Interfacial shear stress in stratified flow in a horizontal rectangular duct
Lorencez, C.; Kawaji, M. [Univ. of Toronto (Canada); Murao, Y. [Tokushima Univ. (Japan)] [and others
1995-09-01
Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.
无
2009-01-01
On the numerical simulation of active scalar,a new explicit algebraic expression on active scalar flux was derived based on Wikstrm,Wallin and Johansson model (aWWJ model). Reynolds stress algebraic expressions were added by a term to account for the buoyancy effect. The new explicit Reynolds stress and active scalar flux model was then established. Governing equations of this model were solved by finite volume method with unstructured grids. The thermal shear stratified cylinder wake flow was computed by this new model. The computational results are in good agreement with laboratorial measurements. This work is the development on modeling of explicit algebraic Reynolds stress and scalar flux,and is also a further modification of the aWWJ model for complex situations such as a shear stratified flow.
Fluttering in Stratified Flows
Lam, Try; Vincent, Lionel; Kanso, Eva
2016-11-01
The descent motion of heavy objects under the influence of gravitational and aerodynamic forces is relevant to many branches of engineering and science. Examples range from estimating the behavior of re-entry space vehicles to studying the settlement of marine larvae and its influence on underwater ecology. The behavior of regularly shaped objects freely falling in homogeneous fluids is relatively well understood. For example, the complex interaction of a rigid coin with the surrounding fluid will cause it to either fall steadily, flutter, tumble, or be chaotic. Less is known about the effect of density stratification on the descent behavior. Here, we experimentally investigate the descent of discs in both pure water and in a linearly salt-stratified fluids where the density is varied from 1.0 to 1.14 of that of water where the Brunt-Vaisala frequency is 1.7 rad/sec and the Froude number Fr robots for space exploration and underwater missions.
Topographic Effects on Stratified Flows
2003-09-30
Gabersek, S., Gohm, A., Mayr, R., Mobbs, S., Nance, L. B., Vergeiner, I. Vergeiner, J. and Whiteman, C. D. 2003. GAP flow measurements during the...Darby, L. S., Durran, D. R., Gabersek, S., Gohm, A., Mayr, R., Mobbs, S., Nance, L. B., Vergeiner, I. Vergeiner, J. and Whiteman, C. D. 2003. GAP ... flow measurements during the Mesoscale Alpine Programme. Met. and Atm. Phys. (in press, refereed) Eastwood, C. D., Armi, L. and Lasheras, J. C. 2003
Stably Stratified Flow in a Shallow Valley
Mahrt, L.
2017-01-01
Stratified nocturnal flow above and within a small valley of approximately 12-m depth and a few hundred metres width is examined as a case study, based on a network of 20 sonic anemometers and a central 20-m tower with eight levels of sonic anemometers. Several regimes of stratified flow over gentle topography are conceptually defined for organizing the data analysis and comparing with the existing literature. In our case study, a marginal cold pool forms within the shallow valley in the early evening but yields to larger ambient wind speeds after a few hours, corresponding to stratified terrain-following flow where the flow outside the valley descends to the valley floor. The terrain-following flow lasts about 10 h and then undergoes transition to an intermittent marginal cold pool towards the end of the night when the larger-scale flow collapses. During this 10-h period, the stratified terrain-following flow is characterized by a three-layer structure, consisting of a thin surface boundary layer of a few metres depth on the valley floor, a deeper boundary layer corresponding to the larger-scale flow, and an intermediate transition layer with significant wind-directional shear and possible advection of lee turbulence that is generated even for the gentle topography of our study. The flow in the valley is often modulated by oscillations with a typical period of 10 min. Cold events with smaller turbulent intensity and duration of tens of minutes move through the observational domain throughout the terrain-following period. One of these events is examined in detail.
Topological Structures in Rotating Stratified Flows
Redondo, J. M.; Carrillo, A.; Perez, E.
2003-04-01
Detailled 2D Particle traking and PIV visualizations performed on a series of large scale laboratory experiments at the Coriolis Platform of the SINTEF in Trondheim have revealed several resonances which scale on the Strouhal, the Rossby and the Richardson numbers. More than 100 experiments spanned a wide range of Rossby Deformation Radii and the topological structures (Parabolic /Eliptic /Hyperbolic) of the quasi-balanced stratified-rotating flows were studied when stirring (akin to coastal mixing) occured at a side of the tank. The strong asymetry favored by the total vorticity produces a wealth of mixing patterns.
Turbulent Mixing in Stably Stratified Flows
2008-03-01
Liege Colloquium on Ocean Hydrodynamics, volume 46, page 19889898. Elsevier, 1987. R. M. Kerr. Higher-order derivative correlations and the alignment of...19th International Liege Colloquium on Ocean Hydrodynamics, volume 46, pages 3-9. Elsevier, 1988. P. Meunier and G. Spedding. Stratified propelled
Elastic instability in stratified core annular flow.
Bonhomme, Oriane; Morozov, Alexander; Leng, Jacques; Colin, Annie
2011-06-01
We study experimentally the interfacial instability between a layer of dilute polymer solution and water flowing in a thin capillary. The use of microfluidic devices allows us to observe and quantify in great detail the features of the flow. At low velocities, the flow takes the form of a straight jet, while at high velocities, steady or advected wavy jets are produced. We demonstrate that the transition between these flow regimes is purely elastic--it is caused by the viscoelasticity of the polymer solution only. The linear stability analysis of the flow in the short-wave approximation supplemented with a kinematic criterion captures quantitatively the flow diagram. Surprisingly, unstable flows are observed for strong velocities, whereas convected flows are observed for low velocities. We demonstrate that this instability can be used to measure the rheological properties of dilute polymer solutions that are difficult to assess otherwise.
Elastic instability in stratified core annular flow
Bonhomme, Oriane; Leng, Jacques; Colin, Annie
2010-01-01
We study experimentally the interfacial instability between a layer of dilute polymer solution and water flowing in a thin capillary. The use of microfluidic devices allows us to observe and quantify in great detail the features of the flow. At low velocities, the flow takes the form of a straight jet, while at high velocities, steady or advected wavy jets are produced. We demonstrate that the transition between these flow regimes is purely elastic -- it is caused by viscoelasticity of the polymer solution only. The linear stability analysis of the flow in the short-wave approximation captures quantitatively the flow diagram. Surprisingly, unstable flows are observed for strong velocities, whereas convected flows are observed for low velocities. We demonstrate that this instability can be used to measure rheological properties of dilute polymer solutions that are difficult to assess otherwise.
Plane Stratified Flow in a Room Ventilated by Displacement Ventilation
Nielsen, Peter Vilhelm; Nickel, J.; Baron, D. J. G.
2004-01-01
The air movement in the occupied zone of a room ventilated by displacement ventilation exists as a stratified flow along the floor. This flow can be radial or plane according to the number of wall-mounted diffusers and the room geometry. The paper addresses the situations where plane flow...
ZHONG; Fengquan(仲峰泉); LIU; Nansheng(刘难生); LU; Xiyun(陆夕云); ZHUANG; Lixian(庄礼贤)
2002-01-01
In the present paper, a new dynamic subgrid-scale (SGS) model of turbulent stress and heat flux for stratified shear flow is proposed. Based on our calculated results of stratified channel flow, the dynamic subgrid-scale model developed in this paper is shown to be effective for large eddy simulation (LES) of stratified turbulent shear flows. The new SGS model is then applied to the LES of the stratified turbulent channel flow to investigate the coupled shear and buoyancy effects on the behavior of turbulent statistics, turbulent heat transfer and flow structures at different Richardson numbers.
Local properties of countercurrent stratified steam-water flow
Kim, H J
1985-10-01
A study of steam condensation in countercurrent stratified flow of steam and subcooled water has been carried out in a rectangular channel/flat plate geometry over a wide range of inclination angles (4/sup 0/-87/sup 0/) at several aspect ratios. Variables were inlet water and steam flow rates, and inlet water temperature. Local condensation rates and pressure gradients were measured, and local condensation heat transfer coefficients and interfacial shear stress were calculated. Contact probe traverses of the surface waves were made, which allowed a statistical analysis of the wave properties. The local condensation Nusselt number was correlated in terms of local water and steam Reynolds or Froude numbers, as well as the liquid Prandtl number. A turbulence-centered model developed by Theofanous, et al. principally for gas absorption in several geometries, was modified. A correlation for the interfacial shear stress and the pressure gradient agreed with measured values. Mean water layer thicknesses were calculated. Interfacial wave parameters, such as the mean water layer thickness, liquid fraction probability distribution, wave amplitude and wave frequency, are analyzed.
Stability of stratified two-phase flows in inclined channels
Barmak, Ilya; Ullmann, Amos; Brauner, Neima
2016-01-01
Linear stability of stratified gas-liquid and liquid-liquid plane-parallel flows in inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict parameter regions in which stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of steady state solutions are presented on the flow pattern map and are accompanied by critical wavenumbers and spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of ...
Weakly nonlinear simulation of planar stratified flows
King, Michael R. [Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); McCready, Mark J. [Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)
2000-01-01
The interfacial behavior of two-fluid, planar flows is studied by numerical integration of weakly-nonlinear amplitude equations derived via eigenfunction expansion of the governing equations. This study extends the range of classic Stuart-Landau theories by the inclusion of a spectrum of modes allowing all possible quadratic and cubic interactions. Results are obtained for four cases where linear and Stuart-Landau theories do not give a complete description; gas-liquid and oil-water pressure driven flow, matched-density liquid-liquid Couette flow, and the region of gas-liquid flow near resonance that switches from supercritical to subcritical. It is found that integration of amplitude equations gives better qualitative and quantitative agreement with experiments than Stuart-Landau theory. Further, the distinctively different behaviors of these systems can be understood in terms of the spectrum of nonlinear coefficients. In gas-liquid channel flow a low wave number wave is destabilized through quadratic interaction with the mean flow mode. For liquid-liquid Poiseuille flow, a low wave number wave is destabilized through cubic interactions with higher modes. For depth and viscosity ratios where liquid-liquid Couette flow is unstable to long waves and for which the growth rates are not too large, simulation results predict that the waves grow to a statistically steady state where there is no preferred wave number. Stabilization is provided by an apparently self-similar cascade of energy to higher modes that are linearly stable, explaining why no visible waves occur in experiments done in this region. While Stuart-Landau theory provides no prediction of wave amplitude above criticality for subcritical cases, simulations show that wave saturation at small amplitude is possible and suggests that subcritical predictions may not mean that steady waves do not exist. (c) 2000 American Institute of Physics.
A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow
Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others
1995-09-01
This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.
Numerical Simulation on Stratified Flow over an Isolated Mountain Ridge
LI Ling; Shigeo Kimura
2007-01-01
The characteristics of stratified flow over an isolated mountain ridge have been investigated numerically. The two-dimensional model equations, based on the time-dependent Reynolds averaged NavierStokes equations, are solved numerically using an implicit time integration in a fitted body grid arrangement to simulate stratified flow over an isolated ideally bell-shaped mountain. The simulation results are in good agreement with the existing corresponding analytical and approximate solutions. It is shown that for atmospheric conditions where non-hydrostatic effects become dominant, the model is able to reproduce typical flow features. The dispersion characteristics of gaseous pollutants in the stratified flow have also been studied. The dispersion patterns for two typical atmospheric conditions are compared. The results show that the presence of a gravity wave causes vertical stratification of the pollutant concentration and affects the diffusive characteristics of the pollutants.
Gravity-induced stresses in stratified rock masses
Amadei, B.; Swolfs, H.S.; Savage, W.Z.
1988-01-01
This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.
Stability of stratified two-phase flows in horizontal channels
Barmak, Ilya; Ullmann, Amos; Brauner, Neima; Vitoshkin, Helen
2016-01-01
Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems the stratified flow with smooth interface is stable only in confined zone of relatively lo...
Stability of stratified two-phase flows in inclined channels
Barmak, I.; Gelfgat, A. Yu.; Ullmann, A.; Brauner, N.
2016-08-01
Linear stability of the stratified gas-liquid and liquid-liquid plane-parallel flows in the inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict the parameter regions in which the stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in the inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of the non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of the steady state solutions are presented on the flow pattern map and are accompanied by the critical wavenumbers and the spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by the streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of two stable stratified flow configurations in a region of low flow rates in the countercurrent liquid-liquid flows. These configurations become unstable with respect to the shear mode of instability. It was revealed that in slightly upward inclined flows the lower and middle solutions for the holdup are stable in the part of the triple solution region, while the upper solution is always unstable. In the case of downward flows, in the triple solution region, none of the solutions are stable with respect to the short-wave perturbations. These flows are stable only in the single solution region at low flow rates of the heavy phase, and the long-wave perturbations are the most unstable ones.
Linear Inviscid Damping for Couette Flow in Stratified Fluid
Yang, Jincheng
2016-01-01
We study the inviscid damping of Coutte flow with an exponentially stratified density. The optimal decay rates of the velocity field and density are obtained for general perturbations with minimal regularity. For Boussinesq approximation model, the decay rates we get are consistent with the previous results in the literature. We also study the decay rates for the full equations of stratified fluids, which were not studied before. For both models, the decay rates depend on the Richardson number in a very similar way. Besides, we also study the inviscid damping of perturbations due to the exponential stratification when there is no shear.
Elementary stratified flows with stability at low Richardson number
Barros, Ricardo [Mathematics Applications Consortium for Science and Industry (MACSI), Department of Mathematics and Statistics, University of Limerick, Limerick (Ireland); Choi, Wooyoung [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102-1982 (United States)
2014-12-15
We revisit the stability analysis for three classical configurations of multiple fluid layers proposed by Goldstein [“On the stability of superposed streams of fluids of different densities,” Proc. R. Soc. A. 132, 524 (1931)], Taylor [“Effect of variation in density on the stability of superposed streams of fluid,” Proc. R. Soc. A 132, 499 (1931)], and Holmboe [“On the behaviour of symmetric waves in stratified shear layers,” Geophys. Publ. 24, 67 (1962)] as simple prototypes to understand stability characteristics of stratified shear flows with sharp density transitions. When such flows are confined in a finite domain, it is shown that a large shear across the layers that is often considered a source of instability plays a stabilizing role. Presented are simple analytical criteria for stability of these low Richardson number flows.
Stability of stratified two-phase flows in horizontal channels
Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.
2016-04-01
Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.
A dynamic subgrid-scale model for the large eddy simulation of stratified flow
刘宁宇; 陆夕云; 庄礼贤
2000-01-01
A new dynamic subgrid-scale (SGS) model, including subgrid turbulent stress and heat flux models for stratified shear flow is proposed by using Yoshizawa’ s eddy viscosity model as a base model. Based on our calculated results, the dynamic subgrid-scale model developed here is effective for the large eddy simulation (LES) of stratified turbulent channel flows. The new SGS model is then applied to the large eddy simulation of stratified turbulent channel flow under gravity to investigate the coupled shear and buoyancy effects on the near-wall turbulent statistics and the turbulent heat transfer at different Richardson numbers. The critical Richardson number predicted by the present calculation is in good agreement with the value of theoretical analysis.
A dynamic subgrid-scale model for the large eddy simulation of stratified flow
无
2000-01-01
A new dynamic subgrid-scale (SGS) model, including subgrid turbulent stress and heat flux models for stratified shear flow is proposed by using Yoshizawa's eddy viscosity model as a base model. Based on our calculated results, the dynamic subgrid-scale model developed here is effective for the large eddy simulation (LES) of stratified turbulent channel flows. The new SGS model is then applied to the large eddy simulation of stratified turbulent channel flow under gravity to investigate the coupled shear and buoyancy effects on the near-wall turbulent statistics and the turbulent heat transfer at different Richardson numbers. The critical Richardson number predicted by the present calculation is in good agreement with the value of theoretical analysis.
郑平; 赵梁
2016-01-01
The gas-liquid two-phase stratified flow has complex momentum and energy transmission phenomena at interface,although its pattern is simple. There are still no unified conclusions for interfacial shear stress in stratified flow. Current progress of interfacial shear stress in horizontal pipes were elaborated by theoretical models,experimental models and numerical simulations. As for theoretical models,closure models were established by models simplification and empirical correlations. Empirical correlations were corrected with closure relations in experiments. Due to simplifying assumptions and experimental conditions,there are some limitations in predicting the interfacial shear stress with theoretical and experimental ways. The detailed flow fields were studied by numerical simulations,but closure relations have been less obtained so far. Five existing models are compared according to liquid holdup and pressure drop. The future research trends of gas-liquid two-phase stratified flow interfacial shear stress in horizontal pipes were further discussed. More detailed local models are needed to be proposed and engineering practice should be taken into account. It is necessary to develop new methods of gas-liquid interface calculations and closure relations for numerical simulations.%水平管气液两相分层流虽流型简单，但由于界面存在复杂的动量和能量传递，分层流的界面剪切预测至今没有一致的结论。本文从理论模型、实验模型、数值计算3个角度出发，详细阐述水平管气液两相分层流界面剪切预测的研究现状，得出不同研究方法的优势和缺陷。针对3种研究方法，指出理论模型通过模型简化和经验关联式来建立封闭模型，实验模型则在封闭关系上修正经验关联式，但由于简化假设和实验条件的限制，使得这两种研究方法对界面剪切应力的预测具有一定的局限性；数值计算能够弥补机理模型在流场细
Stability of steam-water countercurrent stratified flow
Lee, S C
1985-10-01
Two flow instabilities which limit the normal condensation processes in countercurrent stratified steam-water flow have been identified experimentally: flooding and condensation-induced waterhammer. In order to initiate condensation-induced waterhammer in nearly horizontal or moderately-inclined steam/subcooled-water flow, two conditions, the appearance of a wavy interface and complete condensation of the incoming steam, are necessary. Analyses of these conditions are performed on a basis of flow stability and heat transfer considerations. Flooding data for several inclinations and channel heights are collected. Effects of condensation, inclination angle and channel height on the flooding characteristics are discussed. An envelope theory for the onset of flooding in inclined stratified flow is developed, which agrees well with the experimental data. Some empirical information on basic flow parameters, such as mean film thickness and interfacial friction factor required for this theory are measured. The previous viewpoints on flooding appear not to conflict with the present experimental data in nearly horizontal flow but the flooding phenomena in nearly vertical flow appear to be more complicated than those described by these viewpoints because of liquid droplet entrainment.
The Universal Aspect Ratio of Vortices in Rotating Stratifi?ed Flows: Experiments and Observations
Aubert, Oriane; Gal, Patrice Le; Marcus, Philip S
2012-01-01
We validate a new law for the aspect ratio $\\alpha = H/L$ of vortices in a rotating, stratified flow, where $H$ and $L$ are the vertical half-height and horizontal length scale of the vortices. The aspect ratio depends not only on the Coriolis parameter f and buoyancy (or Brunt-Vaisala) frequency $\\bar{N}$ of the background flow, but also on the buoyancy frequency $N_c$ within the vortex and on the Rossby number $Ro$ of the vortex such that $\\alpha = f \\sqrt{[Ro (1 + Ro)/(N_c^2- \\bar{N}^2)]}$. This law for $\\alpha$ is obeyed precisely by the exact equilibrium solution of the inviscid Boussinesq equations that we show to be a useful model of our laboratory vortices. The law is valid for both cyclones and anticyclones. Our anticyclones are generated by injecting fluid into a rotating tank filled with linearly-stratified salt water. The vortices are far from the top and bottom boundaries of the tank, so there is no Ekman circulation. In one set of experiments, the vortices viscously decay, but as they do, they c...
A study of stratified gas-liquid pipe flow
Johnson, George W.
2005-07-01
This work includes both theoretical modelling and experimental observations which are relevant to the design of gas condensate transport lines. Multicomponent hydrocarbon gas mixtures are transported in pipes over long distances and at various inclinations. Under certain circumstances, the heavier hydrocarbon components and/or water vapour condense to form one or more liquid phases. Near the desired capacity, the liquid condensate and water is efficiently transported in the form of a stratified flow with a droplet field. During operating conditions however, the flow rate may be reduced allowing liquid accumulation which can create serious operational problems due to large amounts of excess liquid being expelled into the receiving facilities during production ramp-up or even in steady production in severe cases. In particular, liquid tends to accumulate in upward inclined sections due to insufficient drag on the liquid from the gas. To optimize the transport of gas condensates, a pipe diameters should be carefully chosen to account for varying flow rates and pressure levels which are determined through the knowledge of the multiphase flow present. It is desirable to have a reliable numerical simulation tool to predict liquid accumulation for various flow rates, pipe diameters and pressure levels which is not presently accounted for by industrial flow codes. A critical feature of the simulation code would include the ability to predict the transition from small liquid accumulation at high flow rates to large liquid accumulation at low flow rates. A semi-intermittent flow regime of roll waves alternating with a partly backward flowing liquid film has been observed experimentally to occur for a range of gas flow rates. Most of the liquid is transported in the roll waves. The roll wave regime is not well understood and requires fundamental modelling and experimental research. The lack of reliable models for this regime leads to inaccurate prediction of the onset of
Visualization periodic flows in a continuously stratified fluid.
Bardakov, R.; Vasiliev, A.
2012-04-01
To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken
Instabilities developed in stratified flows over pronounced obstacles
Varela, J.; Araújo, M.; Bove, I.; Cabeza, C.; Usera, G.; Martí, Arturo C.; Montagne, R.; Sarasúa, L. G.
2007-12-01
In the present work we study numerical and experimentally the flow of a two-layer stratified fluid over a topographic obstacle. The problem reflects a wide number of oceanographic and meteorological situations, where the stratification plays an important role. We identify the different instabilities developed by studying the pycnocline deformation due to a pronounced obstacle. The numerical simulations were made using the model caffa3D.MB which works with a numerical model of Navier-Stokes equations with finite volume elements in curvilinear meshes. The experimental results are contrasted with numerical simulations. Linear stability analysis predictions are checked with particle image velocimetry (PIV) measurements.
A Model for Predicting Holdup and Pressure Drop in Gas-Liquid Stratified Flow
无
2001-01-01
The time-dependent liquid film thickness and pressure drop were measured by using parallel-wire conductance probes and capacitance differential-preesure transducers. Applying the eddy viscosity theory and an appropriate correlation of interfacial sear stress,a new two-dimensional separated model of holdup and pressure drop of turbulent/turbulent gas-liquid stratified flow was presented. Prediction results agreed well with experimental data.
Simulation and study of stratified flows around finite bodies
Gushchin, V. A.; Matyushin, P. V.
2016-06-01
The flows past a sphere and a square cylinder of diameter d moving horizontally at the velocity U in a linearly density-stratified viscous incompressible fluid are studied. The flows are described by the Navier-Stokes equations in the Boussinesq approximation. Variations in the spatial vortex structure of the flows are analyzed in detail in a wide range of dimensionless parameters (such as the Reynolds number Re = Ud/ ν and the internal Froude number Fr = U/( Nd), where ν is the kinematic viscosity and N is the buoyancy frequency) by applying mathematical simulation (on supercomputers of Joint Supercomputer Center of the Russian Academy of Sciences) and three-dimensional flow visualization. At 0.005 < Fr < 100, the classification of flow regimes for the sphere (for 1 < Re < 500) and for the cylinder (for 1 < Re < 200) is improved. At Fr = 0 (i.e., at U = 0), the problem of diffusion-induced flow past a sphere leading to the formation of horizontal density layers near the sphere's upper and lower poles is considered. At Fr = 0.1 and Re = 50, the formation of a steady flow past a square cylinder with wavy hanging density layers in the wake is studied in detail.
Interfacial instabilities in a stratified flow of two superposed fluids
Schaflinger, Uwe
1994-06-01
Here we shall present a linear stability analysis of a laminar, stratified flow of two superposed fluids which are a clear liquid and a suspension of solid particles. The investigation is based upon the assumption that the concentration remains constant within the suspension layer. Even for moderate flow-rates the base-state results for a shear induced resuspension flow justify the latter assumption. The numerical solutions display the existence of two different branches that contribute to convective instability: long and short waves which coexist in a certain range of parameters. Also, a range exists where the flow is absolutely unstable. That means a convectively unstable resuspension flow can be only observed for Reynolds numbers larger than a lower, critical Reynolds number but still smaller than a second critical Reynolds number. For flow rates which give rise to a Reynolds number larger than the second critical Reynolds number, the flow is absolutely unstable. In some cases, however, there exists a third bound beyond that the flow is convectively unstable again. Experiments show the same phenomena: for small flow-rates short waves were usually observed but occasionally also the coexistence of short and long waves. These findings are qualitatively in good agreement with the linear stability analysis. Larger flow-rates in the range of the second critical Reynolds number yield strong interfacial waves with wave breaking and detached particles. In this range, the measured flow-parameters, like the resuspension height and the pressure drop are far beyond the theoretical results. Evidently, a further increase of the Reynolds number indicates the transition to a less wavy interface. Finally, the linear stability analysis also predicts interfacial waves in the case of relatively small suspension heights. These results are in accordance with measurements for ripple-type instabilities as they occur under laminar and viscous conditions for a mono-layer of particles.
STRESS DISTRIBUTION IN THE STRATIFIED MASS CONTAINING VERTICAL ALVEOLE
Bobileva Tatiana Nikolaevna
2017-08-01
Full Text Available Almost all subsurface rocks used as foundations for various types of structures are stratified. Such heterogeneity may cause specific behaviour of the materials under strain. Differential equations describing the behaviour of such materials contain rapidly fluctuating coefficients, in view of this, solution of such equations is more time-consuming when using today’s computers. The method of asymptotic averaging leads to getting homogeneous medium under study to averaged equations with fixed factors. The present article is concerned with stratified soil mass consisting of pair-wise alternative isotropic elastic layers. In the results of elastic modules averaging, the present soil mass with horizontal rock stratification is simulated by homogeneous transversal-isotropic half-space with isotropy plane perpendicular to the standing axis. Half-space is loosened by a vertical alveole of circular cross-section, and virgin ground is under its own weight. For horizontal parting planes of layers, the following two types of surface conditions are set: ideal contact and backlash without cleavage. For homogeneous transversal-isotropic half-space received with a vertical alveole, the analytical solution of S.G. Lekhnitsky, well known in scientific papers, is used. The author gives expressions for stress components and displacements in soil mass for different marginal conditions on the alveole surface. Such research problems arise when constructing and maintaining buildings and when composite materials are used.
