma rays. The higher-energy portion of this band (50 - 500 keV) will be covered by the High Energy Polarimeter (HEP) instrument, a non-imaging, wide field of view Compton polarimeter. Incident high-energy photons will Compton scatter in low-Z, plastic scintillator detector elements and be subsequently absorbed in high-Z, CsI(Tl) scintillator elements; polarization is detected by measuring an asymmetry in the azimuthal scatter angle distribution. The HEP design is based on our considerable experience with the development and flight of the Gamma-Ray Polarimeter Experiment (GRAPE) balloon payload. We present the design of the POET HEP instrument, which incorporates lessons learned from the GRAPE balloon design and previous work on Explorer proposal efforts, and its expected performance on a two-year SMEX mission.

  10. Two Tethered Balloon Systems

    Science.gov (United States)

    Youngbluth, Otto; Owens, Thomas L.; Storey, Richard W.

    1990-01-01

    Systems take meteorological measurements for variety of research projects. Report describes work done by NASA Langley Research Center in atmospheric research using tethered balloon systems composed of commercially available equipment. Two separate tethered balloon systems described in report have payloads and configurations tailored to requirements of specific projects. Each system capable of measuring atmospheric parameter or species in situ and then telemetering this data in real time to ground station. Meteorological data and concentration of ozone typically measured. Indicates instrumented tethered balloon systems have distinct advantages over other systems for gathering data on troposphere.

  11. Recent Developments in Scientific Research Ballooning

    International Nuclear Information System (INIS)

    Jones, W. Vernon

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Balloon Program is committed to meeting the need for extended duration scientific investigations by providing advanced balloon vehicles and support systems. A sea change in ballooning capability occurred with the inauguration of 8 - 20 day flights around Antarctica in the early 1990's. The attainment of 28-31 day flights and a record-breaking 42-day flight in, respectively, two and three circumnavigations of the continent has greatly increased the expectations of the scientific users. A new super-pressure balloon is currently under development for future flights of 60-100 days at any latitude, which would bring another sea change in scientific research ballooning

  12. Pioneering Space Research with Balloons

    Science.gov (United States)

    Jones, W. V.

    NASA s Scientific Ballooning Planning Team has concluded that ballooning enables significant scientific discoveries while providing test beds for space instruments and training for young scientists Circumpolar flights around Antarctica have been spectacularly successful with fight durations up to 42 days Demand for participation in this Long-Duration Balloon LDB program a partnership with the U S National Science Foundation Office of Polar Programs is greater than the current capacity of two flights per campaign Given appropriate international agreements LDB flights in the Northern Hemisphere would be competitive with Antarctic flights and super-pressure balloons would allow comparable flights at any latitude The Balloon Planning Team made several recommendations for LDB flights provide a reliable funding source for sophisticated payloads extend the Antarctic capability to three flights per year and develop a comparable capability in the Arctic provide aircraft for intact-payload recovery develop a modest trajectory modification capability to enable longer flights and enhance super-pressure balloons to carry 1-ton payloads to 38 km Implementation of these recommendations would facilitate frequent access to near-space for cutting-edge research and technology development for a wide range of investigations

  13. Long-term evolution of upper stratospheric ozone at selected stations of the Network for the Detection of Stratospheric Change (NDSC)

    NARCIS (Netherlands)

    Steinbrecht, W; Claude, H; Schönenborn, F; McDermid, I S; Leblanc, T; Godin, S; Song, T; Swart, D P J; Meijer, Y J; Bodeker, G E; Connor, B J; Kämpfer, N; Hocke, K; Calisesi, Y; Schneider, N; Noë, J de la; Parrish, A D; Boyd, I S; Brühl, C; Steil, B; Giorgetta, M A; Manzini, E; Thomason, L W; Zawodny, J M; McCormick, M P; Russell, J M; Bhartia, P K; Stolarski, R S; Hollandsworth-Frith, S M

    2006-01-01

    The long-term evolution of upper stratospheric ozone has been recorded by lidars and microwave radiometers within the ground-based Network for the Detection of Stratospheric Change (NDSC), and by the space-borne Solar Backscatter Ultra-Violet instruments (SBUV), Stratospheric Aerosol and Gas

  14. Development of a New Coaxial Balloon Catheter System for Balloon-Occluded Retrograde Transvenous Obliteration (B-RTO)

    International Nuclear Information System (INIS)

    Tanoue, Shuichi; Kiyosue, Hiro; Matsumoto, Shunro; Hori, Yuzo; Okahara, Mika; Kashiwagi, Junji; Mori, Hiromu

    2006-01-01

    Purpose. To develop a new coaxial balloon catheter system and evaluate its clinical feasibility for balloon-occluded retrograde transvenous obliteration (B-RTO). Methods. A coaxial balloon catheter system was constructed with 9 Fr guiding balloon catheter and 5 Fr balloon catheter. A 5 Fr catheter has a high flexibility and can be coaxially inserted into the guiding catheter in advance. The catheter balloons are made of natural rubber and can be inflated to 2 cm (guiding) and 1 cm (5 Fr) maximum diameter. Between July 2003 and April 2005, 8 consecutive patients (6 men, 2 women; age range 33-72 years, mean age 55.5 years) underwent B-RTO using the balloon catheter system. Five percent ethanolamine oleate iopamidol (EOI) was used as sclerosing agent. The procedures, including maneuverability of the catheter, amount of injected sclerosing agent, necessity for coil embolization of collateral draining veins, and initial clinical results, were evaluated retrospectively. The occlusion rate was assessed by postcontrast CT within 2 weeks after B-RTO. Results. The balloon catheter could be advanced into the proximal potion of the gastrorenal shunt beyond the collateral draining vein in all cases. The amount of injected EOI ranged from 3 to 34 ml. Coil embolization of the collateral draining vein was required in 2 cases. Complete obliteration of gastric varices on initial follow-up CT was obtained in 7 cases. The remaining case required re-treatment that resulted in complete obstruction of the varices after the second B-RTO. No procedure-related complications were observed. Conclusion. B-RTO using the new coaxial balloon catheter is feasible. Gastric varices can be treated more simply by using this catheter system

  15. Complications of balloon packing in epistaxis

    NARCIS (Netherlands)

    Vermeeren, Lenka; Derks, Wynia; Fokkens, Wytske; Menger, Dirk Jan

    2015-01-01

    Although balloon packing appears to be efficient to control epistaxis, severe local complications can occur. We describe four patients with local lesions after balloon packing. Prolonged balloon packing can cause damage to nasal mucosa, septum and alar skin (nasal mucosa, the cartilaginous skeleton

  16. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  17. Chlorine in the stratosphere

    OpenAIRE

    VON CLARMANN, T.

    2013-01-01

    This paper reviews the various aspects of chlorine compounds in the stratosphere, both their roles as reactants and as tracers of dynamical processes. In the stratosphere, reactive chlorine is released from chlorofluorocarbons and other chlorine-containing organic source gases. To a large extent reactive chlorine is then sequestered in reservoir species ClONO2 and HCl. Re-activation of chlorine happens predominantly in polar winter vortices by heterogeneous reaction in combination with sunlig...

  18. Abdominal cavity balloon for preventing a patient's bleeding

    OpenAIRE

    Naber, E.E.H.; Rutten, H.J.T.; Jakimowicz, J.J.; Goossens, R.H.M.; Moes, C.C.M.; Buzink, S.N.

    2007-01-01

    The invention relates to an abdominal cavity balloon for preventing a haemorrhage in a patient's pelvic region, comprising an inflatable balloon, wherein the balloon is pro vided with a smooth surface and with a strip that is flex- urally stiff and formed to follow the balloon's shape for po sitioning the balloon.

  19. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven; Perlwitz, Judith

    2018-01-01

    The relative impacts of greenhouse gas (GHG) increase and stratospheric ozone depletion on stratospheric mean age of air in the 1960-2010 period are quantified using the Goddard Earth Observing System Chemistry-�Climate Model. The experiment compares controlled simulations using a coupled atmosphere-�ocean version of the Goddard Earth Observing System Chemistry-�Climate Model, in which either GHGs or ozone depleting substances, or both factors evolve over time. The model results show that GHGs and ozone-depleting substances have about equal contributions to the simulated mean age decrease, but GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. It is also found that both the acceleration of the diabatic circulation and the decrease of the mean age difference between downwelling and upwelling regions are mainly caused by GHG forcing. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: (1) a seasonal delay in the Antarctic polar vortex breakup that inhibits young midlatitude air from mixing with the older air inside the vortex, and (2) enhanced Antarctic downwelling that brings older air from middle and upper stratosphere into the lower stratosphere.

  20. Calculating Payload for a Tethered Balloon System

    Science.gov (United States)

    Charles D. Tangren

    1980-01-01

    A graph method to calculate payload for a tethered balloon system, with the supporting helium lift and payload equations. is described. The balloon system is designed to collect emissions data during the convective-lift and no-convective-lift phases of a forest fire. A description of the balloon system and a list of factors affecting balloon selection are included....

  1. A newly developed grab sampling system for collecting stratospheric air over Antarctica

    Directory of Open Access Journals (Sweden)

    Hideyuki Honda

    1996-07-01

    Full Text Available In order to measure the concentrations of various minor constituents and their isotopic ratios in the stratosphere over Antarctica, a simple grab sampling system was newly developed. The sampling system was designed to be launched by a small number of personnel using a rubber balloon under severe experimental conditions. Special attention was paid to minimize the contamination of sample air, as well as to allow easy handling of the system. The sampler consisted mainly of a 15l sample container with electromagnetic and manual valves, control electronics for executing the air sampling procedures and sending the position and status information of the sampler to the ground station, batteries and a transmitter. All these parts were assembled in an aluminum frame gondola with a shock absorbing system for landing. The sampler was equipped with a turn-over mechanism of the gondola to minimize contamination from the gondola, as well as with a GPS receiver and a rawinsonde for its tracking. Total weight of the sampler was about 11kg. To receive, display and store the position and status data of the sampling system at the ground station, a simple data acquisition system with a portable receiver and a microcomputer was also developed. A new gas handling system was prepared to simplify the injection of He gas into the balloon. For air sampling experiments, three sampling systems were launched at Syowa Station (69°00′S, 39°35′E, Antarctica and then recovered on sea ice near the station on January 22 and 25,1996.

  2. Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: validation of the technique through correlative comparisons

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2004-01-01

    Full Text Available A retrieval algorithm based on the Optimal Estimation Method (OEM has been developed in order to provide vertical distributions of NO2 in the stratosphere from ground-based (GB zenith-sky UV-visible observations. It has been applied to observational data sets from the NDSC (Network for Detection of Stratospheric Change stations of Harestua (60° N, 10° E and Andøya (69° N, 16° E in Norway. The information content and retrieval errors have been analyzed following a formalism used for characterizing ozone profiles retrieved from solar infrared absorption spectra. In order to validate the technique, the retrieved NO2 vertical profiles and columns have been compared to correlative balloon and satellite observations. Such extensive validation of the profile and column retrievals was not reported in previously published work on the profiling from GB UV-visible measurements. A good agreement - generally better than 25% - has been found with the SAOZ (Système d'Analyse par Observations Zénithales and DOAS (Differential Optical Absorption Spectroscopy balloons. A similar agreement has been reached with correlative satellite data from the HALogen Occultation Experiment (HALOE and Polar Ozone and Aerosol Measurement (POAM III instruments above 25km of altitude. Below 25km, a systematic underestimation - by up to 40% in some cases - of both HALOE and POAM III profiles by our GB profile retrievals has been observed, pointing out more likely a limitation of both satellite instruments at these altitudes. We have concluded that our study strengthens our confidence in the reliability of the retrieval of vertical distribution information from GB UV-visible observations and offers new perspectives in the use of GB UV-visible network data for validation purposes.

  3. Condensed Acids In Antartic Stratospheric Clouds

    Science.gov (United States)

    Pueschel, R. F.; Snetsinger, K. G.; Toon, O. B.; Ferry, G. V.; Starr, W. L.; Oberbeck, V. R.; Chan, K. R.; Goodman, J. K.; Livingston, J. M.; Verma, S.; hide

    1992-01-01

    Report dicusses nitrate, sulfate, and chloride contents of stratospheric aerosols during 1987 Airborne Antarctic Ozone Experiment. Emphasizes growth of HNO3*3H2O particles in polar stratospheric clouds. Important in testing theories concerning Antarctic "ozone hole".

  4. Stratospheric HTO perturbations 1980-1983

    Science.gov (United States)

    Mason, A. S.

    1985-02-01

    Three perturbations of the stratospheric tritiated water burden have occurred. An atmospheric nuclear detonation in 1980 injected about 2.1 MCi. The massive eruptions of the volcano El Chichon may have contributed to a doubling of the removal rate in 1982. An unusually large wintertime exchange with the upper stratosphere may have occurred between 1982 and 1983.

  5. Ballooning stable high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Tuda, Takashi; Azumi, Masafumi; Kurita, Gen-ichi; Takizuka, Tomonori; Takeda, Tatsuoki

    1981-04-01

    The second stable regime of ballooning modes is numerically studied by using the two-dimensional tokamak transport code with the ballooning stability code. Using the simple FCT heating scheme, we find that the plasma can locally enter this second stable regime. And we obtained equilibria with fairly high beta (β -- 23%) stable against ballooning modes in a whole plasma region, by taking into account of finite thermal diffusion due to unstable ballooning modes. These results show that a tokamak fusion reactor can operate in a high beta state, which is economically favourable. (author)

  6. In vitro analysis of balloon cuffing phenomenon: inherent biophysical properties of catheter material or mechanics of catheter balloon deflation?

    Science.gov (United States)

    Chung, Eric; So, Karina

    2012-06-01

    To investigates the different methods of balloon deflation, types of urinary catheters and exposure to urine media in catheter balloon cuffing. Bardex®, Bard-Lubri-Sil®, Argyle®, Releen® and Biocath® were tested in sterile and E.Coli inoculated urine at 0, 14 and 28 days. Catheter deflation was performed with active deflation; passive deflation; passive auto-deflation; and excision of the balloon inflow channel. Balloon cuffing was assessed objectively by running the deflated balloon over a plate of agar and subjectively by 3 independent observers. Bardex®, Argyle® and Biocath® showed greater degree of catheter balloon cuffing (p deflation was the worst method (p 0.05). Linear regression model analysis confirmed time as the most significant factor. The duration of catheters exposure, different deflation methods and types of catheters tested contributed significantly to catheter balloon cuffing (p < 0.01).

  7. Flight Qualification of the NASA's Super Pressure Balloon

    Science.gov (United States)

    Cathey, Henry; Said, Magdi; Fairbrother, Debora

    Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test

  8. Esophageal achalasia : results of balloon dilation

    Energy Technology Data Exchange (ETDEWEB)

    Ki, Won Woo; Kang, Sung Gwon; Yoon, Kwon Ha; Kim, Nam Hyeon; Lee, Hyo Jeong; Yoon, Hyun Ki; Sung, Kyu Bo; Song, Ho Young [Ulsan Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-08-01

    To evaluate the clinical effectiveness of fluoroscopically guided balloon dilation in the treatment of esophageal achalasia. Under fluoroscopic guidance, 21 balloon dilation procedures were performed in 14 patients with achalasia. A balloon with a diameter of 20 mm was used for the initial attempt.If the patient tolerated this well, the procedure was repeated with a 10-20 mm balloon, placed alongside at the same session. If, however the patient complained of severe chest pain and/or a postprocedural esophagogram showed an improvement,the additional balloon was not used. For patients whose results were unsatisfactory, the dilation procedure was repeated at sessions three to seven days apart. Succesful dilation was achieved in 13 of 14 patients(92.9%), who needed a total of 20 sessions of balloon dilation, ranging from one to three sessions per patient(mean, 1.54 sessions). Esophageal rupture occured in one of 14 patients(7.1%) ; of the 13 patients who underwent a successful dilation procedure, 12(92.3%) were free of recurrent symptoms during the follow-up period of 1-56(mean, 18.5) months. The remaning patient(7.7%) had a recurrence seven months after dilation. Fluoroscopically guided balloon dilation seems to be safe and effective in the treatment of esophageal achalasia.

  9. Esophageal achalasia : results of balloon dilation

    International Nuclear Information System (INIS)

    Ki, Won Woo; Kang, Sung Gwon; Yoon, Kwon Ha; Kim, Nam Hyeon; Lee, Hyo Jeong; Yoon, Hyun Ki; Sung, Kyu Bo; Song, Ho Young

    1996-01-01

    To evaluate the clinical effectiveness of fluoroscopically guided balloon dilation in the treatment of esophageal achalasia. Under fluoroscopic guidance, 21 balloon dilation procedures were performed in 14 patients with achalasia. A balloon with a diameter of 20 mm was used for the initial attempt.If the patient tolerated this well, the procedure was repeated with a 10-20 mm balloon, placed alongside at the same session. If, however the patient complained of severe chest pain and/or a postprocedural esophagogram showed an improvement,the additional balloon was not used. For patients whose results were unsatisfactory, the dilation procedure was repeated at sessions three to seven days apart. Succesful dilation was achieved in 13 of 14 patients(92.9%), who needed a total of 20 sessions of balloon dilation, ranging from one to three sessions per patient(mean, 1.54 sessions). Esophageal rupture occured in one of 14 patients(7.1%) ; of the 13 patients who underwent a successful dilation procedure, 12(92.3%) were free of recurrent symptoms during the follow-up period of 1-56(mean, 18.5) months. The remaning patient(7.7%) had a recurrence seven months after dilation. Fluoroscopically guided balloon dilation seems to be safe and effective in the treatment of esophageal achalasia

  10. The JEM-EUSO Program

    Science.gov (United States)

    Ricci, Marco; JEM-EUSO Collaboration

    2016-05-01

    The Extreme Universe Space Observatory on-board the Japanese Experiment Module (JEM-EUSO) of the International Space Station (ISS), is a space mission that aims to unveiling the nature and the origin of the Ultra High Energy Cosmic Rays (UHECRs) and to address basic problems of fundamental physics at extreme energies. The instrument is designed to measure the arrival direction, the energy and, possibly, the nature of these particles. Basically, it consists of a wide Field of View (FoV) telescope, based on Fresnel lenses, that looks down from the ISS during night-time to detect UV photons (fluorescence and Cherenkov photons) emitted from air showers. An infrared camera and an atmosphere monitoring system improve the performance of the instrument. The program is proceeding in different steps. While the JEM-EUSO mission is being improved to allow the use of the new carrier Space-X Dragon, the project K-EUSO, a mirror-based telescope to be placed on the Russian module of the ISS, conceived as an improvement of the KLYPVE experiment already approved by the Russian Space Agency Roscosmos, modified with EUSO technology, is in the stage of final definition. Meanwhile, a program of test experiments, pathfinders of the main mission, has been developed: the first, EUSO-Balloon, successfully flew on board a stratospheric balloon in Canada to measure the fluorescence background from the top of the Atmosphere; a second, EUSO-TA on ground, is in operation at the Telescope Array site in Utah. Next steps include: a) Mini-EUSO, approved by Roscosmos and the Italian Space Agency ASI, a small, compact UV telescope to be installed inside the Russian Module of the ISS to measure the UV background from Earth and b) a long duration Super Pressure Balloon Flight (EUSO-SPB) to be flown from New Zealand to observe EAS (Extensive Air Showers) from stratospheric atmosphere altitudes. Scientific, technical and programmatic aspects of all these EUSO-like projects are described.

  11. What Controls the Arctic Lower Stratosphere Temperature?

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The temperature of the Arctic lower stratosphere is critical for understanding polar ozone levels. As temperatures drop below about 195 K, polar stratospheric clouds form, which then convert HCl and ClONO2 into reactive forms that are catalysts for ozone loss reactions. Hence, the lower stratospheric temperature during the March period is a key parameter for understanding polar ozone losses. The temperature is basically understood to be a result of planetary waves which drive the polar temperature away from a cold "radiative equilibrium" state. This is demonstrated using NCEP/NCAR reanalysis calculations of the heat flux and the mean polar temperature. The temperature during the March period is fundamentally driven by the integrated impact of large scale waves moving from the troposphere to the stratosphere during the January through February period. We will further show that the recent cold years in the northern polar vortex are a result of this weakened wave driving of the stratosphere.

  12. Stratospheric H2O

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.

    1979-01-01

    Documentation of the extreme aridity (approx. 3% relative humidity) of the lower stratosphere and the rapid decrease of mixing ratio with height just above the polar tropopause (20-fold in the 1st km) was begun by Dobson et al., (1946) in 1943. They recognized that this extreme and persistent aridity must be dynamically maintained else it would have been wiped out by turbulent diffusion. This led Brewer (1949) to hypothesize a stratospheric circulation in which all air enters through the tropical tropopause where it is freeze dried to a mass mixing ratio of 2 to 3 ppM. This dry air then spreads poleward and descends through the polar tropopauses overpowering upward transport of water vapor by diffusion which would otherwise be permitted by the much warmer temperatures of the polar tropopauses. Questions can indeed be raised as to the absolute magnitudes of stratospheric mixing ratios, the effective temperature of the tropical tropopause cold trap, the reality of winter pole freeze-dry sinks and the representativeness of the available observations suggesting an H 2 O mixing ratio maximum just above the tropical tropopause and a constant mixing ratio from the tropopause to 30 to 35 km. However, no model that better fits all of the available data is available, than does the Brewer (1949) hypothesis coupled with a lower stratosphere winter pole, freeze-dry sink, at least over Antarctica

  13. Early Cosmic Ray Research with Balloons

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Michael, E-mail: michael.walter@desy.de

    2013-06-15

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.

  14. Early Cosmic Ray Research with Balloons

    Science.gov (United States)

    Walter, Michael

    2013-06-01

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.

  15. Early Cosmic Ray Research with Balloons

    International Nuclear Information System (INIS)

    Walter, Michael

    2013-01-01

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster

  16. Studying Stratospheric Temperature Variation with Cosmic Ray Measurements

    Science.gov (United States)

    Zhang, Xiaohang; He, Xiaochun

    2015-04-01

    The long term stratospheric cooling in recent decades is believed to be equally important as surface warming as evidence of influences of human activities on the climate system. Un- fortunatly, there are some discrepancies among different measurements of stratospheric tem- peratures, which could be partially caused by the limitations of the measurement techniques. It has been known for decades that cosmic ray muon flux is sensitive to stratospheric temperature change. Dorman proposed that this effect could be used to probe the tempera- ture variations in the stratophere. In this talk, a method for reconstructing stratospheric temperature will be discussed. We verify this method by comparing the stratospheric tem- perature measured by radiosonde with the ones derived from cosmic ray measurement at multiple locations around the globe.

  17. NASA's Suborbital Missions Teach Engineering and Technology: Goddard Space Flight Center's Wallops Flight Facility

    Science.gov (United States)

    Winterton, Joyce L.

    2016-01-01

    A 50 minute-workshop based on NASA publicly available information will be conducted at the International Technology and Engineering Educator Association annual conference. Attendees will include middle and high school teachers and university teacher educators. Engineering and technology are essential to NASA's suborbital missions including sounding rockets, scientific balloon and airborne science. The attendees will learn how to include NASA information on these missions in their teaching.

  18. Millimeter wave spectroscopic measurements of stratospheric and mesospheric constituents over the Italian Alps: stratospheric ozone

    Directory of Open Access Journals (Sweden)

    V. Romaniello

    2007-06-01

    Full Text Available Measurements of rotational lines emitted by middle atmospheric trace gases have been carried out from the Alpine station of Testa Grigia (45.9°N, 7.7°E, elev. 3500 m by means of a Ground-Based Millimeter-wave Spectrometer (GBMS. Observations of species such as O3, HNO3, CO, N2O, HCN, and HDO took place during 4 winter periods, from February 2004 to March 2007, for a total of 116 days of measurements grouped in about 18 field campaigns. By studying the pressure-broadened shape of emission lines the vertical distribution of the observed constituents is retrieved within an altitude range of ?17-75 km, constrained by the 600 MHz pass band and the 65 kHz spectral resolution of the back-end spectrometer. This work discusses the behavior of stratospheric O3 during the entire period of operation at Testa Grigia. Mid-latitude O3 columnar content as estimated using GBMS measurements can vary by large amounts over a period of very few days, with the largest variations observed in December 2005, February 2006, and March 2006, confirming that the northern winter of 2005-2006 was characterized by a particularly intense planetary wave activity. The largest rapid variation from maximum to minimum O3 column values over Testa Grigia took place in December 2006 and reached a relative value of 72% with respect to the average column content for that period. During most GBMS observation times much of the variability is concentrated in the column below 20 km, with tropospheric weather systems and advection of tropical tropospheric air into the lower stratosphere over Testa Grigia having a large impact on the observed variations in column contents. Nonetheless, a wide variability is also found in middle stratospheric GBMS O3 measurements, as expected for mid-latitude ozone. We find that O3 mixing ratios at ?32 km are very well correlated with the solar illumination experienced by air masses over the previous ?15 days, showing that already at 32 km

  19. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  20. Effect of intra-aortic balloon pump on coronary blood flow during different balloon cycles support: A computer study.

    Science.gov (United States)

    Aye, Thin Pa Pa; Htet, Zwe Lin; Singhavilai, Thamvarit; Naiyanetr, Phornphop

    2015-01-01

    Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow.

  1. NASA balloon design and flight - Philosophy and criteria

    Science.gov (United States)

    Smith, I. S., Jr.

    1993-01-01

    The NASA philosophy and criteria for the design and flight of scientific balloons are set forth and discussed. The thickness of balloon films is standardized at 20.3 microns to isolate potential film problems, and design equations are given for specific balloon parameters. Expressions are given for: flight-stress index, total required thickness, cap length, load-tape rating, and venting-duct area. The balloon design criteria were used in the design of scientific balloons under NASA auspices since 1986, and the resulting designs are shown to be 95 percent effective. These results represent a significant increase in the effectiveness of the balloons and therefore indicate that the design criteria are valuable. The criteria are applicable to four balloon volume classes in combination with seven payload ranges.

  2. In situ measurements of H2O, CH4 and CO2 in the upper troposphere and the lower stratosphere (UT-LS) with the baloonborne picoSDLA and AMULSE tunable diode laser spectrometers during the 2014 and 2015 "Stratoscience" campaigns

    Science.gov (United States)

    Miftah-El-Khair, Zineb; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albo, Grégory; Chauvin, Nicolas; Maamary, Rabih; Amarouche, Nadir; Durry, Georges

    2016-04-01

    H2O, CH4 and CO2 are major greenhouse gases with a strong impact on climate. The concentrations of CO2 and CH4 have dramatically increased since the beginning of the industrialization era due to anthropogenic activities, contributing thereby to the global warming. Anthropogenic activities as fossil fuels, ruminant, and biomass burning constitute the major sources of carbon dioxide and methane. The increase of H2O concentration in the stratosphere could cause a cooling of this atmospheric region, impacting the recovery of the ozone layer. Therefore, having information and data about the vertical distribution of H2O, CO2 and CH4 is very useful to improve our knowledge of the future of our climate. We have developed, with the help of French space agency (CNES) and CNRS, two laser diode sensors PicoSDLA and AMULSE devoted to the in situ measurements of H2O, CH4 and CO2 from balloon platforms. These instruments were operated from open stratospheric balloons in Timmins, CA, in August 2014 and 2015. We report and discuss the instrumental achievements of both sensors during these flights in the UT-LS. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS and the region Champagne-Ardenne.

  3. Laboratory Investigations of Stratospheric Halogen Chemistry

    Science.gov (United States)

    Wine, Paul H.; Nicovich, J. Michael; Stickel, Robert E.; Hynes, Anthony J.

    1997-01-01

    A final report for the NASA-supported project on laboratory investigations of stratospheric halogen chemistry is presented. In recent years, this project has focused on three areas of research: (1) kinetic, mechanistic, and thermochemical studies of reactions which produce weakly bound chemical species of atmospheric interest; (2) development of flash photolysis schemes for studying radical-radical reactions of stratospheric interest; and (3) photochemistry studies of interest for understanding stratospheric chemistry. The first section of this paper contains a discussion of work which has not yet been published. All subsequent chapters contain reprints of published papers that acknowledge support from this grant.

  4. Percutaneous treatment of extrahepatic bile duct stones assisted by balloon sphincteroplasty and occlusion balloon

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Sung; Kim, Ji Hyung; Choi, Young Woo; Lee, Tae Hee; Hwang, Cheol Mog; Cho, Young Jun; Kim, Keum Won [Konyang University Hospital, Daejeon (Korea, Republic of)

    2005-12-15

    To describe the technical feasibility and usefulness of extrahepatic biliary stone removal by balloon sphincteroplasty and occlusion balloon pushing. Fifteen patients with extrahepatic bile duct stones were included in this study. Endoscopic stone removal was not successful in 13 patients, and two patients refused the procedure due to endoscopy phobia. At first, all patients underwent percutaneous transhepatic biliary drainage (PTBD). A few days later, through the PTBD route, balloon assisted dilatation for common bile duct (CBD) sphincter was performed, and then the stones were pushed into the duodenum using an 11.5 mm occlusion balloon. Success rate, reason for failure, and complications associated with the procedure were evaluated. Eight patients had one stone, five patients had two stones, and two patients had more than five stones. The procedure was successful in 13 patients (13/15). In 12 of the patients, all stones were removed in the first trial. In one patients, residual stones were discovered on follow-up cholangiography, and were subsequently removed in the second trial. Technical failure occurred in two patients. Both of these patients had severely dilated CBD and multiple stones with various sizes. Ten patients complained of pain in the right upper quadrant and epigastrium of the abdomen immediately following the procedure, but there were no significant procedure-related complications such as bleeding or pancreatitis. Percutaneous extrahepatic biliary stone removal by balloon sphincteroplasty and subsequent stone pushing with occlusion balloon is an effective, safe, and technically feasible procedure which can be used as an alternative method in patients when endoscopic extrahepatic biliary stone removal was not successful.

  5. Percutaneous treatment of extrahepatic bile duct stones assisted by balloon sphincteroplasty and occlusion balloon

    International Nuclear Information System (INIS)

    Park, Yong Sung; Kim, Ji Hyung; Choi, Young Woo; Lee, Tae Hee; Hwang, Cheol Mog; Cho, Young Jun; Kim, Keum Won

    2005-01-01

    To describe the technical feasibility and usefulness of extrahepatic biliary stone removal by balloon sphincteroplasty and occlusion balloon pushing. Fifteen patients with extrahepatic bile duct stones were included in this study. Endoscopic stone removal was not successful in 13 patients, and two patients refused the procedure due to endoscopy phobia. At first, all patients underwent percutaneous transhepatic biliary drainage (PTBD). A few days later, through the PTBD route, balloon assisted dilatation for common bile duct (CBD) sphincter was performed, and then the stones were pushed into the duodenum using an 11.5 mm occlusion balloon. Success rate, reason for failure, and complications associated with the procedure were evaluated. Eight patients had one stone, five patients had two stones, and two patients had more than five stones. The procedure was successful in 13 patients (13/15). In 12 of the patients, all stones were removed in the first trial. In one patients, residual stones were discovered on follow-up cholangiography, and were subsequently removed in the second trial. Technical failure occurred in two patients. Both of these patients had severely dilated CBD and multiple stones with various sizes. Ten patients complained of pain in the right upper quadrant and epigastrium of the abdomen immediately following the procedure, but there were no significant procedure-related complications such as bleeding or pancreatitis. Percutaneous extrahepatic biliary stone removal by balloon sphincteroplasty and subsequent stone pushing with occlusion balloon is an effective, safe, and technically feasible procedure which can be used as an alternative method in patients when endoscopic extrahepatic biliary stone removal was not successful

  6. Simultaneous stent expansion/balloon deflation technique to salvage failed balloon remodeling.

    Science.gov (United States)

    Ladner, Travis R; He, Lucy; Davis, Brandon J; Froehler, Michael T; Mocco, J

    2016-04-01

    Herniation, with possible embolization, of coils into the parent vessel following aneurysm coiling remains a frequent challenge. For this reason, balloon or stent assisted embolization remains an important technique. Despite the use of balloon remodeling, there are occasions where, on deflation of the balloon, some coils, or even the entire coil mass, may migrate. We report the successful use of a simultaneous adjacent stent deployment bailout technique in order to salvage coil prolapse during balloon remodeling in three patients. Case No 1 was a wide neck left internal carotid artery bifurcation aneurysm, measuring 9 mm×7.9 mm×6 mm with a 5 mm neck. Case No 2 was a complex left superior hypophyseal artery aneurysm, measuring 5.3 mm×4 mm×5 mm with a 2.9 mm neck. Case No 3 was a ruptured right posterior communicating artery aneurysm, measuring 4 mm×4 mm×4.5 mm with a 4 mm neck. This technique successfully returned the prolapsed coil mass into the aneurysm sac in all cases without procedural complications. The closed cell design of the Enterprise VRD (Codman and Shurtleff Inc, Raynham, Massachusetts, USA) makes it ideal for this bailout technique, by allowing the use of an 0.021 inch delivery catheter (necessary for simultaneous access) and by avoiding the possibility of an open cell strut getting caught on the deflated balloon. We hope this technique will prove useful to readers who may find themselves in a similar predicament. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Are drug-coated balloons cost effective for femoropopliteal occlusive disease? A comparison of bare metal stents and uncoated balloons.

    Science.gov (United States)

    Poder, Thomas G; Fisette, Jean-François

    2016-07-01

    To perform a cost-effectiveness analysis to help hospital decision-makers with regard to the use of drug-coated balloons compared with bare metal stents and uncoated balloons for femoropopliteal occlusive disease. Clinical outcomes were extracted from the results of meta-analyses already published, and cost units are those used in the Quebec healthcare network. The literature review was limited to the last four years to obtain the most recent data. The cost-effectiveness analysis was based on a 2-year perspective, and risk factors of reintervention were considered. The cost-effectiveness analysis indicated that drug-coated balloons were generally more efficient than bare metal stents, particularly for patients with higher risk of reintervention (up to CAD$1686 per patient TASC II C or D). Compared with uncoated balloons, results indicated that drug-coated balloons were more efficient if the reintervention rate associated with uncoated balloons is very high and for patients with higher risk of reintervention (up to CAD$3301 per patient). The higher a patient's risk of reintervention, the higher the savings associated with the use of a drug-coated balloon will be. For patients at lower risk, the uncoated balloon strategy is still recommended as a first choice for endovascular intervention.

  8. Anderson localization and ballooning eigenfunctions

    International Nuclear Information System (INIS)

    Dewar, R.L.; Cuthbert, P.

    1999-01-01

    In solving the ballooning eigenvalue for a low-aspect-ratio stellarator equilibrium it is found that the quasiperiodic behaviour of the equilibrium quantities along a typical magnetic field line can lead to localization of the ballooning eigenfunction (Anderson localization) even in the limit of zero shear. This localization leads to strong field-line dependence of the ballooning eigenvalue, with different branches attaining their maximum growth rates on different field lines. A method is presented of estimating the field-line dependence of various eigenvalue branches by using toroidal and poloidal symmetry operations on the shear-free ballooning equation to generate an approximate set of eigenfunctions. These zero-shear predictions are compared with accurate numerical solutions for the H-1 Heliac and are shown to give a qualitatively correct picture, but finite shear corrections will be needed to give quantitative predictions

  9. Reaching High Altitudes on Mars with an Inflatable Hypersonic Drag Balloon (Ballute)

    CERN Document Server

    Griebel, Hannes

    2010-01-01

    The concept of probing the atmosphere of planet Mars by means of a hypersonic drag balloon, a device known as a “ballute”, is a novel approach to planetary science. In this concept, the probe deploys an inflatable drag body out in space and may then enter the atmosphere either once or several times until it slowly descends towards the ground, taking continuous atmospheric and other readings across a large altitude and ground range. Hannes Griebel discusses the theory behind such a mission along with experience gained during its practical implementation, such as mission design, manufacturing, packing and deployment techniques as well as ground and flight tests. The author also studies other ballute applications, specifically emergency low Earth orbit recovery and delivering payloads to high altitude landing sites on Mars.

