Sample records for stratified reservoir electronic

  1. Oxygenation of Stratified Reservoir Using Air Bubble Plume

    Schladow, S. G.


    Excess nutrients loading from urban area and watershed into lakes and reservoirs increases the content of organic matter, which, through decomposition, needs increased dissolve oxygen (DO). Many eutrophic reservoirs and lakes cannot meet the DO requirement during stratified season and suffers from the hypolimnetic anoxia. As a result, benthic sediment produces anoxic products such as methane, hydrogen sulphide, ammonia, iron, manganese, and phosphorus. In order to address the hypolimnetic anoxia, oxygen is artificially supplied into reservoir using an aeration system (i.e., bubbler). The most common result of lake/reservoir aeration is to destratify the reservoir so that the water body may completely mix under natural phenomena and remain well oxygenated throughout. Other advantages of destratification are: (1) allows warm- water fish to inhabit the entire reservoir, (2) suppress the nutrient release from sediment, and (3) decreases the algal growth by sending them to the darker zone. A one-dimensional reservoir-bubbler model is developed and applied to examine the effects of an aeration system on mixing and dissolved oxygen dynamics in the Upper Peirce Reservoir, Singapore. After introduction of the aeration system in the reservoir, it was found that the hypolimnetic DO increased significantly, and the concentration of algae, soluble manganese and iron substantially reduced. It is found that the reservoir-bubbler model predicts the mixing (temperature as mixing parameter) and dissolved oxygen concentration in the reservoir with acceptable accuracy. It is shown in terms of bubbler mechanical efficiency (i.e., operating cost) and total DO contribution from the aeration system into the reservoir that the selections of airflow rate per diffuser, air bubble radius, and total number of diffusers are important design criteria of a bubbler system. However, the overall bubbler design also depends on the reservoir size and stratified area of interest, ambient climate, and

  2. Assessing iron dynamics in the release from a stratified reservoir

    Ashby, S.L.; Faulkner, S.P.; Gambrell, R.P.; Smith, B.A.


    Field and laboratory studies were conducted to describe the fate of total, dissolved, and ferrous (Fe2.) iron in the release from a stratified reservoir with an anoxic hypolimnion. Concentrations of total iron in the tail water indicated a first order removal process during a low flow release (0.6 m3sec1), yet negligible loss was observed during a period of increased discharge (2.8 m 3 sec-1). Dissolved and ferrous iron concentrations in the tailwater were highly variable during both release regimes and did not follow responses based on theoretical predictions. Ferrous iron concentrations in unfiltered samples were consistently greater than concentrations observed in samples filtered separately through 0.4, 0.2, and 0.1 ??m filters. Total iron removal in laboratory studies followed first order kinetics, but was twice that rate (0.077 mg.L-1 .hr 1) observed during low flow discharge in the tailwater (0.036 mg. L1 .hr1). Dissolved and ferrous iron losses in laboratory studies were rapid (???75% in the first 15 minutes and 95% within 1 hour), followed theoretical predictions, and were much faster than observations in the tailwater (???30% within the first hour). The presence of particulate forms of ferrous iron in the field and differences in removal rates observed in field and laboratory studies indicate a need for improved field assessment techniques and consideration of complexation reactions when assessing the dynamics of iron in reservoir releases and downstream impacts as a result of operation regimes. ?? Copyright by the North American Lake Management Society 2004.

  3. Bioenergetic evaluation of diel vertical migration by bull trout (Salvelinus confluentus) in a thermally stratified reservoir

    Eckmann, Madeleine; Dunham, Jason; Connor, Edward J.; Welch, Carmen A.


    Many species living in deeper lentic ecosystems exhibit daily movements that cycle through the water column, generally referred to as diel vertical migration (DVM). In this study, we applied bioenergetics modelling to evaluate growth as a hypothesis to explain DVM by bull trout (Salvelinus confluentus) in a thermally stratified reservoir (Ross Lake, WA, USA) during the peak of thermal stratification in July and August. Bioenergetics model parameters were derived from observed vertical distributions of temperature, prey and bull trout. Field sampling confirmed that bull trout prey almost exclusively on recently introduced redside shiner (Richardsonius balteatus). Model predictions revealed that deeper (>25 m) DVMs commonly exhibited by bull trout during peak thermal stratification cannot be explained by maximising growth. Survival, another common explanation for DVM, may have influenced bull trout depth use, but observations suggest there may be additional drivers of DVM. We propose these deeper summertime excursions may be partly explained by an alternative hypothesis: the importance of colder water for gametogenesis. In Ross Lake, reliance of bull trout on warm water prey (redside shiner) for consumption and growth poses a potential trade-off with the need for colder water for gametogenesis.

  4. Prediction of water temperature in stratified reservoir and effects on downstream irrigation area: A case study of Xiahushan reservoir

    Yang, Mengfei; Li, Lan; Li, Juan

    With increasing concern in environmental and ecological protection, more studies have focused on solving the problems caused by dam. Large reservoirs often release low-temperature water in spring and summer, which have adverse effects on downstream ecosystem. The 3-D Environmental Fluid Dynamics Code (EFDC) and 1-D longitudinal stream temperature model were used in this paper, to predict the water temperature in reservoir and canal and analyze the effects on irrigation area. The results indicate that the affected area is within a 55 km distance mainly in the period between April and June. Some management and engineering measures should be adopted to reduce the impact.

  5. A Particular River-Whiting Phenomenon Caused by Discharge of Hypolimnetic Water from a Stratified Reservoir.

    Jingan Chen

    Full Text Available A particular river-whiting phenomenon occurred in the early 2000s in the Xiaoche River and since then it has been reoccurring from June to November each year. Residents were surprised by this phenomenon and worried about it. This study was designed to reveal the forming mechanism of the river-whiting phenomenon. A comparison of T, EC, ORP, DO, TDS and δ34S in the culvert water and discharge pipe water with that in the water column of Aha Reservoir strongly indicated that the culvert water and discharge pipe water derived primarily from the hypolimnetic reservoir water. When the hypolimnetic water enriched in SO42- and H2S, through seepage from the penstock, flows into the Xiaoche River, the water's supersaturation degree with respect to CaSO4 is increased as a result of increased temperature and DO, thus colloid CaSO4 can be formed. This is the essential cause of the river-whiting phenomenon. The sources of high concentrations of SO42- and H2S in hypolimnetic water include not only direct SO42- and H2S input of acid mine drainage as a result of irrational coal mining in the watershed, but also the sulfur-enriched surface sediments which may release H2S through the sulfate reduction processes. The contaminated sediment has acted as an important contamination source for sulfur to the overlying water in Aha Reservoir. There are more than 50,000 large dams in the world until now. With the increase of reservoir age and the persistent accumulation of pollutants within the reservoir system, discharged hypolimnetic water may contain high levels of pollutants and lead to unpredicted disasters. More investigations are needed to illuminate the water quality condition of discharge water from reservoirs and estimate its impacts on the downstream eco-environment.

  6. Upscaling of Two-Phase Immiscible Flows in Communicating Stratified Reservoirs

    Zhang, Xuan; Shapiro, Alexander; Stenby, Erling Halfdan


    forces and gravity may be neglected. The method is discussed on the example of its basic application: waterflooding in petroleum reservoirs. We apply asymptotic analysis to a system of two-dimensional (2D) mass conservation equations for incompressible fluids. For high anisotropy ratios, the pressure...... gradient in vertical direction may be set zero, which is the only assumption of our derivation. In this way, the 2D Buckley–Leverett problem may be reduced to a one-dimensional problem for a system of quasi-linear hyperbolic equations, of a number equal to the number of layers in the reservoir....... They are solved numerically, based on an upstream finite difference algorithm. Self-similarity of the solution makes it possible to compute pseudofractional flow functions depending on the average saturation. The computer partial differential equation solver COMSOL is used for comparison of the complete 2D...

  7. Abundant iron and sulfur oxidizers in the stratified sediment of a eutrophic freshwater reservoir with annual cyanobacterial blooms

    Jin, Long; Lee, Chang Soo; Ahn, Chi-Yong; Lee, Hyung-Gwan; Lee, Sanghyup; Shin, Hyeon Ho; Lim, Dhongil; Oh, Hee-Mock


    The microbial community in eutrophic freshwater sediment was investigated from a 67-cm-deep sediment core collected from the Daechung Reservoir in South Korea, where cyanobacterial blooms have occurred annually for the past 30 years. The majority of core sediments were characterized by dark-grayish, fine-grained mud with abundant gas-escaped and thinly laminated layers. Intervals of summer and winter seasons were represented by periodic peaks of geochemical profiles of parameters such as grain size and relative carbon mass ratios to various nutrients such as nitrogen, sulfur, and phosphorus. In bacteria, Proteobacteria (66.6%) was the most prevalent phylum, followed by Chloroflexi (8.9%), Bacteroidetes (5.1%), and Spirochaetes (2.6%). Archaea were also abundant, representing approximately half of the total prokaryotes in the sediments. Notably, three Bacteria (Sulfuricurvum, Sideroxydans, and Gallionella) and one Archaea (Thermoplasmata) accounted for 43.4% and 38.4% of the total bacteria and archaea, respectively, implying that iron and sulfur oxidizing microorganisms dominate in this eutrophic freshwater sediment. These results indicate that 1) eutrophic freshwater lakes in monsoon climates undergo a stratified sedimentary process with seasonal and annual variations in geochemical and microbial profiles, and 2) the microbial oxidative metabolism of iron and sulfur is notably active in sediments from a eutrophic lake.

  8. Characteristics of reservoir density flow in stratified water environment%分层环境中水库密度流运动特性研究

    任实; 张小峰; 陆俊卿


    A flume experiment for the motion of reservoir density current in steady temperature stratified environment was used. Through different tests, simulated the density flow movement under the conditions of different temperature stratification, and analyzed the effects of stratified strength and outlet condition on density flow movement. The density flow movement characteristics under different reservoir operation modes were researched on the basis of model simulation. The research results can provide reference for the management about the water quality of the reservoir and aquatic environment, also can give reference for the early warning plan of reservoir emergency.%该文采用水槽试验对稳定温度分层水库的密度流运动进行了模拟.通过不同的试验方案,模拟了不同温度分层条件下密度流运动形态,分析了水体分层强度和出口条件对密度流运动的影响,并在此基础上,对不同水库运行方式下密度流运动特征进行了模拟研究.该文研究结果为水库水质、水生环境管理与调度以及水库应急预警方案的制定提供了参考.

  9. Evaluation of mercury cycling and hypolimnetic oxygenation in mercury-impacted seasonally stratified reservoirs in the Guadalupe River watershed, California

    McCord, Stephen A.; Beutel, Marc W.; Dent, Stephen R.; Schladow, S. G.


    Surface water reservoirs trap inorganic mercury delivered from their watersheds, create conditions that convert inorganic mercury to highly toxic methylmercury (MeHg), and host sportfish in which MeHg bioaccumulates. The Santa Clara Valley Water District (District) actively manages and monitors four mercury-impaired reservoirs that help to serve communities in South San Francisco Bay, California. The Guadalupe River watershed, which contains three of those reservoirs, also includes the New Almaden mercury-mining district, the largest historic mercury producer in North America. Monthly vertical profiles of field measurements and grab samples in years 2011-2013 portray annual cycling of density stratification, dissolved oxygen (DO), and MeHg. Monitoring results highlight the role that hypolimnetic hypoxia plays in MeHg distribution in the water column, as well as the consistent, tight coupling between MeHg in ecological compartments (water, zooplankton, and bass) across the four reservoirs. Following the 2011-2013 monitoring period, the District designed and installed hypolimnetic oxygenation systems (HOS) in the four reservoirs in an effort to repress MeHg buildup in bottom waters and attain regulatory targets for MeHg in water and fish tissue. Initial HOS operation in Calero Reservoir in 2014 enhanced bottom water DO and depressed hypolimnetic buildup of MeHg, but did not substantially decrease mercury levels in zooplankton or small fish.

  10. Geochemical and hydrodynamic controls on arsenic and trace metal cycling in a seasonally stratified US sub-tropical reservoir

    Brandenberger, Jill M.; Louchouarn, Patrick; Herbert, Bruce; Tissot, Philippe


    The phase distribution of trace metals and oxyanions was investigated within a South Texas watershed hosting a high density of surface uranium mine pits and tailings. The objectives of the study were to evaluate the potential impact of these old uranium mining sites on the watershed with particular emphasis on spatial and temporal changes in water quality of a reservoir that serves as the major source of freshwater to a population of {approx} 350,000 people in the region. A livestock pond, bordered by uranium mine tailings, was used as a model case-study site to evaluate the cycling of uranium mine-derived oxyanions under changing redox conditions. Although the pond showed seasonal thermal and chemical stratification, geochemical cycling of metals was limited to Co and Pb, which seemed to be mostly associated with redox cycling of Mn mineral phases, and U, which suggested reductive precipitation in the ponds hypolimnion. Uranium levels, however, were too low to support strong inputs from th e tailings into the water column of the pond. The strong relations observed between particulate Cr, Cs, V and Fe suggest that these metals are associated with a stable particulate phase (probably allochthonous aluminosilicates) enriched in unreactive iron. This observation is supported by a parallel relationship in sediments collected across a broad range of sediment depositional processed (and histories) in the basin. Arsenic, though selectively enriched in the ponds water column, remained stable and mostly in solution throughout the depth of the profile and showed no sign of geochemical cycling or interaction with Fe-rich particles. We found no evidence of anthropogenic impacts of U mines beyond the purely local scale. Arsenic does decrease in concentration downstream of uranium mining sites but its presence within the Nueces drainage basin is related to interactions between surface and ground waters with uranium-rich geological formations rather than long-scale transport of

  11. Reservoir

    M. Mokhtar


    Full Text Available Scarab field is an analog for the deep marine slope channels in Nile Delta of Egypt. It is one of the Pliocene reservoirs in West delta deep marine concession. Channel-1 and channel-2 are considered as main channels of Scarab field. FMI log is used for facies classification and description of the channel subsequences. Core data analysis is integrated with FMI to confirm the lithologic response and used as well for describing the reservoir with high resolution. A detailed description of four wells penetrated through both channels lead to define channel sequences. Some of these sequences are widely extended within the field under study exhibiting a good correlation between the wells. Other sequences were of local distribution. Lithologic sequences are characterized mainly by fining upward in Vshale logs. The repetition of these sequences reflects the stacking pattern and high heterogeneity of the sandstone reservoir. It also refers to the sea level fluctuation which has a direct influence to the facies change. In terms of integration of the previously described sequences with a high resolution seismic data a depositional model has been established. The model defines different stages of the channel using Scarab-2 well as an ideal analog.

  12. Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts

    Roque, Francisco S.; Jensen, Peter B.; Schmock, Henriette


    Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting...... phenotype information from the free-text in such records we demonstrate that we can extend the information contained in the structured record data, and use it for producing fine-grained patient stratification and disease co-occurrence statistics. The approach uses a dictionary based on the International...... Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently can be mapped to systems biology frameworks....

  13. Persistent Currents in the Double Aharonov-Bohm Ring Connected to Electron Reservoirs

    ZHANG Ying; XIAO Jing-Lin


    We study persistent currents in the double Aharonov-Bohm ring connected to two electron reservoirs by quantum waveguide theory. It is found that the persistent currents in the double Aharonov-Bohm ring depend on the direction of the current flow from one reservoir to another. When the direction of the current flow reverses, the persistent current in each ring of the double Aharonov-Bohm ring changes. If the two rings are of the same size, the persistent currents in the left and the right rings exchange at the reversal of the current flow direction.

  14. Transmission Probability for Interacting Electrons Connected to Reservoirs

    Oguri, Akira


    Transport through small interacting systems connected to noninteracting leads is studied based on the Kubo formalism using a Éliashberg theory of the analytic properties of the vertex part. The transmission probability, by which the conductance is expressed as g = (2e2/h) \\int dɛ (- \\partial f / \\partial ɛ) \\mathcal{T}(ɛ), is introduced for interacting electrons. Here f(ɛ) is the Fermi function, and the transmission probability T(ɛ) is defined in terms of a current vertex or a three-point correlation function. We apply this formulation to a series of Anderson impurities of size N (=1, 2, 3, 4), and calculate T(ɛ) using the order U2 self-energy and current vertex which satisfy a generalized Ward identity. The results show that T(ɛ) has much information about the excitation spectrum: T(ɛ) has two broad peaks of the upper and lower Hubbard bands in addition to N resonant peaks which have direct correspondence with the noninteracting spectrum. The peak structures disappear at high temperatures.

  15. Impact of short-term climate variation and hydrology change on thermal structure and water quality of a canyon-shaped, stratified reservoir.

    Ma, Wei-Xing; Huang, Ting-Lin; Li, Xuan; Zhang, Hai-Han; Ju, Tuo


    Climate variation can have obvious effects on hydrologic conditions, which in turn can have direct consequences for the thermal regime and quality of water for human use. In this research, weekly surveys were conducted from 2011 to 2013 to investigate how changes of climate and hydrology affect the thermal regime and water quality at the Heihe Reservoir. Our results show that the hydrology change during the flooding season can both increase the oxygen concentration and accelerate the consumption of dissolved oxygen. Continuous heavy rainfall events occurred in September 2011 caused the mixing of the entire reservoir, which led to an increase in dissolved oxygen at the bottom until the next year. Significant turbid density flow was observed following the extreme rainfall events in 2012 which leading to a rapid increase in turbidity at the bottom (up to 3000 NTU). Though the dissolved oxygen at the bottom increased from 0 to 9.02 mg/L after the rainfall event, it became anoxic within 20 days due to the increase of water oxygen demand caused by the suspended matter brought by the storm runoff. The release of compounds from the sediments was more serious during the anaerobic period after the rainfall events and the concentration of total iron, total phosphorus, and total manganese at the bottom reached 1.778, 0.102, and 0.125 mg/L. The improved water-lifting aerators kept on running after the storm runoff occurred in 2013 to avoid the deterioration of water quality during anaerobic conditions and ensured the good water quality during the mixing period. Our results suggest preventive and remediation actions that are necessary to improve water quality and status.

  16. 聚仙庙水库平面钢闸门分层取水设计及应用%Design of Stratified Water Intake of Plane Steel Gate of Juxianmiao Reservoir

    谢玲丽; 仇金长; 高文; 王丽容


    为解决水库取水口位置偏低引起原水下泄水温较低产生的问题,针对聚仙庙水库提出了"平面交错、立面分层、一电多控"的平面钢闸门分层取水方案. 工程取水系统进水口采用竖井式,五层取水口分设在坝体的不同断面上,各个取水口在平面布置上相互错开,通过移动轨道上的手电葫芦来控制取水口各个闸门的启闭. 这种设计能有效提高下泄水温,又能使上、下各取水口间不会受到相互牵制和影响,较好地解决了水库下泄低温水对下游环境与水生生态的影响问题.%In order to solve the problems that lower water outlet temperature that lead to crop production, caused by the reservoir intake location, it was presented a plane steel gate stratified water solution of"planar cross, vertical stratified and multi-control by the same power"for Juxianmiao Reservoir.Water inlet of the water intake engineering system adopted shaft type, five-layer water intake was divided into different sections of the dam, each intake in the layout was mutually staggered, through the electric hoist on the moving track to control each nozzle gate opening and closing.After experimental verification, this design could effectively improve the temperature of discharged water, under the water intake mouth would not be mutually restrained and influenced and well solved the problem of influence of reservoir discharging low-temperature water to the downstream environment and aquatic ecology.

  17. Reservoir characterization: Evaluation for the channel deposits sequence – Upper part using scanning electron microscope (SEM and mercury injection (MICP: Case of tight reservoirs (North Sea

    M.S. Benzagouta


    Accordingly, this paper presents the results of a combination of reservoir characteristics determination, the use of the SEM. petrographical investigation for the purpose of detailed examination as well as the MICP application for the physical properties appraisal. The overall will lead to better understanding of the studied section coupled to other reservoir attributes identification.


    George L. Scott III


    Finalized Phase 2-3 project work has field-proven two separate real-time reservoir processes that were co-developed via funding by the National Energy Technology Laboratory (NETL). Both technologies are presently patented in the United States and select foreign markets; a downhole-commingled reservoir stimulation procedure and a real-time tracer-logged fracturing diagnostic system. Phase 2 and early Phase 3 project work included the research, development and well testing of a U.S. patented gamma tracer fracturing diagnostic system. This stimulation logging process was successfully field-demonstrated; real-time tracer measurement of fracture height while fracturing was accomplished and proven technically possible. However, after the initial well tests, there were several licensing issues that developed between service providers that restricted and minimized Realtimezone's (RTZ) ability to field-test the real-time gamma diagnostic system as was originally outlined for this project. Said restrictions were encountered after when one major provider agreed to license their gamma logging tools to another. Both of these companies previously promised contributory support toward Realtimezone's DE-FC26-99FT40129 project work, however, actual support was less than desired when newly-licensed wireline gamma logging tools from one company were converted by the other from electric wireline into slickline, batter-powered ''memory'' tools for post-stimulation logging purposes. Unfortunately, the converted post-fracture measurement memory tools have no applications in experimentally monitoring real-time movement of tracers in the reservoir concurrent with the fracturing treatment. RTZ subsequently worked with other tracer gamma-logging tool companies for basic gamma logging services, but with lessened results due to lack of multiple-isotope detection capability. In addition to real-time logging system development and well testing, final Phase 2 and


    George Scott III


    Ongoing Phase 2-3 work comprises the final development and field-testing of two complementary real-time reservoir technologies; a stimulation process and a tracer fracturing diagnostic system. Initial DE-FC26-99FT40129 project work included research, development, and testing of the patented gamma tracer fracturing diagnostic system. This process was field-proven to be technically useful in providing tracer measurement of fracture height while fracturing; however, technical licensing restrictions blocked Realtimezone from fully field-testing this real-time gamma diagnostic system, as originally planned. Said restrictions were encountered during Phase 2 field test work as result of licensing limitations and potential conflicts between service companies participating in project work, as related to their gamma tracer logging tool technology. Phase 3 work principally demonstrated field-testing of Realtimezone (RTZ) and NETL's Downhole-mixed Reservoir Stimulation process. Early on, the simplicity of and success of downhole-mixing was evident from well tests, which were made commercially productive. A downhole-mixed acid stimulation process was tested successfully and is currently commercially used in Canada. The fourth well test was aborted due to well bore conditions, and an alternate test project is scheduled April, 2004. Realtimezone continues to effectuate ongoing patent protection in the United States and foreign markets. In 2002, Realtimezone and the NETL licensed their United States patent to Halliburton Energy Services (HES). Additional licensing arrangements with other industry companies are anticipated in 2004-2005. Ongoing Phase 2 and Phase 3 field-testing continues to confirm applications of both real-time technologies. Technical data transfer to industry is ongoing via Internet tech-transfer and various industry presentations and publications including Society of Petroleum Engineers. These real-time enhanced stimulation procedures should significantly

  20. Fluttering in Stratified Flows

    Lam, Try; Vincent, Lionel; Kanso, Eva


    The descent motion of heavy objects under the influence of gravitational and aerodynamic forces is relevant to many branches of engineering and science. Examples range from estimating the behavior of re-entry space vehicles to studying the settlement of marine larvae and its influence on underwater ecology. The behavior of regularly shaped objects freely falling in homogeneous fluids is relatively well understood. For example, the complex interaction of a rigid coin with the surrounding fluid will cause it to either fall steadily, flutter, tumble, or be chaotic. Less is known about the effect of density stratification on the descent behavior. Here, we experimentally investigate the descent of discs in both pure water and in a linearly salt-stratified fluids where the density is varied from 1.0 to 1.14 of that of water where the Brunt-Vaisala frequency is 1.7 rad/sec and the Froude number Fr robots for space exploration and underwater missions.

  1. Thermal mixing in a stratified environment

    Kraemer, Damian; Cotel, Aline


    Laboratory experiments of a thermal impinging on a stratified interface have been performed. The thermal was released from a cylindrical reservoir located at the bottom of a Lucite tank. The stratified interface was created by filling the tank with two different saline solutions. The density of the lower layer is greater than that of the upper layer and the thermal fluid, thereby creating a stable stratification. A pH indicator, phenolphthalein, is used to visualize and quantify the amount of mixing produced by the impingement of the thermal at the interface. The upper layer contains a mixture of water, salt and sodium hydroxide. The thermal fluid is composed of water, sulfuric acid and phenolphthalein. When the thermal entrains and mixes fluid from the upper layer, a chemical reaction takes place, and the resulting mixed fluid is now visible. The ratio of base to acid, called the equivalence ratio, was varied throughout the experiments, as well as the Richardson number. The Richardson number is the ratio of potential to kinetic energy, and is based on the thermal quantities at the interface. Results indicate that the amount of mixing produced is proportional to the Richardson number raised to the -3/2 power. Previous experiments (Zhang and Cotel 1999) revealed that the entrainment rate of a thermal in a stratified environment follows the same power law.

  2. Electromagnetic waves in stratified media

    Wait, James R; Fock, V A; Wait, J R


    International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne

  3. A quantitative stratified method based on computational thinking:Taken Chang 6 reservoir in Zibei Oilfield as an example%基于计算思维的定量分层方法研究--以子北油田长6段为例



    计算思维与实验思维和理论思维被认为是当今社会人类的三大科学思维方式。定量分层是层序地层学研究的一项难题,地层划分的最优分割法是定量岩石地层学中的一种常见算法。在应用测井资料进行分层时,溶入计算思维的新思想,从地质及沉积环境特征出发,对数据进行必要的归纳、推理,寻找敏感指标用于资料解释,采用关注点分离的方法对最优分割算法进行了改进,并在子北油田长6段单井数据定量分层中进行了应用,取得了明显的划分效果。实践证明该方法在测井数据定量分层中具有一定的应用价值。%The computational thinking ,the experimental thought and the theoretical thought are considered to be three ways of human scientific thinking in today’s society.The quantitative stratification is a difficult issue in the study of se-quence stratigraphy.The optimal segmentation method for stratigraphic classification is a common algorithm in quantitative lithostratigraphy.When logging data were applied in stratification,considering the new ideas of the computational thinking, from the geological characteristics and sedimentary environments,it was necessary to summarize and deduce the logging da-ta.And then a sensitive indicator was proposed to interpret the data.The optimal segmentation method was improved by a-dopting the method of separation of concerns.The new method was applied in the quantitative lithostratigraphy of logging data from Chang 6 reservoir in Zibei Oilfield.And the obvious stratified effect was obtained.The practice application proves that the method has a certain applied value in the quantitative stratification of logging data.

  4. Stratified medicine and reimbursement issues

    Fugel, Hans-Joerg; Nuijten, Mark; Postma, Maarten


    Stratified Medicine (SM) has the potential to target patient populations who will most benefit from a therapy while reducing unnecessary health interventions associated with side effects. The link between clinical biomarkers/diagnostics and therapies provides new opportunities for value creation to

  5. Mechanism of hole injection enhancement in light-emitting diodes by inserting multiple hole-reservoir layers in electron blocking layer

    Zhao, Yukun; Wang, Shuai; Feng, Lungang; Li, Yufeng; Ding, Wen [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics and Information Technology, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Yun, Feng, E-mail: [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics and Information Technology, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Shaanxi Supernova Lighting Technology Co. Ltd, Xi' an, Shaanxi 710075 (China); Su, Xilin [Shaanxi Supernova Lighting Technology Co. Ltd, Xi' an, Shaanxi 710075 (China); Guo, Maofeng [Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Shaanxi Supernova Lighting Technology Co. Ltd, Xi' an, Shaanxi 710075 (China); Zhang, Ye [Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)


    In this study, gallium nitride (GaN) based light-emitting diodes (LEDs) with single and multiple hole-reservoir layers (HRLs) inserted in the electron-blocking layer (EBL) have been investigated numerically and experimentally. According to simulation results, a better electron confinement and a higher hole injection level can be achieved by the multiple HRLs inserted in the EBL region. To further reveal the underlying mechanism of hole injection enhancement experimentally, the active regions were intentionally designed to emit photons with three different wavelengths of 440 nm, 460 nm, and 480 nm, respectively. Based on the experimental results of photoluminescence (PL) and time-resolved PL (TRPL) measurements conducted at 298 K, the remarkable enhancement (148%) of PL intensities and significant increase in the decay times of the quantum wells close to p-GaN can be obtained. Therefore, the mechanism is proposed that carriers are able to reserve in the EBL region with multiple HRLs for a much longer time. Meanwhile, carriers could diffuse into the active region by tunnelling and/or thermo-electronic effect and then recombine efficiently, leading to the better carrier reservoir effect and higher hole injection in LEDs. As a result, by inserting multiple HRLs in the EBL region instead of single HRL, the experimental external quantum efficiency is enhanced by 19.8%, while the serious droop ratio is markedly suppressed from 37.0% to 27.6% at the high current injection of 100 A/cm{sup 2}.

  6. All-optical reservoir computing.

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge


    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  7. Low-energy solar electrons and ions observed at Ulysses February-April, 1991 - The inner heliosphere as a particle reservoir

    Roelof, E. C.; Gold, R. E.; Simnett, G. M.; Tappin, S. J.; Armstrong, T. P.; Lanzerotti, L. J.


    Ulysses observations at 2.5 AU of 38-315 keV electrons and 61-4752 keV ions during February-April 1991 suggest in several ways that, during periods of sustained high solar activity, the inner heliosphere serves as a 'reservoir' for low-energy solar particles. Particle increases were not associated one-to-one with large X-ray flares because of their poor magnetic connection, yet intensities in March-April remained well above their February levels. The rise phase of the particle event associated with the great flare of 2245UT March 22 lasted most of two days, while throughout the one-week decay phase, the lowest-energy ion fluxes were nearly equal at Ulysses and earth (IMP-8).

  8. Stratified Medicine and Reimbursement Issues

    Hans-Joerg eFugel


    Full Text Available Stratified Medicine (SM has the potential to target patient populations who will most benefit from a therapy while reducing unnecessary health interventions associated with side effects. The link between clinical biomarkers/diagnostics and therapies provides new opportunities for value creation to strengthen the value proposition to pricing and reimbursement (P&R authorities. However, the introduction of SM challenges current reimbursement schemes in many EU countries and the US as different P&R policies have been adopted for drugs and diagnostics. Also, there is a lack of a consistent process for value assessment of more complex diagnostics in these markets. New, innovative approaches and more flexible P&R systems are needed to reflect the added value of diagnostic tests and to stimulate investments in new technologies. Yet, the framework for access of diagnostic–based therapies still requires further development while setting the right incentives and appropriate align stakeholders interests when realizing long- term patient benefits. This article addresses the reimbursement challenges of SM approaches in several EU countries and the US outlining some options to overcome existing reimbursement barriers for stratified medicine.

  9. Suppression of stratified explosive interactions

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics


    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  10. Stratified shear flow in an inclined duct: coherent structures and mixing

    Lefauve, Adrien; Partridge, Jamie; Dalziel, Stuart; Linden, Paul


    We present laboratory experiments on the exchange flow in an inclined square duct connecting two reservoirs at different densities. This system generates and maintains a stratified shear flow, which can be laminar, wavy or turbulent depending on the density difference and inclination angle. It is believed that the mean dissipation is set by the angle, and that high buoyancy Reynolds numbers (i.e. turbulent intensity) can be maintained, making this system suited for the study of continuously forced stratified turbulence. The talk will focus on the analysis of time-resolved, near-instantaneous 3D velocity and density data obtained by stereo particle image velocimetry (PIV) and laser induced fluorescence (LIF). This data allow for the visualisation of 3D coherent structures as well as turbulent mixing properties, which are key in understanding the dynamics of stratified turbulence. Supported by EPSRC Programme Grant EP/K034529/1 entitled "Mathematical Underpinnings of Stratified Turbulence".

  11. Stratified wake of an accelerating hydrofoil

    Ben-Gida, Hadar; Gurka, Roi


    Wakes of towed and self-propelled bodies in stratified fluids are significantly different from non-stratified wakes. Long time effects of stratification on the development of the wakes of bluff bodies moving at constant speed are well known. In this experimental study we demonstrate how buoyancy affects the initial growth of vortices developing in the wake of a hydrofoil accelerating from rest. Particle image velocimetry measurements were applied to characterize the wake evolution behind a NACA 0015 hydrofoil accelerating in water and for low Reynolds number and relatively strong and stably stratified fluid (Re=5,000, Fr~O(1)). The analysis of velocity and vorticity fields, following vortex identification and an estimate of the circulation, reveal that the vortices in the stratified fluid case are stretched along the streamwise direction in the near wake. The momentum thickness profiles show lower momentum thickness values for the stratified late wake compared to the non-stratified wake, implying that the dra...

  12. How stratified is mantle convection?

    Puster, Peter; Jordan, Thomas H.


    We quantify the flow stratification in the Earth's mid-mantle (600-1500 km) in terms of a stratification index for the vertical mass flux, Sƒ (z) = 1 - ƒ(z) / ƒref (z), in which the reference value ƒref(z) approximates the local flux at depth z expected for unstratified convection (Sƒ=0). Although this flux stratification index cannot be directly constrained by observations, we show from a series of two-dimensional convection simulations that its value can be related to a thermal stratification index ST(Z) defined in terms of the radial correlation length of the temperature-perturbation field δT(z, Ω). ST is a good proxy for Sƒ at low stratifications (SƒUniformitarian Principle. The bound obtained here from global tomography is consistent with local seismological evidence for slab flux into the lower mantle; however, the total material flux has to be significantly greater (by a factor of 2-3) than that due to slabs alone. A stratification index, Sƒ≲0.2, is sufficient to exclude many stratified convection models still under active consideration, including most forms of chemical layering between the upper and lower mantle, as well as the more extreme versions of avalanching convection governed by a strong endothermic phase change.

  13. Core science: Stratified by a sunken impactor

    Nakajima, Miki


    There is potential evidence for a stratified layer at the top of the Earth's core, but its origin is not well understood. Laboratory experiments suggest that the stratified layer could be a sunken remnant of the giant impact that formed the Moon.

  14. Dust particle charge distribution in a stratified glow discharge

    Sukhinin, Gennady I [Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Lavrentyev Ave., 1, Novosibirsk 630090 (Russian Federation); Fedoseev, Alexander V [Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Lavrentyev Ave., 1, Novosibirsk 630090 (Russian Federation); Ramazanov, Tlekkabul S [Institute of Experimental and Theoretical Physics, Al Farabi Kazakh National University, Tole Bi, 96a, Almaty 050012 (Kazakhstan); Dzhumagulova, Karlygash N [Institute of Experimental and Theoretical Physics, Al Farabi Kazakh National University, Tole Bi, 96a, Almaty 050012 (Kazakhstan); Amangaliyeva, Rauan Zh [Institute of Experimental and Theoretical Physics, Al Farabi Kazakh National University, Tole Bi, 96a, Almaty 050012 (Kazakhstan)


    The influence of a highly pronounced non-equilibrium characteristic of the electron energy distribution function in a stratified dc glow discharge on the process of dust particle charging in a complex plasma is taken into account for the first time. The calculated particle charge spatial distribution is essentially non-homogeneous and it can explain the vortex motion of particles at the periphery of a dusty cloud obtained in experiments.

  15. A Fixpoint Semantics for Stratified Databases



    Przmusinski extended the notion of stratified logic programs,developed by Apt,Blair and Walker,and by van Gelder,to stratified databases that allow both negative premises and disjunctive consequents.However,he did not provide a fixpoint theory for such class of databases.On the other hand,although a fixpoint semantics has been developed by Minker and Rajasekar for non-Horn logic programs,it is tantamount to traditional minimal model semantics which is not sufficient to capture the intended meaning of negation in the premises of clauses in stratified databases.In this paper,a fixpoint approach to stratified databases is developed,which corresponds with the perfect model semantics.Moreover,algorithms are proposed for computing the set of perfect models of a stratified database.

  16. Migration behavior of supercritical and liquid CO2 in a stratified system: Experiments and numerical simulations

    Oh, Junho; Kim, Kue-Young; Han, Weon Shik; Park, Eungyu; Kim, Jeong-Chan


    Multiple scenarios of upward CO2 migration driven by both injection-induced pressure and buoyancy force were investigated in a horizontally and vertically stratified core utilizing a core-flooding system with a 2-D X-ray scanner. Two reservoir-type scenarios were considered: (1) the terrestrial reservoir scenario (10 MPa and 50°C), where CO2 exists in a supercritical state and (2) the deep-sea sediment reservoir scenario (28 MPa and 25°C), where CO2 is stored in the liquid phase. The core-flooding experiments showed a 36% increase in migration rate in the vertical core setting compared with the horizontal setting, indicating the significance of the buoyancy force under the terrestrial reservoir scenario. Under both reservoir conditions, the injected CO2 tended to find a preferential flow path (low capillary entry pressure and high-permeability (high-k) path) and bypass the unfavorable pathways, leaving low CO2 saturation in the low-permeability (low-k) layers. No distinctive fingering was observed as the CO2 moved upward, and the CO2 movement was primarily controlled by media heterogeneity. The CO2 saturation in the low-k layers exhibited a more sensitive response to injection rates, implying that the increase in CO2 injection rates could be more effective in terms of storage capacity in the low-k layers in a stratified reservoir. Under the deep-sea sediment condition, the storage potential of liquid CO2 was more than twice as high as that of supercritical CO2 under the terrestrial reservoir scenario. In the end, multiphase transport simulations were conducted to assess the effects of heterogeneity on the spatial variation of pressure buildup, CO2 saturation, and CO2 flux. Finally, we showed that a high gravity number (Ngr) tended to be more influenced by the heterogeneity of the porous media.

  17. Modified Limiting Equilibrium Method for Stability Analysis of Stratified Rock Slopes

    Rui Yong


    Full Text Available The stratified rock of Jurassic strata is widely distributed in Three Gorges Reservoir Region. The limit equilibrium method is generally utilized in the stability analysis of rock slope with single failure plane. However, the stratified rock slope cannot be accurately estimated by this method because of different bedding planes and their variable shear strength parameters. Based on the idealized model of rock slope with bedding planes, a modified limiting equilibrium method is presented to determine the potential sliding surface and the factor of safety for the stratified rock slope. In this method, the S-curve model is established to define the spatial variations of the shear strength parameters c and  φ of bedding plane and the tensile strength of rock mass. This method was applied in the stability evaluation of typical stratified rock slope in Three Gorges Reservoir Region, China. The result shows that the factor of safety of the case study is 0.973, the critical sliding surface for the potential slip surface appears at bedding plane C, and the tension-controlled failure occurs at 10.5 m to the slope face.

  18. Stably stratified magnetized stars in general relativity

    Yoshida, Shijun; Shibata, Masaru


    We construct magnetized stars composed of a fluid stably stratified by entropy gradients in the framework of general relativity, assuming ideal magnetohydrodynamics and employing a barotropic equation of state. We first revisit basic equations for describing stably-stratified stationary axisymmetric stars containing both poloidal and toroidal magnetic fields. As sample models, the magnetized stars considered by Ioka and Sasaki (2004), inside which the magnetic fields are confined, are modified to the ones stably stratified. The magnetized stars newly constructed in this study are believed to be more stable than the existing relativistic models because they have both poloidal and toroidal magnetic fields with comparable strength, and magnetic buoyancy instabilities near the surface of the star, which can be stabilized by the stratification, are suppressed.

  19. Thermals in stratified regions of the ISM

    Rodriguez-Gonzalez, Ary


    We present a model of a "thermal" (i.e., a hot bubble) rising within an exponentially stratified region of the ISM. This model includes terms representing the ram pressure braking and the entrainment of environmental gas into the thermal. We then calibrate the free parameters associated with these two terms through a comparison with 3D numerical simulations of a rising bubble. Finally, we apply our "thermal" model to the case of a hot bubble produced by a SN within the stratified ISM of the Galactic disk.

  20. On Stratified Vortex Motions under Gravity.


    AD-A156 930 ON STRATIFIED VORTEX MOTIONS UNDER GRAVITY (U) NAVAL i/i RESEARCH LAB WASHINGTON DC Y T FUNG 20 JUN 85 NRL-MIR-5564 UNCLASSIFIED F/G 20/4...Under Gravity LCn * Y. T. Fung Fluid Dynamics Branch - Marine Technologyv Division June 20, 1985 SO Cyk. NAVAL RESEARCH LABORATORY Washington, D.C...DN880-019 TITLE (Include Security Classification) On Stratified Vortex Motions Under Gravity 12 PERSONAL AUTHOR(S) Funa, Y.T. 13a. TYPE OF REPORT 13b

  1. Mixing by microorganisms in stratified fluids

    Wagner, Gregory L; Lauga, Eric


    We examine the vertical mixing induced by the swimming of microorganisms at low Reynolds and P\\'eclet numbers in a stably stratified ocean, and show that the global contribution of oceanic microswimmers to vertical mixing is negligible. We propose two approaches to estimating the mixing efficiency, $\\eta$, or the ratio of the rate of potential energy creation to the total rate-of-working on the ocean by microswimmers. The first is based on scaling arguments and estimates $\\eta$ in terms of the ratio between the typical organism size, $a$, and an intrinsic length scale for the stratified flow, $\\ell = \\left ( \


    A. Rodríguez-González


    Full Text Available We present a model of a “thermal” (i.e., a hot bubble rising within an exponentially stratified region of the ISM. This model includes terms representing the ram pressure braking and the entrainment of environmental gas into the thermal. We then calibrate the free parameters associated with these two terms through a comparison with 3D numerical simulations of a rising bubble. Finally, we apply our “thermal” model to the case of a hot bubble produced by a SN within the stratified ISM of the Galactic disk.

  3. Optimizing water treatment practices for the removal of actinomycetes and earthy odor in water of Bovilla reservoir



    Bovilla reservoir, which is situated 15 km North-East of Tirana the capital city of Albania is one of the major hidrotechnical works of this country. This reservoir is a warm monomictic water body and stratifies higher in the summer season. The predominant trophic state of Bovilla reservoir is oligotrophy. From autumn 2001 this reservoir repeatedly manifests an unpleasant taste and odor which is defined as musty- earthy. Taste and odor control has become an important issue for drinking water ...

  4. Turbulent Mixing in Stably Stratified Flows


    Liege Colloquium on Ocean Hydrodynamics, volume 46, page 19889898. Elsevier, 1987. R. M. Kerr. Higher-order derivative correlations and the alignment of...19th International Liege Colloquium on Ocean Hydrodynamics, volume 46, pages 3-9. Elsevier, 1988. P. Meunier and G. Spedding. Stratified propelled

  5. Nitrogen transformations in stratified aquatic microbial ecosystems

    Revsbech, Niels Peter; Risgaard-Petersen, N.; Schramm, Andreas


    Abstract  New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about n...

  6. Isotopic composition of nitrate and particulate organic matter in a pristine dam reservoir of western India: Implications for biogeochemical processes

    Bardhan, P.; Naqvi, S.W.A.; Karapurkar, S.G.; Shenoy, D.M.; Kurian, S.; Naik, H.

    , Maharashtra, western India. The reservoir, which is stratified during spring-summer and autumn seasons but gets vertically mixed during the southwest monsoon (SWM) and winter, is characterized by diverse redox nitrogen transformations in space and time...

  7. Drainage in a model stratified porous medium

    Datta, Sujit S; 10.1209/0295-5075/101/14002


    We show that when a non-wetting fluid drains a stratified porous medium at sufficiently small capillary numbers Ca, it flows only through the coarsest stratum of the medium; by contrast, above a threshold Ca, the non-wetting fluid is also forced laterally, into part of the adjacent, finer strata. The spatial extent of this partial invasion increases with Ca. We quantitatively understand this behavior by balancing the stratum-scale viscous pressure driving the flow with the capillary pressure required to invade individual pores. Because geological formations are frequently stratified, we anticipate that our results will be relevant to a number of important applications, including understanding oil migration, preventing groundwater contamination, and sub-surface CO$_{2}$ storage.

  8. Stably Stratified Flow in a Shallow Valley

    Mahrt, L.


    Stratified nocturnal flow above and within a small valley of approximately 12-m depth and a few hundred metres width is examined as a case study, based on a network of 20 sonic anemometers and a central 20-m tower with eight levels of sonic anemometers. Several regimes of stratified flow over gentle topography are conceptually defined for organizing the data analysis and comparing with the existing literature. In our case study, a marginal cold pool forms within the shallow valley in the early evening but yields to larger ambient wind speeds after a few hours, corresponding to stratified terrain-following flow where the flow outside the valley descends to the valley floor. The terrain-following flow lasts about 10 h and then undergoes transition to an intermittent marginal cold pool towards the end of the night when the larger-scale flow collapses. During this 10-h period, the stratified terrain-following flow is characterized by a three-layer structure, consisting of a thin surface boundary layer of a few metres depth on the valley floor, a deeper boundary layer corresponding to the larger-scale flow, and an intermediate transition layer with significant wind-directional shear and possible advection of lee turbulence that is generated even for the gentle topography of our study. The flow in the valley is often modulated by oscillations with a typical period of 10 min. Cold events with smaller turbulent intensity and duration of tens of minutes move through the observational domain throughout the terrain-following period. One of these events is examined in detail.

  9. Multi Dimensional CTL and Stratified Datalog

    Theodore Andronikos


    Full Text Available In this work we define Multi Dimensional CTL (MD-CTL in short by extending CTL which is thedominant temporal specification language in practice. The need for Multi Dimensional CTL is mainlydue to the advent of semi-structured data. The common path nature of CTL and XPath which provides asuitable model for semi-structured data, has caused the emergence of work on specifying a relation amongthem aiming at exploiting the nice properties of CTL. Although the advantages of such an approach havealready been noticed [36, 26, 5], no formal definition of MD-CTL has been given. The goal of this workis twofold; a we define MD-CTL and prove that the “nice” properties of CTL (linear model checking andbounded model property transfer also to MD-CTL, b we establish new results on stratified Datalog. Inparticular, we define a fragment of stratified Datalog called Multi Branching Temporal (MBT in shortprograms that has the same expressive power as MD-CTL. We prove that by devising a linear translationbetween MBT and MD-CTL. We actually give the exact translation rules for both directions. We furtherbuild on this relation to prove that query evaluation is linear and checking satisfiability, containment andequivalence are EXPTIME–complete for MBT programs. The class MBT is the largest fragment of stratifiedDatalog for which such results exist in the literature.

  10. Reservoir geochemistry. A reservoir engineering perspective

    England, W.A. [BP Exploration, Chertsey Road, Sunbury-on-Thames, Middlesex, TW16 7LN (United Kingdom)


    This paper reviews the applications of reservoir geochemistry from a reservoir engineering point of view. Some of the main tasks of reservoir engineering are discussed with an emphasis on the importance of appraising reservoirs in the pre-development stage. A brief review of the principal methods and applications of reservoir geochemistry are given, in the context of applications to reservoir engineering problems. The importance of compositional differences in fluid samples from different depths or spatial locations is discussed in connection with the identification of internal flow barriers. The importance of understanding the magnitude and origin of vertical compositional gradients is emphasised because of possible confusion with purely lateral changes. The geochemical origin and rate of dissipation of compositional differences over geological time is discussed. Geochemical techniques suitable for bulk petroleum fluid samples include GC fingerprinting, GCMS, isotopic and PVT measurements. Core sample petroleum extracts may also be studied by standard geochemical methods but with the added complication of possible contamination by drilling mud. Aqueous phase residual salt extracts can be studied by strontium isotope analysis from core samples. Petroleum fluid inclusions allow the possibility of establishing the composition of paleo-accumulations. The problems in predicting flow barriers from geochemical measurements are discussed in terms of 'false positives' and 'false negatives'. Suggestions are made for areas that need further development in order to encourage the wider acceptance and application of reservoir geochemistry by the reservoir engineering community. The importance of integrating all available data is emphasised. Reservoir geochemistry may be applied to a range of practical engineering problems including production allocation, reservoir compartmentalisation, and the prediction of gravitational gradients. In this review

  11. Large reservoirs: Chapter 17

    Miranda, Leandro E.; Bettoli, Phillip William


    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  12. Improved reservoir exploitation

    Thomassen, P.R. [IKU Petroleumsforskning A/S, Trondheim (Norway)


    This paper deals with reservoir exploitation and it highlights some ideas on how to improve exploitive skills to optimise the recovery of a field. The author looks closer at what needs to be done to optimise the reservoir data and the exploitation tools, and what are the needs of the reservoir production management. 2 refs., 3 figs.

  13. The fully nonlinear stratified geostrophic adjustment problem

    Coutino, Aaron; Stastna, Marek


    The study of the adjustment to equilibrium by a stratified fluid in a rotating reference frame is a classical problem in geophysical fluid dynamics. We consider the fully nonlinear, stratified adjustment problem from a numerical point of view. We present results of smoothed dam break simulations based on experiments in the published literature, with a focus on both the wave trains that propagate away from the nascent geostrophic state and the geostrophic state itself. We demonstrate that for Rossby numbers in excess of roughly 2 the wave train cannot be interpreted in terms of linear theory. This wave train consists of a leading solitary-like packet and a trailing tail of dispersive waves. However, it is found that the leading wave packet never completely separates from the trailing tail. Somewhat surprisingly, the inertial oscillations associated with the geostrophic state exhibit evidence of nonlinearity even when the Rossby number falls below 1. We vary the width of the initial disturbance and the rotation rate so as to keep the Rossby number fixed, and find that while the qualitative response remains consistent, the Froude number varies, and these variations are manifested in the form of the emanating wave train. For wider initial disturbances we find clear evidence of a wave train that initially propagates toward the near wall, reflects, and propagates away from the geostrophic state behind the leading wave train. We compare kinetic energy inside and outside of the geostrophic state, finding that for long times a Rossby number of around one-quarter yields an equal split between the two, with lower (higher) Rossby numbers yielding more energy in the geostrophic state (wave train). Finally we compare the energetics of the geostrophic state as the Rossby number varies, finding long-lived inertial oscillations in the majority of the cases and a general agreement with the past literature that employed either hydrostatic, shallow-water equation-based theory or

  14. Inverse scattering of dispersive stratified structures

    Skaar, Johannes


    We consider the inverse scattering problem of retrieving the structural parameters of a stratified medium consisting of dispersive materials, given knowledge of the complex reflection coefficient in a finite frequency range. It is shown that the inverse scattering problem does not have a unique solution in general. When the dispersion is sufficiently small, such that the time-domain Fresnel reflections have durations less than the round-trip time in the layers, the solution is unique and can be found by layer peeling. Numerical examples with dispersive and lossy media are given, demonstrating the usefulness of the method for e.g. THz technology.