Numerical simulation of stratified shear flow using a higher order Taylor series expansion method
Iwashige, Kengo; Ikeda, Takashi [Hitachi, Ltd. (Japan)
1995-09-01
A higher order Taylor series expansion method is applied to two-dimensional numerical simulation of stratified shear flow. In the present study, central difference scheme-like method is adopted for an even expansion order, and upwind difference scheme-like method is adopted for an odd order, and the expansion order is variable. To evaluate the effects of expansion order upon the numerical results, a stratified shear flow test in a rectangular channel (Reynolds number = 1.7x10{sup 4}) is carried out, and the numerical velocity and temperature fields are compared with experimental results measured by laser Doppler velocimetry thermocouples. The results confirm that the higher and odd order methods can simulate mean velocity distributions, root-mean-square velocity fluctuations, Reynolds stress, temperature distributions, and root-mean-square temperature fluctuations.
Stratified flows with variable density: mathematical modelling and numerical challenges.
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux
Turbulence comes in bursts in stably stratified flows
Rorai, C; Pouquet, A
2013-01-01
There is a clear distinction between simple laminar and complex turbulent fluids. But in some cases, as for the nocturnal planetary boundary layer, a stable and well-ordered flow can develop intense and sporadic bursts of turbulent activity which disappear slowly in time. This phenomenon is ill-understood and poorly modeled; and yet, it is central to our understanding of weather and climate dynamics. We present here a simple model which shows that in stably stratified turbulence, the stronger bursts can occur when the flow is expected to be more stable. The bursts are generated by a rapid non-linear amplification of energy stored in waves, and are associated with energetic interchanges between vertical velocity and temperature (or density) fluctuations. Direct numerical simulations on grids of 2048^3 points confirm this somewhat paradoxical result of measurably stronger events for more stable flows, displayed not only in the temperature and vertical velocity derivatives, but also in the amplitude of the field...
Stratified Flow Past a Hill: Dividing Streamline Concept Revisited
Leo, Laura S.; Thompson, Michael Y.; Di Sabatino, Silvana; Fernando, Harindra J. S.
2016-06-01
The Sheppard formula (Q J R Meteorol Soc 82:528-529, 1956) for the dividing streamline height H_s assumes a uniform velocity U_∞ and a constant buoyancy frequency N for the approach flow towards a mountain of height h, and takes the form H_s/h=( {1-F} ) , where F=U_{∞}/Nh. We extend this solution to a logarithmic approach-velocity profile with constant N. An analytical solution is obtained for H_s/h in terms of Lambert-W functions, which also suggests alternative scaling for H_s/h. A `modified' logarithmic velocity profile is proposed for stably stratified atmospheric boundary-layer flows. A field experiment designed to observe H_s is described, which utilized instrumentation from the spring field campaign of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program. Multiple releases of smoke at F≈ 0.3-0.4 support the new formulation, notwithstanding the limited success of experiments due to logistical constraints. No dividing streamline is discerned for F≈ 10, since, if present, it is too close to the foothill. Flow separation and vortex shedding is observed in this case. The proposed modified logarithmic profile is in reasonable agreement with experimental observations.
Internal and vorticity waves in decaying stratified flows
Matulka, A.; Cano, D.
2009-04-01
Most predictive models fail when forcing at the Rossby deformation Radius is important and a large range of scales have to be taken into account. When mixing of reactants or pollutants has to be accounted, the range of scales spans from hundreds of Kilometers to the Bachelor or Kolmogorov sub milimiter scales. We present some theoretical arguments to describe the flow in terms of the three dimensional vorticity equations, using a lengthscale related to the vorticity (or enstrophy ) transport. Effect of intermittent eddies and non-homogeneity of diffusion are also key issues in the environment because both stratification and rotation body forces are important and cause anisotropy/non-homogeneity. These problems need further theoretical, numerical and observational work and one approach is to try to maximize the relevant geometrical information in order to understand and therefore predict these complex environmental dispersive flows. The importance of the study of turbulence structure and its relevance in diffusion of contaminants in environmental flows is clear when we see the effect of environmental disasters such as the Prestige oil spill or the Chernobil radioactive cloud spread in the atmosphere. A series of Experiments have been performed on a strongly stratified two layer fluid consisting of Brine in the bottom and freshwater above in a 1 square meter tank. The evolution of the vortices after the passage of a grid is video recorded and Particle tracking is applied on small pliolite particles floating at the interface. The combination of internal waves and vertical vorticity produces two separate time scales that may produce resonances. The vorticity is seen to oscilate in a complex way, where the frecuency decreases with time.
Experiments on the transition from stratified to slug flow in multiphase pipe flow
Kristiansen, Olav
2004-12-01
Severe slugging is reported from some field operations, where an increase in the production rate leads to a transition from steady stratified flow to slug flow in the pipeline. The slugs can be longer than anticipated for hydrodynamic slugging and the flow transients can then be a limitation for the production capacity. The objective was to perform a study on the flow pattern transition from stratified to slug flow. A particular point of interest was the possible occurrence of metastable flow and large initial slugs at elevated pressures. New data have been acquired in an experimental investigation of the transition from stratified to slug flow in horizontal and near-horizontal pipes at atmospheric and pressurised conditions. The experiments were performed with two-phase gas liquid and three-phase gas-liquid-liquid flows. Two flow facilities were used the NTNU Multiphase Flow Laboratory (short flow loop) and the SINTEF Multi-phase Flow Laboratory (long flow loop). Hold-up and pressure drop were measured, and flow patterns were determined visually and by evaluation of hold-up time traces. The following parameters were varied: 1) Inlet flow condition by variation of inlet pipe inclination. 2) System pressure (gas density). 3) Test section inclination (horizontal and near-horizontal). 4) Water cut. 5) Gas and liquid flow rates. 6) Pipe length. Slug flow or stratified flow was introduced upstream to promote either early or delayed transition to slug flow in the test section. A time series analysis was performed on the hold-up time traces, and average and distribution slug characteristics are reported, e.g. slug frequency, bubble propagation velocity, slug fraction, slug length, and growth rate. The results have been compared with steady state model predictions. The work consists of the following parts. 1) An initial study was performed at atmospheric air-water conditions in a short pipe. 2) Experiments at atmospheric and elevated pressures were performed in the medium
Mixing efficiency of turbulent patches in stably stratified flows
Garanaik, Amrapalli; Venayagamoorthy, Subhas Karan
2016-11-01
A key quantity that is essential for estimating the turbulent diapycnal (irreversible) mixing in stably stratified flow is the mixing efficiency Rf*, which is a measure of the amount of turbulent kinetic energy that is irreversibly converted into background potential energy. In particular, there is an ongoing debate in the oceanographic mixing community regarding the utility of the buoyancy Reynolds number (Reb) , particularly with regard to how mixing efficiency and diapycnal diffusivity vary with Reb . Specifically, is there a universal relationship between the intensity of turbulence and the strength of the stratification that supports an unambiguous description of mixing efficiency based on Reb ? The focus of the present study is to investigate the variability of Rf* by considering oceanic turbulence data obtained from microstructure profiles in conjunction with data from laboratory experiments and DNS. Field data analysis has done by identifying turbulent patches using Thorpe sorting method for potential density. The analysis clearly shows that high mixing efficiencies can persist at high buoyancy Reynolds numbers. This is contradiction to previous studies which predict that mixing efficiency should decrease universally for Reb greater than O (100) . Funded by NSF and ONR.
An experimental investigation of stratified two-phase pipe flow at small inclinations
Espedal, Mikal
1998-12-31
The prediction of stratified flow is important for several industrial applications. Stratified flow experiments were carefully performed in order to investigate the performance of a typical model which uses wall friction factors based on single phase pipe flow as described above. The test facility has a 18.5 m long and 60 mm i.d. (L/D=300) acrylic test section which can be inclined between -10 {sup o} and +10 {sup o}. The liquid holdup was measured by using fast closing valves and the pressure gradients by using three differential pressure transducers. Interfacial waves were measured by thin wire conductance probes mounted in a plane perpendicular to the main flow. The experiments were performed using water and air at atmospheric pressure. The selected test section inclinations were between -3 {sup o} and +0.5 {sup o} to the horizontal plane. A large number of experiments were performed for different combinations of air and water flow rates and the rates were limited to avoid slug flow and stratified flow with liquid droplets. The pressure gradient and the liquid holdup were measured. In addition the wave probes were used to find the wave heights and the wave power spectra. The results show that the predicted pressure gradient using the standard models is approximately 30% lower than the measured value when large amplitude waves are present. When the flow is driven by the interfacial force the test section inclination has minor influence on the deviation between predicted and measured pressure gradients. Similar trends are apparent in data from the literature, although they seem to have gone unnoticed. For several data sets large spread in the predictions are observed when the model described above was used. Gas wall shear stress experiments indicate that the main cause of the deviation between measured and predicted pressure gradient and holdup resides in the modelling of the liquid wall friction term. Measurements of the liquid wall shear stress distribution
Transport Phenomena in Stratified Multi-Fluid Flow in the Presence and Absence of Gravity
Chigier, Norman; Humphrey, William
1996-01-01
Experiments are being conducted to study the effects of buoyancy on planar density-stratified shear flows. A wind tunnel generates planar flows separated by an insulating splitter plate, with either flow heated, which emerge from a two-dimensional nozzle. The objective is to isolate and define the effect of gravity and buoyancy on a stratified shear layer. To this end, both stably and unstably stratified layers will be investigated. This paper reports on the results of temperature and velocity measurements across the nozzle exit plane and downstream along the nozzle center plane.
QIU Xiang
2006-01-01
Turbulence structures and turbulent Counter-Gradient Transport(CGT) properties in the stratified flows with a sharp temperature interface are investigated by experimental measurements using LIF and PIV, by LES and by correlation analysis.
Law of the wall in an unstably stratified turbulent channel flow
Scagliarini, Andrea; Gylfason, Ármann; Toschi, Federico
2015-01-01
We perform direct numerical simulations of an unstably stratified turbulent channel flow to address the effects of buoyancy on the boundary layer dynamics and mean field quantities. We systematically span a range of parameters in the space of friction Reynolds number ($Re_{\\tau}$) and Rayleigh number ($Ra$). Our focus is on deviations from the logarithmic law of the wall due to buoyant motion. The effects of convection in the relevant ranges are discussed providing measurements of mean profiles of velocity, temperature and Reynolds stresses as well as of the friction coefficient. A phenomenological model is proposed and shown to capture the observed deviations of the velocity profile in the log-law region from the non-convective case.
On the lifetime of a pancake anticyclone in a rotating stratified flow
Facchini, Giulio; Le Bars, Michael
2016-11-01
We present an experimental study of the time evolution of an isolated anticyclonic pancake vortex in a laboratory rotating stratified flow. Motivations come from the variety of compact anticyclones observed to form and persist for a strikingly long lifetime in geophysical and astrophysical settings combining rotation and stratification. We generate anticyclones by injecting a small amount of isodense fluid at the center of a rotating tank filled with salty water linearly stratified in density. Our two control parameters are the Coriolis parameter f and the Brunt-Väisälä frequency N. We observe that anticyclones always slowly decay by viscous diffusion, spreading mainly in the horizontal direction irrespective of the initial aspect ratio. This behavior is correctly explained by a linear analytical model in the limit of small Rossby and Ekman numbers, where density and velocity equations reduce to a single equation for the pressure. Direct numerical simulations further confirm the theoretical predictions. Notably, they show that the azimuthal shear stress generates secondary circulations, which advect the density anomaly: this mechanism is responsible for the slow time evolution, rather than the classical viscous dissipation of the azimuthal kinetic energy.
Short-wave vortex instability in stratified flow
Bovard, Luke
2014-01-01
In this paper we investigate a new instability of the Lamb-Chaplygin dipole in a stratified fluid. Through numerical linear stability analysis, a secondary peak in the growth rate emerges at vertical scales about an order of magnitude smaller than the buoyancy scale $L_{b}=U/N$ where $U$ is the characteristic velocity and $N$ is the Brunt-V\\"{a}is\\"{a}l\\"{a} frequency. This new instability exhibits a growth rate that is similar to, and even exceeds, that of the zigzag instability, which has the characteristic length of the buoyancy scale. This instability is investigated for a wide range of Reynolds $Re=2000-20000$ and horizontal Froude numbers $F_{h}=0.05-0.2$, where $F_{h}=U/NR$, $Re=UR/\
Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)
1997-12-31
This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)
Mathematical models for two-phase stratified pipe flow
Biberg, Dag
2005-06-01
The simultaneous transport of oil, gas and water in a single multiphase flow pipe line has for economical and practical reasons become common practice in the gas and oil fields operated by the oil industry. The optimal design and safe operation of these pipe lines require reliable estimates of liquid inventory, pressure drop and flow regime. Computer simulations of multiphase pipe flow have thus become an important design tool for field developments. Computer simulations yielding on-line monitoring and look ahead predictions are invaluable in day-to-day field management. Inaccurate predictions may have large consequences. The accuracy and reliability of multiphase pipe flow models are thus important issues. Simulating events in large pipelines or pipeline systems is relatively computer intensive. Pipe-lines carrying e.g. gas and liquefied gas (condensate) may cover distances of several hundred km in which transient phenomena may go on for months. The evaluation times associated with contemporary 3-D CFD models are thus not compatible with field applications. Multiphase flow lines are therefore normally simulated using specially dedicated 1-D models. The closure relations of multiphase pipe flow models are mainly based on lab data. The maximum pipe inner diameter, pressure and temperature in a multiphase pipe flow lab is limited to approximately 0.3 m, 90 bar and 60{sup o}C respectively. The corresponding field values are, however, much higher i.e.: 1 m, 1000 bar and 200{sup o}C respectively. Lab data does thus not cover the actual field conditions. Field predictions are consequently frequently based on model extrapolation. Applying field data or establishing more advanced labs will not solve this problem. It is in fact not practically possible to acquire sufficient data to cover all aspects of multiphase pipe flow. The parameter range involved is simply too large. Liquid levels and pressure drop in three-phase flow are e.g. determined by 13 dimensionless parameters
Mixing and entrainment in hydraulically driven stratified sill flows
Holtegaard Nielsen, Morten; Pratt, Larry; Helfrich, Karl
2004-09-01
The investigation involves the hydraulic behaviour of a dense layer of fluid flowing over an obstacle and subject to entrainment of mass and momentum from a dynamically inactive (but possibly moving) overlying fluid. An approach based on the use of reduced gravity, shallow-water theory with a cross-interface entrainment velocity is compared with numerical simulations based on a model with continuously varying stratification and velocity. The locations of critical flow (hydraulic control) in the continuous model are estimated by observing the direction of propagation of small-amplitude long-wave disturbances introduced into the flow field. Although some of the trends predicted by the shallow-water model are observed in the continuous model, the agreement between the interface profiles and the position of critical flow is quantitatively poor. A reformulation of the equations governing the continuous flow suggests that the reduced gravity model systematically underestimates inertia and overestimates buoyancy. These differences are quantified by shape coefficients that measure the vertical non-uniformities of the density and horizontal velocity that arise, in part, by incomplete mixing of entrained mass and momentum over the lower-layer depth. Under conditions of self-similarity (as in Wood's similarity solution) the shape coefficients are constant and the formulation determines a new criterion for and location of critical flow. This location generally lies upstream of the critical section predicted by the reduced-gravity model. Self-similarity is not observed in the numerically generated flow, but the observed critical section continues to lie upstream of the location predicted by the reduced gravity model. The factors influencing this result are explored.
Stratified shear flow in an inclined duct: coherent structures and mixing
Lefauve, Adrien; Partridge, Jamie; Dalziel, Stuart; Linden, Paul
2016-11-01
We present laboratory experiments on the exchange flow in an inclined square duct connecting two reservoirs at different densities. This system generates and maintains a stratified shear flow, which can be laminar, wavy or turbulent depending on the density difference and inclination angle. It is believed that the mean dissipation is set by the angle, and that high buoyancy Reynolds numbers (i.e. turbulent intensity) can be maintained, making this system suited for the study of continuously forced stratified turbulence. The talk will focus on the analysis of time-resolved, near-instantaneous 3D velocity and density data obtained by stereo particle image velocimetry (PIV) and laser induced fluorescence (LIF). This data allow for the visualisation of 3D coherent structures as well as turbulent mixing properties, which are key in understanding the dynamics of stratified turbulence. Supported by EPSRC Programme Grant EP/K034529/1 entitled "Mathematical Underpinnings of Stratified Turbulence".
Prediction of Stratified Flow Temperature Profiles in a Fully Insulated Environment
Ahmad S. Awad
2014-07-01
Full Text Available The aim of the study is to present an analytical model to predict the temperature profiles in thermal stratified environment. Thermal stratification is encountered in many situations. The flow of contaminants and hydrocarbons in environment often get stratified. The prediction of temperature profiles and flow characteristics are essential for HVAC applications, environment and energy management. The temperature profiles in the stratified region are successfully obtained, in terms of flow-operating functions. The analytical model agrees well with the published experimental data as well as the related closed-form solutions, which is helpful for HVAC applications. The model will be further developed and incorporated within a numerical model in order to investigate the flow field characteristics and establish correlations for a wide range of parameters.
Experimental investigation on isothermal stratified flow mixing in a horizontal T-junction
Isaev, Alexander; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme (IKE)
2016-10-15
Turbulent and stratified flows can lead to thermal fatigue in piping systems of nuclear power plants (NPP). Such flows can be investigated in the University of Stuttgart Fluid-Structure-Interaction (FSI) facility with a T-Junction at thermal conditions with temperature differences of up to 255 K and at pressures of maximum 75 bars.
Mixing and entrainment in hydraulically driven stratified sill flows
Nielsen, Morten Holtegaard; Pratt, Larry; Helfrich, Karl
2004-01-01
that the reduced gravity model systematically underestimates inertia and overestimates buoyancy. These differences are quantified by shape coefficients that measure the vertical non-uniformities of the density and horizontal velocity that arise, in part, by incomplete mixing of entrained mass and momentum over...... model. Self-similarity is not observed in the numerically generated flow, but the observed critical section continues to lie upstream of the location predicted by the reduced gravity model. The factors influencing this result are explored.......The investigation involves the hydraulic behaviour of a dense layer of fluid flowing over an obstacle and subject to entrainment of mass and momentum from a dynamically inactive (but possibly moving) overlying fluid. An approach based on the use of reduced gravity, shallow-water theory with a cross...
A NONHYDROSTATIC NUMERICAL MODEL FOR DENSITY STRATIFIED FLOW AND ITS APPLICATIONS
无
2008-01-01
A modular numerical model was developed for simulating density-stratified flow in domains with irregular bottom topography. The model was designed for examining interactions between stratified flow and topography, e.g., tidally driven flow over two-dimensional sills or internal solitary waves propagating over a shoaling bed. The model was based on the non-hydrostatic vorticity-stream function equations for a continuously stratified fluid in a rotating frame. A self-adaptive grid was adopted in the vertical coordinate, the Alternative Direction Implicit (ADI) scheme was used for the time marching equations while the Poisson equation for stream-function was solved based on the Successive Over Relaxation (SOR) iteration with the Chebyshev acceleration. The numerical techniques were described and three applications of the model were presented.
CFD Code Validation against Stratified Air-Water Flow Experimental Data
F. Terzuoli
2008-01-01
Full Text Available Pressurized thermal shock (PTS modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV lifetime is the cold water emergency core cooling (ECC injection into the cold leg during a loss of coolant accident (LOCA. Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mécanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX, and a research code (NEPTUNE CFD. The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling.
Interfacial friction factors for air-water co-current stratified flow in inclined channels
Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)
Stability of stratified flow and slugging in horizontal gas-liquid flow
GU Hanyang; GUO Liejin
2005-01-01
A transient one-dimensional two-fluid model is proposed to investigate numerically the interfacial instability and the onset of slugging for liquid-gas flow in a horizontal duct. In the present model, the effects of surface tension and transverse variations in dynamic pressure are taken into account. The evolution of interfacial disturbances is displayed and compared with the linear viscous KelvinHelmholtz stability analyses. It shows that interfacial wave is more instable due to the non-linear effect. The model predicts well the stability limit of stratified flow in comparison with the experimental data, and also automatically tracks the onset of slugging. The results show that the initiation of hydrodynamic slugging is related to local interfacial instability. Based on the cycle of slugging, a model for slug frequency is presented, which predicts the trends of slug frequencies with gas/liquid flow rate well in comparison with the available data. The effects of physical properties on slugging have been examined. It is found that with the increase in the gas viscosity and liquid density the slugging would be inhibited, whereas, with the increase in liquid viscosity and gas density, the slugging can be promoted.
Stratified Flow in a Room with Displacement Ventilation and Wall-Mounted Air Terminal devices
Nielsen, Peter V.
This paper describes experiments with wall-mounted air terminal devices. The stratified flow in the room is analyzed, and the influence of stratification and the influence of room dimensions on the velocity level and on the length scale are proved. The velocity level in the occupied zone can be d...
Hirota, Makoto, E-mail: hirota@dragon.ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Morrison, Philip J. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712 (United States)
2016-05-06
Highlights: • New stability criteria of stably stratified shear flow are discovered. • Our criteria substantially improve the Howard–Miles criterion (1961). • Our criteria also generalize Rayleigh's inflection point theorem. • The novel approach we found is also efficient as a numerical approach. - Abstract: Linear stability of inviscid, parallel, and stably stratified shear flow is studied under the assumption of smooth strictly monotonic profiles of shear flow and density, so that the local Richardson number is positive everywhere. The marginally unstable modes are systematically found by solving a one-parameter family of regular Sturm–Liouville problems, which can determine the stability boundaries more efficiently than solving the Taylor–Goldstein equation directly. By arguing for the non-existence of a marginally unstable mode, we derive new sufficient conditions for stability, which generalize the Rayleigh–Fjørtoft criterion for unstratified shear flows.
Doubly stratified mixed convection flow of Maxwell nanofluid with heat generation/absorption
Abbasi, F.M., E-mail: abbasisarkar@gmail.com [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-i-Azam University, 45320, Islamabad 44000 (Pakistan); NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ahmad, B. [NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2016-04-15
Magnetohydrodynamic (MHD) doubly stratified flow of Maxwell nanofluid in presence of mixed convection is analyzed in this article. Effects of thermophoresis, Brownian motion and heat generation/absorption are present. The flow is induced due to linear stretching of sheet. Mathematical formulation is made under boundary layer approach. Expressions of velocity, temperature and nanoparticles concentration are developed. The obtained results are plotted and discussed to examine the variations in temperature and nanoparticles concentration due to different physical parameters. Numerical computations are made to obtain the values of local Nusselt and Sherwood numbers. Impact of sundry parameters on the flow quantities is analyzed graphically. - Highlights: • Double stratified flow of Maxwell nanofluid with mixed convection is modeled. • Thermophoresis and Brownian motion effects are encountered. • Computations are made to obtain the solution expressions. • Numerical values of local Nusselt and Sherwood numbers are computed and examined.
Garaud, Pascale; Gagnier, Damien; Verhoeven, Jan
2017-03-01
Shear-induced turbulence could play a significant role in mixing momentum and chemical species in stellar radiation zones, as discussed by Zahn. In this paper we analyze the results of direct numerical simulations of stratified plane Couette flows, in the limit of rapid thermal diffusion, to measure the turbulent viscosity and the turbulent diffusivity of a passive tracer as a function of the local shear and the local stratification. We find that the stability criterion proposed by Zahn, namely that the product of the gradient Richardson number and the Prandtl number must be smaller than a critical values {(J\\Pr )}c for instability, adequately accounts for the transition to turbulence in the flow, with {(J\\Pr )}c≃ 0.007. This result recovers and confirms the prior findings of Prat et al. Zahn’s model for the turbulent diffusivity and viscosity, namely that the mixing coefficient should be proportional to the ratio of the thermal diffusivity to the gradient Richardson number, does not satisfactorily match our numerical data. It fails (as expected) in the limit of large stratification where the Richardson number exceeds the aforementioned threshold for instability, but it also fails in the limit of low stratification where the turbulent eddy scale becomes limited by the computational domain size. We propose a revised model for turbulent mixing by diffusive stratified shear instabilities that properly accounts for both limits, fits our data satisfactorily, and recovers Zahn’s model in the limit of large Reynolds numbers.
Nonlinear dynamics at the interface of two-layer stratified flows over pronounced obstacles
Cabeza, C; Bove, I; Freire, D; Marti, Arturo C; Sarasua, L G; Usera, G; Montagne, R; Araújo, M
2008-01-01
The flow of a two--layer stratified fluid over an abrupt topographic obstacle, simulating relevant situations in oceanographic problems, is investigated numerically and experimentally in a simplified two--dimensional situation. Experimental results and numerical simulations are presented at low Froude numbers in a two-layer stratified flow and for two abrupt obstacles, semi--cylindrical and prismatic. We find four different regimes of the flow immediately past the obstacles: sub-critical (I), internal hydraulic jump (II), Kelvin-Helmholtz at the interface (III) and shedding of billows (IV). The critical condition for delimiting the experiments is obtained using the hydraulic theory. Moreover, the dependence of the critical Froude number on the geometry of the obstacle are investigated. The transition from regime III to regime IV is explained with a theoretical stability analysis. The results from the stability analysis are confirmed with the DPIV measurements. In regime (IV), when the velocity upstream is lar...