  10. On the recent measurements of the electric parameters and aerosols in the lower stratosphere

    International Nuclear Information System (INIS)

    Morita, Yasuhiro; Ishikawa, Haruji; Takagi, Masumi

    1979-01-01

    In Sanriku (Iwate), Laramie (Wyoming) and Hilo (Hawaii), ionization intensity, electric conductivity, atmospheric ion density and aerosol were observed by balloon flights simultaneously from October, 1973, to September, 1976. On the basis of these results, the influences of aerosol and geomagnetic latitude upon the electric conductivity and atmospheric ion density were examined. From the simultaneous observation of electric conductivity and ion density, the average electrical mobility of ions and also its vertical distribution were obtained. In the simultaneous observation of electric conductivity and aerosol at altitude below about 10 km, the effect of aerosol on ion annihilation was detectable. In the stratosphere above this level, the electric conductivity (or the atmospheric ion density) is determined only by the ionization intensity, and there was little effect of aerosol. This was also confirmed by the comparative observations in Japan and U.S. with different geomagnetic latitudes. The average vertical mobility of ions increased with altitude at Laramie and decreased at Hilo. (J.P.N.)

  11. Transport of Ice into the Stratosphere and the Humidification of the Stratosphere over the 21st Century

    Science.gov (United States)

    Dessler, A. E.; Ye, H.; Wang, T.; Schoeberl, M. R.; Oman, L. D.; Douglass, A. R.; Butler, A. H.; Rosenlof, K. H.; Davis, S. M.; Portmann, R. W.

    2016-01-01

    Climate models predict that tropical lower-stratospheric humidity will increase as the climate warms. We examine this trend in two state-of-the-art chemistry-climate models. Under high greenhouse gas emissions scenarios, the stratospheric entry value of water vapor increases by approx. 1 part per million by volume (ppmv) over this century in both models. We show with trajectory runs driven by model meteorological fields that the warming tropical tropopause layer (TTL) explains 50-80% of this increase. The remainder is a consequence of trends in evaporation of ice convectively lofted into the TTL and lower stratosphere. Our results further show that, within the models we examined, ice lofting is primarily important on long time scales - on interannual time scales, TTL temperature variations explain most of the variations in lower stratospheric humidity. Assessing the ability of models to realistically represent ice-lofting processes should be a high priority in the modeling community.

  12. Fatigue Management Strategies for the Stratospheric Observatory for Infrared Astronomy

    Science.gov (United States)

    Bendrick, Gregg

    2012-01-01

    Operation of the Stratospheric Observatory for Infrared Astronomy entails a great deal of night-time work, with the potential for both acute and chronic sleep loss, as well as circadian rhythm dysynchrony. Such fatigue can result in performance decrements, with an increased risk of operator error. The NASA Dryden Flight Research Center manages this fatigue risk by means of a layered approach, to include: 1) Education and Training 2) Work Schedule Scoring 3) Obtained Sleep Metrics 4) Workplace and Operational Mitigations and 5) Incident or Accident Investigation. Specifically, quantitative estimation of the work schedule score, as well as the obtained sleep metric, allows Supervisors and Managers to better manage the risk of fatigue within the context of mission requirements.

  13. MLS measurements of stratospheric hydrogen cyanide during the 2015-2016 El Niño event

    Science.gov (United States)

    Pumphrey, Hugh C.; Glatthor, Norbert; Bernath, Peter F.; Boone, Christopher D.; Hannigan, James W.; Ortega, Ivan; Livesey, Nathaniel J.; Read, William G.

    2018-01-01

    It is known from ground-based measurements made during the 1982-1983 and 1997-1998 El Niño events that atmospheric hydrogen cyanide (HCN) tends to be higher during such years than at other times. The Microwave Limb Sounder (MLS) on the Aura satellite has been measuring HCN mixing ratios since launch in 2004; the measurements are ongoing at the time of writing. The winter of 2015-2016 saw the largest El Niño event since 1997-1998. We present MLS measurements of HCN in the lower stratosphere for the Aura mission to date, comparing the 2015-2016 El Niño period to the rest of the mission. HCN in 2015-2016 is higher than at any other time during the mission, but ground-based measurements suggest that it may have been even more elevated in 1997-1998. As the MLS HCN data are essentially unvalidated, we show them alongside data from the MIPAS and ACE-FTS instruments; the three instruments agree reasonably well in the tropical lower stratosphere. Global HCN emissions calculated from the Global Fire Emissions Database (GFED v4.1) database are much greater during large El Niño events and are greater in 1997-1998 than in 2015-2016, thereby showing good qualitative agreement with the measurements. Correlation between El Niño-Southern Oscillation (ENSO) indices, measured HCN, and GFED HCN emissions is less clear if the 2015-2016 event is excluded. In particular, the 2009-2010 winter had fairly strong El Niño conditions and fairly large GFED HCN emissions, but very little effect is observed in the MLS HCN.

  14. Stratospheric isotopic water profiles from a single submillimeter limb scan by TELIS

    Directory of Open Access Journals (Sweden)

    A. de Lange

    2009-08-01

    Full Text Available Around 490 GHz relatively strong HDO and H218O emission lines can be found in the submillimeter thermal-emission spectrum of the Earth's atmosphere, along with lines of the principal isotopologue of water vapour. These can be used for remote sensing of the rare/principal isotope ratio in the stratosphere. A sensitivity study has been performed for retrieval simulations of water isotopologues from balloon-borne measurements by the limb sounder TELIS (TErahertz and submillimeter LImb Sounder. The study demonstrates the capability of TELIS to determine, from a single limb scan, the profiles for H218O and HDO between 20 km and 37 km with a retrieval error of ≈3 and a spatial resolution of 1.5 km, as determined by the width of the averaging kernel. In addition HDO can be retrieved in the range of 10–20 km, albeit with a strongly deteriorated retrieval error. Expected uncertainties in instrumental parameters have only limited impact on the retrieval results.

  15. Application of Electrocautery Needle Knife Combined with Balloon Dilatation versus Balloon Dilatation in the Treatment of Tracheal Fibrotic Scar Stenosis.

    Science.gov (United States)

    Bo, Liyan; Li, Congcong; Chen, Min; Mu, Deguang; Jin, Faguang

    Electrocautery needle knives can largely reduce scar and granulation tissue hyperplasia and play an important role in treating patients with benign stricture. The aim of this retrospective study was to evaluate the efficacy and safety of electrocautery needle knife combined with balloon dilatation versus balloon dilatation alone in the treatment of tracheal stenosis caused by tracheal intubation or tracheotomy. We retrospectively analysed the clinical data of 43 patients with tracheal stenosis caused by tracheotomy or tracheal intubation in our department from January 2013 to January 2016. Among these 43 patients, 23 had simple web-like stenosis and 20 had complex steno sis. All patients were treated under general anaesthesia, and the treatment methods were (1) balloon dilatation alone, (2) needle knife excision of fibrotic tissue combined with balloon dilatation, and (3) needle knife radial incision of fibrotic tissue combined with balloon dilatation. After treatment the symptoms, such as shortness of breath, were markedly improved immediately in all cases. The stenosis degree of patients who were treated with the elec-trocautery needle knife combined with balloon dilatation had better improvement compared with that of those treated with balloon dilatation treatment alone after 3 months (0.45 ± 0.04 vs. 0.67 ± 0.05, p knife combined with balloon dilatation is an effective and safe treatment for tracheal fibrotic stenosis compared with balloon dilatation alone. © 2017 S. Karger AG, Basel.

  16. In-situ BrO measurements in the upper troposphere / lower stratosphere. Validation of the ENVISAT satellite measurements and photochemical model studies

    Energy Technology Data Exchange (ETDEWEB)

    Hrechanyy, S.

    2007-04-15

    Inorganic bromine species form the second most important halogen family affecting stratospheric ozone (WMO, 2003). Although the stratospheric bromine mixing ratio is about two orders of magnitude lower than the chlorine one, bromine has much higher ozone depleting potential (factor of about 45) compared to chlorine. This study reports and discusses atmospheric bromine monoxide, BrO, measurements in the altitude range 15-30 km performed by the balloon-borne instrument TRIPLE and aircraft instrument HALOX employing the chemical conversion resonance fluorescence technique, which is the only proven in-situ technique for the measurements of BrO. 57 HALOX flights have been performed in the frame of five field campaigns ranging from the Arctic to tropics. Three TRIPLE flights were carried out at high and mid latitudes in the frame of the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) validation. Calibration, consistency checks, data analysis, and error assessment for the in-situ measurements are described. The balloon measurements have yielded vertical profiles of BrO between 15 and 30 km altitude at northern mid- and at arctic latitudes. From the aircraft measurements a meridional BrO distribution from tropical to the arctic latitudes between 15 and 20 km altitude was obtained. In order to check the reliability of the bromine chemistry in the CLaMS model the BrO profile measured by TRIPLE on June 9, 2003 in Arctic spring/summer conditions was compared to a simulated BrO profile. For the simulation the model was initialized with appropriate satellite and balloon measurements and with a total stratospheric bromine of 18.4 pptv. Very good agreement between the TRIPLE measurements and model results was found. Measurements of BrO in the tropical tropopause layer (TTL) are well suited to investigate the contribution of very short-lived bromine species (VSLS) to the inorganic bromine, Bry. Since tropical HALOX BrO measurements from TROCCINOX

  17. Recent activities on the scientific ballooning in Japan

    International Nuclear Information System (INIS)

    Nisimura, J.; Hirosawa, H.

    1984-01-01

    Scientific ballooning is Japan has been organized by the Institute of Space and Astronautical Science, and about 15 balloons have been launched each year from Sanriku Balloon Center that belongs to this Institute. The balloon center is located in the northern part of Japan. The observations cover the field of X-ray, gamma-ray, infrared astronomy, cosmic rays, and atmospheric science. Systems of lon duration flights such as 'Boomerang Balloons', and fine attitude control systems were developed and widely applied to the scientific observations. International collaborative works were performed in Australia and Indonesia last year. Some details of these activities are reported and possible future collaborations with Braziian balloon group are also discussed. (Author) [pt

  18. New Heights with High-Altitude Balloon Launches for Effective Student Learning and Environmental Awareness

    Science.gov (United States)

    Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.

    2009-12-01

    Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Furthermore this program has generated many front page news reports along with significant TV coverage because of its connection to hands-on learning for students and adults of all ages, connection to understanding climate change and ways to mitigate

  19. Overview of the NASA balloon R&D program

    Science.gov (United States)

    Smith, I. Steve, Jr.

    1994-01-01

    The catastrophic balloon failure during the first half of the 1980's identified the need for a comprehensive and continuing balloon research and development (R&D) commitment by NASA. Technical understanding was lacking in many of the disciplines and processes associated with scientific ballooning. A comprehensive balloon R&D plan was developed in 1986 and implemented in 1987. The objectives were to develop the understanding of balloon system performance, limitations, and failure mechanisms. The program consisted of five major technical areas: structures, performance and analysis, materials, chemistry and processing, and quality control. Research activitites have been conducted at NASA/Goddard Space Flight Center (GSFC)-Wallops Flight Facility (WFF), other NASA centers and government facilities, universities, and the balloon manufacturers. Several new and increased capabilities and resources have resulted from this activity. The findings, capabilities, and plan of the balloon R&D program are presented.

  20. Balloon pulmonary valvotomy – Not just a simple balloon dilatation

    Directory of Open Access Journals (Sweden)

    Subhendu Mohanty

    2014-07-01

    Full Text Available Balloon pulmonary valvotomy is the preferred mode of treatment in patients with isolated pulmonary valvar stenosis and has shown good long term results. It is generally considered a safe procedure with few complications. There have been however, case reports of potentially fatal acute severe pulmonary edema occurring after the procedure in some patients. The cause of this complication and its pathophysiology is still not clear. Its occurrence is also infrequent with less than 5 cases reported till now. We report a case of pulmonary valvar stenosis which developed acute severe refractory pulmonary edema immediately after balloon pulmonary valvotomy.

  1. Particle Astrophysics in NASA's Long Duration Balloon Program

    International Nuclear Information System (INIS)

    Gorham, Peter W.

    2013-01-01

    A century after Viktor Hess' discovery of cosmic rays, balloon flights still play a central role in the investigation of cosmic rays over nearly their entire spectrum. We report on the current status of NASA balloon program for particle astrophysics, with particular emphasis on the very successful Antarctic long-duration balloon program, and new developments in the progress toward ultra-long duration balloons

  2. Triton - Stratospheric molecules and organic sediments

    Science.gov (United States)

    Thompson, W. Reid; Singh, Sushil K.; Khare, B. N.; Sagan, Carl

    1989-01-01

    Continuous-flow plasma discharge techniques show production rates of hydrocarbons and nitriles in N2 + CH4 atmospheres appropriate to the stratosphere of Titan, and indicate that a simple eddy diffusion model together with the observed electron flux quantitatively matches the Voyager IRIS observations for all the hydrocarbons, except for the simplest ones. Charged particle chemistry is very important in Triton's stratosphere. In the more CH4-rich case of Titan, many hydrocarbons and nitriles are produced in high yield. If N2 is present, the CH4 fraction is low, but hydrocarbons and nitriles are produced in fair yield, abundances of HCN and C2H2 in Triton's stratosphere exceed 10 to the 19th molecules/sq cm per sec, and NCCN, C3H4, and other species are predicted to be present. These molecules may be detected by IRIS if the stratosphere is as warm as expected. Both organic haze and condensed gases will provide a substantial UV and visible opacity in Triton's atmosphere.

  3. Special considerations for qualifying thin films for super pressure pumpkin ultra long duration balloon missions

    Science.gov (United States)

    Said, Magdi A.

    2004-01-01

    The assessment of creep and dynamic response behaviors on materials intended for ultra long duration balloon (ULDB) applications is essential. The first provides needed information for design and fabrication. The second ensures that the film is sufficiently tough to survive the dynamic events during launch and ascent. Characterization and assessment of these two important parameters are discussed in this paper. Visco-elastic behavior of materials in a loaded structure, such as the ULDB film change their geometry significantly over time under load causing possible changes in the load path and the stress distribution. These changes must be held in check to satisfy the functional requirements of the structure over its service life. Typically, the balloon experiences during its service life various environmental conditions each with a different creep response. These are characterized by a simplified load temperature history for the purpose of lifetime response assessment. At mid-latitudes a significant portion of the service life is spent at night, i.e., at low temperature and low load; for the ULDB film this night-time contribution to creep is negligible. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This paper presents the creep behavior of the ULDB film as a function of load, temperature, and time along with an overview of its implementation in the design. In addition, it presents a quantitative assessment on the toughness of the material under dynamic "Snatch" loading.

  4. Laser welding of balloon catheters

    Science.gov (United States)

    Flanagan, Aidan J.

    2003-03-01

    The balloon catheter is one of the principal instruments of non-invasive vascular surgery. It is used most commonly for angioplasty (and in recent years for delivering stents) at a multitude of different sites in the body from small arteries in the heart to the bilary duct. It is composed of a polymer balloon that is attached to a polymer shaft at two points called the distal and proximal bonds. The diverse utility of balloon catheters means a large range of component sizes and materials are used during production; this leads to a complexity of bonding methods and technology. The proximal and distal bonds have been conventionally made using cyanoacrylate or UV curing glue, however with performance requirements of bond strength, flexibility, profile, and manufacturing costs these bonds are increasingly being made by welding using laser, RF, and Hot Jaw methods. This paper describes laser welding of distal and proximal balloon bonds and details beam delivery, bonding mechanisms, bond shaping, laser types, and wavelength choice.

  5. NASA Langley Research Center tethered balloon systems

    Science.gov (United States)

    Owens, Thomas L.; Storey, Richard W.; Youngbluth, Otto

    1987-01-01

    The NASA Langley Research Center tethered balloon system operations are covered in this report for the period of 1979 through 1983. Meteorological data, ozone concentrations, and other data were obtained from in situ measurements. The large tethered balloon had a lifting capability of 30 kilograms to 2500 meters. The report includes descriptions of the various components of the balloon systems such as the balloons, the sensors, the electronics, and the hardware. Several photographs of the system are included as well as a list of projects including the types of data gathered.

  6. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  7. Gigantic balloon type artificial lightning generator

    Energy Technology Data Exchange (ETDEWEB)

    Horii; kenji

    1988-09-05

    This paper outlines a hot-air balloon type Van de Graaf 50-MV generator which can generate a 50,000,000 V, 0.2 to 0.3 coulomb artificial lightning comparable to natural lightning discharge and reports the results of investigation on discharging experiments conducted using this apparatus. The subjects covered are as follows: (1) Outline of the hot-air balloon type Van de Graaf 50-MV generator, (2) electric characteristics of the Van de Graaf 50-MV generator, (3) charge transfer with film and balloon charging, (4) the load of the balloon and buoyancy calculation, (5) leakage of charges, (6) study of charging experiments, and (7) evaluation of the apparatus and its method and problems to be solved. (4 figs, 4 tabs, 4 refs)

  8. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?

    Directory of Open Access Journals (Sweden)

    J.-U. Grooß

    2011-12-01

    Full Text Available Balloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS. As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

  9. Balloon cell nevus of the iris.

    Science.gov (United States)

    Morcos, Mohib W; Odashiro, Alexandre; Bazin, Richard; Pereira, Patricia Rusa; O'Meara, Aisling; Burnier, Miguel N

    2014-12-01

    Balloon cell nevus is a rare histopathological lesion characterized by a predominance of large, vesicular and clear cells, called balloon cells. There is only 1 case of balloon cell nevus of the iris reported in the literature. A 55 year-old man presented a pigmented elevated lesion in the right iris since the age of 12 years old. The lesion had been growing for the past 2 years and excision was performed. Histopathological examination showed a balloon cell nevus composed of clear and vacuolated cells without atypia. A typical spindle cell nevus of the iris was also observed. The differential diagnosis included xanthomatous lesions, brown adipocyte or other adipocytic lesions, clear cell hidradenoma, metastatic clear cell carcinoma of the kidney and clear cell sarcoma. The tumor was positive for Melan A, S100 protein and HMB45. Balloon cell nevus of the iris is rare but should be considered in the differential diagnosis of melanocytic lesions of the iris. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Mars Solar Balloon Lander, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  11. Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign

    Science.gov (United States)

    Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; hide

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.

  12. Trajectory tracking control for underactuated stratospheric airship

    Science.gov (United States)

    Zheng, Zewei; Huo, Wei; Wu, Zhe

    2012-10-01

    Stratospheric airship is a new kind of aerospace system which has attracted worldwide developing interests for its broad application prospects. Based on the trajectory linearization control (TLC) theory, a novel trajectory tracking control method for an underactuated stratospheric airship is presented in this paper. Firstly, the TLC theory is described sketchily, and the dynamic model of the stratospheric airship is introduced with kinematics and dynamics equations. Then, the trajectory tracking control strategy is deduced in detail. The designed control system possesses a cascaded structure which consists of desired attitude calculation, position control loop and attitude control loop. Two sub-loops are designed for the position and attitude control loops, respectively, including the kinematics control loop and dynamics control loop. Stability analysis shows that the controlled closed-loop system is exponentially stable. Finally, simulation results for the stratospheric airship to track typical trajectories are illustrated to verify effectiveness of the proposed approach.

  13. Stratospheric Aerosol and Gas Experiment (SAGE) IV Pathfinder

    Data.gov (United States)

    National Aeronautics and Space Administration — The Clean Air Act mandates NASA to monitor stratospheric ozone, and stratospheric aerosol measurements are vital to our understanding of climate.  Maintaining...

  14. Boston's balloon dilatation for treatment of cardiac achalasia

    International Nuclear Information System (INIS)

    Yin Jianguo; Song Jinwen; Yang Yan; Liu Xiaohong; Fu Zhiming; Zhang Yaqin

    2001-01-01

    Objective: To review and summarize effectiveness and method of the Boston's balloon dilation in cardiac achalasia. Methods: The intensified guide wire was inserted into stomach through mouth cavity under TV control. The Boston's balloon was inserted to the cardiac stricture through the guide wire and dilatated with 15% contrast medium with to a maximum diameter for five minutes and then the balloon was dilatated again for 3-5 minutes, all together for 3-4 times. The severe stricture must be pre-dilatated with 20-25 mm diameter balloon. Results: The balloon insertion was technically successful in all 26 patients. The once success of balloon dilation was achieved in 24 patients and twice in other 2. Follow-up time was from 2 weeks to 31 months (mean 10.6 months). Recurrent stenosis had not occurred in all patients. Remission rate of dysphagia was 100%. Esophageal reflux occurred in 3 patients. Conclusions: The Boston's balloon dilatation is simple and effective for treatment of cardiac achalasia. The method sometimes may replace surgical procedure

  15. Clinical experience with the Monorail balloon catheter for coronary angioplasty.

    Science.gov (United States)

    Finci, L; Meier, B; Roy, P; Steffenino, G; Rutishauser, W

    1988-01-01

    The Monorail balloon catheter is distinctly different from other current balloon catheters: the guidewire passes through the balloon itself, exits the catheter proximal to the balloon, and runs alongside its small shaft (3 French) through the guiding catheter. Monorail coronary angioplasty was attempted in 61 patients on 73 lesions with balloons from 2.0 to 3.7 mm. Angiographic success was obtained in 66 lesions (90%). For 15 lesions, balloon exchanges were needed. In three lesions, the Monorail balloon failed to cross the lesion, while a standard balloon succeeded; two lesions could not be crossed with any balloon. Vessel occlusion occurred in four patients: two had emergency surgery without infarct (one died suddenly 4 days later and one had a stroke 1 day later), one was recanalized with a standard balloon, and one had a myocardial infarct. Continuous infusion of urokinase was used until patient 3 in whom problems with the delivery system led to cardiocerebral air embolization (with complete recovery). No thrombotic complications were observed in the subsequent 58 patients with only a bolus of 10,000 U of heparin. The Monorail balloon facilitates contrast injections and balloon exchanges but appears more difficult to pass through tight lesions. Omission of the previously recommended infusion with a thrombolytic agent proved safe.

  16. Use of monorail PTCA balloon catheter for local drug delivery.

    Science.gov (United States)

    Trehan, Vijay; Nair, Girish M; Gupta, Mohit D

    2007-01-01

    We report the use of monorail coronary balloon as an infusion catheter to give bailout abciximab selectively into the site of stent thrombosis as an adjunct to plain old balloon angioplasty (POBA) in a patient of subacute stent thrombosis of the left anterior descending coronary artery. The balloon component (polyamide material) of the monorail balloon catheter was shaved off the catheter so that abciximab injected through the balloon port of the catheter exited out the shaft of the balloon catheter at the site from where the balloon material was shaved off. We believe that selective infusion with abciximab along with POBA established antegrade flow and relieved the patient's ischemia. In the absence of essential hardware to give intracoronary drugs in an emergency situation, one may employ our technique of infusion through a monorail balloon catheter after shaving the balloon component from the catheter.

  17. TandEM: Titan and Enceladus mission

    Science.gov (United States)

    Coustenis, A.; Atreya, S.K.; Balint, T.; Brown, R.H.; Dougherty, M.K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R.A.; Griffith, C.A.; Gurvits, L.I.; Jaumann, R.; Langevin, Y.; Leese, M.R.; Lunine, J.I.; McKay, C.P.; Moussas, X.; Muller-Wodarg, I.; Neubauer, F.; Owen, T.C.; Raulin, F.; Sittler, E.C.; Sohl, F.; Sotin, Christophe; Tobie, G.; Tokano, T.; Turtle, E.P.; Wahlund, J.-E.; Waite, J.H.; Baines, K.H.; Blamont, J.; Coates, A.J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R.D.; Morse, A.; Porco, C.C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J.C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D.H.; Benilan, Y.; Bertucci, C.; Bezard, B.; Bjoraker, G.L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M.T.; Chassefiere, E.; Coll, P.; Combes, M.; Cooper, J.F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I.A.; de Angelis, E.; De Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F.M.; Fortes, A.D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Kuppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le, Mouelic S.; Lebonnois, S.; Ledvina, S.; Li, Ji; Livengood, T.A.; Lopes, R.M.; Lopez-Moreno, J. -J.; Luz, D.; Mahaffy, P.R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Salvan, C.M.; Milillo, A.; Mitchell, D.G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, Catherine D.; Nixon, C.A.; Mvondo, D.N.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F.T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Bermejo, M.R.; Sarris, E.T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L.J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D.F.; Szego, K.; Szopa,

    2009-01-01

    TandEM was proposed as an L-class (large) mission in response to ESA’s Cosmic Vision 2015–2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini–Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini–Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfière) and possibly several landing probes to be delivered through the atmosphere.

  18. Ballooning behavior in the golden orbweb spider Nephilapilipes (Araneae: Nephilidae

    Directory of Open Access Journals (Sweden)

    Vanessa M.J. Lee

    2015-01-01

    Full Text Available Ballooning, a mode of aerial dispersal in spiders, is an innate behavior that requires appropriate physiological and meteorological conditions. Although only rarely reported in the golden orbweb spiders, family Nephilidae, the large geographic distributions of most nephilids—in particular of Nephila species—would imply that these spiders likely routinely disperse by ballooning in spite of giant female sizes. Here we study ballooning behavior in the golden orbweb spider Nephila pilipes (Fabricius, 1793. Specifically, we test for the propensity of spiderlings to deploy ballooning as a dispersal mechanism. We subjected a total of 59 first-instar spiderlings to a wind experiment at two wind speeds (2.17 ± 0.02 m s-1 and 3.17 ± 0.02 m s-1 under laboratory conditions. Under an average wind speed of 3.17 m s-1, none of the spiderlings exhibited pre-ballooning or ballooning behavior. However, at an average wind speed of 2.17 m s-1, 53 (89.8% spiderlings showed pre-ballooning behavior, and 17 (32.1% of the pre-ballooners ultimately ballooned. Our results concur with prior reports on spiderlings of other families that pre-ballooning behavior is a requirement for ballooning to occur. Furthermore, although we cannot rule out other dispersal mechanisms such as synanthropic spread, our findings suggest that the widespread N. pilipes uses ballooning to colonize remote oceanic islands.

  19. Optimizing logistics for balloon-occluded retrograde transvenous obliteration (BRTO) of gastric varices by doing away with the indwelling balloon: concept and techniques.

    Science.gov (United States)

    Saad, Wael E; Nicholson, David B

    2013-06-01

    Since the conception of balloon-occluded retrograde transvenous obliteration (BRTO) of gastric varices 25 years ago, the placement of an indwelling balloon for hours has been central to the BRTO procedure. Numerous variables and variations of the BRTO procedure have been described, including methods to reduce sclerosant, combining percutaneous transhepatic obliteration, varying sclerosant, and using multiple sclerosants within the same procedure. However, the consistent feature of BRTO has always remained the indwelling balloon. Placing an indwelling balloon over hours for the BRTO procedure is a logistical burden that taxes the interventional radiology team and hospital resources. Substituting the balloon with hardware (coils or Amplatzer vascular plugs [AVPs] or both) is technically feasible and its risks most likely correlate with gastrorenal shunt (GRS) size. The current authors use packed 0.018- or 0.035-in coils or both for small gastric variceal systems (GRS size A and B) and AVPs for GRS sizes up to size E (from size A-E). The current authors recommend an indwelling balloon (no hardware substitute) for very large gastric variceal system (GRS size F). Substituting the indwelling balloon for hardware in size F and potentially size E GRS can also be risky. The current article describes the techniques of placing up to 16-mm AVPs through balloon occlusion guide catheters and then deflating the balloon once it has been substituted with the AVPs. In addition, 22-mm AVPs can be placed through sheaths once the balloon occlusion catheters are removed to further augment the 16-mm Amplatzer occlusion. To date, there are no studies describing, let alone evaluating, the clinical feasibility of performing BRTO without indwelling balloons. The described techniques have been successfully performed by the current authors. However, the long-term safety and effectiveness of these techniques is yet to be determined. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Stratospheric BrONO2 observed by MIPAS

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2009-03-01

    Full Text Available The first measurements of stratospheric bromine nitrate (BrONO2 are reported. Bromine nitrate has been clearly identified in atmospheric infrared emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS aboard the European Envisat satellite, and stratospheric concentration profiles have been determined for different conditions (day and night, different latitudes. The BrONO2 concentrations show strong day/night variations, with much lower concentrations during the day. Maximum volume mixing ratios observed during night are 20 to 25 pptv. The observed concentration profiles are in agreement with estimations from photochemical models and show that the current understanding of stratospheric bromine chemistry is generally correct.

  1. How to perform combined cutting balloon and high pressure balloon valvuloplasty for dogs with subaortic stenosis.

    Science.gov (United States)

    Kleman, Mandi E; Estrada, Amara H; Maisenbacher, Herbert W; Prošek, Robert; Pogue, Brandon; Shih, Andre; Paolillo, Joseph A

    2012-01-01

    Subvalvular aortic stenosis (SAS) is one of the most common congenital cardiac malformations in dogs. Unfortunately, the long term success rate and survival data following either open heart surgery or catheter based intervention has been disappointing in dogs with severe subaortic stenosis. Medical therapy is currently the only standard recommended treatment option. A cutting balloon dilation catheter has been used successfully for resistant coronary artery and peripheral pulmonary arterial stenoses in humans. This catheter is unique in that it has the ability to cut, or score, the stenotic region prior to balloon dilatation of the stenosis. The use of cutting balloon valvuloplasty combined with high pressure valvuloplasty for dogs with severe subaortic stenosis has recently been reported to be a safe and feasible alternative therapeutic option. The following report describes this technique, outlines the materials required, and provides some 'tips' for successful percutaneous subaortic balloon valvuloplasty. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Stratospheric dryness: model simulations and satellite observations

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2007-01-01

    Full Text Available The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of comprehensive models which are able to reproduce the observations. Here we examine results from the coupled lower-middle atmosphere chemistry general circulation model ECHAM5/MESSy1 together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent the seasonal and inter-annual variability of water vapor. The model reproduces the very low water vapor mixing ratios (below 2 ppmv periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured. Our results confirm that the entry of tropospheric air into the tropical stratosphere is forced by large-scale wave dynamics, whereas radiative cooling regionally decelerates upwelling and can even cause downwelling. Thin cirrus forms in the cold air above cumulonimbus clouds, and the associated sedimentation of ice particles between 100 and 200 hPa reduces water mass fluxes by nearly two orders of magnitude compared to air mass fluxes. Transport into the stratosphere is supported by regional net radiative heating, to a large extent in the outer tropics. During summer very deep monsoon convection over Southeast Asia, centered over Tibet, moistens the stratosphere.

  3. 21 CFR 884.5050 - Metreurynter-balloon abortion system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...

  4. Balloon launching station, Mildura, Victoria

    International Nuclear Information System (INIS)

    The Mildura Balloon Launching Station was established in 1960 by the Department of Supply (now the Department of Manufacturing Industry) on behalf of the United States Atomic Energy Commission (USAEC) to determine the content of radioactive material in the upper atmosphere over Australia. The Station location and layout, staffing, balloon launching equipment, launching, tracking and recovery are described. (R.L.)

  5. Hard X-Ray/Soft Gamma-Ray Experiments and Missions: Overview and Prospects

    Science.gov (United States)

    Cavallari, Erica; Frontera, Filippo

    2017-10-01

    Starting from 1960s, a great number of missions and experiments have been performed for the study of the high-energy sky. This review gives a wide vision of the most important space missions and balloon experiments that have operated in the 10-600 keV band, a crucial window for the study of the most energetic and violent phenomena in the Universe. Thus it is important to take the stock of the achievements to better establish what we have still to do with future missions in order to progress in this field, to establish which are the technologies required to solve the still open issues and to extend our knowledge of the Universe.

  6. [Balloon cell nevi of the conjunctiva (author's transl)].

    Science.gov (United States)

    Schlageter, P E; Daicker, B

    1975-06-01

    The clinical and histological features of three cases of conjunctival balloon cell nevi are described. This peculiar form of nevus is very rare in the conjunctiva. The findings are compared with the descriptions in the literature of dermal balloon cell nevi. They demonstrate, that the conjunctival and dermal tumours are of idential histological structure. The proliferations of the conjunctival epithelium often found in conjunctival nevi do not modify the balloon cell nevi. These can not be diagnosed clinically. The problems of the pathogenesis of the balloon cell nevi are discussed.

  7. Simulating clefts in pumpkin balloons

    Science.gov (United States)

    Baginski, Frank; Brakke, Kenneth

    2010-02-01

    The geometry of a large axisymmetric balloon with positive differential pressure, such as a sphere, leads to very high film stresses. These stresses can be significantly reduced by using a tendon re-enforced lobed pumpkin-like shape. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin shape, including the constant bulge angle (CBA) design, the constant bulge radius (CBR) design, CBA/CBR hybrids, and NASA’s recent constant stress (CS) design. Utilizing a hybrid CBA/CBR pumpkin design, Flight 555-NT in June 2006 formed an S-cleft and was unable to fully deploy. In order to better understand the S-cleft phenomenon, a series of inflation tests involving four 27-m diameter 200-gore pumpkin balloons were conducted in 2007. One of the test vehicles was a 1/3-scale mockup of the Flight 555-NT balloon. Using an inflation procedure intended to mimic ascent, the 1/3-scale mockup developed an S-cleft feature strikingly similar to the one observed in Flight 555-NT. Our analysis of the 1/3-scale mockup found it to be unstable. We compute asymmetric equilibrium configurations of this balloon, including shapes with an S-cleft feature.

  8. Dynamical response of the Arctic winter stratosphere to global warming

    Science.gov (United States)

    Karpechko, A.; Manzini, E.

    2017-12-01

    Climate models often simulate dynamical warming of the Arctic stratosphere as a response to global warming in association with a strengthening of the deep branch of the Brewer-Dobson circulation; however until now, no satisfactory mechanism for such a response has been suggested. Here we investigate the role of stationary planetary waves in the dynamical response of the Arctic winter stratosphere circulation to global warming by analysing simulations performed with atmosphere-only Coupled Model Intercomparison Project Phase 5 (CMIP5) models driven by prescribed sea surface temperatures (SSTs). We focus on December-February (DJF) because this is the period when the troposphere and stratosphere are strongly coupled. When forced by increased SSTs, all the models analysed here simulate Arctic stratosphere dynamical warming, mostly due to increased upward propagation of quasi-stationary wave number 1, as diagnosed by the meridional eddy heat flux. By analysing intermodel spread in the response we show that the stratospheric warming and increased wave flux to the stratosphere correlate with the strengthening of the zonal winds in subtropics and mid-latitudes near the tropopause- a robust response to global warming. These results support previous studies of future Arctic stratosphere changes and suggest a dynamical warming of the Arctic wintertime polar vortex as the most likely response to global warming.

  9. Retained intraaortic balloon. Case report and review of the literature.

    Science.gov (United States)

    Grande, A M; Martinelli, L; Graffigna, A; Viganò, M

    1995-01-01

    We report a case of intraaortic balloon entrapment in a 70-year-old man who underwent emergency triple coronary bypass. Intraaortic balloon rupture caused the formation of a clot inside the balloon that eventually was responsible for the balloon's entrapment at the aortic bifurcation. The patient had severe atherosclerosis of the aorta and iliac arteries. Balloon removal required aorto-iliac exposure and aorto-bifemoral bypass. After 16 months, he is symptom free and at home.

  10. Upper gastrointestinal strictures: The results of balloon dilatation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kil Woo; Lim, Hyo Keun; Choo, In Wook; Bae, Sang Hoon; Yoon, Jong Sup [Hallym University College of Medicine, Seoul (Korea, Republic of); Yoo, Hyung Sik [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1990-12-15

    Balloon catheter dilatation of upper gastrointestinal strictures is an accepted mode of therapy. The authors report the balloon dilatation in 11 consecutive patients. The lesions treated included 10 benign strictures, and 1 esophageal cancer. Esophageal balloon were ranged from 2 mm in diameter, 4 cm in length, to 30 mm in diameter, 8 cm in length. Inflation was held for from 30 to 60 seconds and then repeated two or three times during each session. The balloons were inflated to pressure of from 2 to 12 atmospheres. There were from 1 to 13 dilatations. Two esophageal perforations were occurred in one esophagitis patient and other lye stricture patient. Two perforations were not required any surgical repair. All dilatation were performed without anesthesia. All strictures were responded immediately to dilatation. Prolonged course of treatment were needed with chronic severe esophagitis, lye stricture, gastrojejunostomy with chemotherapy, as a result, all patients, except esophageal cancer, could take regular diet after balloon catheter dilatation. Balloon catheter dilatation of upper gastrointestinal stenosis was effective and safe. It should be considered before other methods of treatment applicable.