  15. Topological Structures in Rotating Stratified Flows

    Redondo, J. M.; Carrillo, A.; Perez, E.


    Detailled 2D Particle traking and PIV visualizations performed on a series of large scale laboratory experiments at the Coriolis Platform of the SINTEF in Trondheim have revealed several resonances which scale on the Strouhal, the Rossby and the Richardson numbers. More than 100 experiments spanned a wide range of Rossby Deformation Radii and the topological structures (Parabolic /Eliptic /Hyperbolic) of the quasi-balanced stratified-rotating flows were studied when stirring (akin to coastal mixing) occured at a side of the tank. The strong asymetry favored by the total vorticity produces a wealth of mixing patterns.

  16. Status of Wheeler Reservoir


    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  17. Status of Cherokee Reservoir


    This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

  18. Status of Cherokee Reservoir


    This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

  19. Inertial modes of non-stratified superfluid neutron stars

    Prix, R; Andersson, N


    We present results concerning adiabatic inertial-mode oscillations of non-stratified superfluid neutron stars in Newtonian gravity, using the anelastic and slow-rotation approximations. We consider a simple two-fluid model of a superfluid neutron star, where one fluid consists of the superfluid neutrons and the second fluid contains all the comoving constituents (protons, electrons). The two fluids are assumed to be ``free'' in the sense that vortex-mediated forces like mutual friction or pinning are absent, but they can be coupled by the equation of state, in particular by entrainment. The stationary background consists of the two fluids rotating uniformly around the same axis with potentially different rotation rates. We study the special cases of co-rotating backgrounds, vanishing entrainment, and the purely toroidal r-modes, analytically. We calculate numerically the eigenfunctions and frequencies of inertial modes in the general case of non co-rotating backgrounds, and study their dependence on the relat...

  20. Monitoring and evaluation of aquatic resource health and use suitability in Tennessee Valley Authority reservoirs

    Dycus, D.L.; Meinert, D.L.


    TVA initiated a Reservoir Monitoring Program in 1990 with two objectives -- to evaluate the health of the reservoir ecosystem and to examine how well each reservoir meets the swimmable and fishable goals of the Clean Water Act. In 1990 reservoir health was evaluated subjectively using a weight-of-evidence approach (a reservoir was deemed healthy if most of the physical, chemical, and biological monitoring components appeared healthy). In the second year (1991) a more objective, quantitative approach was developed using information on five important indicators of reservoir health -- dissolved oxygen, chlorophyll, sediment quality, benthic macroinvertebrates, and fishes. The most recent information (1992) was evaluated with the same basic approach, modified to incorporate improvements based on comments from reviewers and additional data. Reservoirs were stratified into two groups for evaluation: run-of-the-river reservoirs and tributary storage reservoirs. Key locations are sampled in each reservoir (forebay, transition zone or midreservoir, inflow, and major embayments) for most or all of these five reservoir health indicators. For each indicator (or metric), scoring criteria have been developed that assign a score ranging from 1 to 5 representing poor to good conditions, respectively. Scores for the metrics at a location are summed and then the sums for all locations are totaled. Each reservoir has one to four sample locations depending on reservoir characteristics. The resultant total is divided by the maximum possible score (all metrics good at all locations) for the reservoir. Thus, the possible range of scores is from 20 percent (all metrics poor) to 100 percent (all metrics good). This reservoir ecological health evaluation method is proving to be a valuable tool for providing the public with information about the condition of the Valley`s reservoirs, for allowing meaningful comparisons among reservoirs, and for tracking changes in reservoir health with time.

  1. Well test analysis for wells producing layered reservoirs with crossflow

    Prijambodo, R.; Raghavan, R.; Reynolds, A.C.


    The pressure response of a well producing a two-layer reservoir with crossflow is examined. It is shown that the flowing pressure response of a well at early times can be divided into three flow periods. The first period is one in which the reservoir behaves as if it were a stratified system (no-crossflow). This period is followed by a transitional period. During the third period, the reservoir can be described by an equivalent single-layer system. The influence of the skin regions is presented. The significance of the estimate of the skin factor obtained from a pressure test is discussed. It is shown that the nature and magnitude of the skin regions and the size of the reservoir determine the applicability of procedures that are based on single-layer systems. 17 refs.

  2. Observational and Numerical Methods for Quantifying and Modeling of Turbulence in a Stratified Reservoir

    Sebnem Elci; Huseyin Burak Ekmekçi


    .... A 3D numerical model is used to investigate the water column hydrodynamics for the duration of measurements and the performance of various turbulence models used in the CFD model are investigated via...

  3. Stratified growth in Pseudomonas aeruginosa biofilms

    Werner, E.; Roe, F.; Bugnicourt, A.;


    In this study, stratified patterns of protein synthesis and growth were demonstrated in Pseudomonas aeruginosa biofilms. Spatial patterns of protein synthetic activity inside biofilms were characterized by the use of two green fluorescent protein (GFP) reporter gene constructs. One construct...... carried an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible gfpmut2 gene encoding a stable GFP. The second construct carried a GFP derivative, gfp-AGA, encoding an unstable GFP under the control of the growth-rate-dependent rrnBp(1) promoter. Both GFP reporters indicated that active protein...... of oxygen limitation in the biofilm. Oxygen microelectrode measurements showed that oxygen only penetrated approximately 50 mum into the biofilm. P. aeruginosa was incapable of anaerobic growth in the medium used for this investigation. These results show that while mature P. aeruginosa biofilms contain...

  4. Bayesian Stratified Sampling to Assess Corpus Utility

    Hochberg, J; Thomas, T; Hall, S; Hochberg, Judith; Scovel, Clint; Thomas, Timothy; Hall, Sam


    This paper describes a method for asking statistical questions about a large text corpus. We exemplify the method by addressing the question, "What percentage of Federal Register documents are real documents, of possible interest to a text researcher or analyst?" We estimate an answer to this question by evaluating 200 documents selected from a corpus of 45,820 Federal Register documents. Stratified sampling is used to reduce the sampling uncertainty of the estimate from over 3100 documents to fewer than 1000. The stratification is based on observed characteristics of real documents, while the sampling procedure incorporates a Bayesian version of Neyman allocation. A possible application of the method is to establish baseline statistics used to estimate recall rates for information retrieval systems.

  5. Clustering of floating particles in stratified turbulence

    Boffetta, Guido; de Lillo, Filippo; Musacchio, Stefano; Sozza, Alessandro


    We study the dynamics of small floating particles transported by stratified turbulence in presence of a mean linear density profile as a simple model for the confinement and the accumulation of plankton in the ocean. By means of extensive direct numerical simulations we investigate the statistical distribution of floaters as a function of the two dimensionless parameters of the problem. We find that vertical confinement of particles is mainly ruled by the degree of stratification, with a weak dependency on the particle properties. Conversely, small scale fractal clustering, typical of non-neutral particles in turbulence, depends on the particle relaxation time and is only weakly dependent on the flow stratification. The implications of our findings for the formation of thin phytoplankton layers are discussed.

  6. On turbulence in a stratified environment

    Sarkar, Sutanu


    John Lumley, motivated by atmospheric observations, made seminal contributions to the statistical theory (Lumley and Panofsky 1964, Lumley 1964) and second-order modeling (Zeman and Lumley 1976) of turbulence in the environment. Turbulent processes in the ocean share many features with the atmosphere, e.g., shear, stratification, rotation and rough topography. Results from direct and large eddy simulations of two model problems will be used to illustrate some of the features of turbulence in a stratified environment. The first problem concerns a shear layer in nonuniform stratification, a situation typical of both the atmosphere and the ocean. The second problem, considered to be responsible for much of the turbulent mixing that occurs in the ocean interior, concerns topographically generated internal gravity waves. Connections will be made to data taken during observational campaigns in the ocean.

  7. Stratified scaffold design for engineering composite tissues.

    Mosher, Christopher Z; Spalazzi, Jeffrey P; Lu, Helen H


    A significant challenge to orthopaedic soft tissue repair is the biological fixation of autologous or allogeneic grafts with bone, whereby the lack of functional integration between such grafts and host bone has limited the clinical success of anterior cruciate ligament (ACL) and other common soft tissue-based reconstructive grafts. The inability of current surgical reconstruction to restore the native fibrocartilaginous insertion between the ACL and the femur or tibia, which minimizes stress concentration and facilitates load transfer between the soft and hard tissues, compromises the long-term clinical functionality of these grafts. To enable integration, a stratified scaffold design that mimics the multiple tissue regions of the ACL interface (ligament-fibrocartilage-bone) represents a promising strategy for composite tissue formation. Moreover, distinct cellular organization and phase-specific matrix heterogeneity achieved through co- or tri-culture within the scaffold system can promote biomimetic multi-tissue regeneration. Here, we describe the methods for fabricating a tri-phasic scaffold intended for ligament-bone integration, as well as the tri-culture of fibroblasts, chondrocytes, and osteoblasts on the stratified scaffold for the formation of structurally contiguous and compositionally distinct regions of ligament, fibrocartilage and bone. The primary advantage of the tri-phasic scaffold is the recapitulation of the multi-tissue organization across the native interface through the layered design. Moreover, in addition to ease of fabrication, each scaffold phase is similar in polymer composition and therefore can be joined together by sintering, enabling the seamless integration of each region and avoiding delamination between scaffold layers.

  8. Stratified sampling design based on data mining.

    Kim, Yeonkook J; Oh, Yoonhwan; Park, Sunghoon; Cho, Sungzoon; Park, Hayoung


    To explore classification rules based on data mining methodologies which are to be used in defining strata in stratified sampling of healthcare providers with improved sampling efficiency. We performed k-means clustering to group providers with similar characteristics, then, constructed decision trees on cluster labels to generate stratification rules. We assessed the variance explained by the stratification proposed in this study and by conventional stratification to evaluate the performance of the sampling design. We constructed a study database from health insurance claims data and providers' profile data made available to this study by the Health Insurance Review and Assessment Service of South Korea, and population data from Statistics Korea. From our database, we used the data for single specialty clinics or hospitals in two specialties, general surgery and ophthalmology, for the year 2011 in this study. Data mining resulted in five strata in general surgery with two stratification variables, the number of inpatients per specialist and population density of provider location, and five strata in ophthalmology with two stratification variables, the number of inpatients per specialist and number of beds. The percentages of variance in annual changes in the productivity of specialists explained by the stratification in general surgery and ophthalmology were 22% and 8%, respectively, whereas conventional stratification by the type of provider location and number of beds explained 2% and 0.2% of variance, respectively. This study demonstrated that data mining methods can be used in designing efficient stratified sampling with variables readily available to the insurer and government; it offers an alternative to the existing stratification method that is widely used in healthcare provider surveys in South Korea.

  9. Information content of household-stratified epidemics

    T.M. Kinyanjui


    Full Text Available Household structure is a key driver of many infectious diseases, as well as a natural target for interventions such as vaccination programs. Many theoretical and conceptual advances on household-stratified epidemic models are relatively recent, but have successfully managed to increase the applicability of such models to practical problems. To be of maximum realism and hence benefit, they require parameterisation from epidemiological data, and while household-stratified final size data has been the traditional source, increasingly time-series infection data from households are becoming available. This paper is concerned with the design of studies aimed at collecting time-series epidemic data in order to maximize the amount of information available to calibrate household models. A design decision involves a trade-off between the number of households to enrol and the sampling frequency. Two commonly used epidemiological study designs are considered: cross-sectional, where different households are sampled at every time point, and cohort, where the same households are followed over the course of the study period. The search for an optimal design uses Bayesian computationally intensive methods to explore the joint parameter-design space combined with the Shannon entropy of the posteriors to estimate the amount of information in each design. For the cross-sectional design, the amount of information increases with the sampling intensity, i.e., the designs with the highest number of time points have the most information. On the other hand, the cohort design often exhibits a trade-off between the number of households sampled and the intensity of follow-up. Our results broadly support the choices made in existing epidemiological data collection studies. Prospective problem-specific use of our computational methods can bring significant benefits in guiding future study designs.

  10. Transport of reservoir fines

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...... dispersion equation in modeling the transport and the deposition of reservoir fines. It successfully predicts the unsymmetrical concentration profiles and the hyperexponential deposition in experiments....

  11. Integrated reservoir interpretation

    Caamano, Ed; Dickerman, Ken; Thornton, Mick (Conoco Indonesia Inc., Jakarta (Indonesia)); Corbett, Chip; Douglas, David; Schultz, Phil (GeoQuest, Houston, TX (United States)); Gir, Roopa; Nicholson, Barry (GeoQuest, Jakarta (Indonesia)); Martono, Dwi; Padmono, Joko; Novias; Kiagus; Suroso, Sigit (Pertamina Sumbagut, Brandan, North Sumatra (Indonesia)); Mathieu, Gilles (Etudes et Productions Schlumberger, Clamart (France)); Yan, Zhao (China National Petroleum Company, Beijing (China))


    Improved reservoir management often relies on linking a variety of application software that helps geoscientists handle, visualize and interpret massive amounts of diverse data. The goal is to obtain the best possible reservoir model so its behavior can be understood and optimized. But diverse application software creates specialty niches and discourages integrated interpretation. A description is given of a new reservoir management package that covers all required functionalities and encourages the geologist, geophysicist, petrophysicist and reservoir engineer to embrace the integrated approach. Case studies are included in the article. 21 figs., 13 refs.

  12. strong water sensitivity; heavy oil reservoir; thermal recovery; thermal compound chemical flooding; electron microscope analysisA study on a thermal compound chemical method for improving development efficiency of heavy-oil reservoirs with strong sensiti%热复合化学方法改善极强敏感性稠油油藏开发效果机理

    曹嫣镔; 于田田; 林吉生; 刘冬青; 何绍群; 王全; 夏道宏


    Heavy-oil reservoirs with extremely strong water sensitivity in the Shengli oilfield are mainly distributed in the Jinjia oilfield and their reserves amount to more than 20 million tons. In addition, the thermal recovery effect only by steam injection seems poor and it is difficult to effectively produce these reserves because the water sensitivity index for this kind of reservoirs exceeds 0. 9. In view of the above contradiction, a thermal compound chemical method research was carried out, in which real cores from the Jinjia oilfield were used to evaluate different displacement manners based on thermal compound chemical flooding, such as the vapor + high-temperature antiswelling agent, steam + high-performance oil displacement agent, and steam + high-performance oil displacement a-gent + high-temperature condensation agent. Composition changes of clay minerals, clay distributions in pore throats and radius distributions of pore throats were measured by means of X diffraction, scanning electron microscope, cast thin section and mercury-injection in order to explore principle mechanisms of the enhanced oil recovery with the thermal compound chemical method under high-temperature conditions. The results showed that the thermal compound chemical displacement manner with the steam + high-temperature oil displacement agent + high-temperature condensation agent can promote the transformation of montmorillonite to illite and the dissolution of part kaolinite at the same time, which can greatly improve pore-throat flow channels of reservoirs to form large "hot-wormholes" that remarkably increase the permeability and flooding displacement efficiency of heavy-oil reservoirs with strong water sensitivity.%胜利油田极强水敏性稠油油藏主要分布在金家油田,储量在2 000×104 t以上,该类油藏水敏指数在0.9以上,单纯注蒸汽热采开发效果差,无法实现有效动用.笔者针对以上矛盾,开展了热复合化学方法开采技术研究.利用

  13. Reservoir Engineering Management Program

    Howard, J.H.; Schwarz, W.J.


    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  14. Dynamic reservoir well interaction

    Sturm, W.L.; Belfroid, S.P.C.; Wolfswinkel, O. van; Peters, M.C.A.M.; Verhelst, F.J.P.C.M.


    In order to develop smart well control systems for unstable oil wells, realistic modeling of the dynamics of the well is essential. Most dynamic well models use a semi-steady state inflow model to describe the inflow of oil and gas from the reservoir. On the other hand, reservoir models use steady s

  15. Magnetic flux concentrations from turbulent stratified convection

    Käpylä, P J; Kleeorin, N; Käpylä, M J; Rogachevskii, I


    (abridged) Context: The mechanisms that cause the formation of sunspots are still unclear. Aims: We study the self-organisation of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection. Methods: We perform simulations of magnetoconvection in Cartesian domains that are $8.5$-$24$ Mm deep and $34$-$96$ Mm wide. We impose either a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow. Results: We find that super-equipartition magnetic flux concentrations are formed near the surface with domain depths of $12.5$ and $24$ Mm. The size of the concentrations increases as the box size increases and the largest structures ($20$ Mm horizontally) are obtained in the 24 Mm deep models. The field strength in the concentrations is in the range of $3$-$5$ kG. The concentrations grow approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near the surface and negative in the bulk of the convection zone. Its ...

  16. Geothermal reservoir engineering research

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.


    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  17. Modeling vapor dominated geothermal reservoirs

    Marconcini, R.; McEdwards, D.; Neri, G.; Ruffilli, C.; Schroeder, R.; Weres, O.; Witherspoon, P.


    The unresolved questions with regard to vapor-dominated reservoir production and longevity are reviewed. The simulation of reservoir behavior and the LBL computer program are discussed. The geology of Serrazzano geothermal field and its reservoir simulation are described. (MHR)

  18. Three dimensional heat transport modeling in Vossoroca reservoir

    Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias


    Freshwater reservoirs are used for many purposes as hydropower generation, water supply and irrigation. In Brazil, according to the National Energy Balance of 2013, hydropower energy corresponds to 70.1% of the Brazilian demand. Superficial waters (which include rivers, lakes and reservoirs) are the most used source for drinking water supply - 56% of the municipalities use superficial waters as a source of water. The last two years have shown that the Brazilian water and electricity supply is highly vulnerable and that improved management is urgently needed. The construction of reservoirs affects physical, chemical and biological characteristics of the water body, e.g. stratification, temperature, residence time and turbulence reduction. Some water quality issues related to reservoirs are eutrophication, greenhouse gas emission to the atmosphere and dissolved oxygen depletion in the hypolimnion. The understanding of the physical processes in the water body is fundamental to reservoir management. Lakes and reservoirs may present a seasonal behavior and stratify due to hydrological and meteorological conditions, and especially its vertical distribution may be related to water quality. Stratification can control heat and dissolved substances transport. It has been also reported the importance of horizontal temperature gradients, e.g. inflows and its density and processes of mass transfer from shallow to deeper regions of the reservoir, that also may impact water quality. Three dimensional modeling of the heat transport in lakes and reservoirs is an important tool to the understanding and management of these systems. It is possible to estimate periods of large vertical temperature gradients, inhibiting vertical transport and horizontal gradients, which could be responsible for horizontal transport of heat and substances (e.g. differential cooling or inflows). Vossoroca reservoir was constructed in 1949 by the impoundment of São João River and is located near to


    Scott A. Socolofsky; Brian C. Crounse; E. Eric Adams


    Two-phase plumes play an important role in the more practical scenarios for ocean sequestration of CO{sub 2}--i.e. dispersing CO{sub 2} as a buoyant liquid from either a bottom-mounted or ship-towed pipeline. Despite much research on related applications, such as for reservoir destratification using bubble plumes, our understanding of these flows is incomplete, especially concerning the phenomenon of plume peeling in a stratified ambient. To address this deficiency, we have built a laboratory facility in which we can make fundamental measurements of plume behavior. Although we are using air, oil and sediments as our sources of buoyancy (rather than CO{sub 2}), by using models, our results can be directly applied to field scale CO{sub 2} releases to help us design better CO{sub 2} injection systems, as well as plan and interpret the results of our up-coming international field experiment. The experimental facility designed to study two-phase plume behavior similar to that of an ocean CO{sub 2} release includes the following components: 1.22 x 1.22 x 2.44 m tall glass walled tank; Tanks and piping for the two-tank stratification method for producing step- and linearly-stratified ambient conditions; Density profiling system using a conductivity and temperature probe mounted to an automated depth profiler; Lighting systems, including a virtual point source light for shadowgraphs and a 6 W argon-ion laser for laser induced fluorescence (LIF) imaging; Imaging system, including a digital, progressive scanning CCD camera, computerized framegrabber, and image acquisition and analysis software; Buoyancy source diffusers having four different air diffusers, two oil diffusers, and a planned sediment diffuser; Dye injection method using a Mariotte bottle and a collar diffuser; and Systems integration software using the Labview graphical programming language and Windows NT. In comparison with previously reported experiments, this system allows us to extend the parameter range of

  20. Stratified spaces constitute a Fra\\"iss\\'e category

    Mijares, José Gregorio


    We prove that stratified spaces and stratified pseudomanifolds satisfy categorical Fra\\"{\\i}ss\\'e properties. This result was presented for the First Meeting of Logic and Algebra in Bogot\\'a, on Sept. 2010. This article has been submitted to the Revista Colombiana de Matem\\'aticas.

  1. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Kelkar, M.


    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  2. Gas slug ascent through rheologically stratified conduits

    Capponi, Antonio; James, Mike R.; Lane, Steve J.


    Textural and petrological evidence has indicated the presence of viscous, degassed magma layers at the top of the conduit at Stromboli. This layer acts as a plug through which gas slugs burst and it is thought to have a role in controlling the eruptive dynamics. Here, we present the results of laboratory experiments which detail the range of slug flow configurations that can develop in a rheologically stratified conduit. A gas slug can burst (1) after being fully accommodated within the plug volume, (2) whilst its base is still in the underlying low-viscosity liquid or (3) within a low-viscosity layer dynamically emplaced above the plug during the slug ascent. We illustrate the relevance of the same flow configurations at volcanic-scale through a new experimentally-validated 1D model and 3D computational fluid dynamic simulations. Applied to Stromboli, our results show that gas volume, plug thickness, plug viscosity and conduit radius control the transition between each configuration; in contrast, the configuration distribution seems insensitive to the viscosity of magma beneath the plug, which acts mainly to deliver the slug into the plug. Each identified flow configuration encompasses a variety of processes including dynamic narrowing and widening of the conduit, generation of instabilities along the falling liquid film, transient blockages of the slug path and slug break-up. All these complexities, in turn, lead to variations in the slug overpressure, mirrored by changes in infrasonic signatures which are also associated to different eruptive styles. Acoustic amplitudes are strongly dependent on the flow configuration in which the slugs burst, with both acoustic peak amplitudes and waveform shapes reflecting different burst dynamics. When compared to infrasonic signals from Stromboli, the similarity between real signals and laboratory waveforms suggests that the burst of a slug through a plug may represent a viable first-order mechanism for the generation of

  3. Methane metabolism in a stratified boreal lake

    Nykänen, Hannu; Peura, Sari; Kankaala, Paula; Jones, Roger


    Stratified lakes, typical of the boreal zone, are naturally anoxic from their bottoms. In these lakes methanogenesis can account for up to half of organic matter degradation. However, a major part of the methane (CH4) is oxidized in the water column before reaching the atmosphere. Since methanotrophs use CH4 as their sole carbon and energy source, much CH4-derived carbon is incorporated into their biomass. Microbially produced CH4 has strongly negative δ13C compared to other carbon forms in ecosystems, making it possible to follow its route in food webs. However, only a few studies have estimated the amount of this microbial biomass or its carbon stable isotopic composition due to difficulties in separating it from other biomass or from other carbon forms in the water column. We estimated methanotrophic biomass from measured CH4 oxidation, and δ13C of the biomass from measured δ13C values of CH4, DIC, POM and DOC. An estimate of the fraction of methanotrophs in total microbial biomass is derived from bacterial community composition measurements. The study was made in, Alinen Mustajärvi, a small (area 0.75 ha, maximum depth 6.5 m, mean depth 4.2 m,), oligotrophic, mesohumic headwater lake located in boreal coniferous forest in southern Finland. CH4 and DIC concentrations and their δ13C were measured over the deepest point of the lake at 1 m intervals. 13C of DOM and POM were analyzed from composite samples from epi-, meta-, and hypolimnion. Evasion of CH4 and carbon dioxide from the lake surface to the atmosphere was estimated with boundary layer diffusion equations. CH4oxidation was estimated by comparing differences between observed concentrations and CH4potentially transported by turbulent diffusion between different vertical layers in the lake and also by actual methanotrophy measurements and from vertical differences in δ13C-CH4. The estimate of CH4 production was based on the sum of oxidized and released CH4. Molecular microbiology methods were used to

  4. Stratifying the Risk of Venous Thromboembolism in Otolaryngology

    Shuman, Andrew G.; Hu, Hsou Mei; Pannucci, Christopher J.; Jackson, Christopher R.; Bradford, Carol R.; Bahl, Vinita


    Objective The consequences of perioperative venous thromboembolism (VTE) are devastating; identifying patients at risk is an essential step in reducing morbidity and mortality. The utility of perioperative VTE risk assessment in otolaryngology is unknown. This study was designed to risk-stratify a diverse population of otolaryngology patients for VTE events. Study Design Retrospective cohort study. Setting Single-institution academic tertiary care medical center. Subjects and Methods Adult patients presenting for otolaryngologic surgery requiring hospital admission from 2003 to 2010 who did not receive VTE chemoprophylaxis were included. The Caprini risk assessment was retrospectively scored via a validated method of electronic chart abstraction. Primary study variables were Caprini risk scores and the incidence of perioperative venous thromboembolic outcomes. Results A total of 2016 patients were identified. The overall 30-day rate of VTE was 1.3%. The incidence of VTE in patients with a Caprini risk score of 6 or less was 0.5%. For patients with scores of 7 or 8, the incidence was 2.4%. Patients with a Caprini risk score greater than 8 had an 18.3% incidence of VTE and were significantly more likely to develop a VTE when compared to patients with a Caprini risk score less than 8 (P otolaryngology patients for 30-day VTE events and allows otolaryngologists to identify patient subgroups who have a higher risk of VTE in the absence of chemoprophylaxis. PMID:22261490

  5. The Universal Aspect Ratio of Vortices in Rotating Stratifi?ed Flows: Experiments and Observations

    Aubert, Oriane; Gal, Patrice Le; Marcus, Philip S


    We validate a new law for the aspect ratio $\\alpha = H/L$ of vortices in a rotating, stratified flow, where $H$ and $L$ are the vertical half-height and horizontal length scale of the vortices. The aspect ratio depends not only on the Coriolis parameter f and buoyancy (or Brunt-Vaisala) frequency $\\bar{N}$ of the background flow, but also on the buoyancy frequency $N_c$ within the vortex and on the Rossby number $Ro$ of the vortex such that $\\alpha = f \\sqrt{[Ro (1 + Ro)/(N_c^2- \\bar{N}^2)]}$. This law for $\\alpha$ is obeyed precisely by the exact equilibrium solution of the inviscid Boussinesq equations that we show to be a useful model of our laboratory vortices. The law is valid for both cyclones and anticyclones. Our anticyclones are generated by injecting fluid into a rotating tank filled with linearly-stratified salt water. The vortices are far from the top and bottom boundaries of the tank, so there is no Ekman circulation. In one set of experiments, the vortices viscously decay, but as they do, they c...

  6. All-optical reservoir computer based on saturation of absorption.

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge


    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  7. Reservoir-forming age and its exploration significance to stratigraphic reservoirs in southern Songliao Basin


    Despite many studies concerning the forming age, evolution characteristics and the age of petroleum charging in the Fuxin upheaval of southern Songliao Basin, no consensus has been reached so far. This paper presents the first K-Ar dating of autogenetic illite from stratigraphic petroleum reservoirs in the Fuyu oil layer of the Fuxin upheaval belt. Isotopic test and age calculation were carried out based on the separation and purification of illite mineral, X-diffraction analysis and the detection of scanning electron microscopy. The evolution characteristics of structure, sedimentation, reservoir-forming about the Fuxin upheaval belt were interpreted in terms of the synthetical analysis of "six-type geological history" evolution in southern Songliao Basin. The geologic background of petroleum evolution and reservoir formation are similar in the entire central depression region of southern Songliao Basin. The Changling sag and the Fuxin upheaval belt brought about obvious upheaval-sag separation after the hydrocarbon-generation peak of K2qn1 and the main reservoir-forming period of the Fuyu oil layer, namely reservoir-forming happened before the Fuxin upheaval belt extensively raised. The reservoirs have three characteristics: the hydrocarbon source rock above the reservoir, the oil source in the locality, and the vertical migration. The geological cognition is corrected, that is, oil source came from the Changling sag and migrated from the side direction. The bulk process of petroleum charging in the stratigraphic hydrocarbon reservoirs in the Fuxin upheaval belt of southern Songliao Basin is determined according to the isotopic age of autogenetic illite in combination with the method of fluid inclusions. The cognition is helpful to exactly evaluate the resource potential and exploration direction in the Fuxin upheaval belt, Changling sag and their peripheral areas. The present results indicate that the combination of the two methods (the K-Ar dating of

  8. Photoelectrocatalytic degradation of phthalic acid using spray deposited stratified WO3/ZnO thin films under sunlight illumination

    Hunge, Y. M.; Mahadik, M. A.; Moholkar, A. V.; Bhosale, C. H.


    In the present work, stratified WO3/ZnO thin films have been prepared by simple chemical spray pyrolysis technique. The structural, morphological, compositional and photoelectrocatalytic properties of the stratified WO3/ZnO thin films are studied. The photoelectrochemical (PEC) study shows that, both short circuit current (Isc) and open circuit voltage (Voc) are (Isc = 1.023 mA and Voc = 0.980 V) relatively high at 40 ml spraying quantity of ZnO solution on pre-deposited WO3 thin films. XRD analysis reveals that stratified WO3/ZnO thin films are polycrystalline with monoclinic and hexagonal crystal structures for WO3 and ZnO respectively. The specific surface area of the stratified WO3/ZnO thin film is found to be 48.12 m2 g-1. The enhanced photoelectrocatalytic activity of stratified WO3/ZnO is mainly due to the suppressing the recombination of photo generated electron-hole pairs. The end result shows that the degradation percentage of phthalic acid (PA) using stratified WO3/ZnO photo electrode has reached 63.63% after 320 min. under sunlight illumination. The amount of mineralization of phthalic acid is studied with the help of chemical oxygen demand (COD) measurement.

  9. Tangling clustering instability for small particles in temperature stratified turbulence

    Elperin, Tov; Liberman, Michael; Rogachevskii, Igor


    We study particle clustering in a temperature stratified turbulence with small finite correlation time. It is shown that the temperature stratified turbulence strongly increases the degree of compressibility of particle velocity field. This results in the strong decrease of the threshold for the excitation of the tangling clustering instability even for small particles. The tangling clustering instability in the temperature stratified turbulence is essentially different from the inertial clustering instability that occurs in non-stratified isotropic and homogeneous turbulence. While the inertial clustering instability is caused by the centrifugal effect of the turbulent eddies, the mechanism of the tangling clustering instability is related to the temperature fluctuations generated by the tangling of the mean temperature gradient by the velocity fluctuations. Temperature fluctuations produce pressure fluctuations and cause particle clustering in regions with increased pressure fluctuations. It is shown that t...

  10. Effects of rotation on turbulent buoyant plumes in stratified environments

    Fabregat Tomàs, Alexandre; Poje, Andrew C; Özgökmen, Tamay M; Dewar, William K


    We numerically investigate the effects of rotation on the turbulent dynamics of thermally driven buoyant plumes in stratified environments at the large Rossby numbers characteristic of deep oceanic releases...

  11. Numerical Study on Saltwater Instrusion in a Heterogeneous Stratified Aquifer


    In a costal aquifer, saltwater intrusion is frequently observed due to an excess exploitation. There are many researches focused on the saltwater intrusion. However, there are few researches, which take into consideration the mixing processes in a stratified heterogeneous aquifer. In the present study, a laboratory experiment and numerical simulation are made in order to understand the phenomena in a stratified heterogeneous aquifer. The result of the numerical analysis agrees well with the m...

  12. Session: Reservoir Technology

    Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael


    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

  13. Geothermal reservoir engineering

    Grant, Malcolm Alister


    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  14. Charging of dust grains in a nonequilibrium plasma of a stratified glow discharge

    Sukhinin, G. I.; Fedoseev, A. V.


    A theoretical model is presented that describes the charging of dust grains in the positive plasma column of a stratified glow dc discharge in argon. A one-dimensional self-consistent model is used to obtain axial profiles of the electric field, as well as the electron energy distribution function along the axis of the discharge tube. Radial profiles of the electric field are determined in the ambipolar diffusion approximation. It is assumed that, in the radial direction, the electron distribution function depends only on the total electron energy. Two-dimensional distributions of the discharge plasma parameters are calculated and used to determine the potential and charge of a test dust grain at a certain point within the discharge and the electrostatic forces acting on it. It is shown that the grain charge distribution depends strongly on the nonequilibrium electron distribution function and on the nonuniform distribution of the electric field in a stratified glow discharge. A discussion is presented on the suspension of dust grains, the separation of grains by size in the discharge striations, and a possible mechanism for the onset of vortex dust motion at the edge of a dust cloud.


    human resources. It is also intended to make known to the general public that ... port processes were not properly taken into account. ... Studies carried out on 19 reservoirs in Cen- tral Europe with storage capacity ranging be- tween 1.48 x ...

  16. Reservoir geochemistry: A link between reservoir geology and engineering?

    Larter, S.R.; Aplin, A.C. [Univ. of Newcastle upon Tyne (United Kingdom); Corbett, P.; Ementon, N. [Heriot-Watt Univ., Edinburgh (United Kingdom)


    Geochemistry provides a natural but poorly exploited link between reservoir geology and engineering. The authors summarize some current applications of geochemistry to reservoir description and stress that because of their strong interactions with mineral surfaces and water, nitrogen and oxygen compounds in petroleum may exert an important influence on the PVT properties of petroleum, viscosity and wettability. The distribution of these compounds in reservoirs is heterogeneous on a sub-meter scale and is partly controlled by variations in reservoir quality. The implied variations in petroleum properties and wettability may account for some of the errors in reservoir simulations.

  17. Reservoir geochemistry: A link between reservoir geology and engineering?

    Larter, S.R.; Aplin, A.C.; Chen, M.; Taylor, P.N. [Univ. of Newcastle (Australia); Corbett, P.W.M.; Ementon, N. [Heriot-Watt Univ., Edinburgh (United Kingdom)


    Geochemistry provides a natural, but poorly exploited, link between reservoir geology and engineering. The authors summarize some current applications of geochemistry to reservoir description and stress that, because of their strong interactions with mineral surfaces and water, nitrogen and oxygen compounds in petroleum may exert an important influence on the pressure/volume/temperature (PVT) properties of petroleum, viscosity and wettability. The distribution of these compounds in reservoirs is heterogeneous on a submeter scale and is partly controlled by variations in reservoir quality. The implied variations in petroleum properties and wettability may account for some of the errors in reservoir simulations.

  18. An affordable and accurate conductivity probe for density measurements in stratified flows

    Carminati, Marco; Luzzatto-Fegiz, Paolo


    In stratified flow experiments, conductivity (combined with temperature) is often used to measure density. The probes typically used can provide very fine spatial scales, but can be fragile, expensive to replace, and sensitive to environmental noise. A complementary instrument, comprising a low-cost conductivity probe, would prove valuable in a wide range of applications where resolving extremely small spatial scales is not needed. We propose using micro-USB cables as the actual conductivity sensors. By removing the metallic shield from a micro-B connector, 5 gold-plated microelectrodes are exposed and available for 4-wire measurements. These have a cell constant ~550m-1, an intrinsic thermal noise of at most 30pA/Hz1/2, as well as sub-millisecond time response, making them highly suitable for many stratified flow measurements. In addition, we present the design of a custom electronic board (Arduino-based and Matlab-controlled) for simultaneous acquisition from 4 sensors, with resolution (in conductivity, and resulting density) exceeding the performance of typical existing probes. We illustrate the use of our conductivity-measuring system through stratified flow experiments, and describe plans to release simple instructions to construct our complete system for around 200.

  19. Stability of stratified two-phase flows in horizontal channels

    Barmak, Ilya; Ullmann, Amos; Brauner, Neima; Vitoshkin, Helen


    Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems the stratified flow with smooth interface is stable only in confined zone of relatively lo...

  20. Background Oriented Schlieren in a Density Stratified Fluid

    Verso, Lilly


    Non-intrusive quantitative fluid density measurements methods are essential in stratified flow experiments. Digital imaging leads to synthetic Schlieren methods in which the variations of the index of refraction are reconstructed computationally. In this study, an important extension to one of these methods, called Background Oriented Schlieren (BOS), is proposed. The extension enables an accurate reconstruction of the density field in stratified liquid experiments. Typically, the experiments are performed by the light source, background pattern, and the camera positioned on the opposite sides of a transparent vessel. The multi-media imaging through air-glass-water-glass-air leads to an additional aberration that destroys the reconstruction. A two-step calibration and image remapping transform are the key components that correct the images through the stratified media and provide non-intrusive full-field density measurements of transparent liquids.

  1. Background oriented schlieren in a density stratified fluid

    Verso, Lilly; Liberzon, Alex


    Non-intrusive quantitative fluid density measurement methods are essential in the stratified flow experiments. Digital imaging leads to synthetic schlieren methods in which the variations of the index of refraction are reconstructed computationally. In this study, an extension to one of these methods, called background oriented schlieren, is proposed. The extension enables an accurate reconstruction of the density field in stratified liquid experiments. Typically, the experiments are performed by the light source, background pattern, and the camera positioned on the opposite sides of a transparent vessel. The multimedia imaging through air-glass-water-glass-air leads to an additional aberration that destroys the reconstruction. A two-step calibration and image remapping transform are the key components that correct the images through the stratified media and provide a non-intrusive full-field density measurements of transparent liquids.

  2. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    Sakowski, Barbara


    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  3. Fuel Burning Rate Model for Stratified Charge Engine

    SONG Jin'ou; JIANG Zejun; YAO Chunde; WANG Hongfu


    A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge engines.The model consists of two exponential functions for calculating the fuel burning rate in different charge zones.The model factors are determined by a non-linear curve fitting technique, based on the experimental data obtained from 30 cases in middle and low loads.The results show good agreement between the measured and calculated cylinder pressures,and the deviation between calculated and measured cylinder pressures is less than 5%.The zerodimensional single-zone double-curve model is successful in the combustion modeling for stratified charge engines.

  4. Numerical Simulation on Stratified Flow over an Isolated Mountain Ridge

    LI Ling; Shigeo Kimura


    The characteristics of stratified flow over an isolated mountain ridge have been investigated numerically. The two-dimensional model equations, based on the time-dependent Reynolds averaged NavierStokes equations, are solved numerically using an implicit time integration in a fitted body grid arrangement to simulate stratified flow over an isolated ideally bell-shaped mountain. The simulation results are in good agreement with the existing corresponding analytical and approximate solutions. It is shown that for atmospheric conditions where non-hydrostatic effects become dominant, the model is able to reproduce typical flow features. The dispersion characteristics of gaseous pollutants in the stratified flow have also been studied. The dispersion patterns for two typical atmospheric conditions are compared. The results show that the presence of a gravity wave causes vertical stratification of the pollutant concentration and affects the diffusive characteristics of the pollutants.

  5. Stability of stratified two-phase flows in inclined channels

    Barmak, Ilya; Ullmann, Amos; Brauner, Neima


    Linear stability of stratified gas-liquid and liquid-liquid plane-parallel flows in inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict parameter regions in which stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of steady state solutions are presented on the flow pattern map and are accompanied by critical wavenumbers and spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of ...

  6. Linear Inviscid Damping for Couette Flow in Stratified Fluid

    Yang, Jincheng


    We study the inviscid damping of Coutte flow with an exponentially stratified density. The optimal decay rates of the velocity field and density are obtained for general perturbations with minimal regularity. For Boussinesq approximation model, the decay rates we get are consistent with the previous results in the literature. We also study the decay rates for the full equations of stratified fluids, which were not studied before. For both models, the decay rates depend on the Richardson number in a very similar way. Besides, we also study the inviscid damping of perturbations due to the exponential stratification when there is no shear.

  7. Bases of Schur algebras associated to cellularly stratified diagram algebras

    Bowman, C


    We examine homomorphisms between induced modules for a certain class of cellularly stratified diagram algebras, including the BMW algebra, Temperley-Lieb algebra, Brauer algebra, and (quantum) walled Brauer algebra. We define the `permutation' modules for these algebras, these are one-sided ideals which allow us to study the diagrammatic Schur algebras of Hartmann, Henke, Koenig and Paget. We construct bases of these Schur algebras in terms of modified tableaux. On the way we prove that the (quantum) walled Brauer algebra and the Temperley-Lieb algebra are both cellularly stratified and therefore have well-defined Specht filtrations.

  8. Status of Blue Ridge Reservoir


    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Blue Ridge Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports and data available, as well as interview with water resource professionals in various federal, state, and local agencies. Blue Ridge Reservoir is a single-purpose hydropower generating project. When consistent with this primary objective, the reservoir is also operated to benefit secondary objectives including water quality, recreation, fish and aquatic habitat, development of shoreline, aesthetic quality, and other public and private uses that support overall regional economic growth and development. 8 refs., 1 fig.

  9. Forced resurgence and targeting of intracellular uropathogenic Escherichia coli reservoirs.

    Matthew G Blango

    Full Text Available Intracellular quiescent reservoirs of uropathogenic Escherichia coli (UPEC, which can seed the bladder mucosa during the acute phase of a urinary tract infection (UTI, are protected from antibiotic treatments and are extremely difficult to eliminate. These reservoirs are a potential source for recurrent UTIs that affect millions annually. Here, using murine infection models and the bladder cell exfoliant chitosan, we demonstrate that intracellular UPEC populations shift within the stratified layers of the urothelium during the course of a UTI. Following invasion of the terminally differentiated superficial layer of epithelial cells that line the bladder lumen, UPEC can multiply and disseminate, eventually establishing reservoirs within underlying immature host cells. If given access, UPEC can invade the superficial and immature bladder cells equally well. As infected immature host cells differentiate and migrate towards the apical surface of the bladder, UPEC can reinitiate growth and discharge into the bladder lumen. By inducing the exfoliation of the superficial layers of the urothelium, chitosan stimulates rapid regenerative processes and the reactivation and efflux of quiescent intracellular UPEC reservoirs. When combined with antibiotics, chitosan treatment significantly reduces bacterial loads within the bladder and may therefore be of therapeutic value to individuals with chronic, recurrent UTIs.

  10. Well test analysis for wells producing layered reservoirs with crossflow

    Raghavan, R.; Prijambodo, R.; Reynolds, A.C.


    The pressure response of a well producing a two-layer reservoir with crossflow is examined. Virtually all studies on the response of a well in multilayered systems with crossflow claim that after a few hours of production these systems behave as if they are single-layer systems. In this study, the authors show that the flowing pressure response of a well at early times can be divided into three flow periods. The first period is one in which the reservoir behaves as if it were a stratified (no-crossflow) system. This period is followed by a transitional period. The response of the well during this period depends on the contrast in horizontal permeabilities and on the degree of communication between the layers. During the third period, the reservoir can be described by an equivalent single-layer system. An examination of the time ranges of the various flow periods indicates that, unless tests are designed properly, most of the interpretable pressure buildup data would be measured during the time the well response is influenced by the transitional period. The influence of the skin regions on the well response is examined. The significance of the estimate of the skin factor obtained from a pressure test is discussed. The authors show that the nature and the magnitude of the skin regions and the size of the reservoir determine the applicability of conventional semilog procedures to systems with interlayer communication.

  11. Modeling reservoir density underflow and interflow from a chemical spill

    Gu, R.; McCutcheon, S.C.; Wang, P.-F.


    An integral simulation model has been developed for understanding and simulating the process of a density current and the transport of spilled chemicals in a stratified reservoir. The model is capable of describing flow behavior and mixing mechanisms in different flow regimes (plunging flow, underflow, and interflow). It computes flow rate, velocity, flow thickness, mixing parameterized by entrainment and dilution, depths of plunging, separation and intrusion, and time of travel. The model was applied to the Shasta Reservoir in northern California during the July 1991 Sacramento River chemical spill. The simulations were used to assist in the emergency response, confirm remediation measures, and guide data collection. Spill data that were available after the emergency response are used to conduct a postaudit of the model results. Predicted flow parameters are presented and compared with observed interflow intrusion depth, travel time, and measured concentrations of spilled chemicals. In the reservoir, temperature difference between incoming river flow and ambient lake water played a dominant role during the processes of flow plunging, separation, and intrusion. With the integral approach, the gross flow behavior can be adequately described and information useful in the analysis of contaminated flow in a reservoir after a spill is provided.

  12. Analysis of photonic band-gap structures in stratified medium

    Tong, Ming-Sze; Yinchao, Chen; Lu, Yilong;


    Purpose - To demonstrate the flexibility and advantages of a non-uniform pseudo-spectral time domain (nu-PSTD) method through studies of the wave propagation characteristics on photonic band-gap (PBG) structures in stratified medium Design/methodology/approach - A nu-PSTD method is proposed...

  13. Plane Stratified Flow in a Room Ventilated by Displacement Ventilation

    Nielsen, Peter Vilhelm; Nickel, J.; Baron, D. J. G.


    The air movement in the occupied zone of a room ventilated by displacement ventilation exists as a stratified flow along the floor. This flow can be radial or plane according to the number of wall-mounted diffusers and the room geometry. The paper addresses the situations where plane flow...

  14. Bacterial production, protozoan grazing and mineralization in stratified lake Vechten.

    Bloem, J.


    The role of heterotrophic nanoflagellates (HNAN, size 2-20 μm) in grazing on bacteria and mineralization of organic matter in stratified Lake Vechten was studied.Quantitative effects of manipulation and fixation on HNAN were checked. Considerable losses were caused by centrifugation, even at low spe

  15. Population dynamics of sinking phytoplankton in stratified waters

    Huisman, J.; Sommeijer, B.P.


    We analyze the predictions of a reaction-advection-diffusion model to pinpoint the necessary conditions for bloom development of sinking phytoplanktonspecies in stratified waters. This reveals that there are two parameter windows that can sustain sinking phytoplankton, a turbulence window and atherm

  16. Gravity-induced stresses in stratified rock masses

    Amadei, B.; Swolfs, H.S.; Savage, W.Z.


    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.

  17. Dispersion of (light) inertial particles in stratified turbulence

    van Aartrijk, M.; Clercx, H.J.H.; Armenio, Vincenzo; Geurts, Bernardus J.; Fröhlich, Jochen


    We present a brief overview of a numerical study of the dispersion of particles in stably stratified turbulence. Three types of particles arc examined: fluid particles, light inertial particles ($\\rho_p/\\rho_f = \\mathcal{O}(1)$) and heavy inertial particles ($\\rho_p/\\rho_f \\gg 1$). Stratification

  18. The dynamics of small inertial particles in weakly stratified turbulence

    van Aartrijk, M.; Clercx, H.J.H.

    We present an overview of a numerical study on the small-scale dynamics and the large-scale dispersion of small inertial particles in stably stratified turbulence. Three types of particles are examined: fluid particles, light inertial particles (with particle-to-fluid density ratio 1Ͽp/Ͽf25) and

  19. Characterization of Inlet Diffuser Performance for Stratified Thermal Storage

    Cimbala, John M.; Bahnfleth, William; Song, Jing


    Storage of sensible heating or cooling capacity in stratified vessels has important applications in central heating and cooling plants, power production, and solar energy utilization, among others. In stratified thermal storage systems, diffusers at the top and bottom of a stratified tank introduce and withdraw fluid while maintaining a stable density gradient and causing as little mixing as possible. In chilled water storage applications, mixing during the formation of the thermocline near an inlet diffuser is the single greatest source of thermal losses. Most stratified chilled water storage tanks are cylindrical vessels with diffusers that are either circular disks that distribute flow radially outward or octagonal rings of perforated pipe that distribute flow both inward and outward radially. Both types produce gravity currents that are strongly influenced by the inlet Richardson number, but the significance of other parameters is not clear. The present investigation considers the dependence of the thermal performance of a perforated pipe diffuser on design parameters including inlet velocity, ambient and inlet fluid temperatures, and tank dimensions for a range of conditions representative of typical chilled water applications. Dimensional analysis is combined with a parametric study using results from computational fluid dynamics to obtain quantitative relationships between design parameters and expected thermal performance.

  20. Global and Partial Errors in Stratified and Clustering Sampling

    Giovanna Nicolini; Anna Lo Presti


    In this paper we split up the sampling error occurred in stratified and clustering sampling, called global error and measured by the variance of estimator, in many partial errors each one referred to a single stratum or cluster. In particular, we study, for clustering sampling, the empirical distribution of the homogeneity coefficient that is very important for settlement of partial errors.

  1. Reservoir geomechanics: new approach to reservoir engineering analysis

    Settari, A.; Walters, D.A.; Behie, G.A. [Duke Engineering and Services Inc., Calgary, AB (Canada)


    The rock mechanics aspects of reservoir behavior are reviewed, and a description is included of some recent trends in coupled reservoir and strata mechanics modelling. Case histories are summarized which are field applications of these new trends and tools. These case histories include: (1) high rate injection into an oil sand reservoir; (2) compaction modelling of a North Sea reservoir; and (3) brine disposal at a fracturing pressure. Coupled geomechanical modelling is feasible on a full field scale, and it provides flexibility in the degree of coupling and calculational efficiency. The scope of interest in data gathering and characterization must be extended beyond reservoir boundaries because of the coupled modelling approach. This modelling provides results that can be employed in integrated reservoir management that includes reservoir engineering, drilling and completions. Considering the three case histories, coupled modelling can be used for predicting fracture initiation and re-orientation, reservoir compaction and deformations, and enhancement of injectivity due to stress dependent formation properties. Coupled modelling has brought reservoir modelling to a new realistic level and produces significant economic gains. 15 refs., 8 figs.