Laboratory Studies of the Stratified Rotating Flow Passing over an Isolated Obstacle
高守亭; 平凡
2003-01-01
We study the flow of a density-stratified fluid passing over an isolated obstacle, using towing-tank experiments.Our special concern is the response of the flow with different Froude numbers passing over a three-dimensional obstacle. A series of experiments of the stratified rotating flow passing over an isolated obstacle was carried out with the towering-tank controlled by the similarity laws and dynamic non-dimension parameters. These experiments show that the Froude number is a very important parameter, and the lee wave and the eddy structure appear simultaneously under an appropriate conditions. The effect of rotation on the lee wave is mainly to change wave amplitude, particularly to restrain the development of the lee wave and to promote the formation of an eddy.
Numerical study of thermally stratified flows of a fluid overlying a highly porous material
Antoniadis, Panagiotis D.; Papalexandris, Miltiadis V.
2014-11-01
In this talk we are concerned with thermally stratified flows in domains that contain a macroscopic interface between a highly porous material and a pure-fluid domain. Our study is based on the single-domain approach according to which the same set of governing equations is employed both inside the porous medium and in the pure-fluid domain. Also, the mathematical model that we employ treats the porous skeleton as a rigid solid that is in thermal non-equilibrium with the fluid. First, we present briefly the basic steps of the derivation of the mathematical model. Then, we present and discuss numerical results for both thermally stratified shear flows and natural convection. Our discussion focuses on the role of thermal stratification on the flows of interest and on the effect of thermal non-equilibrium between the solid matrix and the fluid inside the porous medium. This work is supported by the National Fund for Scientific Research (FNRS), Belgium.
Hirota, Makoto; Morrison, Philip J.
2016-05-01
Linear stability of inviscid, parallel, and stably stratified shear flow is studied under the assumption of smooth strictly monotonic profiles of shear flow and density, so that the local Richardson number is positive everywhere. The marginally unstable modes are systematically found by solving a one-parameter family of regular Sturm-Liouville problems, which can determine the stability boundaries more efficiently than solving the Taylor-Goldstein equation directly. By arguing for the non-existence of a marginally unstable mode, we derive new sufficient conditions for stability, which generalize the Rayleigh-Fjørtoft criterion for unstratified shear flows.
Hassanzadeh, Pedram
Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to
A 3D Spectral Anelastic Hydrodynamic Code for Shearing, Stratified Flows
Barranco, J A; Barranco, Joseph A.; Marcus, Philip S.
2005-01-01
We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g. the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to ...
Mixed Convection Flow along a Stretching Cylinder in a Thermally Stratified Medium
Swati Mukhopadhyay
2012-01-01
Full Text Available An analysis for the axisymmetric laminar boundary layer mixed convection flow of a viscous and incompressible fluid towards a stretching cylinder immersed in a thermally stratified medium is presented in this paper. Similarity transformation is employed to convert the governing partial differential equations into highly nonlinear ordinary differential equations. Numerical solutions of these equations are obtained by a shooting method. It is found that the heat transfer rate at the surface is lower for flow in a thermally stratified medium compared to that of an unstratified medium. Moreover, both the skin friction coefficient and the heat transfer rate at the surface are larger for a cylinder compared to that for a flat plate.
Experimental study of temperature fluctuations in forced stably stratified turbulent flows
Eidelman, A; Gluzman, Y; Kleeorin, N; Rogachevskii, I
2013-01-01
We study experimentally temperature fluctuations in stably stratified forced turbulence in air flow. In the experiments with an imposed vertical temperature gradient, the turbulence is produced by two oscillating grids located nearby the side walls of the chamber. Particle Image Velocimetry is used to determine the turbulent and mean velocity fields, and a specially designed temperature probe with sensitive thermocouples is employed to measure the temperature field. We found that the ratio [(\\ell_x \
An immersed interface method for two-dimensional modelling of stratified flow in pipes
Berthelsen, Petter Andreas
2004-01-01
This thesis deals with the construction of a numerical method for solving two-dimensional elliptic interface problems, such as fully developed stratified flow in pipes. Interface problems are characterized by its non-smooth and often discontinuous behaviour along a sharp boundary separating the fluids or other materials. Classical numerical schemes are not suitable for these problems due to the irregular geometry of the interface. Standard finite difference discretization across the interface...
A Model of Turbulent-Laminar Gas-Liquid Stratified Flow
无
2001-01-01
The time-dependent liquid film thickness and pressure drop are measured by using parallel-wire conduc tance probes and capacitance differential-pressure transducer. A mathematical model with iterative procedure to calculate holdup and pressure drop in horizontal and inclined gas-liquid stratified flow is developed. The predictions agree well with over a hundred experimental data in 0.024 and 0.04 m diameter pipelines.
Flow and transport within a coastal aquifer adjacent to a stratified water body
Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim
2016-04-01
The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results
An affordable and accurate conductivity probe for density measurements in stratified flows
Carminati, Marco; Luzzatto-Fegiz, Paolo
2015-11-01
In stratified flow experiments, conductivity (combined with temperature) is often used to measure density. The probes typically used can provide very fine spatial scales, but can be fragile, expensive to replace, and sensitive to environmental noise. A complementary instrument, comprising a low-cost conductivity probe, would prove valuable in a wide range of applications where resolving extremely small spatial scales is not needed. We propose using micro-USB cables as the actual conductivity sensors. By removing the metallic shield from a micro-B connector, 5 gold-plated microelectrodes are exposed and available for 4-wire measurements. These have a cell constant ~550m-1, an intrinsic thermal noise of at most 30pA/Hz1/2, as well as sub-millisecond time response, making them highly suitable for many stratified flow measurements. In addition, we present the design of a custom electronic board (Arduino-based and Matlab-controlled) for simultaneous acquisition from 4 sensors, with resolution (in conductivity, and resulting density) exceeding the performance of typical existing probes. We illustrate the use of our conductivity-measuring system through stratified flow experiments, and describe plans to release simple instructions to construct our complete system for around 200.
Implications of Air Ingress Induced by Density-Difference Driven Stratified Flow
Chang Oh; Eung Soo Kim; Richard Schultz; David Petti; C. P. Liou
2008-06-01
One of the design basis accidents for the Next Generation Nuclear Plant (NGNP), a high temperature gas-cooled reactor, is air ingress subsequent to a pipe break. Following a postulated double-ended guillotine break in the hot duct, and the subsequent depressurization to nearly reactor cavity pressure levels, air present in the reactor cavity will enter the reactor vessel via density-gradient-driven-stratified flow. Because of the significantly higher molecular weight and lower initial temperature of the reactor cavity air-helium mixture, in contrast to the helium in the reactor vessel, the air-helium mixture in the cavity always has a larger density than the helium discharging from the reactor vessel through the break into the reactor cavity. In the later stages of the helium blowdown, the momentum of the helium flow decreases sufficiently for the heavier cavity air-helium mixture to intrude into the reactor vessel lower plenum through the lower portion of the break. Once it has entered, the heavier gas will pool at the bottom of the lower plenum. From there it will move upwards into the core via diffusion and density-gradient effects that stem from heating the air-helium mixture and from the pressure differences between the reactor cavity and the reactor vessel. This scenario (considering density-gradient-driven stratified flow) is considerably different from the heretofore commonly used scenario that attributes movement of air into the reactor vessel and from thence to the core region via diffusion. When density-gradient-driven stratified flow is considered as a contributing phenomena for air ingress into the reactor vessel, the following factors contribute to a much earlier natural circulation-phase in the reactor vessel: (a) density-gradient-driven stratified flow is a much more rapid mechanism (at least one order of magnitude) for moving air into the reactor vessel lower plenum than diffusion, and consequently, (b) the diffusion dominated phase begins with a
Investigations of Reduced Equations for Rotating, Stratified and Non-hydrostatic Flows
Nieves, David J.
boundary conditions. These results imply that any horizontal thermal variation along the boundaries that varies on the scale of the convection has no leading order influence on the interior convection, thus providing insight into geophysical and astrophysical flows where stress-free mechanical boundary conditions are often assumed. The final study presented here contrasts the previous investigations. It presents an investigation of rapidly rotating and stably stratified turbulence where the stratification strength is varied from weak (large Froude number) to strong (small Froude number). The investigation is set in the context of the asymptotically reduced model which efficiently retains anisotropic inertia-gravity waves with order-one frequencies and highlights a regime of wave-eddy interactions. Numerical simulations of the reduced model are performed where energy is injected by a stochastic forcing of vertical velocity. The simulations reveal two regimes: one characterized by the presence of well-formed, persistent and thin turbulent layers of locally-weakened stratification: the other characterized by the absence of layers at large Froude numbers. Both regimes are characterized by a large-scale barotropic dipole in a sea of small-scale turbulence. When the Reynolds number is not too large a direct cascade of barotropic kinetic energy is observed and leads to an equilibration of total energy. We examine net energy exchanges that occur through vortex stretching and vertical buoyancy flux and diagnose the horizontal scales active in these exchanges. We find that baroclinic motions inject energy directly to the largest scales of the barotropic mode governed by the two-dimensional vorticity equation, and implies that the large-scale barotropic dipole is not the end result of an inverse cascade within the two-dimensional barotropic mode. An additional yet brief look into the linear vortical and wave modes is considered.
Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations
Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar
2016-11-01
Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.
Prediction of the bed-load transport by gas-liquid stratified flows in horizontal ducts
Franklin, Erick de Moraes
2016-01-01
Solid particles can be transported as a mobile granular bed, known as bed-load, by pressure-driven flows. A common case in industry is the presence of bed-load in stratified gas-liquid flows in horizontal ducts. In this case, an initially flat granular bed may be unstable, generating ripples and dunes. This three-phase flow, although complex, can be modeled under some simplifying assumptions. This paper presents a model for the estimation of some bed-load characteristics. Based on parameters easily measurable in industry, the model can predict the local bed-load flow rates and the celerity and the wavelength of instabilities appearing on the granular bed.
Large eddy simulation of turbulent statistical and transport properties in stably stratified flows
Xiang QIU; Yong-xiang HUANG; Zhi-ming LU; Yu-lu LIU
2009-01-01
Three dimensional large eddy simulation (LES) is performed in the inves-tigation of stably stratified turbulence with a sharp thermal interface. Main results are focused on the turbulent characteristic scale, statistical properties, transport properties,and temporal and spatial evolution of the scalar field. Results show that the buoyancy scale increases first, and then goes to a certain constant value. The stronger the mean shear, the larger the buoyancy scale. The overturning scale increases with the flow, and the mean shear improves the overturning scale. The flatness factor of temperature de-parts from the Ganssian distribution in a fairly large region, and its statistical properties are clearly different from those of the velocity fluctuations in strong stratified cases. Tur-bulent mixing starts from small scale motions, and then extends to large scale motions.
Lakghomi, B; Lawryshyn, Y; Hofmann, R
2015-01-01
An analytical model and a computational fluid dynamic model of particle removal in dissolved air flotation were developed that included the effects of stratified flow and bubble-particle clustering. The models were applied to study the effect of operating conditions and formation of stratified flow on particle removal. Both modeling approaches demonstrated that the presence of stratified flow enhanced particle removal in the tank. A higher air fraction was shown to be needed at higher loading rates to achieve the same removal efficiency. The model predictions showed that an optimum bubble size was present that increased with an increase in particle size.
Garaud, P; Verhoeven, J
2016-01-01
Shear-induced turbulence could play a significant role in mixing momentum and chemical species in stellar radiation zones, as discussed by Zahn (1974). In this paper we analyze the results of direct numerical simulations of stratified plane Couette flows, in the limit of rapid thermal diffusion, to measure the turbulent diffusivity and turbulent viscosity as a function of the local shear and the local stratification. We find that the stability criterion proposed by Zahn (1974), namely that the product of the gradient Richardson number and the Prandtl number must be smaller than a critical values $(J\\Pr)_c$ for instability, adequately accounts for the transition to turbulence in the flow, with $(J\\Pr)_c \\simeq 0.007$. This result recovers and confirms the prior findings of Prat et al. (2016). Zahn's model for the turbulent diffusivity and viscosity (Zahn 1992), namely that the mixing coefficient should be proportional to the ratio of the thermal diffusivity to the gradient Richardson number, does not satisfact...
On the Orientation of Turbulent Structures in Stably Stratified Shear Flows
Jacobitz, Frank; Moreau, Adam; Aguirre, Joylene
2016-11-01
The orientation of turbulent structures in stably stratified shear flows are investigated using the results of a series of direct numerical simulations. The Richardson number is varied from Ri = 0 , corresponding to unstratified shear flow, to Ri = 1 , corresponding to strongly stratified shear flow. The evolution of the turbulent kinetic energy changes from growth for small Richardson numbers to decay for strong stratification. The orientation of turbulent structures in the flows is determined by the three-dimensional two-point autocorrelation coefficient of velocity magnitude, vorticity magnitude, and fluctuating density. An ellipsoid is fitted to the surface given by a constant autocorrelation coefficient value and the major and minor axes are used to determine the inclination angle of turbulent structures in the plane of shear. The inclination angle is observed to be fairly unaffected by the choice of the autocorrelation coefficient value. In was found that the inclination angle decreases with increasing Richardson number. The structure of the turbulent motion, as characterized by the inclination angle, is therefore directly related to the eventual evolution of the turbulence, as described by the growth or decay rate of the turbulent kinetic energy.
Testing of RANS Turbulence Models for Stratified Flows Based on DNS Data
Venayagamoorthy, S. K.; Koseff, J. R.; Ferziger, J. H.; Shih, L. H.
2003-01-01
In most geophysical flows, turbulence occurs at the smallest scales and one of the two most important additional physical phenomena to account for is strati cation (the other being rotation). In this paper, the main objective is to investigate proposed changes to RANS turbulence models which include the effects of stratifi- cation more explicitly. These proposed changes were developed using a DNS database on strati ed and sheared homogenous turbulence developed by Shih et al. (2000) and are described more fully in Ferziger et al. (2003). The data generated by Shih, et al. (2000) (hereinafter referred to as SKFR) are used to study the parameters in the k- model as a function of the turbulent Froude number, Frk. A modified version of the standard k- model based on the local turbulent Froude number is proposed. The proposed model is applied to a stratified open channel flow, a test case that differs significantly from the flows from which the modified parameters were derived. The turbulence modeling and results are discussed in the next two sections followed by suggestions for future work.
Rapaka, Narsimha R.; Sarkar, Sutanu
2016-10-01
A sharp-interface Immersed Boundary Method (IBM) is developed to simulate density-stratified turbulent flows in complex geometry using a Cartesian grid. The basic numerical scheme corresponds to a central second-order finite difference method, third-order Runge-Kutta integration in time for the advective terms and an alternating direction implicit (ADI) scheme for the viscous and diffusive terms. The solver developed here allows for both direct numerical simulation (DNS) and large eddy simulation (LES) approaches. Methods to enhance the mass conservation and numerical stability of the solver to simulate high Reynolds number flows are discussed. Convergence with second-order accuracy is demonstrated in flow past a cylinder. The solver is validated against past laboratory and numerical results in flow past a sphere, and in channel flow with and without stratification. Since topographically generated internal waves are believed to result in a substantial fraction of turbulent mixing in the ocean, we are motivated to examine oscillating tidal flow over a triangular obstacle to assess the ability of this computational model to represent nonlinear internal waves and turbulence. Results in laboratory-scale (order of few meters) simulations show that the wave energy flux, mean flow properties and turbulent kinetic energy agree well with our previous results obtained using a body-fitted grid (BFG). The deviation of IBM results from BFG results is found to increase with increasing nonlinearity in the wave field that is associated with either increasing steepness of the topography relative to the internal wave propagation angle or with the amplitude of the oscillatory forcing. LES is performed on a large scale ridge, of the order of few kilometers in length, that has the same geometrical shape and same non-dimensional values for the governing flow and environmental parameters as the laboratory-scale topography, but significantly larger Reynolds number. A non-linear drag law
Tsamopoulos, John; Fraggedakis, Dimitris; Dimakopoulos, Yiannis
2015-11-01
We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our Volume-of-Fluid algorithm is used to solve the governing equations. First the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results (Cohen et al. (1999)). Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our results provide deeper insights in the mechanism of the pattern transitions and are in agreement with previous studies on core-annular flow (Kouris & Tsamopoulos (2001 & 2002)), segmented flow (Lac & Sherwood (2009)) and churn flow (Bai et al. (1992)). GSRT of Greece through the program ``Excellence'' (Grant No. 1918, entitled ``FilCoMicrA'').
Self-regulation of mean flows in strongly stratified sheared turbulence
Salehipour, Hesam; Caulfield, Colm-Cille; Peltier, W. Richard
2016-11-01
We investigate the near-equilibrium state of shear-driven stratified turbulence generated by the breaking of Holmboe wave instability (HWI) and Kelvin-Helmholtz instability (KHI). We discuss DNS analyses associated with HWI under various initial conditions. We analyze the time-dependent distribution of the gradient Richardson number, Rig (z , t) associated with the horizontally-averaged velocity and density fields. We demonstrate that unlike the KHI-induced turbulence, the fully turbulent flow that is generated by HWI is robustly characterized by its high probability of Rig 0 . 2 - 0 . 25 , independent of the strength of the initial stratification and furthermore that the turbulence evolves in a 'near-equilibrium' state. The KHI-induced turbulence may become grossly 'out of equilibrium', however, and therefore decays rapidly when the initial value at the interface, Rig (0 , 0) , is closer to the critical value of 1/4; otherwise as Rig (0 , 0) -> 0 the KHI-induced turbulence is close to a state of equilibrium and hence is much more long-lived. We conjecture that stratified shear turbulence tends to adjust to a state of 'near-equilibrium' with horizontally-averaged flows characterized by a high probability of Rig <= 1 / 4 , and hence sustained turbulence over relatively long times.
Kozitsyna, M. V.; Trufanova, N. M.
2017-01-01
Today the process of coextrusion is the most technological in the cable production with cross-linked polyethylene, composed of two or more layers of polymeric insulation. Since the covering technology is a simultaneous imposition of all necessary layers (two semiconducting shields on the insulation and conductor and one - on insulation), the main focus of this study is the analysis of significance of various factors influence on stratified flows characteristics. This paper has considered the flow of two abnormally viscous liquids in the cable head. The problem has been solved through a three-dimensional statement by applying the finite element method in the Ansys software package. The influence has been estimated by varying the rheological properties of materials to create all necessary layers thickness.
Nonlinear waves in stratified Taylor--Couette flow. Part 1. Layer formation
Leclercq, Colin; Augier, Pierre; Caulfield, Colm-Cille P; Dalziel, Stuart B; Linden, Paul F
2016-01-01
This paper is the first part of a two-fold study of mixing, i.e. the formation of layers and upwelling of buoyancy, in axially stratified Taylor--Couette flow, with fixed outer cylinder. Using linear analysis and direct numerical simulation, we show the critical role played by non-axisymmetric instability modes, despite the fact that the flow is centrifugally unstable in the sense of Rayleigh's criterion. Interactions between helical modes of opposite handedness leads to the formation of nonlinear coherent structures: (mixed)-ribbons and (mixed)-cross-spirals. These give birth to complex density interface patterns, seemingly appearing and disappearing periodically as the coherent structure slowly rotates around the annulus. These coherent structures seem to be responsible for the formation of layers reported in a recent experiment by Oglethorpe et al. (2013). We distinguish `dynamic layering', instantaneous, localized and caused by the vortical motions, from `static layering' corresponding to the formation of...
Mohd Hafizi Mat Yasin
2013-01-01
Full Text Available We present the numerical investigation of the steady mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium saturated by a nanofluid. The governing partial differential equations are reduced to the ordinary differential equations, using the similarity transformations. The similarity equations are solved numerically for three types of metallic or nonmetallic nanoparticles, namely, copper (Cu, alumina (Al2O3, and titania (TiO2, in a water-based fluid to investigate the effect of the solid volume fraction or nanoparticle volume fraction parameter φ of the nanofluid on the flow and heat transfer characteristics. The skin friction coefficient and the velocity and temperature profiles are presented and discussed.
E. J. Suarez-Dominguez
2016-12-01
Full Text Available Production of heavy crude oil in Mexico, and worldwide, is increasing which has led to the application of different methods to reduce viscosity or to enhance transport through stratified flow to continue using the existing infrastructures. In this context, injecting a viscosity improver that does not mix completely with the crude, establishes a liquid-liquid stratified flow. On the basis of a parallel plates model, comparing the increase of flow that occurs in the one-phase case which assumes a complete mixture between the crude and the viscosity improver against another stratified liquid-liquid (no mixing between the oil and compared improver; it was found that in both cases there is a flow increase for the same pressure drop with a maximum for the case in which the flow improver is between the plates and the crude.
Chang, Chih-Hao; Liou, Meng-Sing
2007-07-01
In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations . Secondly, the AUSM + scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM +-up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion. However, conservative form is lost in these balance equations when considering each individual phase; in fact, the interactions that exist simultaneously in both phases manifest themselves as nonconservative terms.
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
Brauner, N.; Rovinsky, J.; Maron, D.M. [Tel-Aviv Univ. (Israel)
1995-09-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.
Long ring waves in a stratified fluid over a shear flow
Khusnutdinova, K R
2014-01-01
Oceanic waves registered by satellite observations often have curvilinear fronts and propagate over various currents. In this paper, we study long linear and weakly-nonlinear ring waves in a stratified fluid in the presence of a depth-dependent horizontal shear flow. It is shown that despite the clashing geometries of the waves and the shear flow, there exists a linear modal decomposition (different from the known decomposition in Cartesian geometry), which can be used to describe distortion of the wavefronts of surface and internal waves, and systematically derive a 2+1 - dimensional cylindrical Korteweg - de Vries - type equation for the amplitudes of the waves. The general theory is applied to the case of the waves in a two-layer fluid with a piecewise - constant shear flow, with an emphasis on the effect of the shear flow on the geometry of the wavefronts. The distortion of the wavefronts is described by the singular solution (envelope of the general solution) of the nonlinear first-order differential equ...
The Universal Aspect Ratio of Vortices in Rotating Stratified Flows: Theory and Simulation
Hassanzadeh, Pedram; Gal, Patrice Le
2012-01-01
We derive a relationship for the vortex aspect ratio $\\alpha$ (vertical half-thickness over horizontal length scale) for steady and slowly evolving vortices in rotating stratified fluids, as a function of the Brunt-Vaisala frequencies within the vortex $N_c$ and in the background fluid outside the vortex $\\bar{N}$, the Coriolis parameter $f$, and the Rossby number $Ro$ of the vortex: $\\alpha^2 = Ro(1+Ro) f^2/(N_c^2-\\bar{N}^2)$. This relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and the background density gradient need not be uniform. Our relation for $\\alpha$ has many consequences for equilibrium vortices in rotating stratified flows. For example, cyclones must have $N_c^2 > \\bar{N}^2$; weak anticyclones (with $|Ro| \\bar{N}^2$. We verify our relation for $\\alpha$ with numerical simulations of the three-dimensional Boussinesq equations for a wide variety of vortices, including: vortices that are i...
Free convective flow of a stratified fluid through a porous medium bounded by a vertical plane
H. K. Mondal
1994-01-01
Full Text Available Steady two-dimensional free convection flow of a thermally stratified viscous fluid through a highly porous medium bounded by a vertical plane surface of varying temperature, is considered. Analytical expressions for the velocity, temperature and the rate of heat transfer are obtained by perturbation method. Velocity distribution and rate of heat transfer for different values of parameters are shown in graphs. Velocity distribution is also obtained for certain values of the parameters by integrating the coupled differential equations by Runge-Kutta method and compared with the analytical solution. The chief concern of the paper is to study the effect of equilibrium temperature gradient on the velocity and the rate of heat transfer.
The stability of stratified spatially periodic shear flows at low Péclet number
Garaud, Pascale, E-mail: pgaraud@ucsc.edu [Department of Applied Mathematics and Statistics, Baskin School of Engineering, University of California at Santa Cruz, 1156 High Street, Santa Cruz, California 95064 (United States); Gallet, Basile [Service de Physique de l’Etat Condensé, DSM/IRAMIS, CNRS UMR 3680, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Bischoff, Tobias [Division of Geological and Planetary Sciences, California Institute of Technology, Mail Code 170-25, 1200 E. California Blvd., Pasadena, California 91125 (United States)
2015-08-15
This work addresses the question of the stability of stratified, spatially periodic shear flows at low Péclet number but high Reynolds number. This little-studied limit is motivated by astrophysical systems, where the Prandtl number is often very small. Furthermore, it can be studied using a reduced set of “low-Péclet-number equations” proposed by Lignières [“The small-Péclet-number approximation in stellar radiative zones,” Astron. Astrophys. 348, 933–939 (1999)]. Through a linear stability analysis, we first determine the conditions for instability to infinitesimal perturbations. We formally extend Squire’s theorem to the low-Péclet-number equations, which shows that the first unstable mode is always two-dimensional. We then perform an energy stability analysis of the low-Péclet-number equations and prove that for a given value of the Reynolds number, above a critical strength of the stratification, any smooth periodic shear flow is stable to perturbations of arbitrary amplitude. In that parameter regime, the flow can only be laminar and turbulent mixing does not take place. Finding that the conditions for linear and energy stability are different, we thus identify a region in parameter space where finite-amplitude instabilities could exist. Using direct numerical simulations, we indeed find that the system is subject to such finite-amplitude instabilities. We determine numerically how far into the linearly stable region of parameter space turbulence can be sustained.