  11. Percutaneous balloon dilation of pulmonary stenosis

    International Nuclear Information System (INIS)

    Hua Yangde; Huang Ming; Li Jinkang; Qian Jinqing; Chen Xiuyu; Yang Siyuan

    2003-01-01

    Objective: Review our experience of balloon dilation of valvular pulmonary stenosis in 32 cases. Methods: Totally 32 cases of pulmonary stenosis admitted from 1995-2001 with age of 1.5-13 yrs mean 6.8. Diagnosis was made by clinical manifestations, EKG, ECHO and angiocardiography. Results: Before dilation, the mean systolic pressure of right ventricle was (93.5 ± 28.5) mmHg, after the procedure it reduced to (42 ± 9.0) mmHg. The pressure gradient between right ventricle and pulmonary artery before dilation was (76 ± 30) mmHg and become (24.5 ± 8.5) mmHg after dilation. The gradient pressure after dilation was less than 25 mmHg in 90.6% cases. A case of Noonan syndrome showed no response to balloon dilation and died during valvulectomy from accompanying left ventricular cardiomyopathy. Conclusions: Balloon dilation of valvular pulmonary stenosis is effective and safe. The selection of proper diameter of pulmonary valvular rings and sized of the balloon are the major factors

  12. Stability of the pumpkin balloon

    Science.gov (United States)

    Baginski, Frank

    A large axisymmetric balloon with positive differential pressure, e.g., a sphere, leads to high film stresses. These can be significantly reduced by using a lobed pumpkin-like shape re-enforced with tendons. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin-shape at full inflation, including the constant bulge angle (CBA) design and the constant bulge radius (CBR) design. The authors and others have carried out stability studies of CBA and CBR designs and found instabilities under various conditions. While stability seems to be a good indicator of deployment problems for large balloons under normal ascent conditions, one cannot conclude that a stable design will deploy reliably. Nevertheless, stability analysis allows one to quantify certain deployment characteristics. Ongoing research by NASA's Balloon Program Office utilizes a new design approach developed by Rodger Farley, NASA/GSFC, that takes into account film and tendon strain. We refer to such a balloon as a constant stress (CS) pumpkin design. In June 2006, the Flight 555-NT balloon (based on a hybrid CBR/CBA design) developed an S-cleft and did not deploy. In order to understand the S-cleft phenomena and study a number of aspects related to the CS-design, a series of inflation tests were conducted at TCOM, Elizabeth City, NC in 2007. The test vehicles were 27 meter diameter pumpkins distinguished by their respective equatorial bulge angles (BA). For example, BA98 indicates an equatorial bulge angle of 98° . BA90, BA55, and BA00 are similarly defined. BA98 was essentially a one-third scale version of of the Flight 555 balloon (i.e., 12 micron film instead of 38.1 micron, mini-tendons, etc.). BA90 and BA55 were Farley CS-designs. BA00 was derived from the BA55 design so that a flat chord spanned adjacent tendons. In this paper, we will carry out stability studies of BA98, BA90, BA55, and BA00. We discuss the deployment problem of pumpkin balloons in light of 2007 inflation

  13. Balloon dilatation of ureteric strictures.

    Directory of Open Access Journals (Sweden)

    Punekar S

    2000-01-01

    Full Text Available AIMS: Evaluation of dilatation as a minimally invasive technique for the treatment of ureteric strictures. MATERIAL AND METHODS: We evaluated this technique in 16 patients with ureteric and secondary pelviureteric junction strictures from June 1998. Of these, 7 were men and 9 were women. The age range was from 14 to 40 years. RESULTS: Balloon dilatation was successful in 69% of patients. Strictures secondary to previous surgery had nearly 100% success. Of the 8 cases diagnosed as genitourinary tuberculosis, success rate was 50%. CONCLUSIONS: Factors affecting success of balloon dilatation are: a age of the stricture b length of the stricture and c etiology of the stricture. In a select group of patients with fresh post-operative or post-inflammatory strictures, balloon dilatation may be an attractive alternative to surgery.

  14. Is there any chlorine monoxide in the stratosphere?

    Science.gov (United States)

    Mumma, M. J.; Rogers, J. D.; Kostiuk, T.; Deming, D.; Hillman, J. J.; Zipoy, D.

    1983-01-01

    A ground-based search for stratospheric 35-ClO was carried out using an infrared heterodyne spectrometer in the solar absorption mode. Lines due to stratospheric HNO3 and tropospheric OCS were detected at about 0.2 percent absorptance levels, but the expected 0.1 percent lines of ClO in this same region were not seen. We find that stratospheric ClO is at least a factor of seven less abundant than is indicated by in situ measurements, and we set an upper limit of 2.3 x 10 to the 13th molecules/sq cm at the 95 percent confidence level for the integrated vertical column density of ClO. Our results imply that the release of chlorofluorocarbons may be significantly less important for the destruction of stratospheric ozone (O3) than is currently thought. Previously announced in STAR as N83-27518

  15. Properties of ballooning modes in the Heliotron configurations

    International Nuclear Information System (INIS)

    Nakajima, N.; Hudson, S.R.; Hegna, C.C.

    2005-01-01

    The stability of ballooning modes is influenced by the local and global magnetic shear and local and global magnetic curvature so significantly that it is fairly difficult to get those general properties in the three dimensional configurations with strong flexibility due to the external coil system. In the case of the planar axis heliotron configurations allowing a large Shafranov shift, like LHD, properties of the high-mode-number ballooning modes have been intensively investigated. It has been analytically shown that the local magnetic shear comes to disappear in the stellarator-like global magnetic shear region, as the Shafranov shift becomes large. Based on this mechanism and the characteristics of the local and global magnetic curvature, it is numerically shown that the destabilized ballooning modes have strong three-dimensional properties (both poloidal and toroidal mode couplings) in the Mercier stable region, and that those are fairly similar to ballooning modes in the axisymmetric system in the Mercier unstable region. As is well known, however, no quantization condition is applicable to the ballooning modes in the three-dimensional system without symmetry, and so the results of the high-mode-number ballooning modes in the covering space had to be confirmed in the real space. Such a confirmation has been done in the Mercier stable region and also in the Mercier unstable region by using three dimensional linearized ideal MHD stability code cas3d. Confirming the relation between high-mode-number ballooning analyses by the global mode analyses, the method of the equilibrium profile variations has been developed in the tree dimensional system, giving dt/dψ - dP/dψ stability diagram corresponding to the s - α diagram in tokamaks. This method of profile variation are very powerful to investigate the second stability of high-mode-number ballooning modes and has been more developed. Recently it has been applied to the plasma in the inward-shifted LHD

  16. Sources and sinks of stratospheric water vapor

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.

    1979-11-01

    A tutorial review of the understanding of stratospheric H 2 O and the processes controlling it is presented. Paradoxes posed by currently available observational data are cited and suggestions made as to how they might be resolved. Such resolution appears to require: that the bulk of our current data provides unrepresentative and misleading vertical and latitudinal H 2 O gradients immediately downstream from the tropical tropopause; and, that there exists within the troposphere a mechanism different from or in addition to the tropical tropopause cold trap for drying air to the mixing ratios found in the lower stratosphere. Satisfaction of these requirements will reconcile much heretofore puzzling observational data and will obviate the necessity for a stratospheric sink for H 2 O

  17. Laboratory Analysis of Polymer Thin Films for Planetary Balloons and Gossamer Structures

    Science.gov (United States)

    Sterling, Jerry; Fairbrother, Debora A.

    2004-01-01

    Commercially available polymer thin fdms with thickness of 15 microns or less were evaluated for potential application as the gas envelope material of balloons and other inflated vehicles. Films on this thickness scale are of interest for Earth and Mars ballooning as well as many gossamer space structures. Due to the uniqueness of these missions relative to typical uses of these materials, application-specific materials properties measurements were made. We evaluated numerous polymer chemistries, plus a few variations within one chemistry. The data show that there are often trade-offs among the different materials, such as with polyesters and polyimides having greater stiffness (modulus) but lower tear propagation resistance than polyethylene. Sections of polyethylene films can be joined by heat sealing, while adhesives and their accompanying mass penalty must be used with polyesters and polyimides. When the analysis temperature is reduced to 190 K, polyethylenes display dramatically increased stiffness and yield point, while the increase for other materials is more modest. The data also show that manufacturing processes can significantly affect film properties. To emphasize the need for application-specific properties assessment, we discuss two recent applications using these materials.

  18. Stratospheric ozone: History and concepts and interactions with climate

    Directory of Open Access Journals (Sweden)

    Bekki S.

    2009-02-01

    Full Text Available Although in relatively low concentration of a few molecules per million of e e air molecules, atmospheric ozone (trioxygen O3 is essential to sustaining life on the surface of the Earth. Indeed, by absorbing solar radiation between 240 and 320 nm, it shields living organisms including humans from the very harmful ultraviolet radiation UV-B. About 90% of the ozone resides in the stratosphere, a region that extends from the tropopause, whose altitude ranges from 7 km at the poles to 17 km in the tropics, to the stratopause located at about 50 km altitude. Stratospheric ozone is communally referred as the « ozone layer ». Unlike the atmosphere surrounding it, the stratosphere is vertically stratified and stable because the temperature increases with height within it. This particularity originates from heating produced by the absorption of UV radiation by stratospheric ozone. The present chapter describes the main mechanisms that govern the natural balance of ozone in the stratosphere, and its disruption under the influence of human activities.

  19. Impact of land convection on temperature diurnal variation in the tropical lower stratosphere inferred from COSMIC GPS radio occultations

    Directory of Open Access Journals (Sweden)

    S. M. Khaykin

    2013-07-01

    Full Text Available Following recent studies evidencing the influence of deep convection on the chemical composition and thermal structure of the tropical lower stratosphere, we explore its impact on the temperature diurnal variation in the upper troposphere and lower stratosphere using the high-resolution COSMIC GPS radio-occultation temperature measurements spanning from 2006 through 2011. The temperature in the lowermost stratosphere over land during summer displays a marked diurnal cycle characterized by an afternoon cooling. This diurnal cycle is shown collocated with most intense land convective areas observed by the Tropical Rainfall Measurement Mission (TRMM precipitation radar and in phase with the maximum overshooting occurrence frequency in late afternoon. Two processes potentially responsible for that are identified: (i non-migrating tides, whose physical nature is internal gravity waves, and (ii local cross-tropopause mass transport of adiabatically cooled air by overshooting turrets. Although both processes can contribute, only the lofting of adiabatically cooled air is well captured by models, making it difficult to characterize the contribution of non-migrating tides. The impact of deep convection on the temperature diurnal cycle is found larger in the southern tropics, suggesting more vigorous convection over clean rain forest continents than desert areas and polluted continents in the northern tropics.

  20. What Controls the Temperature of the Arctic Stratosphere during the Spring?

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Rosenfield, Joan E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding the mechanisms that control the temperature of the polar lower stratosphere during spring is key to understanding ozone loss in the Arctic polar vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by the formation of polar stratospheric clouds, and the conversion of chlorine species to reactive forms on these cloud particle surfaces. In this paper, we study those factors that control temperatures in the polar lower stratosphere. We use the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis data covering the last two decades to investigate how planetary wave driving of the stratosphere is connected to polar temperatures. In particular, we show that planetary waves forced in the troposphere in mid- to late winter (January-February) are principally responsible for the mean polar temperature during the March period. These planetary waves are forced by both thermal and orographic processes in the troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early spring, while weak mid-winter forcing leads to cooler Arctic temperatures.

  1. Stratospheric Impact of Varying Sea Surface Temperatures

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven

    2004-01-01

    The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.

  2. Analysis of Flight of Near-Space Balloon

    Science.gov (United States)

    Miller, Zech; Evans, Austin; Seyfert, James; Leadlove, Kyle; Gumina, Kaitlyn; Martell, Eric

    2015-04-01

    In December 2014, the Electronics class at Millikin University launched a balloon designed to travel into the near-space region of the atmosphere. The balloon was equipped with an instrumentation package including a camera, accelerometer, barometric pressure sensor, temperature probes, as well as a system for tracking using an Automatic Packet Reporting System (APRS). The balloon was launched from Decatur, IL, and landed in Marysville, OH, nearly 320 miles away. The students then analyzed the data from the flight and compared results to expectations.

  3. Heat Transfer Model for Hot Air Balloons

    OpenAIRE

    Lladó Gambín, Adriana

    2016-01-01

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the mod...

  4. Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere

    Directory of Open Access Journals (Sweden)

    F. Ploeger

    2017-06-01

    Full Text Available Pollution transport from the surface to the stratosphere within the Asian monsoon circulation may cause harmful effects on stratospheric chemistry and climate. Here, we investigate air mass transport from the monsoon anticyclone into the stratosphere using a Lagrangian chemistry transport model. We show how two main transport pathways from the anticyclone emerge: (i into the tropical stratosphere (tropical pipe, and (ii into the Northern Hemisphere (NH extratropical lower stratosphere. Maximum anticyclone air mass fractions reach around 5 % in the tropical pipe and 15 % in the extratropical lowermost stratosphere over the course of a year. The anticyclone air mass fraction correlates well with satellite hydrogen cyanide (HCN and carbon monoxide (CO observations, confirming that pollution is transported deep into the tropical stratosphere from the Asian monsoon anticyclone. Cross-tropopause transport occurs in a vertical chimney, but with the pollutants transported quasi-horizontally along isentropes above the tropopause into the tropics and NH.

  5. Stratospheric concentrations of N2O in July 1975

    International Nuclear Information System (INIS)

    Krey, P.W.; Lagomarsino, R.J.; Schonberg, M.

    1977-01-01

    The first measurement of the hemispheric distribution of N 2 O concentrations in the lower stratosphere of the Northern Hemisphere is reported for July 1975. This distribution is similar to those of CCl 3 F and SF 6 , although N 2 O is more stable in the stratosphere than either of the other trace gases. The inventory of N 2 O in the stratosphere of the Northern Hemisphere in July 1975 against which future observations can be compared is 136 Tg

  6. Accurate Determination of the Volume of an Irregular Helium Balloon

    Science.gov (United States)

    Blumenthal, Jack; Bradvica, Rafaela; Karl, Katherine

    2013-01-01

    In a recent paper, Zable described an experiment with a near-spherical balloon filled with impure helium. Measuring the temperature and the pressure inside and outside the balloon, the lift of the balloon, and the mass of the balloon materials, he described how to use the ideal gas laws and Archimedes' principal to compute the average molecular…

  7. Tunable Far Infrared Studies in Support of Stratospheric Measurements

    Science.gov (United States)

    Chance, Kelly V.; Park, K.; Nolt, I. G.; Evenson, K. M.

    2001-01-01

    determined from Stark effect measurements; exceptions include some molecules with large vibration-rotation interactions (NO2) and internal motions (H2O2 above the lowest torsional state). The line parameters that are still the least well determined are pressure broadening coefficients, and their temperature coefficients, These are strongly dependent on the quantum states involved in the transitions, in a way that is much more complex than the simple projection by directional cosine matrix elements involved in determination of rotational line strengths from static dipole moments. The following molecules have now been measured or detected in the atmosphere using far infrared and millimeter-wave emission spectroscopy from balloon- and satellite-borne spectrometers: OH, HO2, H2O (including minor isotopomers and hot band lines), H2O2, O3P, O2 (including minor isotopomers), O3 (including minor isotopomers and hot band lines), HOCl, HCl, HF, HBr, CIO, CO, CO2, N2O, NO2, N2O5, HNO3, ClNO3, and HCN. Many of these species have spectral lines that are saturated in stratospheric spectra. In these cases, the measured line equivalent widths are proportional to (line strength x Lorentz width) (exp 1/2) so that the pressure broadening coefficients are as important as the line intensities in determining concentration profiles. Interpretation of field measurements for these species have required ongoing measurement programs of pressure broadening measurements. Other species (HO2, HGCl, H2O2, HBr, and NO2, as examples) have required further line position studies in order to fully analyze the field measurements.

  8. Longitudinal differences and inter-annual variations of zonal wind in the tropical stratosphere and troposphere

    Science.gov (United States)

    Reddy, C. A.; Raghava Reddi, C.

    1986-12-01

    A quantitative assessment has been made of the longitude-dependent differences and the interannual variations of the zonal wind components in the equatorial stratosphere and troposphere, from the analysis of rocket and balloon data for 1979 and 1980 for three stations near ±8.5° latitude (Ascension Island at 14.4°W, Thumba at 76.9°E and Kwajalein at 67.7°E) and two stations near 21.5° latitude (Barking Sands at 159.6°W and Balasore at 86.9°E). The longitude-dependent differences are found to be about 10-20 m s -1 (amounting to 50-200% in some cases) for the semi-annual oscillation (SAO) and the annual oscillation (AO) amplitudes, depending upon the altitude and latitude. Inter-annual variations of about 10 m s -1 also exist in both oscillations. The phase of the SAO exhibits an almost 180° shift at Kwajalein compared to that at the other two stations near 8.5°, while the phase of the AO is independent of longitude, in the stratosphere. The amplitude and phase of the quasi-biennial oscillation (QBO) are found to be almost independent of longitude in the 18-38 km range, but above 40 km height the QBO amplitude and phase have different values in different longitude sectors for the three stations near ±8.5° latitude. The mean zonal wind shows no change from 1979 to 1980, but in the troposphere at 8.5° latitude strong easterlies prevail in the Indian zone, in contrast to the westerlies at the Atlantic and Pacific stations.

  9. The Temperature of the Arctic and Antarctic Lower Stratosphere

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The temperature of the polar lower stratosphere during spring is the key factor in changing the magnitude of ozone loss in the polar vortices. In this talk, we will review the results of Newman et al. [2000] that quantitatively demonstrate that the polar lower stratospheric temperature is primarily controlled by planetary-scale waves. In particular, the tropospheric eddy heat flux in middle to late winter (January--February) is highly correlated with the mean polar stratospheric temperature during March. Strong midwinter planetary wave forcing leads to a warmer spring Arctic lower stratosphere in early spring, while weak midwinter forcing leads to cooler spring Arctic temperatures. In addition, this planetary wave driving also has a strong impact on the strength of the polar vortex. These results from the Northern Hemisphere will be contrasted with the Southern Hemisphere.

  10. Retrieval of stratospheric and tropospheric BrO profiles and columns using ground-based zenith-sky DOAS observations at Harestua, 60° N

    Directory of Open Access Journals (Sweden)

    J. A. Pyle

    2007-09-01

    Full Text Available A profiling algorithm based on the optimal estimation method is applied to ground-based zenith-sky UV-visible measurements from Harestua, Southern Norway (60° N, 11° E in order to retrieve BrO vertical profiles. The sensitivity of the zenith-sky observations to the tropospheric BrO detection is increased by using for the spectral analysis a fixed reference spectrum corresponding to clear-sky noon summer conditions. The information content and retrieval errors are characterized and it is shown that the retrieved stratospheric profiles and total columns are consistent with correlative balloon and satellite observations, respectively. Tropospheric BrO columns are derived from profiles retrieved at 80° solar zenith angle during sunrise and sunset for the 2000–2006 period. They show a marked seasonality with mean column value ranging from 1.52±0.62×1013 molec/cm² in late winter/early spring to 0.92±0.38×1013 molec/cm² in summer, which corresponds to 1.0±0.4 and 0.6±0.2 pptv, respectively, if we assume that BrO is uniformly mixed in the troposphere. These column values are also consistent with previous estimates made from balloon, satellite, and other ground-based observations. Daytime (10:30 LT tropospheric BrO columns are compared to the p-TOMCAT 3-D tropospheric chemical transport model (CTM for the 2002–2003 period. p-TOMCAT shows a good agreement with the retrieved columns except in late winter/early spring where an underestimation by the model is obtained. This finding could be explained by the non-inclusion of sea-ice bromine sources in the current version of p-TOMCAT. Therefore the model cannot reproduce the possible transport of air-masses with enhanced BrO concentration due to bromine explosion events from the polar region to Harestua. The daytime stratospheric BrO columns are compared to the SLIMCAT stratospheric 3-D-CTM. The model run used in this study, which assumes 21.2 pptv for the Bry loading (15 pptv for long

  11. Meshed-Pumpkin Super-Pressure Balloon Design

    Science.gov (United States)

    Jones, Jack; Yavrouian, Andre

    2003-01-01

    An improved, lightweight design has been proposed for super-pressure balloons used to carry scientific instruments at high altitudes in the atmosphere of Earth for times as long as 100 days. [A super-pressure balloon is one in which the pressure of the buoyant gas (typically, helium) is kept somewhat above ambient pressure in order to maintain approximately constant density and thereby regulate the altitude.] The proposed design, called "meshed pumpkin," incorporates the basic concept of the pumpkin design, which is so named because of its appearance. The pumpkin design entails less weight than does a spherical design, and the meshed-pumpkin design would reduce weight further. The basic idea of the meshed-pumpkin design is to reinforce the membrane of a pumpkin balloon by attaching a strong, lightweight fabric mesh to its outer surface. The reinforcement would make it possible to reduce the membrane mass to one-third or less of that of the basic pumpkin design while retaining sufficient strength to enable the balloon to remain at approximately constant altitude for months.

  12. Cryo-balloon catheter localization in fluoroscopic images

    Science.gov (United States)

    Kurzendorfer, Tanja; Brost, Alexander; Jakob, Carolin; Mewes, Philip W.; Bourier, Felix; Koch, Martin; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert

    2013-03-01

    Minimally invasive catheter ablation has become the preferred treatment option for atrial fibrillation. Although the standard ablation procedure involves ablation points set by radio-frequency catheters, cryo-balloon catheters have even been reported to be more advantageous in certain cases. As electro-anatomical mapping systems do not support cryo-balloon ablation procedures, X-ray guidance is needed. However, current methods to provide support for cryo-balloon catheters in fluoroscopically guided ablation procedures rely heavily on manual user interaction. To improve this, we propose a first method for automatic cryo-balloon catheter localization in fluoroscopic images based on a blob detection algorithm. Our method is evaluated on 24 clinical images from 17 patients. The method successfully detected the cryoballoon in 22 out of 24 images, yielding a success rate of 91.6 %. The successful localization achieved an accuracy of 1.00 mm +/- 0.44 mm. Even though our methods currently fails in 8.4 % of the images available, it still offers a significant improvement over manual methods. Furthermore, detecting a landmark point along the cryo-balloon catheter can be a very important step for additional post-processing operations.

  13. Looners: Inside the world of balloon fetishism

    OpenAIRE

    McIntyre, Karen E

    2011-01-01

    In the spring of 1997, Shaun had just broken up with a boyfriend, and his roommate had moved out. Living alone for the first time and relieved of the fear that someone might walk in the door, he was finally able to indulge his fantasy. The young man sat on his couch and started blowing up balloons. Shaun had loved playing with balloons since he was a child. When he hit puberty, he felt his first orgasm rubbing against a balloon. It was then that his relationship with the object took ...

  14. Taking the Hot Air Out of Balloons.

    Science.gov (United States)

    Brinks, Virgil L.; Brinks, Robyn L.

    1994-01-01

    Describes how a teacher can give their students the challenge of designing and building model balloons or blimps. The project helps students learn the basics of balloon flight and what it really means to be "lighter than air." (PR)

  15. Paraplegia following intraaortic balloon circulatory assistance

    Directory of Open Access Journals (Sweden)

    Benício Anderson

    1999-01-01

    Full Text Available Intraaortic balloon counterpulsation is frequently used in patients experiencing severe ventricular dysfunction following maximal drug therapy. However, even with the improvement of percutaneous insertion techniques, the procedure has always been followed by vascular, infectious, and neurological complications. This article describes a case of paraplegia due to intraaortic balloon counterpulsation in the postoperative period of cardiac surgery.

  16. Advances in Architectural Elements For Future Missions to Titan

    Science.gov (United States)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Recent Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiere hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit into NASA New Frontiers or ESA Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, a clear blueprint has been laid out for the work needed to reduce the risks inherent in such missions and the areas where advances would be beneficial for elements critical to future Titan missions have been identified. The purpose of this paper is to provide a brief overview of the flagship mission architecture and

  17. Deflation of gastric band balloon in pregnancy for improving outcomes.

    Science.gov (United States)

    Jefferys, Amanda E; Siassakos, Dimitrios; Draycott, Tim; Akande, Valentine A; Fox, Robert

    2013-04-30

    In line with the rise in the prevalence of obesity, an increasing number of women of childbearing age are undergoing laparoscopic adjustable gastric banding (LAGB), resulting in an increasing number of pregnancies with a band in place. Currently, there is no consensus on optimal band management in pregnancy. Some clinicians advocate leaving the band balloon inflated to reduce gestational weight gain and associated adverse perinatal outcomes. However, there are concerns that maintaining balloon inflation during pregnancy might increase the risk of band complications and adversely affect fetal development and/or growth as a result of reduced nutritional intake. To compare maternal and perinatal outcomes for elective gastric band balloon deflation versus intention to maintain balloon inflation during pregnancy. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 September 2012) and the Web of Science database (1940 to September 2012). Randomised-controlled trials comparing elective deflation of the gastric band balloon with intention to maintain balloon inflation in pregnant women who have undergone LAGB. Two review authors independently assessed studies for inclusion. No studies met the criteria for inclusion in the review. To date no randomised controlled trials exist that compare elective deflation of the gastric band balloon in pregnancy versus intention to maintain balloon inflation. Further research is needed to define the optimum management of the gastric band balloon in pregnancy.

  18. Reduction of prostate intrafraction motion using gas-release rectal balloons

    International Nuclear Information System (INIS)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy

    2012-01-01

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5Σ+ 0.7σ to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior–inferior (SI) and anterior–posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left–right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  19. Reduction of prostate intrafraction motion using gas-release rectal balloons

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy [Department of Radiation Oncology, University of Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States)

    2012-10-15

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5{Sigma}+ 0.7{sigma} to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior-inferior (SI) and anterior-posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left-right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  20. New concepts for interplanetary balloons and blimps, particularly for Titan

    Science.gov (United States)

    Nott, J.

    This paper proposes novel approaches for balloons for planets Titan BALLUTE A balloon or blimp arriving at a planet or moon with an atmosphere might inflate falling under a parachute or after landing Neither is ideal In both cases the envelope must include qualities needed for inflation as well as those for flight A ballute BALLoon parachUTE could be used thus a ballute is like a hot air balloon with a large mouth Initially it fills by ram pressure descending through an atmosphere As proposed it would then be heated by solid propellant It would stop descending and float level with hot air lift It is now a perfect location for inflation without wind or movement through the atmosphere and away from the uncertainties of the surface A ballute could be used over several bodies in the solar system BALLOONS FOR LOW TEMPERATURES Flight in very low temperatures is also discussed Conditions are so different that it is useful to examine basic factors These apply for any planet with low temperature and weather calm enough for balloons or blimps First for terrestrial hot air balloons thermal radiation is usually the dominant way heat is lost But radiation rises with the 4th power of absolute temperature At Titan radiation will be one or two orders of magnitude smaller Also the dense atmosphere allows small balloons small temperature differences So convection is small It appears a hot air balloon can easily be heated by a radioactive source likely carried to make electricity Pinholes are not important in such a balloon

  1. Sulphur-rich volcanic eruptions and stratospheric aerosols

    Science.gov (United States)

    Rampino, M. R.; Self, S.

    1984-01-01

    Data from direct measurements of stratospheric optical depth, Greenland ice-core acidity, and volcanological studies are compared, and it is shown that relatively small but sulfur-rich volcanic eruptions can have atmospheric effects equal to or even greater than much larger sulfur-poor eruptions. These small eruptions are probably the most frequent cause of increased stratospheric aerosols. The possible sources of the excess sulfur released in these eruptions are discussed.

  2. First airborne water vapor lidar measurements in the tropical upper troposphere and mid-latitudes lower stratosphere: accuracy evaluation and intercomparisons with other instruments

    Directory of Open Access Journals (Sweden)

    C. Schiller

    2008-09-01

    Full Text Available In the tropics, deep convection is the major source of uncertainty in water vapor transport to the upper troposphere and into the stratosphere. Although accurate measurements in this region would be of first order importance to better understand the processes that govern stratospheric water vapor concentrations and trends in the context of a changing climate, they are sparse because of instrumental shortcomings and observational challenges. Therefore, the Falcon research aircraft of the Deutsches Zentrum für Luft- und Raumfahrt (DLR flew a zenith-viewing water vapor differential absorption lidar (DIAL during the Tropical Convection, Cirrus and Nitrogen Oxides Experiment (TROCCINOX in 2004 and 2005 in Brazil. The measurements were performed alternatively on three water vapor absorption lines of different strength around 940 nm. These are the first aircraft DIAL measurements in the tropical upper troposphere and in the mid-latitudes lower stratosphere. Sensitivity analyses reveal an accuracy of 5% between altitudes of 8 and 16 km. This is confirmed by intercomparisons with the Fast In-situ Stratospheric Hygrometer (FISH and the Fluorescent Advanced Stratospheric Hygrometer (FLASH onboard the Russian M-55 Geophysica research aircraft during five coordinated flights. The average relative differences between FISH and DIAL amount to −3%±8% and between FLASH and DIAL to −8%±14%, negative meaning DIAL is more humid. The average distance between the probed air masses was 129 km. The DIAL is found to have no altitude- or latitude-dependent bias. A comparison with the balloon ascent of a laser absorption spectrometer gives an average difference of 0%±19% at a distance of 75 km. Six tropical DIAL under-flights of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT reveal a mean difference of −8%±49% at an average distance of 315 km. While the comparison with MIPAS is somewhat less significant due to poorer

  3. Influence of an Internally-Generated QBO on Modeled Stratospheric Dynamics and Ozone

    Science.gov (United States)

    Hurwitz, M. M.; Newman, P. A.; Song, I. S.

    2011-01-01

    A GEOS V2 CCM simulation with an internally generated quasi-biennial oscillation (QBO) signal is compared to an otherwise identical simulation without a QBO. In a present-day climate, inclusion of the modeled QBO makes a significant difference to stratospheric dynamics and ozone throughout the year. The QBO enhances variability in the tropics, as expected, but also in the polar stratosphere in some seasons. The modeled QBO also affects the mean stratospheric climate. Because tropical zonal winds in the baseline simulation are generally easterly, there is a relative increase in zonal wind magnitudes in tropical lower and middle stratosphere in the QBO simulation. Extra-tropical differences between the QBO and 'no QBO' simulations thus reflect a bias toward the westerly phase of the QBO: a relative strengthening and poleward shifting the polar stratospheric jets, and a reduction in Arctic lower stratospheric ozone.

  4. Ballooning modes or Fourier modes in a toroidal plasma?

    International Nuclear Information System (INIS)

    Connor, J.W.; Taylor, J.B.

    1987-01-01

    The relationship between two different descriptions of eigenmodes in a torus is investigated. In one the eigenmodes are similar to Fourier modes in a cylinder and are highly localized near a particular rational surface. In the other they are the so-called ballooning modes that extend over many rational surfaces. Using a model that represents both drift waves and resistive interchanges the transition from one of these structures to the other is investigated. In this simplified model the transition depends on a single parameter which embodies the competition between toroidal coupling of Fourier modes (which enhances ballooning) and variation in frequency of Fourier modes from one rational surface to another (which diminishes ballooning). As the coupling is increased each Fourier mode acquires a sideband on an adjacent rational surface and these sidebands then expand across the radius to form the extended mode described by the conventional ballooning mode approximation. This analysis shows that the ballooning approximation is appropriate for drift waves in a tokamak but not for resistive interchanges in a pinch. In the latter the conventional ballooning effect is negligible but they may nevertheless show a ballooning feature. This is localized near the same rational surface as the primary Fourier mode and so does not lead to a radially extended structure

  5. Aviation investigation report : hard landing : fuel leak and fire[Sundance Balloons International Firefly 12B (hot air balloon) C-FNVM, Winnipeg, Manitoba, 15 nm NE, 11 August 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-08-15

    This investigation report discussed an incident in Winnipeg in which a hot air balloon attempting to land during strong winds was dragged on its side for approximately 700 feet. The balloon's burners struck the ground as the balloon came to a stop, after which a propane leak occurred. An intense, uncontrolled fire ensued as balloon passengers were exiting from the partially-inverted basket. The pilot and 2 passengers suffered serious injuries, while another 4 passengers suffered minor injuries. The balloon's 2 propane tanks and a fire extinguisher canister exploded during the fire, which destroyed the balloon's basket. The rigging of the balloon was examined and no failures were discovered. Pressure tests showed that the balloon's hoses started leaking at the crimped sleeve fittings at 150 psi. While the pilot had been informed of potentially heavy winds and thunderstorms, changes in wind speed and direction occurred earlier than the forecasted time of 10:00. It was concluded that standards are needed to ensure balloon cabin safety. Balloon operators do not currently require the use of protective helmets or gloves in case of dragged landings. A review will be conducted to address the issue of proposed emergency fuel shut-offs for balloons carrying fare-paying passengers. 2 figs.

  6. Balloon dilatation of iatrogenic urethral strictures

    International Nuclear Information System (INIS)

    Acunas, B.; Acunas, G.; Gokmen, E.; Celik, L.

    1988-01-01

    Balloon dilatation of the urethra was performed in five patients with iatrogenic urethral strictures. The urethral strictures were successfully negotiated and dilated in all patients. Redilatation became necessary in a period ranging from 3 to 10 months. The authors believe that balloon dilatation of the urethra can be safely and successfully performed; the procedure produces minimal trauma and immediate relief of symptoms. (orig.)

  7. Balloon catheter dilation of benign esophageal stenosis in children

    International Nuclear Information System (INIS)

    Fan Guoping; Yu Juming; Zhong Weixing; Zhu Ming; Wu Yeming; Shi Chengren

    2001-01-01

    Objective: To evaluate the methods and effect of balloon catheter dilation of benign esophageal stenosis in children. Methods: 9 cases had an anastomotic stenosis after surgical correction of esophageal atresia; 11 cases of esophageal stenosis due to ingestion of caustics; one case had an lower esophageal stenosis after Nissen surgery and one case after gastro-esophagoplasty. Age ranged from 17 days to 7 years. Each case had a barium esophagram before balloon dilation. The balloon size varied from 3 to 10 mm in diameter. Results: 21 cases were successful after dilation of balloon catheter. There were no esophageal perforation and complications. The satisfactory results maintained from six months to thirty months. Conclusions: Balloon catheter dilation is a simple, safe and reliable method for the treatment of benign esophageal strictures in children as the first choice

  8. Water vapor increase in the northern hemispheric lower stratosphere by the Asian monsoon anticyclone observed during TACTS campaign in 2012

    Science.gov (United States)

    Rolf, Christian; Vogel, Bärbel; Hoor, Peter; Günther, Gebhard; Krämer, Martina; Müller, Rolf; Müller, Stephan; Riese, Martin

    2017-04-01

    Water vapor plays a key role in determining the radiative balance in the upper troposphere and lower stratosphere (UTLS) and thus the climate of the Earth (Forster and Shine, 2002; Riese et al., 2012). Therefore a detailed knowledge about transport pathways and exchange processes between troposphere and stratosphere is required to understand the variability of water vapor in this region. The Asian monsoon anticyclone caused by deep convection over and India and east Asia is able to transport air masses from the troposphere into the nothern extra-tropical stratosphere (Müller et al. 2016, Vogel et al. 2016). These air masses contain pollution but also higher amounts of water vapor. An increase in water vapor of about 0.5 ppmv in the extra-tropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 by in-situ instrumentation above the European northern hemisphere during the HALO aircraft mission TACTS. Here, we investigated the origin of this water vapor increase with the help of the 3D Lagrangian chemistry transport model CLaMS (McKenna et al., 2002). We can assign an origin of the moist air masses in the Asian region (North and South India and East China) with the help of model origin tracers. Additionally, back trajectories of these air masses with enriched water vapor are used to differentiate between transport from the Asia monsoon anticyclone and the upwelling of moister air in the tropics particularly from the Pacific and Southeast Asia.