  2. Geothermal reservoir management

    Scherer, C.R.; Golabi, K.


    The optimal management of a hot water geothermal reservoir was considered. The physical system investigated includes a three-dimensional aquifer from which hot water is pumped and circulated through a heat exchanger. Heat removed from the geothermal fluid is transferred to a building complex or other facility for space heating. After passing through the heat exchanger, the (now cooled) geothermal fluid is reinjected into the aquifer. This cools the reservoir at a rate predicted by an expression relating pumping rate, time, and production hole temperature. The economic model proposed in the study maximizes discounted value of energy transferred across the heat exchanger minus the discounted cost of wells, equipment, and pumping energy. The real value of energy is assumed to increase at r percent per year. A major decision variable is the production or pumping rate (which is constant over the project life). Other decision variables in this optimization are production timing, reinjection temperature, and the economic life of the reservoir at the selected pumping rate. Results show that waiting time to production and production life increases as r increases and decreases as the discount rate increases. Production rate decreases as r increases and increases as the discount rate increases. The optimal injection temperature is very close to the temperature of the steam produced on the other side of the heat exchanger, and is virtually independent of r and the discount rate. Sensitivity of the decision variables to geohydrological parameters was also investigated. Initial aquifer temperature and permeability have a major influence on these variables, although aquifer porosity is of less importance. A penalty was considered for production delay after the lease is granted.

  3. Encapsulated microsensors for reservoir interrogation

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.


    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  4. Reservoir management cost-cutting

    Gulati, M.S.


    This article by Mohinder S. Gulati, Chief Engineer, Unocal Geothermal Operations, discusses cost cutting in geothermal reservoir management. The reservoir engineer or geoscientist can make a big difference in the economical outcome of a project by improving well performance and thus making geothermal energy more competitive in the energy marketplace. Bringing plants online in less time and proving resources to reduce the cycle time are some of the ways to reduce reservoir management costs discussed in this article.

  5. Encapsulated microsensors for reservoir interrogation

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.


    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  6. Reservoir Operation to Minimize Sedimentation

    Dyah Ari Wulandari


    Full Text Available The Wonogiri Reservoir capacity decreases rapidly, caused by serious sedimentation problems. In 2007, JICA was proposed a sediment storage reservoir with a new spillway for the purpose of sediment flushing / sluicing from The Keduang River. Due to the change of reservoir storage and change of reservoir system, it requires a sustainable reservoir operation technique. This technique is aimed to minimize the deviation between the input and output of sediments. The main objective of this study is to explore the optimal Wonogiri reservoir operation by minimizing the sediment trap. The CSUDP incremental dynamic programming procedure is used for the model optimization.  This new operating rules will also simulate a five years operation period, to show the effect of the implemented techniques. The result of the study are the newly developed reservoir operation system has many advantages when compared to the actual operation system and the disadvantage of this developed system is that the use is mainly designed for a wet hydrologic year, since its performance for the water supply is lower than the actual reservoir operations.Doi: 10.12777/ijse.6.1.16-23 [How to cite this article:  Wulandari, D.A., Legono, D., and Darsono, S., 2014. Reservoir Operation to Minimize Sedimentation. International Journal of Science and Engineering, 5(2,61-65. Doi: 10.12777/ijse.6.1.16-23] Normal 0 false false false EN-US X-NONE X-NONE

  7. Reservoir geochemistry; Geoquimica de reservatorios

    Lopes, Joelma Pimentel; Rangel, Mario Duncan; Morais, Erica Tavares de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)], Emails:,,; Aguiar, Helen G.M. de [Fundacao GORCEIX, Ouro Preto, MG (Brazil)], E-mail:


    Reservoir Geochemistry has many important practical applications during petroleum exploration, appraisal and development of oil fields. The most important uses are related to providing or disproving connectivity between reservoirs of a particular well or horizon. During exploration, reservoir geochemistry can indicate the direction of oil filling, suggesting the most appropriate places for drilling new wells. During production, studies of variations in composition with time and determination of proportions of commingled production from multiple zones, may also be carried out. The chemical constituents of petroleum in natural reservoirs frequently show measurable compositional variations, laterally and vertically. Due to the physical and chemical nature of petroleum changes with increasing maturity (or contribution of a second source during the filling process), lateral and vertical compositional variations exist in petroleum columns as reservoir filling is complete. Compositional variation can also be introduced by biodegradation or water washing. Once the reservoir is filled, density driven mixing and molecular diffusion tend to eliminate inherited compositional variations in an attempt to establish mechanical and chemical equilibrium in the petroleum column (England, 1990). Based on organic geochemical analysis it is possible to define these compositional variations among reservoirs, and use these data for developing of petroleum fields and for reservoir appraisal. Reservoir geochemistry offers rapid and low cost evaluation tools to aid in understanding development and production problems. Moreover, the applied methodology is relatively simple and gives reliable results, and can be performed routinely in any good geochemical laboratory at a relatively low cost. (author)

  8. Study of MRI in Stratified Viscous Plasma Configuration

    Carlevaro, Nakia; Renzi, Fabrizio


    We analyze the morphology of the Magneto-rotational Instability (MRI) for a stratified viscous plasma disk configuration in differential rotation, taking into account the so-called corotation theorem for the background profile. In order to select the intrinsic Alfv\\'enic nature of MRI, we deal with an incompressible plasma and we adopt a formulation of the perturbation analysis based on the use of the magnetic flux function as a dynamical variable. Our study outlines, as consequence of the corotation condition, a marked asymmetry of the MRI with respect to the equatorial plane, particularly evident in a complete damping of the instability over a positive critical height on the equatorial plane. We also emphasize how such a feature is already present (although less pronounced) even in the ideal case, restoring a dependence of the MRI on the stratified morphology of the gravitational field.

  9. FC-normal and extended stratified logic program

    许道云; 丁德成


    This paper investigates the consistency property of FC-normal logic program and presentsan equivalent deciding condition whether a logic program P is an FC-normal program. The decidingcondition describes the characterizations of FC-normal program. By the Petri-net presentation ofa logic program, the characterizations of stratification of FC-normal program are investigated. Thestratification of FC-normal program motivates us to introduce a new kind of stratification, extendedstratification, over logic program. It is shown that an extended (locally) stratified logic program isan FC-normal program. Thus, an extended (locally) stratified logic program has at least one stablemodel. Finally, we have presented algorithms about computation of consistency property and a fewequivalent deciding methods of the finite FC-normal program.

  10. Turbulent thermal diffusion in strongly stratified turbulence: theory and experiments

    Amir, G; Eidelman, A; Elperin, T; Kleeorin, N; Rogachevskii, I


    Turbulent thermal diffusion is a combined effect of the temperature stratified turbulence and inertia of small particles. It causes the appearance of a non-diffusive turbulent flux of particles in the direction of the turbulent heat flux. This non-diffusive turbulent flux of particles is proportional to the product of the mean particle number density and the effective velocity of inertial particles. The theory of this effect has been previously developed only for small temperature gradients and small Stokes numbers (Phys. Rev. Lett. {\\bf 76}, 224, 1996). In this study a generalized theory of turbulent thermal diffusion for arbitrary temperature gradients and Stokes numbers has been developed. The laboratory experiments in the oscillating grid turbulence and in the multi-fan produced turbulence have been performed to validate the theory of turbulent thermal diffusion in strongly stratified turbulent flows. It has been shown that the ratio of the effective velocity of inertial particles to the characteristic ve...

  11. Numerical Simulation of Wakes in a Weakly Stratified Fluid

    Rottman, James W; Innis, George E; O'Shea, Thomas T; Novikov, Evgeny


    This paper describes some preliminary numerical studies using large eddy simulation of full-scale submarine wakes. Submarine wakes are a combination of the wake generated by a smooth slender body and a number of superimposed vortex pairs generated by various control surfaces and other body appendages. For this preliminary study, we attempt to gain some insight into the behavior of full-scale submarine wakes by computing separately the evolution the self-propelled wake of a slender body and the motion of a single vortex pair in both a non-stratified and a stratified environment. An important aspect of the simulations is the use of an iterative procedure to relax the initial turbulence field so that turbulent production and dissipation are in balance.

  12. Helicity dynamics in stratified turbulence in the absence of forcing

    Rorai, C; Pouquet, A; Mininni, P D


    A numerical study of decaying stably-stratified flows is performed. Relatively high stratification and moderate Reynolds numbers are considered, and a particular emphasis is placed on the role of helicity (velocity-vorticity correlations). The problem is tackled by integrating the Boussinesq equations in a periodic cubical domain using different initial conditions: a non-helical Taylor-Green (TG) flow, a fully helical Beltrami (ABC) flow, and random flows with a tunable helicity. We show that for stratified ABC flows helicity undergoes a substantially slower decay than for unstratified ABC flows. This fact is likely associated to the combined effect of stratification and large scale coherent structures. Indeed, when the latter are missing, as in random flows, helicity is rapidly destroyed by the onset of gravitational waves. A type of large-scale dissipative "cyclostrophic" balance can be invoked to explain this behavior. When helicity survives in the system it strongly affects the temporal energy decay and t...

  13. Axisymmetric modes in vertically stratified self-gravitating discs

    Mamatsashvili, George


    We perform linear analysis of axisymmetric vertical normal modes in stratified compressible self-gravitating polytropic discs in the shearing box approximation. We study specific dynamics for subadiabatic, adiabatic and superadiabatic vertical stratifications. In the absence of self-gravity, four well-known principal modes can be identified in a stratified disc: acoustic p-, surface gravity f-, buoyancy g- and inertial r-modes. After characterizing modes in the non-self-gravitating case, we include self-gravity and investigate how it modifies the properties of these modes. We find that self-gravity, to a certain degree, reduces their frequencies and changes the structure of the dispersion curves and eigenfunctions at radial wavelengths comparable to the disc height. Its influence on the basic branch of the r-mode, in the case of subadiabatic and adiabatic stratifications, and on the basic branch of the g-mode, in the case of superadiabatic stratification (which in addition exhibits convective instability), do...

  14. Elementary stratified flows with stability at low Richardson number

    Barros, Ricardo [Mathematics Applications Consortium for Science and Industry (MACSI), Department of Mathematics and Statistics, University of Limerick, Limerick (Ireland); Choi, Wooyoung [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102-1982 (United States)


    We revisit the stability analysis for three classical configurations of multiple fluid layers proposed by Goldstein [“On the stability of superposed streams of fluids of different densities,” Proc. R. Soc. A. 132, 524 (1931)], Taylor [“Effect of variation in density on the stability of superposed streams of fluid,” Proc. R. Soc. A 132, 499 (1931)], and Holmboe [“On the behaviour of symmetric waves in stratified shear layers,” Geophys. Publ. 24, 67 (1962)] as simple prototypes to understand stability characteristics of stratified shear flows with sharp density transitions. When such flows are confined in a finite domain, it is shown that a large shear across the layers that is often considered a source of instability plays a stabilizing role. Presented are simple analytical criteria for stability of these low Richardson number flows.

  15. Experiments on the dryout behavior of stratified debris beds

    Leininger, Simon; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)


    In case of a severe accident with loss of coolant and core meltdown a particle bed (debris) can be formed. The removal of decay heat from the debris bed is of prime importance for the bed's long-term coolability to guarantee the integrity of the RPV. In contrast to previous experiments, the focus is on stratified beds. The experiments have pointed out that the bed's coolability is significantly affected.

  16. Computation of mixing in large stably stratified enclosures

    Zhao, Haihua

    This dissertation presents a set of new numerical models for the mixing and heat transfer problems in large stably stratified enclosures. Basing on these models, a new computer code, BMIX++ (Berkeley mechanistic MIXing code in C++), was developed by Christensen (2001) and the author. Traditional lumped control volume methods and zone models cannot model the detailed information about the distributions of temperature, density, and pressure in enclosures and therefore can have significant errors. 2-D and 3-D CFD methods require very fine grid resolution to resolve thin substructures such as jets, wall boundaries, yet such fine grid resolution is difficult or impossible to provide due to computational expense. Peterson's scaling (1994) showed that stratified mixing processes in large stably stratified enclosures can be described using one-dimensional differential equations, with the vertical transport by free and wall jets modeled using standard integral techniques. This allows very large reductions in computational effort compared to three-dimensional numerical modeling of turbulent mixing in large enclosures. The BMIX++ code was developed to implement the above ideas. The code uses a Lagrangian approach to solve 1-D transient governing equations for the ambient fluid and uses analytical models or 1-D integral models to compute substructures. 1-D transient conduction model for the solid boundaries, pressure computation and opening models are also included to make the code more versatile. The BMIX++ code was implemented in C++ and the Object-Oriented-Programming (OOP) technique was intensively used. The BMIX++ code was successfully applied to different types of mixing problems such as stratification in a water tank due to a heater inside, water tank exchange flow experiment simulation, early stage building fire analysis, stratification produced by multiple plumes, and simulations for the UCB large enclosure experiments. Most of these simulations gave satisfying

  17. A statistical mechanics approach to mixing in stratified fluids

    Venaille, A.; Gostiaux, L.; Sommeria, J.


    Predicting how much mixing occurs when a given amount of energy is injected into a Boussinesq fluid is a longstanding problem in stratified turbulence. The huge number of degrees of freedom involved in those processes renders extremely difficult a deterministic approach to the problem. Here we present a statistical mechanics approach yielding prediction for a cumulative, global mixing efficiency as a function of a global Richardson number and the background buoyancy profile.

  18. Corticosteroids and pediatric septic shock outcomes: a risk stratified analysis.

    Sarah J Atkinson

    Full Text Available The potential benefits of corticosteroids for septic shock may depend on initial mortality risk.We determined associations between corticosteroids and outcomes in children with septic shock who were stratified by initial mortality risk.We conducted a retrospective analysis of an ongoing, multi-center pediatric septic shock clinical and biological database. Using a validated biomarker-based stratification tool (PERSEVERE, 496 subjects were stratified into three initial mortality risk strata (low, intermediate, and high. Subjects receiving corticosteroids during the initial 7 days of admission (n = 252 were compared to subjects who did not receive corticosteroids (n = 244. Logistic regression was used to model the effects of corticosteroids on 28-day mortality and complicated course, defined as death within 28 days or persistence of two or more organ failures at 7 days.Subjects who received corticosteroids had greater organ failure burden, higher illness severity, higher mortality, and a greater requirement for vasoactive medications, compared to subjects who did not receive corticosteroids. PERSEVERE-based mortality risk did not differ between the two groups. For the entire cohort, corticosteroids were associated with increased risk of mortality (OR 2.3, 95% CI 1.3-4.0, p = 0.004 and a complicated course (OR 1.7, 95% CI 1.1-2.5, p = 0.012. Within each PERSEVERE-based stratum, corticosteroid administration was not associated with improved outcomes. Similarly, corticosteroid administration was not associated with improved outcomes among patients with no comorbidities, nor in groups of patients stratified by PRISM.Risk stratified analysis failed to demonstrate any benefit from corticosteroids in this pediatric septic shock cohort.

  19. On the Impact of Bootstrap in Stratified Random Sampling

    LIU Cheng; ZHAO Lian-wen


    In general the accuracy of mean estimator can be improved by stratified random sampling. In this paper, we provide an idea different from empirical methods that the accuracy can be more improved through bootstrap resampling method under some conditions. The determination of sample size by bootstrap method is also discussed, and a simulation is made to verify the accuracy of the proposed method. The simulation results show that the sample size based on bootstrapping is smaller than that based on central limit theorem.

  20. Stability of stratified two-phase flows in inclined channels

    Barmak, I.; Gelfgat, A. Yu.; Ullmann, A.; Brauner, N.


    Linear stability of the stratified gas-liquid and liquid-liquid plane-parallel flows in the inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict the parameter regions in which the stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in the inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of the non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of the steady state solutions are presented on the flow pattern map and are accompanied by the critical wavenumbers and the spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by the streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of two stable stratified flow configurations in a region of low flow rates in the countercurrent liquid-liquid flows. These configurations become unstable with respect to the shear mode of instability. It was revealed that in slightly upward inclined flows the lower and middle solutions for the holdup are stable in the part of the triple solution region, while the upper solution is always unstable. In the case of downward flows, in the triple solution region, none of the solutions are stable with respect to the short-wave perturbations. These flows are stable only in the single solution region at low flow rates of the heavy phase, and the long-wave perturbations are the most unstable ones.

  1. Thermal stratification built up in hot water tank with different inlet stratifiers

    Dragsted, Janne; Furbo, Simon; Dannemand, Mark


    H is a rigid plastic pipe with holes for each 30 cm. The holes are designed with flaps preventing counter flow into the pipe. The inlet stratifier from EyeCular Technologies ApS is made of a flexible polymer with openings all along the side and in the full length of the stratifier. The flexibility...... in order to elucidate how well thermal stratification is established in the tank with differently designed inlet stratifiers under different controlled laboratory conditions. The investigated inlet stratifiers are from Solvis GmbH & Co KG and EyeCular Technologies ApS. The inlet stratifier from Solvis Gmb...... of the stratifier prevents counterflow. The tests have shown that both types of inlet stratifiers had an ability to create stratification in the test tank under the different test conditions. The stratifier from EyeCular Technologies ApS had a better performance at low flows of 1-2 l/min and the stratifier...

  2. Stratified source-sampling techniques for Monte Carlo eigenvalue analysis.

    Mohamed, A.


    In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo ''Eigenvalue of the World'' problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. In this paper, stratified source-sampling techniques are generalized and applied to three different Eigenvalue of the World configurations which take into account real-world statistical noise sources not included in the model problem, but which differ in the amount of neutronic coupling among the constituents of each configuration. It is concluded that, in Monte Carlo eigenvalue analysis of loosely-coupled arrays, the use of stratified source-sampling reduces the probability of encountering an anomalous result over that if conventional source-sampling methods are used. However, this gain in reliability is substantially less than that observed in the model-problem results.

  3. Stability of stratified two-phase flows in horizontal channels

    Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.


    Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.

  4. Continuous Dependence on the Density for Stratified Steady Water Waves

    Chen, Robin Ming; Walsh, Samuel


    There are two distinct regimes commonly used to model traveling waves in stratified water: continuous stratification, where the density is smooth throughout the fluid, and layer-wise continuous stratification, where the fluid consists of multiple immiscible strata. The former is the more physically accurate description, but the latter is frequently more amenable to analysis and computation. By the conservation of mass, the density is constant along the streamlines of the flow; the stratification can therefore be specified by prescribing the value of the density on each streamline. We call this the streamline density function. Our main result states that, for every smoothly stratified periodic traveling wave in a certain small-amplitude regime, there is an L ∞ neighborhood of its streamline density function such that, for any piecewise smooth streamline density function in that neighborhood, there is a corresponding traveling wave solution. Moreover, the mapping from streamline density function to wave is Lipschitz continuous in a certain function space framework. As this neighborhood includes piecewise smooth densities with arbitrarily many jump discontinues, this theorem provides a rigorous justification for the ubiquitous practice of approximating a smoothly stratified wave by a layered one. We also discuss some applications of this result to the study of the qualitative features of such waves.

  5. Survival analysis of cervical cancer using stratified Cox regression

    Purnami, S. W.; Inayati, K. D.; Sari, N. W. Wulan; Chosuvivatwong, V.; Sriplung, H.


    Cervical cancer is one of the mostly widely cancer cause of the women death in the world including Indonesia. Most cervical cancer patients come to the hospital already in an advanced stadium. As a result, the treatment of cervical cancer becomes more difficult and even can increase the death's risk. One of parameter that can be used to assess successfully of treatment is the probability of survival. This study raises the issue of cervical cancer survival patients at Dr. Soetomo Hospital using stratified Cox regression based on six factors such as age, stadium, treatment initiation, companion disease, complication, and anemia. Stratified Cox model is used because there is one independent variable that does not satisfy the proportional hazards assumption that is stadium. The results of the stratified Cox model show that the complication variable is significant factor which influent survival probability of cervical cancer patient. The obtained hazard ratio is 7.35. It means that cervical cancer patient who has complication is at risk of dying 7.35 times greater than patient who did not has complication. While the adjusted survival curves showed that stadium IV had the lowest probability of survival.

  6. Transition to turbulence in stratified shear flow: experiments in an inclined square duct

    Meyer, Colin; Linden, Paul


    We describe laboratory experiments of countercurrent stratified shear flow in an inclined square duct. To achieve this, a long water tank was partitioned into regions of higher and lower density saltwater that are connected by an inclined square duct. The flow regime was characterized to be turbulent, intermittent, Holmboe or laminar as a function of the duct inclination, θ, and the density difference, Δρ , between the two reservoirs. The density difference and duct angle were systematically varied and a phase plane of flow regime was developed. The transition between the interrmittent regime and turbulence was experimentally determined to occur at θΔρ ~= 20 [degrees kg m-3]. This critical combination of parameters fits into the buoyancy-compensated Reynolds number scaling proposed by Brethouwer et al. (J. Fluid Mech., 2007). The turbulent interfacial thickness was found to be a function of the inclination angle, which can be predicted using the buoyancy lengthscale from Waite and Bartello (J. Fluid Mech., 2004) and others. Furthermore, we measured the density profiles at multiple points along the duct, and using these profiles, we modeled the entrainment at the interface. Support provided by the Winston Churchill Foundation of the United States.

  7. Reservoir sedimentation; a literature survey

    Sloff, C.J.


    A survey of literature is made on reservoir sedimentation, one of the most threatening processes for world-wide reservoir performance. The sedimentation processes, their impacts, and their controlling factors are assessed from a hydraulic engineering point of view with special emphasis on mathematic

  8. Reservoir sedimentation; a literature survey

    Sloff, C.J.


    A survey of literature is made on reservoir sedimentation, one of the most threatening processes for world-wide reservoir performance. The sedimentation processes, their impacts, and their controlling factors are assessed from a hydraulic engineering point of view with special emphasis on mathematic

  9. An improved reservoir oxide cathode

    Wang, Xiaoxia; Liao, Xianheng; Luo, Jirun; Zhao, Qinglan


    A new type of reservoir oxide cathode has been developed in IECAS. The emission characteristics of the cathode are tested. The results show the new cathode has higher emission current density and better resistance to poisoning at same operating condition compared with those of conventional reservoir oxide cathode.

  10. Reservoir sedimentation; a literature survey

    Sloff, C.J.


    A survey of literature is made on reservoir sedimentation, one of the most threatening processes for world-wide reservoir performance. The sedimentation processes, their impacts, and their controlling factors are assessed from a hydraulic engineering point of view with special emphasis on


    Abbas Firoozabadi


    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  12. Chalk as a reservoir

    Fabricius, Ida Lykke

    , and the best reservoir properties are typically found in mudstone intervals. Chalk mudstones vary a lot though. The best mudstones are purely calcitic, well sorted and may have been redeposited by traction currents. Other mudstones are rich in very fine grained silica, which takes up pore space and thus...... stabilizes chemically by recrystallization. This process requires energy and is promoted by temperature. This recrystallization in principle does not influence porosity, but only specific surface, which decreases during recrystallization, causing permeability to increase. The central North Sea is a warm...... intervals are to some extent cemented and cannot compact mechanically at realistic effective stresses and only deform elastically. All chalk intervals though, may react by fracturing to changes in shear stress. So where natural fractures are not prevalent, fractures may be generated hydraulically. Fractures...

  13. Reasons for reservoir effect variability

    Philippsen, Bente


    Freshwater reservoir effects can be large and highly variable. I will present my investigations into the short-term variability of the freshwater reservoir effect in two Northern German rivers. The samples analysed in this study were collected between 2007 and 2012. Reservoir ages of water samples......, aquatic plants and fish from the rivers Alster and Trave range between zero and about 3,000 radiocarbon years. The reservoir age of water DIC depends to a large extent on the origin of the water and is for example correlated with precipitation amounts. These short-term variations are smoothed out in water...... plants. Their carbon should represent an average value of the entire growth season. However, there are large reservoir age variations in aquatic plants and animals as well. These can best be explained by the multitude of carbon sources which can be utilized by aquatic organisms, and which have...

  14. Gravity observations for hydrocarbon reservoir monitoring

    Glegola, M.A.


    In this thesis the added value of gravity observations for hydrocarbon reservoir monitoring and characterization is investigated. Reservoir processes and reservoir types most suitable for gravimetric monitoring are identified. Major noise sources affecting time-lapse gravimetry are analyzed. The

  15. Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from Balbina hydroelectric dam, Amazonas, Brazil.

    Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Leitão, Rafael P; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf


    The river downstream from a dam can be more contaminated by mercury than the reservoir itself. However, it is not clear how far the contamination occurs downstream. We investigated the seasonal variation of methylmercury levels in the Balbina reservoir and how they correlated with the levels encountered downstream from the dam. Water, plankton, and fishes were collected upstream and at sites between 0.5 and 250 km downstream from the dam during four expeditions in 2011 and 2012. Variations in thermal stratification of the reservoir influenced the methylmercury levels in the reservoir and in the river downstream. Uniform depth distributions of methylmercury and oxygen encountered in the poorly stratified reservoir during the rainy season collections coincided with uniformly low methylmercury levels along the river downstream from the dam. During dry season collections, the reservoir was strongly stratified, and anoxic hypolimnion water with high methylmercury levels was exported downstream. Methylmercury levels declined gradually to 200 km downstream. In general, the methylmercury levels in plankton and fishes downstream from the dam were higher than those upstream. Higher methylmercury levels observed 200-250 km downstream from the dam during flooding season campaigns may reflect the greater inflow from tributaries and flooding of natural wetlands that occurred at this time.

  16. Water resources review: Ocoee reservoirs, 1990

    Cox, J.P.


    Tennessee Valley Authority (TVA) is preparing a series of reports to make technical information on individual TVA reservoirs readily accessible. These reports provide a summary of reservoir purpose and operation; physical characteristics of the reservoir and watershed; water quality conditions; aquatic biological conditions; and designated, actual and potential uses of the reservoir and impairments of those use. This reservoir status report addressed the three Ocoee Reservoirs in Polk County, Tennessee.

  17. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)


    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  18. Data requirements and acquisition for reservoir characterization

    Jackson, S.; Chang, Ming Ming; Tham, Min.


    This report outlines the types of data, data sources and measurement tools required for effective reservoir characterization, the data required for specific enhanced oil recovery (EOR) processes, and a discussion on the determination of the optimum data density for reservoir characterization and reservoir modeling. The two basic sources of data for reservoir characterization are data from the specific reservoir and data from analog reservoirs, outcrops, and modern environments. Reservoir data can be divided into three broad categories: (1) rock properties (the container) and (2) fluid properties (the contents) and (3)interaction between reservoir rock and fluid. Both static and dynamic measurements are required.

  19. Non-local effects in a stratified glow discharge with dust particles

    Sukhinin, G I; Fedoseev, A V [Institute of Thermophysics SB RAS, Lavrentyev Ave., 1, Novosibirsk, 630090 (Russian Federation); Ramazanov, T S; Amangaliyeva, R Zh; Dosbalayev, M K; Jumabekov, A N [Institute of Experimental and Theoretical Physics, Al Farabi Kazakh National University, Tole Bi, 96a, Almaty, 050012 (Kazakhstan)], E-mail:


    The work is aimed at describing non-local effects in the positive column of a low-pressure stratified dc glow discharge in argon with dust particles in a vertical cylindrical discharge tube. Numerical calculations of plasma parameters in the axis of the discharge tube were performed with the help of a hybrid model based on the solution of a non-local Boltzmann equation for electron energy distribution function (EEDF). Axial distributions of optical emission from striations with dust particles were measured experimentally. Negatively charged dust particles in a low-pressure stratified gas discharge should levitate at the anode-side branch of an electric field distribution above its maximum. At the same time the experiments showed that the dust particles levitate at the cathode side of a stratum. This paradox is explained by the fact that in a low-pressure striated discharge the optical emission distribution is displaced relative to the electric field distribution that was shown both by numerical simulations and experimental measurements.

  20. Effect of Pore-Scale Heterogeneity and Capillary-Viscous Fingering on Commingled Waterflood Oil Recovery in Stratified Porous Media

    Emad W. Al-Shalabi


    Full Text Available Oil recovery prediction and field pilot implements require basic understanding and estimation of displacement efficiency. Corefloods and glass micromodels are two of the commonly used experimental methods to achieve this. In this paper, waterflood recovery is investigated using layered etched glass micromodel and Berea sandstone core plugs with large permeability contrasts. This study focuses mainly on the effect of permeability (heterogeneity in stratified porous media with no cross-flow. Three experimental setups were designed to represent uniformly stratified oil reservoir with vertical discontinuity in permeability. Waterflood recovery to residual oil saturation (Sor is measured through glass micromodel (to aid visual observation, linear coreflood, and forced drainage-imbibition processes by ultracentrifuge. Six oil samples of low-to-medium viscosity and porous media of widely different permeability (darcy and millidarcy ranges were chosen for the study. The results showed that waterflood displacement efficiencies are consistent in both permeability ranges, namely, glass micromodel and Berea sandstone core plugs. Interestingly, the experimental results show that the low permeability zones resulted in higher ultimate oil recovery compared to high permeability zones. At Sor microheterogeneity and fingering are attributed for this phenomenon. In light of the findings, conformance control is discussed for better sweep efficiency. This paper may be of help to field operators to gain more insight into microheterogeneity and fingering phenomena and their impact on waterflood recovery estimation.

  1. Magnetic Field in the Gravitationally Stratified Coronal Loops

    B. N. Dwivedi; A. K. Srivastava


    We study the effect of gravitational stratification on the estimation of magnetic fields in the coronal loops. By using the method of MHD seismology of kink waves for the estimation of magnetic field of coronal loops, we derive a new formula for the magnetic field considering the effect of gravitational stratification. The fast-kink wave is a potential diagnostic tool for the estimation of magnetic field in fluxtubes. We consider the eleven kink oscillation cases observed by TRACE between July 1998 and June 2001. We calculate magnetic field in the stratified loops (str) and compare them with the previously calculated absolute magnetic field (abs). The gravitational stratification efficiently affects the magnetic field estimation in the coronal loops as it affects also the properties of kink waves. We find ≈22% increment in the magnetic field for the smallest ( = 72 Mm) while ≈42% increment in the absolute magnetic field for the longest ( = 406 Mm) coronal loops. The magnetic fields str and abs also increase with the number density, if the loop length does not vary much. The increment in the magnetic field due to gravitational stratification is small at the lower number densities, however, it is large at the higher number densities. We find that damping time of kink waves due to phase-mixing is less in the case of gravitationally stratified loops compared to nonstratified ones. This indicates the more rapid damping of kink waves in the stratified loops. In conclusion, we find that the gravitational stratification efficiently affects the estimation of magnetic field and damping time estimation especially in the longer coronal loops.

  2. Experimental Study of Fluorine Transport Rules in Unsaturated Stratified Soil

    ZHANG Hong-mei; SU Bao-yu; LIU Peng-hua; ZHANG Wei


    With the aid of soil column test models, the transport rules of fluorine contaminants in unsaturated stratified soils are discussed. Curves of F- concentrations at different times and sites in the unsaturated stratified soil were obtained under conditions of continuous injection of fluoride contaminants and water. Based on the analysis of the actual observation data, the values between computed results and observed data were compared. It is shown that the chemical properties of fluorine ions are active. The migration process of fluorine ions in soils is complex. Because of the effect of adsorption and desorption, the curve of the fluorine ion breakthrough curve is not symmetric. Its concentration peak value at each measuring point gradually decays. The tail of the breakthrough curve is long and the process of leaching and purifying using water requires considerable time. Along with the release of OHˉ in the process of fluorine absorption, the pH value of the soil solution changed from neutral to alkalinity during the test process. The first part of the breakthrough curve fitted better than the second part. The main reason is that fluorine does not always exist in the form of fluorinions in groundwater. Given the long test time, fluorinions possibly react with other ions in the soil solution to form complex water-soluble fluorine compounds. Only the retardation factor and source-sink term have been considered in our numerical model, which may leads to errors of computed values. But as a whole the migration rules of fluorine ions are basically correct, which indicates that the established numerical model can be used to simulate the transport rules of fluorine contaminants in unsaturated stratified soils.

  3. Stratified spin-up in a sliced, square cylinder

    Munro, R. J. [Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Foster, M. R. [Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)


    We previously reported experimental and theoretical results on the linear spin-up of a linearly stratified, rotating fluid in a uniform-depth square cylinder [M. R. Foster and R. J. Munro, “The linear spin-up of a stratified, rotating fluid in a square cylinder,” J. Fluid Mech. 712, 7–40 (2012)]. Here we extend that analysis to a “sliced” square cylinder, which has a base-plane inclined at a shallow angle α. Asymptotic results are derived that show the spin-up phase is achieved by a combination of the Ekman-layer eruptions (from the perimeter region of the cylinder's lid and base) and cross-slope-propagating stratified Rossby waves. The final, steady state limit for this spin-up phase is identical to that found previously for the uniform depth cylinder, but is reached somewhat more rapidly on a time scale of order E{sup −1/2}Ω{sup −1}/log (α/E{sup 1/2}) (compared to E{sup −1/2}Ω{sup −1} for the uniform-depth cylinder), where Ω is the rotation rate and E the Ekman number. Experiments were performed for Burger numbers, S, between 0.4 and 16, and showed that for S≳O(1), the Rossby modes are severely damped, and it is only at small S, and during the early stages, that the presence of these wave modes was evident. These observations are supported by the theory, which shows the damping factors increase with S and are numerically large for S≳O(1)

  4. Comparison of hospital-wide and age and location - stratified antibiograms of S. aureus, E. coli, and S. pneumoniae: age- and location-stratified antibiograms


    Background Antibiograms created by aggregating hospital-wide susceptibility data from diverse patients can be misleading. To demonstrate the utility of age- and location-stratified antibiograms, we compared stratified antibiograms for three common bacterial pathogens, E. coli, S. aureus, and S. pneumoniae. We created stratified antibiograms based on patient age (/=65 years), and inpatient or outpatient location using all 2009 E. coli and S. aureus, and all 2008–2009 S. pneumoniae isolates sub...

  5. A reservoir simulation approach for modeling of naturally fractured reservoirs

    H. Mohammadi


    Full Text Available In this investigation, the Warren and Root model proposed for the simulation of naturally fractured reservoir was improved. A reservoir simulation approach was used to develop a 2D model of a synthetic oil reservoir. Main rock properties of each gridblock were defined for two different types of gridblocks called matrix and fracture gridblocks. These two gridblocks were different in porosity and permeability values which were higher for fracture gridblocks compared to the matrix gridblocks. This model was solved using the implicit finite difference method. Results showed an improvement in the Warren and Root model especially in region 2 of the semilog plot of pressure drop versus time, which indicated a linear transition zone with no inflection point as predicted by other investigators. Effects of fracture spacing, fracture permeability, fracture porosity, matrix permeability and matrix porosity on the behavior of a typical naturally fractured reservoir were also presented.

  6. Electromagnetic fields due to dipole antennas over stratified anisotropic media.

    Kong, J. A.


    Solutions to the problem of radiation of dipole antennas in the presence of a stratified anisotropic media are facilitated by decomposing a general wave field into transverse magnetic (TM) and transverse electric (TE) modes. Employing the propagation matrices, wave amplitudes in any region are related to those in any other regions. The reflection coefficients, which embed all the information about the geometrical configuration and the physical constituents of the medium, are obtained in closed form. In view of the general formulation, various special cases are discussed.

  7. Instabilities developed in stratified flows over pronounced obstacles

    Varela, J.; Araújo, M.; Bove, I.; Cabeza, C.; Usera, G.; Martí, Arturo C.; Montagne, R.; Sarasúa, L. G.


    In the present work we study numerical and experimentally the flow of a two-layer stratified fluid over a topographic obstacle. The problem reflects a wide number of oceanographic and meteorological situations, where the stratification plays an important role. We identify the different instabilities developed by studying the pycnocline deformation due to a pronounced obstacle. The numerical simulations were made using the model caffa3D.MB which works with a numerical model of Navier-Stokes equations with finite volume elements in curvilinear meshes. The experimental results are contrasted with numerical simulations. Linear stability analysis predictions are checked with particle image velocimetry (PIV) measurements.

  8. Stratified waveguide grating coupler for normal fiber incidence.

    Wang, Bin; Jiang, Jianhua; Chambers, Diana M; Cai, Jingbo; Nordin, Gregory P


    We propose a new stratified waveguide grating coupler (SWGC) to couple light from a fiber at normal incidence into a planar waveguide. SWGCs are designed to operate in the strong coupling regime without intermediate optics between the fiber and the waveguide. Two-dimensional finite-difference time-domain simulation in conjunction with microgenetic algorithm optimization shows that approximately 72% coupling efficiency is possible for fiber (core size of 8.3 microm and delta=0.36%) to slab waveguide (1.2-microm core and delta=3.1%) coupling. We show that the phase-matching and Bragg conditions are simultaneously satisfied through the fundamental leaky mode.

  9. Magnetorotational instability in weakly ionised, stratified accretion discs

    Salmeron, Roberto Aureliano; Salmeron, Raquel; Wardle, Mark


    The magnetorotational instability (MRI) (Balbus and Hawley 1991, Hawley and Balbus 1991) transports angular momentum radially outwards in accretion discs through the distortion of the magnetic field lines that connect fluid elements. In protostellar discs, low conductivity is important, especially in the inner regions (Gammie 1996, Wardle 1997). As a result, low k modes are relevant and vertical stratification is a key factor of the analysis. However, most models of the MRI in these environments have adopted either the ambipolar diffusion or resistive approximations and have not simultaneously treated stratification and Hall conductivity. We present here a linear analysis of the MRI, including the Hall effect, in a stratified disc.

  10. Enhanced charge transport kinetics in anisotropic, stratified photoanodes.

    Yazdani, Nuri; Bozyigit, Deniz; Utke, Ivo; Buchheim, Jakob; Youn, Seul Ki; Patscheider, Jörg; Wood, Vanessa; Park, Hyung Gyu


    The kinetics of charge transport in mesoporous photoanodes strongly constrains the design and power conversion efficiencies of dye sensitized solar cells (DSSCs). Here, we report a stratified photoanode design with enhanced kinetics achieved through the incorporation of a fast charge transport intermediary between the titania and charge collector. Proof of concept photoanodes demonstrate that the inclusion of the intermediary not only enhances effective diffusion coefficients but also significantly suppresses charge recombination, leading to diffusion lengths two orders of magnitude greater than in standard mesoporous titania photoanodes. The intermediary concept holds promise for higher-efficiency DSSCs.

  11. Thermography for stratified storage. High performance imaging cameras give an insight into the behaviour of combi-solar systems; Thermographie fuer Schichtspeicher. Hochaufloesende Waermebildkameras geben einen Einblick in das Anlagenverhalten von Kombi--Solarsystemen

    Sandler, Martin [EFG Energie fuer Gebaeude e.K., Kaufbeuren (Germany)


    The interaction of all components of solar systems must be right. A decisive factor is that unnecessary heat is stored precisely in order to provide the heat immediately and completely to the user. This can be accomplished with a well-functioning stratified reservoir. From this perspective, the author of the contribution under consideration reports on an investigation of the performance of solar combi-systems using high-resolution thermal imaging cameras.

  12. Perchlorate reduction by microbes inhabiting oil reservoirs

    Liebensteiner, Martin; Stams, Alfons; Lomans, Bart


    Microbial perchlorate and chlorate reduction is a unique type of anaerobic respiration as during reduction of (per)chlorate chlorite is formed, which is then split into chloride and molecular oxygen. In recent years it was demonstrated that (per)chlorate-reducing bacteria may employ oxygenase-dependent pathways for the degradation of aromatic and aliphatic hydrocarbons. These findings suggested that (per)chlorate may be used as oxygen-releasing compound in anoxic environments that contain hydrocarbons, such as polluted soil sites and oil reservoirs. We started to study perchlorate reduction by microbes possibly inhabiting oil reservoirs. One of the organisms studied was Archaeoglobus fulgidus. This extremely thermophilic archaeon is known as a major contributor to souring in hot oil reservoirs. A. fulgidus turned out to be able to use perchlorate as terminal electron acceptor for growth with lactate (Liebensteiner et al 2013). Genome based physiological experiments indicated that A. fulgidus possesses a novel perchlorate reduction pathway. Perchlorate is first reduced to chlorite, but chlorite is not split into chloride and molecular oxygen as occurs in bacteria. Rather, chlorite reacts chemically with sulfide, forming oxidized sulfur compounds, which are reduced to sulfide in the electron transport chain by the archaeon. The dependence of perchlorate reduction on sulfur compounds could be shown. The implications of our findings as novel strategy for microbiological enhanced oil recovery and for souring mitigation are discussed. Liebensteiner MG, Pinkse MWH, Schaap PJ, Stams AJM and Lomans BP (2013) Archaeal (per)chlorate reduction at high temperature, a matter of abiotic-biotic reactions. Science 340: 85-87

  13. A-Stratified Computerized Adaptive Testing with Unequal Item Exposure across Strata.

    Deng, Hui; Chang, Hua-Hua

    The purpose of this study was to compare a proposed revised a-stratified, or alpha-stratified, USTR method of test item selection with the original alpha-stratified multistage computerized adaptive testing approach (STR) and the use of maximum Fisher information (FSH) with respect to test efficiency and item pool usage using simulated computerized…


    Niculae Iulian TEODORESCU


    Full Text Available The Surduc reservoir was projected to ensure more water when water is scarce and to thus provide especially the city Timisoara, downstream of it with water.The accumulation is placed on the main affluent of the Bega river, Gladna in the upper part of its watercourse.The dam behind which this accumulation was created is of a frontal type made of enrochements with a masque made of armed concrete on the upstream part and protected/sustained by grass on the downstream. The dam is 130m long on its coping and a constructed height of 34 m. It is also endowed with spillway for high water and two bottom outlets formed of two conduits, at the end of which is the microplant. The second part of my paper deals with the hydrometric analysis of the Accumulation Surduc and its impact upon the flow, especially the maximum run-off. This influence is exemplified through the high flood from the 29th of July 1980, the most significant flood recorded in the basin with an apparition probability of 0.002%.

  15. Sequential stratified sampling belief propagation for multiple targets tracking


    Rather than the difficulties of highly non-linear and non-Gaussian observation process and the state distribution in single target tracking, the presence of a large, varying number of targets and their interactions place more challenge on visual tracking. To overcome these difficulties, we formulate multiple targets tracking problem in a dynamic Markov network which consists of three coupled Markov random fields that model the following: a field for joint state of multi-target, one binary process for existence of individual target, and another binary process for occlusion of dual adjacent targets. By introducing two robust functions, we eliminate the two binary processes, and then apply a novel version of belief propagation called sequential stratified sampling belief propagation algorithm to obtain the maximum a posteriori (MAP) estimation in the dynamic Markov network. By using stratified sampler, we incorporate bottom-up information provided by a learned detector (e.g. SVM classifier) and belief information for the messages updating. Other low-level visual cues (e.g. color and shape) can be easily incorporated in our multi-target tracking model to obtain better tracking results. Experimental results suggest that our method is comparable to the state-of-the-art multiple targets tracking methods in several test cases.

  16. Penetrative convection in stratified fluids: velocity and temperature measurements

    M. Moroni


    Full Text Available The flux through the interface between a mixing layer and a stable layer plays a fundamental role in characterizing and forecasting the quality of water in stratified lakes and in the oceans, and the quality of air in the atmosphere. The evolution of the mixing layer in a stably stratified fluid body is simulated in the laboratory when "Penetrative Convection" occurs. The laboratory model consists of a tank filled with water and subjected to heating from below. The methods employed to detect the mixing layer growth were thermocouples for temperature data and two image analysis techniques, namely Laser Induced Fluorescence (LIF and Feature Tracking (FT. LIF allows the mixing layer evolution to be visualized. Feature Tracking is used to detect tracer particle trajectories moving within the measurement volume. Pollutant dispersion phenomena are naturally described in the Lagrangian approach as the pollutant acts as a tag of the fluid particles. The transilient matrix represents one of the possible tools available for quantifying particle dispersion during the evolution of the phenomenon.


    Bobileva Tatiana Nikolaevna


    Full Text Available Almost all subsurface rocks used as foundations for various types of structures are stratified. Such heterogeneity may cause specific behaviour of the materials under strain. Differential equations describing the behaviour of such materials contain rapidly fluctuating coefficients, in view of this, solution of such equations is more time-consuming when using today’s computers. The method of asymptotic averaging leads to getting homogeneous medium under study to averaged equations with fixed factors. The present article is concerned with stratified soil mass consisting of pair-wise alternative isotropic elastic layers. In the results of elastic modules averaging, the present soil mass with horizontal rock stratification is simulated by homogeneous transversal-isotropic half-space with isotropy plane perpendicular to the standing axis. Half-space is loosened by a vertical alveole of circular cross-section, and virgin ground is under its own weight. For horizontal parting planes of layers, the following two types of surface conditions are set: ideal contact and backlash without cleavage. For homogeneous transversal-isotropic half-space received with a vertical alveole, the analytical solution of S.G. Lekhnitsky, well known in scientific papers, is used. The author gives expressions for stress components and displacements in soil mass for different marginal conditions on the alveole surface. Such research problems arise when constructing and maintaining buildings and when composite materials are used.

  18. Stability of steam-water countercurrent stratified flow

    Lee, S C


    Two flow instabilities which limit the normal condensation processes in countercurrent stratified steam-water flow have been identified experimentally: flooding and condensation-induced waterhammer. In order to initiate condensation-induced waterhammer in nearly horizontal or moderately-inclined steam/subcooled-water flow, two conditions, the appearance of a wavy interface and complete condensation of the incoming steam, are necessary. Analyses of these conditions are performed on a basis of flow stability and heat transfer considerations. Flooding data for several inclinations and channel heights are collected. Effects of condensation, inclination angle and channel height on the flooding characteristics are discussed. An envelope theory for the onset of flooding in inclined stratified flow is developed, which agrees well with the experimental data. Some empirical information on basic flow parameters, such as mean film thickness and interfacial friction factor required for this theory are measured. The previous viewpoints on flooding appear not to conflict with the present experimental data in nearly horizontal flow but the flooding phenomena in nearly vertical flow appear to be more complicated than those described by these viewpoints because of liquid droplet entrainment.

  19. 2010 Fresno Reservoir Sedimentation Survey

    US Bureau of Reclamation, Department of the Interior — The Bureau of Reclamation (Reclamation) surveyed Fresno Reservoir in June of 2010 to develop a topographic map and compute a storage-elevation relationship...

  20. 2011 Groundhog Reservoir Bathymetric Contours

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey performed a bathymetric survey of Groundhog Reservoir using a man-operated boat-mounted multibeam echo sounder integrated with a global...

  1. Glendo Reservoir 2003 Sedimenation Survey

    US Bureau of Reclamation, Department of the Interior — The Bureau of Reclamation (Reclamation) surveyed Glendo Reservoir in May and July of 2003 and January 2005 to develop a new topographic map and compute a present...

  2. Strongly Stratified Turbulence Wakes and Mixing Produced by Fractal Wakes

    Dimitrieva, Natalia; Redondo, Jose Manuel; Chashechkin, Yuli; Fraunie, Philippe; Velascos, David


    This paper describes Shliering and Shadowgraph experiments of the wake induced mixing produced by tranversing a vertical or horizontal fractal grid through the interfase between two miscible fluids at low Atwood and Reynolds numbers. This is a configuration design to models the mixing across isopycnals in stably-stratified flows in many environmental relevant situations (either in the atmosphere or in the ocean. The initial unstable stratification is characterized by a reduced gravity: g' = gΔρ ρ where g is gravity, Δρ being the initial density step and ρ the reference density. Here the Atwood number is A = g' _ 2 g . The topology of the fractal wake within the strong stratification, and the internal wave field produces both a turbulent cascade and a wave cascade, with frecuen parametric resonances, the envelope of the mixing front is found to follow a complex non steady 3rd order polinomial function with a maximum at about 4-5 Brunt-Vaisalla non-dimensional time scales: t/N δ = c1(t/N) + c2g Δρ ρ (t/N)2 -c3(t/N)3. Conductivity probes and Shliering and Shadowgraph visual techniques, including CIV with (Laser induced fluorescence and digitization of the light attenuation across the tank) are used in order to investigate the density gradients and the three-dimensionality of the expanding and contracting wake. Fractal analysis is also used in order to estimate the fastest and slowest growing wavelengths. The large scale structures are observed to increase in wave-length as the mixing progresses, and the processes involved in this increase in scale are also examined.Measurements of the pointwise and horizontally averaged concentrations confirm the picture obtained from past flow visualization studies. They show that the fluid passes through the mixing region with relatively small amounts of molecular mixing,and the molecular effects only dominate on longer time scales when the small scales have penetrated through the large scale structures. The Non

  3. Understanding the True Strimulated Reservoir Volume in Shale Reservoirs

    Hussain, Maaruf


    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  4. Microbial Life in an Underground Gas Storage Reservoir

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin


    contrast, bacteria belonging to Enterobacteriaceae were the most frequently encountered species in the sample from the water production well. Furthermore, bacterial sequences belonging to thermophiles within the family Thermotogaceae were found in all samples investigated. Archaeal community analysis revealed the dominance of methanogens clustering with members of Methanosarcinaceae, Methanomicrobiaceae and Methanobacteriaceae in three reservoir samples and the sample from the water production well. Cultivations of water samples under an atmosphere of storage gas blended by hydrogen as electron source at in situ-like conditions (45°C, 92 bar, p(H2) = 6 bar) revealed that hydrogen was quickly consumed in all laboratory microcosms with reservoir samples. Quantitative PCR analysis of the gene encoding for methyl-coenzyme M reductase (mcrA) along with reaction educt and product analyses suggested that methanogenesis was primarily responsible for hydrogen consumption during the experiments. While it is currently in question whether or not the laboratory data can be upscaled to actual reservoir conditions, they may allude to fermenting and thermophilic bacteria playing an important role for the investigated reservoir microbiology and also indicate potential stimulation of hydrogenotrophic methanogens if hydrogen would be introduced into the reservoir.