Transition to turbulence in stratified shear flow: experiments in an inclined square duct
Meyer, Colin; Linden, Paul
2013-11-01
We describe laboratory experiments of countercurrent stratified shear flow in an inclined square duct. To achieve this, a long water tank was partitioned into regions of higher and lower density saltwater that are connected by an inclined square duct. The flow regime was characterized to be turbulent, intermittent, Holmboe or laminar as a function of the duct inclination, θ, and the density difference, Δρ , between the two reservoirs. The density difference and duct angle were systematically varied and a phase plane of flow regime was developed. The transition between the interrmittent regime and turbulence was experimentally determined to occur at θΔρ ~= 20 [degrees kg m-3]. This critical combination of parameters fits into the buoyancy-compensated Reynolds number scaling proposed by Brethouwer et al. (J. Fluid Mech., 2007). The turbulent interfacial thickness was found to be a function of the inclination angle, which can be predicted using the buoyancy lengthscale from Waite and Bartello (J. Fluid Mech., 2004) and others. Furthermore, we measured the density profiles at multiple points along the duct, and using these profiles, we modeled the entrainment at the interface. Support provided by the Winston Churchill Foundation of the United States.
Winther, G.
1996-01-01
stress Variation in the rolling plane, which may be as high as 20%, are presented. The traditional Taylor model is applied to the data to account for the effect of texture. However, texture effects alone are not enough to explain all of the observed anisotropy. New models which take the combined effects...... of texture and deformation microstructure into account are presented. The models are based on the Taylor and Sachs models but modified with an anisotropic critical shear stress to account for the effect of the microstructure. The agreement between experimental data and model predictions is definitely better...
DONG Yu-hong; LU Xi-yun; ZHUANG Li-xian
2004-01-01
Thermally-stratified shear turbulent channel flow with temperature oscillation on the bottom wall of the channel was investigated with the Large Eddy Simulation (LES) approach coupled with dynamic Sub-Grid-Scale (SGS) models. The effect of temperature oscillation on the turbulent channel flow behavior was examined. The phase-averaged velocities and temperature, and flow structures at different Richardson numbers and periods of the oscillation was analyzed.
Nonlinear waves in stratified Taylor--Couette flow. Part 2. Buoyancy flux
Leclercq, Colin; Caulfield, Colm-Cille P; Dalziel, Stuart B; Linden, Paul F
2016-01-01
This paper is the second part of a two-fold study of mixing, i.e. the formation of layers and upwelling of buoyancy, in axially stratified Taylor--Couette flow, with fixed outer cylinder. In a first paper, we showed that the dynamics of the flow was dominated by coherent structures made of a superposition of nonlinear waves. (Mixed)-ribbons and (mixed)-cross-spirals are generated by interactions between a pair of linearly unstable helical modes of opposite `handedness', and appear to be responsible for the formation of well-mixed layers and sharp density interfaces. In this paper, we show that these structures are also fully accountable for the upwards buoyancy flux in the simulations. The mechanism by which this occurs is a positive coupling between the density and vertical velocity components of the most energetic waves. This coupling is primarily caused by diffusion of density at low Schmidt number Sc, but can also be a nonlinear effect at larger Sc. Turbulence was found to contribute negatively to the buo...
Coherent structures and enstrophy dynamics in highly stratified flow past a sphere at Re = 3700
Chongsiripinyo, Karu; Pal, Anikesh; Sarkar, Sutanu
2016-11-01
Vortex dynamics of flow past a sphere in a linearly stratified environment is investigated. Simulations are carried out for a flow with Reynolds number of 3700 and for several Froude numbers (Fr) ranging as low as 0.025. Isosurface of Q criterion is used to identify vortical structures whose cross-section and orientation are found to be affected by buoyancy. At low Fr = 0 . 025 , pancake eddies and surfboard-like inclined structures emerge in the near wake and have a regular streamwise spacing that is associated with the frequency of vortex shedding from the sphere. Similar to turbulent kinetic energy, the enstrophy in the near wake decreases with decreasing Fr (increasing stratification) until a minimum at Fr = 0 . 5 but the trend reverses in the low- Fr regime. Vortex stretching by fluctuating and mean strain are both responsible for enhancing vorticity with relatively small contribution from the baroclinic term. Decreasing Fr to O (1) values tends to suppress vortex stretching. Upon further reduction of Fr below 0.25, the vortex stretching term takes large values near the sphere.
Sharma, A.; Leo, L. S.; Thompson, M. Y.; Di Sabatino, S.; Fernando, H. J.; Zhong, Q.; Wang, H.
2015-12-01
It is well known that, when a stably stratified flow with approach velocity U and buoyancy frequency N flows over an obstacle of height h, the low-level flow goes around the object while the rest flows over it for low F = U / N h. The streamline that separates the two types of flow is the dividing streamline, and the prediction of its height Hs is of great practical interest. Sheppard (1956) provided the analytical solution Hs = h (1 - F) and, because of its practical utility, the formula continues to be largely employed, notwithstanding the criticism it has attracted because of certain underlying assumptions, viz., 1) the crude approximation of constant N and uniform approach velocity U, which is unrealistic for atmospheric flows; 2) the incorrect assumption of a complete balance between kinetic and potential energy at the mountain summit, which neglects the energy contributions of the perturbation pressure field as well as viscous dissipation adjacent to the hill surface. In this study, the first limitation is addressed by considering a logarithmic approach velocity profile but with constant N. A modified logarithmic velocity profile for stably stratified flows is proposed, and an analytical solution is obtained for Hs in terms of Lambert-W functions. Results are tested against smoke visualization experiments and related field measurements made during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program. Some of the assumptions and perceived violations of them are tested using laboratory experiments conducted in a stratified water channel.
Stability of 3D Gaussian vortices in rotating stratified Boussinesq flows: Linear analysis
Mahdinia, Mani; Jiang, Chung-Hsiang
2016-01-01
The linear stability of three-dimensional (3D) vortices in rotating, stratified flows has been studied by analyzing the non-hydrostatic inviscid Boussinesq equations. We have focused on a widely-used model of geophysical and astrophysical vortices, which assumes an axisymmetric Gaussian structure for pressure anomalies in the horizontal and vertical directions. For a range of Rossby number ($-0.5 < Ro < 0.5$) and Burger number ($0.02 < Bu < 2.3$) relevant to observed long-lived vortices, the growth rate and spatial structure of the most unstable eigenmodes have been numerically calculated and presented as a function of $Ro-Bu$. We have found neutrally-stable vortices only over a small region of the $Ro-Bu$ parameter space: cyclones with $Ro \\sim 0.02-0.05$ and $Bu \\sim 0.85-0.95$. However, we have also found that anticyclones in general have slower growth rates compared to cyclones. In particular, growth rate of the most unstable eigenmode for anticyclones in a large region of the parameter space ...
Mixed convection flow with non-uniform heat source/sink in a doubly stratified magnetonanofluid
Mehmood, K.; Hussain, S.; Sagheer, M.
2016-06-01
In this study, we explore the unsteady flow of viscous nanofluid driven by an inclined stretching sheet. The novelty of the present study is to account for the effect of a non-uniform heat source/sink in a thermally and solutally stratified magnetonanofluid. Governing system of nonlinear partial differential equations is converted into a system of nonlinear ordinary differential equations. Solution of the transformed system is obtained using RK4 method with shooting technique. It is observed that increase in the values of thermal and mass stratification parameter reduce the velocity profile and increase in the values of variable thermal conductivity parameter and non-uniform heat source/sink parameters enhance the temperature distribution. Moreover, skin friction coefficient, Nusselt number and Sherwood number are discussed. Obtained results are displayed both graphically and in tabular form to illustrate the effect of different parameters on the velocity, temperature and concentration profiles. Numerical results are compared with previous published results and found to be in good agreement for special cases of the emerging parameters.
Flow stress anisotropy in aluminium
Juul Jensen, D.; Hansen, N.
1990-01-01
The plastic anisotropy of cold-rolled high purity aluminum (99.996%) and commercially pure aluminum (99.6%) has been investigated. Sample parameters were the initial grain size and the degree of plastic strain (ϵ < 3.00). Flow stresses (0.2% offset) were measured at room temperature by uniaxial t...
Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho
2008-12-01
The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i
Ivana Stiperski
2017-01-01
Full Text Available In this article, we present an overview of the HyIV-CNRS-SecORo (Hydralab IV-CNRS-Secondary Orography and Rotors Experiments laboratory experiments carried out in the CNRM (Centre National de Recherches Météorologiques large stratified water flume. The experiments were designed to systematically study the influence of double obstacles on stably stratified flow. The experimental set-up consists of a two-layer flow in the water tank, with a lower neutral and an upper stable layer separated by a sharp density discontinuity. This type of layering over terrain is known to be conducive to a variety of possible responses in the atmosphere, from hydraulic jumps to lee waves and highly turbulent rotors. In each experiment, obstacles were towed through the tank at a constant speed. The towing speed and the size of the tank allowed high Reynolds-number flow similar to the atmosphere. Here, we present the experimental design, together with an overview of laboratory experiments conducted and their results. We develop a regime diagram for flow over single and double obstacles and examine the parameter space where the secondary obstacle has the largest influence on the flow. Trapped lee waves, rotors, hydraulic jumps, lee-wave interference and flushing of the valley atmosphere are successfully reproduced in the stratified water tank. Obstacle height and ridge separation distance are shown to control lee-wave interference. Results, however, differ partially from previous findings on the flow over double ridges reported in the literature due to the presence of nonlinearities and possible differences in the boundary layer structure. The secondary obstacle also influences the transition between different flow regimes and makes trapped lee waves possible for higher Froude numbers than expected for an isolated obstacle.
Amy, L. A.; Peakall, J.; Talling, P. J.
2005-08-01
Vertical stratification of particle concentration is a common if not ubiquitous feature of submarine particulate gravity flows. To investigate the control of stratification on current behaviour, analogue stratified flows were studied using laboratory experiments. Stratified density currents were generated by releasing two-layer glycerol solutions into a tank of water. Flows were sustained for periods of tens of seconds and their velocity and concentration measured. In a set of experiments the strength of the initial density and viscosity stratification was increased by progressively varying the lower-layer concentration, CL. Two types of current were observed indicating two regimes of behaviour. Currents with a faster-moving high-concentration basal region that outran the upper layer were produced if CL < 75%. Above this critical value of CL, currents were formed with a relatively slow, high-concentration base that lagged behind the flow front. The observed transition in behaviour is interpreted to indicate a change from inertia- to viscosity-dominated flow with increasing concentration. The reduction in lower-layer velocity at high concentrations is explained by enhanced drag at low Reynolds numbers. Results show that vertical stratification produces longitudinal stratification in the currents. Furthermore, different vertical and temporal velocity and concentration profiles characterise the observed flow types. Implications for the deposit character of particle-laden currents are discussed and illustrated using examples from ancient turbidite systems.
Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow
Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey;
2015-01-01
For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...
Turbulent fluxes of entropy and internal energy in temperature stratified flows
Rogachevskii, Igor
2015-01-01
We derive equations for the mean entropy and the mean internal energy in the low-Mach-number temperature stratified turbulence (i.e., for turbulent convection or stably stratified turbulence), and show that turbulent flux of entropy is given by ${\\bf F}_s=\\overline{\\rho} \\, \\overline{{\\bf u} s}$, where $\\overline{\\rho}$ is the mean fluid density, $s$ are fluctuations of entropy and overbars denote averaging over an ensemble of turbulent velocity field, ${\\bf u}$. We demonstrate that the turbulent flux of entropy is different from the turbulent convective flux, ${\\bf F}_c=\\overline{T} \\, \\overline{\\rho} \\, \\overline{{\\bf u} s}$, of the fluid internal energy, where $\\overline{T}$ is the mean fluid temperature. This turbulent convective flux is well-known in the astrophysical and geophysical literature, and it cannot be used as a turbulent flux in the equation for the mean entropy. This result is exact for low-Mach-number temperature stratified turbulence and is independent of the model used. We also derive equa...
2008-01-01
Theoretical relations that predict the transition from a stratified pattern to a slug pattern,including a onedimensional wave model that contains less empiricism than the commonly used Taitel-Dukler model,and the ideal model for stratified flow for the gas-liquid flow in horizontal pipes are presented.Superficial velocities of each phase,as the onset of slugging occurs,were predicted,and theoretical analysis was conducted on the stratified to slug flow regime transition.The friction,existing between the fluid and pipe wall,and on the interface of two phases,was especially taken into account.A theoretical model was applied to an experiment about air-oil two-phase flow in a 50 mm horizontal pipe.The effect of pipe diameter on the transition was also studied.The results show that this approach gives a reasonable prediction over the whole range of flow rates,and better agreement has been achieved between predicted and measured critical parameters.
Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando
2014-05-01
Turbulent boundary-layer flows over complex topography have been extensively studied in the atmospheric sciences and wind engineering communities. The upwind turbulence level, the atmospheric thermal stability and the shape of the topography as well as surface characteristics play important roles in turbulent transport of momentum and scalar fluxes. However, to the best of our knowledge, atmospheric thermal stability has rarely been taken into account in laboratory simulations, particularly in wind-tunnel experiments. Extension of such studies in thermally-stratified wind tunnels will substantially advance our understanding of thermal stability effects on the physics of flow over complex topography. Additionally, high-resolution experimental data can be used for development of new parameterization of surface fluxes and validation of numerical models such as Large-Eddy Simulation (LES). A series of experiments of neutral and thermally-stratified boundary-layer flows over a wall-mounted 2-D block were conducted at the Saint Anthony Falls Laboratory boundary-layer wind tunnel. The 2-D block, with a width to height ratio of 2:1, occupied the lowest 25% of the turbulent boundary layer. Stable and convective boundary layers were simulated by independently controlling the temperature of air flow, the test section floor, and the wall-mounted block surfaces. Measurements using high-resolution Particle Image Velocimetry (PIV), x-wire/cold-wire anemometry, thermal-couples and surface heat flux sensors were made to quantify the turbulent properties and surface fluxes in distinct macroscopic flow regions, including the separation/recirculation zones, evolving shear layer and the asymptotic far wake. Emphasis will be put on addressing thermal stability effects on the spatial distribution of turbulent kinetic energy (TKE) and turbulent fluxes of momentum and scalar from the near to far wake region. Terms of the TKE budget equation are also inferred from measurements and
Chu, In Cheol; Yu, Seon Oh; Chun, Moon Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Byong Sup; Kim, Yang Seok; Kim, In Hwan; Lee, Sang Won [Korea Electric Power Research Institute, Taejon (Korea, Republic of)
1998-12-31
An interfacial condensation heat transfer phenomenon in a steam/water countercurrent stratified flow in a nearly horizontal pipe has been experimentally investigated. The present study has been focused on the measurement of the temperature and velocity distributions within the water layer. In particular, the water layer thickness used in the present work is large enough so that the turbulent mixing is limited and the thermal stratification is established. As a result, the thermal resistance of the water layer to the condensation heat transfer is increased significantly. An empirical correlation of the interfacial condensation heat transfer has been developed. The present correlation agrees with the data within {+-} 15%. 5 refs., 6 figs. (Author)
Lam Ghai Lim
2016-07-01
Full Text Available A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function, with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design.
Loganathan Parasuraman
2015-01-01
Full Text Available An analysis has been carried out to investigate the influence of combined effects of MHD, suction and radiation on forced convection boundary layer flow of a nanofluid over an exponentially stretching sheet, embedded in a thermally stratified medium. The governing boundary layer equations of the problem are formulated and transformed into ordinary differential equations, using a similarity transformation. The resulting ordinary differential equations are solved numerically, by the shooting method. The effects of the governing parameters on the flow and heat transfer characteristics are studied and discussed in detail. Different types of nanoparticles, namely, Cu, Ag, Al2O3 and TiO2, with water as the base fluid, are studied. It is found that the effects of the radiation parameter, volume fraction and suction are same on the temperature profiles, in contrast to the effects of the thermal stratification. Comparisons with previously published works are performed in some special cases, and found to be in good agreement.
A k-Model for Stably Stratified Nearly Horizontal Turbulent Flows
Kranenburg, C.
1985-01-01
A k-model is formulated that consists of the turbulent kinetic energy equation and an algebraic expression for the mixing length taking into account the influence of stratification. Applicability of the model is restricted to shallow, nearly horizontal flows. For local-equilibrium flows the model re
Time-dependent rotating stratified shear flow: exact solution and stability analysis.
Salhi, A; Cambon, C
2007-01-01
A solution of the Euler equations with Boussinesq approximation is derived by considering unbounded flows subjected to spatially uniform density stratification and shear rate that are time dependent [S(t)= partial differentialU3/partial differentialx2]. In addition to vertical stratification with constant strength N(v)2, this base flow includes an additional, horizontal, density gradient characterized by N(h)2(t). The stability of this flow is then analyzed: When the vertical stratification is stabilizing, there is a simple harmonic motion of the horizontal stratification N(h)2(t) and of the shear rate S(t), but this flow is unstable to certain disturbances, which are amplified by a Floquet mechanism. This analysis may involve an additional Coriolis effect with Coriolis parameter f, so that governing dimensionless parameters are a modified Richardson number, R=[S(0)2+N(h)4(0)/N(v)2]1/2, and f(v)=f/N(v), as well as the initial phase of the periodic shear rate. Parametric resonance between the inertia-gravity waves and the oscillating shear is demonstrated from the dispersion relation in the limit R-->0. The parametric instability has connection with both baroclinic and elliptical flow instabilities, but can develop from a very different base flow.
Investigations of non-hydrostatic, stably stratified and rapidly rotating flows
Nieves, David; Juilen, Keith; Weiss, Jeffrey B
2016-01-01
We present an investigation of rapidly rotating (small Rossby number $Ro\\ll 1$) and stratified turbulence where the stratification strength is varied from weak (large Froude number $Fr\\gg1$) to strong ($Fr\\ll1$). The investigation is set in the context of a reduced model derived from the Boussinesq equations that efficiently retains anisotropic inertia-gravity waves with order-one frequencies and highlights a regime of wave-eddy interactions. Numerical simulations of the reduced model are performed where energy is injected by a stochastic forcing of vertical velocity, which forces wave modes only. The simulations reveal two regimes characterized by the presence of well-formed, persistent and thin turbulent layers of locally-weakened stratification at small Froude numbers, and by the absence of layers at large Froude numbers. Both regimes are characterized by a large-scale barotropic dipole enclosed by small-scale turbulence. When the Reynolds number is not too large a direct cascade of barotropic kinetic ener...
Modelling of stratified flows in the problem of the morphological behaviour of a sandpit
Parshakova, Ya N.; Lyubimova, T. P.; Ivantsov, A. O.
2016-02-01
The problem of the removal of brines from underwater sand pits is studied. The intensity of the removal of brines from the pits due to the changes in the hydrological regime of the river is calculated in three-dimensional approach. It is found that for the flow rates typical for the summer, the removal of brines collected in underwater pits does not occur. At flow rates typical for the spring, there is a fairly intensive removal of accumulated brines. Numerical experiments have shown that the underwater pits can serve as brines batteries, becoming an additional source of river pollution under certain hydrological conditions.
Papalexandris, Miltiadis V.; Antoniadis, Panagiotis D.
2015-11-01
In this talk we are concerned with thermally stratified flows at the interface between superposed porous and pure-fluid layers. In our study we employ a thermo-mechanical model for the flows of interest that was recently developed by our team. According to this model, both the fluid and the solid matrix are treated as two separate and identifiable continua that are in thermal non-equilibrium with each other. This allows for the derivation of a single set of equations that are simultaneously valid both in the porous and pure-fluid regions. First, we briefly present the basic steps of the derivation of the mathematical model and describe an algorithm for its numerical treatment. Then, we present and discuss numerical results for transient shear flows in the domains of interest, under both stable and unstable thermal stratification. Emphasis is placed on the effects of buoyancy to the evolution of the flow structures at the interface and on the mechanisms that induce thermal non-equilibrium inside the porous medium. This work is supported by the National Fund for Scientific Research (FNRS), Belgium.
Fabric inlet stratifiers for solar tanks with different volume flow rates
Andersen, Elsa; Furbo, Simon
2006-01-01
in the centre of a glass tank (400 x 400 x 900 mm). The forced volume flow rate is in the range of 6 – 10 l/min, and water enters the stratification pipe from the bottom of the tank. The thermal behaviour of the stratification pipes is investigated for different realistic operation conditions...
Stability of viscosity stratified flows down an incline: Role of miscibility and wall slip
Ghosh, Sukhendu
2016-01-01
The effects of wall velocity slip on the linear stability of a gravity-driven miscible two-fluid flow down an incline are examined. The fluids have the matched density but different viscosity. A smooth viscosity stratification is achieved due to the presence of a thin mixed layer between the fluids. The results show that the presence of slip exhibits a promise for stabilizing the miscible flow system by raising the critical Reynolds number at the onset and decreasing the bandwidth of unstable wave numbers beyond the threshold of the dominant instability. This is different from its role in the case of a single fluid down a slippery substrate where slip destabilizes the flow system at the onset. Though the stability properties are analogous to the same flow system down a rigid substrate, slip is shown to delay the surface mode instability for any viscosity contrast. It has a damping/promoting effect on the overlap modes (which exist due to the overlap of critical layer of dominant disturbance with the mixed lay...
Stability of viscosity stratified flows down an incline: Role of miscibility and wall slip
Ghosh, Sukhendu; Usha, R.
2016-10-01
The effects of wall velocity slip on the linear stability of a gravity-driven miscible two-fluid flow down an incline are examined. The fluids have the matched density but different viscosity. A smooth viscosity stratification is achieved due to the presence of a thin mixed layer between the fluids. The results show that the presence of slip exhibits a promise for stabilizing the miscible flow system by raising the critical Reynolds number at the onset and decreasing the bandwidth of unstable wave numbers beyond the threshold of the dominant instability. This is different from its role in the case of a single fluid down a slippery substrate where slip destabilizes the flow system at the onset. Though the stability properties are analogous to the same flow system down a rigid substrate, slip is shown to delay the surface mode instability for any viscosity contrast. It has a damping/promoting effect on the overlap modes (which exist due to the overlap of critical layer of dominant disturbance with the mixed layer) when the mixed layer is away/close from/to the slippery inclined wall. The trend of slip effect is influenced by the location of the mixed layer, the location of more viscous fluid, and the mass diffusivity of the two fluids. The stabilizing characteristics of slip can be favourably used to suppress the non-linear breakdown which may happen due to the coexistence of the unstable modes in a flow over a substrate with no slip. The results of the present study suggest that it is desirable to design a slippery surface with appropriate slip sensitivity in order to meet a particular need for a specific application.
Zilitinkevich, S S; Kleeorin, N; Rogachevskii, I; Esau, I
2011-01-01
In this paper we advance physical background of the EFB turbulence closure and present its comprehensive description. It is based on four budget equations for the second moments: turbulent kinetic and potential energies (TKE and TPE) and vertical turbulent fluxes of momentum and buoyancy; a new relaxation equation for the turbulent dissipation time-scale; and advanced concept of the inter-component exchange of TKE. The EFB closure is designed for stratified, rotating geophysical flows from neutral to very stable. In accordance to modern experimental evidence, it grants maintaining turbulence by the velocity shear at any gradient Richardson number Ri, and distinguishes between the two principally different regimes: "strong turbulence" at Ri 1 typical of the free atmosphere or deep ocean, where Pr_T asymptotically linearly increases with increasing Ri that implies strong suppressing of the heat transfer compared to momentum transfer. For use in different applications, the EFB turbulence closure is formulated a...
Ababou, R.
1991-08-01
This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs.
Restricted Equilibrium and the Energy Cascade in Rotating and Stratified Flows
Herbert, Corentin; Marino, Raffaele
2014-01-01
Most of the turbulent flows appearing in nature (e.g. geophysical and astrophysical flows) are subjected to strong rotation and stratification. These effects break the symmetries of classical, homogenous isotropic turbulence. In doing so, they introduce a natural decomposition of phase space in terms of wave modes and potential vorticity modes. The appearance of a new time scale associated to the propagation of waves, in addition to the eddy turnover time, increases the complexity of the energy transfers between the various scales; nonlinearly interacting waves may dominate at some scales while balanced motion may prevail at others. In the end, it is difficult to predict \\emph{a priori} if the energy cascades downscale as in homogeneous isotropic turbulence, upscale as expected from balanced dynamics, or follows yet another phenomenology. In this paper, we suggest a theoretical approach based on equilibrium statistical mechanics for the ideal system, inspired from the restricted partition function formalism i...
Sid, Samir; Terrapon, Vincent; Dubief, Yves
2015-11-01
Results of direct numerical simulation of turbulent channel flows under unstable stratification are reported. Two Reynolds number are considered: Reτ = 180 , 395 and the Rayleigh number ranges between Ra = [106 -109 ] . The Prandtl number is set to 1. The channel is periodic in both streamwise and spanwise directions and non-slip/isothermal boundary conditions are imposed at the walls. The temperature difference between the walls is set so that the stratification is unstable and the coupling between temperature and momentum is achieved using the Boussinesq approximation. The dependency of the typical large scale convective structures on both Reynolds and Rayleigh numbers are investigated through cross flow sectional statistics and instantaneous flow field visualizations. Moreover, the effects of the natural convection on the coherent structures associated to the cycle of wall-bounded turbulence (Jimenez, et al. JFM 1999), namely velocity streaks and streamwise vortices, are examined. Finally, macroscopic quantities such as friction coefficient and Nusselt number are reported as a function of the Rayleigh number and are compared for both Reynolds numbers. The Belgian Team acknowledges computational resources from CÉCI (F.R.S.-FNRS grant No.2.5020.11) and the PRACE infrastructure. YD acknowledges the support of NSF and DOE under grant NSF/DOE 1258697.