  9. Static and quasi-static analysis of lobed-pumpkin balloon

    Science.gov (United States)

    Nakashino, Kyoichi; Sasaki, Makoto; Hashimoto, Satoshi; Saito, Yoshitaka; Izutsu, Naoki

    The present study is motivated by the need to improve design methodology for super pressure balloon with 3D gore design concept, currently being developed at the Scientific Balloon Center of ISAS/JAXA. The distinctive feature of the 3-D gore design is that the balloon film has excess materials not only in the circumferential direction but also in the meridional direction; the meridional excess is gained by attaching the film boundaries to the corresponding tendons of a shorter length with a controlled shortening rate. The resulting balloon shape is a pumpkin-like shape with large bulges formed between adjacent tendons. The balloon film, when fully inflated, develops wrinkles in the circumferential direction over its entire region, so that the stresses in the film are limited to a small amount of uniaxial tension in the circumferential direction while the high meridional loads are carried by re-enforced tendons. Naturally, the amount of wrinkling in the film is dominated by the shortening rate between the film boundaries and the tendon curve. In the 3-D gore design, as a consequence, the shortening rate becomes a fundamental design parameter along with the geometric parameters of the gore. In view of this, we have carried out a series of numerical study of the lobed-pumpkin balloon with varying gore geometry as well as with varying shortening rate. The numerical simula-tions were carried out with a nonlinear finite element code incorporating the wrinkling effect. Numerical results show that there is a threshold value for the shortening rate beyond which the stresses in the balloon film increases disproportionately. We have also carried out quasi-static simulations of the inflation process of the lobed-pumpkin balloon, and have obtained asymmetric deformations when the balloon films are in uniaxial tension state.

  10. Stable Water Isotopologues in the Stratosphere Retrieved from Odin/SMR Measurements

    Directory of Open Access Journals (Sweden)

    Tongmei Wang

    2018-01-01

    Full Text Available Stable Water Isotopologues (SWIs are important diagnostic tracers for understanding processes in the atmosphere and the global hydrological cycle. Using eight years (2002–2009 of retrievals from Odin/SMR (Sub-Millimetre Radiometer, the global climatological features of three SWIs, H216O, HDO and H218O, the isotopic composition δD and δ18O in the stratosphere are analysed for the first time. Spatially, SWIs are found to increase with altitude due to stratospheric methane oxidation. In the tropics, highly depleted SWIs in the lower stratosphere indicate the effect of dehydration when the air comes through the cold tropopause, while, at higher latitudes, more enriched SWIs in the upper stratosphere during summer are produced and transported to the other hemisphere via the Brewer–Dobson circulation. Furthermore, we found that more H216O is produced over summer Northern Hemisphere and more HDO is produced over summer Southern Hemisphere. Temporally, a tape recorder in H216O is observed in the lower tropical stratosphere, in addition to a pronounced downward propagating seasonal signal in SWIs from the upper to the lower stratosphere over the polar regions. These observed features in SWIs are further compared to SWI-enabled model outputs. This helped to identify possible causes of model deficiencies in reproducing main stratospheric features. For instance, choosing a better advection scheme and including methane oxidation process in a specific model immediately capture the main features of stratospheric water vapor. The representation of other features, such as the observed inter-hemispheric difference of isotopic component, is also discussed.

  11. An analysis of the deployment of a pumpkin balloon at Mars

    Science.gov (United States)

    Rand, J. L.; Phillips, M. L.

    2004-01-01

    The design of large superpressure balloons has received significant attention in recent years due to the successful demonstration of various enabling technologies and materials. Of particular note is the "pumpkin" shaped balloon concept, which allows the stress in the envelope to be limited by the surface geometry. Unlike a sphere, where the radius used to determine the stress is determined by the volume of the balloon, the pumpkin utilizes a system of meridional tendons to react the loading in one direction, and form a number of lobes, which limit the stress in the circumferential direction. A suitable superpressure balloon has been designed using this technology which will carry 2 kg in the atmosphere of Mars. The deployment of this balloon is assumed to occur while falling on a decelerator suitably designed for the Mars atmosphere. The inflation is accomplished by a 10 kg system suspended at the nadir of the balloon. As the system falls toward the surface of the planet, helium gas is transferred into the balloon, forming a partially inflated system very similar to an ascending zero pressure balloon. This analysis incorporates the flow of the planetary gas around the inflating balloon which alters the pressure distribution and shape. As a result, stresses are seen to increase beyond the design values which will require the balloon to be redesigned to accommodate this type of dynamic deployment.

  12. Mechanical Design of a 4-Stage ADR for the PIPER mission

    Science.gov (United States)

    James, Bryan L.; Kimball, Mark O.; Shirron, Peter J.; Sampson, Michael A.; Letmate, Richard V.; Jackson, Michael L.

    2017-01-01

    The four 1,280 bolometer detector arrays that will fly on the balloon borne PIPER mission will be cooled by a 4-stage adiabatic demagnetization refrigerator (ADR). Two of the three mechanically independent ADR assemblies provide thermal isolation to their salt pills through Kevlar suspensions while the other provides thermal isolation to its salt pill through the use of bellows and Vespel material. The ADR integrates with the detector arrays and it sits in a large bucket Dewar containing superfluid liquid helium. This paper will describe the complex mechanical design of the PIPER ADR, and summarize the mechanical analysis done to validate the design.The four 1,280 bolometer detector arrays that will fly on the balloon borne PIPER mission will be cooled by a 4-stage adiabatic demagnetization refrigerator (ADR). Two of the three mechanically independent ADR assemblies provide thermal isolation to their salt pills through Kevlar suspensions while the other provides thermal isolation to its salt pill through the use of bellows and Vespel material. The ADR integrates with the detector arrays and it sits in a large bucket Dewar containing superfluid liquid helium. This paper will describe the complex mechanical design of the PIPER ADR, and summarize the mechanical analysis done to validate the design.

  13. False coronary dissection with the new Monorail angioplasty balloon catheter.

    Science.gov (United States)

    Esplugas, E; Cequier, A R; Sabaté, X; Jara, F

    1990-01-01

    During percutaneous transluminal coronary angioplasty, the appearance of persistent staining in the vessel by contrast media suggests coronary dissection. We report seven patients in whom a false image of severe coronary dissection was observed during angioplasty performed with the new Monorail balloon catheter. This image emerges at the moment of balloon inflation, is distally located to the balloon, and disappears with balloon catheter deflation. No complications were associated with the appearance of this image.

  14. Variability of Irreversible Poleward Transport in the Lower Stratosphere

    Science.gov (United States)

    Olsen, Mark; Douglass, Anne; Newman, Paul; Nash, Eric; Witte, Jacquelyn; Ziemke, Jerry

    2011-01-01

    The ascent and descent of the Brewer-Dobson circulation plays a large role in determining the distributions of many constituents in the extratropical lower stratosphere. However, relatively fast, quasi-horizontal transport out of the tropics and polar regions also significantly contribute to determining these distributions. The tropical tape recorder signal assures that there must be outflow from the tropics into the extratropical lower stratosphere. The phase of the quasi-biennial oscillation (QBO) and state of the polar vortex are known to modulate the transport from the tropical and polar regions, respectively. In this study we examine multiple years of ozone distributions in the extratropical lower stratosphere observed by the Aura Microwave Limb Sounder (MLS) and the Aura High Resolution Dynamic Limb Sounder (HIRDLS). The distributions are compared with analyses of irreversible, meridional isentropic transport. We show that there is considerable year-to-year seasonal variability in the amount of irreversible transport from the tropics, which is related to both the phase of the QBO and the state of the polar vortex. The reversibility of the transport is consistent with the number of observed breaking waves. The variability of the atmospheric index of refraction in the lower stratosphere is shown to be significantly correlated with the wave breaking and amount of irreversible transport. Finally, we will show that the seasonal extratropical stratosphere to troposphere transport of ozone can be substantially modulated by the amount of irreversible meridional transport in the lower stratosphere and we investigate how observable these differences are in data of tropospheric ozone.

  15. The ballooning of fuel cladding tubes: theory and experiment

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1988-01-01

    Under some conditions, fuel clad ballooning can result in considerable strain before rupture. If ballooning were to occur during a loss-of-coolant accident (LOCA), the resulting substantial blockage of the sub-channel would restrict emergency core cooling. However, circumferential temperature gradients that would occur during a LOCA may significantly limit the average strain at failure. Understandably, the factors that control ballooning and rupture of fuel clad are required for the analysis of a LOCA. Considerable international effort has been spent on studying the deformation of Zircaloy fuel cladding under conditions that would occur during a LOCA. This effort has established a reasonable understanding of the factors that control the ballooning, failure time, and average failure strain of fuel cladding. In this paper, both the experimental and theoretical studies of the fuel clad ballooning are reviewed. (author)

  16. The Limb Infrared Monitor of the Stratosphere (LIMS) experiment

    Science.gov (United States)

    Russell, J. M.; Gille, J. C.

    1978-01-01

    The Limb Infrared Monitor of the Stratosphere is used to obtain vertical profiles and maps of temperature and the concentration of ozone, water vapor, nitrogen dioxide, and nitric acid for the region of the stratosphere bounded by the upper troposphere and the lower mesosphere.

  17. Numerical research on the thermal performance of high altitude scientific balloons

    International Nuclear Information System (INIS)

    Dai, Qiumin; Xing, Daoming; Fang, Xiande; Zhao, Yingjie

    2017-01-01

    Highlights: • A model is presented to evaluate the IR radiation between translucent surfaces. • Comprehensive ascent and thermal models of balloons are established. • The effect of IR transmissivity on film temperature distribution is unneglectable. • Atmospheric IR radiation is the primary thermal factor of balloons at night. • Solar radiation is the primary thermal factor of balloons during the day. - Abstract: Internal infrared (IR) radiation is an important factor that affects the thermal performance of high altitude balloons. The internal IR radiation is commonly neglected or treated as the IR radiation between opaque gray bodies. In this paper, a mathematical model which considers the IR transmissivity of the film is proposed to estimate the internal IR radiation. Comprehensive ascent and thermal models for high altitude scientific balloons are established. Based on the models, thermal characteristics of a NASA super pressure balloon are simulated. The effects of film IR property on the thermal behaviors of the balloon are discussed in detail. The results are helpful for the design and operation of high altitude scientific balloons.

  18. Impact of lower stratospheric ozone on seasonal prediction systems

    Directory of Open Access Journals (Sweden)

    Kelebogile Mathole

    2014-03-01

    Full Text Available We conducted a comparison of trends in lower stratospheric temperatures and summer zonal wind fields based on 27 years of reanalysis data and output from hindcast simulations using a coupled ocean-atmospheric general circulation model (OAGCM. Lower stratospheric ozone in the OAGCM was relaxed to the observed climatology and increasing greenhouse gas concentrations were neglected. In the reanalysis, lower stratospheric ozone fields were better represented than in the OAGCM. The spring lower stratospheric/ upper tropospheric cooling in the polar cap observed in the reanalysis, which is caused by a direct ozone depletion in the past two decades and is in agreement with previous studies, did not appear in the OAGCM. The corresponding summer tropospheric response also differed between data sets. In the reanalysis, a statistically significant poleward trend of the summer jet position was found, whereas no such trend was found in the OAGCM. Furthermore, the jet position in the reanalysis exhibited larger interannual variability than that in the OAGCM. We conclude that these differences are caused by the absence of long-term lower stratospheric ozone changes in the OAGCM. Improper representation or non-inclusion of such ozone variability in a prediction model could adversely affect the accuracy of the predictability of summer rainfall forecasts over South Africa.

  19. Tiny Ultraviolet Polarimeter for Earth Stratosphere from Space Investigation

    Science.gov (United States)

    Nevodovskyi, P. V.; Morozhenko, O. V.; Vidmachenko, A. P.; Ivakhiv, O.; Geraimchuk, M.; Zbrutskyi, O.

    2015-09-01

    One of the reasons for climate change (i.e., stratospheric ozone concentrations) is connected with the variations in optical thickness of aerosols in the upper sphere of the atmosphere (at altitudes over 30 km). Therefore, aerosol and gas components of the atmosphere are crucial in the study of the ultraviolet (UV) radiation passing upon the Earth. Moreover, a scrupulous study of aerosol components of the Earth atmosphere at an altitude of 30 km (i.e., stratospheric aerosol), such as the size of particles, the real part of refractive index, optical thickness and its horizontal structure, concentration of ozone or the upper border of the stratospheric ozone layer is an important task in the research of the Earth climate change. At present, the Main Astronomical Observatory of the National Academy of Sciences (NAS) of Ukraine, the National Technical University of Ukraine "KPI"and the Lviv Polytechnic National University are engaged in the development of methodologies for the study of stratospheric aerosol by means of ultraviolet polarimeter using a microsatellite. So fare, there has been created a sample of a tiny ultraviolet polarimeter (UVP) which is considered to be a basic model for carrying out space experiments regarding the impact of the changes in stratospheric aerosols on both global and local climate.

  20. Adjustable continence balloons

    DEFF Research Database (Denmark)

    Kjær, Line; Fode, Mikkel; Nørgaard, Nis

    2012-01-01

    Abstract Objective. This study aimed to evaluate the results of the Danish experience with the ProACT urinary continence device inserted in men with stress urinary incontinence. Material and methods. The ProACT was inserted in 114 patients. Data were registered prospectively. The main endpoints...... in urinary leakage > 50% was seen in 72 patients (80%). Complications were seen in 23 patients. All of these were treated successfully by removal of the device in the outpatient setting followed by replacement of the device. Another eight patients had a third balloon inserted to improve continence further....... Fourteen patients (12%) ended up with an artificial sphincter or a urethral sling. Sixty patients (63%) experienced no discomfort and 58 (61%) reported being dry or markedly improved. Overall, 50 patients (53%) reported being very or predominantly satisfied. Conclusions. Adjustable continence balloons seem...

  1. Thromboembolic events associated with single balloon-, double balloon-, and stent-assisted coil embolization of asymptomatic unruptured cerebral aneurysms: evaluation with diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Takigawa, Tomoji; Suzuki, Kensuke; Sugiura, Yoshiki; Suzuki, Ryotaro; Takano, Issei; Shimizu, Nobuyuki; Tanaka, Yoshihiro; Hyodo, Akio

    2014-01-01

    The introduction of the balloon remodeling and stent-assisted technique has revolutionized the approach to coil embolization for wide-neck aneurysms. The purpose of this study was to determine the frequency of thromboembolic events associated with single balloon-assisted, double balloon-assisted, and stent-assisted coil embolization for asymptomatic unruptured aneurysms. A retrospective review was undertaken by 119 patients undergoing coiling with an adjunctive technique for unruptured saccular aneurysms (64 single balloon, 12 double balloon, 43 stent assisted). All underwent diffusion-weighted imaging (DWI) within 24 h after the procedure. DWI showed hyperintense lesions in 48 (40 %) patients, and ten (21 %) of these patients incurred neurological deterioration (permanent, two; transient, eight). Hyperintense lesions were detected significantly more often in procedures with the double balloon-assisted technique (7/12, 58 %) than with the single balloon-assisted technique (16/64, 25 %, p = 0.05). Occurrence of new lesions was significantly higher with the use of stent-assisted technique (25/43, 58 %) than with the single balloon-assisted technique (p = 0.001). Symptomatic ischemic rates were similar between the three groups. The increased number of microcatheters was significantly related to the DWI abnormalities (two microcatheters, 15/63 (23.8 %); three microcatheters, 20/41 (48.8 %) (p = 0.008); four microcatheters, 12/15 (80 %) (p = 0.001)). Thromboembolic events detected on DWI related to coil embolization for unruptured aneurysms are relatively common, especially in association with the double balloon-assisted and stent-assisted techniques. Furthermore, the number of microcatheters is highly correlated with DWI abnormalities. The high rate of thromboembolic events suggests the need for evaluation of platelet reactivity and the addition or change of antiplatelet agents. (orig.)

  2. Analysis of current diffusive ballooning mode

    International Nuclear Information System (INIS)

    Yagi, M.; Azumi, M.; Itoh, K.; Itoh, S.; Fukuyama, A.

    1993-04-01

    The current diffusive ballooning mode is analysed in the tokamak plasma. This mode is destabilized by the current diffusivity (i.e., the electron viscosity) and stabilized by the thermal conductivity and ion viscosity. By use of the ballooning transformation, the eigenmode equation is solved. Analytic solution is obtained by the strong ballooning limit. Numerical calculation is also performed to confirm the analytic theory. The growth rate of the mode and the mode structure are analysed. The stability boundary is derived in terms of the current diffusivity, thermal conductivity, ion viscosity and the pressure gradient for the given shear parameter. This result is applied to express the thermal conductivity in terms of the pressure gradient, magnetic configurational parameters (such as the safety factor, shear and aspect ratio) and the Prandtl numbers. (author)

  3. Design and evaluation of a continuum robot with extendable balloons

    Directory of Open Access Journals (Sweden)

    E. Y. Yarbasi

    2018-02-01

    Full Text Available This article presents the design and preliminary evaluation of a novel continuum robot actuated by two extendable balloons. Extendable balloons are utilized as the actuation mechanism of the robot, and they are attached to the tip from their slack sections. These balloons can extend very much in length without having a significant change in diameter. Employing two balloons in an axially extendable, radially rigid flexible shaft, radial strain becomes constricted, allowing high elongation. As inflated, the balloons apply a force on the wall of the tip, pushing it forward. This force enables the robot to move forward. The air is supplied to the balloons by an air compressor and its flow rate to each balloon can be independently controlled. Changing the air volumes differently in each balloon, when they are radially constricted, orients the robot, allowing navigation. Elongation and force generation capabilities and pressure data are measured for different balloons during inflation and deflation. Afterward, the robot is subjected to open field and maze-like environment navigation tests. The contribution of this study is the introduction of a novel actuation mechanism for soft robots to have extreme elongation (2000 % in order to be navigated in substantially long and narrow environments.

  4. The global warming potential of methane reassessed with combined stratosphere and troposphere chemistry

    Science.gov (United States)

    Holmes, C. D.; Archibald, A. T.; Eastham, S. D.; Søvde, O. A.

    2017-12-01

    Methane is a direct and indirect greenhouse gas. The direct greenhouse effect comes from the radiation absorbed and emitted by methane itself. The indirect greenhouse effect comes from radiatively active gases that are produced during methane oxidation: principally O3, H2O, and CO2. Methane also suppresses tropospheric OH, which indirectly affects numerous greenhouses gases and aerosols. Traditionally, the methane global warming potential (GWP) has included the indirect effects on tropospheric O3 and OH and stratospheric H2O, with these effects estimated independently from unrelated tropospheric and stratospheric chemistry models and observations. Using this approach the CH4 is about 28 over 100 yr (without carbon cycle feedbacks, IPCC, 2013). Here we present a comprehensive analysis of the CH4 GWP in several 3-D global atmospheric models capable of simulating both tropospheric and stratospheric chemistry (GEOS-Chem, Oslo CTM3, UKCA). This enables us to include, for the first time, the indirect effects of CH4 on stratospheric O3 and stratosphere-troposphere coupling. We diagnose the GWP from paired simulations with and without a 5% perturbation to tropospheric CH4 concentrations. Including stratospheric chemistry nearly doubles the O3 contribution to CH4 GWP because of O3 production in the lower stratosphere and because CH4 inhibits Cl-catalyzed O3 loss in the upper stratosphere. In addition, stratosphere-troposphere coupling strengthens the chemical feedback on its own lifetime. In the stratosphere, this feedback operates by a CH4 perturbation thickening the stratospheric O3 layer, which impedes UV-driven OH production in the troposphere and prolongs the CH4 lifetime. We also quantify the impact of CH4-derived H2O on the stratospheric HOx cycles but these effects are small. Combining all of the above, these models suggest that the 100-yr GWP of CH4 is over 33.5, a 20% increase over the latest IPCC assessment.

  5. SAGE measurements of the stratospheric aerosol dispersion and loading from the Soufriere Volcano

    Science.gov (United States)

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1981-01-01

    Explosions of the Soufriere volcano on the Caribbean Island of St. Vincent reduced two major stratospheric plumes which the stratospheric aerosol and gas experiment (SAGE) satellite tracked to West Africa and the North Atlantic Ocean. The total mass of the stratospheric ejecta measured is less than 0.5% of the global stratospheric aerosol burden. No significant temperature or climate perturbation is expected. It is found that the movement and dispersion of the plumes agree with those deduced from high altitude meteorological data and dispersion theory. The stratospheric aerosol dispersion and loading from the Soufrier volcano was measured.

  6. Innovations in Balloon Catheter Technology in Rhinology.

    Science.gov (United States)

    D'Anza, Brian; Sindwani, Raj; Woodard, Troy D

    2017-06-01

    Since being introduced more than 10 years ago, balloon catheter technology (BCT) has undergone several generations of innovations. From construction to utilization, there has been a myriad of advancements in balloon technology. The ergonomics of the balloon dilation systems have improved with a focus on limiting the extra assembly. "Hybrid" BCT procedures have shown promise in mucosal preservation, including treating isolated complex frontal disease. Multiple randomized clinical trials report improved long-term outcomes in stand-alone BCT, including in-office use. The ever-expanding technological innovations ensure BCT will be a key component in the armamentarium of the modern sinus surgeon. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Laboratory investigation of nitrile ices of Titan's stratospheric clouds

    Science.gov (United States)

    Nna Mvondo, D.; Anderson, C. M.; McLain, J. L.; Samuelson, R. E.

    2017-09-01

    Titan's mid to lower stratosphere contains complex cloud systems of numerous organic ice particles comprised of both hydrocarbon and nitrile compounds. Most of these stratospheric ice clouds form as a result of vapor condensation formation processes. However, there are additional ice emission features such as dicyanoacetylene (C4N2) and the 220 cm-1 ice emission feature (the "Haystack") that are difficult to explain since there are no observed vapor emission features associated with these ices. In our laboratory, using a high-vacuum chamber coupled to a FTIR spectrometer, we are engaged in a dedicated investigation of Titan's stratospheric ices to interpret and constrain Cassini Composite InfraRed Spectrometer (CIRS) far-IR data. We will present laboratory transmittance spectra obtained for propionitrile (CH3CH2CN), cyanogen (C2N2) and hydrogen cyanide (HCN) ices, as well as various combinations of their mixtures, to better understand the cloud chemistry occurring in Titan's stratosphere.

  8. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben

    2009-07-28

    We used a general circulation model of Earth\\'s climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  9. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben; Robock, Alan; Oman, Luke; Stenchikov, Georgiy L.; Marquardt, Allison B.

    2009-01-01

    We used a general circulation model of Earth's climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  10. Rectal Balloon for the Immobilization of the Prostate Internal Motion

    International Nuclear Information System (INIS)

    Lee, Sang Kyu; Beak, Jong Geal; Kim, Joo Ho; Jeon, Byong Chul; Cho, Jeong Hee; Kim, Dong Wook; Song, Tae Soo; Cho, Jae Ho; Na, Soo Kyong

    2005-01-01

    The using of endo-rectal balloon has proposed as optimal method that minimized the motion of prostate and the dose of rectum wall volume for treated prostate cancer patients, so we make the customized rectal balloon device. In this study, we analyzed the efficiency of the Self-customized rectal balloon in the aspects of its reproducibility. In 5 patients, for treatment planning, each patient was acquired CT slice images in state of with and without rectal balloon. Also they had CT scanning same repeated third times in during radiation treatment (IMRT). In each case, we analyzed the deviation of rectal balloon position and verified the isodose distribution of rectum wall at closed prostate. Using the rectal balloon, we minimized the planning target volume (PTV) by decreased the internal motion of prostate and overcome the dose limit of radiation therapy in prostate cancer by increased the gap between the rectum wall and high dose region. The using of rectal balloon, although, was reluctant to treat by patients. View a point of immobilization of prostate internal motion and dose escalation of GTV (gross tumor volume), its using consider large efficient for treated prostate cancer patients.

  11. A coordinated study of a storm system over the South American continent. 1. Weather information and quasi-DC stratospheric electric field data

    Science.gov (United States)

    Pinto, O.; Pinto, I. R. C. A.; Gin, R. B. B.; Mendes, O.

    1992-11-01

    This paper reports on a coordinated campaign conducted in Brazil, December 13, 1989, to study the electrical signatures associated with a large storm system over the South American continent. Inside the storm, large convective cells developed extending up to the tropopause, as revealed from meteorological balloon soundings. Quasi-DC vertical electric field and temperature were measured by zero-pressure balloon-borne payload launched from Cachoeira Paulista, Brazil. The data were supported by radar and GOES satellite observations, as well as by a lightning position and tracking system (LPATS). The analysis of infrared imagery supports the general tendency for lightning strikes to be near to but not exactly under the coldest cloud tops. In turn, the radar maps located the strikes near to but outside of the most intense areas of precipitation (reflectivity levels above 40 dBz). The balloon altitude and stratospheric temperature show significant variations in association with the storm. The quasi-DC vertical electric field remained almost during the whole flight in a reversed direction relative to the usual fair weather downward orientation with values as large as 4 V/m. A simple calculation based on a static dipole model of electrical cloud structure gives charges of some tens of coulombs. In contrast with most electric field measurements in other regions, no indication of an intensification of the vertical field in the downward fair weather orientation was observed. This fact is in agreement with past observations in the South American region and seems to be related to a particular type of storm that would occur with more frequency in this region. If so, such a difference may have an important role in the global atmospheric electrical circuit, considering that South America is believed to give a significant current contribution to the global circuit.

  12. Stratospheric impact on tropospheric ozone variability and trends: 1990–2009

    Directory of Open Access Journals (Sweden)

    P. G. Hess

    2013-01-01

    Full Text Available The influence of stratospheric ozone on the interannual variability and trends in tropospheric ozone is evaluated between 30 and 90° N from 1990–2009 using ozone measurements and a global chemical transport model, the Community Atmospheric Model with chemistry (CAM-chem. Long-term measurements from ozonesondes, at 150 and 500 hPa, and the Measurements of OZone and water vapour by in-service Airbus aircraft programme (MOZAIC, at 500 hPa, are analyzed over Japan, Canada, the Eastern US and Northern and Central Europe. The measurements generally emphasize northern latitudes, although the simulation suggests that measurements over the Canadian, Northern and Central European regions are representative of the large-scale interannual ozone variability from 30 to 90° N at 500 hPa. CAM-chem is run with input meteorology from the National Center for Environmental Prediction; a tagging methodology is used to identify the stratospheric contribution to tropospheric ozone concentrations. A variant of the synthetic ozone tracer (synoz is used to represent stratospheric ozone. Both the model and measurements indicate that on large spatial scales stratospheric interannual ozone variability drives significant tropospheric variability at 500 hPa and the surface. In particular, the simulation and the measurements suggest large stratospheric influence at the surface sites of Mace Head (Ireland and Jungfraujoch (Switzerland as well as many 500 hPa measurement locations. Both the measurements and simulation suggest the stratosphere has contributed to tropospheric ozone trends. In many locations between 30–90° N 500 hPa ozone significantly increased from 1990–2000, but has leveled off since (from 2000–2009. The simulated global ozone budget suggests global stratosphere-troposphere exchange increased in 1998–1999 in association with a global ozone anomaly. Discrepancies between the simulated and measured ozone budget include a large underestimation of

  13. Esrange Space Center, a Gate to Space

    Science.gov (United States)

    Widell, Ola

    Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.

  14. Stratospheric Water and OzOne Satellite Homogenized (SWOOSH) data set

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) data set is a merged record of stratospheric ozone and water vapor measurements taken by a number of...

  15. Development of radioactive 166Ho-coated balloon and its dose estimation

    International Nuclear Information System (INIS)

    Park, K. B.; Kim, K. H.; Hong, Y. D.; Park, E. W.

    2000-01-01

    The use of balloon with radioisotope is a promising method to prevent restenosis after transluminal coronary arterial angioplasty or stent implantation. In this study, we have developed a new radioactive coated balloon, which is prepared by coating the surface of existing balloon with 166 Ho instead of being filled with beta sources which emit high energy beta-particles for the purpose of the delivery of sufficient radiation to the vessel wall. To estimate the safety of 166 Ho-coated balloon, leaching test and radiation resistance test of the balloon were performed. The absorbed dose distributions around the 166 Ho-coated balloon were estimated by means of Monte Carlo simulation and the initial activities for optimal therapeutic regimen were determined on the basis of this results

  16. An ultrahot gas-giant exoplanet with a stratosphere.

    Science.gov (United States)

    Evans, Thomas M; Sing, David K; Kataria, Tiffany; Goyal, Jayesh; Nikolov, Nikolay; Wakeford, Hannah R; Deming, Drake; Marley, Mark S; Amundsen, David S; Ballester, Gilda E; Barstow, Joanna K; Ben-Jaffel, Lotfi; Bourrier, Vincent; Buchhave, Lars A; Cohen, Ofer; Ehrenreich, David; García Muñoz, Antonio; Henry, Gregory W; Knutson, Heather; Lavvas, Panayotis; Etangs, Alain Lecavelier des; Lewis, Nikole K; López-Morales, Mercedes; Mandell, Avi M; Sanz-Forcada, Jorge; Tremblin, Pascal; Lupu, Roxana

    2017-08-02

    Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere-where temperature increases with altitude-these molecular features will be observed in emission. It has been suggested that stratospheres could form in highly irradiated exoplanets, but the extent to which this occurs is unresolved both theoretically and observationally. A previous claim for the presence of a stratosphere remains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.

  17. Gastric emptying and intragastric balloon in obese patients.

    Science.gov (United States)

    Bonazzi, P; Petrelli, M D; Lorenzini, I; Peruzzi, E; Nicolai, A; Galeazzi, R

    2005-01-01

    Intragastric balloons have been proposed to induce weight loss in obese subjects. The consequences of the balloon on gastric physiology remain poorly studied. We studied the influence of an intragastric balloon on gastric emptying in obese patients. 12 patients were included in the study, with BMI (mean +/- SD) of 38.51 +/- 4.32 kg/m2. The balloon was inserted under light anaesthesia and endoscopic control, inflated with 700 ml saline, and removed 6 months later. Body weight and gastric emptying (T1/2 and T lag) using 13C-octanoic acid breath test were monitored before balloon placement, during its permanence and 2 months after removal. Mean weight loss was: 6.2 +/- 2.3 kg after one month; 12.4 +/- 5.8 kg after 3 months; 14.4 +/- 6.6 kg after 6 months and 10.1 +/- 4.3 kg two months after BIB removal. Gastric emptying rates were significantly decreased in the first periods with balloon in place, and returned to pre-implantation values after balloon removal. T1/2 was: 87 +/- 32 min before BIB positioning, 181 +/- 91 min after 1 month, 145 +/- 99 min after 3 months, 104 +/- 50 min after 6 months and 90 +/- 43 min 2 months after removal. T lag was 36 +/- 18 min before BIB positioning, 102 +/- 82 min after 1 month, 77 +/- 53 min after 3 months, 59 +/- 28 min after 6 months and 40 +/- 21 min. 2 months after removal. BIB in obese patients seems to be a good help in following the hypo caloric diet, especially during the first three months when the gastric emptying is slower and the sense of repletion is higher. After this period gastric emptying starts to return to normal and the stomach adapts to BIB loosing efficacy in weight loss.

  18. Balloon catheter dilatation in esophageal achalasia: long term follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Cheol Yong; Park, Hyun Mee; Kim, So Eun; Lee, Shin Hyung; Kim, Seung Hyeon; Lee, Chang Joon [National Medical Center, Seoul (Korea, Republic of)

    1994-12-15

    To evaluate the clinical efficacy of balloon catheter dilatation in the treatment of esophageal achalasia. Seven patients(three males and four females) with esopha-geal achalasia were treated with balloon catheter dilatation. Balloon catheters of variable sizes were used depending on patient's conditions. The patients were followed up over a period of 12-39 months. Balloon catheter dilatation in esophageal achalasia was successful in all patients without esophageal perforation. All patients were relieved from dysphagia. Recurrence was not found in 5 patients on long term follow-up study, but was seen in 2 patients after 18 and 21 months, respectively. Balloon catheter dilatation was a safe and effective method in the treatment of esophageal achalasia with low recurrence rate of 29% on follow-up study.

  19. Balloon catheter dilatation in esophageal achalasia: long term follow-up

    International Nuclear Information System (INIS)

    Shin, Cheol Yong; Park, Hyun Mee; Kim, So Eun; Lee, Shin Hyung; Kim, Seung Hyeon; Lee, Chang Joon

    1994-01-01

    To evaluate the clinical efficacy of balloon catheter dilatation in the treatment of esophageal achalasia. Seven patients(three males and four females) with esopha-geal achalasia were treated with balloon catheter dilatation. Balloon catheters of variable sizes were used depending on patient's conditions. The patients were followed up over a period of 12-39 months. Balloon catheter dilatation in esophageal achalasia was successful in all patients without esophageal perforation. All patients were relieved from dysphagia. Recurrence was not found in 5 patients on long term follow-up study, but was seen in 2 patients after 18 and 21 months, respectively. Balloon catheter dilatation was a safe and effective method in the treatment of esophageal achalasia with low recurrence rate of 29% on follow-up study

  20. Ballooning Stability of the Compact Quasiaxially Symmetric Stellarator

    International Nuclear Information System (INIS)

    Redi, M.H.; Canik, J.; Dewar, R.L.; Johnson, J.L.; Klasky, S.; Cooper, W.A.; Kerbichler, W.

    2001-01-01

    The magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), expected to achieve good stability and particle confinement is examined with a method that can lead to estimates of global stability. Making use of fully 3D, ideal-MHD stability codes, the QAS beta is predicted to be limited above 4% by ballooning and high-n kink modes. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space [s, alpha, theta(subscript ''k'')]; s is the edge normalized toroidal flux, alpha is the field line variable, and theta(subscript ''k'') is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, with new types of nonsymmetric, eigenvalue isosurfaces in both the stable and unstable spectrum. The isosurfaces around the most unstable points i n parameter space (well above marginal) are topologically spherical. In such cases, attempts to use ray tracing to construct global ballooning modes lead to a k-space runaway. Introduction of a reflecting cutoff in k(perpendicular) to model numerical truncation or finite Larmor radius (FLR) yields chaotic ray paths ergodically filling the allowed phase space, indicating that the global spectrum must be described using the language of quantum chaos theory. However, the isosurface for marginal stability in the cases studied are found to have a more complex topology, making estimation of FLR stabilization more difficult

  1. Stratospheric Ozone Distribution and Tropospheric General Circulation: Interconnections in the UTLS Region

    Science.gov (United States)

    Barodka, S.; Krasovsky, A.; Shalamyansky, A.

    2014-12-01

    The height of the tropopause, which divided the stratosphere and the troposphere, is a result of two rival categories of processes: the tropospheric vertical convection and the radiative heating of the stratosphere resulting from the ozone cycle. Hence, it is natural that tropospheric and stratospheric phenomena can have effect each other in manifold processes of stratosphere-troposphere interactions. In the present study we focus our attention to the "top-down" side of the interaction: the impact of stratospheric ozone distribution on the features of tropospheric circulation and the associated weather patterns and regional climate conditions. We proceed from analyzes of the observational data performed at the A.I. Voeikov Main Geophysical Observatory, which suggest a distinct correlation between stratospheric ozone distribution, synoptic formations and air-masses boundaries in the upper troposphere and the temperature field of the lower stratosphere [1]. Furthermore, we analyze local features of atmospheric general circulation and stratospheric ozone distribution from the atmospheric reanalyses and general circulation model data, focusing our attention to instantaneous positions of subtropical and polar stationary atmospheric fronts, which define regional characteristics of the general circulation cells in the troposphere and separate global tropospheric air-masses, correspond to distinct meteorological regimes in the TOC field [2, 3]. We assume that by altering the tropopause height, stratospheric ozone-related processes can have an impact on the location of the stationary atmospheric fronts, thereby exerting influence on circulation processes in troposphere and lower stratosphere. For midlatitudes, the tropopause height controls the position of the polar stationary front, which has a direct impact on the trajectory of motion of active vortices on synoptic tropospheric levels, thereby controlling weather patterns in that region and the regional climate. This

  2. Balloon dilatation of the prostatic urethra

    International Nuclear Information System (INIS)

    Lee, Yeon Soo; Shim, Hyung Jin; Cha, Kyung Soo; Hong, Ju Hee; Lim, Myung Ah; Kim, Cheol Soo

    1991-01-01

    We analyzed the result of transurethral balloon dilatation in 11 patients with benign prostatic hypertrophy. The procedures were performed under intravenous sedation and local anesthesia with double lumen balloon catheter at 4 atmosphere for 10 minutes. After dilatation, the prostatism symptom scores improved in 10 out of 11 patients and the mean diameter of the prostatic urethra significantly increased form 4.3 mm to 10.2 mm (ρ < 0.005). The procedures were successful not only in lateral lobe hypertrophy but also in median lobe hypertrophy of the prostate. Postdilatation MRI of 1 patient showed an intact prostatic capsule and no periprostatic hematoma. Complications did not develop except in 1 patient with mild hematuria and incontinence. These preliminary results suggest that transurethral balloon dilatation can be an effective and safe treatment modality for benign prostatic hypertrophy

  3. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  4. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Science.gov (United States)

    Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan

    2017-10-01

    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion

  5. Reevaluation of Stratospheric Ozone Trends From SAGE II Data Using a Simultaneous Temporal and Spatial Analysis

    Science.gov (United States)

    Damadeo, R. P.; Zawodny, J. M.; Thomason, L. W.