  5. Chickamauga reservoir embayment study - 1990

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.


    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  6. Capacity sharing of water reservoirs

    Dudley, Norman J.; Musgrave, Warren F.


    The concept of a water use property right is developed which does not apply to water volumes as such but to a share of the capacity (not contents) of river storage reservoirs and their inflows. The shareholders can withdraw water from their share over time in accordance with their preferences for stability of water deliveries. The reservoir authority does not manage reservoir releases but keeps record of individual shareholder's withdrawals and net inflows to monitor the quantity of water in each shareholder's capacity share. A surplus of total reservoir contents over the sum of the contents of the individual shareholder's capacity shares will accrue over time. Two different criteria for its periodic distribution among shareholders are compared. A previous paper Dudley (this issue(b)) noted a loss of short-run economic efficiency as reservoir and farm management decision making become separated. This is largely overcome by capacity sharing which allows each user to integrate the management of their portion of the reservoir and their farming operations. The nonattenuated nature of the capacity sharing water rights also promotes long-run economic efficiency.

  7. Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report

    Kelkar, M.


    This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.

  8. Petroleum reservoir data for testing simulation models

    Lloyd, J.M.; Harrison, W.


    This report consists of reservoir pressure and production data for 25 petroleum reservoirs. Included are 5 data sets for single-phase (liquid) reservoirs, 1 data set for a single-phase (liquid) reservoir with pressure maintenance, 13 data sets for two-phase (liquid/gas) reservoirs and 6 for two-phase reservoirs with pressure maintenance. Also given are ancillary data for each reservoir that could be of value in the development and validation of simulation models. A bibliography is included that lists the publications from which the data were obtained.

  9. Hydrodynamics of stratified epithelium: steady state and linearized dynamics

    Yeh, Wei-Ting


    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue is assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description for tissue dynamics at long-wavelength, long-time limit is developed, and the analysis reveals important insight for the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface could enhance small perturbations. This destabilizing mechanism is general for continuous self-renewal multi-layered tissues, it could be related to the origin of certain tissue morphology and developing pattern.

  10. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    Yeh, Wei-Ting; Chen, Hsuan-Yi


    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  11. Local Radiation MHD Instabilities in Magnetically Stratified Media

    Tao, Ted


    We study local radiation magnetohydrodynamic instabilities in static, optically thick, vertically stratified media with constant flux mean opacity. We include the effects of vertical gradients in a horizontal background magnetic field. Assuming rapid radiative diffusion, we use the zero gas pressure limit as an entry point for investigating the coupling between the photon bubble instability and the Parker instability. Apart from factors that depend on wavenumber orientation, the Parker instability exists for wavelengths longer than a characteristic wavelength lambda_{tran}, while photon bubbles exist for wavelengths shorter than lambda_{tran}. The growth rate in the Parker regime is independent of the orientation of the horizontal component of the wavenumber when radiative diffusion is rapid, but the range of Parker-like wavenumbers is extended if there exists strong horizontal shear between field lines (i.e. horizontal wavenumber perpendicular to the magnetic field). Finite gas pressure introduces an additio...

  12. The Risk-Stratified Osteoporosis Strategy Evaluation study (ROSE)

    Rubin, Katrine Hass; Holmberg, Teresa; Rothmann, Mette Juel


    The risk-stratified osteoporosis strategy evaluation study (ROSE) is a randomized prospective population-based study investigating the effectiveness of a two-step screening program for osteoporosis in women. This paper reports the study design and baseline characteristics of the study population....... 35,000 women aged 65-80 years were selected at random from the population in the Region of Southern Denmark and-before inclusion-randomized to either a screening group or a control group. As first step, a self-administered questionnaire regarding risk factors for osteoporosis based on FRAX......(®) was issued to both groups. As second step, subjects in the screening group with a 10-year probability of major osteoporotic fractures ≥15 % were offered a DXA scan. Patients diagnosed with osteoporosis from the DXA scan were advised to see their GP and discuss pharmaceutical treatment according to Danish...

  13. Short-wave vortex instability in stratified flow

    Bovard, Luke


    In this paper we investigate a new instability of the Lamb-Chaplygin dipole in a stratified fluid. Through numerical linear stability analysis, a secondary peak in the growth rate emerges at vertical scales about an order of magnitude smaller than the buoyancy scale $L_{b}=U/N$ where $U$ is the characteristic velocity and $N$ is the Brunt-V\\"{a}is\\"{a}l\\"{a} frequency. This new instability exhibits a growth rate that is similar to, and even exceeds, that of the zigzag instability, which has the characteristic length of the buoyancy scale. This instability is investigated for a wide range of Reynolds $Re=2000-20000$ and horizontal Froude numbers $F_{h}=0.05-0.2$, where $F_{h}=U/NR$, $Re=UR/\

  14. Internal combustion engine using premixed combustion of stratified charges

    Marriott, Craig D.; Reitz, Rolf D. (Madison, WI


    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  15. A study of stratified gas-liquid pipe flow

    Johnson, George W.


    This work includes both theoretical modelling and experimental observations which are relevant to the design of gas condensate transport lines. Multicomponent hydrocarbon gas mixtures are transported in pipes over long distances and at various inclinations. Under certain circumstances, the heavier hydrocarbon components and/or water vapour condense to form one or more liquid phases. Near the desired capacity, the liquid condensate and water is efficiently transported in the form of a stratified flow with a droplet field. During operating conditions however, the flow rate may be reduced allowing liquid accumulation which can create serious operational problems due to large amounts of excess liquid being expelled into the receiving facilities during production ramp-up or even in steady production in severe cases. In particular, liquid tends to accumulate in upward inclined sections due to insufficient drag on the liquid from the gas. To optimize the transport of gas condensates, a pipe diameters should be carefully chosen to account for varying flow rates and pressure levels which are determined through the knowledge of the multiphase flow present. It is desirable to have a reliable numerical simulation tool to predict liquid accumulation for various flow rates, pipe diameters and pressure levels which is not presently accounted for by industrial flow codes. A critical feature of the simulation code would include the ability to predict the transition from small liquid accumulation at high flow rates to large liquid accumulation at low flow rates. A semi-intermittent flow regime of roll waves alternating with a partly backward flowing liquid film has been observed experimentally to occur for a range of gas flow rates. Most of the liquid is transported in the roll waves. The roll wave regime is not well understood and requires fundamental modelling and experimental research. The lack of reliable models for this regime leads to inaccurate prediction of the onset of

  16. Turbulent reconnection of magnetic bipoles in stratified turbulence

    Jabbari, Sarah; Mitra, Dhrubaditya; Kleeorin, Nathan; Rogachevskii, Igor


    We consider strongly stratified forced turbulence in a plane-parallel layer with helicity and corresponding large-scale dynamo action in the lower part and nonhelical turbulence in the upper. The magnetic field is found to develop strongly concentrated bipolar structures near the surface. They form elongated bands with a sharp interface between opposite polarities. Unlike earlier experiments with imposed magnetic field, the inclusion of rotation does not strongly suppress the formation of these structures. We perform a systematic numerical study of this phenomenon by varying magnetic Reynolds number, scale separation ratio, and Coriolis number. We also focus on the formation of the current sheet between bipolar regions where reconnection of oppositely oriented field lines occurs. We determine the reconnection rate by measuring either the inflow velocity in the vicinity of the current sheet or by measuring the electric field in the reconnection region. We demonstrate that for small Lundquist number, S1000, the...

  17. Direct simulation of the stably stratified turbulent Ekman layer

    Coleman, G. N.; Ferziger, J. H.; Spalart, P. R.


    The Navier-Stokes equations and the Boussinesq approximation were used to compute a 3D time-dependent turbulent flow in the stably stratified Ekman layer over a smooth surface. The simulation data are found to be in very good agreement with atmospheric measurements when nondimensionalized according to Nieuwstadt's local scaling scheme. Results suggest that, when Reynolds number effects are taken into account, the 'constant Froud number' stable layer model (Brost and Wyngaard, 1978) and the 'shearing length' stable layer model (Hunt, 1985) for the dissipitation rate of turbulent kinetic energy are both valid. It is concluded that there is good agreement between the direct numerical simulation results and large-eddy simulation results obtained by Mason and Derbyshire (1990).

  18. Magnetorotational instability in stratified, weakly ionised accretion discs

    Salmeron, Roberto Aureliano; Salmeron, Raquel; Wardle, Mark


    We present a linear analysis of the vertical structure and growth of the magnetorotational instability in stratified, weakly ionised accretion discs, such as protostellar and quiescent dwarf novae systems. The method includes the effects of the magnetic coupling, the conductivity regime of the fluid and the strength of the magnetic field, which is initially vertical. The conductivity is treated as a tensor and assumed constant with height. We obtained solutions for the structure and growth rate of global unstable modes for different conductivity regimes, strengths of the initial magnetic field and coupling between ionised and neutral components of the fluid. The envelopes of short-wavelenght perturbations are determined by the action of competing local growth rates at different heights, driven by the vertical stratification of the disc. Ambipolar diffusion perturbations peak consistently higher above the midplane than modes including Hall conductivity. For weak coupling, perturbations including the Hall effec...

  19. Second order closure for stratified convection: bulk region and overshooting

    Biferale, L; Sbragaglia, M; Scagliarini, A; Toschi, F; Tripiccione, R


    The parameterization of small-scale turbulent fluctuations in convective systems and in the presence of strong stratification is a key issue for many applied problems in oceanography, atmospheric science and planetology. In the presence of stratification, one needs to cope with bulk turbulent fluctuations and with inversion regions, where temperature, density -or both- develop highly non-linear mean profiles due to the interactions between the turbulent boundary layer and the unmixed -stable- flow above/below it. We present a second order closure able to cope simultaneously with both bulk and boundary layer regions, and we test it against high-resolution state-of-the-art 2D numerical simulations in a convective and stratified belt for values of the Rayleigh number, up to Ra = 10^9. Data are taken from a Rayleigh-Taylor system confined by the existence of an adiabatic gradient.

  20. Nonlinear gravity-wave interactions in stratified turbulence

    Remmel, Mark; Sukhatme, Jai; Smith, Leslie M.


    To investigate the dynamics of gravity waves in stratified Boussinesq flows, a model is derived that consists of all three-gravity-wave-mode interactions (the GGG model), excluding interactions involving the vortical mode. The GGG model is a natural extension of weak turbulence theory that accounts for exact three-gravity-wave resonances. The model is examined numerically by means of random, large-scale, high-frequency forcing. An immediate observation is a robust growth of the so-called vertically sheared horizontal flow (VSHF). In addition, there is a forward transfer of energy and equilibration of the nonzero-frequency (sometimes called "fast") gravity-wave modes. These results show that gravity-wave-mode interactions by themselves are capable of systematic interscale energy transfer in a stratified fluid. Comparing numerical simulations of the GGG model and the full Boussinesq system, for the range of Froude numbers ( Fr) considered (0.05 ≤ Fr ≤ 1), in both systems the VSHF is hardest to resolve. When adequately resolved, VSHF growth is more vigorous in the GGG model. Furthermore, a VSHF is observed to form in milder stratification scenarios in the GGG model than the full Boussinesq system. Finally, fully three-dimensional nonzero-frequency gravity-wave modes equilibrate in both systems and their scaling with vertical wavenumber follows similar power-laws. The slopes of the power-laws obtained depend on Fr and approach -2 (from above) at Fr = 0.05, which is the strongest stratification that can be properly resolved with our computational resources.

  1. Visualization periodic flows in a continuously stratified fluid.

    Bardakov, R.; Vasiliev, A.


    To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken

  2. Isotopic insights into microbial sulfur cycling in oil reservoirs

    Christopher G Hubbard


    Full Text Available Microbial sulfate reduction in oil reservoirs (biosouring is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of -30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters containing elevated concentrations of volatile fatty acids and injection water containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures.

  3. Thermal electron-tunneling devices as coolers and amplifiers

    Shanhe Su; Yanchao Zhang; Jincan Chen; Tien-Mo Shih


    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by...

  4. basement reservoir geometry and properties

    Walter, bastien; Geraud, yves; Diraison, marc


    Basement reservoirs are nowadays frequently investigated for deep-seated fluid resources (e.g. geothermal energy, groundwater, hydrocarbons). The term 'basement' generally refers to crystalline and metamorphic formations, where matrix porosity is negligible in fresh basement rocks. Geothermal production of such unconventional reservoirs is controlled by brittle structures and altered rock matrix, resulting of a combination of different tectonic, hydrothermal or weathering phenomena. This work aims to characterize the petro-structural and petrophysical properties of two basement surface analogue case studies in geological extensive setting (the Albert Lake rift in Uganda; the Ifni proximal margin of the South West Morocco Atlantic coast). Different datasets, using field structural study, geophysical acquisition and laboratory petrophysical measurements, were integrated to describe the multi-scale geometry of the porous network of such fractured and weathered basement formations. This study points out the multi-scale distribution of all the features constituting the reservoir, over ten orders of magnitude from the pluri-kilometric scale of the major tectonics structures to the infra-millimetric scale of the secondary micro-porosity of fractured and weathered basements units. Major fault zones, with relatively thick and impermeable fault core structures, control the 'compartmentalization' of the reservoir by dividing it into several structural blocks. The analysis of these fault zones highlights the necessity for the basement reservoirs to be characterized by a highly connected fault and fracture system, where structure intersections represent the main fluid drainage areas between and within the reservoir's structural blocks. The suitable fluid storage areas in these reservoirs correspond to the damage zone of all the fault structures developed during the tectonic evolution of the basement and the weathered units of the basement roof developed during pre

  5. Petroleum geochemical proxies for reservoir engineering parameters

    Bennett, B. [Petroleum Reservoir Group (PRG), Department of Geology and Geophysics, University of Calgary, 2500 University Drive NW, Calgary, Alberta (Canada); Lager, A. [NRG: School of Civil Engineering and Geosciences, Drummond Building, The University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Potter, D.K.; Buckman, J.O. [Institute of Petroleum Engineering, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS (United Kingdom); Larter, S.R. [Petroleum Reservoir Group (PRG), Department of Geology and Geophysics, University of Calgary, 2500 University Drive NW, Calgary, Alberta (Canada); NRG: School of Civil Engineering and Geosciences, Drummond Building, The University, Newcastle upon Tyne, NE1 7RU (United Kingdom)


    The prediction of fluid flow behaviour in petroleum reservoirs is influenced by the physical and chemical processes active in interacting crude oil/brine/rock systems. It is usually not possible to assess these complex systems directly so proxies for molecular scale behaviour are needed. By their very nature, polar non-hydrocarbons are sensitive to fluid-rock interactions, and if properly exploited they may be utilised as proxies for describing reservoir engineering properties (e.g. wettability) that are also sensitive to fluid-rock interactions. We have identified a group of aromatic oxygen (alkylphenols and alkylfluorenones) and aromatic nitrogen (alkylcarbazoles) compounds present in petroleum that appear to respond to variations in fluid-rock properties. Here we describe the chemical and physical changes in a series of core samples obtained from North Sea reservoirs. A number of petrophysical parameters displayed strong correlations with polar non-hydrocarbon occurrence. For example, deflections in gamma ray logs in response to clay content in a coarsening upwards sandstone unit also showed similar deflections from a number of geochemical logs. A core-flood experiment was designed to monitor the chemical and physical changes during oil migration in a siltstone core. Following completion of the core-flood experiment, Environmental Scanning Electron Microscopy (ESEM) analysis of core samples indicated hydrophilic and hydrophobic surface tendencies grading throughout the core. The distributions of polar non-hydrocarbons (e.g. C{sub 0}-C{sub 3}-phenols) appear to correspond closely to the observed wettability alteration. The results confirm the potential for developing proxies for fluid-rock interactions through monitoring the surface active compounds present in the polar non-hydrocarbon fraction of petroleum. (author)

  6. Application of Integrated Reservoir management and Reservoir Characterization to Optimize Infill Drilling

    B. Pregger; D. Davies; D. Moore; G. Freeman; J. Callard; J.W. Nevans; L. Doublet; R. Vessell; T. Blasingame


    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  7. Reservoir Protection Technology in China: Research & Application

    Li Qiangui; Wu Juan; Kang Yili


    @@ Great development of reservoir protection technology (RPT) has been achieved since 1996, including oil and gas reservoir protection for exploration wells, reservoir protection during underbalanced drilling, protection of fractured tight sandstone gas reservoir, and reservoir protection while increase production and reconstructing, development and enhanced oil recovery (EOR) etc. It has stepped into a new situation with special features and advantage. These technical advancements marked that China's RTP have realized leaps from porous reservoirs to fractured reservoirs,from conventional medium-to-low permeability reservoirs to unconventional reservoirs, from oil and gas producers to exploration wells, and from application mainly in drilling and completion processes to application in stimulation,development, production and EOR processes.

  8. Multilevel techniques for Reservoir Simulation

    Christensen, Max la Cour

    The subject of this thesis is the development, application and study of novel multilevel methods for the acceleration and improvement of reservoir simulation techniques. The motivation for addressing this topic is a need for more accurate predictions of porous media flow and the ability to carry...... Full Approximation Scheme) • Variational (Galerkin) upscaling • Linear solvers and preconditioners First, a nonlinear multigrid scheme in the form of the Full Approximation Scheme (FAS) is implemented and studied for a 3D three-phase compressible rock/fluids immiscible reservoir simulator...... based on element-based Algebraic Multigrid (AMGe). In particular, an advanced AMGe technique with guaranteed approximation properties is used to construct a coarse multilevel hierarchy of Raviart-Thomas and L2 spaces for the Galerkin coarsening of a mixed formulation of the reservoir simulation...

  9. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Nurhandoko, Bagus Endar B.; Susilowati


    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir's layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir's character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  10. Smart Waterflooding in Carbonate Reservoirs

    Zahid, Adeel

    During the last decade, smart waterflooding has been developed into an emerging EOR technology both for carbonate and sandstone reservoirs that does not require toxic or expensive chemicals. Although it is widely accepted that different salinity brines may increase the oil recovery for carbonate...... reservoirs, understanding of the mechanism of this increase is still developing. To understand this smart waterflooding process, an extensive research has been carried out covering a broad range of disciplines within surface chemistry, thermodynamics of crude oil and brine, as well as their behavior...


    Daniel Constantin DIACONU


    Full Text Available Siriu reservoir, owes it`s creation to the dam built on the river Buzau, in the town which bears the same name. The reservoir has a hydro energetic role, to diminish the maximum flow and to provide water to the localities below. The partial exploitation of the lake, began in 1984; Since that time, the initial bed of the river began to accumulate large quantities of alluvia, reducing the retention capacity of the lake, which had a volume of 125 million m3. The changes produced are determined by many topographic surveys at the bottom of the lake.

  12. Stratified flows with variable density: mathematical modelling and numerical challenges.

    Murillo, Javier; Navas-Montilla, Adrian


    Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux

  13. Deep silicon maxima in the stratified oligotrophic Mediterranean Sea

    Y. Crombet


    Full Text Available The silicon biogeochemical cycle has been studied in the Mediterranean Sea during late summer/early autumn 1999 and summer 2008. The distribution of nutrients, particulate carbon and silicon, fucoxanthin (Fuco, and total chlorophyll-a (TChl-a were investigated along an eastward gradient of oligotrophy during two cruises (PROSOPE and BOUM encompassing the entire Mediterranean Sea during the stratified period. At both seasons, surface waters were depleted in nutrients and the nutriclines gradually deepened towards the East, the phosphacline being the deepest in the easternmost Levantine basin. Following the nutriclines, parallel deep maxima of biogenic silica (DSM, fucoxanthin (DFM and TChl-a (DCM were evidenced during both seasons with maximal concentrations of 0.45 μmol L−1 for BSi, 0.26 μg L−1 for Fuco, and 1.70 μg L−1 for TChl-a, all measured during summer. Contrary to the DCM which was a persistent feature in the Mediterranean Sea, the DSM and DFMs were observed in discrete areas of the Alboran Sea, the Algero-Provencal basin, the Ionian sea and the Levantine basin, indicating that diatoms were able to grow at depth and dominate the DCM under specific conditions. Diatom assemblages were dominated by Chaetoceros spp., Leptocylindrus spp., Pseudonitzschia spp. and the association between large centric diatoms (Hemiaulus hauckii and Rhizosolenia styliformis and the cyanobacterium Richelia intracellularis was observed at nearly all sites. The diatom's ability to grow at depth is commonly observed in other oligotrophic regions and could play a major role in ecosystem productivity and carbon export to depth. Contrary to the common view that Si and siliceous phytoplankton are not major components of the Mediterranean biogeochemistry, we suggest here that diatoms, by persisting at depth during the stratified period, could contribute to a

  14. Fishing and the oceanography of a stratified shelf sea

    Sharples, Jonathan; Ellis, Jim R.; Nolan, Glenn; Scott, Beth E.


    Fishing vessel position data from the Vessel Monitoring System (VMS) were used to investigate fishing activity in the Celtic Sea, a seasonally-stratifying, temperate region on the shelf of northwest Europe. The spatial pattern of fishing showed that three main areas are targeted: (1) the Celtic Deep (an area of deeper water with fine sediments), (2) the shelf edge, and (3) an area covering several large seabed banks in the central Celtic Sea. Data from each of these regions were analysed to examine the contrasting seasonality of fishing activity, and to highlight where the spring-neap tidal cycle appears to be important to fishing. The oceanographic characteristics of the Celtic Sea were considered alongside the distribution and timing of fishing, illustrating likely contrasts in the underlying environmental drivers of the different fished regions. In the central Celtic Sea, fishing mainly occurred during the stratified period between April and August. Based on evidence provided in other papers of this Special Issue, we suggest that the fishing in this area is supported by (1) a broad increase in primary production caused by lee-waves generated by seabed banks around spring tides driving large supplies of nutrients into the photic zone, and (2) greater concentrations of zooplankton within the region influenced by the seabed banks and elevated primary production. In contrast, while the shelf edge is a site of elevated surface chlorophyll, previous work has suggested that the periodic mixing generated by an internal tide at the shelf edge alters the size-structure of the phytoplankton community which fish larvae from the spawning stocks along the shelf edge are able to exploit. The fishery for Nephrops norvegicus in the Celtic Deep was the only one to show a significant spring-neap cycle, possibly linked to Nephrops foraging outside their burrows less during spring tides. More tentatively, the fishery for Nephrops correlated most strongly with a localised shift in

  15. Geothermal reservoir engineering. Part 1. Reservoir assessment; Chinetsu choryuso kogaku. 1. Choryuso hyoka

    Ishido, T. [Geological Survey of Japan, Tsukuba, Ibaraki (Japan)


    This paper is the introduction entitled `Reservoir Assessment` of a lecture on geothermal reservoir engineering. Geothermal resources are described first. The amount of heat released from the inner part of the earth to the surface is 4.2 billion watts. The present technology is able to develop up to 2 to 3 km from the surface. In the section of Geothermal Reservoirs, the concept models of geothermal systems are explained. The development of geothermal reservoirs is essentially to collect heat from the reservoirs. Basically, 2 processes are considered, viz. Cold Sweep and In Situ Boiling. The technical field that is closely related to the reservoir assessment is the geothermal reservoir engineering and this was born in 1970`s. The reservoir modeling is dealt with dividing into 3 headings, viz. Mathematical model and reservoir simulator, Making reservoir model and History of reservoir model at Wairakei. The production forecast and the post-production behavior are also described. 12 refs., 15 figs., 2 tabs.

  16. Carbon reservoirs in temperate South American Nothofagus forests.

    Böswald, Klaus; Lencinas, José D; Loguercio, Gabriel


    Humans are influencing the global carbon (C) cycle due to the combustion of fossil fuels and due to changes in land use management. These activities are fostering the manmade greenhouse effect and thus global climate change. Negative effects for life on earth are accounted for. Among others the international climate debate focused attention on forests and forestry, knowing about their considerable influence on global climate change. Whilst the global C budget is described fairly well, there is a lack of regional data describing the C reservoirs and flows in detail. This has to be constituted especially for forests in developing countries. This paper presents an investigation at regional scale of the C reservoirs in a South American forest ecosystem. The investigation puts emphasis on the area and stand volume estimation and the development of expansion and reduction factors. Vegetation types are classified and stratified, determining the corresponding areas and estimating the stand volume. Converting factors are developed to calculate C in branches and roots as a percentage of standing wood measured by inventories.

  17. Fingerprinting Persistent Turbidity in Sheep Creek Reservoir, Owhyee, Nevada

    Ransom, R. N.; Hooper, R. L.; Kerner, D.; Nicols, S.


    Sheep Creek Reservoir near Owyhee, NV is historically a quality rainbow trout fishery. Persistent high-turbidity has been an issue since a major storm event in 2005 resulted in surface water runoff into the Reservoir. The high turbidity is adversely impacting the quality of the fishery. Initial turbidity measurements in 2005 were upwards of 80NTU and these numbers have only decreased to 30NTU over the past two summers. Field parameters indicate the turbidity is associated with high total suspended solids (TSS) and not algae. Five water samples collected from around the reservoir during June, 2007 indicated uniform TSS values in the range of 5 to 12mg/L and oriented powder x-ray diffraction(XRD) and transmission electron microscopy(TEM) analyses of suspended sediment shows very uniform suspended particulate mineralogy including smectite, mixed layer illite/smectite (I/S), discrete illite, lesser amounts of kaolin, sub-micron quartz and feldspar. Diatoms represent a ubiquitous but minor component of the suspended solids. Six soil samples collected from possible source areas around the reservoir were analyzed using both XRD and TEM to see if a source area for the suspended solids could be unambiguously identified. Soils on the east side of the reservoir contain smectite and mixed layer I/S but very little of the other clays. The less than 2 micron size fraction from soils collected from a playa on the topographic bench immediately to the west of the reservoir show a mineralogic finger-print essentially identical to the current suspended sediment. The suspended sediment probably originates on the bench to the west of the reservoir and cascades into the reservoir over the topographic break during extreme storm events. The topographic relief, short travel distance and lack of a suitable vegetated buffer zone to the west are all consistent with a primary persistent suspended sediment source from the west. Identification of the sediment source allows for design of a cost

  18. Turbulence comes in bursts in stably stratified flows

    Rorai, C; Pouquet, A


    There is a clear distinction between simple laminar and complex turbulent fluids. But in some cases, as for the nocturnal planetary boundary layer, a stable and well-ordered flow can develop intense and sporadic bursts of turbulent activity which disappear slowly in time. This phenomenon is ill-understood and poorly modeled; and yet, it is central to our understanding of weather and climate dynamics. We present here a simple model which shows that in stably stratified turbulence, the stronger bursts can occur when the flow is expected to be more stable. The bursts are generated by a rapid non-linear amplification of energy stored in waves, and are associated with energetic interchanges between vertical velocity and temperature (or density) fluctuations. Direct numerical simulations on grids of 2048^3 points confirm this somewhat paradoxical result of measurably stronger events for more stable flows, displayed not only in the temperature and vertical velocity derivatives, but also in the amplitude of the field...

  19. DNS of stratified spatially-developing turbulent thermal boundary layers

    Araya, Guillermo; Castillo, Luciano; Jansen, Kenneth


    Direct numerical simulations (DNS) of spatially-developing turbulent thermal boundary layers under stratification are performed. It is well known that the transport phenomena of the flow is significantly affected by buoyancy, particularly in urban environments where stable and unstable atmospheric boundary layers are encountered. In the present investigation, the Dynamic Multi-scale approach by Araya et al. (JFM, 670, 2011) for turbulent inflow generation is extended to thermally stratified boundary layers. Furthermore, the proposed Dynamic Multi-scale approach is based on the original rescaling-recycling method by Lund et al. (1998). The two major improvements are: (i) the utilization of two different scaling laws in the inner and outer parts of the boundary layer to better absorb external conditions such as inlet Reynolds numbers, streamwise pressure gradients, buoyancy effects, etc., (ii) the implementation of a Dynamic approach to compute scaling parameters from the flow solution without the need of empirical correlations as in Lund et al. (1998). Numerical results are shown for ZPG flows at high momentum thickness Reynolds numbers (~ 3,000) and a comparison with experimental data is also carried out.

  20. Stratified patterns of divorce: Earnings, education, and gender

    Amit Kaplan


    Full Text Available Background: Despite evidence that divorce has become more prevalent among weaker socioeconomic groups, knowledge about the stratification aspects of divorce in Israel is lacking. Moreover, although scholarly debate recognizes the importance of stratificational positions with respect to divorce, less attention has been given to the interactions between them. Objective: Our aim is to examine the relationship between social inequality and divorce, focusing on how household income, education, employment stability, relative earnings, and the intersection between them affect the risk of divorce in Israel. Methods: The data is derived from combined census files for 1995-2008, annual administrative employment records from the National Insurance Institute and the Tax Authority, and data from the Civil Registry of Divorce. We used a series of discrete-time event-history analysis models for marital dissolution. Results: Couples in lower socioeconomic positions had a higher risk of divorce in Israel. Higher education in general, and homogamy in terms of higher education (both spouses have degrees in particular, decreased the risk of divorce. The wife's relative earnings had a differential effect on the likelihood of divorce, depending on household income: a wife who outearned her husband increased the log odds of divorce more in the upper tertiles than in the lower tertile. Conclusions: Our study shows that divorce indeed has a stratified pattern and that weaker socioeconomic groups experience the highest levels of divorce. Gender inequality within couples intersects with the household's economic and educational resources.

  1. Self-Knowledge and Risk in Stratified Medicine.

    Hordern, Joshua


    This article considers why and how self-knowledge is important to communication about risk and behaviour change by arguing for four claims. First, it is doubtful that genetic knowledge should properly be called 'self-knowledge' when its ordinary effects on self-motivation and behaviour change seem so slight. Second, temptations towards a reductionist, fatalist, construal of persons' futures through a 'molecular optic' should be resisted. Third, any plausible effort to change people's behaviour must engage with cultural self-knowledge, values and beliefs, catalysed by the communication of genetic risk. For example, while a Judaeo-Christian notion of self-knowledge is distinctively theological, people's self-knowledge is plural in its insight and sources. Fourth, self-knowledge is found in compassionate, if tense, communion which yields freedom from determinism even amidst suffering. Stratified medicine thus offers a newly precise kind of humanising health care through societal solidarity with the riskiest. However, stratification may also mean that molecularly unstratified, 'B' patients' experience involves accentuated suffering and disappointment, a concern requiring further research.

  2. [Phylogenetic diversity of bacteria in soda lake stratified sediments].

    Tourova, T P; Grechnikova, M A; Kuznetsov, V V; Sorokin, D Yu


    Various previously developed techniques for DNA extraction from the samples with complex physicochemical structure (soils, silts, and sediments) and modifications of these techniques developed in the present work were tested. Their usability for DNA extraction from the sediments of the Kulunda Steppe hypersaline soda lakes was assessed, and the most efficient procedure for indirect (two-stage) DNA extraction was proposed. Almost complete separation of the cell fraction was shown, as well as the inefficiency of nested PCR for analysis of the clone libraries obtained from washed sediments by amplification of the 16S rRNA gene fragments. Analysis of the clone library obtained from the cell fractions of stratified sediments (upper, medium, and lower layers) revealed that in the sediments of Lake Gorchina-3 most eubacterial phylotypes belonged to the class Clostridia, phylum Firmicutes. They were probably specific for this habitatand formed a new, presently unknown high-rank taxon. The data obtained revealed no pronounced stratification of the spe- cies diversity of the eubacterial component of the microbial community inhabiting the sediments (0-20 cm) in the inshore zone of Lake Gorchina-3.

  3. Stratified Flow Past a Hill: Dividing Streamline Concept Revisited

    Leo, Laura S.; Thompson, Michael Y.; Di Sabatino, Silvana; Fernando, Harindra J. S.


    The Sheppard formula (Q J R Meteorol Soc 82:528-529, 1956) for the dividing streamline height H_s assumes a uniform velocity U_∞ and a constant buoyancy frequency N for the approach flow towards a mountain of height h, and takes the form H_s/h=( {1-F} ) , where F=U_{∞}/Nh. We extend this solution to a logarithmic approach-velocity profile with constant N. An analytical solution is obtained for H_s/h in terms of Lambert-W functions, which also suggests alternative scaling for H_s/h. A `modified' logarithmic velocity profile is proposed for stably stratified atmospheric boundary-layer flows. A field experiment designed to observe H_s is described, which utilized instrumentation from the spring field campaign of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program. Multiple releases of smoke at F≈ 0.3-0.4 support the new formulation, notwithstanding the limited success of experiments due to logistical constraints. No dividing streamline is discerned for F≈ 10, since, if present, it is too close to the foothill. Flow separation and vortex shedding is observed in this case. The proposed modified logarithmic profile is in reasonable agreement with experimental observations.

  4. Large eddy simulation of unsteady lean stratified premixed combustion

    Duwig, C. [Division of Fluid Mechanics, Department of Energy Sciences, Lund University, SE 221 00 Lund (Sweden); Fureby, C. [Division of Weapons and Protection, Warheads and Propulsion, The Swedish Defense Research Agency, FOI, SE 147 25 Tumba (Sweden)


    Premixed turbulent flame-based technologies are rapidly growing in importance, with applications to modern clean combustion devices for both power generation and aeropropulsion. However, the gain in decreasing harmful emissions might be canceled by rising combustion instabilities. Unwanted unsteady flame phenomena that might even destroy the whole device have been widely reported and are subject to intensive studies. In the present paper, we use unsteady numerical tools for simulating an unsteady and well-documented flame. Computations were performed for nonreacting, perfectly premixed and stratified premixed cases using two different numerical codes and different large-eddy-simulation-based flamelet models. Nonreacting simulations are shown to agree well with experimental data, with the LES results capturing the mean features (symmetry breaking) as well as the fluctuation level of the turbulent flow. For reacting cases, the uncertainty induced by the time-averaging technique limited the comparisons. Given an estimate of the uncertainty, the numerical results were found to reproduce well the experimental data in terms both of mean flow field and of fluctuation levels. In addition, it was found that despite relying on different assumptions/simplifications, both numerical tools lead to similar predictions, giving confidence in the results. Moreover, we studied the flame dynamics and particularly the response to a periodic pulsation. We found that above a certain excitation level, the flame dynamic changes and becomes rather insensitive to the excitation/instability amplitude. Conclusions regarding the self-growth of thermoacoustic waves were drawn. (author)

  5. Economic evaluation in stratified medicine: methodological issues and challenges

    Hans-Joerg eFugel


    Full Text Available Background: Stratified Medicine (SM is becoming a practical reality with the targeting of medicines by using a biomarker or genetic-based diagnostic to identify the eligible patient sub-population. Like any healthcare intervention, SM interventions have costs and consequences that must be considered by reimbursement authorities with limited resources. Methodological standards and guidelines exist for economic evaluations in clinical pharmacology and are an important component for health technology assessments (HTAs in many countries. However, these guidelines have initially been developed for traditional pharmaceuticals and not for complex interventions with multiple components. This raises the issue as to whether these guidelines are adequate to SM interventions or whether new specific guidance and methodology is needed to avoid inconsistencies and contradictory findings when assessing economic value in SM.Objective: This article describes specific methodological challenges when conducting health economic (HE evaluations for SM interventions and outlines potential modifications necessary to existing evaluation guidelines /principles that would promote consistent economic evaluations for SM.Results/Conclusions: Specific methodological aspects for SM comprise considerations on the choice of comparator, measuring effectiveness and outcomes, appropriate modelling structure and the scope of sensitivity analyses. Although current HE methodology can be applied for SM, greater complexity requires further methodology development and modifications in the guidelines.


    Jabbari, Sarah; Brandenburg, Axel; Kleeorin, Nathan; Mitra, Dhrubaditya; Rogachevskii, Igor, E-mail: [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)


    Recent work by Mitra et al. (2014) has shown that in strongly stratified forced two-layer turbulence with helicity and corresponding large-scale dynamo action in the lower layer, and nonhelical turbulence in the upper, a magnetic field occurs in the upper layer in the form of sharply bounded bipolar magnetic spots. Here we extend this model to spherical wedge geometry covering the northern hemisphere up to 75° latitude and an azimuthal extent of 180°. The kinetic helicity and therefore also the large-scale magnetic field are strongest at low latitudes. For moderately strong stratification, several bipolar spots form that eventually fill the full longitudinal extent. At early times, the polarity of spots reflects the orientation of the underlying azimuthal field, as expected from Parker’s Ω-shaped flux loops. At late times their tilt changes such that there is a radial field of opposite orientation at different latitudes separated by about 10°. Our model demonstrates the spontaneous formation of spots of sizes much larger than the pressure scale height. Their tendency to produce filling factors close to unity is argued to be reminiscent of highly active stars. We confirm that strong stratification and strong scale separation are essential ingredients behind magnetic spot formation, which appears to be associated with downflows at larger depths.

  7. Local properties of countercurrent stratified steam-water flow

    Kim, H J


    A study of steam condensation in countercurrent stratified flow of steam and subcooled water has been carried out in a rectangular channel/flat plate geometry over a wide range of inclination angles (4/sup 0/-87/sup 0/) at several aspect ratios. Variables were inlet water and steam flow rates, and inlet water temperature. Local condensation rates and pressure gradients were measured, and local condensation heat transfer coefficients and interfacial shear stress were calculated. Contact probe traverses of the surface waves were made, which allowed a statistical analysis of the wave properties. The local condensation Nusselt number was correlated in terms of local water and steam Reynolds or Froude numbers, as well as the liquid Prandtl number. A turbulence-centered model developed by Theofanous, et al. principally for gas absorption in several geometries, was modified. A correlation for the interfacial shear stress and the pressure gradient agreed with measured values. Mean water layer thicknesses were calculated. Interfacial wave parameters, such as the mean water layer thickness, liquid fraction probability distribution, wave amplitude and wave frequency, are analyzed.

  8. Numerical Study of Stratified Charge Combustion in Wave Rotors

    Nalim, M. Razi


    A wave rotor may be used as a pressure-gain combustor effecting non-steady flow, and intermittent, confined combustion to enhance gas turbine engine performance. It will be more compact and probably lighter than an equivalent pressure-exchange wave rotor, yet will have similar thermodynamic and mechanical characteristics. Because the allowable turbine blade temperature limits overall fuel/air ratio to sub-flammable values, premixed stratification techniques are necessary to burn hydrocarbon fuels in small engines with compressor discharge temperature well below autoignition conditions. One-dimensional, unsteady numerical simulations of stratified-charge combustion are performed using an eddy-diffusivity turbulence model and a simple reaction model incorporating a flammability limit temperature. For good combustion efficiency, a stratification strategy is developed which concentrates fuel at the leading and trailing edges of the inlet port. Rotor and exhaust temperature profiles and performance predictions are presented at three representative operating conditions of the engine: full design load, 40% load, and idle. The results indicate that peak local gas temperatures will result in excessive temperatures within the rotor housing unless additional cooling methods are used. The rotor itself will have acceptable temperatures, but the pattern factor presented to the turbine may be of concern, depending on exhaust duct design and duct-rotor interaction.

  9. Mixing efficiency of turbulent patches in stably stratified flows

    Garanaik, Amrapalli; Venayagamoorthy, Subhas Karan


    A key quantity that is essential for estimating the turbulent diapycnal (irreversible) mixing in stably stratified flow is the mixing efficiency Rf*, which is a measure of the amount of turbulent kinetic energy that is irreversibly converted into background potential energy. In particular, there is an ongoing debate in the oceanographic mixing community regarding the utility of the buoyancy Reynolds number (Reb) , particularly with regard to how mixing efficiency and diapycnal diffusivity vary with Reb . Specifically, is there a universal relationship between the intensity of turbulence and the strength of the stratification that supports an unambiguous description of mixing efficiency based on Reb ? The focus of the present study is to investigate the variability of Rf* by considering oceanic turbulence data obtained from microstructure profiles in conjunction with data from laboratory experiments and DNS. Field data analysis has done by identifying turbulent patches using Thorpe sorting method for potential density. The analysis clearly shows that high mixing efficiencies can persist at high buoyancy Reynolds numbers. This is contradiction to previous studies which predict that mixing efficiency should decrease universally for Reb greater than O (100) . Funded by NSF and ONR.

  10. Simulation and study of stratified flows around finite bodies

    Gushchin, V. A.; Matyushin, P. V.


    The flows past a sphere and a square cylinder of diameter d moving horizontally at the velocity U in a linearly density-stratified viscous incompressible fluid are studied. The flows are described by the Navier-Stokes equations in the Boussinesq approximation. Variations in the spatial vortex structure of the flows are analyzed in detail in a wide range of dimensionless parameters (such as the Reynolds number Re = Ud/ ν and the internal Froude number Fr = U/( Nd), where ν is the kinematic viscosity and N is the buoyancy frequency) by applying mathematical simulation (on supercomputers of Joint Supercomputer Center of the Russian Academy of Sciences) and three-dimensional flow visualization. At 0.005 < Fr < 100, the classification of flow regimes for the sphere (for 1 < Re < 500) and for the cylinder (for 1 < Re < 200) is improved. At Fr = 0 (i.e., at U = 0), the problem of diffusion-induced flow past a sphere leading to the formation of horizontal density layers near the sphere's upper and lower poles is considered. At Fr = 0.1 and Re = 50, the formation of a steady flow past a square cylinder with wavy hanging density layers in the wake is studied in detail.

  11. Unconventional Reservoirs: Ideas to Commercialization

    Tinker, S. W.


    There is no shortage of coal, oil, and natural gas in the world. What are sometimes in short supply are fresh ideas. Scientific innovation combined with continued advances in drilling and completion technology revitalized the natural gas industry in North America by making production from shale economic. Similar advances are now happening in shale oil. The convergence of ideas and technology has created a commercial environment in which unconventional reservoirs could supply natural gas to the North American consumer for 50 years or more. And, although not as far along in terms of resource development, oil from the Eagle Ford and Bakken Shales and the oil sands in Alberta could have a similar impact. Without advanced horizontal drilling, geosteering, staged hydraulic-fracture stimulation, synthetic and natural proppants, evolution of hydraulic fluid chemistry, and high-end monitoring and simulation, many of these plays would not exist. Yet drilling and completion technology cannot stand alone. Also required for success are creative thinking, favorable economics, and a tolerance for risk by operators. Current understanding and completion practices will leave upwards of 80% of oil and natural gas in the shale reservoirs. The opportunity to enhance recovery through advanced reservoir understanding and imaging, as well as through recompletions and infill drilling, is considerable. The path from ideas to commercialization will continue to provide economic results in unconventional reservoirs.

  12. Prevention of Reservoir Interior Discoloration

    Arnold, K.F.


    Contamination is anathema in reservoir production. Some of the contamination is a result of welding and some appears after welding but existed before. Oxygen was documented to be a major contributor to discoloration in welding. This study demonstrates that it can be controlled and that some of the informal cleaning processes contribute to contamination.

  13. Indiana continent catheterizable urinary reservoir.

    Castillo, O A; Aranguren, G; Campos-Juanatey, F


    Radical pelvic surgery requires continent or incontinent urinary diversion. There are many techniques, but the orthotopic neobladder is the most used. A continent catheterizable urinary reservoir is sometimes a good alternative when this derivation is not possible or not indicated. This paper has aimed to present our experience with the Indiana pouch continent urinary reservoir. The series is made up of 85 patients, 66 women and 19 men, with a mean age of 56 years (31-77 years). Variables analyzed were operating time, estimated blood loss, transfusion rate, hospital stay and peri-operatory complications. The main indication in 49 cases was resolution of complications related to the treatment of cervical cancer. Average operation time was 110.5 minutes (range 80-130 minutes). Mean blood loss was 450 cc (100-1000 cc). Immediate postoperative complications, all of which were treated medically, occurred in 16 patients (18.85%). One patient suffered anastomotic leakage. Hospital stay was 19 days (range 5-60 days) and there was no mortality in the series. Late complications occurred in 26 patients (32%), these being ureteral anastomotic stenosis in 11 cases, cutaneous stoma stenosis in 9 cases and reservoir stones in 6 cases. The Indiana continent catheterizable urinary reservoir is a valid option for the treatment of both urological and gynecological malignancies as well as for the management of pelvic morbidity related to the treatment of pelvic cancers. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  14. Data assimilation in reservoir management

    Rommelse, J.R.


    The research presented in this thesis aims at improving computer models that allow simulations of water, oil and gas flows in subsurface petroleum reservoirs. This is done by integrating, or assimilating, measurements into physics-bases models. In recent years petroleum technology has developed

  15. Reservoir Cathode for Electric Space Propulsion Project

    National Aeronautics and Space Administration — We propose a reservoir cathode to improve performance in both ion and Hall-effect thrusters. We propose to adapt our existing reservoir cathode technology to this...

  16. Reservoir Cathode for Electric Space Propulsion Project

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....




    Jun 19, 2012 ... Key words: Reservoir sand, Well log, Water saturation, Linear and Steiber. Introduction. Reservoir ... During analysis, seismic data can quantitatively predict ..... Wireline and Testing, Houston Texas, pp. 21 –. 89. Wan Qin ...

  18. High Energy Gas Fracturing in Deep Reservoir

    Zhang Qiangde; Zhao Wanxiang; Wang Faxuan


    @@ Introduction The HEGF technology has many merits such as low cost, simple work conditions, treating the thin reservoir without layer dividing tools, no contamination to the reservoirs and connections with more natural fractures. So it is suitable to treat thin reservoirs,water and acid senstive reservoirs and the reserviors with natural fissures and also suitable to evaluate the production test of new wells, blocking removing treatment, increasing injection treatment and the treatment for the hydrofracturing well with some productivity.

  19. Reservoir resistivity characterization incorporating flow dynamics

    Arango, Santiago


    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie\\'s parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  20. Germination of embryos from stratified and non-stratified seeds and growth of apple seedlings (Malus domestica Borkh cv. "Antonówka"

    Jerzy Czerski


    Full Text Available The germination of whole seeds, the seeds without coat and isolated embryos of apple cv. "Antonówka Zwykła" after 90 days of cold-stratification was compared with the germination of embryos isolated from non-stratified seeds. They were germinated under 16hrs during a day at temperature 25°C and 20°C during the night. It has been found that after 2 weeks whole stratified seeds germinated in 5 per cent, seeds without coat in 25 per cent and isolated embryos in 98 per cent. Isolated embryos from nun-stratified seeds, after 2 weeks, germinated in the range from 75 to 88 per cent. The results indicate the similar germination ability of embryos isolated from nun-stratified seeds. The seedling populations obtained from embryo's stratified and non-stratified seeds were fully comparable and they evaluated: 1 a wide range of individual differences within population, 2 a similar number of seedlings in each class of shoot length, 3 a similar morphological habitus in each class of shoot length, 4 a similar fresh leaf weight and whole plant increment.

  1. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Nurhandoko, Bagus Endar B., E-mail:, E-mail: [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail:, E-mail: [Rock Fluid Imaging Lab., Bandung (Indonesia)


    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  2. 33 CFR 211.81 - Reservoir areas.


    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Reservoir areas. 211.81 Section... Lands in Reservoir Areas Under Jurisdiction of Department of the Army for Cottage Site Development and Use § 211.81 Reservoir areas. Delegations, rules and regulations in §§ 211.71 to 211.80 are...

  3. Tenth workshop on geothermal reservoir engineering: proceedings


    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  4. Gravity observations for hydrocarbon reservoir monitoring

    Glegola, M.A.


    In this thesis the added value of gravity observations for hydrocarbon reservoir monitoring and characterization is investigated. Reservoir processes and reservoir types most suitable for gravimetric monitoring are identified. Major noise sources affecting time-lapse gravimetry are analyzed. The ad

  5. A model for evaluating the ballistic resistance of stratified packs

    Pirvu, C.; Georgescu, C.; Badea, S.; Deleanu, L.


    Models for evaluating the ballistic performance of stratified packs are useful in reducing the time for laboratory tests, understanding the failure process and identifying key factors to improve the architecture of the packs. The authors present the results of simulating the bullet impact on a packs made of 24 layers, taking into consideration the friction between layers (μ = 0.4) and the friction between bullet and layers (μ = 0.3). The aim of this study is to obtain a number of layers that allows for the bullet arrest in the packs and to have several layers undamaged in order to offer a high level of safety for this kind of packs that could be included in individual armors. The model takes into account the yield and fracture limits of the two materials the bullet is made of and those for one layer, here considered as an orthotropic material, having maximum equivalent plastic strain of 0.06. All materials are considered to have bilinear isotropic hardening behavior. After documentation, the model was designed as isothermal because thermal influence of the impact is considered low for these impact velocities. The model was developed with the help of Ansys 14.5. Each layer has 200 mm × 200 × 0.35 mm. The bullet velocity just before impact was 400 m/s, a velocity characterizing the average values obtained in close range with a ballistic barrel and the bullet model is following the shape and dimensions of the 9 mm FMJ (full metal jacket). The model and the results concerning the number of broken layers were validated by experiments, as the number of broken layers for the actual pack (made of 24 layers of LFT SB1) were also seven...eight. The models for ballistic impact are useful when they are particularly formulated for resembling to the actual system projectile - target.

  6. Internal and vorticity waves in decaying stratified flows

    Matulka, A.; Cano, D.