Kuntoro, Hadiyan Yusuf; Indarto,
2015-01-01
In the chemical, petroleum and nuclear industries, pipelines are often used to transport fluids from one process site to another one. The understanding of the fluids behavior inside the pipelines is the most important consideration for the engineers and scientists. From the previous studies, there are several two-phase flow patterns in horizontal pipe. One of them is stratified flow pattern, which is characterized by the liquid flowing along the bottom of the pipe and the gas moving above it cocurrently. Another flow patterns are slug and plug flow patterns. This kind of flow triggers the damage in pipelines, such as corrosion, abrasion, and blasting pipe. Therefore, slug and plug flow patterns are undesirable in pipelines, and the flow is maintained at the stratified flow condition for safety reason. In this paper, the analytical-based study on the experiment of the stratified flow pattern in a 26 mm i.d. horizontal pipe is presented. The experiment is performed to develop a high quality database of the stra...
Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank
Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan
2005-01-01
are facing west. The collector tilt is 15° from horizontal for all collectors. Both the east-facing and the west-facing collectors have their own solar collector loop, circulation pump, external heat exchanger and control system. The external heat exchangers are used to transfer the heat from the solar...... collector fluid to the domestic water. The domestic water is pumped from the bottom of the hot-water tank to the heat exchanger and back to the hot-water tank through stratification inlet pipes. The return flow from the DHW circulation pipe also enters the tank through stratification inlet pipes. The tank...... performance and for the excellent utilization of the solar radiation is the high hot-water consumption and the good system design making use of external heat exchangers and stratification inlet pipes....
Tasawar Hayat
Full Text Available This paper investigates the unsteady MHD flow of viscous fluid between two parallel rotating disks. Fluid fills the porous space. Energy equation has been constructed by taking Joule heating, thermal stratification and radiation effects into consideration. We convert system of partial differential equations into system of highly nonlinear ordinary differential equations after employing the suitable transformations. Convergent series solutions are obtained. Behavior of different involved parameters on velocity and temperature profiles is examined graphically. Numerical values of skin friction coefficient and Nusselt number are computed and inspected. It is found that tangential velocity profile is increasing function of rotational parameter. Fluid temperature reduces for increasing values of thermal stratification parameter. At upper disk heat transfer rate enhances for larger values of Eckert and Prandtl numbers.
Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alsaedi, Ahmed
2016-01-01
This paper investigates the unsteady MHD flow of viscous fluid between two parallel rotating disks. Fluid fills the porous space. Energy equation has been constructed by taking Joule heating, thermal stratification and radiation effects into consideration. We convert system of partial differential equations into system of highly nonlinear ordinary differential equations after employing the suitable transformations. Convergent series solutions are obtained. Behavior of different involved parameters on velocity and temperature profiles is examined graphically. Numerical values of skin friction coefficient and Nusselt number are computed and inspected. It is found that tangential velocity profile is increasing function of rotational parameter. Fluid temperature reduces for increasing values of thermal stratification parameter. At upper disk heat transfer rate enhances for larger values of Eckert and Prandtl numbers.
Turbulence energetics in stably stratified geophysical flows: strong and weak mixing regimes
Zilitinkevich, S S; Kleeorin, N; Rogachevskii, I; Esau, I; Mauritsen, T; Miles, M W
2008-01-01
Traditionally, turbulence energetics is characterized by turbulent kinetic energy (TKE) and modelled using solely the TKE budget equation. In stable stratification, TKE is generated by the velocity shear and expended through viscous dissipation and work against buoyancy forces. The effect of stratification is characterized by the ratio of the buoyancy gradient to squared shear, called Richardson number, Ri. It is widely believed that at Ri exceeding a critical value, Ric, local shear cannot maintain turbulence, and the flow becomes laminar. We revise this concept by extending the energy analysis to turbulent potential and total energies (TPE and TTE = TKE + TPE), consider their budget equations, and conclude that TTE is a conservative parameter maintained by shear in any stratification. Hence there is no "energetics Ric", in contrast to the hydrodynamic-instability threshold, Ric-instability, whose typical values vary from 0.25 to 1. We demonstrate that this interval, 0.25>1, clarify principal difference betw...
Upscaling of Two-Phase Immiscible Flows in Communicating Stratified Reservoirs
Zhang, Xuan; Shapiro, Alexander; Stenby, Erling Halfdan
2011-01-01
forces and gravity may be neglected. The method is discussed on the example of its basic application: waterflooding in petroleum reservoirs. We apply asymptotic analysis to a system of two-dimensional (2D) mass conservation equations for incompressible fluids. For high anisotropy ratios, the pressure...... gradient in vertical direction may be set zero, which is the only assumption of our derivation. In this way, the 2D Buckley–Leverett problem may be reduced to a one-dimensional problem for a system of quasi-linear hyperbolic equations, of a number equal to the number of layers in the reservoir....... They are solved numerically, based on an upstream finite difference algorithm. Self-similarity of the solution makes it possible to compute pseudofractional flow functions depending on the average saturation. The computer partial differential equation solver COMSOL is used for comparison of the complete 2D...
Vallee, Christophe
2012-08-22
Stratified two-phase flows were investigated at different test facilities with horizontal test sections in order to provide an experimental database for the development and validation of computational fluid dynamics (CFD) codes. These channels were designed with rectangular cross-sections to enable optimal observation conditions for the application of optical measurement techniques. Consequently, the local flow structure was visualised with a high-speed video camera, delivering data with highresolution in space and time as needed for CFD code validation. Generic investigations were performed at atmospheric pressure and room temperature in two air/water channels made of acrylic glass. Divers preliminary experiments were conducted with various measuring systems in a test section mounted between two separators. The second test facility, the Horizontal Air/Water Channel (HAWAC), is dedicated to co-current flow investigations. The hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was studied in this closed channel. Moreover, the instable wave growth leading to slug flow was investigated from the test section inlet. For quantitative analysis of the optical measurements, an algorithm was developed to recognise the stratified interface in the camera frames, allowing statistical treatments for comparison with CFD calculation results. The third test apparatus was installed in the pressure chamber of the TOPFLOW test facility in order to be operated at reactor typical conditions under pressure equilibrium with the vessel atmosphere. The test section representing a flat model of the hot leg of the German Konvoi pressurised water reactor (PWR) scaled at 1:3 is equipped with large glass side walls in the region of the elbow and of the steam generator inlet chamber to allow visual observations. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and water at
Capponi, A.; James, M. R.; Lane, S. J.
2016-02-01
The canonical Strombolian paradigm of a gas slug ascending and bursting in a homogeneous low-viscosity magma cannot explain the complex details in eruptive dynamics recently revealed by field measurements and textural and geochemical analyses. Evidence points to the existence of high-viscosity magma at the top of the conduit of Strombolian-type volcanoes, acting as a plug. Here, new experiments detail the range of flow configurations that develop during the ascent and burst of a slug through rheologically stratified magma within a conduit. End-member scenarios of a tube fully filled with either high- or low-viscosity liquid bracket three main flow configurations: (1) a plug sufficiently large to fully accommodate an ascending gas slug; (2) A plug that can accommodate the intrusion of low-viscosity liquid driven by the gas expansion, but not all the slug volume, so the slug bursts with the nose in the plug whilst the base is still in the low-viscosity liquid; (3) Gas expansion is sufficient to drive the intrusion of low-viscosity liquid through the plug, with the slug bursting in the low-viscosity layer emplaced dynamically above the plug. We show that the same flow configurations are viable at volcanic-scale through a new experimentally-validated 1D model and 3D computational fluid dynamic simulations. Applied to Stromboli, our results demonstrate that the key parameters controlling the transition between each configuration are gas volume, plug thickness and plug viscosity. The flow processes identified include effective dynamic narrowing and widening of the conduit, instabilities within the falling magma film, transient partial and complete blockage of the conduit, and slug disruption. These complexities influence eruption dynamics and vigour, promoting magma mingling and resulting in pulsatory release of gas.
Zilitinkevich, S. S.; Elperin, T.; Kleeorin, N.; Rogachevskii, I.; Esau, I.
2013-03-01
Here we advance the physical background of the energy- and flux-budget turbulence closures based on the budget equations for the turbulent kinetic and potential energies and turbulent fluxes of momentum and buoyancy, and a new relaxation equation for the turbulent dissipation time scale. The closure is designed for stratified geophysical flows from neutral to very stable and accounts for the Earth's rotation. In accordance with modern experimental evidence, the closure implies the maintaining of turbulence by the velocity shear at any gradient Richardson number Ri, and distinguishes between the two principally different regimes: "strong turbulence" at {Ri ≪ 1} typical of boundary-layer flows and characterized by the practically constant turbulent Prandtl number Pr T; and "weak turbulence" at Ri > 1 typical of the free atmosphere or deep ocean, where Pr T asymptotically linearly increases with increasing Ri (which implies very strong suppression of the heat transfer compared to the momentum transfer). For use in different applications, the closure is formulated at different levels of complexity, from the local algebraic model relevant to the steady-state regime of turbulence to a hierarchy of non-local closures including simpler down-gradient models, presented in terms of the eddy viscosity and eddy conductivity, and a general non-gradient model based on prognostic equations for all the basic parameters of turbulence including turbulent fluxes.
1994-10-10
correction a) Axial velocity contours; L b) Perimetral wall stress Fig 7 Prediction of flow In plane channel rotating in orthogonal mode. Symbols; DNS...layer: anticyclonic in the uipper layer (green line), strong anticyclone in the intermediate layer ( red line), cyclonic in the lower layer (blue). a...mostly to the boundaries, and Red ; 50 so the support wires have little effect on the sphere wake itself. The spheres were towed through a 2.4m 2
Kuntoro, Hadiyan Yusuf, E-mail: hadiyan.y.kuntoro@mail.ugm.ac.id; Majid, Akmal Irfan; Deendarlianto, E-mail: deendarlianto@ugm.ac.id [Center for Energy Studies, Gadjah Mada University, Sekip K-1A Kampus UGM, Yogyakarta 55281 (Indonesia); Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika 2, Yogyakarta 55281 (Indonesia); Hudaya, Akhmad Zidni; Dinaryanto, Okto [Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika 2, Yogyakarta 55281 (Indonesia)
2016-06-03
Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methods and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (h{sub L}) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.
Kuntoro, Hadiyan Yusuf; Hudaya, Akhmad Zidni; Dinaryanto, Okto; Majid, Akmal Irfan; Deendarlianto
2016-06-01
Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methods and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (hL) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.
de Castro, Marcelo Souza; Rodriguez, Oscar Mauricio Hernandez
2016-06-01
The study of the hydrodynamic stability of flow patterns is important in the design of equipment and pipelines for multiphase flows. The maintenance of a particular flow pattern becomes important in many applications, e.g., stratified flow pattern in heavy oil production avoiding the formation of emulsions because of the separation of phases and annular flow pattern in heat exchangers which increases the heat transfer coefficient. Flow maps are drawn to orientate engineers which flow pattern is present in a pipeline, for example. The ways how these flow maps are drawn have changed from totally experimental work, to phenomenological models, and then to stability analysis theories. In this work an experimental liquid-liquid flow map, with water and viscous oil as work fluids, drawn via subjective approach with high speed camera was used to compare to approaches of the same theory: the interfacial-tension-force model. This theory was used to drawn the wavy stratified flow pattern transition boundary. This paper presents a comparison between the two approaches of the interfacial-tension-force model for transition boundaries of liquid-liquid flow patterns: (i) solving the wave equation for the wave speed and using average values for wave number and wave speed; and (ii) solving the same equation for the wave number and then using a correlation for the wave speed. The results show that the second approach presents better results.
Kuntoro, Hadiyan Yusuf; Dinaryanto, Okto; Deendarlianto,; Indarto,
2015-01-01
Experimental series of stratified gas-liquid two-phase flows had been carried out in a 26 mm i.d. transparent acrylic horizontal pipe. The study was aimed to determine the interfacial wave characteristics of the flow and to develop a high quality database of it. The longitudinal section of the pipe was used as the reference section of image recording. Air and water were used as the test fluids, flowing co-currently inside the pipe. The flow behavior was recorded by using a high-speed video camera around 5 m in axial distance from the inlet pipe to ensure the fully-developed stratified gas-liquid two-phase flow. To correct the refraction due to the acrylic pipe, a correction box was employed in the visualization test section. The group of stratified smooth and wavy two-phase flows were successfully recorded and classified on the basis of the visualization study from 24 couples of test condition of superficial water and air velocities. Digital image processing technique was then used to perform quantitative ana...
Reynolds stress and shear flow generation
Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.
2001-01-01
of improved confinement scenarios such as H-mode confinement regimes. However, the determination of the Reynolds stress requires measurements of the plasma potential, a task that is difficult in general and nearly impossible in hot plasmas in large devices. In this work we investigate an alternative method...... to the treatment of the pseudo-Reynolds stress, we present analytical and numerical results which demonstrate that the Reynolds stress in a plasma, indeed, generates a poloidal shear flow. The numerical simulations are performed both in a drift wave turbulence regime and a resistive interchange turbulence regime...
Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho
2011-01-01
The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.
Chang H. Oh; Eung S. Kim
2009-12-01
The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced
Om Prakash; Devendra Kumar; Y K Dwivedi
2012-12-01
The paper investigates the effects of heat transfer in MHD flow of viscoelastic stratified fluid in porous medium on a parallel plate channel inclined at an angle . A laminar convection flow for incompressible conducting fluid is considered. It is assumed that the plates are kept at different temperatures which decay with time. The partial differential equations governing the flow are solved by perturbation technique. Expressions for the velocity of fluid and particle phases, temperature field, Nusselt number, skin friction and flow flux are obtained within the channel. The effects of various parameters like stratification factor, magnetic field parameter, Prandtl number on temperature field, heat transfer, skin friction, flow flux, velocity for both the fluid and particle phases are displayed through graphs and discussed numerically.
Náraigh, L Ó; Matar, O; Zaki, T
2009-01-01
We investigate the linear stability of a flat interface that separates a liquid layer from a fully-developed turbulent gas flow. In this context, linear-stability analysis involves the study of the dynamics of a small-amplitude wave on the interface, and we develop a model that describes wave-induced perturbation turbulent stresses (PTS). We demonstrate the effect of the PTS on the stability properties of the system in two cases: for a laminar thin film, and for deep-water waves. In the first case, we find that the PTS have little effect on the growth rate of the waves, although they do affect the structure of the perturbation velocities. In the second case, the PTS enhance the maximum growth rate, although the overall shape of the dispersion curve is unchanged. Again, the PTS modify the structure of the velocity field, especially at longer wavelengths. Finally, we demonstrate a kind of parameter tuning that enables the production of the thin-film (slow) waves in a deep-water setting.
Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando
2014-11-01
Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).
Discussion and prediction on decreasing flow stress scale effect
无
2006-01-01
Based on crystal plasticity theory and surface layer model, relation of flow stress to billet dimension and grain size was built,and rationality of derived relation was verified with tensile tests of different size billets. With derived expressions, relation of decreasing flow stress scale effect to billet dimension, grain size as well as billet shape was discussed and predicted. The results show that flow stress is proportional to billet size; with decrease of grain size, flow stress is less influenced by billet dimension. When both cross section area and grain size are same, flow stress decrease of rectangular section billet or sheet is larger than that of circular section billet.
Characteristics of reservoir density flow in stratified water environment%分层环境中水库密度流运动特性研究
任实; 张小峰; 陆俊卿
2013-01-01
A flume experiment for the motion of reservoir density current in steady temperature stratified environment was used. Through different tests, simulated the density flow movement under the conditions of different temperature stratification, and analyzed the effects of stratified strength and outlet condition on density flow movement. The density flow movement characteristics under different reservoir operation modes were researched on the basis of model simulation. The research results can provide reference for the management about the water quality of the reservoir and aquatic environment, also can give reference for the early warning plan of reservoir emergency.%该文采用水槽试验对稳定温度分层水库的密度流运动进行了模拟.通过不同的试验方案,模拟了不同温度分层条件下密度流运动形态,分析了水体分层强度和出口条件对密度流运动的影响,并在此基础上,对不同水库运行方式下密度流运动特征进行了模拟研究.该文研究结果为水库水质、水生环境管理与调度以及水库应急预警方案的制定提供了参考.
Hossain, Delowar; Samad, Abdus; Alam, Mahmud
2017-06-01
The ion-slip effects on unsteady MHD free convection flow past an infinite vertical porous plate with the effect of temperature stratified porous medium in a rotating system with viscous dissipation and Joule heating has been studied numerically. Introducing a time dependent suction to the plate, a similarity procedure has been adopted by taking a time dependent similarity parameter. The governing differential equations are transformed by introducing usual similarity variables. The resultant equations are solved numerically using Runge-Kutta method along with shooting technique. Resulting non-dimensional velocity and temperature profiles are then presented graphically for different values of the parameters entering into the problem.
贾俊梅; 刘宇陆
2012-01-01
采用大涡模拟的方法,研究了均匀剪切稳定分层流动.主要对不同梯度Richardson数下湍流动量和标量输运特性进行分析研究.结果表明:随着梯度Richardson数的增大,湍流动能减小,湍流势能增大；垂向热通量和雷诺应力减弱,流向热通量增强；并且在强分层情况下,存在动量和热量的逆梯度输运现象.%LES method is applied to study the sheared homogeneous stratified turbulent flows. The turbulent momentum and scalar transport properties of different gradient Richardson numbers are mainly analyzed. The primary conclusions are; with the increase of gradient Richardson number, turbulent kinetic energy decreases, while the turbulent potential energy increases; vertical heat flux and the Reynolds stress decrease,but the streamwise heat flux increases;Turbulent momentum and heat CGT in strong stratification are more obvious than those of the weak stratified turbulence.
Gabriel, Stephan Gerhard
2015-07-01
A stratified counter-current two-phase gas/liquid flow can occur in various technical systems. In the past investigations have mainly been motivated by the possible occurrence of these flows in accident scenarios of nuclear light water-reactors and in numerous applications in process engineering. However, the precise forecast of flow parameters, is still challenging, for instance due to their strong dependency on the geometric boundary conditions. A new approach which uses CFD methods (Computational Fluid Dynamics) promises a better understanding of the flow phenomena and simultaneously a higher scalability of the findings. RANS methods (Reynolds Averaged Navier Stokes) are preferred in order to compute industrial processes and geometries. A very deep understanding of the flow behavior and equation systems based on real physics are necessary preconditions to develop the equation system for a reliable RANS approach with predictive power. Therefore, local highly resolved, experimental data is needed in order to provide and validate the required turbulence and phase interaction models. The central objective of this work is to provide the data needed for the code development for these unsteady, turbulent and three-dimensional flows. Experiments were carried out at the WENKA facility (Water Entrainment Channel Karlsruhe) at the Karlsruhe Institute of Technology (KIT). The work consists of a detailed description of the test-facility including a new bended channel, the measurement techniques and the experimental results. The characterization of the new channel was done by flow maps. A high-speed imaging study gives an impression of the occurring flow regimes, and different flow phenomena like droplet separation. The velocity distributions as well as various turbulence values were investigated by particle image velocimetry (PIV). In the liquid phase fluorescent tracer-particles were used to suppress optical reflections from the phase surface (fluorescent PIV, FPIV
P. D. Williams
2004-01-01
Full Text Available We report on a numerical study of the impact of short, fast inertia-gravity waves on the large-scale, slowly-evolving flow with which they co-exist. A nonlinear quasi-geostrophic numerical model of a stratified shear flow is used to simulate, at reasonably high resolution, the evolution of a large-scale mode which grows due to baroclinic instability and equilibrates at finite amplitude. Ageostrophic inertia-gravity modes are filtered out of the model by construction, but their effects on the balanced flow are incorporated using a simple stochastic parameterization of the potential vorticity anomalies which they induce. The model simulates a rotating, two-layer annulus laboratory experiment, in which we recently observed systematic inertia-gravity wave generation by an evolving, large-scale flow. We find that the impact of the small-amplitude stochastic contribution to the potential vorticity tendency, on the model balanced flow, is generally small, as expected. In certain circumstances, however, the parameterized fast waves can exert a dominant influence. In a flow which is baroclinically-unstable to a range of zonal wavenumbers, and in which there is a close match between the growth rates of the multiple modes, the stochastic waves can strongly affect wavenumber selection. This is illustrated by a flow in which the parameterized fast modes dramatically re-partition the probability-density function for equilibrated large-scale zonal wavenumber. In a second case study, the stochastic perturbations are shown to force spontaneous wavenumber transitions in the large-scale flow, which do not occur in their absence. These phenomena are due to a stochastic resonance effect. They add to the evidence that deterministic parameterizations in general circulation models, of subgrid-scale processes such as gravity wave drag, cannot always adequately capture the full details of the nonlinear interaction.
Differential Reynolds stress modeling for separating flows in industrial aerodynamics
2015-01-01
This book presents recent progress in the application of RANS turbulence models based on the Reynolds stress transport equations. A variety of models has been implemented by different groups into different flow solvers and applied to external as well as to turbomachinery flows. Comparisons between the models allow an assessment of their performance in different flow conditions. The results demonstrate the general applicability of differential Reynolds stress models to separating flows in industrial aerodynamics.
Naftz, David L.; Carling, Gregory T.; Angeroth, Cory; Freeman, Michael; Rowland, Ryan; Pazmiño, Eddy
2014-01-01
Density stratification in saline and hypersaline water bodies from throughout the world can have large impacts on the internal cycling and loading of salinity, nutrients, and trace elements. High temporal resolution hydroacoustic and physical/chemical data were collected at two sites in Great Salt Lake (GSL), a saline lake in the western USA, to understand how density stratification may influence salinity and mercury (Hg) distributions. The first study site was in a causeway breach where saline water from GSL exchanges with less saline water from a flow restricted bay. Near-surface-specific conductance values measured in water at the breach displayed a good relationship with both flow and wind direction. No diurnal variations in the concentration of dissolved (total and MeHg loadings was observed during periods of elevated salinity. The second study site was located on the bottom of GSL where movement of a high-salinity water layer, referred to as the deep brine layer (DBL), is restricted to a naturally occurring 1.5-km-wide “spillway” structure. During selected time periods in April/May, 2012, wind-induced flow reversals in a railroad causeway breach, separating Gunnison and Gilbert Bays, were coupled with high-velocity flow pulses (up to 55 cm/s) in the DBL at the spillway site. These flow pulses were likely driven by a pressure response of highly saline water from Gunnison Bay flowing into the north basin of Gilbert Bay. Short-term flow reversal events measured at the railroad causeway breach have the ability to move measurable amounts of salt and Hg from Gunnison Bay into the DBL. Future disturbance to the steady state conditions currently imposed by the railroad causeway infrastructure could result in changes to the existing chemical balance between Gunnison and Gilbert Bays. Monitoring instruments were installed at six additional sites in the DBL during October 2012 to assess impacts from any future modifications to the railroad causeway.
Rehman, Khalil Ur; Malik, M. Y.; Salahuddin, T.; Naseer, M.
2016-07-01
Present work is made to study the effects of double stratified medium on the mixed convection boundary layer flow of Eyring-Powell fluid induced by an inclined stretching cylinder. Flow analysis is conceded in the presence of heat generation/absorption. Temperature and concentration are supposed to be higher than ambient fluid across the surface of cylinder. The arising flow conducting system of partial differential equations is primarily transformed into coupled non-linear ordinary differential equations with the aid of suitable transformations. Numerical solutions of resulting intricate non-linear boundary value problem are computed successfully by utilizing fifth order Runge-Kutta algorithm with shooting technique. The effect logs of physical flow controlling parameters on velocity, temperature and concentration profiles are examined graphically. Further, numerical findings are obtained for two distinct cases namely, zero (plate) and non-zero (cylinder) values of curvature parameter and the behaviour are presented through graphs for skin-friction coefficient, Nusselt number and Sherwood number. The current analysis is validated by developing comparison with previously published work, which sets a benchmark of quality of numerical approach.
Miyoshi, Koji, E-mail: miyoshi.koj@inss.co.jp; Takenaka, Nobuyuki; Ishida, Taisuke; Sugimoto, Katsumi
2017-05-15
Highlights: • Thermal hydraulics phenomena were discussed in a spray pipe of pressurizer. • Temperature fluctuation was investigated in a stratified steam-water two-phase. • Remarkable liquid temperature fluctuations were observed in the liquid layer. • The observed temperature fluctuations were caused by the internal gravity wave. • The temperature fluctuations decreased with increasing dissolved oxygen. - Abstract: Temperature fluctuation phenomena in a stratified steam-water two-phase flow in a horizontal rectangular duct, which simulate a pressurizer spray pipe of a pressurized water reactor, were studied experimentally. Vertical distributions of the temperature and the liquid velocity were measured with water of various dissolved oxygen concentrations. Large liquid temperature fluctuations were observed when the water was deaerated well and dissolved oxygen concentration was around 10 ppb. The large temperature fluctuations were not observed when the oxygen concentration was higher. It was shown that the observed temperature fluctuations were caused by the internal gravity wave since the Richardson numbers were larger than 0.25 and the temperature fluctuation frequencies were around the Brunt-Väisälä frequencies in the present experimental conditions. The temperature fluctuations decreased by the non-condensable gas since the non-condensable gas suppressed the condensation and the temperature difference in the liquid layer was small.