    2014-01-01

    This paper details a new method of regression for sparsely sampled data sets for use with time-series analysis, in particular the Stratospheric Aerosol and Gas Experiment (SAGE) II ozone data set. Non-uniform spatial, temporal, and diurnal sampling present in the data set result in biased values for the long-term trend if not accounted for. This new method is performed close to the native resolution of measurements and is a simultaneous temporal and spatial analysis that accounts for potential diurnal ozone variation. Results show biases, introduced by the way data is prepared for use with traditional methods, can be as high as 10%. Derived long-term changes show declines in ozone similar to other studies but very different trends in the presumed recovery period, with differences up to 2% per decade. The regression model allows for a variable turnaround time and reveals a hemispheric asymmetry in derived trends in the middle to upper stratosphere. Similar methodology is also applied to SAGE II aerosol optical depth data to create a new volcanic proxy that covers the SAGE II mission period. Ultimately this technique may be extensible towards the inclusion of multiple data sets without the need for homogenization.

  6. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    Science.gov (United States)

    Pyle, David M.

    2012-09-01

    (Rampino and Self 1984, Pyle et al 1996, Self and Rampino 2012). But as yet, there is little evidence for the consequences of this scale of eruption for the climate system (Miles et al 2004), and few data against which to test simulations of stratospheric sulfur-injection 'geoengineering' scenarios of a similar scale and frequency (e.g. English et al 2012). A hint of the new volcano-observing capability came during the eruption of Eyjafjallajökull, Iceland. For a few days in April 2010 meteorological conditions, coupled with a dramatic increase in volcanic ash production, led to the wide dispersal of fine volcanic particles across northern Europe; an event which was widely tracked by ground-based and satellite-borne instruments, augmented by in situ measurements from balloons and aircraft (Bennett et al 2010, Flentje et al 2010, Harrison et al 2010, Stohl et al 2011). Despite the interest in Eyjafjallajökull at the time, this was, geologically, only a very modest eruption with limited sulfur emissions and an impact restricted mainly to the regional troposphere (e.g. Thomas and Prata 2011, Walker et al 2012). Then, in June 2011, a previously dormant volcano in north-east Africa began to erupt violently. Little is known about Nabro, which is a partially collapsed volcano that straddles the Eritrea-Ethiopia border, and has had no known historical activity (Wiart and Oppenheimer 2005). Despite the remote location, and lack of prior warning, the event and its aftermath were remarkably well captured by remote-sensing instruments, as demonstrated in the new letter by Sawamura et al (2012). Using both ground-based and satellite-borne laser-ranging (lidar) data, Sawamura et al (2012) were able to extract detailed information about the nature of the volcanic aerosol layer, and its spread around the globe. The eruption started strongly, with substantial ash plumes for the first 48 h, rising to 9-14 km altitude (Smithsonian Institution 2011, Bourassa et al 2012), that carried at

  7. SWIFT: Semi-empirical and numerically efficient stratospheric ozone chemistry for global climate models

    OpenAIRE

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2015-01-01

    The SWIFT model is a fast yet accurate chemistry scheme for calculating the chemistry of stratospheric ozone. It is mainly intended for use in Global Climate Models (GCMs), Chemistry Climate Models (CCMs) and Earth System Models (ESMs). For computing time reasons these models often do not employ full stratospheric chem- istry modules, but use prescribed ozone instead. This can lead to insufficient representation between stratosphere and troposphere. The SWIFT stratospheric ozone chem...

  8. Forcing of stratospheric chemistry and dynamics during the Dalton Minimum

    Science.gov (United States)

    Anet, J. G.; Muthers, S.; Rozanov, E.; Raible, C. C.; Peter, T.; Stenke, A.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Schmutz, W.

    2013-11-01

    The response of atmospheric chemistry and dynamics to volcanic eruptions and to a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere-ocean chemistry general circulation model SOCOL-MPIOM (modeling tools for studies of SOlar Climate Ozone Links-Max Planck Institute Ocean Model) covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric dynamics in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15%, which represents the presently discussed highest estimate of UV irradiance change caused by solar activity changes, causes global ozone decrease below the stratopause reaching as much as 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the mid-stratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere, allowing more water vapour to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx, leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation

  9. Optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Delay Lines and Alignment

    Science.gov (United States)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Fixsen, Dale; Sampler, Henry; Mentzell, Eric; Veach, Todd; Silverberg, Robert F.; Furst, Stephen; hide

    2016-01-01

    We present the optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) as it gets ready for launch. BETTII is an 8-meter baseline far-infrared (30-90 microns) interferometer mission with capabilities of spatially resolved spectroscopy aimed at studying star formation and galaxy evolution. The instrument collects light from its two arms, makes them interfere, divides them into two science channels (30-50 microns and 60-90 microns), and focuses them onto the detectors. It also separates out the NIR light (1-2.5 microns) and uses it for tip-tilt corrections of the telescope pointing. Currently, all the optical elements have been fabricated, heat treated, coated appropriately and are mounted on their respective assemblies. We are presenting the optical design challenges for such a balloon borne spatio-spectral interferometer, and discuss how they have been mitigated. The warm and cold delay lines are an important part of this optics train. The warm delay line corrects for path length differences between the left and the right arm due to balloon pendulation, while the cold delay line is aimed at introducing a systematic path length difference, thereby generating our interferograms from where we can derive information about the spectra. The details of their design and the results of the testing of these opto-mechanical parts are also discussed. The sensitivities of different optical elements on the interferograms produced have been determined with the help of simulations using FRED software package. Accordingly, an alignment plan is drawn up which makes use of a laser tracker, a CMM, theodolites and a LUPI interferometer.

  10. Climate change projections and stratosphere-troposphere interaction

    Energy Technology Data Exchange (ETDEWEB)

    Scaife, Adam A.; Fereday, David R.; Butchart, Neal; Hardiman, Steven C. [Met Office Hadley Centre, Exeter (United Kingdom); Spangehl, Thomas; Cubasch, Ulrich; Langematz, Ulrike [Freie Universitaet Berlin, Berlin (Germany); Akiyoshi, Hideharu [National Institute for Environmental Studies, Tsukuba (Japan); Bekki, Slimane [LATMOS-IPSL, UVSQ, UPMC, CNRS/INSU, Paris (France); Braesicke, Peter [University of Cambridge, Cambridge (United Kingdom); Chipperfield, Martyn P. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Gettelman, Andrew [National Center for Atmospheric Research, Boulder, CO (United States); Michou, Martine [GAME/CNRM (Meteo France, CNRS), Toulouse (France); Rozanov, Eugene [PMOD/WRC and ETHZ, Davos (Switzerland); Shepherd, Theodore G. [University of Toronto, Toronto, ON (Canada)

    2012-05-15

    Climate change is expected to increase winter rainfall and flooding in many extratropical regions as evaporation and precipitation rates increase, storms become more intense and storm tracks move polewards. Here, we show how changes in stratospheric circulation could play a significant role in future climate change in the extratropics through an additional shift in the tropospheric circulation. This shift in the circulation alters climate change in regional winter rainfall by an amount large enough to significantly alter regional climate change projections. The changes are consistent with changes in stratospheric winds inducing a change in the baroclinic eddy growth rate across the depth of the troposphere. A change in mean wind structure and an equatorward shift of the tropospheric storm tracks relative to models with poor stratospheric resolution allows coupling with surface climate. Using the Atlantic storm track as an example, we show how this can double the predicted increase in extreme winter rainfall over Western and Central Europe compared to other current climate projections. (orig.)

  11. Viscoelastic behaviour of pumpkin balloons

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2008-11-01

    The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.

  12. Impact of major volcanic eruptions on stratospheric water vapour

    Directory of Open Access Journals (Sweden)

    M. Löffler

    2016-05-01

    Full Text Available Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry–climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg – Modular Earth Submodel System (ECHAM/MESSy Atmospheric Chemistry (EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño–Southern Oscillation (ENSO are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  13. EHF channel sounding for telecommunications applications via HAPs and balloons

    Science.gov (United States)

    Cianca, E.; Lucente, M.; Rossi, T.; Stallo, C.; Ruggieri, M.; Morelli, E.

    During the last few years, the growth of innovative multimedia services demanding for more and more bandwidth have led towards the need to explore higher and higher frequency bands for communication services, such as Q-V band (35-50 GHz and 50-75 GHz, respectively) and also W band (75-110 GHz), especially for satellite applications. The Italian scientific community has so far gained a leading position in the use of higher frequency bands for satellite communications and has also funded studies for the design of communication payload in W band. To keep this leading position one fundamental step to properly design an operative communication payload is the propagation channel characterisation. Whilst there are data for characterising the propagation channel in Q-V bands, there are no experimental data for proper characterisation in W band. A feasibility study has been recently funded by the Italian Space Agency (ASI) to use a manned aircraft flying at 20 km, for preliminary channel characterisation. In this paper we investigate the possibility to use balloons for experiments aiming to collect data for channel characterisation. Main advantages and drawbacks of using this platform for the proposed experiment with respect to alternatives such as manned aircrafts and Low Earth Orbit (LEO) satellites for such a experiment are outlined. We start presenting the main results of the Aero-WAVE mission, funded by ASI and aiming to design a payload for setting up an experiment for preliminary channel characterisation of W band. This will guide us in defining the main advantages and drawbacks of the alternatives solution represented by the balloons. We can conclude that it would be possible and convenient to use balloons for the proposed experiment. Some issues arise but solutions can be easily implemented. The data that could be collected from the proposed experiment represent a very interesting results at international level for further developments in W band communications. The

  14. Spectrum of ballooning instabilities in a stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Singleton, D B [Australian National Univ., ANU Supercomputing Facility, Canberra (Australia); Dewar, R L [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1995-08-01

    The recent revival of interest in the application of the `ballooning formalism` to low-frequency plasma instabilities has prompted a comparison of the Wentzel-Brillouin-Kramers (WKB) ballooning approximation with an (in principle) exact normal mode calculation for a three-dimensional plasma equilibrium. Semiclassical quantization, using the ideal magnetohydrodynamic (MHD) ballooning eigenvalue to provide a local dispersion relation, is applied to a ten-field period stellarator test case. Excellent qualitative agreement, and good quantitative agreement is found with predictions from the TERPSICHORE code for toroidal mode numbers from 1 to 14 and radial mode numbers from 0 to 2. The continuum bands predicted from three-dimensional WKB theory are too narrow to resolve. (author) 3 figs., 24 refs.

  15. Spectrum of ballooning instabilities in a stellarator

    International Nuclear Information System (INIS)

    Cooper, W.A.; Singleton, D.B.; Dewar, R.L.

    1995-08-01

    The recent revival of interest in the application of the 'ballooning formalism' to low-frequency plasma instabilities has prompted a comparison of the Wentzel-Brillouin-Kramers (WKB) ballooning approximation with an (in principle) exact normal mode calculation for a three-dimensional plasma equilibrium. Semiclassical quantization, using the ideal magnetohydrodynamic (MHD) ballooning eigenvalue to provide a local dispersion relation, is applied to a ten-field period stellarator test case. Excellent qualitative agreement, and good quantitative agreement is found with predictions from the TERPSICHORE code for toroidal mode numbers from 1 to 14 and radial mode numbers from 0 to 2. The continuum bands predicted from three-dimensional WKB theory are too narrow to resolve. (author) 3 figs., 24 refs

  16. The natural stratosphere of 1974. CIAP monograph 1. Final report

    International Nuclear Information System (INIS)

    1975-09-01

    The Climatic Impact Assessment Program (CIAP) of the U.S. Department of Transportation is charged with the 'assessment' of the impact of future aircraft fleets and other vehicles operating in, or transiting through, the stratosphere. CIAP monograph 1 gives a survey, largely from an experimental standpoint, of what is known in 1974 about the unperturbed stratosphere with respect to an application to stratospheric flight. It reviews the overall structure of the stratosphere, its origin in terms of ozone photochemistry, solar irradiance and overall radiative energy balance, other chemically reactive minor species, and atmospheric motions on a variety of scales of time and distance. The limitations of our understanding are emphasized in the presentation. Also, the monograph examines briefly what is known about the effect of massive injections of nitrogen oxides (from atmospheric nuclear explosions) and sulfur oxides (from major volcanic eruptions)

  17. Tropical troposphere to stratosphere transport of carbon monoxide and long-lived trace species in the Chemical Lagrangian Model of the Stratosphere (CLaMS

    Directory of Open Access Journals (Sweden)

    R. Pommrich

    2014-12-01

    Full Text Available Variations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact of these transport fluxes on the composition of the tropical lower stratosphere. Anomaly patterns of carbon monoxide (CO and long-lived tracers in the lower tropical stratosphere allow conclusions about the rate and the variability of tropical upwelling to be drawn. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH4, N2O, CCl3F (CFC-11, CCl2F2 (CFC-12, and CO2 in the lower tropical stratosphere. For the long-lived trace substances, the boundary conditions at the surface are prescribed based on ground-based measurements in the lowest model level. The boundary condition for CO in the lower troposphere (below about 4 km is deduced from MOPITT measurements. Due to the lack of a specific representation of mixing and convective uplift in the troposphere in this model version, enhanced CO values, in particular those resulting from convective outflow are underestimated. However, in the tropical tropopause layer and the lower tropical stratosphere, there is relatively good agreement of simulated CO with in situ measurements (with the exception of the TROCCINOX campaign, where CO in the simulation is biased low ≈10–15 ppbv. Further, the model results (and therefore also the ERA-Interim winds, on which the transport in the model is based are of sufficient quality to describe large scale anomaly patterns of CO in the lower stratosphere. In particular, the zonally averaged tropical CO anomaly patterns (the so called "tape recorder" patterns simulated by this model version of CLaMS are in good agreement with observations, although the simulations show a too rapid upwelling

  18. Earth Science With the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station

    Science.gov (United States)

    Zawodny, Joe; Vernier, Jean-Paul; Thomason, Larry; Roell, Marilee; Pitts, Mike; Moore, Randy; Hill, Charles; Flittner, David; Damadeo, Rob; Cisewski, Mike

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III is the fourth generation of solar occultation instruments operated by NASA, the first coming under a different acronym, to investigate the Earth's upper atmosphere. Three flight-ready SAGE III instruments were built by Ball Aerospace in the late 1990s, with one launched aboard the former Russian Aviation and Space Agency (now known as Roskosmos) Meteor-3M platform on 10 December 2001 (continuing until the platform lost power in 2006). Another of the original instruments was manifested for the ISS in the 2004 time frame, but was delayed because of budgetary considerations. Fortunately, that SAGE III/ISS mission was restarted in 2009 with a major focus upon filling an anticipated gap in ozone and aerosol observation in the second half of this decade. Here we discuss the mission architecture, its implementation, and data that will be produced by SAGE III/ISS, including their expected accuracy and coverage. The 52-degree inclined orbit of the ISS is well-suited for solar occultation and provides near-global observations on a monthly basis with excellent coverage of low and mid-latitudes. This is similar to that of the SAGE II mission (1985-2005), whose data set has served the international atmospheric science community as a standard for stratospheric ozone and aerosol measurements. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. Though in the visible portion of the spectrum the brightness of the Sun is one million times that of the full Moon, the SAGE III instrument is designed to cover this large dynamic range and also perform lunar occultations on a routine basis to augment the solar products. The standard lunar products were demonstrated during the SAGE III/M3M mission and include ozone, nitrogen dioxide & nitrogen trioxide. The operational flexibility of the SAGE III spectrometer accomplishes

  19. Development of a climate record of tropospheric and stratospheric column ozone from satellite remote sensing: evidence of an early recovery of global stratospheric ozone

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2012-07-01

    Full Text Available Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI and Aura Microwave Limb Sounder (MLS are used to evaluate the accuracy of the Cloud Slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and for studying their long-term changes. Using this technique, we have produced a 32-yr (1979–2010 long record of tropospheric and stratospheric column ozone from the combined Total Ozone Mapping Spectrometer (TOMS and OMI. Analyses of these time series suggest that the quasi-biennial oscillation (QBO is the dominant source of inter-annual variability of stratospheric ozone and is clearest in the Southern Hemisphere during the Aura time record with related inter-annual changes of 30–40 Dobson Units. Tropospheric ozone for the long record also indicates a QBO signal in the tropics with peak-to-peak changes varying from 2 to 7 DU. The most important result from our study is that global stratospheric ozone indicates signature of a recovery occurring with ozone abundance now approaching the levels of year 1980 and earlier. The negative trends in stratospheric ozone in both hemispheres during the first 15 yr of the record are now positive over the last 15 yr and with nearly equal magnitudes. This turnaround in stratospheric ozone loss is occurring about 20 yr earlier than predicted by many chemistry climate models. This suggests that the Montreal Protocol which was first signed in 1987 as an international agreement to reduce ozone destroying substances is working well and perhaps better than anticipated.

  20. Stratospheric chlorine: Blaming it on nature

    International Nuclear Information System (INIS)

    Taube, G.

    1993-01-01

    Much of the bitter public debate over ozone depletion has centered on the claim that chlorofluorocarbons (CFCs) pale into insignificance alongside natural sources of chlorine in the stratosphere. If so, goes the argument, chlorine could not be depleting ozone as atmospheric scientists claim, because the natural sources have been around since time immemorial, and the ozone layer is still there. The claim, put forward in a book by Rogelio Maduro and Ralf Schauerhammer, has since been touted by former Atomic Energy Commissioner Dixy Lee Ray and talk-show host Rush Limbaugh, and it forms the basis of much of the backlash now being felt by atmospheric scientists. The argument is simple: Maduro and Schauerhammer calculate that 600 million tons of chlorine enters the atmosphere annually from seawater, 36 million tons from volcanoes, 8.4 million tons from biomass burning, and 5 million tons from ocean biota. In contrast, CFCs account for a mere 750,000 tons of atmospheric chlorine a year. Besides disputing the numbers, scientists have both theoretical and observational bases for doubting that much of this chlorine is getting into the stratosphere, where it could affect the ozone layer. Linwood Callis of the National Aeronautics and Space Administration's (NASA) Langley Research Center points out one crucial problem with the argument: Chlorine from natural sources is soluble, and so it gets rained out of the lower atmosphere. CFCs, in contrast, are insoluble and inert and thus make it to the stratosphere to release their chlorine. What's more, observations of stratospheric chemistry don't support the idea that natural sources are contributing much to the chlorine there

  1. A balloon-borne experiment to investigate the Martian magnetic field

    Science.gov (United States)

    Schwingenschuh, K.; Feldhofer, H.; Koren, W.; Jernej, I.; Stachel, M.; Riedler, W.; Slamanig, H.; Auster, H.-U.; Rustenbach, J.; Fornacon, H. K.; Schenk, H. J.; Hillenmaier, O.; Haerendel, G.; Yeroshenko, Ye.; Styashkin, V.; Zaroutzky, A.; Best, A.; Scholz, G.; Russell, C. T.; Means, J.; Pierce, D.; Luhmann, J. G.

    1996-03-01

    The Space Research Institute of the Austrian Academy, of Sciences (Graz, Austria) in cooperation with MPE (Berlin, Germany), GFZ Potsdam (Obs. Niemegk, Germany) IZMIRAN/IOFAN (Moscow, Russian) and IGPP/UCLA (Los Angeles, USA) is designing the magnetic field experiment MAGIBAL (MAGnetic field experiment aboard a martian BALloon) to investigate the magnetic field on the surface of Mars. The dual sensor fluxgate magnetometer is part of the MARS-98/MARS-TOGETHER balloon payload. During a ten days period the balloon will float over a distance of about 2000 km at altitudes between 0 and 4 km. Due to the limited power and telemetry allocation the magnetometer can transmit only one vector per ten seconds and spectral information in the frequency range from 2 - 25 Hz. The dynamic range is +/- 2000 nT. The main scientific objectives of the experiment are: • Determination of the magnetism of the Martian rocks • Investigation of the leakage of the solar wind induced magnetosphere using the correlation between orbiter and balloon observations • Measurement of the magnetic field profile between the orbiter and the surface of Mars during the descent phase of the balloon. Terrestrial test flights with a hot air balloon were performed in order to test the original MAGIBAL equipment under balloon flight conditions.

  2. Usefulness of cutting balloon angioplasty for the treatment of congenital heart defects.

    Science.gov (United States)

    Kusa, Jacek; Mazurak, Magdalena; Skierska, Agnieszka; Szydlowski, Leslaw; Czesniewicz, Pawel; Manka, Lukasz

    2018-01-01

    Patients with complex congenital heart defects may have different hemodynamic prob-lems which require a variety of interventional procedures including angioplasty which involves using high-pressure balloons. After failure of conventional balloon angioplasty, cutting balloon angioplasty is the next treatment option available. The purpose of this study was to evaluate the safety and efficacy of cutting balloon angioplasty in children with different types of congenital heart defects. Cutting balloon angioplasty was performed in 28 children with different congenital heart defects. The indication for cutting balloon angioplasty was: pulmonary artery stenosis in 17 patients, creating or dilatation of interatrial communication in 10 patients, and stenosis of left subclavian artery in 1 patient. In the pulmonary arteries group there was a significant decrease in systolic blood pressure (SBP) in the proximal part of the artery from the average 74.33 ± 20.4 mm Hg to 55 ± 16.7 mm Hg (p cutting balloon angioplasty was performed after an unsuccessful classic Rashkind procedure. After cutting balloon angioplasty there was a significant widening of the interatrial communication. Cutting balloon angioplasty is a feasible and effective treatment option in different con-genital heart defects.

  3. Balloon-Assisted Chemoembolization Using a Micro-Balloon Catheter Alongside a Microcatheter for a Hepatocellular Carcinoma with a Prominent Arterioportal Shunt: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Hoshiai, Sodai, E-mail: hoshiai@sb4.so-net.ne.jp; Mori, Kensaku; Ishiguro, Toshitaka; Konishi, Takahiro; Uchikawa, Yoko [University of Tsukuba Hospital, Department of Diagnostic and Interventional Radiology (Japan); Fukuda, Kuniaki [University of Tsukuba Hospital, Department of Gastroenterology (Japan); Minami, Manabu [University of Tsukuba Hospital, Department of Diagnostic and Interventional Radiology (Japan)

    2017-04-15

    Although transcatheter arterial chemoembolization is one of the established treatments for hepatocellular carcinoma (HCC), it is difficult to treat HCCs with prominent arterioportal (AP) shunts because anticancer drugs and embolic materials migrate into the non-tumorous liver through the AP shunts and may cause liver infarction. We developed a novel method of balloon-assisted chemoembolization using a micro-balloon catheter alongside a microcatheter simultaneously inserted through a single 4.5-Fr guiding sheath, comprising proximal chemoembolization with distal arterial balloon occlusion. We applied this method to treat an HCC with a prominent distal AP shunt induced by previous proton beam therapy and achieved successful chemoembolization without non-tumorous liver infarction under temporal balloon occlusion of a distal AP shunt.

  4. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  5. Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery

    Science.gov (United States)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John; hide

    2018-01-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  6. Study: Ozone Layer's Future Linked Strongly to Changes in Climate

    Science.gov (United States)

    balloon to measure of the vertical profile of the ozone layer. NOAA scientists launch an ozonesonde via balloon to measure of the vertical profile of the ozone layer. NOAA releases ozonesondes at eight sites to continuously monitor stratospheric ozone. Download here. (Credit: NOAA) The ozone layer - the thin

  7. Balloon sheaths for gastrointestinal guidance and access: a preliminary phantom study

    International Nuclear Information System (INIS)

    He, Xu; Shin, Ji Hoon; Kim, Hyo Cheol; Woo, Cheol Woong; Woo, Sung Ha; Choi, Won Chan; Kim, Jong Gyu; Lim, Jin Oh; Kim, Tae Hyung; Yoon, Chang Jin; Song, Ho Young; Kang, Wee Chang

    2005-01-01

    We wanted to evaluate the feasibility and usefulness of a newly designed balloon sheath for gastrointestinal guidance and access by conducting a phantom study. The newly designed balloon sheath consisted of an introducer sheath and a supporting balloon. A coil catheter was advanced over a guide wire into two gastroduodenal phantoms (one was with stricture and one was without stricture); group I was without a balloon sheath, group II was with a deflated balloon sheath, and groups III and IV were with an inflated balloon and with the balloon in the fundus and body, respectively. Each test was performed for 2 minutes and it was repeated 10 times in each group by two researchers, and the positions reached by the catheter tip were recorded. Both researchers had better performances with both phantoms in order of group IV, III, II and I. In group IV, both researchers advanced the catheter tip through the fourth duodenal segment in both the phantoms. In group I, however, the catheter tip never reached the third duodenal segment in both the phantoms by both the researchers. The numeric values for the four study groups were significantly different for both the phantoms (ρ < 0.001). A significant difference was also found between group III and IV for both phantoms (ρ < 0.001). The balloon sheath seems to be feasible for clinical use, and it has good clinical potential for gastrointestinal guidance and access, particularly when the inflated balloon is placed in the gastric body

  8. Stabilization of ballooning modes with sheared toroidal rotation

    International Nuclear Information System (INIS)

    Miller, R.L.; Waelbroeck, F.L.; Hassam, A.B.; Waltz, R.E.

    1995-01-01

    Stabilization of magnetohydrodynamic ballooning modes by sheared toroidal rotation is demonstrated using a shifted circle equilibrium model. A generalized ballooning mode representation is used to eliminate the fast Alfven wave, and an initial value code solves the resulting equations. The s-α diagram (magnetic shear versus pressure gradient) of ballooning mode theory is extended to include rotational shear. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq, where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and direct stable access to the second stability regime occurs when this frequency is approximately one-quarter to one-half the Alfven frequency, ω A =V A /qR. copyright 1995 American Institute of Physics

  9. Ozone profiles from tethered balloon measurements in an urban plume experiment

    Science.gov (United States)

    Youngbluth, O., Jr.; Storey, R. W.; Clendenin, C. G.; Jones, S.; Leighty, B.

    1981-01-01

    NASA Langley Research Center used two tethered balloon systems to measure ozone in the general area of Norfolk, Va. The large balloon system which has an altitude range of 1,500 meters was located at Wallops Island, Va., and the smaller balloon which has an altitude range of 900 meters was located at Chesapeake, Va. Each balloon system measured ozone, temperature, humidity, wind speed, and wind direction from ground to its maximum altitude. From these measurements and from the location of the balloon sites, areas of ozone generation and ozone transport may be inferred. The measurements which were taken during August 1979 are discussed as well as the measurement techniques.

  10. Validation of Refractivity Profiles Retrieved from FORMOSAT-3/COSMIC Radio Occultation Soundings: Preliminary Results of Statistical Comparisons Utilizing Balloon-Borne Observations

    Directory of Open Access Journals (Sweden)

    Hiroo Hayashi

    2009-01-01

    Full Text Available The GPS radio occultation (RO soundings by the FORMOSAT-3/COSMIC (Taiwan¡¦s Formosa Satellite Misssion #3/Constellation Observing System for Meteorology, Ionosphere and Climate satellites launched in mid-April 2006 are compared with high-resolution balloon-borne (radiosonde and ozonesonde observations. This paper presents preliminary results of validation of the COSMIC RO measurements in terms of refractivity through the troposphere and lower stratosphere. With the use of COSMIC RO soundings within 2 hours and 300 km of sonde profiles, statistical comparisons between the collocated refractivity profiles are erformed for some tropical regions (Malaysia and Western Pacific islands where moisture-rich air is expected in the lower troposphere and for both northern and southern polar areas with a very dry troposphere. The results of the comparisons show good agreement between COSMIC RO and sonde refractivity rofiles throughout the troposphere (1 - 1.5% difference at most with a positive bias generally becoming larger at progressively higher altitudes in the lower stratosphere (1 - 2% difference around 25 km, and a very small standard deviation (about 0.5% or less for a few kilometers below the tropopause level. A large standard deviation of fractional differences in the lowermost troposphere, which reaches up to as much as 3.5 - 5%at 3 km, is seen in the tropics while a much smaller standard deviation (1 - 2% at most is evident throughout the polar troposphere.

  11. Complex Coronary Interventions with the Novel Mozec™ CTO Balloon: The MOZART Registry.

    Science.gov (United States)

    Lupi, Alessandro; Rognoni, Andrea; Schaffer, Alon; Secco, Gioel G; Bongo, Angelo S

    2015-01-01

    Mozec™ CTO is a novel semicompliant rapid-exchange PTCA balloon catheter with specific features dedicated to treat complex coronary lesions like chronic total occlusions (CTOs). However, no data have been reported about the performance of this device in an all-comers population with complex coronary lesions. We evaluated the safety and success rate of Mozec™ CTO balloon in 41 consecutive patients with chronic stable angina and complex coronary lesions (15 severe calcified coronary stenoses, 15 bifurcation lesions with planned two-stent intervention, and 11 CTOs). Safety was assessed reporting the balloon burst rate after inflation exceeding the rated burst pressure (RBP) according to the manufacturer's reference table. Success was defined as the possibility to advance the device further the target lesion. The Mozec™ CTO balloon showed an excellent performance with a 93.3% success in crossing tight and severely calcified lesions (14/15 pts), a 93.3% success in engaging jailed side branches after stent deployment across bifurcations (14/15 pts), and a 90.9% success in crossing CTO lesions (10/11 pts). The burst rate at RBP of the Mozec™ CTO balloon was 6.7% (1/15 balloons) in the tight and severely calcified lesions, 6.7% (1/15 balloons) when dilating jailed vessels, and 9.1% (1/11 balloons) in CTOs. The novel Mozec™ CTO balloon dilatation catheter showed promising results when employed to treat complex lesions in an all-comers population. Further studies should clarify if this kind of balloon might reduce the need of more costly devices like over-the-wire balloons and microcatheters for complex lesions treatment.

  12. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    Science.gov (United States)

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  13. Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)

    Science.gov (United States)

    Carr, E. S.; Harwood, R. S.; Mote, P. W.; Peckham, G. E.; Suttie, R. A.; Lahoz, W. A.; O'Neill, A.; Froidevaux, L.; Jarnot, R. F.; Read, W. G.

    1995-01-01

    The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.

  14. Design Evolution and Methodology for Pumpkin Super-Pressure Balloons

    Science.gov (United States)

    Farley, Rodger

    The NASA Ultra Long Duration Balloon (ULDB) program has had many technical development issues discovered and solved along its road to success as a new vehicle. It has the promise of being a sub-satellite, a means to launch up to 2700 kg to 33.5 km altitude for 100 days from a comfortable mid-latitude launch point. Current high-lift long duration ballooning is accomplished out of Antarctica with zero-pressure balloons, which cannot cope with the rigors of diurnal cycles. The ULDB design is still evolving, the product of intense analytical effort, scaled testing, improved manufacturing, and engineering intuition. The past technical problems, in particular the s-cleft deformation, their solutions, future challenges, and the methodology of pumpkin balloon design will generally be described.

  15. Impacts of Stratospheric Sulfate Geoengineering on PM2.5

    Science.gov (United States)

    Robock, A.; Xia, L.; Tilmes, S.; Mills, M. J.; Richter, J.; Kravitz, B.; MacMartin, D.

    2017-12-01

    Particulate matter (PM) includes sulfate, nitrate, organic carbon, elemental carbon, soil dust, and sea salt. The first four components are mostly present near the ground as fine particulate matter with a diameter less than 2.5 µm (PM2.5), and these are of the most concern for human health. PM is efficiently scavenged by precipitation, which is its main atmospheric sink. Here we examine the impact of stratospheric climate engineering on this important pollutant and health risk, taking advantage of two sets of climate model simulations conducted at the National Center for Atmospheric Research. We use the full tropospheric and stratospheric chemistry version of the Community Earth System Model - Community Atmospheric Model 4 (CESM CAM4-chem) with a horizontal resolution of 0.9° x 1.25° lat-lon to simulate a stratospheric sulfate injection climate intervention of 8 Tg SO2 yr-1 combined with an RCP6.0 global warming forcing, the G4 Specified Stratospheric Aerosol (G4SSA) scenario. We also analyze the output from a 20-member ensemble of Community Earth System Model, version 1 with the Whole Atmosphere Community Climate Model as its atmospheric component (CESM1(WACCM)) simulations, also at 0.9° x 1.25° lat-lon resolution, with sulfur dioxide injection at 15°N, 15°S, 30°N, and 30°S varying in time to balance RCP8.5 forcing. While the CESM CAM4-chem model has full tropospheric and stratospheric chemistry, CESM1(WACCM) has an internally generated quasi-biennial oscillation and a comprehensive tropospheric and stratospheric sulfate aerosol treatment, but only stratospheric chemistry. For G4SSA, there are a global temperature reduction of 0.8 K and global averaged precipitation decrease of 3% relative to RCP6.0. The global averaged surface PM2.5 reduces about 1% compared with RCP6.0, mainly over Eurasian and East Asian regions in Northern Hemisphere winter. The PM2.5 concentration change is a combination of effects from tropospheric chemistry and precipitation

  16. A refined method for calculating equivalent effective stratospheric chlorine

    Science.gov (United States)

    Engel, Andreas; Bönisch, Harald; Ostermöller, Jennifer; Chipperfield, Martyn P.; Dhomse, Sandip; Jöckel, Patrick

    2018-01-01

    Chlorine and bromine atoms lead to catalytic depletion of ozone in the stratosphere. Therefore the use and production of ozone-depleting substances (ODSs) containing chlorine and bromine is regulated by the Montreal Protocol to protect the ozone layer. Equivalent effective stratospheric chlorine (EESC) has been adopted as an appropriate metric to describe the combined effects of chlorine and bromine released from halocarbons on stratospheric ozone. Here we revisit the concept of calculating EESC. We derive a refined formulation of EESC based on an advanced concept of ODS propagation into the stratosphere and reactive halogen release. A new transit time distribution is introduced in which the age spectrum for an inert tracer is weighted with the release function for inorganic halogen from the source gases. This distribution is termed the release time distribution. We show that a much better agreement with inorganic halogen loading from the chemistry transport model TOMCAT is achieved compared with using the current formulation. The refined formulation shows EESC levels in the year 1980 for the mid-latitude lower stratosphere, which are significantly lower than previously calculated. The year 1980 is commonly used as a benchmark to which EESC must return in order to reach significant progress towards halogen and ozone recovery. Assuming that - under otherwise unchanged conditions - the EESC value must return to the same level in order for ozone to fully recover, we show that it will take more than 10 years longer than estimated in this region of the stratosphere with the current method for calculation of EESC. We also present a range of sensitivity studies to investigate the effect of changes and uncertainties in the fractional release factors and in the assumptions on the shape of the release time distributions. We further discuss the value of EESC as a proxy for future evolution of inorganic halogen loading under changing atmospheric dynamics using simulations from

  17. The role of scientific ballooning for exploration of the magnetosphere

    International Nuclear Information System (INIS)

    Block, L.P.; Lazutin, L.L.; Riedler, W.

    1984-11-01

    The magnetosphere is explored in situ by satellites, but measurements near the low altitude magnetospheric boundary by rockets, balloons and groundbased instruments play a very significant role. The geomagnetic field provides a frame with anisotropic wave and particle propagation effects, enabling remote sensing of the distant magnetosphere by means of balloon-borne and groundbased instruments. Examples will be given of successful studies, with coordinated satellite and balloon observations, of substorm, pulsation and other phenomena propagating both along and across the geomagnetic field. Continued efforts with sophisticated balloon-borne instrumentations should contribute substantially to our understanding of magnetospheric physics. (Author)

  18. Improved stratospheric atmosphere forecasts in the general circulation model through a methane oxidation parametrization

    Science.gov (United States)

    Wang, S.; Jun, Z.