    Most predictive models fail when forcing at the Rossby deformation Radius is important and a large range of scales have to be taken into account. When mixing of reactants or pollutants has to be accounted, the range of scales spans from hundreds of Kilometers to the Bachelor or Kolmogorov sub milimiter scales. We present some theoretical arguments to describe the flow in terms of the three dimensional vorticity equations, using a lengthscale related to the vorticity (or enstrophy ) transport. Effect of intermittent eddies and non-homogeneity of diffusion are also key issues in the environment because both stratification and rotation body forces are important and cause anisotropy/non-homogeneity. These problems need further theoretical, numerical and observational work and one approach is to try to maximize the relevant geometrical information in order to understand and therefore predict these complex environmental dispersive flows. The importance of the study of turbulence structure and its relevance in diffusion of contaminants in environmental flows is clear when we see the effect of environmental disasters such as the Prestige oil spill or the Chernobil radioactive cloud spread in the atmosphere. A series of Experiments have been performed on a strongly stratified two layer fluid consisting of Brine in the bottom and freshwater above in a 1 square meter tank. The evolution of the vortices after the passage of a grid is video recorded and Particle tracking is applied on small pliolite particles floating at the interface. The combination of internal waves and vertical vorticity produces two separate time scales that may produce resonances. The vorticity is seen to oscilate in a complex way, where the frecuency decreases with time.

  7. The nonlinear evolution of modes on unstable stratified shear layers

    Blackaby, Nicholas; Dando, Andrew; Hall, Philip


    The nonlinear development of disturbances in stratified shear flows (having a local Richardson number of value less than one quarter) is considered. Such modes are initially fast growing but, like related studies, we assume that the viscous, non-parallel spreading of the shear layer results in them evolving in a linear fashion until they reach a position where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. Four different basic integro-differential amplitude equations are possible, including one due to a novel mechanism; the relevant choice of amplitude equation, at a particular instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate of the disturbance, its wavenumber, and the viscosity of the fluid. This richness of choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential amplitude equations with a cubic nonlinearity but the resulting significant increase in the size of the disturbance's amplitude leads on to the next stage of the evolution process where the evolution of the mode is governed by an integro-differential amplitude equations with a quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which time the flow has become fully nonlinear.

  8. A new scoring system to stratify risk in unstable angina

    Salzberg Simón


    Full Text Available Abstract Background We performed this study to develop a new scoring system to stratify different levels of risk in patients admitted to hospital with a diagnosis of unstable angina (UA, which is a complex syndrome that encompasses different outcomes. Many prognostic variables have been described but few efforts have been made to group them in order to enhance their individual predictive power. Methods In a first phase, 473 patients were prospectively analyzed to determine which factors were significantly associated with the in-hospital occurrence of refractory ischemia, acute myocardial infarction (AMI or death. A risk score ranging from 0 to 10 points was developed using a multivariate analysis. In a second phase, such score was validated in a new sample of 242 patients and it was finally applied to the entire population (n = 715. Results ST-segment deviation on the electrocardiogram, age ≥ 70 years, previous bypass surgery and troponin T ≥ 0.1 ng/mL were found as independent prognostic variables. A clear distinction was shown among categories of low, intermediate and high risk, defined according to the risk score. The incidence of the triple end-point was 6 %, 19.2 % and 44.7 % respectively, and the figures for AMI or death were 2 %, 11.4 % and 27.6 % respectively (p Conclusions This new scoring system is simple and easy to achieve. It allows a very good stratification of risk in patients having a clinical diagnosis of UA. They may be divided in three categories, which could be of help in the decision-making process.

  9. Interfacial instabilities in a stratified flow of two superposed fluids

    Schaflinger, Uwe


    Here we shall present a linear stability analysis of a laminar, stratified flow of two superposed fluids which are a clear liquid and a suspension of solid particles. The investigation is based upon the assumption that the concentration remains constant within the suspension layer. Even for moderate flow-rates the base-state results for a shear induced resuspension flow justify the latter assumption. The numerical solutions display the existence of two different branches that contribute to convective instability: long and short waves which coexist in a certain range of parameters. Also, a range exists where the flow is absolutely unstable. That means a convectively unstable resuspension flow can be only observed for Reynolds numbers larger than a lower, critical Reynolds number but still smaller than a second critical Reynolds number. For flow rates which give rise to a Reynolds number larger than the second critical Reynolds number, the flow is absolutely unstable. In some cases, however, there exists a third bound beyond that the flow is convectively unstable again. Experiments show the same phenomena: for small flow-rates short waves were usually observed but occasionally also the coexistence of short and long waves. These findings are qualitatively in good agreement with the linear stability analysis. Larger flow-rates in the range of the second critical Reynolds number yield strong interfacial waves with wave breaking and detached particles. In this range, the measured flow-parameters, like the resuspension height and the pressure drop are far beyond the theoretical results. Evidently, a further increase of the Reynolds number indicates the transition to a less wavy interface. Finally, the linear stability analysis also predicts interfacial waves in the case of relatively small suspension heights. These results are in accordance with measurements for ripple-type instabilities as they occur under laminar and viscous conditions for a mono-layer of particles.

  10. Magnetoacoustic Waves in Stratified Atmospheres with a Magnetic Null Point

    Tarr, Lucas A.; Linton, Mark; Leake, James E.


    Magnetic fields strongly modify the propagation of MHD waves from the photosphere to the low corona, as can be shown exactly for the most simple case of a uniform magnetic field and isothermally stratrified atmosphere. For slightly more realistic scenarios, where both the atmospheric parameters and the magnetic field vary spatially, the linear MHD equations typically cannot be solved analytically. We use the Lagrangian Remap code--a nonlinear, shock-capturing MHD code--to study the propagation of initially acoustic wavepackets through a model 2D atmosphere that includes a gravitationally stratified chromosphere, transition region, and low corona. The magnetic field is formed by three photospheric concentrations and includes a single magnetic null point, resulting in an inhomogeneous system with a magnetic dome topology. A portion of an introduced wavepacket will refract toward the null due to the varying Alfven speed. Waves incident on the equipartition contour surrounding the null, where the sound and Alfven speeds coincide, partially transmit, reflect, and mode convert between branches of the local dispersion relation. Outward propagating slow modes generated during conversion become strongly concentrated along the set of field lines passing near the null. Acoustic energy is beamed back downwards towards each photospheric foot point, and upwards along one separatrix that exits the top of the numerical domain. Changes in the dominant restoring force for the wavepacket, between the Lorentz and pressure gradient forces, lead to a buildup of current density along topologically important features of the system (the null point and its four separatrices) and can drive reconnection at the null point itself. Ohmic dissipation of the currents locally heats the plasma. We find that the amount of current accumulation depends on where the centroid of a wavepacket initial crosses the photosphere, but does not simply coincide with regions of open versus closed magnetic field or

  11. Stability characteristics of jets in linearly-stratified, rotating fluids

    Chen, Rui-Rong; Boyer, Don L.; Tao, Lijun

    A series of laboratory experiments are conducted concerning an azimuthal jet of a linearly stratified rotating fluid in a cylindrical geometry. The jet is characterized by vertical and horizontal shear and the question of the stability of the flow is considered experimentally. The jet is driven by a source-sink method characterized by a volume flow rate of strength Q. BecauseQ has no direct geophysical significance a combined external set of dimensionless parameters is introduced. These include the Rossby, Richardson and Ekman numbers, the jet aspect ratio and two geometrical parameters. A RossbyRo against RichardsonRi number flow regime diagram is presented which shows that the wave mode of the instability generally decreases with increasingRo andRi, for fixedRi andRo, respectively. In accordance with Killworth's (1980) linear stability analysis, the wave mode for smallRi (Ri ⪉ 15) depends principally onRi with the instability being largely a baroclinic one. For largerRi(Ri ⪉ 100), again as predicted by Killworth's theory, the wave mode depends primarily onRo, the instability being a barotropic one. The regime diagram can be used to estimate the wave-length of jet instabilities in the atmosphere and oceans. These estimates suggest that the wave-lengths decrease with increasing jet velocity, decreasing jet width (equivalent to increasing horizontal shear) and increasing vertical shear, other parameters being fixed. An azimuthal topography aligned along the jet has the tendency to stabilize the jet in the sense that the amplitude of the instability is shown to be dramatically smaller in the presence of the topography, other parameters being fixed. The topography also tends to increase the wave-length of the instability. A scaling analysis is advanced, and supporting experimental data presented, relating the external and internal parameters utilized.

  12. Distribution of vaccine/antivirals and the 'least spread line' in a stratified population

    Goldstein, E.; Apolloni, A.; Lewis, B.; Miller, J. C.; Macauley, M.; Eubank, S.; Lipsitch, M.; Wallinga, J.


    We describe a prioritization scheme for an allocation of a sizeable quantity of vaccine or antivirals in a stratified population. The scheme builds on an optimal strategy for reducing the epidemic's initial growth rate in a stratified mass-action model. The strategy is tested on the EpiSims network

  13. Implementing content constraints in alpha-stratified adaptive using a shadow test approach

    Linden, van der Wim J.; Chang, Hua-Hua


    The methods of alpha-stratified adaptive testing and constrained adaptive testing with shadow tests are combined. The advantages are twofold: First, application of the shadow test approach allows the implementation of any type of constraint on item selection in alpha-stratified adaptive testing. Sec

  14. Implementing Content Constraints in Alpha-Stratified Adaptive Testing Using a Shadow Test Approach. Research Report.

    van der Linden, Wim J.; Chang, Hua-Hua

    The methods of alpha-stratified adaptive testing and constrained adaptive testing with shadow tests are combined in this study. The advantages are twofold. First, application of the shadow test allows the researcher to implement any type of constraint on item selection in alpha-stratified adaptive testing. Second, the result yields a simple set of…

  15. Experimental Validation of a Domestic Stratified Hot Water Tank Model in Modelica for Annual Performance Assessment

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh


    The use of stratified hot water tanks in solar energy systems - including ORC systems - as well as heat pump systems is paramount for a better performance of these systems. However, the availability of effective and reliable models to predict the annual performance of stratified hot water tanks c...

  16. Lessons for molecular diagnostics in oncology from the Cancer Research UK Stratified Medicine Programme.

    Lindsay, Colin R; Shaw, Emily; Walker, Ian; Johnson, Peter W M


    The implementation of stratified medicine in modern cancer care presents substantial opportunity to refine diagnosis and treatment but also numerous challenges. Through experience in a UK tumor profiling initiative, we have gained valuable insights into the complexities and possible solutions for routine delivery of stratified cancer medicine.

  17. Optimal stratification of item pools in α-stratified computerized adaptive testing

    Chang, Hua-Hua; Linden, van der Wim J.


    A method based on 0-1 linear programming (LP) is presented to stratify an item pool optimally for use in α-stratified adaptive testing. Because the 0-1 LP model belongs to the subclass of models with a network flow structure, efficient solutions are possible. The method is applied to a previous item

  18. Physical and chemical characteristics of Terrace Reservoir, Conejos County, Colorado, May 1994 through May 1995

    Stogner, Sr., Robert W.; Edelmann, Patrick; Walton-Day, Katherine


    Terrace Reservoir receives drainage of low-pH, metal-enriched water from mineralized areas, including the Summitville Mine, within the AlamosaRiver Basin. Drainage from the Summitville Mine has contributed a substantial part of the metal load to Terrace Reservoir. From May 1994 through May 1995, a study was done by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to evaluate the physical and chemical characteristics of Terrace Reservoir.Terrace Reservoir was thermally stratified from about mid-May through August 1994. Thermal stratification was absent from September\\x111994through March 1995. During periods of stratification, underflow of the Alamosa River was predominant, and residence times of the underflow were shortened by 40 to 75\\x11percent of the theoretical residence times for a well-mixed reservoir. Transport and deposition of suspended solids in Terrace Reservoir varied spatially and temporally. Most of the suspended solids were deposited in Terrace Reservoir. The concentration of dissolved oxygen in the reservoir varied little spatially or temporally and generally was within a few tenths of the dissolved-oxygen concentration of the inflow. The pH of water in the reservoir generally ranged from about 4.0 to about 7.0, depending on date, depth, and location. The largest pH values were measured during May. A markeddecrease of about 1.5\\x11pH units occurred at site T5 in the reservoir about mid-June. The pH of the reservoir remained at or below 5.5 from mid-June through November. Dissolved-metal concentrations varied spatially and temporally in response to several factors, which included inflow characteristics, reservoir stratification and mixing, inflow-routing and flow-through patterns, residence times, sedimentation, dissolved oxygen, and pH.Inflow chemistry is the dominant controlling factor of metal chemistry within Terrace Reservoir.During periods of stratification, large vertical variations in metal

  19. 4. International reservoir characterization technical conference



    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  20. Metal cycling during sediment early diagenesis in a water reservoir affected by acid mine drainage

    Torres, Ester; Ayora, Carlos; Canovas, C. R.;


    The discharge of acid mine drainage (AMD) into a reservoir may seriously affect the water quality. To investigate the metal transfer between the water and the sediment, three cores were collected from the Sancho Reservoir (Iberian Pyrite Belt, SW Spain) during different seasons: turnover event......; oxic, stratified period; anoxic and under shallow perennially oxic conditions. The cores were sliced in an oxygen-free atmosphere, after which pore water was extracted by centrifugation and analyzed. A sequential extraction was then applied to the sediments to extract the water-soluble, monosulfide......, low crystallinity Fe(III)-oxyhydroxide, crystalline Fe(III)-oxide, organic, pyrite and residual phases. The results showed that, despite the acidic chemistry of the water column (pH

  1. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others


    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  2. Nonlinear Multigrid for Reservoir Simulation

    Christensen, Max la Cour; Eskildsen, Klaus Langgren; Engsig-Karup, Allan Peter


    A feasibility study is presented on the effectiveness of applying nonlinear multigrid methods for efficient reservoir simulation of subsurface flow in porous media. A conventional strategy modeled after global linearization by means of Newton’s method is compared with an alternative strategy...... modeled after local linearization, leading to a nonlinear multigrid method in the form of the full-approximation scheme (FAS). It is demonstrated through numerical experiments that, without loss of robustness, the FAS method can outperform the conventional techniques in terms of algorithmic and numerical...... efficiency for a black-oil model. Furthermore, the use of the FAS method enables a significant reduction in memory usage compared with conventional techniques, which suggests new possibilities for improved large-scale reservoir simulation and numerical efficiency. Last, nonlinear multilevel preconditioning...

  3. Coalbed methane reservoir boundaries and sealing mechanism

    SU Xianbo; LIN Xiaoying; LIU Shaobo; SONG Yan


    It is important to investigate the coalbed methane reservoir boundaries for the classification, exploration, and development of the coalbed methane reservoir.Based on the investigation of the typical coalbed methane reservoirs in the world, the boundaries can be divided into four types: hydrodynamic boundary, air altered boundary,permeability boundary, and fault boundary. Hydrodynamic and air altered boundaries are ubiquitous boundaries for every coalbed methane reservoir. The four types of the fault sealing mechanism in the petroleum geological investigation (diagen- esis, clay smear, juxtaposition and cataclasis) are applied to the fault boundary of the coalbed methane reservoir. The sealing mechanism of the open fault boundary is the same with that of the hydrodynamic sealing boundary.The sealing mechanism of the permeability boundary is firstly classified into capillary pressure sealing and hydrocarbon concentration sealing. There are different controlling boundaries in coalbed methane reservoirs that are in different geological backgrounds. Therefore, the coalbed methane reservoir is diversiform.

  4. Reservoir compartmentalization assessment by using FTIR spectroscopy

    Permanyer, A. [Dept. Geoquimica, Petrologia i Prospeccio Geologica, Universitat de Barcelona, Marti i Franques, s/n, 08028 - Barcelona, Catalonia (Spain); Rebufa, C.; Kister, J. [Universite d' Aix - Marseille III, Faculte des Sciences et Techniques de St. Jerome, CNRS UMR 6171, Laboratoire de Geochimie Organique Analytique et Environnement (GOAE), Case 561, 13397 Marseille Cedex 20 (France)


    Reservoir geochemistry has traditionally used the gas chromatographic fingerprinting method and star diagrams to provide evidence of petroleum reservoir compartmentalization. Recently alternative techniques such as Fourier Transform Infra Red (FTIR) spectroscopy have been postulated to aid the evaluation of reservoir compartmentalization, and to characterize the geochemical evolution of oils from individual reservoirs. FTIR spectroscopy was applied successfully in the Tarragona Basin, Offshore N.E. Spain, validating the method to identify oils from different reservoirs. Moreover the method was successfully applied to provide evidence of compositional differences in oils from a faulted reservoir (El Furrial field, Venezuela), in which GC fingerprints failed to differentiate the oils. FTIR spectroscopy therefore, proves to be a complementary tool for reservoir compartmentalization studies. (author)


    M. A. Salmanov


    Full Text Available Aim. It is hardly possible to predict the continued stability of the watercourse ecosystems without the study of biological characteristics and composition of organisms inhabiting them. In the last 35-40 years, environmental conditions of the Mingachevir reservoir are determined by the stationary anthropogenic pressure. It was found that such components of plankton as algae, bacteria and fungi play a leading role in the transformation and migration of pollutants. The role of the three groups of organisms is very important in maintaining the water quality by elimination of pollutants. Among the organisms inhabiting the Mingachevir Reservoir, micromycetes have not yet been studied. Therefore, the study of the species composition and seasonal dynamics, peculiarities of their growth and development in the environment with the presence of some of the pollutants should be considered to date.Methods. In order to determine the role of micromycetes-migrants in the mineralization of organic substrates, as an active participant of self-purification process, we used water samples from the bottom sediments as well as decaying and skeletonized stalks of cane, reeds, algae, macrophytes, exuvia of insects and fish remains submerged in water.Findings. For the first time, we obtained the data on the quality and quantity of microscopic mycelial fungi in freshwater bodies on the example of the Mingachevir water reservoir; we also studied the possibilities for oxygenating the autochthonous organic matter of allochthonous origin with micromycetes-migrants.Conclusions. It was found that the seasonal development of micromycetes-migrants within the Mingachevir reservoir is characterized by an increase in the number of species in the summer and a gradual reduction in species diversity in the fall. 

  6. Environmental factors associated with phytoplankton succession in a Mediterranean reservoir with a highly fluctuating water level.

    Fadel, Ali; Atoui, Ali; Lemaire, Bruno J; Vinçon-Leite, Brigitte; Slim, Kamal


    Eutrophication and harmful algal blooms have become a worldwide environmental problem. Understanding the mechanisms and processes that control algal blooms is of great concern. The phytoplankton community of Karaoun Reservoir, the largest water body in Lebanon, is poorly studied, as in many freshwater bodies around the Mediterranean Sea. Sampling campaigns were conducted semi-monthly between May 2012 and August 2013 to assess the dynamics of its phytoplankton community in response to changes in physical-chemical and hydrological conditions. Karaoun Reservoir is a monomictic waterbody and strongly stratifies between May and August. Changes in its phytoplankton community were found to be a result of the interplay between water temperature, stratification, irradiance, nutrient availability and water level. Thermal stratification established in spring reduced the growth of diatoms and resulted in their replacement by green algae species when nutrient availability was high and water temperatures lower than 22 °C. At water temperature higher than 25 °C and low nutrient concentrations in summer, blooms of the cyanobacterium Microcystis aeruginosa occurred. Despite different growth conditions in other lakes and reservoir, cyanobacterium Aphanizomenon ovalisporum dominated at temperatures lower than 23 °C in weakly stratified conditions in early autumn and dinoflagellate Ceratium hirundinella dominated in mixed conditions, at low light intensity and a water temperature of 19 °C in late autumn. We believe that the information presented in this paper will increase the knowledge about phytoplankton dynamics in the Mediterranean region and contribute to a safer usage of reservoir waters.


    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin


    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  8. Sedimentation and sustainability of western American reservoirs

    Graf, William L.; Wohl, Ellen; Sinha, Tushar; Sabo, John L.


    Reservoirs are sustainable only as long as they offer sufficient water storage space to achieve their design objectives. Life expectancy related to sedimentation is a measure of reservoir sustainability. We used data from the Army Corps of Engineers, U.S. Bureau of Reclamation, and U.S. Geological Survey (Reservoir Sedimentation Survey Information System II (RESIS II)) to explore the sustainability of American reservoirs. Sustainability varied by region, with the longest life expectancies in New England and the Tennessee Valley and the shortest in the interior west. In the Missouri and Colorado River basins, sedimentation and rates of loss of reservoir storage capacity were highly variable in time and space. In the Missouri River Basin, the larger reservoirs had the longest life expectancies, with some exceeding 1000 years, while smaller reservoirs in the basin had the shortest life expectancies. In the Colorado River Basin at the site of Glen Canyon Dam, sediment inflow varied with time, declining by half beginning in 1942 because of hydroclimate and upstream geomorphic changes. Because of these changes, the estimated life expectancy of Lake Powell increased from 300 to 700 years. Future surprise changes in sedimentation delivery and reservoir filling area are expected. Even though large western reservoirs were built within a limited period, their demise will not be synchronous because of varying sedimentation rates. Popular literature has incorrectly emphasized the possibility of rapid, synchronous loss of reservoir storage capacity and underestimated the sustainability of the water control infrastructure.

  9. Seismic Imaging of Reservoir Structure at The Geysers Geothermal Reservoir

    Gritto, R.; Yoo, S.; Jarpe, S.


    Three-dimensional Vp/Vs-ratio structure is presented for The Geysers geothermal field using seismic travel-time data. The data were recorded by the Lawrence Berkeley National Laboratory (LBNL) using a 34-station seismic network. The results are based on 32,000 events recorded in 2011 and represent the highest resolution seismic imaging campaign at The Geysers to date. The results indicate low Vp/Vs-ratios in the central section of The Geysers within and below the current reservoir. The extent of the Vp/Vs anomaly deceases with increasing depth. Spatial correlation with micro-seismicity, used as a proxy for subsurface water flow, indicates the following. Swarms of seismicity correlate well with areas of high and intermediate Vp/Vs estimates, while regions of low Vp/Vs estimates appear almost aseismic. This result supports past observations that high and low Vp/Vs-ratios are related to water and gas saturated zones, respectively. In addition, the correlation of seismicity to intermediate Vp/Vs-ratios is supportive of the fact that the process of water flashing to steam requires four times more energy than the initial heating of the injected water to the flashing point. Because this energy is dawn from the reservoir rock, the associated cooling of the rock generates more contraction and thus seismic events than water being heated towards the flashing point. The consequences are the presence of some events in regions saturated with water, most events in regions of water flashing to steam (low steam saturation) and the absence of seismicity in regions of high steam concentrations where the water has already been converted to steam. Furthermore, it is observed that Vp/Vs is inversely correlated to Vs but uncorrelated to Vp, leading support to laboratory measurements on rock samples from The Geysers that observe an increase in shear modulus while the core samples are dried out. As a consequence, traditional poroelastic theory is no applicable at The Geysers geothermal

  10. Longitudinal gradients along a reservoir cascade

    Miranda, L.E.; Habrat, M.D.; Miyazono, S.


    Reservoirs have traditionally been regarded as spatially independent entities rather than as longitudinal segments of a river system that are connected upstream and downstream to the river and other reservoirs. This view has frustrated advancement in reservoir science by impeding adequate organization of available information and by hindering interchanges with allied disciplines that often consider impounded rivers at the basin scale. We analyzed reservoir morphology, water quality, and fish assemblage data collected in 24 reservoirs of the Tennessee River; we wanted to describe longitudinal changes occurring at the scale of the entire reservoir series (i.e., cascade) and to test the hypothesis that fish communities and environmental factors display predictable gradients like those recognized for unimpounded rivers. We used a data set collected over a 7-year period; over 3 million fish representing 94 species were included in the data set. Characteristics such as reservoir mean depth, relative size of the limnetic zone, water retention time, oxygen stratification, thermal stratification, substrate size, and water level fluctuations increased in upstream reservoirs. Conversely, reservoir area, extent of riverine and littoral zones, access to floodplains and associated wetlands, habitat diversity, and nutrient and sediment inputs increased in downstream reservoirs. Upstream reservoirs included few, largely lacustrine, ubiquitous fish taxa that were characteristic of the lentic upper reaches of the basin. Fish species richness increased in a downstream direction from 12 to 67 species/ reservoir as riverine species became more common. Considering impoundments at a basin scale by viewing them as sections in a river or links in a chain may generate insight that is not always available when the impoundments are viewed as isolated entities. Basin-scale variables are rarely controllable but constrain the expression of processes at smaller scales and can facilitate the

  11. Indications for tonsillectomy stratified by the level of evidence

    Windfuhr, Jochen P.


    Background: One of the most significant clinical trials, demonstrating the efficacy of tonsillectomy (TE) for recurrent throat infection in severely affected children, was published in 1984. This systematic review was undertaken to compile various indications for TE as suggested in the literature after 1984 and to stratify the papers according to the current concept of evidence-based medicine. Material and methods: A systematic Medline research was performed using the key word of “tonsillectomy“ in combination with different filters such as “systematic reviews“, “meta-analysis“, “English“, “German“, and “from 1984/01/01 to 2015/05/31“. Further research was performed in the Cochrane Database of Systematic Reviews, National Guideline Clearinghouse, Guidelines International Network and BMJ Clinical Evidence using the same key word. Finally, data from the “Trip Database” were researched for “tonsillectomy” and “indication“ and “from: 1984 to: 2015“ in combination with either “systematic review“ or “meta-analysis“ or “metaanalysis”. Results: A total of 237 papers were retrieved but only 57 matched our inclusion criteria covering the following topics: peritonsillar abscess (3), guidelines (5), otitis media with effusion (5), psoriasis (3), PFAPA syndrome (6), evidence-based indications (5), renal diseases (7), sleep-related breathing disorders (11), and tonsillitis/pharyngitis (12), respectively. Conclusions: 1) The literature suggests, that TE is not indicated to treat otitis media with effusion. 2) It has been shown, that the PFAPA syndrome is self-limiting and responds well to steroid administration, at least in a considerable amount of children. The indication for TE therefore appears to be imbalanced but further research is required to clarify the value of surgery. 3) Abscesstonsillectomy as a routine is not justified and indicated only for cases not responding to other measures of treatment, evident complications

  12. Microscale reservoir effects on microbial sulfur isotope fractionation

    Louca, Stilianos; Crowe, Sean A.


    Microbial sulfate reduction can impart strong sulfur isotope fractionation by preferentially using the lighter 32SO42- over the heavier 34SO42-. The magnitude of fractionation depends on a number of factors, including ambient concentrations of sulfate and electron donors. Sulfur isotope compositions in sedimentary rocks thus facilitate reconstruction of past environmental conditions, such as seawater sulfate concentrations, primary productivity, organic carbon burial, and sulfur fluxes into or out of the ocean. Knowing the processes that regulate the magnitude of sulfur isotope fractionation is necessary for the correct interpretation of the geological record, but so far theoretical work has focused mostly on internal cellular processes. In sulfate-limited environments, like low sulfate lakes and the Archean ocean, microbial sulfate reduction can lead to sulfate depletion in the water column and an enrichment in isotopically heavy sulfate. This reservoir effect in turn mutes the fractionation expressed in the water column and ultimately preserved in sediments relative to the biologically induced fractionation. Here we use mathematical modeling to show that similar reservoir effects can also appear at the microscale in close proximity to sulfate-reducing cells. These microscale reservoir effects have the potential to modulate sulfur isotope fractionation to a considerable degree, especially at low (micromolar) sulfate concentrations. As a result, background sulfate concentrations, sulfate reduction rates, and extracellular ion diffusion rates can influence the fractionation expressed even if the physiologically induced fractionation is constant. This has implications for the interpretation of biogenic sulfur isotope fractionations expressed in the geological record, because the correct estimation of the environmental conditions that would promote these fractionations requires consideration of microscale reservoir effects. We discuss these implications, and

  13. Transport Phenomena in Stratified Multi-Fluid Flow in the Presence and Absence of Gravity

    Chigier, Norman; Humphrey, William


    Experiments are being conducted to study the effects of buoyancy on planar density-stratified shear flows. A wind tunnel generates planar flows separated by an insulating splitter plate, with either flow heated, which emerge from a two-dimensional nozzle. The objective is to isolate and define the effect of gravity and buoyancy on a stratified shear layer. To this end, both stably and unstably stratified layers will be investigated. This paper reports on the results of temperature and velocity measurements across the nozzle exit plane and downstream along the nozzle center plane.

  14. Geologic sources of asbestos in Seattle's tolt reservoir

    Reid, M.E.; Craven, G.


    Water from Seattle's South Fork Tolt Reservoir contains chrysotile and amphibole asbestos fibers, derived from natural sources. Using optical petrographic techniques, X-ray diffraction, and scanning electron microscopy, we identified the geologic source of these asbestiform minerals within the watershed. No asbestos was found in the bedrock underlying the watershed, while both chrysotile and amphibole fibers were found in sediments transported by Puget-lobe glacial processes. These materials, widely distributed throughout the lower watershed, would be difficult to separate from the reservoir sediments. The probable source of this asbestos is in pods of ultramafic rock occurring north of the watershed. Because asbestos is contained in widespread Pugetlobe glacial materials, it may be naturally distributed in other watersheds in the Puget Sound area.

  15. The Biermann battery effect at the interfaces in stratified plasmas

    Nunez, Manuel, E-mail: mnjmhd@am.uva.e [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)


    The Biermann battery arises because an inhomogeneous electron pressure acts as a source term for the magnetic field. In order to better understand its effects, we consider a simplified model formed by the boundary between two fluids with different mean molecular weight and look for magnetic fields generated by the battery and localized in a band around the interface. We show that a parallel field is generated, which tends to push the original flow away from the boundary creating a rarefaction band. The specific forms of magnetic field and velocity are detailed.

  16. The freshwater reservoir effect in radiocarbon dating

    Philippsen, Bente


    of magnitude and degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants, and animals, shows that age differences of up to 2000 14C years can occur within one river. The freshwater reservoir effect has also implications...... for radiocarbon dating of Mesolithic pottery from inland sites of the Ertebølle culture in Northern Germany. The surprisingly old ages of the earliest pottery most probably are caused by a freshwater reservoir effect. In a sediment core from the Limfjord, northern Denmark, the impact of the freshwater reservoir...... effect on radiocarbon dating in an estuarine environment is examined. Here, freshwater influence causes reservoir ages to vary between 250 and 700 14C years during the period 5400 BC - AD 700. The examples in this study show clearly that the freshwater reservoir effect can seriously corrupt radiocarbon...

  17. Data Compression of Hydrocarbon Reservoir Simulation Grids

    Chavez, Gustavo Ivan


    A dense volumetric grid coming from an oil/gas reservoir simulation output is translated into a compact representation that supports desired features such as interactive visualization, geometric continuity, color mapping and quad representation. A set of four control curves per layer results from processing the grid data, and a complete set of these 3-dimensional surfaces represents the complete volume data and can map reservoir properties of interest to analysts. The processing results yield a representation of reservoir simulation results which has reduced data storage requirements and permits quick performance interaction between reservoir analysts and the simulation data. The degree of reservoir grid compression can be selected according to the quality required, by adjusting for different thresholds, such as approximation error and level of detail. The processions results are of potential benefit in applications such as interactive rendering, data compression, and in-situ visualization of large-scale oil/gas reservoir simulations.

  18. Sloshing of a bubbly magma reservoir as a mechanism of triggered eruptions

    Namiki, Atsuko; Rivalta, Eleonora; Woith, Heiko; Walter, Thomas R.


    Large earthquakes sometimes activate volcanoes both in the near field as well as in the far field. One possible explanation is that shaking may increase the mobility of the volcanic gases stored in magma reservoirs and conduits. Here experimentally and theoretically we investigate how sloshing, the oscillatory motion of fluids contained in a shaking tank, may affect the presence and stability of bubbles and foams, with important implications for magma conduits and reservoirs. We adopt this concept from engineering: severe earthquakes are known to induce sloshing and damage petroleum tanks. Sloshing occurs in a partially filled tank or a fully filled tank with density-stratified fluids. These conditions are met at open summit conduits or at sealed magma reservoirs where a bubbly magma layer overlays a newly injected denser magma layer. We conducted sloshing experiments by shaking a rectangular tank partially filled with liquids, bubbly fluids (foams) and fully filled with density-stratified fluids; i.e., a foam layer overlying a liquid layer. In experiments with foams, we find that foam collapse occurs for oscillations near the resonance frequency of the fluid layer. Low viscosity and large bubble size favor foam collapse during sloshing. In the layered case, the collapsed foam mixes with the underlying liquid layer. Based on scaling considerations, we constrain the conditions for the occurrence of foam collapse in natural magma reservoirs. We find that seismic waves with lower frequencies 0.5 m. Strong ground motion > 0.1 m s- 1 can excite sloshing with sufficient amplitude to collapse a magma foam in an open conduit or a foam overlying basaltic magma in a closed magma reservoir. The gas released from the collapsed foam may infiltrate the rock or diffuse through pores, enhancing heat transfer, or may generate a gas slug to cause a magmatic eruption. The overturn in the magma reservoir provides new nucleation sites which may help to prepare a following

  19. A reservoir trap for antiprotons

    Smorra, Christian; Franke, Kurt; Nagahama, Hiroki; Schneider, Georg; Higuchi, Takashi; Van Gorp, Simon; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Yamazaki, Yasunori; Ulmer, Stefan


    We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic particles.

  20. Gas reservoir evaluation for underbalanced horizontal drilling

    Li Gao


    Full Text Available A set of surface equipment for monitoring the parameters of fluid and pressure while drilling was developed, and mathematical models for gas reservoir seepage and wellbore two-phase flow were established. Based on drilling operation parameters, well structure and monitored parameters, the wellbore pressure and the gas reservoir permeability could be predicted theoretically for underbalanced horizontal drilling. Based on the monitored gas production along the well depth, the gas reservoir type could be identified.

  1. Ecological assessment of a southeastern Brazil reservoir

    Martins,Isabela; Sanches,Barbara; Kaufmann,Philip Robert; Hughes,Robert M.; Santos,Gilmar Bastos; Molozzi,Joseline; Callisto, Marcos


    Reservoirs are artificial ecosystems with multiple functions having direct and indirect benefits to humans; however, they also cause ecological changes and influence the composition and structure of aquatic biota. Our objectives were to: (1) assess the environmental condition of Nova Ponte Reservoir, Minas Gerais state, southeastern Brazil; and (2) determine how the aquatic biota respond to disturbances. A total of 40 sites in the littoral zone of the reservoir were sampled to characterize ph...

  2. Time-lapse seismic within reservoir engineering

    Oldenziel, T.


    Time-lapse 3D seismic is a fairly new technology allowing dynamic reservoir characterisation in a true volumetric sense. By investigating the differences between multiple seismic surveys, valuable information about changes in the oil/gas reservoir state can be captured. Its interpretation involves different disciplines, of which the main three are: reservoir management, rock physics, and seismics. The main challenge is expressed as "How to optimally benefit from time-lapse seismic". The chall...

  3. Multiscale ensemble filtering for reservoir engineering applications

    Lawniczak, W.; Hanea, R.G.; Heemink, A.; Mclaughlin, D.


    Reservoir management requires periodic updates of the simulation models using the production data available over time. Traditionally, validation of reservoir models with production data is done using a history matching process. Uncertainties in the data, as well as in the model, lead to a nonunique history matching inverse problem. It has been shown that the ensemble Kalman filter (EnKF) is an adequate method for predicting the dynamics of the reservoir. The EnKF is a sequential Monte-Carlo a...

  4. Development of gas and gas condensate reservoirs



    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  5. Slimholes for geothermal reservoir evaluation - An overview

    Hickox, C.E.


    The topics covered in this session include: slimhole testing and data acquisition, theoretical and numerical models for slimholes, and an overview of the analysis of slimhole data acquired by the Japanese. The fundamental issues discussed are concerned with assessing the efficacy of slimhole testing for the evaluation of geothermal reservoirs. the term reservoir evaluation is here taken to mean the assessment of the potential of the geothermal reservoir for the profitable production of electrical power. As an introduction to the subsequent presentations and discussions, a brief summary of the more important aspects of the use of slimholes in reservoir evaluation is given.

  6. Stretch due to Penile Prosthesis Reservoir Migration

    E. Baten


    Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.

  7. Freshwater reservoir effect variability in Northern Germany

    Philippsen, B.; Heinemeier, J.


    The freshwater reservoir effect is a potential problem when radiocarbon dating fish bones, shells, human bones, or food crusts on pottery from sites near rivers or lakes. The reservoir age in hardwater rivers can be up to several thousand years and may be highly variable. Accurate 14C dating...... of freshwater-based samples requires knowing the order of magnitude of the reservoir effect and its degree of variability. Measurements on modern riverine materials may not give a single reservoir age correction that can be applied to archaeological samples, but they show the order of magnitude and variability...

  8. Healthcare Outbreaks Associated With a Water Reservoir and Infection Prevention Strategies.

    Kanamori, Hajime; Weber, David J; Rutala, William A


    Hospital water may serve as a reservoir of healthcare-associated pathogens, and contaminated water can lead to outbreaks and severe infections. The clinical features of waterborne outbreaks and infections as well as prevention strategies and control measures are reviewed. The common waterborne pathogens were bacteria, including Legionella and other gram-negative bacteria, and nontuberculous mycobacteria, although fungi and viruses were occasionally described. These pathogens caused a variety of infections, including bacteremia and invasive and disseminated diseases, particularly among immunocompromised hosts and critically ill adults as well as neonates. Waterborne outbreaks occurred in healthcare settings with emergence of new reported reservoirs, including electronic faucets (Pseudomonas aeruginosa and Legionella), decorative water wall fountains (Legionella), and heater-cooler devices used in cardiac surgery (Mycobacterium chimaera). Advanced molecular techniques are useful for achieving a better understanding of reservoirs and transmission pathways of waterborne pathogens. Developing prevention strategies based on water reservoirs provides a practical approach for healthcare personnel.


    QIU Xiang


    Turbulence structures and turbulent Counter-Gradient Transport(CGT) properties in the stratified flows with a sharp temperature interface are investigated by experimental measurements using LIF and PIV, by LES and by correlation analysis.

  10. Development of a Curved, Stratified, In Vitro Model to Assess Ocular Biocompatibility: e96448

    Cameron K Postnikoff; Robert Pintwala; Sara Williams; Ann M Wright; Denise Hileeto; Maud B Gorbet


    .... Methods Immortalized human corneal epithelial cells were grown to confluency on curved cellulose filters for seven days, and were then differentiated and stratified using an air-liquid interface...

  11. (Metrically) quarter-stratifiable spaces and their applications in the theory of separately continuous functions

    Banakh, Taras


    We introduce and study (metrically) quarter-stratifiable spaces and then apply them to generalize Rudin and Kuratowski-Montgomery theorems about the Baire and Borel complexity of separately continuous functions.

  12. Mixture distribution measurement using laser induced breakdown spectroscopy in hydrogen direct injection stratified charge

    Shudo, Toshio [Applied Energy System Group, Division of Energy and Environmental Systems, Hokkaido University, N13 W8 Kita-Ward, Sapporo, Hokkaido 060-8628 (Japan); Oba, Shuji [Mazda Motor Corporation, Hiroshima 730-8670 (Japan)


    Reduction in cooling loss due to the heat transfer from burning gas to the combustion chamber wall is very important for improving the thermal efficiency in hydrogen engines. The previous research has shown that the direct injection stratified charge can be a technique to reduce the cooling loss and improve thermal efficiency in hydrogen combustion. For effective reductions in cooling loss by the stratified charge, it is very important to know the relation between the fuel injection conditions and mixture distribution. The current research employs the laser induced breakdown spectroscopy as a method to measure the hydrogen concentration distribution in the direct injection stratified charge. Measurement of instantaneous local equivalence ratio by the method clears the characteristics of mixture formation in hydrogen direct injection stratified charge. This research also tries to actively control the mixture distribution using a split fuel injection. (author)

  13. Economic viability of Stratified Medicine concepts : An investor perspective on drivers and conditions that favour using Stratified Medicine approaches in a cost-contained healthcare environment

    Fugel, Hans-Joerg; Nuijten, Mark; Postma, Maarten


    RATIONALE: Stratified Medicine (SM) is becoming a natural result of advances in biomedical science and a promising path for the innovation-based biopharmaceutical industry to create new investment opportunities. While the use of biomarkers to improve R&D efficiency and productivity is very much

  14. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    Koerner, Roy; Clarke, Don; Walker, Scott


    The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  15. Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?

    Clarkson, Christopher R [ORNL


    The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

  16. Estimation of Bank Erosion Due To Reservoir Operation in Cascade (Case Study: Citarum Cascade Reservoir

    Sri Legowo


    Full Text Available Sedimentation is such a crucial issue to be noted once the accumulated sediment begins to fill the reservoir dead storage, this will then influence the long-term reservoir operation. The sediment accumulated requires a serious attention for it may influence the storage capacity and other reservoir management of activities. The continuous inflow of sediment to the reservoir will decrease the capacity of reservoir storage, the reservoir value in use, and the useful age of reservoir. Because of that, the rate of the sediment needs to be delayed as possible. In this research, the delay of the sediment rate is considered based on the rate of flow of landslide of the reservoir slope. The rate of flow of the sliding slope can be minimized by way of each reservoir autonomous efforts. This effort can be performed through; the regulation of fluctuating rate of reservoir surface current that does not cause suddenly drawdown and upraising as well. The research model is compiled using the searching technique of Non Linear Programming (NLP.The rate of bank erosion for the reservoir variates from 0.0009 to 0.0048 MCM/year, which is no sigrificant value to threaten the life time of reservoir.Mean while the rate of watershed sediment has a significant value, i.e: 3,02 MCM/year for Saguling that causes to fullfill the storage capacity in 40 next years (from years 2008.

  17. Worldwide Experience of Sediment Flushing Through Reservoirs

    Muhammad Asif Chaudhry


    Full Text Available Globally there are about 25,500 storage reservoirs with total storage volume of about 6,464 Bcm. The maximum number of reservoirs are in North America, i.e. 7205 with the total storage volume of about 1,844 Bcm, whereas minimum number of reservoirs are in Central Asia, i.e. 44, with the total storage volume of about 148 Bcm. Over the globe, average annual reservoir storage loss due to sedimentation varies from 0.1-2.3%, however, average annual world storage loss is about 1.0%. In order to combat the storage loss, the techniques used globally are: watershed management, dredging of deposited sediments, sediment routing/sluicing, sediment bypassing, density current venting and sediment flushing through reservoir, separately and also in combination. Each approach has its own limitations, depending on the site conditions. Sediment flushing technique is used by two ways i.e. Drawdown flushing and Emptying and Flushing. In Emptying and Flushing, the reservoir is emptied before the flood season, resulting in the creation of river-like flow conditions in the reservoir. The flow velocities in the reservoir are increased to such an extent that deposited sediments are remobilized and transported through the low level outlets provided slightly above the original riverbed level with sufficient flow capacity. Flushing is not a new technique and has been experienced for the last 6 decades on several reservoirs of the world. The results of the study reveal that there are about 50 reservoirs which are flushed, out of which flushing data is available for about 22 reservoirs only. However 6 reservoirs have been found with successful application of flushing operation and all other are flushed with low flushing efficiency. Flushing has been successfully implemented at Baira-India, Gebidem-Switzerland, Gmund-Austria, Hengshan-China, Palagnedraswitzerland, Santo-Domingo-Venezuela Reservoirs, while the unsuccessfully flushed reservoirs are: Chinese reservoirs, Gaunting

  18. Exploration on ecological regulation of the reservoirs

    Cai Qihua


    Reservoir regulation process in the Yangtze River basin is mainly divided into two types of flood regulation and initiating benefit regulation. The present reservoir management system and operation mode are mainly for dealing with or coordinating of flood control and benefit initiation as well as benefit distribution among various beneficial functions. From the view point of river ecosystem protection, the current regulation mode has two kinds of problems: firstly, most of the reservoir regulation plans do not consider ecosystem protection at downstream of dams and needs of environment protection in reservoir areas; secondly, integrated regulation or management of water resources is ignored. It is very necessary to improve reservoir regulation mode, bearing problems faced by regulation of the Three Gorges reservoir and issues related to cascade development and regulation in Tuojiang and Minjiang River basins in mind. In accordance with the concept of scientific development, and the philosophy of "ensuring a healthy Yangtze River and promoting the har-mony between human and water", taking flood control, benefit initiation and eco-system as a whole, this paper put for-ward the basic consideration to improve reservoir regulation as follows : on the basis of requirements of ecosystem protec-tion at downstream of dams and needs of environment protection in reservoir areas, we should bring the functions of res-ervoir such as flood control and benefit initiation into full play, control the negative influence to the ecosystem at down-stream of dams and the environment in reservoir areas in an endurable scope, and restore the ecosystem and the environ-ment step by step. This paper put forward the relevant regulation process aiming at the idiographic problems such as pro-tection of ecosystem at downstream of dams and environment in reservoir areas, protection of aquatic wildlife species and fish species, regulation of sediment and protection of wetland.

  19. Field observations of cohesive sediment dynamics in a partially stratified estuary

    Huang, I. B.; Monismith, S. G.; Manning, A. J.


    This research focuses on understanding cohesive sediment dynamics and transport in a partially stratified estuary, the San Francisco Bay-Delta estuary. Three different datasets are used in this study: 1) Polaris transects: seven longitudinal transects collected on the R/V Polaris in collaboration with the USGS SFB monthly water monitoring project (; 2) Questuary transects: two two-day transects collected on the R/V Questuary spanning from Suisun Bay to the Delta, near Sacramento, CA; and 3) Questuary stationary: a 48-hr stationary profiling experiment collected on the R/V Questuary at the low-salinity zone in Rio Vista, CA. Altogether, these cruises covered a spatial range of approximately 220 km from June 2008 to November 2015. Vertical profiles of particle size distributions (PSDs), total floc volume concentrations, pressure, salinity, temperature, fluorescence, suspended sediment concentrations (SSC via optical backscatter calibration), and photosynthetically irradiance (PAR) were collected in all experiments using a LISST 100X Type B or Type C (Sequoia Scientific) and a SBE 19+ CTD (Seabird Electronics). Background currents were monitored using a downward-looking 600 or 1200 kHz ADCP (RDI Teledyne) on all Questuary datasets, and in-situ dissipation profiles were measured using a free-falling VMP-200 (Rockland Scientific) in all datasets except for one Polaris transect. We make the following main observations. First, suspended sediment flocculation significantly enhances particle fall velocity and therefore sediment removal from the water column. Second, we argue that estuarine physics is the main driving mechanism behind floc size changes, rather than chemical or biological factors. Lastly, we show that suspended sediment and light penetration relationships can be improved by accounting for floc size changes under certain conditions.

  20. Effects of extreme floods on the Daphnia ephippial egg bank in a long narrow reservoir



    Full Text Available Ephippial egg banks are important reservoirs of dormant stages that allow the recovery of Daphnia populations after unfavourable periods. Although the contribution of hatchlings from ephippia to a population in the water column is probably of minor importance in permanent water bodies with a year-round Daphnia persistence, this may differ after major disturbances. In 2006, two 500-year floods hit the long and narrow Vranov Reservoir (Czech Republic, in which we had investigated zooplankton densities and ephippia distribution in the sediment in preceding years. In this study, we evaluated the impact of those extraordinary floods on the population of the Daphnia longispina complex, and particularly on the local dormant egg bank. We considered two alternative hypotheses related to the egg bank: that either the substantial input of new material with the flood completely buried and therefore reset the existing egg bank, or that the sediment including ephippia was redistributed in the reservoir after the flood and dormant eggs could be exposed to hatching stimuli. A year after the floods, we did not observe any sediment layer that would be devoid of ephippia. However, we observed a significant increase in the proportion of empty ephippia and a decrease in the proportion of those containing eggs. We attribute these changes to disturbance of the sediment due to the floods, which caused redistribution of ephippia stored in the sediment and those detached from the reservoir shoreline. Dormant eggs inside ephippia deposited to shallow parts of reservoir after the floods could therefore receive and respond to hatching stimuli. Hatching from ephippia may have contributed to Daphnia recovery after the spring flood; however, a significant proportion of the Daphnia population probably survived the summer flood protected in the epilimnetic refuge of the thermally stratified environment.

  1. Simulation model of stratified thermal energy storage tank using finite difference method

    Waluyo, Joko


    Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be

  2. Water resources review: Wheeler Reservoir, 1990

    Wallus, R.; Cox, J.P.


    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  3. Time-lapse seismic within reservoir engineering

    Oldenziel, T.


    Time-lapse 3D seismic is a fairly new technology allowing dynamic reservoir characterisation in a true volumetric sense. By investigating the differences between multiple seismic surveys, valuable information about changes in the oil/gas reservoir state can be captured. Its interpretation involves d

  4. Economics of Developing Hot Stratigraphic Reservoirs

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore


    Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  5. Time-lapse seismic within reservoir engineering

    Oldenziel, T.


    Time-lapse 3D seismic is a fairly new technology allowing dynamic reservoir characterisation in a true volumetric sense. By investigating the differences between multiple seismic surveys, valuable information about changes in the oil/gas reservoir state can be captured. Its interpretation involves d

  6. Seismic determination of saturation in fractured reservoirs

    Brown, R.L.; Wiggins, M.L.; Gupta, A.


    Detecting the saturation of a fractured reservoir using shear waves is possible when the fractures have a geometry that induces a component of movement perpendicular to the fractures. When such geometry is present, vertically traveling shear waves can be used to examine the saturation of the fractured reservoir. Tilted, corrugated, and saw-tooth fracture models are potential examples.

  7. Geothermal reservoir insurance study. Final report


    The principal goal of this study was to provide analysis of and recommendations on the need for and feasibility of a geothermal reservoir insurance program. Five major tasks are reported: perception of risk by major market sectors, status of private sector insurance programs, analysis of reservoir risks, alternative government roles, and recommendations.