Druzhinin, Oleg; Troitskaya, Yliya; Zilitinkevich, Sergej
2015-04-01
Detailed knowledge of the interaction of surface water waves with the wind flow is of primary importance for correct parameterization of turbulent momentum and heat fluxes which define the energy and momentum transfer between the atmosphere and hydrosphere. The objective of the present study is to investigate the properties of the stably stratified turbulent boundary-layer (BL) air-flow over waved water surface by direct numerical simulation (DNS) at a bulk Reynolds number varying from 15000 to 80000 and the surface-wave slope up to ka = 0.2. The DNS results show that the BL-flow remains in the statistically stationary, turbulent regime if the Reynolds number (ReL) based on the Obukhov length scale and friction velocity is sufficiently large (ReL > 100). In this case, mean velocity and temperature vertical profiles are well predicted by log-linear asymptotic solutions following from the Monin-Obukhov similarity theory provided the velocity and temperature roughness parameters, z0U and z0T, are appropriately prescribed. Both z0U and z0T increase for larger surface-wave slope. DNS results also show that turbulent momentum and heat fluxes and turbulent velocity and temperature fluctuations are increased for larger wave slope (ka) whereas the mean velocity and temperature derivatives remain practically the same for different ka. Thus, we conclude that the source of turbulence enhancement in BL-flow are perturbations induced by the surface wave, and not the shear instability of the bulk flow. On the other hand, if stratification is sufficiently strong, and the surface-wave slope is sufficiently small, the BL-flow over waved surface relaminarizes in the bulk of the domain. However, if the surface-wave slope exceeds a threshold value, the velocity and temperature fluctuations remain finite in the vicinity of the critical-layer level, where the surface-wave phase velocity coincides with the mean flow velocity. We call this new stably-stratified BL-flow regime observed in
Abdullah Ahmed Foisal
2016-01-01
Full Text Available MHD free convection over an inclined plate in a thermally stratified high porous medium in the presence of a magnetic field has been studied. The dimensionless momentum and temperature equations have been solved numerically by explicit finite difference technique with the help of a computer programming language Compaq Visual Fortran 6.6a. The obtained results of these studies have been discussed for the different values of well known parameters with different time steps. Also, the stability conditions and convergence criteria of the explicit finite difference scheme has been analyzed for finding the restriction of the values of various parameters to get more accuracy. The effects of various governing parameters on the fluid velocity, temperature, local and average shear stress and Nusselt number has been investigated and presented graphically.
R. Mantovani
2002-01-01
Full Text Available This paper presents the analysis of symmetric circulations of a rotating baroclinic flow, forced by a steady thermal wind and dissipated by Laplacian friction. The analysis is performed with numerical time-integration. Symmetric flows, vertically bound by horizontal walls and subject to either periodic or vertical wall lateral boundary conditions, are investigated in the region of parameter-space where unstable small amplitude modes evolve into stable stationary nonlinear solutions. The distribution of solutions in parameter-space is analysed up to the threshold of chaotic behaviour and the physical nature of the nonlinear interaction operating on the finite amplitude unstable modes is investigated. In particular, analysis of time-dependent energy-conversions allows understanding of the physical mechanisms operating from the initial phase of linear instability to the finite amplitude stable state. Vertical shear of the basic flow is shown to play a direct role in injecting energy into symmetric flow since the stage of linear growth. Dissipation proves essential not only in limiting the energy of linearly unstable modes, but also in selecting their dominant space-scales in the finite amplitude stage.
2006-03-01
COUETTE & POISEUILLE FLOWS OF NEMATIC POLYMERS IN VISCOUS SOLVENTS: MORPHOLOGY IN MOLECULAR ORIENTATION, STRESS & FLOW Hong Zhou...viscoelastic stresses, and flow feedback. Pre- vious studies in plane Couette & Poiseuille flow (with the exception of [7]) have focused on the coupling between...with Plane Couette & Poiseuille Flows of Nematic Polymers in Viscous Solvents: Morphology in Molecular Orientation, Stress & Flow 5a. CONTRACT
A novel concept of measuring mass flow rates using flow induced stresses
P I Jagad; B P Puranik; A W Date
2015-08-01
Measurement of mass flow rate is important for automatic control of the mass flow rate in many industries such as semiconductor manufacturing and chemical industry (for supply of catalyst to a reaction). In the present work, a new concept for direct measurement of mass flow rates which does not depend on the volumetric flow rate measurement and obviates the need for the knowledge of density is proposed from the measurement of the flow induced stresses in a substrate. The concept is formulated by establishing the relationship between the mass flow rate and the stress in the substrate. To this end, the flow field and the stress field in the substrate are evaluated simultaneously using a numerical procedure and the necessary correlations are derived. A least squares based procedure is used to derive the mass flow rate from the correlations as a function of the stress in the substrate.
A FLOW STRESS MODEL FOR AZ61 MAGNESIUM ALLOY
H.T.Zhou; X.Q.Zeng; Q.D Wang; W.J.Ding
2004-01-01
The flow stress behaviors of AZ61 alloy has been investigated at temperature range from 523 to 673K with the strain rates of 0.001-1s-1.It is found that the average activation energy,strain rate sensitive exponent and stress exponent are different at various deformation conditions changing from 1i3.6 to 176.3k J/mol,0.125 to 0.167 and 6 to 8 respectively.A flow stress model for AZ61 alloy is derived by analyzing the stress data based on hot compression test.It is demonstrated that the flow stress model including strain hardening exponent and strain softening exponent is suitable to predicate the flow stress.The prediction of the flow stress of AZ61 alloy has shown to be good agreement with the test data.The maximum differences of the peak stresses calculated by the model and obtained by experiment is less than 8%.
Vertical Distribution of Tidal Flow Reynolds Stress in Shallow Sea
SONG Zhi-yao; NI Zhi-hui; LU Guo-nian
2009-01-01
Based on the results of the tidal flow Reynolds stresses of the field observations,indoor experiments,and numerical models,the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper.Having been well verified with the field data and experimental data,the proposed distribution of Reynolds stress is also compared with numerical model results,and a good agreement is obtained,showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration,upward when the tidal flow is of deceleration.Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress,turbulent generation,transmission,and so on.The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit,but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.
Equilibrium circulation and stress distribution in viscoelastic creeping flow
Biello, Joseph A
2015-01-01
An analytic, asymptotic approximation of the nonlinear steady-state equations for viscoelastic creeping flow, modeled by the Oldroyd-B equations with polymer stress diffusion, is derived. Near the extensional stagnation point the flow stretches and aligns polymers along the outgoing streamlines of the stagnation point resulting in a stress-island, or birefringent strand. The polymer stress diffusion coefficient is used, both, as an asymptotic parameter and a regularization parameter. The structure of the singular part of polymer stress tensor is a Gaussian aligned with the incoming streamline of the stagnation point; a smoothed $\\delta$-distribution whose width is proportional to the square-root of the diffusion coefficient. The amplitude of the stress island scales with the Wiessenberg number and, although singular in the limit of vanishing diffusion, it is integrable in the cross stream direction due to its vanishing width; this yields a convergent secondary flow. The leading order velocity response to this...
Shear stresses and mean flow in shoaling and breaking waves
Stive, M.J.F.; De Vriend, H.J.
1994-01-01
We investigate the vertical, wave averaged distributions of shear stresses and Eulerian flow in normally incident, shoaling and breaking waves. It is found that shear stresses are solely due to wave amplitude variations, which can be caused by shoaling, boundary layer dissipation and/or breaking wav
Stress Analysis and Calculation of Flow Interruption Capability Test Loop
FENG; Bo; QI; Xiao-guang; CHENG; Dao-xi
2012-01-01
<正>A stress-analysis and calculation has been done for the flow interruption capability test loop (Fig. 1). In the design condition, the test loop is operated on 350 ℃ and 20MPa. By reasonably simplifying and modeling, a stress-analysis program named Triflex was used to analyze the piping stress and optimize the piping supports, which meet the compliance. The work will provide the necessary basis for the construction of the loop and operation security.
Bartosiewicz, Yann [Universite Catholique de Louvain (UCL), Faculty of Applied Sciences, Mechanical Engineering Department, TERM Division, Place du Levant 2, 1348 Louvain-la-Neuve (Belgium)], E-mail: yann.bartosiewicz@uclouvain.be; Lavieville, Jerome [Universite Catholique de Louvain (UCL), Faculty of Applied Sciences, Mechanical Engineering Department, TERM Division, Place du Levant 2, 1348 Louvain-la-Neuve (Belgium); Seynhaeve, Jean-Marie [Universite Catholique de Louvain (UCL), Faculty of Applied Sciences, Mechanical Engineering Department, TERM Division, Place du Levant 2, 1348 Louvain-la-Neuve (Belgium)], E-mail: jm.seynhaeve@uclouvain.be
2008-04-15
This paper presents some results concerning a first benchmark for the new European research code for thermal hydraulics computations: NEPTUNE{sub C}FD. This benchmark relies on the Thorpe experiment to model the occurrence of instabilities in a stratified two-phase flow. The first part of this work is to create a numerical trial case with the VOF approach. The results, in terms of time of onset of the instability, critical wave-number or wave phase speed, are rather good compared to linear inviscid theory and experimental data. Additional numerical tests showed the effect of the surface tension and density ratio on the growing dynamics of the instability and the structure of the waves. In the second part, a code to code (VOF/multi-field) comparison is performed for a case with zero surface tension. The results showed some discrepancies in terms of wave amplitudes, growing rates and a time shifting in the global dynamics. Afterward, two surface tension formulations are proposed in the multi-field approach. Both formulations provided similar results. The time for onset of the instability, the most amplified wave-number and its amplitude were in rather good agreement with the linear analysis and VOF results. However, the time-shifted dynamics was still observed.
Turbulent oscillating channel flow subjected to wind stress
Kramer, W.; Clercx, H.J.H.; Armenio, V.; Armenio, Vincenzo; Geurts, Bernard; Fröhlich, Jochen
2010-01-01
The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations (LES). a slowly pulsating mean flow occurs with the turbulent mechanics essentially being quasi steady. Logarithmic boundary layers are present at both th
Turbulent oscillating channel flow subjected to a wind stress
Kramer, W.; Clercx, H.J.H.; Armenio, V.
2008-01-01
The Westerschelde estuary in the Netherlands is characterized by a strong tidal driven flow with typical velocities in the range of 0.2 to 1 m/s. In addition to the tides the wind (5 m/s) exerts a stress at the free surface driving the upper fluid layers. To investigate this flow we performed resolv
Stimulated bioluminescence by fluid shear stress associated with pipe flow
Cao Jing; Wang Jiangan; Wu Ronghua, E-mail: caojing981@126.com [Col. of Electronic Eng., Naval University of Engineering, Wuhan 430033 (China)
2011-01-01
Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm{sup 2}. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.
Pasquier-Guilbert, N.
2004-12-15
Simultaneous knowledge of local velocity and equivalence ratio is very important in numerous combustion applications and especially for direct injection engines where the flame propagates through a heterogeneous concentration distribution of fuel-air mixture. This study reproduce heterogeneities of equivalence ratio with propane and air in a constant volume combustion vessel. The local influence of velocity and equivalence ratio on the propagation of a spark-ignited flame is studied. To create a stratification, a rich axisymmetric pulsed jet is injected in a leaner chamber and the mixing is ignited. Two optical diagnostics are used simultaneously, PIV for velocity and FARLIF for equivalence ratio, with or without combustion. All properties and range of applications of PIV and FARLIF have been verified. These methods were then used to study the characteristics of stratified combustion. (author)
ANALYSIS OF PULSATILE FLOW IN THE PARALLEL-PLATE FLOW CHAMBER WITH SPATIAL SHEAR STRESS GRADIENT
QIN Kai-rong; HU Xu-qu; LIU Zhao-rong
2007-01-01
The Parallel-Plate Flow Chamber (PPFC), of which the height is far smaller than its own length and width, is one of the main apparatus for the in-vitro study of the mechanical behavior of cultured vascular Endothelical Cells (ECs) exposed to fluid shear stress. The steady flow in different kinds of PPFC has been extensively investigated, whereas, the pulsatile flow in the PPFC has little attention. In consideration of the characteristics of geometrical size and pulsatile flow in the PPFC, the 3-D pulsatile flow was decomposed into a 2-D pulsatile flow in the vertical plane, and an incompressible plane potential flow in the horizontal plane. A simple method was then proposed to analyze the pulsatile flow in the PPFC with spatial shear stress gradient. On the basis of the method, the pulsatile fluid shear stresses in several reported PPFCs with spatial shear stress gradients were calculated. The results were theoretically meaningful for applying the PPFCs in-vitro, to simulate the pulsatile fluid shear stress environment, to which cultured ECs were exposed.
A NUMERICAL STUDY OF THE STRESS DISTRIBUTION IN HOPPER FLOW
Haiping Zhu; Aibing Yu
2003-01-01
The stress distributions of granular flow in a cylindrical hopper with flat bottom are investigated by means of a combined approach of discrete element method (DEM) and averaging method. The filling and discharge of the hopper flow are first simulated at a particle level by means of a modified DEM. The results are then used to determine the velocity and stress profiles of the hopper flow by means of an averaging method. The analysis is focused on a central section plane of the hopper due to the relatively perfect axial symmetry. The velocity profiles are illustrated to be consistent with those obtained by the previous experiments, confirming the validity of the proposed approach. The distributions of four components of the planar stress tensor at different heights are quantified. It is shown that the vertical normal stress increases with increasing the height near the central axis, the horizontal normal stress varies more slowly at a higher level and is almost constant when the height is equal to or greater than about 12 particle diameter, and the magnitudes of two shear stresses are equal at the central zone of the hopper but not so at the points near the walls. The dependence of stress distributions on the wall mechanical properties such as sliding resistance and rolling resistance is also discussed.
Flow-Induced Stress Distribution in Porous Scaffolds
Papavassiliou, Dimitrios; Voronov, Roman; Vangordon, Samuel; Sikavitsas, Vassilios
2010-11-01
Flow-induced stresses help the differentiation and proliferation of mesenchymal cells cultured in porous scaffolds within perfusion bioreactors. The distribution of stresses in a scaffold is thus important for understanding the tissue growth process in such reactors. Computational results for flow through Poly-L-Lactic Acid porous scaffolds that have been produced with salt-leaching techniques, and for scaffolds that have been constructed with nonwoven fibers, indicate that the probability density function (pdf) of the wall stress, when normalized with the mean and the standard deviation of the pdf, appears to follow a single type of pdf. The scaffolds were imaged with micro-CT and the simulations were run with lattice Boltzmann methods. The parameters of the distribution can be obtained using Darcy's law and the Blake-Kozeny-Carman equation. Experimental results available in the literature appear to corroborate the computational findings, leading to the conclusion that stresses in high-porosity porous materials follow a single distribution.
Determination of the Reynolds stress in canonical flow geometries
Lee, T.-W.
2016-11-01
We present a new theoretical result for solving for the Reynolds stress in turbulent flows, and show how it works for canonical flow geometries: flow over a flat plate, channel flow, and axi-symmetric jets. The theory is based on fundamental physics of turbulence transport. Comparison of the current theoretical result with experimental and DNS (direct numerical simulation) data show good agreement, and various considerations of the results indicate that this is not a fortuitous coincidence, and point to radically new solutions for Reynolds stress. The theory leads to a closed-form formula for the Reynolds stress in terms of the root variables, such as the mean velocity, velocity gradient, turbulence kinetic energy and a viscous term. The form of the solution also provides insight on how the Reynolds stress is generated and distributed. This is not a modeling study, but a theoretical one based on physical principles although some of the nuances are still being examined. Details of the theory are submitted elsewhere, and also will be presented at the conference. The theoretical result for the Reynolds stress is compared with various experimental and DNS data. The agreement is nearly perfect at low Reynolds numbers, which gives some confidence that we have captured the true physics of turbulent transport, and that the results are not a fortuitous coincidence.
Flow rate dependency of critical wall shear stress in a radial-flow cell
Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.
2009-01-01
of a water or ethanol suspension of starch granules on the surfaces. Depending on the substrate and on the suspending liquid, the aggregates differed in size and shape. Aggregate removal was studied at two flow rates. At the lower flow rate (Re-inlet = 955), the values of critical wall shear stress......In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersion...... for the different surfaces suggested that capillary forces were, for all of them, playing an important role in aggregate adhesion since aqueous based aggregates were always more difficult to remove. At the higher flow rate (Re-inlet = 2016) the critical wall shear stress increased as a result of the change...
History effect on the Reynolds stress in turbulent swirling flow
Hamba, Fujihiro
2017-02-01
The eddy-viscosity model for turbulence has some difficulty in predicting rotating and swirling flows. Turbulent swirling flow in a straight pipe is a typical example. A rapidly rotating core in the pipe decays too quickly in results obtained from the standard k-ɛ model. The eddy viscosity needs to be reduced to predict the velocity profiles well; the mechanism of the decrease in the eddy viscosity has not been clarified yet. In this work, the eddy-viscosity model was investigated using a temporally nonlocal expression for the Reynolds stress that represents the history effect. A simple transport equation for the Reynolds stress was integrated along a mean-flow pathline to obtain a temporally nonlocal model for the Reynolds stress. The nonlocal model was applied to simple swirling flows for which the time integral can be further calculated to investigate the history effect. It was shown that the history effect associated with the rotating motion gives rise to a small factor in the expression for the eddy viscosity. In order to confirm the history effect, the present model and the linear eddy-viscosity model were used to simulate a swirling pipe flow. The velocity profiles obtained from the present model agree well with experimental results; the reduced eddy viscosity can account for the slow decay of the swirling motion in the core region. The anisotropic nature of the eddy viscosity was also discussed in relation to the small factor caused by the history effect.
Flow Instability and Wall Shear Stress Ocillation in Intracranial Aneurysms
Baek, Hyoungsu; Jayamaran, Mahesh; Richardson, Peter; Karniadakis, George
2009-11-01
We investigate the flow dynamics and oscillatory behavior of wall shear stress (WSS) vectors in intracranial aneurysms using high-order spectral/hp simulations. We analyze four patient- specific internal carotid arteries laden with aneurysms of different characteristics : a wide-necked saccular aneurysm, a hemisphere-shaped aneurysm, a narrower-necked saccular aneurysm, and a case with two adjacent saccular aneurysms. Simulations show that the pulsatile flow in aneurysms may be subject to a hydrodynamic instability during the decelerating systolic phase resulting in a high-frequency oscillation in the range of 30-50 Hz. When the aneurysmal flow becomes unstable, both the magnitude and the directions of WSS vectors fluctuate. In particular, the WSS vectors around the flow impingement region exhibit significant spatial and temporal changes in direction as well as in magnitude.
El-Asrag, Hossam A.; Ju, Yiguang
2013-04-01
Direct numerical simulations (DNSs) of a stratified flow in a homogeneous compression charge ignition (HCCI) engine are performed to investigate the exhaust gas recirculation (EGR) and temperature/mixture stratification effects on the autoignition of synthetic dimethyl ether (DME) in the negative temperature combustion region. Detailed chemistry for a DME/air mixture is employed and solved by a hybrid multi-time scale (HMTS) algorithm to reduce the computational cost. The effect of ? to mimic the EGR effect on autoignition are studied. The results show that adding ? enhances autoignition by rapid OH radical pool formation (34-46% reduction in ignition delay time) and changes the ignition heat release rates at different ignition stages. Sensitivity analysis is performed and the important reactions pathways affecting the autoignition are specified. The DNS results show that the scales introduced by thermal and mixture stratifications have a strong effect after the low temperature chemistry (LTC) ignition especially at the locations of high scalar dissipation rates. Compared to homogenous ignition, stratified ignitions show similar first autoignition delay times, but 18% reduction in the second and third ignition delay times. The results also show that molecular transport plays an important role in stratified low temperature ignition, and that the scalar mixing time scale is strongly affected by local ignition in the stratified flow. Two ignition-kernel propagation modes are observed: a wave-like, low-speed, deflagrative mode and a spontaneous, high-speed, ignition mode. Three criteria are introduced to distinguish these modes by different characteristic time scales and Damkhöler numbers using a progress variable conditioned by an ignition kernel indicator. The low scalar dissipation rate flame front is characterized by high displacement speeds and high mixing Damkhöler number. The proposed criteria are applied successfully at the different ignition stages and
Suppression of stratified explosive interactions
Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics
1998-01-01
Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)
Coherent and random apparent stresses in periodically unsteady flows
Kehoe, Anthony Byrd
1990-08-01
The transitional flow field downstream of a smooth, symmetrically constricted Sylgard pipe was measured with a two color, two component Laser Doppler Anemometer for both pulsatile and steady flows. Vibrations in the flow system were induced with an exciter/shaker and were monitored with an accelerator. The vibration has little effect on the value of the maximum axial and radial turbulence intensities. A frequency domain signal processing technique to separate the disturbance velocity into coherent and random components was modified to guarantee that the sum of the decomposed velocity components equaled the original disturbance velocity. Results of the velocity separation demonstrated that the velocity disturbances prior to turbulent transition consisted almost entirely of coherent velocity fluctuations. The maximum apparent shear stress was found to occur just after the turbulent transition and consisted almost entirely of the random component. The data suggest that if the absolute magnitude of the apparent stress is the determining factor in red blood cell destruction, then the coherent apparent stress is not a significant destruction mechanism. However, the exact mechanism in hemolysis are not identified.
Adipose tissue and skeletal muscle blood flow during mental stress
Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.
1989-01-01
Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.
The measurement of thermal stress distributions along the flow path in injection-molded flat plates
Hastenberg, C.H.V.; Wildervanck, P.C.; Leenen, A.J.H.; Schennink, G.G.J.
1992-01-01
Internal stresses in injection-molded parts are the result of thermal, flow, and pressure histories. Internal stresses can be roughly divided into thermal and flow-induced stresses. In this paper, a modified layer-removal method is presented to determine thermal stress distributions in injection-mol
Research on flow stress of spray formed 70Si30Al ahoy under hot compression deformation
WEI Yanguang; XIONG Baiqing; ZHANG Yong'an; LIU Hongwei; ZHU Baohong; WANG feng
2006-01-01
The flow stress of spray formed 70Si30Al alloy was studied by hot compression on a Gleeble-1500 test machine.The experimental results indicated that the flow stress depends on the strain rate and the deformation temperature. The flow stress increases with an increase in strain rate at a given deformation temperature. The flow stress decreases with the deformation temperature increasing at a given strain rate. The relational expression among the flow stress, the strain rate, and the deformation temperature satisfies the Arrhenius equation. The deformation activation energy of 70Si30Al alloy during hot deformation is 866.27 kJ/mol from the Arrhenius equation.
Stress transmission and incipient yield flow in dense granular materials
Blumenfeld, Raphael
2010-05-01
Jammed granular matter transmits stresses non-uniformly like no conventional solid, especially when it is on the verge of failure. Jamming is caused by self-organization of granular matter under external loads, often giving rise to networks of force chains that support the loads non-uniformly. An ongoing debate in the literature concerns the correct way to model the static stress field in such media: good old elasticity theory or newcomer isostaticity theory. The two differ significantly and, in particular in 2D, isostaticity theory leads naturally to force chain solutions. More recently, it has been proposed that real granular materials are made of mixtures of regions, some behaving elastically and some isostatically. The theory to describe these systems has been named stato-elasticity. In this paper, I first present the rationale for stato-elasticity theory. An important step towards the construction of this theory is a good understanding of stress transmission in the regions of pure isostatic states. A brief description is given of recently derived general solutions for 2D isostatic regions with nonuniform structures, which go well beyond the over-simplistic picture of force chains. I then show how the static stress equations are related directly to incipient yield flow and derive the equations that govern yield and creep rheology of dense granular matter at the initial stages of failure. These equations are general and describe strains in granular materials of both rigid and compliant particles.
Udina, Mireia; Sun, Jielun; Kosović, Branko; Soler, Maria Rosa
2016-11-01
Following Sun et al. (J Atmos Sci 69(1):338-351, 2012), vertical variations of turbulent mixing in stably stratified and neutral environments as functions of wind speed are investigated using the large-eddy simulation capability in the Weather Research and Forecasting model. The simulations with a surface cooling rate for the stable boundary layer (SBL) and a range of geostrophic winds for both stable and neutral boundary layers are compared with observations from the Cooperative Atmosphere-Surface Exchange Study 1999 (CASES-99). To avoid the uncertainty of the subgrid scheme, the investigation focuses on the vertical domain when the ratio between the subgrid and the resolved turbulence is small. The results qualitatively capture the observed dependence of turbulence intensity on wind speed under neutral conditions; however, its vertical variation is affected by the damping layer used in absorbing undesirable numerical waves at the top of the domain as a result of relatively large neutral turbulent eddies. The simulated SBL fails to capture the observed temperature variance with wind speed and the observed transition from the SBL to the near-neutral atmosphere with increasing wind speed, although the vertical temperature profile of the simulated SBL resembles the observed profile. The study suggests that molecular thermal conduction responsible for the thermal coupling between the surface and atmosphere cannot be parameterized through the Monin-Obukhov bulk relation for turbulent heat transfer by applying the surface radiation temperature, as is common practice when modelling air-surface interactions.
Reynolds-stress model prediction of 3-D duct flows
Gerolymos, G A
2014-01-01
The paper examines the impact of different modelling choices in second-moment closures by assessing model performance in predicting 3-D duct flows. The test-cases (developing flow in a square duct [Gessner F.B., Emery A.F.: {\\em ASME J. Fluids Eng.} {\\bf 103} (1981) 445--455], circular-to-rectangular transition-duct [Davis D.O., Gessner F.B.: {\\em AIAA J.} {\\bf 30} (1992) 367--375], and \\tsn{S}-duct with large separation [Wellborn S.R., Reichert B.A., Okiishi T.H.: {\\em J. Prop. Power} {\\bf 10} (1994) 668--675]) include progressively more complex strains. Comparison of experimental data with selected 7-equation models (6 Reynolds-stress-transport and 1 scale-determining equations), which differ in the closure of the velocity/pressure-gradient tensor $\\Pi_{ij}$, suggests that rapid redistribution controls separation and secondary-flow prediction, whereas, inclusion of pressure-diffusion modelling improves reattachment and relaxation behaviour.
Mixing by microorganisms in stratified fluids
Wagner, Gregory L; Lauga, Eric
2014-01-01
We examine the vertical mixing induced by the swimming of microorganisms at low Reynolds and P\\'eclet numbers in a stably stratified ocean, and show that the global contribution of oceanic microswimmers to vertical mixing is negligible. We propose two approaches to estimating the mixing efficiency, $\\eta$, or the ratio of the rate of potential energy creation to the total rate-of-working on the ocean by microswimmers. The first is based on scaling arguments and estimates $\\eta$ in terms of the ratio between the typical organism size, $a$, and an intrinsic length scale for the stratified flow, $\\ell = \\left ( \
Acute short-term mental stress does not influence salivary flow rate dynamics.