    2017-12-01

    Climatic characteristics of tropical stratospheric methane have been well researched using various satellite data, and numerical simulations have furtherly conducted using chemical climatic models, while the impact of stratospheric methane oxidation on distribution of water vapor is not paid enough attention in general circulation models. Simulated values of water vapour in the tropical upper stratosphere, and throughout much of the extratropical stratosphere, were too low. Something must be done to remedy this deficiency in order to producing realistic stratospheric water vapor using a general circulation model including the whole stratosphere. Introduction of a simple parametrization of the upper-stratospheric moisture source due to methane oxidation and a sink due to photolysis in the mesosphere was conducted. Numerical simulations and analysis of the influence of stratospheric methane on the prediction of tropical stratospheric moisture and temperature fields were carried out. This study presents the advantages of methane oxidation parametrization in producing a realistic distribution of water vapour in the tropical stratosphere and analyzes the impact of methane chemical process on the general circulation model using two storm cases including a heavy rain in South China and a typhoon caused tropical storm.It is obvious that general circulation model with methane oxidation parametrization succeeds in simulating the water vapor and temperature in stratosphere. The simulating rain center value of contrast experiment is increased up to 10% than that of the control experiment. Introduction of methane oxidation parametrization has modified the distribution of water vapour and then producing a broadly realistic distribution of temperature. Objective weather forecast verifications have been performed using simulating results of one month, which demonstrate somewhat positive effects on the model skill. There is a certain extent impact of methane oxidation

  19. 78 FR 18533 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2013-03-27

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... Hot Air Balloons Ltd female ACME threaded hose connectors, part numbers HS6139 and HS6144, installed... follows: * * * * * (c) Applicability This AD applies to Lindstrand Hot Air Balloons Ltd female ACME...

  20. 77 FR 64763 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2012-10-23

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... propose to adopt a new airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female... identified in this proposed AD, contact Lindstrand Hot Air Balloons Ltd., Maesbury Road, Oswestry, Shropshire...

  1. 78 FR 9785 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2013-02-12

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female ACME threaded hose connectors...., Washington, DC 20590. For service information identified in this AD, contact Lindstrand Hot Air Balloons Ltd...

  2. Intrarectal pressures and balloon expulsion related to evacuation proctography.

    Science.gov (United States)

    Halligan, S; Thomas, J; Bartram, C

    1995-01-01

    Seventy four patients with constipation were examined by standard evacuation proctography and then attempted to expel a small, non-deformable rectal balloon, connected to a pressure transducer to measure intrarectal pressure. Simultaneous imaging related the intrarectal position of the balloon to rectal deformity. Inability to expel the balloon was associated proctographically with prolonged evacuation, incomplete evacuation, reduced anal canal diameter, and acute anorectal angulation during evacuation. The presence and size of rectocoele or intussusception was unrelated to voiding of paste or balloon. An independent linear combination of pelvic floor descent and evacuation time on proctography correctly predicted maximum intrarectal pressure in 74% of cases. No patient with both prolonged evacuation and reduced pelvic floor descent on proctography could void the balloon, as maximum intrarectal pressure was reduced in this group. A prolonged evacuation time on proctography, in combination with reduced pelvic floor descent, suggests defecatory disorder may be caused by inability to raise intrarectal pressure. A diagnosis of anismus should not be made on proctography solely on the basis of incomplete/prolonged evacuation, as this may simply reflect inadequate straining. PMID:7672656

  3. Stratospheric changes caused by geoengineering applications: potential repercussions and uncertainties

    Science.gov (United States)

    Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.

    2009-04-01

    Anthropogenic greenhouse gas emissions tend to warm the global climate, calling for significant rapid emission reductions. As potential support measures various ideas for geoengineering are currently being discussed. The assessment of the possible manifold and as yet substantially unexplored repercussions of implementing geoengineering ideas to ameliorate climate change poses enormous challenges not least in the realm of aerosol-cloud-climate interactions. Sulphur aerosols cool the Earth's surface by reflecting short wave radiation. By increasing the amount of sulphur aerosols in the stratosphere, for example by sulphur dioxide injections, part of the anthropogenic climate warming might be compensated due to enhanced albedo. However, we are only at the beginning of understanding possible side effects. One such effect that such aerosol might have is the warming of the tropical tropopause and consequently the increase of the amount of stratospheric water vapour. Using the 2D AER Aerosol Model we calculated the aerosol distributions for yearly injections of 1, 2, 5 and 10 Mt sulphur into the lower tropical stratosphere. The results serve as input for the 3D chemistry-climate model SOCOL, which allows calculating the aerosol effect on stratospheric temperatures and chemistry. In the injection region the continuously formed sulphuric acid condensates rapidly on sulphate aerosol, which eventually grow to such extent that they sediment down to the tropical tropopause region. The growth of the aerosol particles depends on non-linear processes: the more sulphur is emitted the faster the particles grow. As a consequence for the scenario with continuous sulphur injection of totally 10 Mt per year, only 6 Mt sulphur are in the stratosphere if equilibrium is reached. According to our model calculations this amount of sulphate aerosols leads to a net surface forcing of -3.4 W/m2, which is less then expected radiative forcing by doubling of carbon dioxide concentration. Hence

  4. Ballooning stability analysis of JET H-mode discharges

    International Nuclear Information System (INIS)

    O'Brien, D.P.; Galvao, R.; Keilhacker, M.; Lazzaro, E.; Watkins, M.L.

    1989-01-01

    Previous studies of the stability of a large aspect ratio model equilibrium to ideal MHD ballooning modes have shown that across the bulk of the plasma there exist two marginally stable values of the pressure gradient parameter α. These define an unstable zone which separates the first (small α) stable region from the second (large α) stable region. Close to the separatrix, however, the first and second regions can coalesce when the surface averaged current density, Λ, exceeds a critical value. The plasma in this region is then stable to ballooning modes at all values of the pressure gradient. In this paper we extend these results to JET H-mode equilibria using a finite aspect ratio ballooning formalism, and assess the relevance of ideal ballooning stability in these discharges. In particular we analyse shot 15894 at time 56 sec. which is 1.3 s into the H-phase. (author) 4 refs., 4 figs

  5. Artificially ionized region as a source of ozone in the stratosphere

    International Nuclear Information System (INIS)

    Gurevich, Aleksandr V; Litvak, Aleksandr G; Vikharev, A L; Ivanov, O A; Borisov, Nikolai D; Sergeichev, Konstantin F

    2000-01-01

    A set of physical and chemical processes occurring in a microwave stratospheric discharge of nanosecond duration is discussed in connection with the effect they may have locally on the ozone layer in the artificially ionized region (AIR) in the stratosphere. The AIR, to be created at altitudes of 18 - 20 km by the microwave breakdown of air with ground-produced powerful electromagnetic wave beams, is planned for use in the natural physical experiment aimed at active monitoring of the ozone layer (its internal state and a set of plasma-chemical and photochemical processes) by controllably generating a considerable amount of ozone in the stratosphere. Results of relevant theoretical studies are presented, as are those of a large series of laboratory experiments performed under conditions similar to those prevailing in the stratosphere. Discharge regimes securing the efficient growth of ozone concentration are identified and studied in detail. It is demonstrated that such a stratospheric ozonizer is about as efficient as the best ground-based ozonizers used at present. For typical stratospheric conditions (low pressures and temperatures T ∼ 200 - 220 K), it is shown that the intense generation of ozone in a microwave breakdown effected by groups of short nanosecond pulses does not virtually increase the density of nitrogen oxides - gases that play a vital role in catalytic ozone-decomposing reactions. The possibility of effectively producing ozone in prebreakdown electric fields is established experimentally. It is demonstrated that due to its long lifetime, ozone produced locally at altitudes of 18 - 20 km may spread widely under the action of winds and turbulent diffusion, thus leading to an additional - artificial - ozonization of the stratosphere. (reviews of topical problems)

  6. Immediate balloon deflation for prevention of persistent phrenic nerve palsy during pulmonary vein isolation by balloon cryoablation.

    Science.gov (United States)

    Ghosh, Justin; Sepahpour, Ali; Chan, Kim H; Singarayar, Suresh; McGuire, Mark A

    2013-05-01

    Persistent phrenic nerve palsy is the most frequent complication of cryoballoon ablation for atrial fibrillation and can be disabling. To describe a technique-immediate balloon deflation (IBD)-for the prevention of persistent phrenic nerve palsy, provide data for its use, and describe in vitro simulations performed to investigate the effect of IBD on the atrium and pulmonary vein. Cryoballoon procedures for atrial fibrillation were analyzed retrospectively (n = 130). IBD was performed in patients developing phrenic nerve dysfunction (n = 22). In vitro simulations were performed by using phantoms. No adverse events occurred, and all patients recovered normal phrenic nerve function before leaving the procedure room. No patient developed persistent phrenic nerve palsy. The mean cryoablation time to onset of phrenic nerve dysfunction was 144 ± 64 seconds. Transient phrenic nerve dysfunction was seen more frequently with the 23-mm balloon than with the 28-mm balloon (11 of 39 cases vs 11 of 81 cases; P = .036). Balloon rewarming was faster following IBD. The time to return to 0 and 20° C was shorter in the IBD group (6.7 vs 8.9 seconds; P = .007 and 16.7 vs 37.6 seconds; Pphrenic nerve palsy. Simulations suggest that IBD is unlikely to damage the atrium or pulmonary vein. Copyright © 2013 Heart Rhythm Society. All rights reserved.

  7. Lidar observations and transfer of stratospheric aerosol over Tomsk in summer period

    Science.gov (United States)

    Novikov, P. V.; Cheremisin, A. A.; Marichev, V. N.; Barashkov, T. O.

    2015-11-01

    The analysis of the stratospheric aerosol origin was carried out by the method of Lagrangian particle trajectories. Stratospheric aerosol was registered by lidar sounding of atmosphere above Tomsk in 2008-2013 in summer time. The analysis of the results had shown that the aerosol content at altitudes of 13-125 km with maximum at 16-18 km can be associated with aerosol transfer from tropical stratospheric reservoir.

  8. Hot air balloon engine

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd, 12 Lentara Street, Kenmore, Brisbane 4069 (Australia)

    2009-04-15

    This paper describes a solar powered reciprocating engine based on the use of a tethered hot air balloon fuelled by hot air from a glazed collector. The basic theory of the balloon engine is derived and used to predict the performance of engines in the 10 kW to 1 MW range. The engine can operate over several thousand metres altitude with thermal efficiencies higher than 5%. The engine thermal efficiency compares favorably with the efficiency of other engines, such as solar updraft towers, that also utilize the atmospheric temperature gradient but are limited by technical constraints to operate over a much lower altitude range. The increased efficiency allows the use of smaller area glazed collectors. Preliminary cost estimates suggest a lower $/W installation cost than equivalent power output tower engines. (author)

  9. Reduction of photosynthetically active radiation under extreme stratospheric-aerosol loads

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1981-01-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10 16 g is sufficient to reduce photosynthesis to 10 3 of normal. We also infer from this result that the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al., is thus shown to be a possible extinction mechanism, even with smaller size asteroids or comets than previously estimated

  10. Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1981-08-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10 1 g is sufficient to reduce photosynthesis to 10 -3 of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated

  11. Possible effects of volcanic eruptions on stratospheric minor constituent chemistry

    Science.gov (United States)

    Stolarski, R. S.; Butler, D. M.

    1979-01-01

    Although stratosphere penetrating volcanic eruptions have been infrequent during the last half century, periods have existed in the last several hundred years when such eruptions were significantly more frequent. Several mechanisms exist for these injections to affect stratospheric minor constituent chemistry, both on the long-term average and for short-term perturbations. These mechanisms are reviewed and, because of the sensitivity of current models of stratospheric ozone to chlorine perturbations, quantitative estimates are made of chlorine injection rates. It is found that, if chlorine makes up as much as 0.5 to 1% of the gases released and if the total gases released are about the same magnitude as the fine ash, then a major stratosphere penetrating eruption could deplete the ozone column by several percent. The estimate for the Agung eruption of 1963 is just under 1% an amount not excluded by the ozone record but complicated by the peak in atmospheric nuclear explosions at about the same time.

  12. The annual cycle of stratospheric water vapor in a general circulation model

    Science.gov (United States)

    Mote, Philip W.

    1995-01-01

    The application of general circulation models (GCM's) to stratospheric chemistry and transport both permits and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the Community Climate Model (CCM2), to enable studies of the chemistry and transport of tracers including water vapor; the importance of water vapor to the climate and chemistry of the stratosphere requires that it be better understood in the atmosphere and well represented in the model. In this study, methane is carried as a tracer and converted to water; this simple chemistry provides an adequate representation of the upper stratospheric water vapor source. The cold temperature bias in the winter polar stratosphere, which the CCM2 shares with other GCM's, produces excessive dehydration in the southern hemisphere, but this dry bias can be ameliorated by setting a minimum vapor pressure. The CCM2's water vapor distribution and seasonality compare favorably with observations in many respects, though seasonal variations including the upper stratospheric semiannual oscillation are generally too small. Southern polar dehydration affects midlatitude water vapor mixing ratios by a few tenths of a part per million, mostly after the demise of the vortex. The annual cycle of water vapor in the tropical and northern midlatitude lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a longer adjustment time than methane and had not reached equilibrium at the end of the 9 years simulated here.

  13. A Rare and Serious Unforeseen Complication of Cutting Balloon Angioplasty

    Directory of Open Access Journals (Sweden)

    Praveen Vemula

    2014-01-01

    Full Text Available Cutting balloon angioplasty (CBA is one of the adept ways of treating “in-stent restenosis.” Various complications related to cutting balloon angioplasty have been reported including arterial rupture, delayed perforation and fracture of microsurgical blades. Here we report a very unusual and inadvertent extraction of a stent previously deployed in the ramus intermedius coronary branch by a cutting balloon catheter. This required repeat stenting of the same site for an underlying dissection. Even though stent extraction is a rare complication it can be serious due to dissection, perforation, and closure of the artery. Physicians performing coronary artery interventions would need to be aware of this rare and serious complication especially if any difficulty is encountered while withdrawing the cutting balloon. Therefore, after removal, cutting balloon should be examined thoroughly for possible stent dislodgment or extraction when used for “in-stent restenosis.”

  14. MHD simulation of high wavenumber ballooning-like modes in LHD

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2008-10-01

    Dynamical growths of high-wavenumber ballooning modes are studied through full-3D nonlinear MHD simulations of the Large Helical Device. The growths of the ballooning modes are identified by studying the growth rates and the radial profiles of the Fourier coefficients of fluctuation variables. The mechanisms to weaken the growth of instability, such as the local fattening of the pressure and the energy release to the parallel kinetic energy, are found being insufficient to suppress the high-wavenumber ballooning modes. Consequently, the mean pressure profile is totally modified when the evolutions of the ballooning modes are saturated. The numerical results reveal that we need some mechanisms which do not originate from an ideal MHD to achieve a mild, saturated behaviors beyond the growths of unstable high ballooning modes in the helical device. The parallel heat conductivity is proposed as one of possible non-ideal mechanisms. (author)

  15. Effects of stratospheric perturbations on the solar radiation budget

    International Nuclear Information System (INIS)

    Luther, F.M.

    1978-04-01

    The changes in solar absorption and in local heating rates due to perturbations to O 3 and NO 2 concentrations caused by stratospheric injection of NO/sub x/ and CFM pollutants are assessed. The changes in species concentration profiles are derived from theoretical calculations using a transport-kinetics model. Because of significant changes in our understanding of stratospheric chemistry during the past year, the assessment of the effect of stratospheric perturbations on the solar radiation budget differs from previous assessments. Previously, a reduction in O 3 due to an NO/sub x/ injection caused a net decrease in the gaseous solar absorption;now the same perturbation leads to a net increase. The implication of these changes on the surface temperature is also discussed

  16. Ballooning Interest in Science.

    Science.gov (United States)

    Kim, Hy

    1992-01-01

    Presents an activity in which students construct model hot air balloons to introduce the concepts of convection current, the principles of Charles' gas law, and three-dimensional geometric shapes. Provides construction and launching instructions. (MDH)

  17. Exponential Growth of Nonlinear Ballooning Instability

    International Nuclear Information System (INIS)

    Zhu, P.; Hegna, C. C.; Sovinec, C. R.

    2009-01-01

    Recent ideal magnetohydrodynamic (MHD) theory predicts that a perturbation evolving from a linear ballooning instability will continue to grow exponentially in the intermediate nonlinear phase at the same linear growth rate. This prediction is confirmed in ideal MHD simulations. When the Lagrangian compression, a measure of the ballooning nonlinearity, becomes of the order of unity, the intermediate nonlinear phase is entered, during which the maximum plasma displacement amplitude as well as the total kinetic energy continues to grow exponentially at the rate of the corresponding linear phase.

  18. Space-time patterns of trends in stratospheric constituents derived from UARS measurements

    Science.gov (United States)

    Randel, William J.; Wu, Fei; Russell, James M.; Waters, Joe

    1999-02-01

    The spatial and temporal behavior of low-frequency changes (trends) in stratospheric constituents measured by instruments on the Upper Atmosphere Research Satellite (UARS) during 1991-98 is investigated. The data include CH4, H2O, HF, HCl, O3, and NO2 from the Halogen Occultation Experiment (HALOE), and O3, ClO, and HNO3 from the Microwave Limb Sounder (MLS). Time series of global anomalies are analyzed by linear regression and empirical orthogonal function analysis. Each of the constituents show significant linear trends over at least some region of the stratosphere, and the spatial patterns exhibit coupling between the different species. Several of the constituents (namely CH4, H2O, HF, HCl, O3, and NO2) exhibit a temporal change in trend rates, with strong changes prior to 1996 and weaker (or reversed) trends thereafter. Positive trends are observed in upper stratospheric ClO, with a percentage rate during 1993-97 consistent with stratospheric HCl increases and with tropospheric chlorine emission rates. Significant negative trends in ozone in the tropical middle stratosphere are found in both HALOE and MLS data during 1993-97, together with positive trends in the tropics near 25 km. These trends are very different from the decadal-scale ozone trends observed since 1979, and this demonstrates the variability of trends calculated over short time periods. Positive trends in NO2 are found in the tropical middle stratosphere, and spatial coincidence to the observed ozone decreases suggests the ozone is responding to the NO2 increase. Significant negative trends in HNO3 are found in the lower stratosphere of both hemispheres. These coupled signatures offer a fingerprint of chemical evolution in the stratosphere for the UARS time frame.

  19. An overview of the HIBISCUS campaign

    Science.gov (United States)

    Pommereau, J.-P.; Garnier, A.; Held, G.; Gomes, A. M.; Goutail, F.; Durry, G.; Borchi, F.; Hauchecorne, A.; Montoux, N.; Cocquerez, P.; Letrenne, G.; Vial, F.; Hertzog, A.; Legras, B.; Pisso, I.; Pyle, J. A.; Harris, N. R. P.; Jones, R. L.; Robinson, A. D.; Hansford, G.; Eden, L.; Gardiner, T.; Swann, N.; Knudsen, B.; Larsen, N.; Nielsen, J. K.; Christensen, T.; Cairo, F.; Fierli, F.; Pirre, M.; Marécal, V.; Huret, N.; Rivière, E. D.; Coe, H.; Grosvenor, D.; Edvarsen, K.; di Donfrancesco, G.; Ricaud, P.; Berthelier, J.-J.; Godefroy, M.; Seran, E.; Longo, K.; Freitas, S.

    2011-03-01

    The EU HIBISCUS project consisted of a series of field campaigns during the intense convective summers in 2001, 2003 and 2004 in the State of São Paulo in Brazil. Its objective was to investigate the impact of deep convection on the Tropical Tropopause Layer (TTL) and the lower stratosphere by providing a new set of observational data on meteorology, tracers of horizontal and vertical transport, water vapour, clouds, and chemistry in the tropical Upper Troposphere/Lower Stratosphere (UT/LS). This was achieved using short duration research balloons to study local phenomena associated with convection over land, and long-duration balloons circumnavigating the globe to study the contrast between land and oceans. Analyses of observations of short-lived tracers, ozone and ice particles show strong episodic local updraughts of cold air across the lapse rate tropopause up to 18 or 19 km (420-440 K) in the lower stratosphere by overshooting towers. The long duration balloon and satellite measurements reveal a contrast between the composition of the lower stratosphere over land and oceanic areas, suggesting significant global impact of such events. The overshoots are shown to be well captured by non-hydrostatic meso-scale Cloud Resolving Models indicating vertical velocities of 50-60 m s-1 at the top of the Neutral Buoyancy Level (NBL) at around 14 km, but, in contrast, are poorly represented by global Chemistry-Transport Models (CTM) forced by Numerical Weather Forecast Models (NWP) underestimating the overshooting process. Finally, the data collected by the HIBISCUS balloons have allowed a thorough evaluation of temperature NWP analyses and reanalyses, as well as satellite ozone, nitrogen oxide, water vapour and bromine oxide measurements in the tropics.

  20. An investigation of electrostatically deposited radionuclides on latex balloons

    International Nuclear Information System (INIS)

    Price, T.; Caly, A.

    2012-01-01

    Use of Canadian Nuclear Society (CNS) education material for a community science education event to promote science awareness, science culture and literacy (Science Rendezvous 2011) lead to investigation of observed phenomena. Experiments are done on balloons that are electrostatically charged then left to collect particulate. Alpha spectroscopy was performed to identify alpha emitting radioisotopes present on the balloons. The time dependent behaviour of the activity was investigated. Additionally, the Alpha activity of the balloon was compared to Beta activity. The grounds for further investigations are proposed. (author)

  1. An investigation of electrostatically deposited radionuclides on latex balloons

    Energy Technology Data Exchange (ETDEWEB)

    Price, T.; Caly, A., E-mail: Terry.Price@gmail.com [Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2012-07-01

    Use of Canadian Nuclear Society (CNS) education material for a community science education event to promote science awareness, science culture and literacy (Science Rendezvous 2011) lead to investigation of observed phenomena. Experiments are done on balloons that are electrostatically charged then left to collect particulate. Alpha spectroscopy was performed to identify alpha emitting radioisotopes present on the balloons. The time dependent behaviour of the activity was investigated. Additionally, the Alpha activity of the balloon was compared to Beta activity. The grounds for further investigations are proposed. (author)

  2. Cutting balloon and high-pressure balloon dilation for palliative treatment of congenital double-chambered right ventricle and primary infundibular stenosis in a Golden retriever dog.

    Science.gov (United States)

    Schober, Karsten E; Rhinehart, Jaylyn; Kohnken, Rebecca; Bonagura, John D

    2017-12-01

    Combined cutting balloon and high-pressure balloon dilation was performed in a dog with a double-chambered right ventricle and severe infundibular stenosis of the right ventricular outflow tract. The peak systolic pressure gradient across the stenosis decreased by 65% after dilation (from 187 mmHg before to 66 mmHg after) affirming the intervention as successful. However, early re-stenosis occurred within 3 months leading to exercise intolerance, exercise-induced syncope, and right-sided congestive heart failure. Cutting balloon followed by high-pressure balloon dilation provided temporary but not long-term relief of right ventricular obstruction in this dog. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Equatorial waves in the stratosphere of Uranus

    Science.gov (United States)

    Hinson, David P.; Magalhaes, Julio A.

    1991-01-01

    Analyses of radio occultation data from Voyager 2 have led to the discovery and characterization of an equatorial wave in the Uranus stratosphere. The observed quasi-periodic vertical atmospheric density variations are in close agreement with theoretical predictions for a wave that propagates vertically through the observed background structure of the stratosphere. Quantitative comparisons between measurements obtained at immersion and at emersion yielded constraints on the meridional and zonal structure of the wave; the fact that the two sets of measurements are correlated suggests a wave of planetary scale. Two equatorial wave models are proposed for the wave.

  4. On the detection of the solar signal in the tropical stratosphere

    Directory of Open Access Journals (Sweden)

    G. Chiodo

    2014-06-01

    Full Text Available We investigate the relative role of volcanic eruptions, El Niño–Southern Oscillation (ENSO, and the quasi-biennial oscillation (QBO in the quasi-decadal signal in the tropical stratosphere with regard to temperature and ozone commonly attributed to the 11 \\unit{yr} solar cycle. For this purpose, we perform transient simulations with the Whole Atmosphere Community Climate Model forced from 1960 to 2004 with an 11 yr solar cycle in irradiance and different combinations of other forcings. An improved multiple linear regression technique is used to diagnose the 11 yr solar signal in the simulations. One set of simulations includes all observed forcings, and is thereby aimed at closely reproducing observations. Three idealized sets exclude ENSO variability, volcanic aerosol forcing, and QBO in tropical stratospheric winds, respectively. Differences in the derived solar response in the tropical stratosphere in the four sets quantify the impact of ENSO, volcanic events and the QBO in attributing quasi-decadal changes to the solar cycle in the model simulations. The novel regression approach shows that most of the apparent solar-induced lower-stratospheric temperature and ozone increase diagnosed in the simulations with all observed forcings is due to two major volcanic eruptions (i.e., El Chichón in 1982 and Mt. Pinatubo in 1991. This is caused by the alignment of these eruptions with periods of high solar activity. While it is feasible to detect a robust solar signal in the middle and upper tropical stratosphere, this is not the case in the tropical lower stratosphere, at least in a 45 yr simulation. The present results suggest that in the tropical lower stratosphere, the portion of decadal variability that can be unambiguously linked to the solar cycle may be smaller than previously thought.

  5. Incremental balloon deflation following complete resuscitative endovascular balloon occlusion of the aorta results in steep inflection of flow and rapid reperfusion in a large animal model of hemorrhagic shock.

    Science.gov (United States)

    Davidson, Anders J; Russo, Rachel M; Ferencz, Sarah-Ashley E; Cannon, Jeremy W; Rasmussen, Todd E; Neff, Lucas P; Johnson, M Austin; Williams, Timothy K

    2017-07-01

    To avoid potential cardiovascular collapse after resuscitative endovascular balloon occlusion of the aorta (REBOA), current guidelines recommend methodically deflating the balloon for 5 minutes to gradually reperfuse distal tissue beds. However, anecdotal evidence suggests that this approach may still result in unpredictable aortic flow rates and hemodynamic instability. We sought to characterize aortic flow dynamics following REBOA as the balloon is deflated in accordance with current practice guidelines. Eight Yorkshire-cross swine were splenectomized, instrumented, and subjected to rapid 25% total blood volume hemorrhage. After 30 minutes of shock, animals received 60 minutes of Zone 1 REBOA with a low-profile REBOA catheter. During subsequent resuscitation with shed blood, the aortic occlusion balloon was gradually deflated in stepwise fashion at the rate of 0.5 mL every 30 seconds until completely deflated. Aortic flow rate and proximal mean arterial pressure (MAP) were measured continuously over the period of balloon deflation. Graded balloon deflation resulted in variable initial return of aortic flow (median, 78 seconds; interquartile range [IQR], 68-105 seconds). A rapid increase in aortic flow during a single-balloon deflation step was observed in all animals (median, 819 mL/min; IQR, 664-1241 mL/min) and corresponded with an immediate decrease in proximal MAP (median, 30 mm Hg; IQR, 14.5-37 mm Hg). Total balloon volume and time to return of flow demonstrated no correlation (r = 0.016). This study is the first to characterize aortic flow during balloon deflation following REBOA. A steep inflection point occurs during balloon deflation that results in an abrupt increase in aortic flow and a concomitant decrease in MAP. Furthermore, the onset of distal aortic flow was inconsistent across study animals and did not correlate with initial balloon volume or relative deflation volume. Future studies to define the factors that affect aortic flow during balloon

  6. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region

    Science.gov (United States)

    Thankamani Akhil Raj, Sivan; Venkat Ratnam, Madineni; Narayana Rao, Daggumati; Venkata Krishna Murthy, Boddam

    2018-01-01

    We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993-2005), Aura Microwave Limb Sounder (MLS, 2004-2015), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002-2015) on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics)) observations covering the period 1993-2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E) and New Delhi (28° N, 77° E), covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E), for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (-1.71 ± 0.49 K decade-1) and New Delhi (-1.15 ± 0.55 K decade-1). The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998-2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (˜ 10 hPa) and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.

  7. Lidar observations of stratospheric aerosol layer after the Mt. Pinatubo volcanic eruption

    International Nuclear Information System (INIS)

    Nagai, Tomohiro; Uchino, Osamu; Fujimoto, Toshifumi.

    1992-01-01

    The volcano Mt. Pinatubo located on the Luzon Island, Philippines, had explosively erupted on June 15, 1991. The volcanic eruptions such as volcanic ash, SO2 and H2O reached into the stratosphere over 30 km altitude by the NOAA-11 satellite observation and this is considered one of the biggest volcanic eruptions in this century. A grandiose volcanic eruption influences the atmosphere seriously and causes many climatic effects globally. There had been many impacts on radiation, atmospheric temperature and stratospheric ozone after some past volcanic eruptions. The main cause of volcanic influence depends on stratospheric aerosol, that stay long enough to change climate and other meteorological conditions. Therefore it is very important to watch stratospheric aerosol layers carefully and continuously. Standing on this respect, we do not only continue stratospheric aerosol observation at Tsukuba but also have urgently developed another lidar observational point at Naha in Okinawa Island. This observational station could be thought valuable since there is no lidar observational station in this latitudinal zone and it is much nearer to Mt. Pinatubo. Especially, there is advantage to link up these two stations on studying the transportation mechanism in the stratosphere. In this paper, we present the results of lidar observations at Tsukuba and Naha by lidar systems with Nd:YAG laser

  8. Lidar Observations of Stratospheric Aerosol Layer After the Mt. Pinatubo Volcanic Eruption

    Science.gov (United States)

    Nagai, Tomohiro; Uchino, Osamu; Fujimoto, Toshifumi

    1992-01-01

    The volcano Mt. Pinatubo located on the Luzon Island, Philippines, had explosively erupted on June 15, 1991. The volcanic eruptions such as volcanic ash, SO2 and H2O reached into the stratosphere over 30 km altitude by the NOAA-11 satellite observation and this is considered one of the biggest volcanic eruptions in this century. A grandiose volcanic eruption influences the atmosphere seriously and causes many climatic effects globally. There had been many impacts on radiation, atmospheric temperature and stratospheric ozone after some past volcanic eruptions. The main cause of volcanic influence depends on stratospheric aerosol, that stay long enough to change climate and other meteorological conditions. Therefore it is very important to watch stratospheric aerosol layers carefully and continuously. Standing on this respect, we do not only continue stratospheric aerosol observation at Tsukuba but also have urgently developed another lidar observational point at Naha in Okinawa Island. This observational station could be thought valuable since there is no lidar observational station in this latitudinal zone and it is much nearer to Mt. Pinatubo. Especially, there is advantage to link up these two stations on studying the transportation mechanism in the stratosphere. In this paper, we present the results of lidar observations at Tsukuba and Naha by lidar systems with Nd:YAG laser.

  9. Double-Balloon Catheter for Isolated Liver Perfusion: An Experimental Study

    International Nuclear Information System (INIS)

    Cwikiel, Wojciech; Bergqvist, Lennart; Harnek, Jan

    2001-01-01

    Purpose: Further development of a previously described interventional method for isolated liver perfusion (ILP) with a new double-lumen balloon catheter, and evaluation of the side-effects of such isolation.Methods: In six pigs a double-balloon occlusion catheter was placed via the transjugular approach with its tip in the portal vein. One of the balloons was positioned in the inferior vena cava (IVC), cranial to the origin of the hepatic veins and the other balloon in the portal vein. By the transfemoral approach, a single-balloon occlusion catheter was placed in the IVC caudal to the origin of the hepatic veins. A third catheter was placed by the transfemoral route with the occlusion balloon in the proper hepatic artery. After inflation of all balloons 99 Tc m -labelled human serum albumin was recirculated through the liver. The isolation was evaluated by repeated measurement of radioactivity levels in peripheral blood. Laboratory tests of liver and pancreas function, and hemoglobin, were taken before, at the end of, and 3 days after the procedure. Blood gases were tested at the beginning and end of the procedure.Results: One pig died during the procedure due to technical failure and was excluded from the study. In the other pigs leakage from the isolated liver to the systemic circulation increased slowly, up to 9.7% (mean) during 30 min of recirculation of the perfusate through the liver. Laboratory tests were normal in all pigs except insignificant acidosis directly after the procedure and the slight elevation of s-ALAT after 3 days.Conclusions: Only minor leakage from the liver to the systemic circulation was noted during ILP performed with a new, double-balloon catheter. There were no serious side effects

  10. Northern Winter Climate Change: Assessment of Uncertainty in CMIP5 Projections Related to Stratosphere-Troposphere Coupling

    Science.gov (United States)

    Manzini, E.; Karpechko, A.Yu.; Anstey, J.; Shindell, Drew Todd; Baldwin, M.P.; Black, R.X.; Cagnazzo, C.; Calvo, N.; Charlton-Perez, A.; Christiansen, B.; hide

    2014-01-01

    Future changes in the stratospheric circulation could have an important impact on northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) multimodel ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification, and the stratospheric wind change on SLP. We find that the intermodel spread in stratospheric wind change contributes substantially to the intermodel spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.

  11. Intragastric balloon for morbid obesity causing chronic gastric dilatation

    Energy Technology Data Exchange (ETDEWEB)

    Pretolesi, F.; Derchi, L.E. [Dept. of Radiology, University of Genoa (Italy); Redaelli, G.; Papagni, L. [IRCCS, Ist. Auxologico Italiano, Milan (Italy)

    2001-04-01

    We describe the radiographic findings observed in a morbidly obese and diabetic patient with an intragastric air-filled balloon introduced as a therapeutic measure to reduce food intake. The balloon was associated with chronic gastric dilatation and had to be removed 3 months after insertion. However, together with diet and behavioural therapy, it proved effective in reducing body weight and ameliorating glycaemic control. Although rarely used, intragastric balloons for the treatment of morbid obesity are still encountered in radiological practice. Radiologists must be able to recognize them and to understand their complications. (orig.)

  12. Intragastric balloon for morbid obesity causing chronic gastric dilatation

    International Nuclear Information System (INIS)

    Pretolesi, F.; Derchi, L.E.; Redaelli, G.; Papagni, L.

    2001-01-01

    We describe the radiographic findings observed in a morbidly obese and diabetic patient with an intragastric air-filled balloon introduced as a therapeutic measure to reduce food intake. The balloon was associated with chronic gastric dilatation and had to be removed 3 months after insertion. However, together with diet and behavioural therapy, it proved effective in reducing body weight and ameliorating glycaemic control. Although rarely used, intragastric balloons for the treatment of morbid obesity are still encountered in radiological practice. Radiologists must be able to recognize them and to understand their complications. (orig.)

  13. Ballooning-mirror instability and internally driven Pc 4--5 wave events

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Qian, Q.; Takahashi, K.; Lui, A.T.Y.