  8. Time-lapse seismic within reservoir engineering

    Oldenziel, T.


    Time-lapse 3D seismic is a fairly new technology allowing dynamic reservoir characterisation in a true volumetric sense. By investigating the differences between multiple seismic surveys, valuable information about changes in the oil/gas reservoir state can be captured. Its interpretation involves

  9. Petroleum reservoir engineering - a personal perspective

    Archer, J.S. [Imperial Coll. of Science and Technology, London (United Kingdom)


    This paper was invited as part of the Ad 1995 - NW Europe`s Hydrocarbon Industry Symposium to mark Aberdeen University`s 500th Anniversay. The author has been taken the opportunity to recall, from a highly personal and selective perspective, some of the events of the last 25 years in reservoir engineering, through his own experiences of North Sea fields. The first part of the paper sets the background to reservoir engineering through some of the key contributions to the literature. The second part recalls the early North Sea reservoir planning and the emergence of multidisciplinary approaches to reservoir characterization and asset management. The third part of the paper focuses on reservoir engineering research at Imperial College, and the final part poses a number of questions on the future of reservoir engineering in a UK North Sea context. The author does not intend to provide a critical appraisal of the reservoir engineering literature that has emerged in the last 25 years, therefore, the reservoir engineering with which the author has been most closely associated naturally receives the greatest prominence in a paper of this type. In no way should this be construed as a claim to invention. (author)

  10. Identifying and Evaluating of Oil Reservoir

    Yang Haixia


    The identification and evaluation of oil reservoir with logging data are one of most important ways in geologic logging services. For the last decades, with the further development of the oil & gas exploration, great advances have been achieved in techniques on the acquisition, processing and interpretative evaluation of logging data. How to identify fluid characteristics and evaluate the productivity in light oil reservoir (the crude density being between 0.74g/cm3 and 0.82g/cm3)has become one of the difficulties.With the establishment of the regional interpretation criterion of the study blocks, the optimized logging parameters that reflect the reservoir characteristics have been used to establish the chart for the interpretation of oil-water reservoir combining with well logging parameters. Then, to begin with geologic reserves of crude in single well, we establish evaluation criterion for productivity in oil reservoir with determining lower limit value of the reservoir and applying the relationship between chart parameters. The techniques are verified in production and get better effect.On the basis of the reservoir characteristics analysis of both basin A and B, We established the evaluation method of static productivity on light oil reservoir with getting quantitative evaluation parameters after quantitatively evaluating the date of core, pyrolysis chromatogram and gas chromatogram. It provides new technique 7 for new well interpretation and old well review, as well as evidence for of well testing.

  11. Advances in carbonate exploration and reservoir analysis

    Garland, J.; Neilson, J.E.; Laubach, S.E.; Whidden, K.J.


    Carbonate reservoirs contain an increasingly important percentage of the world’s hydrocarbon reserves. This volume presents key recent advances in carbonate exploration and reservoir analysis. As well as a comprehensive overview of the trends in carbonate over the years, the volume focuses on four key areas:

  12. Zooplankton of the Zaporiz’ke Reservoir

    T. V. Mykolaichuk


    Full Text Available The paper is devoted to zooplankton species composition in the Zaporiz’ke Reservoir. The greatest species diversity was found in the macrophyte communities of the upper reservoir’s littoral, but the least zooplankton diversity – in the pelagic zone of the lower reservoir.

  13. Ichthyofauna of the reservoirs of Central Vietnam

    I. A. Stolbunov


    Full Text Available Species composition, distribution and abundance of fish in the pelagic and littoral zone of four reservoirs of Central Vietnam (Suoi Chau, Kam Lam, Da Ban and Suoi Dau were studied first. According to the research data the fish community of the reservoirs is represented by 43 species of 19 fish families.

  14. Reservoir optimization for the synthetic brugge field

    Peters, E.; Leeuwenburgh, O.; Egberts, P.J.P.


    Increasing availability of data and tools for history matching and optimisation brings the long-term goal of closed loop reservoir management closer. However, still many issues are not solved. An example is the interaction between the history match of the reservoir model and the optimisation. How im

  15. Multiscale ensemble filtering for reservoir engineering applications

    Lawniczak, W.; Hanea, R.G.; Heemink, A.; McLaughlin, D.


    Reservoir management requires periodic updates of the simulation models using the production data available over time. Traditionally, validation of reservoir models with production data is done using a history matching process. Uncertainties in the data, as well as in the model, lead to a nonunique

  16. Advances in China's Oil Reservoir Description Technique

    Mu Longxin; Huang Shiyan; Jia Ailin; Rong Jiashu


    @@ Oil reservoir description in China has undergone rapid development in recent years. Extensive research carried out at various oilfields and petroleum universities has resulted in the formulation of comprehensive oil reservoir description techniques and methods uniquely suited to the various development phases of China's continental facies. The new techniques have the following characteristics:

  17. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker


    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  18. Striped bass annual site fidelity and habitat utilization in J. Strom Thurmond Reservoir, South Carolina-Georgia

    Young, S.P.; Isely, J.J.


    Forty-eight adult striped bass Morone saxatilis (3.2-19.1 kg) were captured by electrofishing in the tailrace of Richard B. Russell Dam and in the upper reaches of two major tributaries; they were implanted with temperature-sensitive radio transmitters and tracked approximately bimonthly for 20 months. As J. Strom Thurmond Reservoir downstream from the dam became thermally stratified in May, fish vacated the tributaries. From June to October, all striped bass were found within the reservoir's historical Savannah River channel. By August, most of the instrumented fish were found in the upper section of the reservoir, where optimal habitat was available throughout the summer owing to cool, artificially oxygenated hypolimnetic discharges from Richard B. Russell Dam. In mid-October the reservoir destratified, and fish dispersed from their up-reservoir summering areas and redistributed themselves throughout the reservoir. During early winter, the striped bass returned to tributary habitat or down-reservoir areas and generally used these locations throughout the winter. The fish exhibited a high degree of site fidelity to their summering areas, source tributaries (after fall dispersal and throughout the winter), and spring spawning areas. Mean movement rates were highest in the spring and fall, corresponding to the migration from tributaries in May and the return migration after fall dispersal. Mean movement rates were lowest in summer and winter, corresponding to the periods of high fidelity to summering and wintering areas. The average monthly temperatures and dissolved oxygen concentrations in areas used by striped bass were 19.0-20.4??C and 4.86-6.44 mg/L during May-October, which corresponded to average monthly habitat suitability index values of 0.76-0.98. Striped bass avoided temperatures above 25.1??C and dissolved oxygen concentrations less than 2.3 mg/L.

  19. Production Optimization of Oil Reservoirs

    Völcker, Carsten

    with emphasis on optimal control of water ooding with the use of smartwell technology. We have implemented immiscible ow of water and oil in isothermal reservoirs with isotropic heterogenous permeability elds. We use the method of lines for solution of the partial differential equation (PDE) system that governs...... the uid ow. We discretize the the two-phase ow model spatially using the nite volume method (FVM), and we use the two point ux approximation (TPFA) and the single-point upstream (SPU) scheme for computing the uxes. We propose a new formulation of the differential equation system that arise...... as a consequence of the spatial discretization of the two-phase ow model. Upon discretization in time, the proposed equation system ensures the mass conserving property of the two-phase ow model. For the solution of the spatially discretized two-phase ow model, we develop mass conserving explicit singly diagonally...

  20. Bottomwater drive in tarmat reservoirs

    Al-Kaabi, A.A.; Menouar, H.; Al-Marhoun, M.A.; Al-Hashim, H.S.


    This paper addresses the class of tarmat reservoirs subject to bottomwater drive. Different shapes of tar layers are simulated physically and numerically to study the behavior of WOR and oil recovery. Four different cases were studied: a square barrier beneath the well, a disk beneath the well, a hollow square or disk beneath the well, and a half plane. The results showed that breakthrough time occurs earlier in the case of hollow tarmat barriers, while it is delayed considerably in the case of tarmat barriers shaped in the form of a disk beneath the well. Paradoxically, in this last case, the WOR increases more rapidly and becomes higher toward the end of the depletion than in any other case. Among all the cases studied, the no-barrier case gives the highest recovery, while the hollow-tarmat-barrier case leads to the lowest recovery.

  1. Rodent reservoirs of future zoonotic diseases.

    Han, Barbara A; Schmidt, John Paul; Bowden, Sarah E; Drake, John M


    The increasing frequency of zoonotic disease events underscores a need to develop forecasting tools toward a more preemptive approach to outbreak investigation. We apply machine learning to data describing the traits and zoonotic pathogen diversity of the most speciose group of mammals, the rodents, which also comprise a disproportionate number of zoonotic disease reservoirs. Our models predict reservoir status in this group with over 90% accuracy, identifying species with high probabilities of harboring undiscovered zoonotic pathogens based on trait profiles that may serve as rules of thumb to distinguish reservoirs from nonreservoir species. Key predictors of zoonotic reservoirs include biogeographical properties, such as range size, as well as intrinsic host traits associated with lifetime reproductive output. Predicted hotspots of novel rodent reservoir diversity occur in the Middle East and Central Asia and the Midwestern United States.

  2. Llama oviductal sperm reservoirs: involvement of bulbourethral glands.

    Apichela, S A; Argañaraz, M E; Giuliano, S; Zampini, R; Carretero, I; Miragaya, M; Miceli, D C


    The aim of this study was to elucidate the role of llama seminal plasma in the formation of oviductal sperm reservoirs. Female llamas with follicles in the mature phase were mated with a bulbourethral glands-removed male. Females mated with nonbulbourethral glands-removed males were used as control. Oviducts were obtained by surgery 24 h after mating. The uterotubal junction and isthmus were examined by scanning electron microscopy, and mucopolysaccharides were identified by Alcian blue staining. To know the proteins probably involved in sperm reservoir formation, SDS-PAGE of seminal plasma (8% and 18% resolving gel) was made. Spermatozoa only adhered to the oviductal mucosa surface of uterotubal junction of females mated with nonbulbourethral glands-removed males confirming that seminal plasma and, in particular, bulbourethral secretions are related with the oviductal sperm reservoir formation. Histological sections showed sperm in the lumen, immersed in substance, positive for acid mucopolysaccharides. Alcian blue staining of seminal plasma proteins SDS-PAGE showed a band of high molecular weight containing mucopolysaccharides, only present in nonbulbourethral glands-removed males. Bulbourethral glands would secrete at least eight different proteins that most likely participate in the process of sperm storage in the oviduct.

  3. Reservoir management under geological uncertainty using fast model update

    Hanea, R.; Evensen, G.; Hustoft, L.; Ek, T.; Chitu, A.; Wilschut, F.


    Statoil is implementing "Fast Model Update (FMU)," an integrated and automated workflow for reservoir modeling and characterization. FMU connects all steps and disciplines from seismic depth conversion to prediction and reservoir management taking into account relevant reservoir uncertainty. FMU del

  4. A new case of reservoir triggered seismicity: Govind Ballav Pant reservoir (Rihand dam), central India

    Gahalaut, Kalpna; Gahalaut, V. K.; Pandey, M. R.


    We report here that seismicity near Govind Ballav Pant reservoir is strongly influenced by the reservoir operations. It is the second largest reservoir in India, which is built on Rihand river in the failed rift region of central India. Most of the earthquakes occurred during the high water stand in the reservoir with a time lag of about 1 month. We use the concept of coulomb stress change and use Green's function based approach to estimate stresses and pore pressure due to the reservoir load. We find that the reservoir increases coulomb stress on the nearby faults of the region that are favourably oriented for failure in predominantly reverse slip manner under the NNE-SSW compression and thus promotes failure. The above two factors make it an obvious, yet so far unreported case of reservoir triggered seismicity.

  5. Dynamic dam-reservoir interaction analysis including effect of reservoir boundary absorption

    LIN; Gao; DU; JianGuo; HU; ZhiQiang


    Based on the scaled boundary finite-element method,the governing equations for the analysis of dam-reservoir interaction including the reservoir boundary absorption are developed.Coupling with the equation of dam-unbounded foundation interaction,it can effectively carry out the earthquake response analysis of dam-reservoir-foundation system.The proposed approach has the advantages that the effect of compressibility of reservoir water as well as the energy absorption of reservoir boundary on the earthquake response of arch dams and gravity dams can be efficiently evaluated and higher accuracy can be achieved.In comparison with the methods available in the literature,the computational cost can be reduced to a great extent.It facilitates the application of earthquake response analysis of dam-reservoir-foundation system including reservoir boundary absorption to the engineering practice.

  6. Arborification de Wikip\\'edia et analyse s\\'emantique explicite stratifi\\'ee - Wikipedia Arborification and Stratified Explicit Semantic Analysis

    Haralambous, Yannis


    We present an extension of the Explicit Semantic Analysis method by Gabrilovich and Markovitch. Using their semantic relatedness measure, we weight the Wikipedia categories graph. Then, we extract a minimal spanning tree, using Chu-Liu-Edmonds' algorithm. We define a notion of stratified tfidf where the stratas, for a given Wikipedia page and a given term, are the classical tfidf and categorical tfidfs of the term in the ancestor categories of the page (ancestors in the sense of the minimal spanning tree). Our method is based on this stratified tfidf, which adds extra weight to terms that "survive" when climbing up the category tree. We evaluate our method by a text classification on the WikiNews corpus: it increases precision by 18%. Finally, we provide hints for future research.

  7. Processes Affecting Phosphorus and Copper Concentrations and Their Relation to Algal Growth in Two Supply Reservoirs in the Lower Coastal Plain of Virginia, 2002-2003, and Implications for Alternative Management Strategies

    Speiran, Gary K.; Simon, Nancy S.; Mood-Brown, Maria L.


    because these factors affect phosphorus availability to algae. Results indicate that (1) water flows through both reservoirs in a 'plug-flow' manner; (2) little water in the lower part of Lee Hall Reservoir, into which pumped water enters, flows into the upper part of the reservoir and mixes with that water; (3) Lee Hall Reservoir generally does not stratify; and (4) Harwoods Mill Reservoir stratifies from April to June through September or October into an upper epilimnion that does not mix with water in the lower hypolimnion. The ratio of dissolved nitrogen to phosphorus concentrations (N:P) for sites in both reservoirs generally was greater than 20:1, indicating that phosphorus likely is the growth-limiting nutrient in both reservoirs. Phosphorus was present predominantly as suspended, rather than dissolved, species except in the hypolimnion of Harwoods Mill Reservoir and the natural inflow represented by Baptist Run. Because Harwoods Mill Reservoir stratified, field-measured physical and chemical characteristics and concentrations of nitrogen and phosphorus species changed sharply over short depth intervals in this reservoir. Dissolved phosphorus concentration increased from 0.015 to 0.057 milligrams per liter between a depth of 15 feet (ft) and the bottom (depth of 18 ft), indicating the release of phosphorus by the decomposition of organic material and(or) the reduction of iron oxides in bed sediment and the lower water column. Because the mixing boundary between the epilimnion and the hypolimnion likely was between depths of 6 and 10 ft, such sources in the hypolimnion would not contribute phosphorus to the growth of algae in the epilimnion from which water is withdrawn for supply until the breakdown of stratification in the fall. Furthermore, laboratory studies of samples from both reservoirs indicated that dissolved phosphorus was released from suspended particles at rates of 0.0007 to 0.0019 milligrams per liter per day. At these rates of release, particl

  8. Improving Reservoir Simulation using Seismic Data

    Shamsa, Amir

    The principal premise of this thesis is that the ambiguities of reservoir simulation can be and should be reduced by using time-lapse seismic data. Such data can be considered as a sort of reservoir dynamic data, with distinctive features compared to the typical reservoir production data. While well production data are sparse in space and dense in time, 4D timelapse seismic can be utilized to fill the spatial data gaps between wells. This provides an opportunity to constrain reservoir dynamic behaviour not only at well locations but also between them by honoring time lapse response of the reservoir. This means that seismic assisted history matching should involve a simultaneous minimization of the mismatch between all types of measured and simulated data including seismic data. This thesis is an effort to discuss critical aspects of integrating 4D time-lapse data in reservoir simulation and history matching. I have illustrated a detailed scheme of seismic assisted history matching with implications on real data, to emphasize the extra value that seismic data can bring into the conventional reservoir history matching. This goal was followed by developing a software application to assess the feasibility of the theory at industrial scales. In addition to the conventional oils, a significant effort has been devoted to extend the scope of the work to viscoelastic heavy oils and their fluid substitution models in thermal cases. I also studied the production/injection induced stresses impacts on anisotropic velocity variations, using coupled geomechanical-flow simulations. (Abstract shortened by UMI.).

  9. Stochastic Reservoir Characterization Constrained by Seismic Data

    Eide, Alfhild Lien


    In order to predict future production of oil and gas from a petroleum reservoir, it is important to have a good description of the reservoir in terms of geometry and physical parameters. This description is used as input to large numerical models for the fluid flow in the reservoir. With increased quality of seismic data, it is becoming possible to extend their use from the study of large geologic structures such as seismic horizons to characterization of the properties of the reservoir between the horizons. Uncertainties because of the low resolution of seismic data can be successfully handled by means of stochastic modeling, and spatial statistics can provide tools for interpolation and simulation of reservoir properties not completely resolved by seismic data. This thesis deals with stochastic reservoir modeling conditioned to seismic data and well data. Part I presents a new model for stochastic reservoir characterization conditioned to seismic traces. Part II deals with stochastic simulation of high resolution impedance conditioned to measured impedance. Part III develops a new stochastic model for calcite cemented objects in a sandstone background; it is a superposition of a marked point model for the calcites and a continuous model for the background.

  10. The Tanggu geothermal reservoir (Tianjin, China)

    Axelsson, Gudni [Virkir-Orkint Consulting Group and National Energy Authority, Reykjavik (Iceland); Zhilin Dong [Tanggu Geothermal Office, Tianjin (China)


    The Tanggu geothermal system is an extensive, highly permeable, horizontal sandstone reservoir, situated within the North China Sedimentary Basin. Twenty-three successful production wells, yielding water with an average temperature of about 70degC, have been drilled into this reservoir since 1987, distributed over an area of some 330 km{sup 2}. The hot water is mostly used for space heating. In 1995 the annual production exceeded 5 million tons. Hot water extraction has caused the water level to drop to a depth of 80 m in the production wells, and it continues to decline at a rate of 3-4 m per year. This has raised the question as to whether the reservoir may be overexploited. The main objective of a reservoir evaluation carried out in 1996 was to estimate the long-term production potential of the Tanggu reservoir. Two simple models were developed for this purpose. The potential is determined by specifying a maximum allowable pump setting depth of 150 m . On this basis the potential of the Tanggu reservoir is estimated to be about 10 million tons per year, for the next ten years. A comprehensive reservoir management program must be implemented in Tanggu. The first priority of such a program should be to improve the energy efficiency of space heating in the district, which should result in about 50% reduction in hot water consumption. Another management option is reinjection, which would counteract the water level draw-down. (Author)

  11. Reservoir stimulation techniques to minimize skin factor of Longwangmiao Fm gas reservoirs in the Sichuan Basin

    Guo Jianchun


    Full Text Available The Lower Cambrian Longwangmiao Fm carbonatite gas reservoirs in the Leshan-Longnüsi Paleouplift in the Sichuan Basin feature strong heterogeneity, well-developed fractures and caverns, and a high content of H2S, so these reservoirs are prone to reservoir damages caused by the invasion of drilling fluid or the improper well completion, so to minimize the reservoir skin factor is key to achieving high yield of oil and gas in this study area. Therefore, based on the geological characteristics of the Longwangmiao reservoirs, the binomial productivity equation was applied to demonstrate the possibility and scientificity of minimizing the skin factor. According to the current status of reservoir stimulation, the overall skin factors of reservoir damage caused by drilling fluid invasion, improper drilling and completion modes etc were analyzed, which shows there is still potential for skin factor reduction. Analysis of reservoir damage factors indicates that the main skin factor of Longwangmiao Fm reservoirs consists of that caused by drilling fluid and by improper completion modes. Along with the minimization of skin factor caused by drilling and improper completion, a fracture-network acidizing process to achieve “non-radial & network-fracture” plug-removal by making good use of natural fractures was proposed according to the characteristics of Longwangmiao Fm carbonatite reservoirs.

  12. Ecological operation for Three Gorges reservoir

    Wen-xian GUO


    Full Text Available The traditional operation rule of Three Gorges reservoir has mainly focused on water for flood control, power generation, navigation, water supply and recreation and given less attention to the negative impacts of reservoir operation on river ecosystem. In order to reduce the negative influence of reservoir operation, ecological operation of the reservoir should be studied to maintain healthy river ecosystem. The study considered the ecological operation targets, including maintaining river environmental flow and protecting the spawning and reproduction of Chinese sturgeon and four major Chinese carps. Based on the flow data from 1900 to 2006 of Yichang gauge as the control station of the Yangtze River, the minimal and optimal river environmental flows were analyzed, and eco-hydrological targets of Chinese sturgeon and four major Chinese carps in the Yangtze River were calculated. The paper proposed a reservoir ecological operation model of comprehensively considering flood control, power generation, navigation and ecological environment. Three typical periods including wet, normal and dry year were selected and particle swarm optimization was applied to analyze the model. The results show that there are different influences of ecological operation rules on economic benefit of hydropower station and reservoir ecological operation model can simulate the flood pulse for requirement of spawning of Chinese sturgeon and four major Chinese carps. Finally, ecological operation measures of Three Gorges reservoir were proposed. According to the results, by adopting a suitable re-operation scheme, the hydropower benefit of the reservoir will not decrease dramatically while the ecological demand can be met. The results provide the reference for making the reasonable operation schemes for Three Gorges reservoir.

  13. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    Katterbauer, Klemens


    Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting

  14. Toxic anterior segment syndrome caused by autoclave reservoir wall biofilms and their residual toxins.

    Sorenson, Andrew L; Sorenson, Robert L; Evans, David J


    To identify etiology of toxic anterior segment syndrome (TASS) after uneventful phacoemulsification. EyeMD Laser and Surgery Center, Oakland, California. Retrospective case series. Patient charts with TASS were reviewed. Reservoirs of 2 autoclaves associated with these cases were cultured for bacterial contamination. Cultures were performed on 23 other autoclave reservoirs at surgery centers in the local area. The main outcome measures were the incidence of TASS and prevalence of bacterial biofilm contamination of autoclave reservoirs. From 2010 to 2013, 11 935 consecutive cataract surgeries were performed at 1 center by multiple surgeons with no reported TASS. Between January 1, 2014, and January 15, 2015, 10 cases of TASS occurred out of 3003 cataract surgeries; these patients' charts were reviewed. Cultures of 2 Statim autoclave reservoir walls grew Bacillus species, Williamsia species, Mycobacterium mucogenicum, and Candida parapsilosis. Scanning electron microscopy of reservoir wall sections showed prominent biofilm. The 2 autoclaves were replaced in January 2015. Subsequently, 2875 cataract surgeries were performed with no reported TASS (P autoclaves were also contaminated with bacterial biofilms. Toxic anterior segment syndrome was strongly associated with bacterial biofilm contamination of autoclave reservoirs. An etiological mechanism might involve transport of heat-stable bacterial cell antigens in the steam with deposition on surgical instrumentation. Data suggest widespread prevalence of bacterial biofilms on fluid-reservoir walls, despite adherence to manufacturer guidelines for cleaning and maintenance. Prevention or elimination of autoclave fluid-reservoir biofilms might reduce the risk for postoperative TASS. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama

    Kugler, R.L.; Pashin, J.C.


    This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of the report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).

  16. Towards pattern generation and chaotic series prediction with photonic reservoir computers

    Antonik, Piotr; Hermans, Michiel; Duport, François; Haelterman, Marc; Massar, Serge


    Reservoir Computing is a bio-inspired computing paradigm for processing time dependent signals that is particularly well suited for analog implementations. Our team has demonstrated several photonic reservoir computers with performance comparable to digital algorithms on a series of benchmark tasks such as channel equalisation and speech recognition. Recently, we showed that our opto-electronic reservoir computer could be trained online with a simple gradient descent algorithm programmed on an FPGA chip. This setup makes it in principle possible to feed the output signal back into the reservoir, and thus highly enrich the dynamics of the system. This will allow to tackle complex prediction tasks in hardware, such as pattern generation and chaotic and financial series prediction, which have so far only been studied in digital implementations. Here we report simulation results of our opto-electronic setup with an FPGA chip and output feedback applied to pattern generation and Mackey-Glass chaotic series prediction. The simulations take into account the major aspects of our experimental setup. We find that pattern generation can be easily implemented on the current setup with very good results. The Mackey-Glass series prediction task is more complex and requires a large reservoir and more elaborate training algorithm. With these adjustments promising result are obtained, and we now know what improvements are needed to match previously reported numerical results. These simulation results will serve as basis of comparison for experiments we will carry out in the coming months.

  17. Stretchable Hydrogel Electronics and Devices.

    Lin, Shaoting; Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Koo, Hyunwoo; Yu, Cunjiang; Zhao, Xuanhe


    Stretchable hydrogel electronics and devices are designed by integrating stretchable conductors, functional chips, drug-delivery channels, and reservoirs into stretchable, robust, and biocompatible hydrogel matrices. Novel applications include a smart wound dressing capable of sensing the temperatures of various locations on the skin, delivering different drugs to these locations, and subsequently maintaining sustained release of drugs.

  18. Outer boundary effects in a petroleum reservoir

    Nelson, Rhodri; Crowdy, Darren; Kropf, Everett; Zuo, Lihua; Weijermars, Ruud


    A new toolkit for potential theory based on the Schottky-Klein prime function is first introduced. This potential theory toolkit is then applied to study the fluid flow structures in bounded 2D petroleum reservoirs. In the model, reservoirs are assumed to be heterogeneous and isotropic porous medium and can thus be modelled using Darcy's equation. First, computations of flow contours are carried out on some 'test' domains and benchmarked against results from the ECLIPSE reservoir simulator. Following this, a case study of the Quitman oil field in Texas is presented.


    Robert Malmur


    Full Text Available Intensive rainfalls and snow melting often cause floods in protected areas and overflow the existing sewage systems. Such cases are particularly burdensome for the inhabitants and cause considerable physical losses. One of the possible constructional solutions to ensure the effective outflow of stormwater are transfer reservoirs located between the draining system and a receiver set discussed in this paper. If gravity outflow of sewage is impossible, the initial part of sewage volume is accumulated in the transfer reservoir and then it is transferred into the water receiver set. However, gravity discharge of sewage to the water receiver set occurs through transfer chambers in the transfer reservoir.

  20. Production-induced changes in reservoir geomechanics

    Amoyedo, Sunday O.

    Sand production remains a source of concern in both conventional and heavy oil production. Porosity increase and changes in local stress magnitude, which often enhance permeability, have been associated with severe sanding. On the other hand, sand production has been linked to a large number of field incidences involving loss of well integrity, casing collapse and corrosion of down-hole systems. It also poses problems for separators and transport facilities. Numerous factors such as reservoir consolidation, well deviation angle through the reservoir, perforation size, grain size, capillary forces associated with water cut, flow rate and most importantly reservoir strain resulting from pore pressure depletion contribute to reservoir sanding. Understanding field-specific sand production patterns in mature fields and poorly consolidated reservoirs is vital in identifying sand-prone wells and guiding remedial activities. Reservoir strain analysis of Forties Field, located in the UK sector of the North Sea, shows that the magnitude of the production-induced strain, part of which is propagated to the base of the reservoir, is of the order of 0.2 %, which is significant enough to impact the geomechanical properties of the reservoir. Sand production analysis in the field shows that in addition to poor reservoir consolidation, a combined effect of repeated perforation, high well deviation, reservoir strain and high fluid flow rate have contributed significantly to reservoir sanding. Knowledge of reservoir saturation variation is vital for in-fill well drilling, while information on reservoir stress variation provides a useful guide for sand production management, casing design, injector placement and production management. Interpreting time-lapse difference is enhanced by decomposing time-lapse difference into saturation, pressure effects and changes in rock properties (e.g. porosity) especially in highly compacting reservoirs. Analyzing the stress and saturation

  1. The freshwater reservoir effect in radiocarbon dating

    Philippsen, Bente

    case studies will show the degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants and animals, shows that age differences of up to 2000 years can occur within one river. In the Limfjord, freshwater influence...... caused reservoir ages to vary between 250 and 700 years during the period 5400 BC - AD 700. Finally, I will discuss the implications of the freshwater reservoir effect for radiocarbon dating of Mesolithic pottery from inland sites of the Ertebølle culture in Northern Germany....

  2. Freshwater reservoir effect variability in Northern Germany

    Philippsen, Bente; Heinemeier, Jan


    The freshwater reservoir effect is a potential problem when radiocarbon dating fishbones, shells, human bones or food crusts on pottery from sites next to rivers or lakes. The reservoir age in rivers containing considerable amounts of dissolved 14C-free carbonates can be up to several thousand...... years and may be highly variable. For accurate radiocarbon dating of freshwater-based samples, the order of magnitude of the reservoir effect as well as the degree of variability has to be known. The initial problem in this case was the accurate dating of food crusts on pottery from the Mesolithic sites...

  3. [Individualized, personalized and stratified medicine: a challenge for allergology in ENT?].

    Chaker, Adam M; Klimek, L


    Individualized, personalized or stratified medicine approaches offer emerging opportunities in the field of allergy and ENT. Avoidance of side effects, targeted therapy approaches and stratified prevention promise better outcomes and optimal results for patients. Conceptual incongruencies remain with regard to definitions and perceptions of "personalized medicine". Serious ethical considerations have to be taken into account. The development of pharmacogenomics, molecular phenotyping, genomic sequencing and other -omics opens the door to unique mechanistic therapeutic advances. The molecular allergology and recombinant diagnostics available are tools that offer substantial improved diagnostics for the benefit of allergic patients, e. g. in anaphylaxis and food allergy. For stratified therapeutic approaches, however, regulatory affairs will have to keep pace with medical and scientific discovery.

  4. A dynamic subgrid-scale model for the large eddy simulation of stratified flow

    刘宁宇; 陆夕云; 庄礼贤


    A new dynamic subgrid-scale (SGS) model, including subgrid turbulent stress and heat flux models for stratified shear flow is proposed by using Yoshizawa’ s eddy viscosity model as a base model. Based on our calculated results, the dynamic subgrid-scale model developed here is effective for the large eddy simulation (LES) of stratified turbulent channel flows. The new SGS model is then applied to the large eddy simulation of stratified turbulent channel flow under gravity to investigate the coupled shear and buoyancy effects on the near-wall turbulent statistics and the turbulent heat transfer at different Richardson numbers. The critical Richardson number predicted by the present calculation is in good agreement with the value of theoretical analysis.

  5. A dynamic subgrid-scale model for the large eddy simulation of stratified flow


    A new dynamic subgrid-scale (SGS) model, including subgrid turbulent stress and heat flux models for stratified shear flow is proposed by using Yoshizawa's eddy viscosity model as a base model. Based on our calculated results, the dynamic subgrid-scale model developed here is effective for the large eddy simulation (LES) of stratified turbulent channel flows. The new SGS model is then applied to the large eddy simulation of stratified turbulent channel flow under gravity to investigate the coupled shear and buoyancy effects on the near-wall turbulent statistics and the turbulent heat transfer at different Richardson numbers. The critical Richardson number predicted by the present calculation is in good agreement with the value of theoretical analysis.

  6. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others


    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  7. Effect of turbulent fluctuations on the behaviour of fountains in stratified environments

    Freire, D.; Cabeza, C.; Pauletti, S.; Sarasúa, G.; Bove, I.; Usera, G.; Martí, A. C.


    The interaction between a turbulent fountain and its stratified environment was studied. A heavy fluid, cold water, was injected vertically upwards into a linearly stratified medium. The round heavy-fluid jet reaches a maximum height before it begins to fall due to the effect of gravity. Because of the effects of friction and mixing, the vertical momentum and density of the jet fluid decrease as it submerges to an intermediate height of zero buoyancy. At this point, the jet fluid spreads as a horizontal front, intruding into the stratified environment. The degree of fluctuation in the proximity of the injection point was studied under both unrestricted- and restricted-flow configurations at the injection, using two differently sized stainless-steel woven-wire screens at the injection port as flow-restricting means. Using visualization and velocimetry techniques, both maximum and spreading heights were found to decrease with increasing turbulence at the point of injection.

  8. Third Annual Open Meeting of the UK Pharmacogenomics and Stratified Medicine Network Conference.

    Bradshaw, Elizabeth H


    Third Annual Open Meeting of the UK Pharmacogenetics and Stratified Medicine Network 14 January 2015, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK The third Annual Open Meeting of the UK Pharmacogenetics and Stratified Medicine Network was held on 14 January 2015 in association with the Wellcome Trust on the Wellcome Trust Genome Campus at Hinxton, Cambridge, UK. In the morning, speakers from Cancer Research UK, the Medical Research Council, Genomics England, Innovate UK (formerly TSB) and the Department of Health described the current major projects they are funding. In the afternoon, speakers from various universities around the United Kingdom presented data on pharmacogenetics and stratified medicine research covering diverse disease areas including cancers, warfarin dosing, Gaucher disease and rheumatoid arthritis.

  9. Convective heat transport in stratified atmospheres at low and high Mach number

    Anders, Evan H


    Convection in astrophysical systems is stratified and often occurs at high Rayleigh number (Ra) and low Mach number (Ma). Here we study stratified convection in the context of plane-parallel, polytropically stratified atmospheres. We hold the density stratification ($n_{\\rho}$) and Prandtl number (Pr) constant while varying Ma and Ra to determine the behavior of the Nusselt number (Nu), which quantifies the efficiency of convective heat transport. As Ra increases and $\\text{Ma} \\rightarrow 1$, a scaling of Nu $\\propto$ Ra$^{0.45}$ is observed. As Ra increases to a regime where Ma $\\geq 1$, this scaling gives way to a weaker Nu $\\propto$ Ra$^{0.19}$. In the regime of Ma $\\ll 1$, a consistent Nu $\\propto$ Ra$^{0.31}$ is retrieved, reminiscent of the Nu $\\propto$ Ra$^{2/7}$ seen in Rayleigh-B\\'{e}nard convection.


    YANG Yong-yu; LIU Xin-wei; YANG Fan


    The curve of relationship between fatigue crack growth rate and the stress strength factor amplitude represented an important fatigue property in designing of damage tolerance limits and predicting life of metallic component parts. In order to have a morereasonable use of testing data, samples from population were stratified suggested by the stratified random sample model (SRAM). The data in each stratum corresponded to the same experiment conditions. A suitable weight was assigned to each stratified sample according to the actual working states of the pressure vessel, so that the estimation of fatigue crack growth rate equation was more accurate for practice. An empirical study shows that the SRAM estimation by using fatigue crack growth rate data from different stoves is obviously better than the estimation from simple random sample model.

  11. Prediction of Stratified Flow Temperature Profiles in a Fully Insulated Environment

    Ahmad S. Awad


    Full Text Available The aim of the study is to present an analytical model to predict the temperature profiles in thermal stratified environment. Thermal stratification is encountered in many situations. The flow of contaminants and hydrocarbons in environment often get stratified. The prediction of temperature profiles and flow characteristics are essential for HVAC applications, environment and energy management. The temperature profiles in the stratified region are successfully obtained, in terms of flow-operating functions. The analytical model agrees well with the published experimental data as well as the related closed-form solutions, which is helpful for HVAC applications. The model will be further developed and incorporated within a numerical model in order to investigate the flow field characteristics and establish correlations for a wide range of parameters.



    A modular numerical model was developed for simulating density-stratified flow in domains with irregular bottom topography. The model was designed for examining interactions between stratified flow and topography, e.g., tidally driven flow over two-dimensional sills or internal solitary waves propagating over a shoaling bed. The model was based on the non-hydrostatic vorticity-stream function equations for a continuously stratified fluid in a rotating frame. A self-adaptive grid was adopted in the vertical coordinate, the Alternative Direction Implicit (ADI) scheme was used for the time marching equations while the Poisson equation for stream-function was solved based on the Successive Over Relaxation (SOR) iteration with the Chebyshev acceleration. The numerical techniques were described and three applications of the model were presented.

  13. Physical and chemical characteristics of Terrace Reservoir, Conejos County, Colorado, May 1994 through May 1995; interim report

    Stogner, Sr., Robert W.; Edelmann, Patrick; Walton-Day, Katherine


    Terrace Reservoir receives drainage of low-pH, metal-enriched water from mineralized areas, including the Summitville Mine, within the AlamosaRiver Basin. Drainage from the Summitville Mine has contributed a substantial part of the metal load to Terrace Reservoir. From May 1994 through May 1995, a study was done by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to evaluate the physical and chemical characteristics of Terrace Reservoir.Terrace Reservoir was thermally stratified from about mid-May through August 1994. Thermal stratification was absent from September\\x111994through March 1995. During periods of stratification, underflow of the Alamosa River was predominant, and residence times of the underflow were shortened by 40 to 75\\x11percent of the theoretical residence times for a well-mixed reservoir. Transport and deposition of suspended solids in Terrace Reservoir varied spatially and temporally. Most of the suspended solids were deposited in Terrace Reservoir. The concentration of dissolved oxygen in the reservoir varied little spatially or temporally and generally was within a few tenths of the dissolved-oxygen concentration of the inflow. The pH of water in the reservoir generally ranged from about 4.0 to about 7.0, depending on date, depth, and location. The largest pH values were measured during May. A markeddecrease of about 1.5\\x11pH units occurred at site T5 in the reservoir about mid-June. The pH of the reservoir remained at or below 5.5 from mid-June through November. Dissolved-metal concentrations varied spatially and temporally in response to several factors, which included inflow characteristics, reservoir stratification and mixing, inflow-routing and flow-through patterns, residence times, sedimentation, dissolved oxygen, and pH.Inflow chemistry is the dominant controlling factor of metal chemistry within Terrace Reservoir.During periods of stratification, large vertical variations in metal

  14. Stratified epithelium in prostatic adenocarcinoma: a mimic of high-grade prostatic intraepithelial neoplasia.

    Hameed, Omar; Humphrey, Peter A


    Typically glands of prostatic adenocarcinoma have a single cell lining, although stratification can be seen in invasive carcinomas with a cribriform architecture, including ductal carcinoma. The presence and diagnostic significance of stratified cells within non-cribriform carcinomatous prostatic glands has not been well addressed. The histomorphological features and immunohistochemical profile of cases of non-cribriform prostatic adenocarcinoma with stratified malignant glandular epithelium were analyzed. These cases were identified from needle biopsy cases from the consultation files of one of the authors and from a review of 150 consecutive in-house needle biopsy cases of prostatic adenocarcinoma. Immunohistochemistry was performed utilizing antibodies reactive against high molecular weight cytokeratin (34betaE12), p63 and alpha-methylacyl-coenzyme-A racemase (AMACR). A total of 8 cases were identified, including 2 from the 150 consecutive in-house cases (1.3%). In 4 cases, the focus with glands having stratified epithelium was the sole carcinomatous component in the biopsy, while such a component represented 5-30% of the invasive carcinoma seen elsewhere in the remaining cases. The main attribute in all these foci was the presence of glandular profiles lined by several layers of epithelial cells with cytological and architectural features resembling flat or tufted high-grade prostatic intraepithelial neoplasia, but lacking basal cells as confirmed by negative 34betaE12 and/or p63 immunostains in all cases. The AMACR staining profile of the stratified foci was variable, with 4 foci showing positivity, and 3 foci being negative, including two cases that displayed AMACR positivity in adjacent non-stratified prostatic adenocarcinoma. Prostatic adenocarcinoma with stratified malignant glandular epithelium can be identified in prostate needle biopsy samples harboring non-cribriform prostatic adenocarcinoma and resembles glands with high-grade prostatic

  15. Damage localization and quantification of composite stratified beam Structures using residual force method

    Behtani, A.; Bouazzouni, A.; Khatir, S.; Tiachacht, S.; Zhou, Y.-L.; Abdel Wahab, M.


    In this paper, the problem of using measured modal parameters to detect and locate damage in beam composite stratified structures with four layers of graphite/epoxy [0°/902°/0°] is investigated. A technique based on the residual force method is applied to composite stratified structure with different boundary conditions, the results of damage detection for several damage cases demonstrate that using residual force method as damage index, the damage location can be identified correctly and the damage extents can be estimated as well.

  16. Cooling Shelf For Electronic Equipment

    Tanzer, Herbert J.


    Heat-pipe action cools and maintains electronics at nearly constant temperature. System designed to control temperatures of spacecraft shelves or baseplates by combining honeycomb sandwich panel with reservoir of noncondensable gas and processing resulting device as variable-conductance heat pipe. Device provides flat surface for mounting heat-dissipating electronics that is effectively cooled and maintained at nearly constant temperature. Potentially useful in freeze drying, refrigeration, and air conditioning.

  17. Evaluation of an Empirical Reservoir Shape Function to Define Sediment Distributions in Small Reservoirs

    Bogusław Michalec


    Understanding and defining the spatial distribution of sediment deposited in reservoirs is essential not only at the design stage but also during the operation. The majority of research concerns the distribution of sediment deposition in medium and large water reservoirs. Most empirical methods do not provide satisfactory results when applied to the determination of sediment deposition in small reservoirs. Small reservoir’s volumes do not exceed 5 × 106 m3 and their capacity-inflow ratio is l...

  18. Lower Palaeozoic reservoirs of North Africa

    Crossley, R.; McDougall, N. [Robertson Research International Ltd., Llandudno, Conwy (United Kingdom)


    This paper provides an overview of features considered significant in the exploration and development of Lower Palaeozoic reservoirs of North Africa. Information is derived from a review of literature on the Lower Palaeozoic successions of North Africa, combined with outcrop observations from the Anti Atlas mountains of Morocco. The focus of the exploration-oriented part of the review is on identification of potential traps other than two-way structural dip closure. Stratigraphic elements described include depositional models of reservoir facies, tectonic unconformities and possible eustatic unconformities. Cases of established or potential trapping by post-depositional faulting by diagenesis and by hydrodynamic flow are examined. Development-related topics highlighted include the impact on reservoir matrix quality of burial diagenesis and of palaeo-weathering at the Hercynian unconformity. Other issues discussed which additionally affect producibility from the reservoir matrix include tectonic fracturing, palaeotopography and unloading fracturing at the Hercynian unconformity, and induced fracturing within the present stress regimes. (author)

  19. Reservoir Greenhouse Gas Emissions at Russian HPP

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V. [St. Petersburg State Polytechnic University (Russian Federation); Savvichev, A. S. [Russian Academy of Sciences, S. N. Vinogradskii Institute of Microbiology (Russian Federation); Zinchenko, A. V. [A. I. Voeikov Main Geophysical Observatory (Russian Federation)


    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  20. The glaciogenic reservoir analogue studies project (GRASP)

    Moscariello, A.; Moreau, Julien; Vegt, P. van der

    Tunnel galleys are common features in Palaeozoic glacigenic succession in North Afrcica and Middle East and they are amongst the most challenging target for hydrocarbon exploration and developing drilling in these regions. Similarly, these buried valleys form important groundwater reservoirs...

  1. Fishery management plan for the Dorris reservoir

    US Fish and Wildlife Service, Department of the Interior — The Fishery Management Plan for Dorris Reservoir at Modoc National Wildlife Refuge. The U.S. Fish and Wildlife service proposes to continue a public fishing program...

  2. Overdamped stochastic thermodynamics with multiple reservoirs

    Murashita, Yûto; Esposito, Massimiliano


    After establishing stochastic thermodynamics for underdamped Langevin systems in contact with multiple reservoirs, we derive its overdamped limit using timescale separation techniques. The overdamped theory is different from the naive theory that one obtains when starting from overdamped Langevin or Fokker-Planck dynamics and only coincides with it in the presence of a single reservoir. The reason is that the coarse-grained fast momentum dynamics reaches a nonequilibrium state, which conducts heat in the presence of multiple reservoirs. The underdamped and overdamped theory are both shown to satisfy fundamental fluctuation theorems. Their predictions for the heat statistics are derived analytically for a Brownian particle on a ring in contact with two reservoirs and subjected to a nonconservative force and are shown to coincide in the long-time limit.

  3. NYC Reservoirs Watershed Areas (HUC 12)

    U.S. Environmental Protection Agency — This NYC Reservoirs Watershed Areas (HUC 12) GIS layer was derived from the 12-Digit National Watershed Boundary Database (WBD) at 1:24,000 for EPA Region 2 and...

  4. Origins of acid fluids in geothermal reservoirs

    Truesdell, Alfred


    Acid fluids in geothermal reservoirs are rare. Their occurrence in geothermal systems associated with recent volcanism (Tatun, Sumikawa, Miravalles) probably indicates that the geothermal reservoir fluid was derived from volcanic fluid incompletely neutralized by reaction with feldspars and micas. Superheated steam containing HCl (Larderello, The Geysers) forms acid where it condenses or mixes with liquid at moderate temperatures (325??C). Cryptoacidity occurs at Los Humeros where HCl acidity is formed and neutralized without reaching the surface.

  5. Geophysical monitoring in a hydrocarbon reservoir

    Caffagni, Enrico; Bokelmann, Goetz


    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (; this project, funded by the Horizon2020 research programme, aims at helping minimize the

  6. Finite temperature reservoir engineering and entanglement dynamics

    Fedortchenko, S.; Keller, A.; Coudreau, T.; Milman, P.


    We propose experimental methods to engineer reservoirs at arbitrary temperature which are feasible with current technology. Our results generalize to mixed states the possibility of quantum state engineering through controlled decoherence. Finite temperature engineered reservoirs can lead to the experimental observation of thermal entanglement --the appearance and increase of entanglement with temperature-- to the study of the dependence of finite time disentanglement and revival with tempera...

  7. Application of integrated reservoir management and reservoir characterization to optimize infill drilling



    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities were identified and tested. The geologically targeted infill drilling program currently being implemented is a result of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.


    Reid B. Grigg


    brine in limestone core. Metal tracers in the brine were used as markers to identify precipitation location and extent. This indicated possible causes of permanent permeability changes in the core and thus in a reservoir. Core segment porosity, permeability, chemical and back-scattered electron imaging, and chemical titrations were all used for qualitative and quantitative determination of compositional and injectivity changes. Also, injectivity effects of high flow rate near a wellbore and stress changes were shown on five different cores (two Berea sandstones, two Indiana limestones, and one Dakota sandstone).

  9. Biocompetitive exclusion technology: A field system to control reservoir souring and increasing production

    Sandbeck, K.A.; Hitzman, D.O.


    Biogenic formation of sulfide in reservoirs by Sulfate Reducing Bacteria (SRB) causes serious plugging, corrosion, and environmental safety problems. The production of sulfide can be decreased, and its concentration reduced, by the establishment and growth of an indigenous microbial population which results in a replacement of the SRB population. This approach to modify the reservoir ecology utilizing preexisting carbon sources coupled with the introduction of an alternate electron acceptor forms the basis of a new Biocompetitive Exclusion technology which has the potential to enhance oil recovery and decrease paraffin deposition and corrosion. Preliminary field results from an ongoing DOE-sponsored research program will be discussed.

  10. Optimizing water treatment practices for the removal of actinomycetes and earthy odor in water of Bovilla reservoir



    Full Text Available Bovilla reservoir, which is situated 15 km North-East of Tirana the capital city of Albania is one of the major hidrotechnical works of this country. This reservoir is a warm monomictic water body and stratifies higher in the summer season. The predominant trophic state of Bovilla reservoir is oligotrophy. From autumn 2001 this reservoir repeatedly manifests an unpleasant taste and odor which is defined as musty- earthy. Taste and odor control has become an important issue for drinking water suppliers worldwide. Consumers react very sensitively to changes in the organoleptic quality of their drinking water. The reason is that odor compounds present a very low threshold of perception (10–20 ng/L. Bovilla water treatment plant treats 1800 L/s raw water taken from Bovilla reservoir, using oxidation, coagulation and flocculation, sedimentation, filtration and disinfection process. In cases of bad odor powdered activated carbon (PAC is added at the rapid mix section. Throughout the monitoring period were done: quality and sensory analysis of raw water on a weekly frequency, analysis of treated water after coagulation, laboratory scale experiments using different doses of chemicals, applying optimized doses in full scale and PAC adsorption experiments. The aims of this study were: to predict the PAC doses required to treat water of Bovilla reservoir containing bad taste and odor, to establish the removal efficiency of taste and odor by three types of activated carbons with different iodine number and to assess the impact of NaOCl and other chemical in the treatment process of the plant in removing actinomycetes and bad odor. Results have shown that traditional treatment processes are usually inadequate in removing taste and odor and optimization of plant practices is required. Powdered activated carbon (PAC can effectively remove taste and odor when the correct dose is applied.

  11. Massachusetts reservoir simulation tool—User’s manual

    Levin, Sara B.


    IntroductionThe U.S. Geological Survey developed the Massachusetts Reservoir Simulation Tool to examine the effects of reservoirs on natural streamflows in Massachusetts by simulating the daily water balance of reservoirs. The simulation tool was developed to assist environmental managers to better manage water withdrawals in reservoirs and to preserve downstream aquatic habitats.

  12. Hydropower Reservoir Operation using Standard Operating and Standard Hedging Policies

    T.R. Neelakantan; K. Sasireka


    Standard operating policy and hedging policies are commonly used for reservoir operation for municipal or irrigation water supply. Application of these policies to hydropower reservoir operation is complex. In this paper, new standard operating policies and standard hedging policy are proposed for hydropower reservoir operation. The newly proposed policies were applied to the operation of Indira Sagar reservoir in India and demonstrated.

  13. Reservoir assessment of The Geysers Geothermal field

    Thomas, R.P.; Chapman, R.H.; Dykstra, H.


    Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

  14. Reservoir Thermal Recover Simulation on Parallel Computers

    Li, Baoyan; Ma, Yuanle

    The rapid development of parallel computers has provided a hardware background for massive refine reservoir simulation. However, the lack of parallel reservoir simulation software has blocked the application of parallel computers on reservoir simulation. Although a variety of parallel methods have been studied and applied to black oil, compositional, and chemical model numerical simulations, there has been limited parallel software available for reservoir simulation. Especially, the parallelization study of reservoir thermal recovery simulation has not been fully carried out, because of the complexity of its models and algorithms. The authors make use of the message passing interface (MPI) standard communication library, the domain decomposition method, the block Jacobi iteration algorithm, and the dynamic memory allocation technique to parallelize their serial thermal recovery simulation software NUMSIP, which is being used in petroleum industry in China. The parallel software PNUMSIP was tested on both IBM SP2 and Dawn 1000A distributed-memory parallel computers. The experiment results show that the parallelization of I/O has great effects on the efficiency of parallel software PNUMSIP; the data communication bandwidth is also an important factor, which has an influence on software efficiency. Keywords: domain decomposition method, block Jacobi iteration algorithm, reservoir thermal recovery simulation, distributed-memory parallel computer

  15. Parallel reservoir computing using optical amplifiers.

    Vandoorne, Kristof; Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Bienstman, Peter


    Reservoir computing (RC), a computational paradigm inspired on neural systems, has become increasingly popular in recent years for solving a variety of complex recognition and classification problems. Thus far, most implementations have been software-based, limiting their speed and power efficiency. Integrated photonics offers the potential for a fast, power efficient and massively parallel hardware implementation. We have previously proposed a network of coupled semiconductor optical amplifiers as an interesting test case for such a hardware implementation. In this paper, we investigate the important design parameters and the consequences of process variations through simulations. We use an isolated word recognition task with babble noise to evaluate the performance of the photonic reservoirs with respect to traditional software reservoir implementations, which are based on leaky hyperbolic tangent functions. Our results show that the use of coherent light in a well-tuned reservoir architecture offers significant performance benefits. The most important design parameters are the delay and the phase shift in the system's physical connections. With optimized values for these parameters, coherent semiconductor optical amplifier (SOA) reservoirs can achieve better results than traditional simulated reservoirs. We also show that process variations hardly degrade the performance, but amplifier noise can be detrimental. This effect must therefore be taken into account when designing SOA-based RC implementations.

  16. Assessment of reservoir system variable forecasts

    Kistenmacher, Martin; Georgakakos, Aris P.


    Forecast ensembles are a convenient means to model water resources uncertainties and to inform planning and management processes. For multipurpose reservoir systems, forecast types include (i) forecasts of upcoming inflows and (ii) forecasts of system variables and outputs such as reservoir levels, releases, flood damage risks, hydropower production, water supply withdrawals, water quality conditions, navigation opportunities, and environmental flows, among others. Forecasts of system variables and outputs are conditional on forecasted inflows as well as on specific management policies and can provide useful information for decision-making processes. Unlike inflow forecasts (in ensemble or other forms), which have been the subject of many previous studies, reservoir system variable and output forecasts are not formally assessed in water resources management theory or practice. This article addresses this gap and develops methods to rectify potential reservoir system forecast inconsistencies and improve the quality of management-relevant information provided to stakeholders and managers. The overarching conclusion is that system variable and output forecast consistency is critical for robust reservoir management and needs to be routinely assessed for any management model used to inform planning and management processes. The above are demonstrated through an application from the Sacramento-American-San Joaquin reservoir system in northern California.


    S. Robert Bereskin


    Anastamosing, low gradient distributary channels produce {approx}30 gravity, paraffinic oils from the Middle Member of the lacustrine Eocene Green River Formation in the south-central portion of the Uinta Basin. This localized depocenter was situated along the fluctuating southern shoreline of Lake Uinta, where complex deposits of marginal-lacustrine to lower delta plain accumulations are especially characteristic. The Middle Member contains several fining-upward parasequences that can be recognized in outcrop, core, and downhole logs. Each parasequence is about 60 to 120 feet thick and consists of strata deposited during multiple lake level fluctuations that approach 30 to 35 feet in individual thickness. Such parasequences represent 300,000-year cycles based on limited absolute age dating. The subaerial to subaqueous channels commonly possess an erosional base and exhibit a fining upward character. Accordingly, bedding features commonly range from large-scale trough and planar cross bedding or lamination at the base, to a nonreservoir, climbing ripple assemblage near the uppermost reservoir boundary. The best reservoir quality occurs within the laminated to cross-stratified portions, and the climbing ripple phase usually possesses more deleterious micas and/or detrital clays. Diagenesis also exerts a major control on reservoir quality. Certain sandstones were cemented by an early, iron-poor calcite cement, which can be subsequently leached. Secondary intergranular porosity (up to 20%) is largely responsible for the 10 -100 millidarcy rock, which represents petrophysical objectives for both primary and secondary production. Otherwise, intense compaction, silicic and iron-rich carbonate cements, and authigenic clays serve to reduce reservoir quality to marginal economic levels.

  18. Numerical simulation of the impacts of water level variation on water age in Dahuofang Reservoir

    Li, Xinwen; Shen, Yongming


    The transport timescales were investigated in response to water level variation under different constant flow rates in Dahuofang Reservoir. The concept of water age was applied to quantify the transport timescales. A three-dimensional hydrodynamic model was developed based on the Environmental Fluid Dynamics Code (EFDC). The model was calibrated for water surface elevation and temperature profiles from April 1, 2008 to October 31, 2008. Comparisons of observed and modeled data showed that the model reproduced the water level fluctuation and thermal stratification during warm season and vertical mixing during cold season fairly well. The calibrated model was then applied to investigate the response of water age to water level changes in Dahuofang Reservoir. Model results showed that water age increases from confluence toward dam zone. In the vertical direction, the water age is relatively uniform at upstream and stratifies further downstream, with a larger value at bottom layer than at surface layer. Comparisons demonstrated that water level variation has a significant impact on transport timescales in the reservoir. The impact of water level drawdown on water age is stronger at bottom layer than at surface layer. Under high flow conditions, the water age decreases 0-20 days at surface layer and 15-25 days at bottom layer. Under mean flow conditions, the water age decreases 20-30 days at surface layer and 30-50 days at bottom layer. Furthermore, the impact is minor in the upstream and increases further downstream. The vertical stratification of water age weakens as the water level decreases. This study provides a numerical tool to quantify the transport timescale in Dahuofang Reservoir and supports adaptive management of regional water resources by local authorities.

  19. Potential methane reservoirs beneath Antarctica.

    Wadham, J L; Arndt, S; Tulaczyk, S; Stibal, M; Tranter, M; Telling, J; Lis, G P; Lawson, E; Ridgwell, A; Dubnick, A; Sharp, M J; Anesio, A M; Butler, C E H


    Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14 kilometres thick and an estimated 21,000 petagrams (1 Pg equals 10(15) g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300 metres in West Antarctica and 700 metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.

  20. A finite element simulation system in reservoir engineering

    Gu, Xiaozhong [Louisiana State Univ., Baton Rouge, LA (United States)


    Reservoir engineering is performed to predict the future performance of a reservoir based on its current state and past performance and to explore other methods for increasing the recovery of hydrocarbons from a reservoir. Reservoir simulations are routinely used for these purposes. A reservoir simulator is a sophisticated computer program which solves a system of partial differential equations describing multiphase fluid flow (oil, water, and gas) in a porous reservoir rock. This document describes the use of a reservoir simulator version of BOAST which was developed by the National Institute for Petroleum and Energy Research in July, 1991.

  1. Analysis of Wave Propagation in Stratified Structures Using Circuit Analogues, with Application to Electromagnetic Absorbers

    Sjoberg, Daniel


    This paper presents an overview of how circuit models can be used for analysing wave propagation in stratified structures. Relatively complex structures can be analysed using models which are accessible to undergraduate students. Homogeneous slabs are modelled as transmission lines, and thin sheets between the slabs are modelled as lumped…

  2. An Examination of Item Selection Rules by Stratified CAT Designs Integrated with Content Balancing Methods.

    Leung, Chi-Keung; Chang, Hua-Hua; Hau, Kit-Tai

    The multistage alpha-stratified computerized adaptive testing (CAT) design advocated a new philosophy of pool management and item selection using low discriminating items first. It has been demonstrated through simulation studies to be effective both in reducing item overlap rate and enhancing pool utilization with certain pool types. Based on…

  3. Experimental investigation on isothermal stratified flow mixing in a horizontal T-junction

    Isaev, Alexander; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme (IKE)


    Turbulent and stratified flows can lead to thermal fatigue in piping systems of nuclear power plants (NPP). Such flows can be investigated in the University of Stuttgart Fluid-Structure-Interaction (FSI) facility with a T-Junction at thermal conditions with temperature differences of up to 255 K and at pressures of maximum 75 bars.

  4. Analysing stratified medicine business models and value systems: innovation-regulation interactions.

    Mittra, James; Tait, Joyce


    Stratified medicine offers both opportunities and challenges to the conventional business models that drive pharmaceutical R&D. Given the increasingly unsustainable blockbuster model of drug development, due in part to maturing product pipelines, alongside increasing demands from regulators, healthcare providers and patients for higher standards of safety, efficacy and cost-effectiveness of new therapies, stratified medicine promises a range of benefits to pharmaceutical and diagnostic firms as well as healthcare providers and patients. However, the transition from 'blockbusters' to what might now be termed 'niche-busters' will require the adoption of new, innovative business models, the identification of different and perhaps novel types of value along the R&D pathway, and a smarter approach to regulation to facilitate innovation in this area. In this paper we apply the Innogen Centre's interdisciplinary ALSIS methodology, which we have developed for the analysis of life science innovation systems in contexts where the value creation process is lengthy, expensive and highly uncertain, to this emerging field of stratified medicine. In doing so, we consider the complex collaboration, timing, coordination and regulatory interactions that shape business models, value chains and value systems relevant to stratified medicine. More specifically, we explore in some depth two convergence models for co-development of a therapy and diagnostic before market authorisation, highlighting the regulatory requirements and policy initiatives within the broader value system environment that have a key role in determining the probable success and sustainability of these models.

  5. Analysis of Wave Propagation in Stratified Structures Using Circuit Analogues, with Application to Electromagnetic Absorbers

    Sjoberg, Daniel


    This paper presents an overview of how circuit models can be used for analysing wave propagation in stratified structures. Relatively complex structures can be analysed using models which are accessible to undergraduate students. Homogeneous slabs are modelled as transmission lines, and thin sheets between the slabs are modelled as lumped…

  6. "Being" Black and Strategizing for Excellence in a Racially Stratified Academic Hierarchy

    O'Connor, Carla; Mueller, Jennifer; Lewis, R. L'Heureux; Rivas-Drake, Deborah; Rosenberg, Seneca


    This article reports the findings of an ethnographic study of Black identity and achievement in one predominantly White high school featuring a racially stratified academic hierarchy (RSAH). Foregrounding the experiences of three exceptionally achieving Black girls against those of other high-achieving but less stellar students, the study…

  7. Vertical dispersion of light inertial particles in stably stratified turbulence: The influence of the Basset force

    van Aartrijk, M.; Clercx, H.J.H.


    The dispersion of light inertial particles $\\rho_p/\\rho_f = \\mathcal{O}(1)$ in statistically stationary stably stratified turbulence is studied by means of direct numerical simulations. The light particle dispersion behavior is found to be comparable to that of heavy particles when displayed as a

  8. Stratified Flow in a Room with Displacement Ventilation and Wall-Mounted Air Terminal devices

    Nielsen, Peter V.

    This paper describes experiments with wall-mounted air terminal devices. The stratified flow in the room is analyzed, and the influence of stratification and the influence of room dimensions on the velocity level and on the length scale are proved. The velocity level in the occupied zone can be d...

  9. Experimental Validation of a Domestic Stratified Hot Water Tank Model in Modelica for Annual Performance Assessment

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh


    coupled with energy system solutions is limited. In this poster, a discretized model of a stratified tank developed in Modelica is presented. The physical phenoma to be considered are the thermal transfers by conduction and convection – stratification, heat loss to ambient, charging and discharging...

  10. Design and simulation of stratified probability digital receiver with application to the multipath communication

    Deal, J. H.


    One approach to the problem of simplifying complex nonlinear filtering algorithms is through using stratified probability approximations where the continuous probability density functions of certain random variables are represented by discrete mass approximations. This technique is developed in this paper and used to simplify the filtering algorithms developed for the optimum receiver for signals corrupted by both additive and multiplicative noise.

  11. Study on Reform of College English Stratified Teaching Based on School-Based Characteristics

    Yang, Liu


    Considering the status quo of college English teaching, we implement stratified teaching, which reflects the idea of stratification in terms of teaching objects, teaching management, teaching process and assessment and evaluation, makes each students get development to the greatest extent in interactive teaching practice of teaching and learning…

  12. Theoretical and experimental investigation into the explosive boiling potential of thermally stratified liquid-liquid systems

    Fabiano, B.; Kersten, R.J.A.; Opschoor, G.; Pastorino, R.


    The occurrence of a rapid phase transition, or so-called explosive boiling, when a cold volatile liquid comes into contact with a hot liquid or hot surface is a potential hazard in industry. This study was focused on the explosive boiling potential of thermally stratified liquid-liquid systems that

  13. Measures to assess the prognostic ability of the stratified Cox proportional hazards model

    (Tybjaerg-Hansen, A.) The Fibrinogen Studies Collaboration.The Copenhagen City Heart Study; Tybjærg-Hansen, Anne


    Many measures have been proposed to summarize the prognostic ability of the Cox proportional hazards (CPH) survival model, although none is universally accepted for general use. By contrast, little work has been done to summarize the prognostic ability of the stratified CPH model; such measures w...

  14. Developing spatially stratified N{sub 2}O emission factors for Europe

    Leip, Adrian, E-mail: [European Commission-Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy); Busto, Mirko [International Institute for Applied Systems Analysis, Laxenburg (Austria); Winiwarter, Wilfried [International Institute for Applied Systems Analysis, Laxenburg (Austria); AIT Austrian Institute of Technology, Vienna (Austria)


    We investigate the possibility to replace the - so-called - Tier 1 IPCC approach to estimate soil N{sub 2}O emissions with stratified emissions factors that take into account both N-input and the spatial variability of the environmental conditions within the countries of the European Union, using the DNDC-Europe model. Spatial variability in model simulations is high and corresponds to the variability reported in literature for field data. Our results indicate that (a) much of the observed variability in N{sub 2}O fluxes reflects the response of soils to external conditions, (b) it is likely that national inventories tend to overestimate the uncertainties in their estimated direct N{sub 2}O emissions from arable soils; (c) on average over Europe, the fertilizer-induced emissions (FIE) coincide with the IPCC factors, but they display large spatial variations. Therefore, at scales of individual countries or smaller, a stratified approach considering fertilizer type, soil characteristics and climatic parameters is preferable. - Highlights: > Stratified modelling improves estimates of direct N2O emissions from arable soils. > Large variability between strata (expressed as countries) becomes evident. > Fertilizer-induced emissions of N{sub 2}O differ by N input (manure or mineral fertilizer). > National inventories likely overestimate the uncertainties for direct N2O emissions - Model simulations suggest that stratified country-specific N{sub 2}O emission factors are useful to better describe the soil emission behaviour of the European Union countries.

  15. Spontaneous Formation of Surface Magnetic Structure from Large-scale Dynamo in Strongly-stratified Convection

    Masada, Youhei


    We report the first successful simulation of spontaneous formation of surface magnetic structures from a large-scale dynamo by strongly-stratified thermal convection in Cartesian geometry. The large-scale dynamo observed in our strongly-stratified model has physical properties similar to those in earlier weakly-stratified convective dynamo simulations, indicating that the $\\alpha^2$-type mechanism is responsible for it. Additionally to the large-scale dynamo, we find that large-scale structures of the vertical magnetic field are spontaneously formed in the convection zone surface only for the case of strongly-stratified atmosphere. The organization of the vertical magnetic field proceeds in the upper convection zone within tens of convective turn-over time and band-like bipolar structures are recurrently-appeared in the dynamo-saturated stage. We examine possibilities of several candidates as the origin of the surface magnetic structure formation, and then suggest the existence of an as-yet-unknown mechanism ...




    Let L be a meet continuous lattice. It is proved that the category Top of topological spaces can be embedded in the category of stratified L-topological spaces as a concretely both reflective and coreflective full subcategory if and only if L is a continuous lattice.

  17. Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey;


    For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...

  18. Coherence theory of electromagnetic wave propagation through stratified N-layer media

    Hoenders, B.J.; Bertolotti, M.

    The theory of second-order coherence in connection with wave propagation through a stratified N-layer (SNL) medium is developed. Especially, the influence of the SNL medium on the propagation of the coherence generated by a given state of coherence at the entrance plane of the medium is considered.

  19. Seasonal cyclogenesis and the role of near-surface stratified layer in the Bay of Bengal

    Murty, V.S.N.; Sarma, M.S.S.; Tilvi, V.

    The role of the near-surface stratified layer developed due to the spread of low salinity waters under the influence of freshwater influx on the cyclogenesis over the Bay of Bengal is addressed. The seasonal variation of the Effective Oceanic Layer...

  20. Study of stratified dielectric slab medium structures using pseudo-spectral time domain (PSTD) algorithm

    Tong, M.S.; Lu, Y.; Chen, Y.


    A planar stratified dielectric slab medium, which is an interesting problem in optics and geophysics, is studied using a pseudo-spectral time-domain (PSTD) algorithm. Time domain electric fields and frequency domain propagation characteristics of both single and periodic dielectric slab...

  1. An improved dynamic subgrid-scale model and its application to large eddy simulation of stratified channel flows

    ZHONG; Fengquan(仲峰泉); LIU; Nansheng(刘难生); LU; Xiyun(陆夕云); ZHUANG; Lixian(庄礼贤)


    In the present paper, a new dynamic subgrid-scale (SGS) model of turbulent stress and heat flux for stratified shear flow is proposed. Based on our calculated results of stratified channel flow, the dynamic subgrid-scale model developed in this paper is shown to be effective for large eddy simulation (LES) of stratified turbulent shear flows. The new SGS model is then applied to the LES of the stratified turbulent channel flow to investigate the coupled shear and buoyancy effects on the behavior of turbulent statistics, turbulent heat transfer and flow structures at different Richardson numbers.

  2. Electronics and electronic systems

    Olsen, George H


    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  3. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China.

    Wang, Sheng; Qian, Xin; Han, Bo-Ping; Luo, Lian-Cong; Hamilton, David P


    Thermal regime is strongly associated with hydrodynamics in water, and it plays an important role in the dynamics of water quality and ecosystem succession of stratified reservoirs. Changes in both climate and hydrological conditions can modify thermal regimes. Liuxihe Reservoir (23°45'50″N; 113°46'52″E) is a large, stratified and deep reservoir in Guangdong Province, located at the Tropic of Cancer of southern China. The reservoir is a warm monomictic water body with a long period of summer stratification and a short period of mixing in winter. The vertical distribution of suspended particulate material and nutrients are influenced strongly by the thermal structure and the associated flow fields. The hypolimnion becomes anoxic in the stratified period, increasing the release of nutrients from the bottom sediments. Fifty-one years of climate and reservoir operational observations are used here to show the marked changes in local climate and reservoir operational schemes. The data show increasing air temperature and more violent oscillations in inflow volumes in the last decade, while the inter-annual water level fluctuations tend to be more moderate. To quantify the effects of changes in climate and hydrological conditions on thermal structure, we used a numerical simulation model to create scenarios incorporating different air temperatures, inflow volumes, and water levels. The simulations indicate that water column stability, the duration of the mixing period, and surface and outflow temperatures are influenced by both natural factors and by anthropogenic factors such as climate change and reservoir operation schemes. Under continuous warming and more stable storage in recent years, the simulations indicate greater water column stability and increased duration of stratification, while irregular large discharge events may reduce stability and lead to early mixing in autumn. Our results strongly suggest that more attention should be focused on water quality

  4. High performance photonic reservoir computer based on a coherently driven passive cavity

    Vinckier, Quentin; Smerieri, Anteo; Vandoorne, Kristof; Bienstman, Peter; Haelterman, Marc; Massar, Serge


    Reservoir computing is a recent bio-inspired approach for processing time-dependent signals. It has enabled a breakthrough in analog information processing, with several experiments, both electronic and optical, demonstrating state-of-the-art performances for hard tasks such as speech recognition, time series prediction and nonlinear channel equalization. A proof-of-principle experiment using a linear optical circuit on a photonic chip to process digital signals was recently reported. Here we present the first implementation of a photonic reservoir computer based on a coherently driven passive fiber cavity processing analog signals. Our experiment surpasses all previous experiments on a wide variety of tasks, and also has lower power consumption. Furthermore, the analytical model describing our experiment is also of interest, as it arguably constitutes the simplest high performance reservoir computer algorithm introduced so far. The present experiment, given its remarkable performances, low energy consumption...

  5. Current Challenges in Geothermal Reservoir Simulation

    Driesner, T.


    Geothermal reservoir simulation has long been introduced as a valuable tool for geothermal reservoir management and research. Yet, the current generation of simulation tools faces a number of severe challenges, in particular in the application for novel types of geothermal resources such as supercritical reservoirs or hydraulic stimulation. This contribution reviews a number of key problems: Representing the magmatic heat source of high enthalpy resources in simulations. Current practice is representing the deeper parts of a high enthalpy reservoir by a heat flux or temperature boundary condition. While this is sufficient for many reservoir management purposes it precludes exploring the chances of very high enthalpy resources in the deepest parts of such systems as well as the development of reliable conceptual models. Recent 2D simulations with the CSMP++ simulation platform demonstrate the potential of explicitly including the heat source, namely for understanding supercritical resources. Geometrically realistic incorporation of discrete fracture networks in simulation. A growing number of simulation tools can, in principle, handle flow and heat transport in discrete fracture networks. However, solving the governing equations and representing the physical properties are often biased by introducing strongly simplifying assumptions. Including proper fracture mechanics in complex fracture network simulations remains an open challenge. Improvements of the simulating chemical fluid-rock interaction in geothermal reservoirs. Major improvements have been made towards more stable and faster numerical solvers for multicomponent chemical fluid rock interaction. However, the underlying thermodynamic models and databases are unable to correctly address a number of important regions in temperature-pressure-composition parameter space. Namely, there is currently no thermodynamic formalism to describe relevant chemical reactions in supercritical reservoirs. Overcoming this


    Ellen WOHL; Sara RATHBURN


    Many reservoirs currently in operation trap most or all of the sediment entering the reservoir,creating sediment-depleted conditions downstream. This may cause channel adjustment in the form of bank erosion, bed erosion, substrate coarsening, and channel planform change. Channel adjustment may also result from episodic sediment releases during reservoir operation, or from sediment evacuation following dam removal. Channel adjustment to increased sediment influx depends on the magnitude, frequency, duration and grain-size distribution of the sediment releases, and on the downstream channel characteristics. Channel adjustment may occur as a change in substrate sizedistribution, filling of pools, general bed aggradation, lateral instability, change in channel planform,and/or floodplain aggradation. The increased sediment availability may alter aquatic and riparian habitat, reduce water quality, distribute adsorbed contaminants along the river corridor, and provide germination sites for exotic vegetation. Mitigation of these sedimentation hazards requires: (1)mapping grain-size distribution within the reservoir and estimating the grain-size distributions of sediment that will be mobilized through time; (2) mapping shear stress and sediment transport capacity as a function of discharge on the basis of channel units for the length of the river likely to be affected; (3) mapping potential depositional zones, and aquatic habitat and "acceptable losses," along the downstream channel, and comparing these volumes to the total sediment volume stored in the reservoir as a means of estimating total transport capacity required to mobilize reservoir sediment delivered to the channel; (4) designing discharge and sediment release regime (magnitude, frequency,duration) to minimize adverse downstream impacts; and (5) developing plans to remove, treat, contain,or track contaminants, and to restrict establishment of exotic vegetation. The North Fork Poudre River in Colorado is used to

  7. Iron isotope systematics in planetary reservoirs

    Sossi, Paolo A.; Nebel, Oliver; Foden, John


    Iron is the only polyvalent major element, and controls reduction-oxidation (redox) reactions in a host of geologic processes and reservoirs, from the mineral- to planetary-scale, on Earth and in space. Mass transfer of Fe is often accompanied by changes in bonding environment, meaning the resultant variation in bond-strength in crystals, liquids and gases induces stable isotope fractionation, even at high temperatures. In the absence of iron exchange, electron transfer can also affect iron's valence state and calculated oxygen fugacity (fO2), however its isotope composition remains unchanged. Thus, iron isotopes are a powerful tool to investigate processes that involve mass transfer, redox reactions and changes in bonding environment in planetary systems. Primitive chondritic meteorites show remarkable isotopic homogeneity, δ57 Fe = - 0.01 ± 0.01 ‰ (2SE), over a wide range of Fe/Mg vs Ni/Mg, a proxy for fO2 in the solar nebula. In chondrites, there are iron isotope differences between metal and silicates that become more pronounced at higher metamorphic grades. However, on a planetary scale, Mars and Vesta overlap with chondrites, preserving no trace of core formation or volatile depletion on these bodies. Upon assessment of pristine lherzolites, the Bulk Silicate Earth is heavier than chondrites (δ57 Fe = + 0.05 ± 0.01 ‰; 2SE), and similar to or slightly lighter than the Moon. That the mantles of some differentiated inner solar system bodies extend to heavier compositions (+ 0.2 ‰) than chondrites may principally result from volatile depletion either at a nebular or late accretion stage. Within terrestrial silicate reservoirs, iron isotopes provide insight into petrogenetic and geodynamic processes. Partial melting of the upper mantle produces basalts that are heavier than their sources, scaling with degree of melting and driving the increasingly refractory peridotite to lighter compositions. Mid-Ocean Ridge Basalts (MORBs) are homogeneous to δ57 Fe

  8. Distribution and structure of internal secretory reservoirs on the vegetative organs of Inula helenium L. (Asteraceae

    Aneta Sulborska


    Full Text Available The aim of the study was to investigate the structure and topography of endogenous secretory tissues of Inula helenium L. By using light and electron microscopy, morphological and anatomical observations of stems, leaves and rhizomes were made. It was shown that in the stems secretory cavities were situated in the vicinity of phloem and xylem bundles. The number of the reservoirs reached its maximum value (34 at shoot flowerig termination, whereas the cavities with the largest diameter were observed at full flowering stage (44.6 µm. In the leaf petioles and midribs, the reservoirs also accompanied the vascular bundles, and their number and size increased along with the growth of the assimilation organs. Observations of the cross sections of the rhizomes revealed the presence of several rings of secretory reservoirs. The measurements of the cavities showed that as a rule the reservoirs with a larger dimension were located in the phelloderm, whereas the smallest ones in the xylem area. The secretory cavities located in the stems and leaves developed by schizogenesis, whereas the rhizome reservoirs were probably formed schizolisygenously. The cells lining the reservoirs formed a one - four-layered epithelium. Observed in TEM, the secretory cells of the mature cavities located in the rhizomes were characterised by the presence of a large central vacuole, whereas the protoplast was largely degraded. Fibrous elements of osmophilic secretion and numerous different coloured vesicles could be distinguished in it. The cell walls formed, from the side of the reservoir lumen, ingrowths into the interior of the epithelial cells. Between the cell wall and the plasmalemma of the glandular cells, a brighter periplasmatic zone with secretory vesicles was observed.

  9. Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II

    Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce


    The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  10. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.


    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  11. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS.

    Dehant, V; Asael, D; Baland, R M; Baludikay, B K; Beghin, J; Belza, J; Beuthe, M; Breuer, D; Chernonozhkin, S; Claeys, Ph; Cornet, Y; Cornet, L; Coyette, A; Debaille, V; Delvigne, C; Deproost, M H; De WInter, N; Duchemin, C; El Atrassi, F; François, C; De Keyser, J; Gillmann, C; Gloesener, E; Goderis, S; Hidaka, Y; Höning, D; Huber, M; Hublet, G; Javaux, E J; Karatekin, Ö; Kodolanyi, J; Revilla, L Lobo; Maes, L; Maggiolo, R; Mattielli, N; Maurice, M; McKibbin, S; Morschhauser, A; Neumann, W; Noack, L; Pham, L B S; Pittarello, L; Plesa, A C; Rivoldini, A; Robert, S; Rosenblatt, P; Spohn, T; Storme, J -Y; Tosi, N; Trinh, A; Valdes, M; Vandaele, A C; Vanhaecke, F; Van Hoolst, T; Van Roosbroek, N; Wilquet, V; Yseboodt, M


    The Interuniversity Attraction Pole (IAP) 'PLANET TOPERS' (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their Reservoirs) addresses the fundamental understanding of the thermal and compositional evolution of the different reservoirs of planetary bodies (core, mantle, crust, atmosphere, hydrosphere, cryosphere, and space) considering interactions and feedback mechanisms. Here we present the first results after 2 years of project work.

  12. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    Katterbauer, Klemens


    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated for adjusting reservoir parameters. However, the sparse spatial sampling of this data set has posed a significant challenge for efficiently reducing uncertainty of reservoir parameters. Seismic, electromagnetic, gravity and InSAR techniques have found widespread applications in enhancing exploration for oil and gas and monitoring reservoirs. These data have however been interpreted and analyzed mostly separately, rarely exploiting the synergy effects that could result from combining them. We present a multi-data ensemble Kalman filter-based history matching framework for the simultaneous incorporation of various reservoir data such as seismic, electromagnetics, gravimetry and InSAR for best possible characterization of the reservoir formation. We apply an ensemble-based sensitivity method to evaluate the impact of each observation on the estimated reservoir parameters. Numerical experiments for different test cases demonstrate considerable matching enhancements when integrating all data sets in the history matching process. Results from the sensitivity analysis further suggest that electromagnetic data exhibit the strongest impact on the matching enhancements due to their strong differentiation between water fronts and hydrocarbons in the test cases.

  13. Turbulent Transport by Diffusive Stratified Shear Flows: From Local to Global Models. I. Numerical Simulations of a Stratified Plane Couette Flow

    Garaud, Pascale; Gagnier, Damien; Verhoeven, Jan


    Shear-induced turbulence could play a significant role in mixing momentum and chemical species in stellar radiation zones, as discussed by Zahn. In this paper we analyze the results of direct numerical simulations of stratified plane Couette flows, in the limit of rapid thermal diffusion, to measure the turbulent viscosity and the turbulent diffusivity of a passive tracer as a function of the local shear and the local stratification. We find that the stability criterion proposed by Zahn, namely that the product of the gradient Richardson number and the Prandtl number must be smaller than a critical values {(J\\Pr )}c for instability, adequately accounts for the transition to turbulence in the flow, with {(J\\Pr )}c≃ 0.007. This result recovers and confirms the prior findings of Prat et al. Zahn’s model for the turbulent diffusivity and viscosity, namely that the mixing coefficient should be proportional to the ratio of the thermal diffusivity to the gradient Richardson number, does not satisfactorily match our numerical data. It fails (as expected) in the limit of large stratification where the Richardson number exceeds the aforementioned threshold for instability, but it also fails in the limit of low stratification where the turbulent eddy scale becomes limited by the computational domain size. We propose a revised model for turbulent mixing by diffusive stratified shear instabilities that properly accounts for both limits, fits our data satisfactorily, and recovers Zahn’s model in the limit of large Reynolds numbers.

  14. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.


    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  15. Reservoir engineering technology used for geothermal reservoir assessment studies in Germany

    Alkan, H. [ISTec, Inst. fuer Sicherheitstechnologie, Koeln (Germany); Pusch, G. [Inst. fuer Erdoel- und Erdgastechnik, TU Clausthal (Germany)


    The development of the geothermal reservoirs needs and uses the know-how and technology of petroleum reservoir engineering. The interaction of both disciplines is due to the similarities of underground geothermal systems to the oil and gas reservoirs. Because of the its earlier development, petroleum engineering concepts and technologies play an important role in geothermal field developments worldwide since many years. In Germany good examples of this interaction is also seen in the last years especially in exploration and development stages. The assessment of the defined heat reserves needs also to profit from the reservoir assessment and management techniques and technologies of petroleum engineering. Especially modelling of all production stages, from the near wellbore in the reservoir, to the surface could be examined based on the know-how and developed tools of the petroleum industry.

  16. Seismic imaging of reservoir flow properties: Resolving waterinflux and reservoir permeability

    Vasco, D.W.; Keers, Henk


    Methods for geophysical model assessment, in particuale thecomputation of model parameter resolution, indicate the value and thelimitations of time-lapse data in estimating reservoir flow properties. Atrajectory-based method for computing sensitivities provides an effectivemeans to compute model parameter resolutions. We examine the commonsituation in which water encroaches into a resrvoir from below, as due tothe upward movement of an oil-water contact. Using straight-forwardtechniques we find that, by inclusing reflections off the top and bottomof a reservoir tens of meters thick, we can infer reservoir permeabilitybased upon time-lapse data. We find that, for the caseof water influxfrom below, using multiple time-lapse 'snapshots' does not necessarilyimprove the resolution of reservoir permeability. An application totime-lapse data from the Norne field illustrates that we can resolve thepermeability near a producing well using reflections from threeinterfaces associated with the reservoir.

  17. Connectivity of channelized reservoirs: a modelling approach

    Larue, David K. [ChevronTexaco, Bakersfield, CA (United States); Hovadik, Joseph [ChevronTexaco, San Ramon, CA (United States)


    Connectivity represents one of the fundamental properties of a reservoir that directly affects recovery. If a portion of the reservoir is not connected to a well, it cannot be drained. Geobody or sandbody connectivity is defined as the percentage of the reservoir that is connected, and reservoir connectivity is defined as the percentage of the reservoir that is connected to wells. Previous studies have mostly considered mathematical, physical and engineering aspects of connectivity. In the current study, the stratigraphy of connectivity is characterized using simple, 3D geostatistical models. Based on these modelling studies, stratigraphic connectivity is good, usually greater than 90%, if the net: gross ratio, or sand fraction, is greater than about 30%. At net: gross values less than 30%, there is a rapid diminishment of connectivity as a function of net: gross. This behaviour between net: gross and connectivity defines a characteristic 'S-curve', in which the connectivity is high for net: gross values above 30%, then diminishes rapidly and approaches 0. Well configuration factors that can influence reservoir connectivity are well density, well orientation (vertical or horizontal; horizontal parallel to channels or perpendicular) and length of completion zones. Reservoir connectivity as a function of net: gross can be improved by several factors: presence of overbank sandy facies, deposition of channels in a channel belt, deposition of channels with high width/thickness ratios, and deposition of channels during variable floodplain aggradation rates. Connectivity can be reduced substantially in two-dimensional reservoirs, in map view or in cross-section, by volume support effects and by stratigraphic heterogeneities. It is well known that in two dimensions, the cascade zone for the 'S-curve' of net: gross plotted against connectivity occurs at about 60% net: gross. Generalizing this knowledge, any time that a reservoir can be regarded as &apos

  18. Physical modelling of the Akkajaure reservoir

    J. Sahlberg


    Full Text Available This paper describes the seasonal temperature development in the Akkajaure reservoir, one of the largest Swedish reservoirs. It lies in the headwaters of the river Lulealven in northern Sweden; it is 60 km long and 5 km wide with a maximum depth of 92 m. The maximum allowed variation in surface water level is 30 m. The temperature field in the reservoir is important for many biochemical processes. A one-dimensional lake model of the Akkajaure reservoir is developed from a lake model by Sahlberg (1983 and 1988. The dynamic eddy viscosity is calculated by a two equation turbulence model, a k–ε model and the hypolimnic eddy diffusivity formulation which is a function of the stability frequency (Hondzo et al., 1993. A comparison between calculated and measured temperature profiles showed a maximum discrepancy of 0.5–1.0°C over the period 1999-2002. Except for a few days in summer, the water temperature is vertically homogeneous. Over that period of years, a weak stratification of temperature occurred on only one to two weeks a year on different dates in July and August. This will have biological consequences. Keywords: temperature profile,reservoir, 1-D lake model, stratification, Sweden

  19. Mechanisms of HIV persistence in HIV reservoirs.

    Mzingwane, Mayibongwe L; Tiemessen, Caroline T


    The establishment and maintenance of HIV reservoirs that lead to persistent viremia in patients on antiretroviral drugs remains the greatest challenge of the highly active antiretroviral therapy era. Cellular reservoirs include resting memory CD4+ T lymphocytes, implicated as the major HIV reservoir, having a half-life of approximately 44 months while this is less than 6 hours for HIV in plasma. In some individuals, persistent viremia consists of invariant HIV clones not detected in circulating resting CD4+ T lymphocytes suggesting other possible sources of residual viremia. Some anatomical reservoirs that may harbor such cells include the brain and the central nervous system, the gastrointestinal tract and the gut-associated lymphoid tissue and other lymphoid organs, and the genital tract. The presence of immune cells and other HIV susceptible cells, occurring in differing compositions in anatomical reservoirs, coupled with variable and poor drug penetration that results in suboptimal drug concentrations in some sites, are all likely factors that fuel the continued low-level replication and persistent viremia during treatment. Latently, HIV-infected CD4+ T cells harboring replication-competent virus, HIV cell-to-cell spread, and HIV-infected T cell homeostatic proliferation due to chronic immune activation represent further drivers of this persistent HIV viremia during highly active antiretroviral therapy. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Mercury and methylmercury in reservoirs in Indiana

    Risch, Martin R.; Fredericksen, Amanda L.


    Mercury (Hg) is an element that occurs naturally, but evidence suggests that human activities have resulted in increased amounts being released to the atmosphere and land surface. When Hg is converted to methylmercury (MeHg) in aquatic ecosystems, MeHg accumulates and increases in the food web so that some fish contain levels which pose a health risk to humans and wildlife that consume these fish. Reservoirs unlike natural lakes, are a part of river systems that are managed for flood control. Data compiled and interpreted for six flood-control reservoirs in Indiana showed a relation between Hg transport, MeHg formation in water, and MeHg in fish that was influenced by physical, chemical, and biological differences among the reservoirs. Existing information precludes a uniform comparison of Hg and MeHg in all reservoirs in the State, but factors and conditions were identified that can indicate where and when Hg and MeHg levels in reservoirs could be highest.

  1. Tracing fluid flow in geothermal reservoirs

    Rose, P.E.; Adams, M.C. [Univ. of Utah, Salt Lake City, UT (United States)


    A family of fluorescent compounds, the polycyclic aromatic sulfonates, were evaluated for application in intermediate- and high-temperature geothermal reservoirs. Whereas the naphthalene sulfonates were found to be very thermally stable and reasonably detectable, the amino-substituted naphthalene sulfonates were found to be somewhat less thermally stable, but much more detectable. A tracer test was conducted at the Dixie Valley, Nevada, geothermal reservoir using one of the substituted naphthalene sulfonates, amino G, and fluorescein. Four of 9 production wells showed tracer breakthrough during the first 200 days of the test. Reconstructed tracer return curves are presented that correct for the thermal decay of tracer assuming an average reservoir temperature of 227{degrees}C. In order to examine the feasibility of using numerical simulation to model tracer flow, we developed simple, two-dimensional models of the geothermal reservoir using the numerical simulation programs TETRAD and TOUGH2. By fitting model outputs to measured return curves, we show that numerical reservoir simulations can be calibrated with the tracer data. Both models predict the same order of elution, approximate tracer concentrations, and return curve shapes. Using these results, we propose a method for using numerical models to design a tracer test.

  2. Numerical modeling of mixing in large stably stratified enclosures using TRACMIX++

    Christensen, Jakob

    This PhD dissertation focuses on the numerical modeling of stably stratified large enclosures. In stably stratified volumes, the distribution of temperature, species concentration etc become essentially 1-D throughout most of the enclosure. When the fluid in an enclosure is stratified, wall boundary buoyant jets, forced buoyant jets (injection of fluid) and natural convection plumes become the primary sources of mixing. The time constants for the buoyant jets may be considered as much smaller than the time constant for the mixing of the stratified ambient fluid, provided the combined volume occupied by the buoyant jets is small compared to the volume of the enclosure. Therefore, fluid transport by the buoyant jets may be considered as occurring instantaneously. For this reason this work focuses on deriving a numerical method which is able to solve the 1-D vertical fluid conservation equations, as given in Peterson (1994). Starting with the Eulerian fluid conservation equations given in Peterson (1994), a set of Lagrangian fluid conservation equations were derived. Combining the Lagrangian approach with operator splitting such that the convective step and the diffusive step is separated renders a very efficient, accurate, and stable numerical method as it is shown in this text. Since the stratified flow field frequently exhibits very strong gradients or so-called fronts, the generation of these fronts has to be accurately detected and tracked by the numerical method. Flow in stably stratified large enclosure has typically been modeled in the past using 1- or 2-zone models. The present model is new in that it belongs to the K-zone models where the number of zones is arbitrarily large and depends on the complexity of the solution and the accuracy requirement set by the user. Because fronts are present in the flow field, a Lagrangian type numerical method is used. A Lagrangian method facilitates front tracking and prevents numerical diffusion from altering the shape of

  3. Flow and transport within a coastal aquifer adjacent to a stratified water body

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim


    The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results

  4. Optimized recovery through cooperative geology and reservoir engineering

    Craig, F.F. Jr.; Willcox, P.J.; Ballard, J.R.; Nation, W.R.


    Reservoir engineers have always used geological descriptions in their performance calculations. At first, the only information that could be utilized consisted of gross factors such as structure, thickness, fault and boundary locations, and the like, and average values for permeability, porosity, and fluid saturations. The advent of easy-to-use, relatively inexpensive mathematical models provided a new and powerful tool to the reservoir engineer for predicting performance. However, this tool required for its optimum use a more detailed reservoir description than geologists were accustomed to providing. Today's reservoir engineer utilizes the most detailed geological information along with a reservoir performance simulator to synthesize a detailed reservoir description capable of matching actual field performance data. Use of such a reservoir description permits the design of operating programs to obtain optimized recovery from hydrocarbon reservoirs. Two examples of the use of this combined geology-reservoir engineering technique are taken from the international arena of operations.

  5. Baroclinic Vortices in Rotating Stratified Shearing Flows: Cyclones, Anticyclones, and Zombie Vortices

    Hassanzadeh, Pedram

    Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to

  6. Well testing of tight gas reservoirs

    Jahanbani, A.; Aguilera, R. [Calgary Univ., AB (Canada)


    This paper discussed methods of evaluating tight gas sand reservoirs. Conventional well testing is not used in tight gas reservoirs due to their low permeability. Tight gas well testing techniques include pressure-dependent permeability testing; the estimation of pseudo--time at the average pressure of the region of influence; and supercharge effect testing. Pre-frac test analysis techniques were also discussed. Pressure-transient test designs were reviewed along with instantaneous source response methods for calculating influence functions. Impulse-fracture tests were discussed, as well as perforation inflow diagnostic testing. Perforation inflow tests provided reasonable estimates of reservoir parameters. Methods of determining pressure-dependent permeability data were discussed. After closure analysis (ACA) was used to analyze formation permeability. It was concluded that ACA can be coupled with pre-closure analysis to optimize fracture stimulation plans. The 22 refs., 17 figs.

  7. Transmissibility scale-up in reservoir simulation

    Wang, W.; Gupta, A. [Oklahoma Univ., Oklahoma City, OK (United States)


    A study was conducted to develop efficient methods for scaling of petrophysical properties from high resolution geological models to the resolution of reservoir simulation. Data from the Gypsy Field located in northeastern Oklahoma near Lake Keystone was used to evaluate the proposed method. The petrophysical property which was scaled in this study was the transmissibility between two grid blocks. A linear flow scale-up of the transmissibility between two grid blocks was conducted. It was determined that the scale-up of the productivity index is both important and necessary for determining the radial flow around the wellbore. Special consideration was needed for the pinch-out grid blocks in the system. Fine-scale and coarse-scale reservoir models were used to evaluate the feasibility of this proposed method. Performance predictions were compared with various reservoir flow case studies. 21 refs., 2 tabs., 20 figs.

  8. Acid gas injection : reservoir engineering considerations

    Pooladi-Darvish, M. [Fekete Associates Inc., Calgary, AB (Canada); Calgary Univ., AB (Canada)


    This study discussed reservoir engineering considerations related to acid gas injection, including the effects of pressure. A map of acid gas injection sites in Alberta was presented. The WASP Nisku acid gas project is a carbon dioxide (CO{sub 2}) sequestration project located in a dolomitized aquifer close to coal-fired power plants. Analytical solutions developed at the site include a multi-well injectivity procedure for infinite reservoirs. Analytical considerations at the site included low water compressibility, strong interference, and a lack of flow boundaries. Chromatographic separation techniques were used to address the compositional effects of the reservoir in relation to the injection wells. Techniques developed at the CO{sub 2} sequestration sites are being used to develop procedures for acid gas storage in depleted gas pools and beneath the ocean floor. tabs., figs.

  9. Landfill liners from dam reservoir sediments

    Koś Karolina


    Full Text Available Landfill liners from dam reservoir sediments. Every municipal solid waste landfill has to be properly secured to protect the natural environment from possible leachate. Most often an artificial sealing is used, which is based on a soil liner from cohesive soils (clays, silts. Usability evaluation of bottom sediments from Rzeszowski Reservoir for building these liners was presented in the paper. Sediments from dam reservoirs, gathered as a result of the siltation process, can be a valuable material for earthworks purposes. Determination of their possible ways of usage is important, especially before the planned dredging, because thanks to that this material will not be put on a heap. Based on the analysis of the geotechnical parameters of these sediments it was stated that this material can be preliminary allowed for using in liners.

  10. Second workshop geothermal reservoir engineering: Proceedings

    Kruger, P.; Ramey, H.J. Jr. (eds.)


    The Arab oil embargo of 1973 focused national attention on energy problems. A national focus on development of energy sources alternative to consumption of hydrocarbons led to the initiation of research studies of reservoir engineering of geothermal systems, funded by the National Science Foundation. At that time it appeared that only two significant reservoir engineering studies of geothermal reservoirs had been completed. Many meetings concerning development of geothermal resources were held from 1973 through the date of the first Stanford Geothermal Reservoir Engineering workshop December 15-17, 1975. These meetings were similar in that many reports dealt with the objectives of planned research projects rather than with results. The first reservoir engineering workshop held under the Stanford Geothermal Program was singular in that for the first time most participants were reporting on progress inactive research programs rather than on work planned. This was true for both laboratory experimental studies and for field experiments in producing geothermal systems. The Proceedings of the December 1975 workshop (SGP-TR-12) is a remarkable document in that results of both field operations and laboratory studies were freely presented and exchanged by all participants. With this in mind the second reservoir engineering workshop was planned for December 1976. The objectives were again two-fold. First, the workshop was designed as a forum to bring together researchers active in various physical and mathematical branches of the developing field of geothermal reservoir engineering, to give participants a current and updated view of progress being made in the field. The second purpose was to prepare this Proceedings of Summaries documenting the state of the art as of December 1976. The proceedings will be distributed to all interested members of the geothermal community involved in the development and utilization of the geothermal resources in the world. Many notable

  11. Reservoir characterization and enhanced oil recovery research

    Lake, L.W.; Pope, G.A.; Schechter, R.S.


    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  12. Mechanical Testing Development for Reservoir Forgings

    Wenski, E.G.


    The goal of this project was to determine the machining techniques and testing capabilities required for mechanical property evaluation of commercially procured reservoir forgings. Due to the small size of these specific forgings, specialized methods are required to adequately machine and test these sub-miniature samples in accordance with the requirements of ASTM-E8 and ASTM-E9. At the time of project initiation, no capability existed at Federal Manufacturing & Technologies (FM&T) to verify the physical properties of these reservoirs as required on the drawing specifications. The project determined the sample definitions, machining processes, and testing procedures to verify the physical properties of the reservoir forgings; specifically, tensile strength, yield strength, reduction of area, and elongation. In addition, a compression test method was also developed to minimize sample preparation time and provide a more easily machined test sample while maintaining the physical validation of the forging.

  13. Reservoir rehabilitations: Seeking the Fountain of Youth

    Pegg, Mark A.; Pope, Kevin L.; Powell, L.A.; Turek, Kelly C.; Spurgeon, Jonathan J.; Stewart, Nathaniel T.; Hogberg, Nick P.; Porath, Mark T.


    Aging of reservoirs alters the functions, and associated services, of these systems through time. The goal of habitat rehabilitation is often to alter the trajectory of the aging process such that the duration of the desired state is prolonged. There are two important characteristics in alteration of the trajectory—the amplitude relative to current state and the subsequent rate of change, or aging—that ultimately determine the duration of extension for the desired state. Rehabilitation processes largely fall into three main categories: fish community manipulation, water quality manipulation, and physical habitat manipulation. We can slow aging of reservoirs through carefully implemented management actions, perhaps even turning back the hands of time, but we cannot stop aging. We call for new, innovative perspectives that incorporate an understanding of aging processes in all steps of rehabilitation of reservoirs, especially in planning and assessing.


    HUANG Jinchi


    Reliable quantitative estimation of bed aggradation or degradation is important for river-training and water management projects. With the development of water resources, sediment problems associated with a dam are becoming more severe. This paper describes some special problems in mathematical model for calculation of degradation and aggradation in a reservoir. The main efforts of this study are on the treatment of some physical processes of fine sediment transport (<0.05 mm). Problems in a reservoir are obviously different from a natural stream, such as the turbid current flow, orifice sediment flushing;and the initiation and consolidation of cohesive sediment deposition. The case of Liujiaxia Reservoir,which is located in the upper reaches of the Yellow River, is employed to verify the model. The results show that the model is applicable in the evaluation of an engineering planing with plenty of fine sediment movement.