Ella A Naumova
Full Text Available BACKGROUND: Results of studies that address the influence of stress on salivary flow rate and composition are controversial. The aim of this study was to reveal the influence of stress vulnerability and different phases of stress reactivity on the unstimulated and stimulated salivary flow rate. We examined that acute mental stress does not change the salivary flow rate. In addition, we also examined the salivary cortisol and protein level in relation to acute mental stress stimuli. METHODS: Saliva of male subjects was collected for five minutes before, immediately, 10, 30 and 120 min after toothbrushing. Before toothbrushing, the subjects were exposed to acute stress in the form of a 2 min public speech. Salivary flow rate and total protein was measured. The physiological stress marker cortisol was analyzed using enzyme-linked immunosorbent assay. To determine the subjects' psychological stress reaction, the State-Trait-Anxiety Inventory State questionnaire (STAI data were obtained. The subjects were divided into stress subgroup (S1 (psychological reactivity, stress subgroup (S2 (psychological and physiological reactivity and a control group. The area under the curve for salivarycortisol concentration and STAI-State scores were calculated. All data underwent statistical analysis using one-way analysis of variance. RESULTS: Immediately after stress exposure, all participants exhibited a psychological stress reaction. Stress exposure did not change the salivary flow rate. Only 69% of the subjects continued to display a physiological stress reaction 20 minutes after the public talk. There was no significant change in the salivary flow rate during the psychological and the physiological stress reaction phases relative to the baseline. CONCLUSIONS: Acute stress has no impact on the salivary flow rate; however, there may be other responses through salivary proteins that are increased with the acute stress stimuli. Future studies are needed to examine
Research on flow stress in ferrite deformation of a Ti-IF steel
无
2006-01-01
The experiments of the ferrite warm deformation of ultra-low carbon (ULC) Ti-IF steel were carried out on a hot simulator and the influences of deformation temperature, strain, and strain rate on the flow stress were analyzed. New flow stress models suitable to ferrite warm forming of Ti-IF steel were given on the basis of analyzing the influence of deformation technology parameters on the flow stress.
水平和倾斜管内气液分层流界而稳定性%Stability of Stratified Gas-Liquid Flow in Horizontal and Near Horizontal Pipes
顾汉洋; 郭烈锦
2007-01-01
A viscous Kelvin-Helmholtz criterion of the interfacial wave instability is proposed in this paper based on the linear stability analysis of a transient one-dimensional two-fluid model. In this model, the pressure is evaluated using the local momentum balance rather than the hydrostatic approximation. The criterion predicts well the stability limit of stratified flow in horizontal and nearly horizontal pipes. The experimental and theoretical investigation on the effect of pipe inclination on the inteffacial instability are carried out. It is found that the critical liquid height at the onset of interfacial wave instability is insensitive to the pipe inclination. However, the pipe inclination significantly affects critical superficial liquid velocity and wave velocity especially for low gas velocities.
Mikhal, Julia Olegivna; Pereira, J.C.F; Sequeira, A.; Lopez Penha, D.J.; Slump, Cornelis H.; Pereira, J.M.C.; Janela, J.; Geurts, Bernardus J.; Borges, L.
A volume-penalizing immersed boundary method is presented that facilitates the computation of incompressible fluid flow in complex flow domains. We apply this method to simulate the flow in cerebral aneurysms, and focus on the accuracy with which the flow field and the corresponding shear stress
Theory to predict shear stress on cells in turbulent blood flow.
Morshed, Khandakar Niaz; Bark, David; Forleo, Marcio; Dasi, Lakshmi Prasad
2014-01-01
Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or turbulent blood flow dictates local mechanical environment of blood cells and platelets universally.
Ferguson Marina
2011-07-01
Full Text Available Abstract Background Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS. However, mechanisms governing advanced plaque progression are not well understood. Method In vivo serial MRI data (patient follow-up were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months. Thirty-two scan pairs (baseline and follow-up scans were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen. Point-wise plaque progression was defined as the wall thickness increase (WTI at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS. FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations. Results Using follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4, and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4. Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5 and (2/26/4, respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10 and (9/13/10 for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9, corresponding to maximum and minimum
Yang, Chun; Canton, Gador; Yuan, Chun; Ferguson, Marina; Hatsukami, Thomas S; Tang, Dalin
2011-07-19
Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS). However, mechanisms governing advanced plaque progression are not well understood. In vivo serial MRI data (patient follow-up) were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months). Thirty-two scan pairs (baseline and follow-up scans) were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen). Point-wise plaque progression was defined as the wall thickness increase (WTI) at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS) on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS). FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations. Using follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4), and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4). Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5) and (2/26/4), respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10) and (9/13/10) for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9), corresponding to maximum and minimum flow rates. Flow shear stress
FLOW STRESS MODEL FOR HARD MACHINING OF AISI H13 WORK TOOL STEEL
H. Yan; J. Hua; R. Shivpuri
2005-01-01
An approach is presented to characterize the stress response of workpiece in hard machining,accounted for the effect of the initial workpiece hardness, temperature, strain and strain rate on flow stress. AISI H13 work tool steel was chosen to verify this methodology. The proposed flow stress model demonstrates a good agreement with data collected from published experiments.Therefore, the proposed model can be used to predict the corresponding flow stress-strain response of AISI H13 work tool steel with variation of the initial workpiece hardness in hard machining.
Development of Flow Stress of AISI H13 Die Steel in Hard Machining
YAN Hong; QIAN Guohua; HU Qiang
2007-01-01
An approach was presented to characterize the stress response of workpiece in hard machining, accounting for the effect of the initial workpiece hardness in addition to temperature, strain and strain rate on flow stress in this paper. AISI H13 die steel was chosen to verify this methodology. The proposed flow stress model demonstrates a good agreement with experimental data. Therefore, the proposed model can be used to predict the corresponding flow stress-strain response of AISI H13 die steel with variation of the initial workpiece hardness in hard machining.
Drainage in a model stratified porous medium
Datta, Sujit S; 10.1209/0295-5075/101/14002
2013-01-01
We show that when a non-wetting fluid drains a stratified porous medium at sufficiently small capillary numbers Ca, it flows only through the coarsest stratum of the medium; by contrast, above a threshold Ca, the non-wetting fluid is also forced laterally, into part of the adjacent, finer strata. The spatial extent of this partial invasion increases with Ca. We quantitatively understand this behavior by balancing the stratum-scale viscous pressure driving the flow with the capillary pressure required to invade individual pores. Because geological formations are frequently stratified, we anticipate that our results will be relevant to a number of important applications, including understanding oil migration, preventing groundwater contamination, and sub-surface CO$_{2}$ storage.
Hot deformation behavior and flow stress model of F40MnV steel
WANG Jin; CHEN Jun; ZHAO Zhen; RUAN Xue-yu
2007-01-01
Single hit compression tests were performed at 1 223-1 473 K and strain rate of 0.1-10 s-1 to study hot deformation behavior and flow stress model of F40MnV steel. The dependence of the peak stress, initial stress, saturation stress, steady state stress and peak stain on Zener-Hollomon parameter were obtained. The mathematical models of dynamic recrystallization fraction and grain size were also obtained. Based on the tested data.the flow stress model of F40MnV steel was established in dynamic recovery region and dynamic recrystallization region, respectively. The results show that the activation energy for dynamic recrystallization is 278.6 kJ/mol by regression analysis. The flow stress model of F40MnV steel is proved to approximate the tested data and suitable for numerical simulation of hot forging.
Exact solutions for MHD flow of couple stress fluid with heat transfer
Najeeb Alam Khan
2016-01-01
Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.
Thermal stratification built up in hot water tank with different inlet stratifiers
Dragsted, Janne; Furbo, Simon; Dannemand, Mark
2017-01-01
H is a rigid plastic pipe with holes for each 30 cm. The holes are designed with flaps preventing counter flow into the pipe. The inlet stratifier from EyeCular Technologies ApS is made of a flexible polymer with openings all along the side and in the full length of the stratifier. The flexibility...... in order to elucidate how well thermal stratification is established in the tank with differently designed inlet stratifiers under different controlled laboratory conditions. The investigated inlet stratifiers are from Solvis GmbH & Co KG and EyeCular Technologies ApS. The inlet stratifier from Solvis Gmb...... of the stratifier prevents counterflow. The tests have shown that both types of inlet stratifiers had an ability to create stratification in the test tank under the different test conditions. The stratifier from EyeCular Technologies ApS had a better performance at low flows of 1-2 l/min and the stratifier...
Lapuerta, C
2006-10-15
During an hypothetical major accident in a pressurized water reactor, the deterioration of the core can produce a stratified pool crossed by a bubbly flow. This latter strongly impacts the heat transfers, whose intensities are crucial in the progression of the accident. In this context, this work is devoted to the diffuse interface modelling for the study of an-isothermal incompressible flows, composed of three immiscible components, with no phase change. In the diffuse interface methods, the system evolution is driven by the minimization of a free energy. The originality of our approach, derived from the Cahn-Hilliard model, is based on the particular form of the energy we proposed, which enables to have an algebraically and dynamically consistent model, in the following sense: on the one hand, the triphasic free energy is equal to the diphasic one when only two phases are present; on the other, if a phase is not initially present then it will not appear during system evolution, this last property being stable with respect to numerical errors. The existence and the uniqueness of weak and strong solutions are proved in two and three dimensions as well as a stability result for metastable states. The modelling of an an-isothermal three phase flow is further accomplished by coupling the Cahn-Hilliard equations with the energy balance and Navier-Stokes equations where surface tensions are taken into account through volume capillary forces. These equations are discretized in time and space in order to preserve properties of continuous model (volume conservation, energy estimate). Different numerical results are given, from the validation case of the lens spreading between two phases, to the study of the heat and mass transfers through a liquid/liquid interface crossed by a single bubble or a series of bubbles. (author)
How stratified is mantle convection?
Puster, Peter; Jordan, Thomas H.
1997-04-01
We quantify the flow stratification in the Earth's mid-mantle (600-1500 km) in terms of a stratification index for the vertical mass flux, Sƒ (z) = 1 - ƒ(z) / ƒref (z), in which the reference value ƒref(z) approximates the local flux at depth z expected for unstratified convection (Sƒ=0). Although this flux stratification index cannot be directly constrained by observations, we show from a series of two-dimensional convection simulations that its value can be related to a thermal stratification index ST(Z) defined in terms of the radial correlation length of the temperature-perturbation field δT(z, Ω). ST is a good proxy for Sƒ at low stratifications (SƒUniformitarian Principle. The bound obtained here from global tomography is consistent with local seismological evidence for slab flux into the lower mantle; however, the total material flux has to be significantly greater (by a factor of 2-3) than that due to slabs alone. A stratification index, Sƒ≲0.2, is sufficient to exclude many stratified convection models still under active consideration, including most forms of chemical layering between the upper and lower mantle, as well as the more extreme versions of avalanching convection governed by a strong endothermic phase change.
Dats, E. P.; Tkacheva, A. V.
2016-05-01
This paper presents a solution of a sequence of one-dimensional boundary-value problems of thermal stresses defining the elastic-plastic deformation processes used in the shrink fitting of cylindrical bodies. The initiation and development of plastic flow in the materials of the assembly elements are studied taking into account the temperature dependence of the yield stress of these materials. During temperature equalization, the flow can slow down, followed by unloading and formation of a residual stress field providing tension. The conditions of formation and motion of the boundaries of the elastic and plastic states in plastic flow and during unloading are determined.
Shear flow generation by Reynolds stress and suppression of resistive g-modes
Sugama, H. [National Inst. for Fusion Science, Nagoya (Japan); Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies
1993-08-01
Suppression of resistive g-mode turbulence by background shear flow generated from a small external flow source and amplified by the fluctuation-induced Reynolds stress is demonstrated and analyzed. The model leads to a paradigm for the low-to-high (L-H) confinement mode transition. To demonstrate the L-H transition model, single-helicity nonlinear fluid simulations using the vorticity equation for the electrostatic potential, the pressure fluctuation equation and the background poloidal flow equation are used in the sheared slab configuration. The relative efficiency of the external flow and the Reynolds stress for producing shear flow depends on the poloidal flow damping parameter {nu} which is given by neoclassical theory. For large {nu}, the external flow is a dominant contribution to the total background poloidal shear flow and its strength predicted by the neoclassical theory is not enough to suppress the turbulence significantly. In contrast, for small {nu}, we show that the fluctuations drive a Reynolds stress that becomes large and suddenly, at some critical point in time, shear flow much larger than the external flow is generated and leads to an abrupt, order unity reduction of the turbulent transport just like that of the L-H transition in tokamak experiments. It is also found that, even in the case of no external flow, the shear flow generation due to the Reynolds stress occurs through the nonlinear interaction of the resistive g-modes and reduces the transport. To supplement the numerical solutions we derive the Landau equation for the mode amplitude of the resistive g-mode taking into account the fluctuation-induced shear flow and analyze the opposite action of the Reynolds stress in the resistive g turbulence compared with the classical shear flow Kelvin-Helmholtz (K-H) driven turbulence.
Bertin H.
2006-11-01
Full Text Available Nous abordons l'étude des écoulements polyphasiques en milieu poreux hétérogène d'un point de vue théorique (méthodologie de la prise de moyenne à grande échelle et expérimental. Dans une première partie nous présentons la méthodologie permettant d'obtenir les équations à grande échelle. Le point de départ de l'étude est les équations locales, analogues aux équations de Darcy généralisées obtenues par prise de moyenne des équations de Stokes à l'échelle du pore. La prise de moyenne à grande échelle de ces équations permet d'écrire un système d'équations où les coefficients de transport équivalents sont calculés à partir des données locales, par la résolution d'un problème de fermeture explicité dans le cas quasi-statique (effets capillaires dominants. La seconde partie de notre travail concerne l'étude expérimentale d'un écoulement eau-huile dans un milieu poreux stratifié constitué de deux régions de caractéristiques physiques différentes. Les champs de saturation bidimensionnels sont mesurés tout au long de l'imbibition par absorption d'un rayonnement gamma. Les résultats expérimentaux, évolution de la fraction volumique moyenne par section en fonction du temps, sont comparés aux résultats d'une simulation numérique des équations de transport où les coefficients utilisés ont été déterminés par la méthode de prise de moyenne à grande échelle. Two-phase flow in heterogeneous porous media is studied from a theoretical point of view (the large-scale averaging method and experimentally. In the first part, we present the methodology leading to the large-scale equations. The starting point of the study is the local equation, analogous to the generalized Darcy's law obtained by averaging the Stokes equation at the pore level. The large-scale averaging of these equations leads to a system where the equivalent transport coefficients are computed from the local data by solving a closure
杨春元; 朱天宇; 蔡一凡
2015-01-01
Using a numerical simulation of a nelliptical cavity absorber and vacuum absorber, heat transfer coefficient and thermal gradient of the stratified flow areas of both absorbers are ana-lyzed.The results show an increase of heat trans-fer coefficient in the cavity absorber,but the struc-ture still needs to be improved,because the ther-mal gradient remains high.%针对一种椭圆形腔体式集热管和真空集热管，通过数值模拟的方法，对该集热管在分层流区域的换热系数和温度梯度进行分析研究。结果表明该腔体式集热管能够提高分层流区域的换热系数，但是集热管壁面的温度梯度并没有得到有效的降低，结构有待进一步改进。
Effect of thermal shield and gas flow on thermal elastic stresses in 300 mm silicon crystal
GAO Yu; XIAO Qinghua; ZHOU Qigang; DAI Xiaolin; TU Hailing
2006-01-01
The thermal elastic stresses induced in 300 mm Si crystal may be great troubles because it can incur the generation of dislocations and undesirable excessive residual stresses.A special thermal modeling tool, CrysVUn, was used for numerical analysis of thermal elastic stresses and stress distribution of 300 mm Si crystal under the consideration of different thermal shields and gas flow conditions.The adopted governing partial equations for stress calculation are Cauchy's first and second laws of motion.It is demonstrated that the presence and shape of thermal shield, the gas pressure and velocity can strongly affect von Mises stress distribution in Si crystal.With steep-wall shield, however, the maximal stress and ratio of high stress area are relatively low.With slope-wall shield or without shield, both maximal stress and ratio of high stress area are increased in evidence.Whether thermal shields are used or not, the increase of gas flow velocity could raise the stress level.In contrast, the increase of gas pressure cannot result in so significant effect.The influence of thermal shield and gas flow should be attributed to the modification of heat conduction and heat radiation by them.
PIV Measurement of Wall Shear Stress and Flow Structures within an Intracranial Aneurysm Model
Chow, Ricky; Sparrow, Eph; Campbell, Gary; Divani, Afshin; Sheng, Jian
2012-11-01
The formation and rupture of an intracranial aneurysm (IA) is a debilitating and often lethal event. Geometric features of the aneurysm bulb and upstream artery, such as bulb size, bulb shape, and curvature of the artery, are two groups of factors that define the flow and stresses within an IA. Abnormal flow stresses are related to rupture. This presentation discusses the development of a quasi-3D PIV technique and its application in various glass models at Re = 275 and 550 to experimentally assess at a preliminary level the impact of geometry and flow rate. Some conclusions are to be drawn linking geometry of the flow domain to rupture risk. The extracted results also serve as the baseline case and as a precursor to a companion presentation by the authors discussing the impact of flow diverters, a new class of medical devices. The PIV experiments were performed in a fully index-matched flow facility, allowing for unobstructed observations over complex geometry. A reconstruction and analysis method was devised to obtain 3D mean wall stress distributions and flow fields. The quasi 3D measurements were reconstructed from orthogonal planes encompassing the entire glass model, spaced 0.4mm apart. Wall shear stresses were evaluated from the near-wall flow viscous stresses.
Flow stress and tribology size effects in scaled down cylinder compression
GUO Bin; GONG Feng; WANG Chun-ju; SHAN De-bin
2009-01-01
Microforming is an effective method to manufacture small metal parts. However, macro forming can not be transferred to microforming directly because of size effects. Flow stress and tribology size effects were studied. Scaled down copper T2 cylinder compression was carried out with the lubrication of castor oil and without lubrication. The results show that the flow stress decreases with decreasing the initial specimen diameter in both lubrication conditions, and the flow stress decreases by 30 MPa with the initial specimen diameter decreasing from 8 mm to 1 mm. The friction factor increases obviously with decreasing the initial specimen diameter in the case of lubricating with castor oil, and the friction factor increases by 0.11 with the initial specimen diameter decreasing from 8mm to 1mm. However, the tribology size effect is not found in the case without lubrication. The reasons of the flow stress and tribology size effects were also discussed.
Response of hot element wall shear stress gages in laminar oscillating flows
Cook, W. J.; Murphy, J. D.; Giddings, T. A.
1986-01-01
An experimental investigation of the time-dependent response of hot element wall shear stress gages in unsteady periodic air flows is reported. The study has focused on wall shear stress in laminar oscillating flows produced on a flat plate by a free stream velocity composed of a mean component and a superposed sinusoidal variation. Two types of hot element gages, platinum film and flush wire, were tested for values of reduced frequency ranging from 0.14 to 2.36. Values of the phase angle of the wall shear stress variation relative to the free stream velocity, as indicated by the hot element gages, are compared with numerical prediction. The comparisons show that the gages indicate a wall shear stress variation that lags the true variation, and that the gages will also not indicate the correct wall shear stress variation in periodic turbulent flows.
Effect of Hematocrit on Wall Shear Stress for Blood Flow through Tapered Artery
Singh, A. K.; Singh, D. P.
2013-01-01
The purpose of this study to show the effects of Hematocrit (Red blood cells), height of stenosis, porous parameter and velocity of blood on wall shear stress of the flow of blood through tapered artery. The study reveals that wall shear stress reduces for increasing Hematocrit percentage. It is also observed that wall shear stress increases as stenosis height and porous parameter increase whereas it decreases with the increasing values of velocity of blood and slope of tapered artery.
Rasmussen, Henrik K.; Bejenariu, Anca Gabriela; Hassager, Ole
2010-01-01
with the assumption of pure configurational stress was accurately able to predict the startup as well as the reversed flow behavior. This confirms that this commonly used theoretical picture for the flow of polymeric liquids is a correct physical principle to apply. c 2010 The Society of Rheology. [DOI: 10.1122/1.3496378]...
Development of an algebraic stress/two-layer model for calculating thrust chamber flow fields
Chen, C. P.; Shang, H. M.; Huang, J.
1993-01-01
Following the consensus of a workshop in Turbulence Modeling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data, to account for the non-isotropic turbulence effects.
EFFECTS OF VASCULAR ZERO-STRESS STATE ON PULSATILE BLOOD FLOW
无
2001-01-01
In this paper, blood flow in artery was treated as the flow under equilibrium state (the steady flow under mean pressure) combined with the periodically small pulsatile flow. Based on vascular zero-stress state［1］, the pulsatile strains according to the radial and axial displacements of blood vessel were obtained. With the use of Hooke’s law, the pulsatile strains and the corresponding Cauchy stresses were connected, so the corresponding wall motion equations could be established here. By solving the linearized Navier-Stokes equations, the analytic expressions of the blood flow velocities and the vascular displacements could be obtained, and the influence of the circumferential and axial stretch ratio on pulsatile blood flow and vascular motion was discussed in details.
Off-centered stagnation point flow of a couple stress fluid towards a rotating disk.
Khan, Najeeb Alam; Riaz, Fatima
2014-01-01
An investigation has been made to study the off-centered stagnation flow of a couple stress fluid over a rotating disk. The model developed for the governing problem in the form of partial differential equations has been converted to ordinary differential equations with the use of suitable similarity transformation. The analytical approximation has been made with the most promising analytical approach, homotopy analysis method (HAM). The convergence region of the obtained solution is determined and plotted. The effects of couple stress and nondimensional parameters have been observed on the flows of couple stress fluid. Also comparison has been made with the Newtonian fluid as the special case of considered problem.
Analytical solutions of couple stress fluid flows with slip boundary conditions
Devakar M.
2014-09-01
Full Text Available In the present article, the exact solutions for fundamental flows namely Couette, Poiseuille and generalized Couette flows of an incompressible couple stress fluid between parallel plates are obtained using slip boundary conditions. The effect of various parameters on velocity for each problem is discussed. It is found that, for each of the problems, the solution in the limiting case as couple stresses approaches to zero is similar to that of classical viscous Newtonian fluid. The results indicate that, the presence of couple stresses decreases the velocity of the fluid.
Flow stress prediction for B210P steel at hot working conditions
Jiang, Guangwei; Di, Hongshuang; Cao, Yu; Zhang, Zhongwei; Wang, Yafei; Sui, Pengfei
2013-05-01
Prediction of the flow stress is a significant step to optimize the hot working processes. In order to establish a proper deformation constitutive equation, the compressive deformation behavior of B210P steel was investigated at temperature from 950° to 1150° and strain rates from 0.1s-1 to 10s-1 on a Gleeble-2000 thermo-simulation machine. Based on the true stress-strain data from flow stress curves, a revised model describing the relationships of the flow stress, strain rate and temperature of B210P steel at elevated temperatures is proposed considering the effect of strain on flow stress. The activation energies have been in the range of 277.740-420.241kJ/mol for different amounts of strain. Finally, the accuracy of the developed constitutive equation has been verified using standard statistical parameters. The results confirm that the developed strain-dependent constitutive equation gives an accurate and precise estimate of the flow stress in the relevant deformation conditions.
Helicity dynamics in stratified turbulence in the absence of forcing
Rorai, C; Pouquet, A; Mininni, P D
2012-01-01
A numerical study of decaying stably-stratified flows is performed. Relatively high stratification and moderate Reynolds numbers are considered, and a particular emphasis is placed on the role of helicity (velocity-vorticity correlations). The problem is tackled by integrating the Boussinesq equations in a periodic cubical domain using different initial conditions: a non-helical Taylor-Green (TG) flow, a fully helical Beltrami (ABC) flow, and random flows with a tunable helicity. We show that for stratified ABC flows helicity undergoes a substantially slower decay than for unstratified ABC flows. This fact is likely associated to the combined effect of stratification and large scale coherent structures. Indeed, when the latter are missing, as in random flows, helicity is rapidly destroyed by the onset of gravitational waves. A type of large-scale dissipative "cyclostrophic" balance can be invoked to explain this behavior. When helicity survives in the system it strongly affects the temporal energy decay and t...
Winkel, Leah C; Hoogendoorn, Ayla; Xing, Ruoyu; Wentzel, Jolanda J; Van der Heiden, Kim
2015-07-01
Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed.
Flow Stress Behavior and Processing Map of Al-Cu-Mg-Ag Alloy during Hot Compression
YANG Sheng; YI Danqing; ZHANG Hong; YAO Sujuan
2008-01-01
The hot deformation behavior of Al-Cu-Mg-Ag was studied by isothermal hot compression tests in the temperature range of 573-773 K and strain rate range of 0.001-1 s-1 on a Gleeble 1500 D thermal mechanical simulator. The results show the flow stress of Al-Cu-Mg-Ag alloy increases with strain rate and decreases after a peak value, indicating dynamic recovery and recrystallization. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate and temperature, the flow stress equation is estimated to illustrate the relation of strain rate and stress and temperature during high temperature deformation process. The processing maps exhibit two domains as optimum fields for hot deformation at different strains, including the high strain rate domain in 623-773 K and the low strain rate domain in 573-673 K.
H. P. RANI; G. J. REDDY; C. N. KIM
2013-01-01
The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number.
Reynolds stress flow shear and turbulent energy transfer in reversed field pinch configuration
Vianello, Nicola; Spolaore, Monica; Serianni, Gianluigi; Regnoli, Giorgio; Spada, Emanuele; Antoni, Vanni; Bergsåker, Henric; Drake, James R.