    1994-03-01

    A kinetic-MHD field-aligned eigenmode stability analysis of low frequency ballooning-mirror instabilities has been performed for anisotropic pressure plasma sin the magnetosphere. The ballooning mode is mainly a transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy (P perpendicular /P parallel > 1) is large. From the AMPTE/CCE particle and magnetic field data observed during Pc 4--5 wave events the authors compute the ballooning-mirror instability parameters and perform a correlation study with the theoretical instability threshold. They find that compressional Pc 5 waves approximately satisfy the ballooning-mirror instability condition, and transverse Pc 4--5 waves are probably related to resonant ballooning instabilities with small pressure anisotropy

  14. Blood pressure normalization post-jugular venous balloon angioplasty.

    Science.gov (United States)

    Sternberg, Zohara; Grewal, Prabhjot; Cen, Steven; DeBarge-Igoe, Frances; Yu, Jinhee; Arata, Michael

    2015-05-01

    This study is the first in a series investigating the relationship between autonomic nervous system dysfunction and chronic cerebrospinal venous insufficiency in multiple sclerosis patients. We screened patients for the combined presence of the narrowing of the internal jugular veins and symptoms of autonomic nervous system dysfunction (fatigue, cognitive dysfunction, sleeping disorders, headache, thermal intolerance, bowel/bladder dysfunction) and determined systolic and diastolic blood pressure responses to balloon angioplasty. The criteria for eligibility for balloon angioplasty intervention included ≥ 50% narrowing in one or both internal jugular veins, as determined by the magnetic resonance venography, and ≥ 3 clinical symptoms of autonomic nervous system dysfunction. Blood pressure was measured at baseline and post-balloon angioplasty. Among patients who were screened, 91% were identified as having internal jugular veins narrowing (with obstructing lesions) combined with the presence of three or more symptoms of autonomic nervous system dysfunction. Balloon angioplasty reduced the average systolic and diastolic blood pressure. However, blood pressure categorization showed a biphasic response to balloon angioplasty. The procedure increased blood pressure in multiple sclerosis patients who presented with baseline blood pressure within lower limits of normal ranges (systolic ≤ 105 mmHg, diastolic ≤ 70 mmHg) but decreased blood pressure in patients with baseline blood pressure above normal ranges (systolic ≥ 130 mmHg, diastolic ≥ 80 mmHg). In addition, gender differences in baseline blood pressure subcategories were observed. The coexistence of internal jugular veins narrowing and symptoms of autonomic nervous system dysfunction suggests that the two phenomena may be related. Balloon angioplasty corrects blood pressure deviation in multiple sclerosis patients undergoing internal jugular vein dilation. Further studies should investigate the

  15. Fluoroscopy-guided balloon dilation in patients with Eustachian tube dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Yung; Tsauo, Jiaywei; Song, Ho-Young [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Park, Hong Ju; Kang, Woo Seok [University of Ulsan College of Medicine, Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, Seoul (Korea, Republic of); Park, Jung-Hoon [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); University of Ulsan College of Medicine, Department of Biomedical Engineering Research Center, Asan Medical Center, Seoul (Korea, Republic of); Wang, Zhe [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Tianjin Medical University General Hospital, Department of Radiology (China)

    2018-03-15

    To prospectively evaluate the technical feasibility and safety of fluoroscopy-guided balloon dilation in patients with Eustachian tube (ET) dysfunction. Patients who could not do a Valsalva manoeuvre for more than 6 months and diagnosed with chronic otitis media or ET dysfunction were prospectively enrolled. A 0.035-in. guide wire and 6-mm long balloon catheter with a diameter of 2 mm were used to dilate the cartilaginous portion of the ET under fluoroscopic guidance. The balloon was inflated by manual injection twice for 1 min each time. Clinical outcomes were assessed by the patient's ability to perform a Valsalva manoeuvre, and symptoms were assessed using the 7-item Eustachian Tube Dysfunction Questionnaire (ETDQ-7) score. Balloon dilation was attempted in a total of ten adult patients from October 2016 to March 2017. Technical success was achieved in all procedures (10/10). Ninety percent (9/10) of the balloons were fully dilated without waist deformity. There were no major complications. All patients were able to perform a Valsalva manoeuvre at the time of their last visit and/or improvement of at least one ETDQ-7 score. Fluoroscopy-guided balloon dilation seems to be technically feasible and safe in the treatment of ET dysfunction. (orig.)

  16. Unconventional ballooning structures for toroidal drift waves

    International Nuclear Information System (INIS)

    Xie, Hua-sheng; Xiao, Yong

    2015-01-01

    With strong gradients in the pedestal of high confinement mode (H-mode) fusion plasmas, gyrokinetic simulations are carried out for the trapped electron and ion temperature gradient modes. A broad class of unconventional mode structures is found to localize at arbitrary poloidal positions or with multiple peaks. It is found that these unconventional ballooning structures are associated with different eigen states for the most unstable mode. At weak gradient (low confinement mode or L-mode), the most unstable mode is usually in the ground eigen state, which corresponds to a conventional ballooning mode structure peaking in the outboard mid-plane of tokamaks. However, at strong gradient (H-mode), the most unstable mode is usually not the ground eigen state and the ballooning mode structure becomes unconventional. This result implies that the pedestal of H-mode could have better confinement than L-mode

  17. The development of coastal diffusion observation method with a captive balloon

    International Nuclear Information System (INIS)

    Fukuda, Masaaki; Yamada, Masaharu

    1980-03-01

    Apparatus whereby the dye cloud in a coastal area in diffusion experiment can be photographed was developed. It consists of a vinyl balloon two meters in diameter, a photographic device with the camera shutter released by wireless signals from the ground, and a winch to raise or lower the balloon. A maximum height of the balloon for taking photographs is 1000 m. During the single balloon flight, thirty photographs can be taken. With the balloon at a certain height, dye as the tracer in diffusion experiment is released at sea surface or a certain sea depth by dye-throwing means or pump, and then taking the photographs is started. Movement and diffusion of the dye are analyzed by means of the photographs taken. The apparatus is simple in mechanism and easy to transport. Dye experiment is possible in the surfe zone where a boat cannot enter. It is impossible, however, to raise the balloon in strong wind or sea breeze. Typical results of the dye diffusion experiment with the apparatus are given. (author)

  18. Intra-aortic balloon shape change: effects on volume displacement during inflation and deflation.

    Science.gov (United States)

    Khir, Ashraf William; Bruti, Gianpaolo

    2013-07-01

    It has been observed that operating the intra-aortic balloon at an angle to the horizontal resulted in a reduction of the volume displaced toward the coronary arteries and compromised afterload reduction. Therefore, the aim of this work is to examine whether changing the current balloon shape, which has not been altered for 40 years, could compensate for the negative hemodynamic effects due to angulation. We tested two tapered balloons, increasing diameter (TID) and decreasing diameter (TDD), and compared the results with those obtained from a standard cylindrical balloon. The balloons were tested in vitro at 60 beats/min and a static pressure of 90 mm Hg. The balloons were operated at four angles (0°, 20°, 30°, 45°), and the pressure at three locations along the balloon (base, middle, and tip) was also measured. Flow rate upstream of the tip of the balloon was also measured to indicate the flow displaced toward the coronary circulation. The relative volume displaced toward (VUTVi) and suctioned away from (VUTVd) the simulated ascending aorta, during inflation and deflation, respectively, is reduced when a standard cylindrical balloon is operated at an angle to the horizontal. The TDD provided the greatest VUTVi and also produced the largest pulse pressure during deflation. Although the TID provided less VUTVi and VUTVd at smaller angles, it was not markedly affected by the change of angle. According to these results, different balloon shapes analyzed, with comparable volume to that of a cylindrical balloon, produced greater inflation and deflation benefits, at the horizontal and at a range of angles to the horizontal. Further investigations are required to optimize the shape of the tapered balloons to fit into the available physiological space. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  19. Hot air balloons fill gap in atmospheric and sensing platforms

    Science.gov (United States)

    Watson, Steven M.; Price, Russ

    Eric Edgerton was having a problem he could not solve: how to noninvasively collect in situ incinerator plume data. So he called in the Air Force and learned about its Atmospheric and Sensor Test Platform program; its platform is a manned hot air balloon. Many investigators are discovering the advantages of hot air balloons as stable, inexpensive platforms for performing in situ atmospheric measurements. Some are also using remote sensing capabilities on the balloon platforms.

  20. Tibetan Plateau glacier and hydrological change under stratospheric aerosol injection

    Science.gov (United States)

    Ji, D.

    2017-12-01

    As an important inland freshwater resource, mountain glaciers are highly related to human life, they provide water for many large rivers and play a very important role in regional water cycles. The response of mountain glaciers to future climate change is a topic of concern especially to the many people who rely on glacier-fed rivers for purposes such as irrigation. Geoengineering by stratospheric aerosol injection is a method of offsetting the global temperature rise from greenhouse gases. How the geoengineering by stratospheric aerosol injection affects the mass balance of mountain glaciers and adjacent river discharge is little understood. In this study, we use regional climate model WRF and catchment-based river model CaMa-Flood to study the impacts of stratospheric aerosol injection to Tibetan Plateau glacier mass balance and adjacent river discharge. To facilitate mountain glacier mass balance study, we improve the description of mountain glacier in the land surface scheme of WRF. The improvements include: (1) a fine mesh nested in WRF horizontal grid to match the highly non-uniform spatial distribution of the mountain glaciers, (2) revising the radiation flux at the glacier surface considering the surrounding terrain. We use the projections of five Earth system models for CMIP5 rcp45 and GeoMIP G4 scenarios to drive the WRF and CaMa-Flood models. The G4 scenario, which uses stratospheric aerosols to reduce the incoming shortwave while applying the rcp4.5 greenhouse gas forcing, starts stratospheric sulfate aerosol injection at a rate of 5 Tg per year over the period 2020-2069. The ensemble projections suggest relatively slower glacier mass loss rates and reduced river discharge at Tibetan Plateau and adjacent regions under geoengineering scenario by stratospheric aerosol injection.

  1. Ballooning stability of JET discharges

    International Nuclear Information System (INIS)

    Huysmans, G.T.A.; Goedbloed, J.P.; Galvao, R.M.O.; Lazzaro, E.; Smeulders, P.

    1989-01-01

    Conditions under which ballooning modes are expected to be excited have recently been obtained in two different types of discharges in JET. In the first type, extremely large pressure gradients have been produced in the plasma core through pellet injections in the current rise phase followed by strong additional heating. In the second type, the total pressure of the discharge is approaching the Troyon limit. The stability of these discharges with respect to the ideal MHD ballooning modes has been studied with the stability code HBT. The equilibria are reconstructed with the IDENTC code using the external magnetic measurements and the experimental pressure profile. The results show that the evaluated high beta discharge is unstable in the central region of the plasma. This instability is related to the low shear and not to a large pressure gradient, as expected at the Troyon limit. In the pellet discharges the regions with the large pressure gradients are unstable to ballooning modes at the time of the beta decay, which ends the period of enhanced performance. The maximum pressure gradient in these discharges is limited by the boundary of the first region of stability. The observed phenomena at the beta decay are similar to those observed at the beta limit in DIII-D and TFTR. (author)

  2. Drift-corrected Odin-OSIRIS ozone product: algorithm and updated stratospheric ozone trends

    Directory of Open Access Journals (Sweden)

    A. E. Bourassa

    2018-01-01

    Full Text Available A small long-term drift in the Optical Spectrograph and Infrared Imager System (OSIRIS stratospheric ozone product, manifested mostly since 2012, is quantified and attributed to a changing bias in the limb pointing knowledge of the instrument. A correction to this pointing drift using a predictable shape in the measured limb radiance profile is implemented and applied within the OSIRIS retrieval algorithm. This new data product, version 5.10, displays substantially better both long- and short-term agreement with Microwave Limb Sounder (MLS ozone throughout the stratosphere due to the pointing correction. Previously reported stratospheric ozone trends over the time period 1984–2013, which were derived by merging the altitude–number density ozone profile measurements from the Stratospheric Aerosol and Gas Experiment (SAGE II satellite instrument (1984–2005 and from OSIRIS (2002–2013, are recalculated using the new OSIRIS version 5.10 product and extended to 2017. These results still show statistically significant positive trends throughout the upper stratosphere since 1997, but at weaker levels that are more closely in line with estimates from other data records.

  3. Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors

    Science.gov (United States)

    Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; Cutts, James A.; Garcia, Raphael F.; Mimoun, David; Cadu, Alexandre; Sournac, Anthony; Jackson, Jennifer M.; Lai, Voon Hui; Bowman, Daniel C.

    2018-04-01

    We conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hot air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.

  4. Titan's Stratospheric Condensibles at High Northern Latitudes During Northern Winter

    Science.gov (United States)

    Anderson, Carrie; Samuelson, R.; Achterberg, R.

    2012-01-01

    The Infrared Interferometer Spectrometer (IRIS) instrument on board Voyager 1 caught the first glimpse of an unidentified particulate feature in Titan's stratosphere that spectrally peaks at 221 per centimeter. Until recently, this feature that we have termed 'the haystack,' has been seen persistently at high northern latitudes with the Composite Infrared Spectrometer (CIRS) instrument onboard Cassini, The strength of the haystack emission feature diminishes rapidly with season, becoming drastically reduced at high northern latitudes, as Titan transitions from northern winter into spring, In contrast to IRIS whose shortest wavenumber was 200 per centimeter, CIRS extends down to 10 per centimeter, thus revealing an entirely unexplored spectral region in which nitrile ices have numerous broad lattice vibration features, Unlike the haystack, which is only found at high northern latitudes during northern winter/early northern spring, this geometrically thin nitrile cloud pervades Titan's lower stratosphere, spectrally peaking at 160 per centimeter, and is almost global in extent spanning latitudes 85 N to 600 S, The inference of nitrile ices are consistent with the highly restricted altitude ranges over which these features are observed, and appear to be dominated by a mixture of HCN and HC3N, The narrow range in altitude over which the nitrile ices extend is unlike the haystack, whose vertical distribution is significantly broader, spanning roughly 70 kilometers in altitude in Titan's lower stratosphere, The nitrile clouds that CIRS observes are located in a dynamically stable region of Titan's atmosphere, whereas CH4 clouds, which ordinarily form in the troposphere, form in a more dynamically unstable region, where convective cloud systems tend to occur. In the unusual situation where Titan's tropopause cools significantly from the HASI 70.5K temperature minimum, CH4 should condense in Titan's lower stratosphere, just like the aforementioned nitrile clouds, although

  5. The 'surf zone' in the stratosphere

    Science.gov (United States)

    McIntyre, M. E.; Palmer, T. N.

    Synoptic, coarse-grain, isentropic maps of Ertel's potential vorticity Q for the northern middle stratosphere, estimated using a large-Richardson-number approximation, are presented for a number of days in January-February 1979, together with some related isentropic trajectory calculations The effects of substituting FGGE for NMC base data are noted, as well as some slight corrections to maps published earlier. The combined evidence from the observations and from dynamical models strongly indicates the existence of planetary-wave breaking, a process in which material contours are rapidly and irreversibly deformed. In the winter stratosphere this occurs most spectacularly in a gigantic 'nonlinear critical layer', or 'surf zone', which surrounds the main polar vortex, and which tends to erode the vortex when wave amplitudes become large. Some of the FGGE-based Q maps suggest that we may be seeing glimpses of local dynamical instabilities and vortex-rollup phenomena within breaking planetary waves. Related phenomena in the troposphere are discussed. An objective definition of the area A( t) of the main vortex, as it appears on isentropic Q maps, is proposed. A smoothed time series of daily values of A( t) should be a statistically powerful 'circulation index' for the state of the winter-time middle stratosphere, which avoids the loss of information incurred by Eulerian space and time averaging.

  6. A comprehensive mission to planet Earth: Woods Hole Space Science and Applications Advisory Committee Planning Workshop

    Science.gov (United States)

    1991-01-01

    The NASA program Mission to Planet Earth (MTPE) is described in this set of visuals presented in Massachusetts on July 29, 1991. The problem presented in this document is that the earth system is changing and that human activity accelerates the rate of change resulting in increased greenhouse gases, decreasing levels of stratospheric ozone, acid rain, deforestation, decreasing biodiversity, and overpopulation. Various national and international organizations are coordinating global change research. The complementary space observations for this activity are sun-synchronous polar orbits, low-inclination, low altitude orbits, geostationary orbits, and ground measurements. The Geostationary Earth Observatory is the major proposed mission of MTPE. Other proposed missions are EOS Synthetic Aperture Radar, ARISTOTELES Magnetic Field Experiment, and the Global Topography Mission. Use of the NASA DC-8 aircraft is outlined as carrying out the Airborne Science and Applications Program. Approved Earth Probes Program include the Total Ozone Mapping Spectrometer (TOMS). Other packages for earth observation are described.

  7. Stratospheric mean ages and transport rates from observations of CO{sub 2} and N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Boering, K A; Wofsy, S C; Daube, B C; Schneider, H R [Harvard Univ., Cambridge, MA (United States). Div. of Engineering and Applied Sciences; Loewenstein, M; Podolske, J R [NASA Ames Research Center, Moffett Field, CA (United States); Conway, T J [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1998-12-31

    Measurements of CO{sub 2} and N{sub 2}O concentrations are reported and analyzed to investigate stratospheric transport rates. Temporal variations in tropospheric CO{sub 2} are observed to propagate into the stratosphere, showing that tropospheric air enters the lower tropical stratosphere continuously, ascends, and is transported rapidly (in less than 1 month) to both hemispheres. The mean age of stratospheric air determined from CO{sub 2} data is approximately 5 years in the mid-stratosphere. It is shown that the mean age is mathematically equivalent to a conserved tracer analogous to exhaust from stratospheric aircraft. Comparison of the mean age from models and observations indicates that current model simulations likely underestimate pollutant concentrations from proposed stratospheric aircraft by 25-100%. (author) 36 refs.

  8. Stratospheric mean ages and transport rates from observations of CO{sub 2} and N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Boering, K.A.; Wofsy, S.C.; Daube, B.C.; Schneider, H.R. [Harvard Univ., Cambridge, MA (United States). Div. of Engineering and Applied Sciences; Loewenstein, M.; Podolske, J.R. [NASA Ames Research Center, Moffett Field, CA (United States); Conway, T.J. [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1997-12-31

    Measurements of CO{sub 2} and N{sub 2}O concentrations are reported and analyzed to investigate stratospheric transport rates. Temporal variations in tropospheric CO{sub 2} are observed to propagate into the stratosphere, showing that tropospheric air enters the lower tropical stratosphere continuously, ascends, and is transported rapidly (in less than 1 month) to both hemispheres. The mean age of stratospheric air determined from CO{sub 2} data is approximately 5 years in the mid-stratosphere. It is shown that the mean age is mathematically equivalent to a conserved tracer analogous to exhaust from stratospheric aircraft. Comparison of the mean age from models and observations indicates that current model simulations likely underestimate pollutant concentrations from proposed stratospheric aircraft by 25-100%. (author) 36 refs.

  9. Test ventilation with smoke, bubbles, and balloons

    International Nuclear Information System (INIS)

    Pickering, P.L.; Cucchiara, A.L.; McAtee, J.L.; Gonzales, M.

    1987-01-01

    The behavior of smoke, bubbles, and helium-filled balloons was videotaped to demonstrate the mixing of air in the plutonium chemistry laboratories, a plutonium facility. The air-distribution patterns, as indicated by each method, were compared. Helium-filled balloons proved more useful than bubbles or smoke in the visualization of airflow patterns. The replay of various segments of the videotape proved useful in evaluating the different techniques and in identifying airflow trends responsible for air mixing. 6 refs

  10. Trace gas measurements from tethered balloon platforms

    Science.gov (United States)

    Bandy, Alan R.; Bandy, Terese L.; Youngbluth, Otto; Owens, Thomas L.

    1987-01-01

    Instrumentation and chemical sampling and analysis procedures are described for making measurements of atmospheric carbon disulfide in the concentration range 1-1000 pptv from tethered balloon platforms. Results of a study on the CS2 composition of air downward of a saltwater marsh are reported. A method for obtaining the necessary data for solving the budget equations for surface fluxes, chemical formation rates and chemical destruction rates using data acquired from tethered balloon platforms is presented.

  11. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region

    Directory of Open Access Journals (Sweden)

    S. T. Akhil Raj

    2018-01-01

    Full Text Available We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993–2005, Aura Microwave Limb Sounder (MLS, 2004–2015, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002–2015 on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics observations covering the period 1993–2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E and New Delhi (28° N, 77° E, covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E, for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (−1.71 ± 0.49 K decade−1 and New Delhi (−1.15 ± 0.55 K decade−1. The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998–2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (∼ 10 hPa and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.

  12. Balloon catheter dilatation of esophageal strictures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeung Sook; Yoon, Yup; Sung, Dong Yook; Choi, Woo Suk; Nam, Kyung Jin; Lim, Jae Hoon [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    1990-07-15

    The authors performed 27 fluoroscopically guided balloon dilatation in 12 patients of esophageal stricture during recent 3 years. The causes of esophageal stricture were corrosive esophagitis (N=2) and congenital narrowing (N=1), including postoperative narrowing in achalasia (N=3), esophageal varix (N=3), lye stricture (N=2) and esophageal cancer (N=1). Successful dilatation of the stricture was achieved during the procedure in 10 patients(83%). Major complication such as esophageal rupture was not found. The authors conclude that fluoroscopically guided esophageal balloon dilatation is a safe and effective method for treatment of symptomatic esophageal strictures.

  13. Balloon catheter dilatation of esophageal strictures

    International Nuclear Information System (INIS)

    Kim, Jeung Sook; Yoon, Yup; Sung, Dong Yook; Choi, Woo Suk; Nam, Kyung Jin; Lim, Jae Hoon

    1990-01-01

    The authors performed 27 fluoroscopically guided balloon dilatation in 12 patients of esophageal stricture during recent 3 years. The causes of esophageal stricture were corrosive esophagitis (N=2) and congenital narrowing (N=1), including postoperative narrowing in achalasia (N=3), esophageal varix (N=3), lye stricture (N=2) and esophageal cancer (N=1). Successful dilatation of the stricture was achieved during the procedure in 10 patients(83%). Major complication such as esophageal rupture was not found. The authors conclude that fluoroscopically guided esophageal balloon dilatation is a safe and effective method for treatment of symptomatic esophageal strictures

  14. Performance of the EUSO-Balloon electronics

    International Nuclear Information System (INIS)

    Barrillon, P.; Dagoret, S.; Miyamoto, H.; Moretto, C.; Bacholle, S.; Blaksley, C; Gorodetzky, P.; Jung, A.; Prévôt, G.; Prat, P.; Bayer, J.; Blin, S.; Taille, C. De La; Cafagna, F.; Fornaro, C.; Karczmarczyk, J.; Tanco, G. Medina; Osteria, G.; Perfetto, F.; Park, I.

    2016-01-01

    The 24th of August 2014, the EUSO-Balloon instrument went for a night flight for several hours, 40 km above Timmins (Canada) balloon launching site, concretizing the hard work of an important part of the JEM-EUSO collaboration started 3 years before. This instrument consists of a telescope made of two lenses and a complex electronic chain divided in two main sub-systems: the PDM (Photo Detector Module) and the DP (Data Processor). Each of them is made of several innovative elements developed and tested in a short time. This paper presents their performances before and during the flight

  15. JUBA (Joint UAS-Balloon Activities) Final Campaign Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dexheimer, Darielle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Apple, Monty [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Callow, Diane Schafer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Longbottom, Casey Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Novick, David K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Christopher W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    Using internal investment funds within Sandia National Laboratories’ (SNL) Division 6000, JUBA was a collaborative exercise between SNL Orgs. 6533 & 6913 (later 8863) to demonstrate simultaneous flights of tethered balloons and UAS on the North Slope of Alaska. JUBA UAS and tethered balloon flights were conducted within the Restricted Airspace associated with the ARM AMF3 site at Oliktok Point, Alaska. The Restricted Airspace occupies a 2 nautical mile radius around Oliktok Point. JUBA was conducted at the Sandia Arctic Site, which is approximately 2 km east-southeast of the AMF3. JUBA activities occurred from 08/08/17 – 08/10/17. Atmospheric measurements from tethered balloons can occur for a long duration, but offer limited spatial variation. Measurements from UAS could offer increased spatial variability.

  16. External caps: An approach to stress reduction in balloons

    Science.gov (United States)

    Hazlewood, K. H.

    Recent findings of the catastrophic balloon failures investigation in the U.S.A. indicate that very large gross inflations, in balloons using present design philosophy, over-stress currently available materials. External caps are proposed as an economic approach to reducting those stresses to an acceptable level.

  17. Balloon dacryocystoplasty: Incomplete versus complete obstruction of the nasolacrimal system

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Lee, Sang Hoon; Han, Young Min; Chung, Gyung Ho; Kim, Chong Soo; Choi, Ki Chul; Song, Ho Young

    1993-01-01

    Balloon dilatation of nasolacrimal drainage apparatus was attempted for the treatment of stenoses or obstructures of the nasolacrimal system in 49 eyes of 41 consecutive patients with complete obstructions and 16 eyes of 14 patients with incomplete obstructions. These two groups were compared with regards to the effectiveness of balloon dacryocystoplasty. All patients suffered from severe epiphora had already undergone multiple probings. A 0.018 inch hair or ball guide wire was introduced through the superior punctum into the inferior meatus of the nasal cavity and pulled out through the nasal aperture using a hemostat under nasal endoscopy. A deflated angiography balloon catheter was then introduced in a retrograde direction and dilated under fluoroscopic control. No major complications occurred in any of the patients. At 7 days after balloon dilatation, 25 of 49 eyes with complete obstruction demonstrated improvement in epiphora (initial success rate: 51.0%) and among them 17 eyes showed complete resolution of symptoms. Reocclusion occurred in 12 of the 25 eyes with initial improvement at the 2 months follow up. For the 16 eyes with incomplete obstruction, and improvement of epiphora was attained in 11 eyes (initial success rate 68.8%): 5 of these eyes showed complete resolution of epiphora, and 3 was failed to maintain initial improvement at the 2 month follow up. Although this study demonstrate that results of balloon dacryocystoplasty are not encouraging because of the high failure and recurrence rate, balloon dacryocystoplasty is a simple and safe nonsurgical technique that can be used to treat for obstructions of the nasolacrimal system. In addition, balloon dacryocystoplasty shows better results in incomplete obstruction than in complete obstruction than complete obstruction of the nasolacrimal system

  18. OCT evaluation of directional atherectomy compared to balloon angioplasty

    International Nuclear Information System (INIS)

    Marmagkiolis, Konstantinos; Lendel, Vasili; Cilingiroglu, Mehmet

    2015-01-01

    Directional atherectomy (DA) is one of the most commonly used modalities for the treatment of obstructive femoropopliteal peripheral arterial disease (PAD), especially in patients with large and calcified atherosclerotic plaques. The effect of directional atherectomy to the vascular wall compared to balloon angioplasty by optical coherence tomography (OCT) has not been previously described. We present the first case of OCT after directional atherectomy with SilverHawk followed by angiosculpt balloon angioplasty. - Highlights: • Directional atherectomy avoids the vascular mechanical damage caused by angioplasty balloons and the exposure of stent struts or the potential of stent fracture with stents. • OCT can accurately assess the effect of endovacular interventions to the vessel wall. • Although angiographic results after directional atherectomy are acceptable, OCT use demonstrated suboptimal improvement of the MLA requiring additional balloon angioplasty. • Longer studies are needed to define whether the improved OCT results with angioplasty compared to DA may offer better clinical outcomes.

  19. OCT evaluation of directional atherectomy compared to balloon angioplasty

    Energy Technology Data Exchange (ETDEWEB)

    Marmagkiolis, Konstantinos [Citizens Memorial Hospital Heart and Vascular Institute, Bolivar, MO (United States); Lendel, Vasili [Arkansas Heart Hospital, Peripheral Vascular Institute, Little Rock, AR (United States); Cilingiroglu, Mehmet, E-mail: mcilingiroglu@yahoo.com [Arkansas Heart Hospital, Peripheral Vascular Institute, Little Rock, AR (United States); Koc University, School of Medicine, Istanbul (Turkey)

    2015-09-15

    Directional atherectomy (DA) is one of the most commonly used modalities for the treatment of obstructive femoropopliteal peripheral arterial disease (PAD), especially in patients with large and calcified atherosclerotic plaques. The effect of directional atherectomy to the vascular wall compared to balloon angioplasty by optical coherence tomography (OCT) has not been previously described. We present the first case of OCT after directional atherectomy with SilverHawk followed by angiosculpt balloon angioplasty. - Highlights: • Directional atherectomy avoids the vascular mechanical damage caused by angioplasty balloons and the exposure of stent struts or the potential of stent fracture with stents. • OCT can accurately assess the effect of endovacular interventions to the vessel wall. • Although angiographic results after directional atherectomy are acceptable, OCT use demonstrated suboptimal improvement of the MLA requiring additional balloon angioplasty. • Longer studies are needed to define whether the improved OCT results with angioplasty compared to DA may offer better clinical outcomes.

  20. The effect of pressure anisotropy on ballooning modes in tokamak plasmas

    Science.gov (United States)

    Johnston, A.; Hole, M. J.; Qu, Z. S.; Hezaveh, H.

    2018-06-01

    Edge Localised Modes are thought to be caused by a spectrum of magnetohydrodynamic instabilities, including the ballooning mode. While ballooning modes have been studied extensively both theoretically and experimentally, the focus of the vast majority of this research has been on isotropic plasmas. The prevalence of pressure anisotropy in modern tokamaks thus motivates further study of these modes. This paper presents a numerical analysis of ballooning modes in anisotropic equilibria. The investigation was conducted using the newly-developed codes HELENA+ATF and MISHKA-A, which adds anisotropic physics to equilibria and stability analysis. We have examined the impact of anisotropy on the stability of an n = 30 ballooning mode, confirming results conform to previous calculations in the isotropic limit. Growth rates of ballooning modes in equilibria with different levels of anisotropy were then calculated using the stability code MISHKA-A. The key finding was that the level of anisotropy had a significant impact on ballooning mode growth rates. For {T}\\perp > {T}| | , typical of ICRH heating, the growth rate increases, while for {T}\\perp < {T}| | , typical of neutral beam heating, the growth rate decreases.

  1. Decade of stratospheric sulfate measurements compared with observations of volcanic eruptions

    International Nuclear Information System (INIS)

    Sedlacek, W.A.; Mroz, E.J.; Lazrus, A.L.; Gandrud, B.W.

    1983-01-01

    Sulfate aerosol concentrations in the stratosphere have been measured for 11 years (1971--1981) using portions of filters collected by the Department of Energy's High Altitude Sampling Program. Data collected seasonally at altitudes between 13 km and 20 km spanning latitudes from 75 0 N to 51 0 S are reported. These data are compared with the reported altitudes of volcanic eruption plumes during the same decade. From this comparison it is concluded that (1) several unreported volcanic eruptions or eruptions to altitudes higher than reported did occur during the decade, (2) the e-fold removal time for sulfate aerosol from the stratosphere following the eruption of Volcan Fuego in 1974 was 11.2 +- 1.2 months, (3) the volcanic contribution to the average stratospheric sulfate concentration over the decade was greater than 50%, and (4) there may be evidence for an anthropogenic contribution to stratospheric sulfate that increases at the rate of 6 to 8% per year

  2. Dose Reduction Study in Vaginal Balloon Packing Filled With Contrast for HDR Brachytherapy Treatment

    International Nuclear Information System (INIS)

    Saini, Amarjit S.; Zhang, Geoffrey G.; Finkelstein, Steven E.; Biagioli, Matthew C.

    2011-01-01

    Purpose: Vaginal balloon packing is a means to displace organs at risk during high dose rate brachytherapy of the uterine cervix. We tested the hypothesis that contrast-filled vaginal balloon packing reduces radiation dose to organs at risk, such as the bladder and rectum, in comparison to water- or air-filled balloons. Methods and Materials: In a phantom study, semispherical vaginal packing balloons were filled with air, saline solution, and contrast agents. A high dose rate iridium-192 source was placed on the anterior surface of the balloon, and the diode detector was placed on the posterior surface. Dose ratios were taken with each material in the balloon. Monte Carlo (MC) simulations, by use of the MC computer program DOSXYZnrc, were performed to study dose reduction vs. balloon size and contrast material, including commercially available iodine- and gadolinium-based contrast agents. Results: Measured dose ratios on the phantom with the balloon radius of 3.4 cm were 0.922 ± 0.002 for contrast/saline solution and 0.808 ± 0.001 for contrast/air. The corresponding ratios by MC simulations were 0.895 ± 0.010 and 0.781 ± 0.010. The iodine concentration in the contrast was 23.3% by weight. The dose reduction of contrast-filled balloon ranges from 6% to 15% compared with water-filled balloon and 11% to 26% compared with air-filled balloon, with a balloon size range between 1.4 and 3.8 cm, and iodine concentration in contrast of 24.9%. The dose reduction was proportional to the contrast agent concentration. The gadolinium-based contrast agents showed less dose reduction because of much lower concentrations in their solutions. Conclusions: The dose to the posterior wall of the bladder and the anterior wall of the rectum can be reduced if the vaginal balloon is filled with contrast agent in comparison to vaginal balloons filled with saline solution or air.

  3. MHD Ballooning Instability in the Plasma Sheet

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Zaharia, S.

    2003-01-01

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum

  4. Modified jailed balloon technique for bifurcation lesions.

    Science.gov (United States)

    Saito, Shigeru; Shishido, Koki; Moriyama, Noriaki; Ochiai, Tomoki; Mizuno, Shingo; Yamanaka, Futoshi; Sugitatsu, Kazuya; Tobita, Kazuki; Matsumi, Junya; Tanaka, Yutaka; Murakami, Masato

    2017-12-04

    We propose a new systematic approach in bifurcation lesions, modified jailed balloon technique (M-JBT), and report the first clinical experience. Side branch occlusion brings with a serious complication and occurs in more than 7.0% of cases during bifurcation stenting. A jailed balloon (JB) is introduced into the side branch (SB), while a stent is placed in the main branch (MB) as crossing SB. The size of the JB is half of the MB stent size. While the proximal end of JB attaching to MB stent, both stent and JB are simultaneously inflated with same pressure. JB is removed and then guidewires are recrossed. Kissing balloon dilatation (KBD) and/or T and protrusion (TAP) stenting are applied as needed. Between February 2015 and February 2016, 233 patients (254 bifurcation lesions including 54 left main trunk disease) underwent percutaneous coronary intervention (PCI) using this technique. Procedure success was achieved in all cases. KBD was performed for 183 lesions and TAP stenting was employed for 31 lesions. Occlusion of SV was not observed in any of the patients. Bench test confirmed less deformity of MB stent in M-JBT compared with conventional-JBT. This is the first report for clinical experiences by using modified jailed balloon technique. This novel M-JBT is safe and effective in the preservation of SB patency during bifurcation stenting. © 2017 Wiley Periodicals, Inc.

  5. Double balloon esophageal catheter for diagnosis of tracheo-esophageal fistula

    International Nuclear Information System (INIS)

    Kiyan, Guersu; Dagli, Tolga E.; Tugtepe, Halil; Kodalli, Nihat

    2003-01-01

    Congenital H-type and recurrent tracheo-esophageal fistulas (TEF) are always difficult to diagnose. For a more accurate diagnosis we designed a new double balloon catheter, which is a modification of esophageal dilatation balloon. The catheter has two balloons to occlude the esophagus proximal and distal to the fistula. The fistula can be identified by passing of the contrast material to the tracheal tree, which was injected into the esophageal segment between the inflated balloons. To prove the efficiency of this catheter, a TEF was created surgically in a New Zealand rabbit. On the postoperative fourteenth day the catheter was tried and the fistula could be visualized easily by injecting the contrast material. We think this technique may be of use in the diagnosis of TEF in children. (orig.)

  6. Chemistry and Microphysics of Lower Stratospheric Aerosols Determined by Satellite Remote Sensing

    Science.gov (United States)

    Zasetsky, A. Y.; Khalizov, A.; Sloan, J.

    2003-12-01

    Observations of broadband Infrared satellites such as ILAS-II (Ministry of the Environment, Japan, launched 14 December 2002) and SciSat-1 (Canadian Space Agency, launched 12 August 2003) can provide details of the chemical composition and particle size of atmospheric aerosols by direct inversion without recourse to models. During the past decade, we have developed mathematical methods to achieve this inversion by working with FTIR observations of model atmospheric aerosols in cryogenic flowtubes. More recently, we have converted these to operational algorithms for use in the above missions. In this presentation, we will briefly outline these procedures and illustrate their capabilities using laboratory data. These laboratory results show that the chemical compositions, phases and sizes of ensembles of particles can be obtained simultaneously using these procedures. We will also report chemical and microphysical properties of lower stratospheric clouds and aerosols derived by applying these procedures to observations from space.

  7. The UK sounding rocket and balloon programme

    International Nuclear Information System (INIS)

    Delury, J.T.

    1980-01-01

    The UK civil science balloon and rocket programmes for 1979/80/81 are summarised and the areas of scientific interest for the period 1981/85 mentioned. In the main the facilities available are 10 in number balloons up to 40 m cu ft launched from USA or Australia and up to 10 in number 7 1/2'' diameter Petrel rockets. This paper outlines the 1979 and 1980 programmes and explains the longer term plans covering the next 5 years. (Auth.)