  15. Degradation of organic matter in the sediments of Hongfeng Reservoir

    WEI Zhongqing; LIU Congqiang; LIANG Xiaobing; WANG Fushun; WANG Shaofeng


    In this work, the distribution of organic carbon, DNA and lipids in the sediments of Hongfeng Reservoir were described in addition to SO42- Profile in pore water. The contents of organic carbon in the sediments range from 23.3 to 76.8 mg·g-1, with the peak value appearing at the depth of 8 cm bellow the sediments water interface (SWI), and tend to decrease gradually with sedimentation depth. The concentrations of SO42- Decreased from 40.50 mg·L-1 to 12.00 mg·L-1 at SWI in top 4 cm sediment, and was kept at 12.0 mg·L-1 bellow that depth. Newly produced organic carbon can be conserved as long as 14 years in the sediments. The contents of DNA were relatively high in top 9 cm surface sediments, as revealed by agarose gel images, close to those of organic carbon and sulphate reduction index (SRI). This study shows that bacteria played an important role in organic matter degradation; SO42- is the primary electron acceptor under anaerobic condition in this reservoir; DNA in the lake sediments can provide important information for the study of cycling of nutrient elements in the lake.

  16. On the natural diet of Daphnia laevis in the eutrophic Pampulha reservoir (Belo Horizonte, Minas Gerais


    Full Text Available The aim of this study was to assess the major food items ingested by adult specimens of Daphnia laevis within the eutrophic Pampulha reservoir in Belo Horizonte, Minas Gerais, Brazil. The gut content was analyzed after addition of sodium hypochlorite and also through the examination of dissected guts under scanning electron microscopy. The results showed that Chlorophyceae was the main food item ingested, representing c. 80.5% of the total ingested food. Moreover, Eutetramorus fottii, Coelastrum pseudomicroporum and Oocystis lacustris, the dominant phytoplankton species within the reservoir, were the most frequent cells found in the gut contents. Euglenophyta also represented an important food item accounting for 15% of the ingested material, including mainly Trachelomonas volvocina and Euglena oxyuris, although less abundant in the reservoir (< 10% of total phytoplankton. Blue-green algae occurred at much lower percentages in the guts than in the phytoplankton. A small amount of undigested Microcystis aeruginosa colonies were also found in the gut content of D. laevis. Scanning electron microscopy results showed that, besides phytoplankton cells, a great amount of abiogenic material was also ingested. The amount of this inorganic material increased considerably in the tract (from 15% to 75% of the gut content, when a peak of D. laevis was observed in the reservoir. Our assumption is that the ingestion of this inorganic material can be a strategy used by D. laevis to obtain additional food supply.

  17. Stratified Sampling of Neighborhood Sections for Population Estimation: A Case Study of Bo City, Sierra Leone.

    Hillson, Roger; Alejandre, Joel D; Jacobsen, Kathryn H; Ansumana, Rashid; Bockarie, Alfred S; Bangura, Umaru; Lamin, Joseph M; Stenger, David A


    There is a need for better estimators of population size in places that have undergone rapid growth and where collection of census data is difficult. We explored simulated estimates of urban population based on survey data from Bo, Sierra Leone, using two approaches: (1) stratified sampling from across 20 neighborhoods and (2) stratified single-stage cluster sampling of only four randomly-sampled neighborhoods. The stratification variables evaluated were (a) occupants per individual residence, (b) occupants per neighborhood, and (c) residential structures per neighborhood. For method (1), stratification variable (a) yielded the most accurate re-estimate of the current total population. Stratification variable (c), which can be estimated from aerial photography and zoning type verification, and variable (b), which could be ascertained by surveying a limited number of households, increased the accuracy of method (2). Small household-level surveys with appropriate sampling methods can yield reasonably accurate estimations of urban populations.

  18. Dynamics of a buoyant plume in a linearly stratified environment using simultaneous PIV-PLIF measurements

    Mirajkar, Harish N


    The presence of stratified layer in atmosphere and ocean leads to buoyant vertical motions, commonly referred to as plumes. It is important to study the mixing dynamics of a plume at a local scale in order to model their evolution and growth. Such a characterization requires measuring the velocity and density of the mixing fluids simultaneously. Here, we present the results of a buoyant plume propagating in a linearly stratified medium with a density difference of 0.5%, thus yielding a buoyancy frequency of N=0.15 s^{-1}. To understand the plume behaviour, statistics such as centerline and axial velocities along varying downstream locations, turbulent kinetic energy, Reynolds stress, and buoyancy flux were measured. The centerline velocity was found to decrease with increase in height. The Reynolds stress and buoyancy flux profiles showed the presence of a unstable layer and the mixing associated within that layer.

  19. Reconstruction of stratified steady water waves from pressure readings on the ocean bed

    Chen, Robin Ming


    Consider a two-dimensional stratified solitary wave propagating through a body of water that is bounded below by an impermeable ocean bed. In this work, we study how such a wave can be reconstructed from data consisting of the wave speed, upstream and downstream density profile, and the trace of the pressure on the bed. First, we prove that this data uniquely determines the wave, both in the (real) analytic and Sobolev regimes. Second, for waves that consist of multiple layers of constant density immiscible fluids, we provide an exact formula describing each of the interfaces in terms of the data. Finally, for continuously stratified fluids, we detail a reconstruction scheme based on approximation by layer-wise constant density flows.

  20. Numerical simulation of stratified shear flow using a higher order Taylor series expansion method

    Iwashige, Kengo; Ikeda, Takashi [Hitachi, Ltd. (Japan)


    A higher order Taylor series expansion method is applied to two-dimensional numerical simulation of stratified shear flow. In the present study, central difference scheme-like method is adopted for an even expansion order, and upwind difference scheme-like method is adopted for an odd order, and the expansion order is variable. To evaluate the effects of expansion order upon the numerical results, a stratified shear flow test in a rectangular channel (Reynolds number = 1.7x10{sup 4}) is carried out, and the numerical velocity and temperature fields are compared with experimental results measured by laser Doppler velocimetry thermocouples. The results confirm that the higher and odd order methods can simulate mean velocity distributions, root-mean-square velocity fluctuations, Reynolds stress, temperature distributions, and root-mean-square temperature fluctuations.

  1. Double criticality and the two-way Boussinesq equation in stratified shallow water hydrodynamics

    Bridges, Thomas J.; Ratliff, Daniel J.


    Double criticality and its nonlinear implications are considered for stratified N-layer shallow water flows with N = 1, 2, 3. Double criticality arises when the linearization of the steady problem about a uniform flow has a double zero eigenvalue. We find that there are two types of double criticality: non-semisimple (one eigenvector and one generalized eigenvector) and semi-simple (two independent eigenvectors). Using a multiple scales argument, dictated by the type of singularity, it is shown that the weakly nonlinear problem near double criticality is governed by a two-way Boussinesq equation (non-semisimple case) and a coupled Korteweg-de Vries equation (semisimple case). Parameter values and reduced equations are constructed for the examples of two-layer and three-layer stratified shallow water hydrodynamics.

  2. Large eddy simulation of turbulent statistical and transport properties in stably stratified flows

    Xiang QIU; Yong-xiang HUANG; Zhi-ming LU; Yu-lu LIU


    Three dimensional large eddy simulation (LES) is performed in the inves-tigation of stably stratified turbulence with a sharp thermal interface. Main results are focused on the turbulent characteristic scale, statistical properties, transport properties,and temporal and spatial evolution of the scalar field. Results show that the buoyancy scale increases first, and then goes to a certain constant value. The stronger the mean shear, the larger the buoyancy scale. The overturning scale increases with the flow, and the mean shear improves the overturning scale. The flatness factor of temperature de-parts from the Ganssian distribution in a fairly large region, and its statistical properties are clearly different from those of the velocity fluctuations in strong stratified cases. Tur-bulent mixing starts from small scale motions, and then extends to large scale motions.

  3. A 3D Spectral Anelastic Hydrodynamic Code for Shearing, Stratified Flows

    Barranco, J A; Barranco, Joseph A.; Marcus, Philip S.


    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g. the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to ...

  4. The Hand Burn Severity (HABS) score: A simple tool for stratifying severity of hand burns.

    Bache, Sarah E; Fitzgerald O'Connor, Edmund; Theodorakopoulou, Evgenia; Frew, Quentin; Philp, Bruce; Dziewulski, Peter


    Hand burns represent a unique challenge to the burns team due to the intricate structure and unrivalled functional importance of the hand. The initial assessment and prognosis relies on consideration of the specific site involved as well as depth of the burn. We created a simple severity score that could be used by referring non-specialists and researchers alike. The Hand Burn Severity (HABS) score stratifies hand burns according to severity with a numerical value of between 0 (no burn) and 18 (most severe) per hand. Three independent assessors scored the photographs of 121 burned hands of 106 adult and paediatric patients, demonstrating excellent inter-rater reliability (r=0.91, pburn depth alone. The HABS score is a simple to use tool to stratify severity at initial presentation of hand burns which will be useful when referring, and when reporting outcomes. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  5. Nonlinear dynamics at the interface of two-layer stratified flows over pronounced obstacles

    Cabeza, C; Bove, I; Freire, D; Marti, Arturo C; Sarasua, L G; Usera, G; Montagne, R; Araújo, M


    The flow of a two--layer stratified fluid over an abrupt topographic obstacle, simulating relevant situations in oceanographic problems, is investigated numerically and experimentally in a simplified two--dimensional situation. Experimental results and numerical simulations are presented at low Froude numbers in a two-layer stratified flow and for two abrupt obstacles, semi--cylindrical and prismatic. We find four different regimes of the flow immediately past the obstacles: sub-critical (I), internal hydraulic jump (II), Kelvin-Helmholtz at the interface (III) and shedding of billows (IV). The critical condition for delimiting the experiments is obtained using the hydraulic theory. Moreover, the dependence of the critical Froude number on the geometry of the obstacle are investigated. The transition from regime III to regime IV is explained with a theoretical stability analysis. The results from the stability analysis are confirmed with the DPIV measurements. In regime (IV), when the velocity upstream is lar...

  6. Estimation of Finite Population Mean in Multivariate Stratified Sampling under Cost Function Using Goal Programming

    Atta Ullah


    Full Text Available In practical utilization of stratified random sampling scheme, the investigator meets a problem to select a sample that maximizes the precision of a finite population mean under cost constraint. An allocation of sample size becomes complicated when more than one characteristic is observed from each selected unit in a sample. In many real life situations, a linear cost function of a sample size nh is not a good approximation to actual cost of sample survey when traveling cost between selected units in a stratum is significant. In this paper, sample allocation problem in multivariate stratified random sampling with proposed cost function is formulated in integer nonlinear multiobjective mathematical programming. A solution procedure is proposed using extended lexicographic goal programming approach. A numerical example is presented to illustrate the computational details and to compare the efficiency of proposed compromise allocation.

  7. Mixed Convection Flow along a Stretching Cylinder in a Thermally Stratified Medium

    Swati Mukhopadhyay


    Full Text Available An analysis for the axisymmetric laminar boundary layer mixed convection flow of a viscous and incompressible fluid towards a stretching cylinder immersed in a thermally stratified medium is presented in this paper. Similarity transformation is employed to convert the governing partial differential equations into highly nonlinear ordinary differential equations. Numerical solutions of these equations are obtained by a shooting method. It is found that the heat transfer rate at the surface is lower for flow in a thermally stratified medium compared to that of an unstratified medium. Moreover, both the skin friction coefficient and the heat transfer rate at the surface are larger for a cylinder compared to that for a flat plate.

  8. Laboratory Studies of the Stratified Rotating Flow Passing over an Isolated Obstacle

    高守亭; 平凡


    We study the flow of a density-stratified fluid passing over an isolated obstacle, using towing-tank experiments.Our special concern is the response of the flow with different Froude numbers passing over a three-dimensional obstacle. A series of experiments of the stratified rotating flow passing over an isolated obstacle was carried out with the towering-tank controlled by the similarity laws and dynamic non-dimension parameters. These experiments show that the Froude number is a very important parameter, and the lee wave and the eddy structure appear simultaneously under an appropriate conditions. The effect of rotation on the lee wave is mainly to change wave amplitude, particularly to restrain the development of the lee wave and to promote the formation of an eddy.

  9. Acceleration of raindrops formation due to tangling-clustering instability in turbulent stratified atmosphere

    Elperin, T; Krasovitov, B; Kulmala, M; Liberman, M; Rogachevskii, I; Zilitinkevich, S


    Condensation of water vapor on active cloud condensation nuclei produces micron-size water droplets. To form rain, they must grow rapidly into at least 50-100 micron-size droplets. Observations show that this process takes only 15-20 minutes. The unexplained physical mechanism of such fast growth, is crucial for understanding and modeling of rain, and known as "condensation-coalescence bottleneck in rain formation". We show that the recently discovered phenomenon of the tangling clustering instability of small droplets in temperature-stratified turbulence (Phys. Fluids 25, 085104, 2013) results in the formation of droplet clusters with drastically increased droplet number densities and strong five-orders-of-magnitude enhancement of the collision-coalescence rate inside the clusters. The mechanism of tangling clustering instability in the temperature-stratified turbulence is much more effective than the previously considered pure inertial clustering caused by the centrifugal effect of turbulent vortices. Our a...

  10. Numerical study of thermally stratified flows of a fluid overlying a highly porous material

    Antoniadis, Panagiotis D.; Papalexandris, Miltiadis V.


    In this talk we are concerned with thermally stratified flows in domains that contain a macroscopic interface between a highly porous material and a pure-fluid domain. Our study is based on the single-domain approach according to which the same set of governing equations is employed both inside the porous medium and in the pure-fluid domain. Also, the mathematical model that we employ treats the porous skeleton as a rigid solid that is in thermal non-equilibrium with the fluid. First, we present briefly the basic steps of the derivation of the mathematical model. Then, we present and discuss numerical results for both thermally stratified shear flows and natural convection. Our discussion focuses on the role of thermal stratification on the flows of interest and on the effect of thermal non-equilibrium between the solid matrix and the fluid inside the porous medium. This work is supported by the National Fund for Scientific Research (FNRS), Belgium.

  11. Simulations of surfactant-laden drops rising in a density-stratified medium

    Martin, David W.; Blanchette, François


    We present simulations of the effects of insoluble surfactant on drops rising in unstratified media and density-stratified media. We consider an oil drop rising in water, and we track surfactant concentration on the drop surface. We first consider a drop coated with insoluble surfactant rising through an unstratified ambient. The drop speed is computed for various Marangoni numbers, and inertial and surface diffusion effects are also examined. In the second setup, we compare clean and contaminated drops rising through a linear density-stratified fluid. The entrained buoyancy is computed for various density gradients, and the effects of inertia and Marangoni number are characterized. We find that the entrained fluid slows the drop in a manner comparable to a vertical shift in the ambient density gradient.

  12. Stratified polymer brushes from microcontact printing of polydopamine initiator on polymer brush surfaces.

    Wei, Qiangbing; Yu, Bo; Wang, Xiaolong; Zhou, Feng


    Stratified polymer brushes are fabricated using microcontact printing (μCP) of initiator integrated polydopamine (PDOPBr) on polymer brush surfaces and the following surface initiated atom transfer radical polymerization (SI-ATRP). It is found that the surface energy, chemically active groups, and the antifouling ability of the polymer brushes affect transfer efficiency and adhesive stability of the polydopamine film. The stickiness of the PDOPBr pattern on polymer brush surfaces is stable enough to perform continuous μCP and SI-ATRP to prepare stratified polymer brushes with a 3D topography, which have broad applications in cell and protein patterning, biosensors, and hybrid surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Stability boundaries and sufficient stability conditions for stably stratified, monotonic shear flows

    Hirota, Makoto, E-mail: [Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Morrison, Philip J. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712 (United States)


    Highlights: • New stability criteria of stably stratified shear flow are discovered. • Our criteria substantially improve the Howard–Miles criterion (1961). • Our criteria also generalize Rayleigh's inflection point theorem. • The novel approach we found is also efficient as a numerical approach. - Abstract: Linear stability of inviscid, parallel, and stably stratified shear flow is studied under the assumption of smooth strictly monotonic profiles of shear flow and density, so that the local Richardson number is positive everywhere. The marginally unstable modes are systematically found by solving a one-parameter family of regular Sturm–Liouville problems, which can determine the stability boundaries more efficiently than solving the Taylor–Goldstein equation directly. By arguing for the non-existence of a marginally unstable mode, we derive new sufficient conditions for stability, which generalize the Rayleigh–Fjørtoft criterion for unstratified shear flows.

  14. Doubly stratified mixed convection flow of Maxwell nanofluid with heat generation/absorption

    Abbasi, F.M., E-mail: [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-i-Azam University, 45320, Islamabad 44000 (Pakistan); NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ahmad, B. [NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)


    Magnetohydrodynamic (MHD) doubly stratified flow of Maxwell nanofluid in presence of mixed convection is analyzed in this article. Effects of thermophoresis, Brownian motion and heat generation/absorption are present. The flow is induced due to linear stretching of sheet. Mathematical formulation is made under boundary layer approach. Expressions of velocity, temperature and nanoparticles concentration are developed. The obtained results are plotted and discussed to examine the variations in temperature and nanoparticles concentration due to different physical parameters. Numerical computations are made to obtain the values of local Nusselt and Sherwood numbers. Impact of sundry parameters on the flow quantities is analyzed graphically. - Highlights: • Double stratified flow of Maxwell nanofluid with mixed convection is modeled. • Thermophoresis and Brownian motion effects are encountered. • Computations are made to obtain the solution expressions. • Numerical values of local Nusselt and Sherwood numbers are computed and examined.

  15. The role of petroleum engineering on geothermal reservoir assessments

    Alkan, H. [ISTec, Koeln (Germany)


    Reservoir assessment is the most critical issue of the risk analysis on the use of a geothermal energy source and requires a multi disciplinary survey of the underground objective. Petroleum reservoir engineering with its methodology and its actual technology level fits well with the needs of geothermal reservoir assessments. In this study similarities and differences of the hydrocarbon and geothermal reservoirs are discussed briefly in terms of exploration and production. Furthermore the petroleum reservoir engineering techniques which are currently used and which can be used in geothermal reservoir assessments are summarized. (orig.)

  16. Indication for quantum Darwinism in electron billiards

    Brunner, R.; Akis, R.; Meisels, R.; Kuchar, F.; Ferry, D. K.


    In this paper, we investigate the dynamics in electron billiards by using classical and quantum mechanical calculations. We report on the existence of pointer states in single-dot and double-dot electron billiards. Additionally, we show that the two types of pointer states have the propensity to create offspring, i.e. they can be observed in the individual modes propagating between the external reservoirs. This can be understood as an indication that quantum Darwinism is present in the electron billiards.

  17. Characterization of oil and gas reservoir heterogeneity


    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  18. On the simulation of heterogeneous petroleum reservoirs

    Daripa, P.; Glimm, J.; Lindquist, B.; Maesumi, M.; McBryan, O.


    The authors and coworkers have proposed the front tracking method as useful in applications to petroleum reservoir simulation. A variety of tests of a numerical analysis nature were performed for the method, verifying convergence under mesh refinement and absence of mesh orientation effects. The ability to handle complex interface bifurcation, fingering instabilities and polymer injection (as an example of tertiary oil recovery) indicates a level of robustness in this method. The main purpose of this paper is to report on two features which will allow further series of tests by enabling a more realistic description of reservoir heterogeneities. 29 refs., 4 figs.

  19. NMPC for Oil Reservoir Production Optimization

    Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove


    In this paper, we use nonlinear model predictive control (NMPC) to maximize secondary oil recovery from an oil reservoir by controlling two-phase subsurface porous flow using adjustable down-hole control valves. The resulting optimal control problem is nonlinear and large-scale. We solve this pro......In this paper, we use nonlinear model predictive control (NMPC) to maximize secondary oil recovery from an oil reservoir by controlling two-phase subsurface porous flow using adjustable down-hole control valves. The resulting optimal control problem is nonlinear and large-scale. We solve...


    Prabhata K.SWAMEE


    Capacity depletion is an important information required for planning of multipurpose reservoirs. It is a complex phenomenon involving diverse fields like surface hydrology, sediment transport, varied flow hydraulics and soil consolidation. Proper assessment of capacity reduction is helpful in ascertaining the life of the reservoir and the project benefits for cost/benefit analysis. In this study dimensionally consistent equations for deposition volume and the trap efficiency have been obtained. Methods of obtaining the parameters involved these equations have also been indicated. It was found that there is good agreement with the field data. It is hoped that the equations are useful to design engineer.

  1. Effect of sporadic destratification, seasonal overturn, and artificial mixing on CH4 emissions from a subtropical hydroelectric reservoir

    Guérin, Frédéric; Deshmukh, Chandrashekhar; Labat, David; Pighini, Sylvie; Vongkhamsao, Axay; Guédant, Pierre; Rode, Wanidaporn; Godon, Arnaud; Chanudet, Vincent; Descloux, Stéphane; Serça, Dominique


    Inland waters in general and freshwater reservoirs specifically are recognized as a source of CH4 into the atmosphere. Although the diffusion at the air-water interface is the most studied pathway, its spatial and temporal variations are poorly documented. We measured temperature and O2 and CH4 concentrations every 2 weeks for 3.5 years at nine stations in a subtropical monomictic reservoir which was flooded in 2008 (Nam Theun 2 Reservoir, Lao PDR). Based on these results, we quantified CH4 storage in the water column and diffusive fluxes from June 2009 to December 2012. We compared diffusive emissions with ebullition from Deshmukh et al. (2014) and aerobic methane oxidation and downstream emissions from Deshmukh et al. (2016). In this monomictic reservoir, the seasonal variations of CH4 concentration and storage were highly dependent on the thermal stratification. Hypolimnic CH4 concentration and CH4 storage reached their maximum in the warm dry season (WD) when the reservoir was stratified. Concentration and storage decreased during the warm wet (WW) season and reached its minimum after the reservoir overturned in the cool dry (CD) season. The sharp decreases in CH4 storage were concomitant with extreme diffusive fluxes (up to 200 mmol m-2 d-1). These sporadic emissions occurred mostly in the inflow region in the WW season and during overturn in the CD season in the area of the reservoir that has the highest CH4 storage. Although they corresponded to less than 10 % of the observations, these extreme CH4 emissions (> 5 mmol m-2 d-1) contributed up to 50 % of total annual emissions by diffusion. During the transition between the WD and WW seasons, a new emission hotspot was identified upstream of the water intake where diffusive fluxes peaked at 600 mmol m-2 d-1 in 2010 down to 200 mmol m-2 d-1 in 2012. The hotspot was attributed to the mixing induced by the water intakes (artificial mixing). Emissions from this area contributed 15-25 % to total annual emissions

  2. Reservoir characteristics and genesis of high-porosity and high-permeability reservoirs in Tarim Basin


    Based on detailed studies, this paper proposes that in the Tarim Basin, hydrocarbon reservoirs widespread either in vertical sequences or in plane and high-porosity and high-permeability reservoirs are developed all over the basin. However, obvious difference and heterogeneity exist among different kinds of reservoirs. The lithologic characteristics, reservoir space types and reservoir properties in various strata have been probed. The result indicates that although the Paleozoic carbonates have been deeply buried for a long period, high-quality reservoirs with the porosity of up to 5%-8% (12% as the maximum) and the permeability of 10×10?3-100×10?3 ?m2 (1000×10?3 ?m2 as the maximum) can be found in certain areas. These include the area with the development of reefs and carbonate beaches, the weathered-crust buried-hill belts that have undergone the long-term exposure, weathering and leaching, the area with the development of dolomitization, and those areas that have experienced the resolution of carbonic acid and organic acid generated by the maturity of the organic matter. Finally, the genesis of the high-porosity and high-permeability reservoirs in deep-buried conditions (with the depth more than 3500 m) have been investigated thoroughly.

  3. Simulation of Reservoir Sediment Flushing of the Three Gorges Reservoir Using an Artificial Neural Network

    Xueying Li


    Full Text Available Reservoir sedimentation and its effect on the environment are the most serious world-wide problems in water resources development and utilization today. As one of the largest water conservancy projects, the Three Gorges Reservoir (TGR has been controversial since its demonstration period, and sedimentation is the major concern. Due to the complex physical mechanisms of water and sediment transport, this study adopts the Error Back Propagation Training Artificial Neural Network (BP-ANN to analyze the relationship between the sediment flushing efficiency of the TGR and its influencing factors. The factors are determined by the analysis on 1D unsteady flow and sediment mathematical model, mainly including reservoir inflow, incoming sediment concentration, reservoir water level, and reservoir release. Considering the distinguishing features of reservoir sediment delivery in different seasons, the monthly average data from 2003, when the TGR was put into operation, to 2011 are used to train, validate, and test the BP-ANN model. The results indicate that, although the sample space is quite limited, the whole sediment delivery process can be schematized by the established BP-ANN model, which can be used to help sediment flushing and thus decrease the reservoir sedimentation.

  4. Experimental study of temperature fluctuations in forced stably stratified turbulent flows

    Eidelman, A; Gluzman, Y; Kleeorin, N; Rogachevskii, I


    We study experimentally temperature fluctuations in stably stratified forced turbulence in air flow. In the experiments with an imposed vertical temperature gradient, the turbulence is produced by two oscillating grids located nearby the side walls of the chamber. Particle Image Velocimetry is used to determine the turbulent and mean velocity fields, and a specially designed temperature probe with sensitive thermocouples is employed to measure the temperature field. We found that the ratio [(\\ell_x \

  5. Experiments on the Microenvironment and Breathing of a Person in Isothermal and Stratified Surroundings

    Nielsen, Peter V.; Jensen, Rasmus Lund; Litewnicki, Michal;


    This study investigates the characteristics of human exhalation. Experiments are performed on a breathing thermal manikin in a test room. The manikin is heated, and an artificial lung is used to generate varying air flows with specific flow rates and temperatures for breathing. Smoke visualisation...... is used to show the formation, movement and disappearance of the exhalation jets from both nose and mouth. The exhalation of breathing without ventilation in the room, and with stratified surroundings (displacement ventilation) is analysed....




    Khoshnevisan et al. (2007) proposed a general family of estimators for population mean using known value of some population parameters in simple random sampling. The objective of this paper is to propose a family of combined-type estimators in stratified random sampling adapting the family of estimators proposed by Khoshnevisan et al. (2007) under non-response. The properties of proposed family have been discussed. We have also obtained the expressions for optimum sampl...


    Chaudhary, Manoj K.; Rajesh Singh; Rakesh K. Shukla; Mukesh Kumar; Florentin Smarandache


    Khoshnevisan et al. (2007) proposed a general family of estimators for population mean using known value of some population parameters in simple random sampling. The objective of this paper is to propose a family of combined-type estimators in stratified random sampling adapting the family of estimators proposed by Khoshnevisan et al. (2007) under non-response. The properties of proposed family have been discussed. We have also obtained the expressions for optimum sample sizes of the strata i...

  8. Indicators of problems evaluated by parents and children stratified by birth weight

    RODRIGUES-PALUCCI,Claudia Mazzer; Loureiro,Sonia Regina


    Abstract Studies on the impact of birth weight on child development require the participation of children as informants. The objective of this study was to compare the indicators of behavioral problems and depression in a cohort of school-age children stratified by birth weight and to investigate possible associations between the indicators of behavioral problems, evaluated by the parents, and depression, evaluated by the children. A total of 665 children, aged 10-11 years, distributed into f...

  9. High diatom production and export in stratified waters - A potential negative feedback to global warming

    Kemp, Alan E. S.; Villareal, Tracy A.


    It is widely held that increased stratification and reduced vertical mixing in the ocean driven by global warming will promote the replacement of diatoms by smaller phytoplankton and lead to an overall decrease in productivity and carbon export. Here we present contrary evidence from a synergy of modern observations and palaeo-records that reveal high diatom production and export from stratified waters. Diatom adaptations to stratified waters include the ability to grow in low light conditions in deep chlorophyll maxima; vertical migrations between nutricline depths and the surface, and symbioses with N2-fixing cyanobacteria in diatom-diazotroph associations (DDA). These strategies foster the maintenance of seed populations that may then exploit mixing events induced by storms or eddies, but may also inherently promote blooms. Recent oceanographic observations in the subtropical gyres, at increasingly high temporal and spatial resolutions, have monitored short-lived but often substantial blooms and export of stratified-adapted diatoms including rhizosolenids and the diazotroph-associated Hemiaulus hauckii. Aggregate formation by such diatoms is common and promotes rapid settling thereby minimizing water column remineralization and optimizing carbon flux. Convergence zones associated with oceanic fronts or mesoscale features may also generate substantial flux of stratified-adapted diatom species. Conventional oceanographic observing strategies and sampling techniques under-represent such activity due to the lack of adequate capability to sample the large sized diatoms and colonies involved, the subsurface location of many of these blooms, their common development in thin global warming. However, the key genera involved in such potential feedbacks are underrepresented in both laboratory and field studies and are poorly represented in models. Our findings suggest that a reappraisal is necessary of the way diatoms are represented as plankton functional types (PFTs) in

  10. A Model for Predicting Holdup and Pressure Drop in Gas-Liquid Stratified Flow


    The time-dependent liquid film thickness and pressure drop were measured by using parallel-wire conductance probes and capacitance differential-preesure transducers. Applying the eddy viscosity theory and an appropriate correlation of interfacial sear stress,a new two-dimensional separated model of holdup and pressure drop of turbulent/turbulent gas-liquid stratified flow was presented. Prediction results agreed well with experimental data.

  11. Recent advances in understanding the origin of magnetic flux concentrations in strongly stratified turbulence

    Brandenburg, Axel; Kleeorin, Nathan


    In the presence of strong density stratification, hydromagnetic turbulence attains qualitatively new properties: the formation of magnetic flux concentrations. We review here the theoretical foundations of this mechanism in terms of what is now called the negative effective magnetic pressure instability. We also present direct numerical simulations of forced turbulence in strongly stratified layers and discuss the qualitative and quantitative similarities with corresponding mean-field simulations. Finally, the relevance to sunspot formation is discussed.

  12. Subsurface Signature of the Internal Wave Field Radiated by Submerged High Reynolds Number Stratified Wakes


    parametric subharmonic instability. 15. SUBJECT TERMS Stratified turbulent wakes, high Reynolds numbers, internal waves, nonlinear effects, harmonics, mean...beam and the potential for parametric subharmonic instability. In all these efforts, a uniform linear stratification was considered. A subset of our...found for all simulated waves. c) For sufficiently high-amplitude beams, a parametric subharmonic instability is observed after a long enough time

  13. An immersed interface method for two-dimensional modelling of stratified flow in pipes

    Berthelsen, Petter Andreas


    This thesis deals with the construction of a numerical method for solving two-dimensional elliptic interface problems, such as fully developed stratified flow in pipes. Interface problems are characterized by its non-smooth and often discontinuous behaviour along a sharp boundary separating the fluids or other materials. Classical numerical schemes are not suitable for these problems due to the irregular geometry of the interface. Standard finite difference discretization across the interface...

  14. Propagation of Long-Wavelength Nonlinear Slow Sausage Waves in Stratified Magnetic Flux Tubes

    Barbulescu, M.; Erdélyi, R.


    The propagation of nonlinear, long-wavelength, slow sausage waves in an expanding magnetic flux tube, embedded in a non-magnetic stratified environment, is discussed. The governing equation for surface waves, which is akin to the Leibovich-Roberts equation, is derived using the method of multiple scales. The solitary wave solution of the equation is obtained numerically. The results obtained are illustrative of a solitary wave whose properties are highly dependent on the degree of stratification.

  15. A Model of Turbulent-Laminar Gas-Liquid Stratified Flow


    The time-dependent liquid film thickness and pressure drop are measured by using parallel-wire conduc tance probes and capacitance differential-pressure transducer. A mathematical model with iterative procedure to calculate holdup and pressure drop in horizontal and inclined gas-liquid stratified flow is developed. The predictions agree well with over a hundred experimental data in 0.024 and 0.04 m diameter pipelines.

  16. The Near Wake of Bluff Bodies in Stratified Fluids and the Emergence of Late Wake Characteristics


    Kundu and Ira Cohen. Fluid Mechanics , Third Edition. Elsevier Inc., 2004. [27] S. Lee. A numerical study of the unsteady wake behind a sphere in a...found in the stratified fluid flows is the existence of the standing lee wave, which is a laminar mechanism . Above a Reynolds number of 2000, it is...computational cost to both model the proper fluid mechanics on the sphere and reproduce the far-wake is prohibitively expensive with current

  17. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others


    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.


    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor


    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  19. 3D elastic inversion of vertical seismic profiles in horizontally stratified media; Inversion elastique 3D de profils sismiques verticaux en milieux stratifies horizontalement

    Petit, J.L.


    This thesis is devoted to the inversion of VSP (vertical seismic profile) seismic data in order to determine the elastic properties of horizontally stratified media. The VSP records are computed using the full wave elastic modelling in isotropic and transversely isotropic media using Hankel transform, a finite difference scheme and an inverse Hankel transform algorithm, and the propagation equations are determined and numerically solved; the importance of considering a 3D wave propagation model instead of a 1 D one is emphasized. The theoretical VSP inverse problem is then considered, with the seismic waveform inversion set as a least-squares problem, consisting in recovering the distribution of physical parameters which minimize the misfit between calculated and observed VSP. The corresponding problem requires the knowledge of the source function

  20. Quasi-geostrophic modes in the Earth's fluid core with an outer stably stratified layer

    Vidal, Jérémie


    Seismic waves sensitive to the outermost part of the Earth's liquid core seem to be affected by a stably stratified layer at the core-mantle boundary. Such a layer could have an observable signature in both long-term and short-term variations of the magnetic field of the Earth, which are used to probe the flow at the top of the core. Indeed, with the recent SWARM mission, it seems reasonable to be able to identify waves propagating in the core with period of several months, which may play an important role in the large-scale dynamics. In this paper, we characterize the influence of a stratified layer at the top of the core on deep quasi-geostrophic (Rossby) waves. We compute numerically the quasi-geostrophic eigenmodes of a rapidly rotating spherical shell, with a stably stratified layer near the outer boundary. Two simple models of stratification are taken into account, which are scaled with commonly accepted values of the Brunt-V{\\"a}is{\\"a}l{\\"a} frequency in the Earth's core. In the absence of magnetic fi...

  1. Spatial characterization of vortical structures and internal waves in stratified turbulent wake using POD

    Diamessis, P.; Gurka, R.; Liberzon, A.


    Proper orthogonal decomposition (POD) is applied to 2-D slices of vorticity and horizontal divergence obtained from the 3-D DNS of the stratified turbulent wake of a towed sphere at Re=5x10^3 and Fr=4. Slices are sampled along the stream-depth (Oxz) and stream-span planes (Oxy) at 231 times during the interval Nt[12,35]. POD was chosen amongst the available statistical tools due to its advantage in characterization of simulated and experimentally measured velocity gradient fields, as previously demonstrated for turbulent boundary layers. In the Oxz planes, at the wake centerline, the higher most energetic modes reveal a structure similar of the structure of late-time stratified wakes. Off-set from centerline, the signature of internal waves in the form of forward-inclined coherent beams extending into the ambient becomes evident. The angle of inclination becomes progressively vertical with increasing POD mode. Lower POD modes on the Oyz planes show a layered structure in the wake core with coherent beams radiating out into the ambient over a broad range of angles. Further insight is provided through the relative energy spectra distribution of the vorticity eigenmodes. POD analysis has provided a statistical description of the geometrical features previously observed in instantaneous flow fields of stratified turbulent wakes.

  2. Node Redeployment Algorithm Based on Stratified Connected Tree for Underwater Sensor Networks

    Jun Liu


    Full Text Available During the underwater sensor networks (UWSNs operation, node drift with water environment causes network topology changes. Periodic node location examination and adjustment are needed to maintain good network monitoring quality as long as possible. In this paper, a node redeployment algorithm based on stratified connected tree for UWSNs is proposed. At every network adjustment moment, self-examination and adjustment on node locations are performed firstly. If a node is outside the monitored space, it returns to the last location recorded in its memory along straight line. Later, the network topology is stratified into a connected tree that takes the sink node as the root node by broadcasting ready information level by level, which can improve the network connectivity rate. Finally, with synthetically considering network coverage and connectivity rates, and node movement distance, the sink node performs centralized optimization on locations of leaf nodes in the stratified connected tree. Simulation results show that the proposed redeployment algorithm can not only keep the number of nodes in the monitored space as much as possible and maintain good network coverage and connectivity rates during network operation, but also reduce node movement distance during node redeployment and prolong the network lifetime.

  3. On a new non-Boussinesq instability in stratified lakes and oceans

    Shete, Mihir H


    Lakes and many other geophysical flows are shallow, density stratified, and contain a free-surface. Conventional studies on stratified shear instabilities make Boussinesq approximation. Free-surface arising due to large density variations between air and water cannot be taken into consideration under this approximation. Hence the free-surface is usually replaced by a rigid-lid, and therefore has little effect on the stability of the fluid below it. In this paper we have performed non-Boussinesq linear stability analyses of a double circulation velocity profile prevalent in two-layered density stratified lakes. One of our analyses is performed by considering the presence of wind, while the other one considers quiescent air. Both analyses have shown similar growth rates and stability boundaries. We have compared our non-Boussinesq study with a corresponding Boussinesq one. The maximum non-Boussinesq growth rate is found to be an order of magnitude greater than the maximum Boussinesq growth rate. Furthermore, th...

  4. Turbulent fluxes of entropy and internal energy in temperature stratified flows

    Rogachevskii, Igor


    We derive equations for the mean entropy and the mean internal energy in the low-Mach-number temperature stratified turbulence (i.e., for turbulent convection or stably stratified turbulence), and show that turbulent flux of entropy is given by ${\\bf F}_s=\\overline{\\rho} \\, \\overline{{\\bf u} s}$, where $\\overline{\\rho}$ is the mean fluid density, $s$ are fluctuations of entropy and overbars denote averaging over an ensemble of turbulent velocity field, ${\\bf u}$. We demonstrate that the turbulent flux of entropy is different from the turbulent convective flux, ${\\bf F}_c=\\overline{T} \\, \\overline{\\rho} \\, \\overline{{\\bf u} s}$, of the fluid internal energy, where $\\overline{T}$ is the mean fluid temperature. This turbulent convective flux is well-known in the astrophysical and geophysical literature, and it cannot be used as a turbulent flux in the equation for the mean entropy. This result is exact for low-Mach-number temperature stratified turbulence and is independent of the model used. We also derive equa...

  5. Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation

    Herbert, Corentin; Rosenberg, Duane; Pouquet, Annick


    We study the partition of energy between waves and vortices in stratified turbulence, with or without rotation, for a variety of parameters, focusing on the behavior of the waves and vortices in the inverse cascade of energy towards the large scales. To this end, we use direct numerical simulations in a cubic box at a Reynolds number Re=1000, with the ratio between the Brunt-V\\"ais\\"al\\"a frequency N and the inertial frequency f varying from 1/4 to 20, together with a purely stratified run. The Froude number, measuring the strength of the stratification, varies within the range 0.02 < Fr < 0.32. We find that the inverse cascade is dominated by the slow quasi-geostrophic modes. Their energy spectra and fluxes exhibit characteristics of an inverse cascade, even though their energy is not conserved. Surprisingly, the slow vortices still dominate when the ratio N/f increases, also in the stratified case, although less and less so. However, when N/f increases, the inverse cascade of the slow modes becomes we...

  6. Establishment of a novel in vitro model of stratified epithelial wound healing with barrier function.

    Gonzalez-Andrades, Miguel; Alonso-Pastor, Luis; Mauris, Jérôme; Cruzat, Andrea; Dohlman, Claes H; Argüeso, Pablo


    The repair of wounds through collective movement of epithelial cells is a fundamental process in multicellular organisms. In stratified epithelia such as the cornea and skin, healing occurs in three steps that include a latent, migratory, and reconstruction phases. Several simple and inexpensive assays have been developed to study the biology of cell migration in vitro. However, these assays are mostly based on monolayer systems that fail to reproduce the differentiation processes associated to multilayered systems. Here, we describe a straightforward in vitro wound assay to evaluate the healing and restoration of barrier function in stratified human corneal epithelial cells. In this assay, circular punch injuries lead to the collective migration of the epithelium as coherent sheets. The closure of the wound was associated with the restoration of the transcellular barrier and the re-establishment of apical intercellular junctions. Altogether, this new model of wound healing provides an important research tool to study the mechanisms leading to barrier function in stratified epithelia and may facilitate the development of future therapeutic applications.

  7. Turbulent circulation above the surface heat source in stably stratified atmosphere

    Kurbatskii, A. F.; Kurbatskaya, L. I.


    The 3-level RANS approach for simulating a turbulent circulation over the heat island in a stably stratified environment under nearly calm conditions is formulated. The turbulent kinetic energy its spectral consumption (dissipation) and the dispersion of turbulent fluctuations of temperature are found from differential equations, thus the correct modeling of transport processes in the interface layer with the counter-gradient heat flux is assured. The three-parameter turbulence RANS approach minimizes difficulties in simulating the turbulent transport in a stably stratified environment and reduces efforts needed for the numerical implementation of the 3-level RANS approach. Numerical simulation of the turbulent structure of the penetrative convection over the heat island under conditions of stably stratified atmosphere demonstrates that the three-equation model is able to predict the thermal circulation induced by the heat island. The temperature distribution, root-mean-square fluctuations of the turbulent velocity and temperature fields and spectral turbulent kinetic energy flux are in good agreement with the experimental data. The model describes such thin physical effects, as a crossing of vertical profiles of temperature of a thermal plume with the formation of the negative buoyancy area testifying to development of the dome-shaped form at the top part of a plume in the form of "hat".


    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes


    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for


    Matthias G. Imhof; James W. Castle


    The objective of the project is to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study is performed at West Coalinga Field in California. We continued our investigation on the nature of seismic reactions from heterogeneous reservoirs. We began testing our algorithm to infer parameters of object-based reservoir models from seismic data. We began integration of seismic and geologic data to determine the deterministic limits of conventional seismic data interpretation. Lastly, we began integration of seismic and geologic heterogeneity using stochastic models conditioned both on wireline and seismic data.

  10. Evaluation of Planning for Fish and Wildlife at Corps of Engineers Reservoirs, Allegheny Reservoir Project, Pennsylvania.


    I *~ -* .t4 000 Uin.~, P~n 0* .5 0 05 ~ @ftft’~% MO 0.u I- a * - j *SSES -~ M -- - * 𔃺 0 .1 I A S 4% * Ag U .2 - ~SMU cnn ftS44% -o -. 𔃺ft 4%0𔃺 M0M...Longnead darter , A Pearl dace, A Blackside darter, A Slenderkeed dartw. A Catostomidae Malley*, A, R Qutll ck, A, R White sucker, A, 4 Cettid...reservoirs and incorporating data such as morpho- metry, water chemistry, and reservoir age , the Alle- gheny Reservoir should now have an annual sport fishing

  11. Study on the enhancement of hydrocarbon recovery by characterization of the reservoir

    Kwak, Young Hoon; Son, Jin Dam; Oh, Jae Ho [Korea Institute of Geology Mining and Materials, Taejon (Korea)] [and others


    Three year project is being carried out on the enhancement of hydrocarbon recovery by the reservoir characterization. This report describes the results of the second year's work. This project deals with characterization of fluids, bitumen ad rock matrix in the reservoir. New equipment and analytical solutions for naturally fractured reservoir were also included in this study. Main purpose of the reservoir geochemistry is to understand the origin of fluids (gas, petroleum and water) and distribution of the bitumens within the reservoir and to use them not only for exploration but development of the petroleum. For the theme of reservoir geochemistry, methods and principles of the reservoir gas and bitumen characterization, which is applicable to the petroleum development, are studied. and case study was carried out on the gas, water and bitumen samples in the reservoir taken form Haenam area and Ulleung Basin offshore Korea. Gases taken form the two different wells indicate the different origin. Formation water analyses show the absence of barrier within the tested interval. With the sidewall core samples from a well offshore Korea, the analysis using polarizing microscope, scanning electron microscope with EDX and cathodoluminoscope was performed for the study on sandstone diagenesis. The I/S changes were examined on the cuttings samples from a well, offshore Korea to estimate burial temperature. Oxygen stable isotope is used to study geothermal history in sedimentary basin. Study in the field is rare in Korea and basic data are urgently needed especially in continental basins to determine the value of formation water. In the test analyses, three samples from marine basins indicate final temperature from 55 deg.C to 83 deg.C and one marine sample indicate the initial temperature of 36 deg.C. One sample from continental basin represented the final temperature from 53 and 80 deg.C. These temperatures will be corrected because these values were based on assumed

  12. Étude de la mouillabilité des roches réservoir à l'échelle du pore par cryomicroscopie électronique à balayage Wettability of Reservoir Rock At the Pore Scale: Contribution of Cryo-Scanning Electron Microscopy

    Fassi-Fihri O.


    éralogie qui est plutôt homogène. Wettability is generally considered to be one of the principal parameters influencing the distribution, saturation and flow of fluids in porous media. Reservoir rock wettability has long been approached by overall or indirect methods [1] (capillary pressure or relative permeability curves, contact angle, fluid displacement, etc. . Few studies until now have led to a detailed description of porous media with intermediate wettability. - Is there any evidence of an intermediate behavior of fluids in contact with minerals distributed homogeneously throughout the medium, or is there a heterogeneous distribution of water- and oil-wettabilities within the porous medium?- What influence does the local heterogeneity of the minerals (size, geometry, surface chemistry, etc. have on fluid distribution [2 to 7]?The answer to these questions requires a microscopic-scale description of saturated porous media [8 to 11]. By using the imaging and analytical capabilities of a scanning electron microscope coupled with a cold stage unit, fluids can be visualized and identified by detection of their natural tracer element (sulfur for oil and chlorine for brine, and their relative distribution within the pore space can be analyzed in terms of wettability. Results presented here illustrate both the interest of the method and its applicability to actual reservoir rocks. Small cores of the chosen porous media were first saturated with brine, flooded to irreducible water saturation by centrifuging in oil, aged in oil for one month and finally flooded to residual oil saturation by centrifuging in brine. Samples were then frozen in nitrogen slush, freeze fractured and coated before being transferred to the cold stage of the microscope for observation. Experiments were first conducted on porous media with controlled wettability : model sintered glass media, natural clean sandstone (Fontainebleau and clayey sandstones (Vosges, Velaines. All these porous media are

  13. Studies of Reservoir Hosts for Marburg virus

    Swanepoel, Robert; Smit, Sheilagh B; Rollin, Pierre E


    To determine reservoir hosts for Marburg virus (MARV), we examined the fauna of a mine in northeastern Democratic Republic of the Congo. The mine was associated with a protracted outbreak of Marburg hemorrhagic fever during 1998-2000. We found MARV nucleic acid in 12 bats, comprising 3.0%-3.6% of 2...

  14. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.


    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  15. Borehole radar modeling for reservoir monitoring applications

    Miorali, M.; Slob, E.C.; Arts, R.J.


    The use of down-hole sensors and remotely controlled valves in wells provide enormous benefits to reservoir management and oil production. We suggest borehole radar measurements as a promising technique capable of monitoring the arrival of undesired fluids in the proximity of production wells. The h

  16. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.


    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  17. Borehole radar modeling for reservoir monitoring applications

    Miorali, M.; Slob, E.C.; Arts, R.J.


    The use of down-hole sensors and remotely controlled valves in wells provide enormous benefits to reservoir management and oil production. We suggest borehole radar measurements as a promising technique capable of monitoring the arrival of undesired fluids in the proximity of production wells. The

  18. Adsorption of hydrocarbons in chalk reservoirs

    Madsen, L.


    The present work is a study on the wettability of hydrocarbon bearing chalk reservoirs. Wettability is a major factor that influences flow, location and distribution of oil and water in the reservoir. The wettability of the hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. Organic compounds such as carboxylic acids are found in formation waters from various hydrocarbon reservoirs and in crude oils. In the present investigation the wetting behaviour of chalk is studied by the adsorption of the carboxylic acids onto synthetic calcite, kaolinite, quartz, {alpha}-alumina, and chalk dispersed in an aqueous phase and an organic phase. In the aqueous phase the results clearly demonstrate the differences between the adsorption behaviour of benzoic acid and hexanoic acid onto the surfaces of oxide minerals and carbonates. With NaCl concentration of 0.1 M and with pH {approx_equal} 6 the maximum adsorption of benzoic acid decreases in the order: quartz, {alpha}-alumina, kaolinite. For synthetic calcite and chalk no detectable adsorption was obtaind. In the organic phase the order is reversed. The maximum adsorption of benzoic acid onto the different surfaces decreases in the order: synthetic calcite, chalk, kaolinite and quartz. Also a marked difference in adsorption behaviour between probes with different functional groups onto synthetic calcite from organic phase is observed. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. (au) 54 refs.

  19. Geothermal Reservoirs: Products of Cooling Plutons

    Denis L. Norton


    The goals of this project were to develop an in depth understanding of how geothermal reservoirs form and elucidate those features that could potentially be useful in exploration and development of additional energy reserves. Collaboration with Jeff Hulen, EGI helped closely coordinate theoretical concepts and computational experiments with geologic reality in fulfillment of the tasks for this project. Initial reconnaissance computations with Tom Brikowski, University of Texas were critical in realizing the final products of this project. The products of this work contribute basic understanding of the dynamical conditions attendant to the formation of reservoirs in general and the Geysers reservoir in particular. The most exciting of the discoveries were a combination of mineralogical, computational, and geothermometric data sets that revealed a chaotic-like behavior of the processes is critical in the formation of reservoirs near cooling plutions. This discovery provides a fundamental basis for improving resource assessment and exploration methods for geothermal energy associated with very young magmas. Some of the main results are documented in scientific publications, and DOE progress reports. An additional publication is in preparation on the overall significance of fracture propagation and microseismic activity around young magmas.

  20. Fifteenth workshop on geothermal reservoir engineering: Proceedings


    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.