  8. Second-generation endometrial ablation technologies: the hot liquid balloons.

    Science.gov (United States)

    Vilos, George A; Edris, Fawaz

    2007-12-01

    Hysteroscopic endometrial ablation (HEA) was introduced in the 1980s to treat menorrhagia. Its use required additional training, surgical expertise and specialized equipment to minimize emergent complications such as uterine perforations, thermal injuries and excessive fluid absorption. To overcome these difficulties and concerns, thermal balloon endometrial ablation (TBEA) was introduced in the 1990s. Four hot liquid balloons have been introduced into clinical practice. All systems consist of a catheter (4-10mm diameter), a silicone balloon and a control unit. Liquids used to inflate the balloons include internally heated dextrose in water (ThermaChoice, 87 degrees C), and externally heated glycine (Cavaterm, 78 degrees C), saline (Menotreat, 85 degrees ) and glycerine (Thermablate, 173 degrees C). All balloons require pressurization from 160 to 240 mmHg for treatment cycles of 2 to 10 minutes. Prior to TBEA, preoperative endometrial thinning, including suction curettage, is optional. Several RCTs and cohort studies indicate that the advantages of TBEA include portability, ease of use and short learning curve. In addition, small diameter catheters requiring minimal cervical dilatation (5-7 mm) and short duration of treatment cycles (2-8 min) allow treatment under minimal analgesia/anesthesia requirements in a clinic setting. Following TBEA serious adverse events, including thermal injuries to viscera have been experienced. To minimize such injuries some surgeons advocate the use of routine post-dilatation hysteroscopy and/or ultrasonography to confirm correct intrauterine placement of the balloon prior to initiating the treatment cycle. After 10 years of clinical practice, TBEA is thought to be the preferred first-line surgical treatment of menorrhagia in appropriately selected candidates. Economic modeling also suggested that TBEA may be more cost-effective than HEA.

  9. Key aspects of stratospheric tracer modeling using assimilated winds

    Directory of Open Access Journals (Sweden)

    B. Bregman

    2006-01-01

    Full Text Available This study describes key aspects of global chemistry-transport models and their impact on stratospheric tracer transport. We concentrate on global models that use assimilated winds from numerical weather predictions, but the results also apply to tracer transport in general circulation models. We examined grid resolution, numerical diffusion, air parcel dispersion, the wind or mass flux update frequency, and time interpolation. The evaluation is performed with assimilated meteorology from the "operational analyses or operational data" (OD from the European Centre for Medium-Range Weather Forecasts (ECMWF. We also show the effect of the mass flux update frequency using the ECMWF 40-year re-analyses (ERA40. We applied the three-dimensional chemistry-transport Tracer Model version 5 (TM5 and a trajectory model and performed several diagnoses focusing on different transport regimes. Covering different time and spatial scales, we examined (1 polar vortex dynamics during the Arctic winter, (2 the large-scale stratospheric meridional circulation, and (3 air parcel dispersion in the tropical lower stratosphere. Tracer distributions inside the Arctic polar vortex show considerably worse agreement with observations when the model grid resolution in the polar region is reduced to avoid numerical instability. The results are sensitive to the diffusivity of the advection. Nevertheless, the use of a computational cheaper but diffusive advection scheme is feasible for tracer transport when the horizontal grid resolution is equal or smaller than 1 degree. The use of time interpolated winds improves the tracer distributions, particularly in the middle and upper stratosphere. Considerable improvement is found both in the large-scale tracer distribution and in the polar regions when the update frequency of the assimilated winds is increased from 6 to 3 h. It considerably reduces the vertical dispersion of air parcels in the tropical lower stratosphere. Strong

  10. A Semi-empirical Model of the Stratosphere in the Climate System

    Science.gov (United States)

    Sodergren, A. H.; Bodeker, G. E.; Kremser, S.; Meinshausen, M.; McDonald, A.

    2014-12-01

    Chemistry climate models (CCMs) currently used to project changes in Antarctic ozone are extremely computationally demanding. CCM projections are uncertain due to lack of knowledge of future emissions of greenhouse gases (GHGs) and ozone depleting substances (ODSs), as well as parameterizations within the CCMs that have weakly constrained tuning parameters. While projections should be based on an ensemble of simulations, this is not currently possible due to the complexity of the CCMs. An inexpensive but realistic approach to simulate changes in stratospheric ozone, and its coupling to the climate system, is needed as a complement to CCMs. A simple climate model (SCM) can be used as a fast emulator of complex atmospheric-ocean climate models. If such an SCM includes a representation of stratospheric ozone, the evolution of the global ozone layer can be simulated for a wide range of GHG and ODS emissions scenarios. MAGICC is an SCM used in previous IPCC reports. In the current version of the MAGICC SCM, stratospheric ozone changes depend only on equivalent effective stratospheric chlorine (EESC). In this work, MAGICC is extended to include an interactive stratospheric ozone layer using a semi-empirical model of ozone responses to CO2and EESC, with changes in ozone affecting the radiative forcing in the SCM. To demonstrate the ability of our new, extended SCM to generate projections of global changes in ozone, tuning parameters from 19 coupled atmosphere-ocean general circulation models (AOGCMs) and 10 carbon cycle models (to create an ensemble of 190 simulations) have been used to generate probability density functions of the dates of return of stratospheric column ozone to 1960 and 1980 levels for different latitudes.

  11. Evidence for Dynamical Coupling of Stratosphere-MLT during recent minor Stratospheric Warmings in Southern Hemisphere

    Science.gov (United States)

    Kim, Yongha; Sunkara, Eswaraiah; Hong, Junseok; Ratnam, Venkat; Chandran, Amal; Rao, Svb; Riggin, Dennis

    2015-04-01

    The mesosphere-lower thermosphere (MLT) response to extremely rare minor sudden stratospheric warming (SSW) events was observed for the first time in the southern hemisphere (SH) during 2010 and is investigated using the meteor radar located at King Sejong Station (62.22°S, 58.78°W), Antarctica. Three episodic SSWs were noticed from early August to late October 2010. The mesospheric wind field was found to significantly differ from normal years due to enhanced planetary wave (PW) activity before the SSWs and secondary PWs in the MLT afterwards. The zonal winds in the mesosphere reversed approximately a week before the SSW occurrence in the stratosphere as has been observed 2002 major SSW, suggesting the downward propagation of disturbance during minor SSWs as well. Signatures of mesospheric cooling (MC) in association with SSWs are found in the Microwave Limb Sounder (MLS) measurements. SD-WACCM simulations are able to produce these observed features.

  12. Scientific ballooning. Proceedings. PSB Meeting of the COSPAR Panel on Technical Problems Related to Scientific Ballooning which was held during the Thirtieth COSPAR Scientific Assembly, Hamburg (Germany), 11 - 21 Jul 1994.

    Science.gov (United States)

    Riedler, W.; Torkar, K.

    1996-05-01

    This issue is grouped into sections on materials, design, performance and analysis of balloons, reviews of major national and international balloon programmes, novel instrumentation and systems for scientific ballooning, and selected recent scientific observations.

  13. Temperature thresholds for chlorine activation and ozone loss in the polar stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Drdla, K. [NASA Ames Research Center, Moffett Field, CA (United States); Mueller, R. [Forschungszentrum Juelich (DE). Inst. of Energy and Climate Research (IEK-7)

    2012-07-01

    Low stratospheric temperatures are known to be responsible for heterogeneous chlorine activation that leads to polar ozone depletion. Here, we discuss the temperature threshold below which substantial chlorine activation occurs. We suggest that the onset of chlorine activation is dominated by reactions on cold binary aerosol particles, without the formation of polar stratospheric clouds (PSCs), i.e. without any significant uptake of HNO{sub 3} from the gas phase. Using reaction rates on cold binary aerosol in a model of stratospheric chemistry, a chlorine activation threshold temperature, T{sub ACL}, is derived. At typical stratospheric conditions, T{sub ACL} is similar in value to T{sub NAT} (within 1-2 K), the highest temperature at which nitric acid trihydrate (NAT) can exist. T{sub NAT} is still in use to parameterise the threshold temperature for the onset of chlorine activation. However, perturbations can cause T{sub ACL} to differ from T{sub NAT}: T{sub ACL} is dependent upon H{sub 2} O and potential temperature, but unlike T{sub NAT} is not dependent upon HNO3. Furthermore, in contrast to T{sub NAT}, T{sub ACL} is dependent upon the stratospheric sulfate aerosol loading and thus provides a means to estimate the impact on polar ozone of strong volcanic eruptions and some geo-engineering options, which are discussed. A parameterisation of T{sub ACL} is provided here, allowing it to be calculated for low solar elevation (or high solar zenith angle) over a comprehensive range of stratospheric conditions. Considering T{sub ACL} as a proxy for chlorine activation cannot replace a detailed model calculation, and polar ozone loss is influenced by other factors apart from the initial chlorine activation. However, T{sub ACL} provides a more accurate description of the temperature conditions necessary for chlorine activation and ozone loss in the polar stratosphere than T{sub NAT}. (orig.)

  14. Analysis of current diffusive ballooning mode in tokamaks

    International Nuclear Information System (INIS)

    Uchida, M.; Fukuyama, A.; Itoh, S.-I.; Yagi, M.

    1999-12-01

    The effect of finite gyroradius on the current diffusive ballooning mode is examined. Starting from the reduced MHD equations including turbulent transports, coupling with drift motion and finite gyroradius effect of ions, we derive a ballooning mode equation with complex transport coefficients. The eigenfrequency, saturation level and thermal diffusivity are evaluated numerically from the marginal stability condition. Preliminary results of their parameter dependence is presented. (author)

  15. Robotic weather balloon launchers spread in Alaska

    Science.gov (United States)

    Rosen, Julia

    2018-04-01

    Last week, things began stirring inside the truck-size box that sat among melting piles of snow at the airport in Fairbanks, Alaska. Before long, the roof of the box yawned open and a weather balloon took off into the sunny afternoon, instruments dangling. The entire launch was triggered with the touch of a button, 5 kilometers away at an office of the National Weather Service (NWS). The flight was smooth, just one of hundreds of twice-daily balloon launches around the world that radio back crucial data for weather forecasts. But most of those balloons are launched by people; the robotic launchers, which are rolling out across Alaska, are proving to be controversial. NWS says the autolaunchers will save money and free up staff to work on more pressing matters. But representatives of the employee union question their reliability, and say they will hasten the end of Alaska's remote weather offices, where forecasting duties and hours have already been slashed.

  16. Stratospheric aerosol effects from Soufriere Volcano as measured by the SAGE satellite system

    Science.gov (United States)

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1982-01-01

    During its April 1979 eruption series, Soufriere Volcano produced two major stratospheric plumes that the SAGE (Stratospheric Aerosol and Gas Experiment) satellite system tracked to West Africa and the North Atlantic Ocean. The total mass of these plumes, whose movement and dispersion are in agreement with those deduced from meteorological data and dispersion theory, was less than 0.5 percent of the global stratospheric aerosol burden; no significant temperature or climate perturbation is therefore expected.

  17. MJO-Related Tropical Convection Anomalies Lead to More Accurate Stratospheric Vortex Variability in Subseasonal Forecast Models.

    Science.gov (United States)

    Garfinkel, C I; Schwartz, C

    2017-10-16

    The effect of the Madden-Julian Oscillation (MJO) on the Northern Hemisphere wintertime stratospheric polar vortex in the period preceding stratospheric sudden warmings is evaluated in operational subseasonal forecasting models. Reforecasts which simulate stronger MJO-related convection in the Tropical West Pacific also simulate enhanced heat flux in the lowermost stratosphere and a more realistic vortex evolution. The time scale on which vortex predictability is enhanced lies between 2 and 4 weeks for nearly all cases. Those stratospheric sudden warmings that were preceded by a strong MJO event are more predictable at ∼20 day leads than stratospheric sudden warmings not preceded by a MJO event. Hence, knowledge of the MJO can contribute to enhanced predictability, at least in a probabilistic sense, of the Northern Hemisphere polar stratosphere.

  18. Ticosonde CFH at Costa Rica: A Seasonal Climatology of Tropical UT-LS Water Vapor and Inter-Comparisons with MLS and CALIPSO

    Science.gov (United States)

    Selkirk, Henry B.; Voemel, Holger; Avery, Melody; Rosenlof, Karen; Davis, Sean; Hurst, Dale; Schoeberl, Mark; Diaz, Jorge Andres; Morris, Gary

    2014-01-01

    Balloon sonde measurements of tropical water vapor using the Cryogenic Frostpoint Hygrometer were initiated in Costa Rica in July 2005 and have continued to the present day. Over the nine years through July 2014, the Ticosonde program has launched 174 CFH payloads, representing the longest-running and most extensive single-site balloon dataset for tropical water vapor. In this presentation we present a seasonal climatology for water vapor and ozone at Costa Rica and examine the frequency of upper tropospheric supersaturation with comparisons to cloud fraction and cloud ice water content observations from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) on the CALIPSO mission. We then make a critical comparison of these data to water vapor measurements from the MLS instrument on board Aura in light of recently published work for other sites. Finally, we examine time series of 2-km altitude averages in the upper troposphere-lower stratosphere at Costa Rica in light of anomalies and trends seen in various large-scale indices of tropical water vapor.

  19. Mortality tradeoff between air quality and skin cancer from changes in stratospheric ozone

    Science.gov (United States)

    Eastham, Sebastian D.; Keith, David W.; Barrett, Steven R. H.

    2018-03-01

    Skin cancer mortality resulting from stratospheric ozone depletion has been widely studied. Similarly, there is a deep body of literature on surface ozone and its health impacts, with modeling and observational studies demonstrating that surface ozone concentrations can be increased when stratospheric air mixes to the Earth’s surface. We offer the first quantitative estimate of the trade-off between these two effects, comparing surface air quality benefits and UV-related harms from stratospheric ozone depletion. Applying an idealized ozone loss term in the stratosphere of a chemistry-transport model for modern-day conditions, we find that each Dobson unit of stratospheric ozone depletion results in a net decrease in the global annual mortality rate of ~40 premature deaths per billion population (d/bn/DU). The impacts are spatially heterogeneous in sign and magnitude, composed of a reduction in premature mortality rate due to ozone exposure of ~80 d/bn/DU concentrated in Southeast Asia, and an increase in skin cancer mortality rate of ~40 d/bn/DU, mostly in Western Europe. This is the first study to quantify air quality benefits of stratospheric ozone depletion, and the first to find that marginal decreases in stratospheric ozone around modern-day values could result in a net reduction in global mortality due to competing health impact pathways. This result, which is subject to significant methodological uncertainty, highlights the need to understand the health and environmental trade-offs involved in policy decisions regarding anthropogenic influences on ozone chemistry over the 21st century.

  20. Retrieving Balloon Data in Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Ultra Long Duration Balloon (ULDB) program will soon make flights lasting up to 100 days. Some flights may generate high data rates and retrieving this data...

  1. On the Climate Impacts of Upper Tropospheric and Lower Stratospheric Ozone

    Science.gov (United States)

    Xia, Yan; Huang, Yi; Hu, Yongyun

    2018-01-01

    The global warming simulations of the general circulation models (GCMs) are generally performed with different ozone prescriptions. We find that the differences in ozone distribution, especially in the upper tropospheric and lower stratospheric (UTLS) region, account for important model discrepancies shown in the ozone-only historical experiment of the Coupled Model Intercomparison Project Phase 5 (CMIP5). These discrepancies include global high cloud fraction, stratospheric temperature, and stratospheric water vapor. Through a set of experiments conducted by an atmospheric GCM with contrasting UTLS ozone prescriptions, we verify that UTLS ozone not only directly radiatively heats the UTLS region and cools the upper parts of the stratosphere but also strongly influences the high clouds due to its impact on relative humidity and static stability in the UTLS region and the stratospheric water vapor due to its impact on the tropical tropopause temperature. These consequences strongly affect the global mean effective radiative forcing of ozone, as noted in previous studies. Our findings suggest that special attention should be paid to the UTLS ozone when evaluating the climate effects of ozone depletion in the 20th century and recovery in the 21st century. UTLS ozone difference may also be important for understanding the intermodel discrepancy in the climate projections of the CMIP6 GCMs in which either prescribed or interactive ozone is used.

  2. Numerical Modelling Of Pumpkin Balloon Instability

    Science.gov (United States)

    Wakefield, D.

    Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.

  3. SBARMO-79 a multi-balloon campaign in the auroral zone

    International Nuclear Information System (INIS)

    Tanskanen, P.; Kangas, J.; Bjordal, J.; Bronstad, K.; Block, L.P.; Holtet, T.

    1982-01-01

    A joint European International Magnetospheric Study (IMS) balloon campaign was conducted within the framework of the Scientific Ballooning and Radiation Monitoring Organization (SBARMO). The campaign was carried out during the time from May 30 to July 10, 1979. A total of 29 successful balloon launches were made from four launch sites located in Norway and in Finland. The campaign has the objective to provide information for a better understanding of temporal and spatial variations of magnetospheric processes, giving particular attention to the coupling between the magnetosphere and the ionosphere

  4. US Air Force Balloon Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Worksheets containing pilot balloon data computed from releases at Air Force stations in the western United States. Elevation and azimuth angles are used to compute...

  5. Stability of Balloon-Retention Gastrostomy Tubes with Different Concentrations of Contrast Material: In Vitro Study

    International Nuclear Information System (INIS)

    Lopera, Jorge E.; Alvarez, Alex; Trimmer, Clayton; Josephs, Shellie; Anderson, Matthew; Dolmatch, Bart

    2009-01-01

    The purpose of this study was to determine the performance of two balloon-retention-type gastrostomy tubes when the balloons are inflated with two types of contrast materials at different concentrations. Two commonly used balloon-retention-type tubes (MIC and Tri-Funnel) were inflated to the manufacturer's recommended volumes (4 and 20 cm 3 , respectively) with normal saline or normal saline plus different concentrations of contrast material. Five tubes of each brand were inflated with normal saline and 0%, 25%, 50%, 75%, and 100% contrast material dilutions, using either nonionic hyperosmolar contrast, or nonionic iso-osmolar contrast. The tubes were submerged in a glass basin containing a solution with a pH of 4. Every week the tubes were visually inspected to determine the integrity of the balloons, and the diameter of the balloons was measured with a caliper. The tests were repeated every week for a total of 12 weeks. The MIC balloons deflated slightly faster over time than the Tri-Funnel balloons. The Tri-Funnel balloons remained relatively stable over the study period for the different concentrations of contrast materials. The deflation rates of the MIC balloons were proportionally related to the concentration of saline and inversely related to the concentration of the contrast material. At high contrast material concentrations, solidification of the balloons was observed. In conclusion, this in vitro study confirms that the use of diluted amounts of nonionic contrast materials is safe for inflating the balloons of two types of balloon-retention feeding tubes. High concentrations of contrast could result in solidification of the balloons and should be avoided.

  6. Effects of intense stratospheric ionisation events

    International Nuclear Information System (INIS)

    Reid, G.C.; McAfee, J.R.; Crutzen, P.J.

    1978-01-01

    High levels of ionising radiation in the Earth's stratosphere will lead to increased concentrations of nitrogen oxides and decreased concentrations of ozone. Changes in the surface environment will include an increased level, of biologically harmful UV radiation, caused by the ozone depletion, and a decreased level of visible solar radiation, due to the presence of major enhancements in the stratospheric concentration of nitrogen dioxide. These changes have been studied quantitatively, using the passage of the Solar System through a supernova remnant shell as an example. Some of the potential environmental changes are a substantial global cooling, abnormally dry conditions, a reduction in global photosynthesis and a large increase in the flux of atmospheric fixed nitrogen to the surface of the Earth. Such events might have been the cause of mass extinctions in the distant past. (Author)

  7. Embolization of carotid-cavernous fistula using a silicone balloon and a tracker-catheter system

    International Nuclear Information System (INIS)

    Kim, Sun Yong; Cho, Kil Ho; Park, Bok Hwan

    1992-01-01

    With the recent introduction and development of the detachable balloon system, it has become the treatment of choice in the management of carotid cavernous fistulas(CCFs). But, since most delivery systems for embolization of CCF mainly depend on flow guidance for balloon delivery, in case of small fistula, pseudo aneurysm and arterialized venous collaterals, failure of balloon embolization can occur. To overcome these limitation, the authors designed and used a new versatile, steerable, and flow-guided detachable balloon system by using a Tracker catheter system with silicone or latex balloons. Using this maneuver, we could get successful fistula occlusion in 7 out of 8 patients (silicone balloon). But in one case, we had to occlude the internal carotid artery at the fistula site, proximal and distal cervical portions of the internal carotid artery. This balloon delivery system proved to provide high selectivity for fistula and relatively ease of handing

  8. Towards a Theory of Tropical/Midlatitude Mass Exchange from the Earth's Surface through the Stratosphere

    Science.gov (United States)

    Hartley, Dana

    1998-01-01

    The main findings of this research project have been the following: (1) there is a significant feedback from the stratosphere on tropospheric dynamics, and (2) a detailed analysis of the interaction between tropical and polar wave breaking in controlling stratospheric mixing. Two papers are were written and are included. The first paper is titled, "A New Perspective on the Dynamical Link Between the Stratosphere and Troposphere." Atmospheric processes of tropospheric origin can perturb the stratosphere, but direct feedback in the opposite direction is usually assumed to be negligible, despite the troposphere's sensitivity to changes in the release of wave activity into the stratosphere. Here, however, we present evidence that such a feedback exists and can be significant. We find that if the wintertime Arctic polar stratospheric vortex is distorted, either by waves propagating upward from the troposphere or by eastward-travelling stratospheric waves, then there is a concomitant redistribution of stratospheric potential vorticity that induces perturbations in key meteorological fields in the upper troposphere. The feedback is large despite the much greater mass of the troposphere: it can account for up to half of the geopotential height anomaly at the tropopause. Although the relative strength of the feedback is partly due to a cancellation between contributions to these anomalies from lower altitudes, our results imply that stratospheric dynamics and its feedback on the troposphere are more significant for climate modelling and data assimilation than was previously assumed. The second article is titled "Diagnosing the Polar Excitation of Subtropical Waves in the Stratosphere". The poleward migration of planetary scale tongues of subtropical air has often been associated with intense polar vortex disturbances in the stratosphere. This question of vortex influence is reexamined from a potential vorticity (PV) perspective. Anomalous geopotential height and wind fields

  9. A local network integrated into a balloon-borne apparatus

    Science.gov (United States)

    Imori, Masatosi; Ueda, Ikuo; Shimamura, Kotaro; Maeno, Tadashi; Murata, Takahiro; Sasaki, Makoto; Matsunaga, Hiroyuki; Matsumoto, Hiroshi; Shikaze, Yoshiaki; Anraku, Kazuaki; Matsui, Nagataka; Yamagami, Takamasa

    A local network is incorporated into an apparatus for a balloon-borne experiment. A balloon-borne system implemented in the apparatus is composed of subsystems interconnected through a local network, which introduces modular architecture into the system. The network decomposes the balloon-borne system into subsystems, which are similarly structured from the point of view that the systems is kept under the control of a ground station. The subsystem is functionally self-contained and electrically independent. A computer is integrated into a subsystem, keeping the subsystem under the control. An independent group of batteries, being dedicated to a subsystem, supplies the whole electricity of the subsystem. The subsystem could be turned on and off independently of the other subsystems. So communication among the subsystems needs to be based on such a protocol that could guarantee the independence of the individual subsystems. An Omninet protocol is employed to network the subsystems. A ground station sends commands to the balloon-borne system. The command is received and executed at the system, then results of the execution are returned to the ground station. Various commands are available so that the system borne on a balloon could be controlled and monitored remotely from the ground station. A subsystem responds to a specific group of commands. A command is received by a transceiver subsystem and then transferred through the network to the subsystem to which the command is addressed. Then the subsystem executes the command and returns results to the transceiver subsystem, where the results are telemetered to the ground station. The network enhances independence of the individual subsystems, which enables programs of the individual subsystems to be coded independently. Independence facilitates development and debugging of programs, improving the quality of the system borne on a balloon.

  10. Paraspinal arteriovenous malformation Onyx embolization via an Ascent balloon.

    Science.gov (United States)

    Martínez-Galdámez, Mario; Rodriguez-Arias, Carlos A; Utiel, Elena; Arreba, Emilio; Gonzalo, Miguel; Arenillas, Juan F

    2014-04-01

    Purely extradural lumbar spinal arteriovenous malformations (AVMs) are rare lesions that have diverse presentations and imaging features. The treatment of a symptomatic high flow paraspinal AVM with multiple feeders remains a challenge. We report the first use of an Ascent balloon (dual lumen balloon catheter) to deliver Onyx with excellent penetration to a paraspinal AVM.

  11. Experimental investigation of undesired stable equilibria in pumpkin shape super-pressure balloon designs

    Science.gov (United States)

    Schur, W. W.

    2004-01-01

    Excess in skin material of a pneumatic envelope beyond what is required for minimum enclosure of a gas bubble is a necessary but by no means sufficient condition for the existence of multiple equilibrium configurations for that pneumatic envelope. The very design of structurally efficient super-pressure balloons of the pumpkin shape type requires such excess. Undesired stable equilibria in pumpkin shape balloons have been observed on experimental pumpkin shape balloons. These configurations contain regions with stress levels far higher than those predicted for the cyclically symmetric design configuration under maximum pressurization. Successful designs of pumpkin shape super-pressure balloons do not allow such undesired stable equilibria under full pressurization. This work documents efforts made so far and describes efforts still underway by the National Aeronautics and Space Administration's Balloon Program Office to arrive on guidance on the design of pumpkin shape super-pressure balloons that guarantee full and proper deployment.

  12. Clinical application of Inoue-balloon in percutaneous transluminal angioplasty for Budd-Chiari syndrome

    International Nuclear Information System (INIS)

    Mei Jian; Qu Jian; Zhu Yaoqing; Wang Lei; Liu Cheng

    2007-01-01

    Objective: To investigate the feasibility and effect of recanalization of inferior vena cava with percutaneous transluminal angioplasty(PTA)by Inoue-balloon. Methods: Eighty-nine patients with Budd-chiari syndrome (BCS )were treated with PTA by Inoue-balloon. Results: After PTA, the median (interquartile range)diameter of hepatic segment inferior vena cava increased from 0.00 (0.20-0.00) cm to 1.90 (2.00 1.47)cm; (P < 0.001), and the mean pressure of inferior vena cava reduced from (20.63 ± 7.22) mmHg to (12.13 ± 5.60) mmHg; (P < 0.001); with only less serious complications as rupture in two cases and without need of prior minor diameter balloon dilation in Inoue-balloon PTA. Conclusion: The advantages of Inoue- balloon PTA for BCS are more reliable and facile than those of polyethylene balloon, and may take the place in the foreseen future. (authors)

  13. On the cryogenic removal of NOy from the Antarctic polar stratosphere

    Directory of Open Access Journals (Sweden)

    S. Smyshlyaev

    2003-06-01

    Full Text Available We review current knowledge about the annual cycle of transport of nitrogen oxides to, and removal from, the polar stratosphere, with particular attention to Antarctica where the annual winter denitrifi cation process is both regular in occurrence and severe in effect. Evidence for a large downward fl ux of NOy from the mesosphere to the stratosphere, fi rst seen briefl y in the Limb Infrared Monitor of the Stratosphere (LIMS data from the Arctic winter of 1978-1979, has been found during the 1990s in both satellite and ground-based observations, though this still seems to be omitted from many atmospheric models. When incorporated in the Stony Brook- St. Petersburg two dimensional (2D transport and chemistry model, more realistic treatment of the NOy fl ux, along with sulfate transport from the mesosphere, sulfate aerosol formation where temperature is favorable, and the inclusion of a simple ion-cluster reaction, leads to good agreement with observed HNO3 formation in the mid-winter middle to upper stratosphere. To further emphasize the importance of large fl uxes of thermospheric and mesospheric NOy into the polar stratosphere, we have used observations, supplemented with model calculations, to defi ne new altitude dependent correlation curves between N2O and NOy. These are more suitable than those previously used in the literature to represent conditions within the Antarctic vortex region prior to and during denitrifi cation by Polar Stratospheric Cloud (PSC particles. Our NOy -N2O curves lead to a 40% increase in the average amount of NOy removed during the Antarctic winter with respect to estimates calculated using NOy-N2O curves from the Atmospheric Trace Molecule Spectroscopy (ATMOS/ATLAS-3 data set.

  14. Impact of contrast agent viscosity on coronary balloon deflation times: bench testing results.

    Science.gov (United States)

    Mogabgab, Owen; Patel, Vishal G; Michael, Tesfaldet T; Kotsia, Anna; Christopoulos, George; Banerjee, Subhash; Brilakis, Emmanouil S

    2014-04-01

    To assess the impact of viscosity on angioplasty balloon deflation times. Lower contrast viscosity could result in more rapid coronary balloon deflation times. We performed a bench comparison of coronary balloon deflation times using 2 contrast agents with different viscosity (ioxaglate and iodixanol), 3 contrast dilutions, and 2 inflation syringe filling volumes. Ten identical pairs of coronary angioplasty balloons were used to conduct each comparison after balloon inflation to 12 atmospheres. Simultaneous deflations were performed under cineangiography. The time to full contrast extraction and the area of contrast remaining after 5 seconds of deflation (quantified by opaque pixel count) were compared between groups. The mean time to full contrast extraction during balloon deflation was 8.3 ± 2.5 seconds for ioxaglate (lower viscosity) versus 10.1 ± 2.9 seconds for iodixanol (higher viscosity) (17.4% decrease, P = 0.005), with a 35.6% (P = 0.004) reduction in contrast area at 5 seconds. Compared to 1:1 ioxaglate-saline mixture, 1:2 and 1:3 ioxaglate/saline mixes resulted in 26.7% (P deflation time, respectively, but at the expense of decreased balloon opacity. Filling the inflation syringe with 5 versus 15 ml of contrast/saline solution was associated with 7.5% decrease in balloon deflation time (P = 0.005), but no difference in contrast area at 5 seconds (P = 0.749). Use of a lower viscosity contrast agent and higher contrast dilution significantly reduced coronary balloon deflation times, whereas use of lower syringe filling volume had a modest effect. Rapid coronary balloon deflation could improve the safety of interventional procedures. © 2014 Wiley Periodicals, Inc.

  15. Efficacy of Intrauterine Bakri Balloon Tamponade in Cesarean Section for Placenta Previa Patients.

    Directory of Open Access Journals (Sweden)

    Hee Young Cho

    Full Text Available The aims of this study were to analyze the predictive factors for the use of intrauterine balloon insertion and to evaluate the efficacy and factors affecting failure of uterine tamponade with a Bakri balloon during cesarean section for abnormal placentation.We reviewed the medical records of 137 patients who underwent elective cesarean section for placenta previa between July 2009 and March 2014. Cesarean section and Bakri balloon insertion were performed by a single qualified surgeon. The Bakri balloon was applied when blood loss during cesarean delivery exceeded 1,000 mL.Sixty-four patients (46.7% required uterine balloon tamponade during cesarean section due to postpartum bleeding from the lower uterine segment, of whom 50 (78.1% had placenta previa totalis. The overall success rate was 75% (48/64 for placenta previa patients. Previous cesarean section history, anterior placenta, peripartum platelet count, and disseminated intravascular coagulopathy all significantly differed according to balloon success or failure (all p<0.05. The drainage amount over 1 hour was 500 mL (20-1200 mL in the balloon failure group and 60 mL (5-500 mL in the balloon success group (p<0.01.Intrauterine tamponade with a Bakri balloon is an adequate adjunct management for postpartum hemorrhage following cesarean section for placenta previa to preserve the uterus. This method is simple to apply, non-invasive, and inexpensive. However, possible factors related to failure of Bakri balloon tamponade for placenta previa patients such as prior cesarean section history, anterior placentation, thrombocytopenia, presence of DIC at the time of catheter insertion, and catheter drainage volume more than 500 mL within 1 hour of catheter placement should be recognized, and the next-line management should be prepared in advance.

  16. Brief communication "Stratospheric winds, transport barriers and the 2011 Arctic ozone hole"

    Directory of Open Access Journals (Sweden)

    M. J. Olascoaga

    2012-12-01

    Full Text Available The Arctic stratosphere throughout the late winter and early spring of 2011 was characterized by an unusually severe ozone loss, resulting in what has been described as an ozone hole. The 2011 ozone loss was made possible by unusually cold temperatures throughout the Arctic stratosphere. Here we consider the issue of what constitutes suitable environmental conditions for the formation and maintenance of a polar ozone hole. Our discussion focuses on the importance of the stratospheric wind field and, in particular, the importance of a high latitude zonal jet, which serves as a meridional transport barrier both prior to ozone hole formation and during the ozone hole maintenance phase. It is argued that stratospheric conditions in the boreal winter/spring of 2011 were highly unusual inasmuch as in that year Antarctic-like Lagrangian dynamics led to the formation of a boreal ozone hole.

  17. An investigation of the processes controlling ozone in the upper stratosphere

    International Nuclear Information System (INIS)

    Patten, K.O. Jr.; Connell, P.S.; Kinnison, D.E.; Wuebbles, D.J.; Waters, J.; Froidevaux, L.; Slanger, T.G.

    1992-01-01

    Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory 2-D zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based upon recent information on vibrational distributions of excited oxygen and upon preliminary studies of energy transfer from the excited oxygen. When the energy transfer rate constants of previous work are assumed, increases in model ozone concentrations of up to 40 percent in the upper stratosphere are found, and the ozone concentrations of the model agree with measurements, including data from the Upper Atmosphere Research Satellite. However, the increase is about 0.4 percent when the larger energy transfer rate constants suggested by more recent experimental work are applied in the model. This indicates the importance of obtaining detailed information on vibrationally excited oxygen properties, particularly the state-specific energy transfer rate constants, to evaluation of tills precess for stratospheric modeling

  18. Balloon dilatation for the treatment of stricture of gastrojejunostomy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeon Hwa [Lee Rha Hospital, Chungju (Korea, Republic of); Song, Ho Young [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Han, Young Min; Chon, Su Bin; Chung, Gyung Ho; Kim, Chong Soo; Choi, Ki Chul [Chonbuk National University College of Medicine, Chungju (Korea, Republic of)

    1993-07-15

    Enteroenteric anastomotic strictures of UGI tract are common and require treatment if significant obstruction occurs. We performed fluoroscopic guided balloon dilatation in 6 patients who had symptomatic stricture of gastrojejunostomy. The stricture was successfully resolved in 4 patients with benign stricture. But 2 patients with malignant stricture had recurrence of obstructive symptoms 2 weeks later, and they required a stent. Asymptomatic balloon rupture was seen in one patients, but other procedural complications did not occur. We found that fluoroscopic guided balloon dilatation is an effective and safe method in the treatment of anastomotic stricture of gastrojejunostomy. We also found transient effect in malignant gastrojejunal anastomotic strictures, which required an interventional procedure, such as placement of a stent.

  19. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    Science.gov (United States)

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  20. Stratospheric ozone reduction and its relation to natural and man made sources

    Energy Technology Data Exchange (ETDEWEB)

    Isaksen, I S [Oslo Univ. (Norway). Dept. of Geophysics

    1996-12-31

    Approximately 90 % of the total ozone mass is in the stratosphere (between approximately 12 and 50 km), the rest is in the troposphere (below 12 km). The global distribution of ozone in the stratosphere and its variation over time have been studied extensively over several decades. These studies include observations by ground based instruments (e.g. Dobson instruments), instruments on airborne platforms (e.g. ozone sondes) and on satellites, and model studies which simulate the chemical and dynamical behaviour of the stratosphere. These studies have given good information about the processes which determine the ozone distribution, and how man made emissions affect the distribution. Observations have revealed that there are large year to year variations in stratospheric ozone above a particular location. These variations are difficult to predict as they are connected to irregular weather patterns. However, the observations have shown that there has been a long term decrease in stratospheric ozone on a global scale during the last two decades. The decrease has been most pronounced during the last five to six years and is seen both in the Northern and the Southern Hemispheres. The strong decrease in stratospheric ozone over the Antarctic continent, which has been observed since the mid 80s, and which has reduced the total ozone column with more than 50 % compared with earlier observations, is proven to be a result of increased man made emissions of CFCs. There are also mounting evidences that Northern Hemispheric ozone reductions observed since 1980 are connected to man made emissions of CFCs