2003-10-01
The role of Reynolds Stress tensor on flow generation in turbulent fluids and plasmas is still an open question and the comprehension of its behavior may assist the understanding of improved confinement scenario. It is generally believed that shear flow generation may occur by an interaction of the turbulent Reynolds stress with the shear flow. It is also generally believed that this mechanism may influence the generation of zonal flow shears. The evaluation of the complete Reynolds Stress tensor requires contemporary measurements of its electrostatic and magnetic part: this requirement is more restrictive for Reversed Field Pinch configuration where magnetic fluctuations are larger than in tokamak . A new diagnostic system which combines electrostatic and magnetic probes has been installed in the edge region of Extrap-T2R reversed field pinch. With this new probe the Reynolds stress tensor has been deduced and its radial profile has been reconstructed on a shot to shot basis exploring differen plasma conditions. These profiles have been compared with the naturally occurring velocity flow profile, in particular during Pulsed Poloidal Current Drive experiment, where a strong variation of ExB flow radial profile has been registered. The study of the temporal evolution of Reynolds stress reveals the appearance of strong localized bursts: these are considered in relation with global MHD relaxation phenomena, which naturally occur in the core of an RFP plasma sustaining its configuration.
Miller, Todd S.; Bugliosi, Edward F.
2013-01-01
In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department and the Town of Dryden, New York, began a study of the stratified-drift aquifer system in the Virgil Creek and Dryden Lake Valleys in the Town of Dryden, Tompkins County. The study provided geohydrologic data needed by the town and county to develop a strategy to manage and protect their water resources. In this study area, three extensive confined sand and gravel aquifers (the upper, middle, and lower confined aquifers) compose the stratified-drift aquifer system. The Dryden Lake Valley is a glaciated valley oriented parallel to the direction of ice movement. Erosion by ice extensively widened and deepened the valley, truncated bedrock hillsides, and formed a nearly straight, U-shaped bedrock trough. The maximum thickness of the valley fill in the central part of the valley is about 400 feet (ft). The Virgil Creek Valley in the east part of the study area underwent less severe erosion by ice than the Dryden Lake Valley, and hence, it has a bedrock floor that is several hundred feet higher in altitude than that in the Dryden Lake Valley. The sources and amounts of recharge were difficult to identify in most areas because the confined aquifers are overlain by confining units. However, in the vicinity of the Virgil Creek Dam, the upper confined aquifer crops out at land surface in the floodplain of a gorge eroded by Virgil Creek, and this is where the aquifer receives large amounts of recharge from precipitation that directly falls over the aquifer and from seepage losses from Virgil Creek. The results of streamflow measurements made in Virgil Creek where it flows through the gorge indicated that the stream lost 1.2 cubic feet per second (ft3/s) or 0.78 million gallons per day (Mgal/d) of water in the reach extending from 220 ft downstream from the dam to 1,200 ft upstream from the dam. In the southern part of the study area, large amounts of recharge also replenish the
Mathematical model for blood flow through a bifurcated artery using couple stress fluid.
Srinivasacharya, D; Madhava Rao, G
2016-08-01
In this article, the blood flow through a bifurcated artery with mild stenosis is investigated taking blood as couple stress fluid. The artery configuring bifurcation is assumed to be symmetric about the axis of the artery and straight cylinders of finite length. The governing equations are non-dimensionalized and coordinate transformation is used to convert the irregular boundary to a regular boundary. The resulting system of equations is solved numerically using the finite difference method. The variation of shear stress, flow rate and impedance near the apex with pertinent parameters are studied graphically. It has been noticed that shear stress, flow rate and impedance have been changing suddenly with all the parameters on both sides of the apex. This occurs because of the backflow of the streaming blood at the onset of the lateral junction and secondary flow near the apex in the daughter artery.
Using the stress function in the flow of generalized Newtonian fluids through pipes and slits
Sochi, Taha
2015-01-01
We use a generic and general numerical method to obtain solutions for the flow of generalized Newtonian fluids through circular pipes and plane slits. The method, which is simple and robust can produce highly accurate solutions which virtually match any analytical solutions. The method is based on employing the stress, as a function of the pipe radius or slit thickness dimension, combined with the rate of strain function as represented by the fluid rheological constitutive relation that correlates the rate of strain to stress. Nine types of generalized Newtonian fluids are tested in this investigation and the solutions obtained from the generic method are compared to the analytical solutions which are obtained from the Weissenberg-Rabinowitsch-Mooney-Schofield method. Very good agreement was obtained in all the investigated cases. All the required quantities of the flow which include local viscosity, rate of strain, flow velocity profile and volumetric flow rate, as well as shear stress, can be obtained from ...
Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions
Pham, Ngoc H.; Voronov, Roman S.; Tummala, Naga Rajesh; Papavassiliou, Dimitrios V.
2014-03-01
In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed configuration of the columns are considered under Darcy flow conditions. The stress distributions change when the packing type changes. In the Darcy regime, the normalized stress distribution for a particular packing type is independent of the pressure difference that drives the flow and presents a common pattern. The three parameter (3P) log-normal distribution is found to describe the stress distributions in the randomly packed beds within statistical accuracy. In addition, the 3P log-normal distribution is still valid when highly porous scaffold geometries rather than sphere beds are examined. It is also shown that the 3P log-normal distribution can describe the bulk stress distribution in consolidated reservoir rocks like Berea sandstone.
Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions.
Pham, Ngoc H; Voronov, Roman S; Tummala, Naga Rajesh; Papavassiliou, Dimitrios V
2014-03-01
In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed configuration of the columns are considered under Darcy flow conditions. The stress distributions change when the packing type changes. In the Darcy regime, the normalized stress distribution for a particular packing type is independent of the pressure difference that drives the flow and presents a common pattern. The three parameter (3P) log-normal distribution is found to describe the stress distributions in the randomly packed beds within statistical accuracy. In addition, the 3P log-normal distribution is still valid when highly porous scaffold geometries rather than sphere beds are examined. It is also shown that the 3P log-normal distribution can describe the bulk stress distribution in consolidated reservoir rocks like Berea sandstone.
The microchannel flow model under shear stress and higher frequencies.
Parker, Kevin J
2017-02-24
The microchannel flow model provides a framework for considering the effect of the vascular bed on the time domain and frequency domain response of soft tissues. The derivation originates with a single small fluid filled vessel in an elastic medium under uniaxial compression. A fractal branching vasculature is also assumed to be present in the tissue under consideration. This short technical note considers two closely related issues. First, the response of the element under compression or shear as a function of the orientation of the fluid-filled vessel is considered. Second, the transition from quasistatic (Poiseuille's Law) to dynamic (Womersley equations) fluid flow is examined to better predict the evolution of behavior at higher frequencies. These considerations expand the conceptual framework of the microchannel flow model, particularly the range and limits of validity.
The microchannel flow model under shear stress and higher frequencies
Parker, K. J.
2017-04-01
The microchannel flow model provides a framework for considering the effect of the vascular bed on the time domain and frequency domain response of soft tissues. The derivation originates with a single small fluid-filled vessel in an elastic medium under uniaxial compression. A fractal branching vasculature is also assumed to be present in the tissue under consideration. This note considers two closely related issues. First, the response of the element under compression or shear as a function of the orientation of the fluid-filled vessel is considered. Second, the transition from quasistatic (Poiseuille’s Law) to dynamic (Womersley equations) fluid flow is examined to better predict the evolution of behavior at higher frequencies. These considerations expand the conceptual framework of the microchannel flow model, particularly the range and limits of validity.
Electromagnetic waves in stratified media
Wait, James R; Fock, V A; Wait, J R
2013-01-01
International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne
Hunt, Julian C. R.; Moustaoui, Mohamed; Mahalov, Alex
2015-09-01
High resolution three-dimensional simulations are presented of the interactions between turbulent shear flows moving with mean relative velocity ΔU below a stably stratified region with buoyancy frequency (N+). An artificial forcing in the simulation, with a similar effect as a small negative eddy viscosity, leads to a steady state flow which models thin interfaces. Characteristic eddies of the turbulence have length scale L. If the bulk Richardson number Rib=(LN+/ΔU)2 lies between lower and upper critical values denoted as Ri∗(temperature. Comparisons are made with shear turbulent interfaces with no stratification. When Rib>R~i, vertical propagating waves are generated, with shear stresses carrying significant momentum flux and progressively less as Rib increases. Simulations for a jet and a turbulent mixing layer show similar results. A perturbation analysis, using inhomogeneous Rapid Distortion Theory, models the transition zone between shear eddies below the interface and the fluctuations in the stratified region, consistent with the simulations. It demonstrates how the wave-momentum-flux has a maximum when Rib˜2 and then decreases as Rib increases. This coupling mechanism between eddies and waves, which is neglected in eddy viscosity models for shear layers, can drive flows in the stratosphere and the deeper ocean, with significant consequences for short- and long-term flow phenomena. The "detached layer" is a mechanism that contributes to the formation of stratus clouds and polluted layers above the atmospheric boundary layer.
Stratified medicine and reimbursement issues
Fugel, Hans-Joerg; Nuijten, Mark; Postma, Maarten
2012-01-01
Stratified Medicine (SM) has the potential to target patient populations who will most benefit from a therapy while reducing unnecessary health interventions associated with side effects. The link between clinical biomarkers/diagnostics and therapies provides new opportunities for value creation to
In-situ shear stress indicator using heated strain gages at the flow boundary
Yeh, Chi-An; Yang, Fuling
2011-11-01
This work borrows the concept of hot-wire anemometry and sketch a technique that uses local heat transfer to infer the flow field and the corresponding stress. Conventional strain gages were mounted at the flow solid boundary as the heat source and acrylic boundary was chosen for its low thermal conductivity ensuring heat accumulation when a gage is energized. The gage would now work in slightly overheated state and its self-heating leads to an additional thermal strain. When exposed to a flow field, heat is brought away by local forced convection, resulting in deviations in gage signal from that developed in quiescent liquid. We have developed a facility to achieve synchronous gage measurements at different locations on a solid boundary. Three steady flow motions were considered: circular Couette flow, rectilinear uniform flow, and rectilinear oscillating flow. Preliminary tests show the gage reading does respond to the imposed flow through thermal effects and greater deviation was measured in flows of higher shear strain rates. The correlation between the gage signals and the imposed flow field is further examined by theoretical analysis. We also introduced a second solid boundary to the vicinity of the gage in the two rectilinear flows. The gage readings demonstrate rises in its magnitudes indicating wall amplification effect on the local shear strain, agreeing to the drag augmentation by a second solid boundary reported in many multiphase flow literatures.
Prediction of flow stress of Ti-15-3 alloy with artificial neural network
无
2001-01-01
Hot compression experiments were conducted on Ti-15-3 alloy specimens using Gleeble-1500 Thermal Simulator．These tests were focused to obtain the flow stress data under various conditions of strain，strain rate and temperature. On the basis of these data， the predicting model for the nonlinear relation between flow stress and deformation strain，strain rate and temperature for Ti-15-3 alloy was developed with a back-propagation artificial neural network method. Results show that the neural network can reproduce the flow stress in the sampled data and predict the nonsampled data well. Thus the neural network method has been verified to be used to tackle hot deformation problems of Ti-15-3 alloy.
FlowPing - The New Tool for Throughput and Stress Testing
Ondrej Vondrous
2015-01-01
Full Text Available This article presents a new tool for network throughput and stress testing. The FlowPing tool is easy to use, and its basic output is very similar to standard Linux ping application. The FlowPing tool is not limited to reach-ability or round trip time testing but is capable of complex UDP based throughput stress testing with rich reporting capabilities on client and server sides. Our new tool implements features, which allow the user to perform tests with variable packet size and traffic rate. All these features can be used in one single test run. This allows the user to use and develop new methodologies for network throughput and stress testing. With the FlowPing tool, it is easy to perform the test with the slowly increasing the amount of network traffic and monitor the behavior of network when the congestion occurs.
Chronic Stress Impairs Collateral Blood Flow Recovery in Aged Mice
2014-10-15
0, normal; 1–5, cyanosis or loss of nail(s), where the score is dependent on the number of nails affected; 6–10, partial or complete atrophy of...digit(s), where the score reflects the number of digits affected; and 11, partial atrophy of forefoot [21]. Hind limb use scores (index of muscle function...brain, and cardiac fibrosis and, in many ways, provides a posttraumatic stress disorder (PTSD) model for mice [26]. As a model of physical/neurogenic
Algebraic Stress Model with RNG ε-Equation for Simulating Confined Strongly Swirling Turbulent Flows
Xu Jiangrong; Yao Qiang; Cao Xingyu; Cen Kefa
2001-01-01
Strongly swirl flow simulation are still under developing. In this paper, ε equation based on the Renormalization Group theory is used into algebraic stress model. Standard k-ε model, algebraic stress model by Jiang Zhang[5]and present model (RNG-ASM) are applied simultaneously to simulating the confined strongly swirling flow.The Simulating results by RNG-ASM model are compared to the results by other two model, it is shown that the predictions by this model display reasonable agreement with experimental data, and lead to greater improvement than Zhang's ASM turbulence model[5].
On the pressure and stress singularities induced by steady flows of incompressible viscous fluids
G.B.Sinclair; X.Chi; T.I-P.Shih
2009-01-01
Design for structural integrity requires an appreciation of where stress singularities can occur in structural configurations. While there is a rich literature devoted to the identification of such singular behavior in solid mechanics, to date there has been relatively little explicit identification of stress singularities caused by fluid flows. In this study, stress and pressure singularities induced by steady flows of viscous incompressible fluids are asymptotically identified. This is done by taking advantage of an earlier result that the Navier-Stokes equations are locally governed by Stokes flow in angular corners. Findings for power singularities are confirmed by developing and using an analogy with solid mechanics. This analogy also facilitates the identification of flow-induced log singularities. Both types of singularity are further confirmed for two global configurations by applying convergence-divergence checks to numerical results. Even though these flow-induced stress singularities are analogous to singularities in solid mechanics, they nonetheless render a number of structural configurations singular that were not previously appreciated as such from identifications within solid mechanics alone.
A new sensor for stress measurement based on blood flow fluctuations
Fine, I.; Kaminsky, A. V.; Shenkman, L.
2016-03-01
It is widely recognized that effective stress management could have a dramatic impact on health care and preventive medicine. In order to meet this need, efficient and seamless sensing and analytic tools for the non-invasive stress monitoring during daily life are required. The existing sensors still do not meet the needs in terms of specificity and robustness. We utilized a miniaturized dynamic light scattering sensor (mDLS) which is specially adjusted to measure skin blood flow fluctuations and provides multi- parametric capabilities. Based on the measured dynamic light scattering signal from the red blood cells flowing in skin, a new concept of hemodynamic indexes (HI) and oscillatory hemodynamic indexes (OHI) have been developed. This approach was utilized for stress level assessment for a few usecase scenario. The new stress index was generated through the HI and OHI parameters. In order to validate this new non-invasive stress index, a group of 19 healthy volunteers was studied by measuring the mDLS sensor located on the wrist. Mental stress was induced by using the cognitive dissonance test of Stroop. We found that OHIs indexes have high sensitivity to the mental stress response for most of the tested subjects. In addition, we examined the capability of using this new stress index for the individual monitoring of the diurnal stress level. We found that the new stress index exhibits similar trends as reported for to the well-known diurnal behavior of cortisol levels. Finally, we demonstrated that this new marker provides good sensitivity and specificity to the stress response to sound and musical emotional arousal.
Intermittent flow in yield-stress fluids slows down chaotic mixing.
Wendell, D M; Pigeonneau, F; Gouillart, E; Jop, P
2013-08-01
We present experimental results of chaotic mixing of Newtonian fluids and yield-stress fluids using a rod-stirring protocol with a rotating vessel. We show how the mixing of yield-stress fluids by chaotic advection is reduced compared to the mixing of Newtonian fluids and explain our results, bringing to light the relevant mechanisms: the presence of fluid that only flows intermittently, a phenomenon enhanced by the yield stress, and the importance of the peripheral region. This finding is confirmed via numerical simulations. Anomalously slow mixing is observed when the synchronization of different stirring elements leads to the repetition of slow stretching for the same fluid particles.
Salek, M Mehdi; Sattari, Pooria; Martinuzzi, Robert J
2012-03-01
The appearance of highly resistant bacterial biofilms in both community and hospitals environments is a major challenge in modern clinical medicine. The biofilm structural morphology, believed to be an important factor affecting the behavioral properties of these "super bugs", is strongly influenced by the local hydrodynamics over the microcolonies. Despite the common use of agitated well plates in the biology community, they have been used rather blindly without knowing the flow characteristics and influence of the rotational speed and fluid volume in these containers. The main purpose of this study is to characterize the flow in these high-throughput devices to link local hydrodynamics to observed behavior in cell cultures. In this work, the flow and wall shear stress distribution in six-well culture plates under planar orbital translation is simulated using Computational Fluid Dynamics (CFD). Free surface, flow pattern and wall shear stress for two shaker speeds (100 and 200 rpm) and two volumes of fluid (2 and 4 mL) were investigated. Measurements with a non-intrusive optical shear stress sensor and High Frame-rate Particle Imaging Velocimetry (HFPIV) are used to validate CFD predictions. An analytical model to predict the free surface shape is proposed. Results show a complex three-dimensional flow pattern, varying in both time and space. The distribution of wall shear stress in these culture plates has been related to the topology of flow. This understanding helps explain observed endothelial cell orientation and bacterial biofilm distributions observed in culture dishes. The results suggest that the mean surface stress field is insufficient to capture the underlying dynamics mitigating biological processes.
Numerical modelling of a turbulent bluff-body flow with Reynolds stress turbulent models
LI Guoxiu; Dirk ROEKAERTS
2005-01-01
Numerical modelling of a turbulent bluff-body flow has been performed using differential Reynolds stress models (DRSMs). To clarify the applicability of the existing DRSMs in this complex flow, several typical DRSMs, including LRR-IP model, JM model, SSG model, as well as a modified LRR-IP model, have been validated and evaluated. The performance difference between various DRSMs is quite significant. Most of the above mentioned DRSMs cannot provide overall satisfactory predictions for this challenging test case. Motivated by the deficiency of the existing approaches, a new modification of LRR-IP model has been proposed. A very significant improvement of the prediction of flow field is obtained.
Dynamics of Star Polymers in Fast Extensional Flow and Stress Relaxation
Huang, Qian; Agostini, Serena; Hengeller, Ludovica;
2016-01-01
We confirm the observation from Ianniruberto and Marrucci [ Macromolecules 2013, 46, 267-275 ] that entangled melts of branched polystyrenes behave like linear polystyrenes in the steady state of fast extensional flow, by measuring a linear, an asymmetric star, and a symmetric star polystyrene...... with the same span molecular weight (180 kg/mol). We show that all three melts reach the same extensional steady-state viscosity in fast extensional flow (faster than the inverse Rouse time). We further measure stress relaxation following steady extensional flow for the three melts. We show that initially...
Archambeau, C.B. [Univ. of Colorado, Boulder, CO (United States)
1994-01-01
A fractured solid under stress loading (or unloading) can be viewed as behaving macroscopically as a medium with internal, hidden, degrees of freedom, wherein changes in fracture geometry (i.e. opening, closing and extension) and flow of fluid and gas within fractures will produce major changes in stresses and strains within the solid. Likewise, the flow process within fractures will be strongly coupled to deformation within the solid through boundary conditions on the fracture surfaces. The effects in the solid can, in part, be phenomenologically represented as inelastic or plastic processes in the macroscopic view. However, there are clearly phenomena associated with fracture growth and open fracture fluid flows that produce effects that can not be described using ordinary inelastic phenomenology. This is evident from the fact that a variety of energy release phenomena can occur, including seismic emissions of previously stored strain energy due to fracture growth, release of disolved gas from fluids in the fractures resulting in enhanced buoyancy and subsequent energetic flows of gas and fluids through the fracture system which can produce raid extension of old fractures and the creation of new ones. Additionally, the flows will be modulated by the opening and closing of fractures due to deformation in the solid, so that the flow process is strongly coupled to dynamical processes in the surrounding solid matrix, some of which are induced by the flow itself.
Preferential paths in yield stress fluid flow through a porous medium
Guasto, Jeffrey; Waisbord, Nicolas; Stoop, Norbert; Dunkel, Jörn
2016-11-01
A broad range of biological, geological, and industrial materials with complex rheological properties are subjected to flow through porous media in applications ranging from oil recovery to food manufacturing. In this experimental study, we examine the flow of a model yield stress fluid (Carbopol micro-gel) through a quasi-2D porous medium, fabricated in a microfluidic channel. The flow is driven by applying a precisely-controlled pressure gradient and measured by particle tracking velocimetry, and our observations are complemented by a pore-network model of the yield stress fluid flow. While remaining unyielded at small applied pressure, the micro-gel begins to yield at a critical pressure gradient, exhibiting a single preferential flow path that percolates through the porous medium. As the applied pressure gradient increases, we observe a subsequent coarsening and invasion of the yielded, fluidized network. An examination of both the yielded network topology and pore-scale flow reveal that two cooperative phenomena are involved in sculpting the preferential flow paths: (1) the geometry of the porous microstructure, and (2) the adhesive surface interactions between the micro-gel and substrate. NSF CBET-1511340.
Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.
1999-01-01
The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge
Prediction of the Hot Flow Stress Behavior of AA6063 Including Mg2Si Dissolution
Odoh, Daniel; Mahmoodkhani, Yahya; Whitney, Mark; Wells, Mary
2017-03-01
A constitutive model that includes the effect of Mg2Si dissolution during pre-deformation heating and holding has been developed for the prediction of the hot flow stress behavior of AA6063 aluminum alloy. The deformation behavior of homogenized AA6063 aluminum alloy was studied by performing compression tests on a Gleeble 3500 thermomechanical simulator at temperatures ranging from 400 to 550 °C and strain rates from 0.01 to 10 s-1. A one-dimensional model of particle dissolution in spherical coordinate system was developed to determine the Mg-Si solute content during pre-deformation heating and holding. Using the Mg solute content determined from the particle dissolution model, the flow stress during the deformation of AA6063 aluminum alloy at specific temperatures and strain rates was predicted using a modified hyperbolic sine equation. The constitutive model developed was found to be in good agreement with experimental measurements in this study as well as other experimental and model results published in the literature. A 14% increase in flow stress of the alloy was observed for an increase in hold time from 60 to 1500 s at 450 °C. This is due to increased deformation resistance of the alloy as the Mg-Si solute content increases. The modified hyperbolic sine equation developed in this study clearly shows that accounting for Mg-Si solute content improves the ability to accurately predict the flow stress behavior of AA6063 aluminum alloy.
DETECTING FOREST STRESS AND DECLINE IN RESPONSE TO INCREASING RIVER FLOW IN SOUTHWEST FLORIDA, USA
Forest stress and decline resulting from increased river flows were investigated in Myakka River State Park (MRSP), Florida, USA. Since 1977, land-use changes around the upper Myakka River watershed have resulted in significant increases in water entering the river, which have...
Prediction of the Hot Flow Stress Behavior of AA6063 Including Mg2Si Dissolution
Odoh, Daniel; Mahmoodkhani, Yahya; Whitney, Mark; Wells, Mary
2017-02-01
A constitutive model that includes the effect of Mg2Si dissolution during pre-deformation heating and holding has been developed for the prediction of the hot flow stress behavior of AA6063 aluminum alloy. The deformation behavior of homogenized AA6063 aluminum alloy was studied by performing compression tests on a Gleeble 3500 thermomechanical simulator at temperatures ranging from 400 to 550 °C and strain rates from 0.01 to 10 s-1. A one-dimensional model of particle dissolution in spherical coordinate system was developed to determine the Mg-Si solute content during pre-deformation heating and holding. Using the Mg solute content determined from the particle dissolution model, the flow stress during the deformation of AA6063 aluminum alloy at specific temperatures and strain rates was predicted using a modified hyperbolic sine equation. The constitutive model developed was found to be in good agreement with experimental measurements in this study as well as other experimental and model results published in the literature. A 14% increase in flow stress of the alloy was observed for an increase in hold time from 60 to 1500 s at 450 °C. This is due to increased deformation resistance of the alloy as the Mg-Si solute content increases. The modified hyperbolic sine equation developed in this study clearly shows that accounting for Mg-Si solute content improves the ability to accurately predict the flow stress behavior of AA6063 aluminum alloy.
Computational turbulent stress closure for large-eddy simulation of compressible flow
van der Bos, F.; Geurts, Bernardus J.
2006-01-01
This paper studies the computation of stress tensors for turbulent compressible flow for purposes of subgrid modeling for LES (large eddy simulation) methods in an effort to provide a model closure. The method uses and compares a variety of filters and special decomposition methods on the velocity
Minghui Li
2016-05-01
Full Text Available The permeability of coal is a critical parameter in estimating the performance of coal reservoirs. Darcy’s law describes the flow pattern that the permeability has a linear relationship with the flow velocity. However, the stress induced deformation and damage can significantly influence the gas flow pattern and permeability of coal. Coals from Songzao coalfield in Chongqing, southwest China were collected for the study. The gas flow velocities under different injection gas pressures and effective stresses in the intact coal and damaged coal were tested using helium, incorporating the role of gas flow pattern on the permeability of coal. The relationships between the flow velocity and square of gas pressure gradient were discussed, which can help us to investigate the transformation conditions of gas linear flow and gas nonlinear flow in the coal. The results showed that the gas flow in the intact coal existed pseudo-initial flow rate under low effective stress. The low-velocity non-Darcy gas flow gradually occurred and the start-up pressure gradient increased in the coal as the effective stress increased. The gas flow rate in the damaged coal increased nonlinearly as the square of pressure gradient increased under low effective stress. The instability of gas flow caused by high ratio of injection gas pressure over effective stress in the damaged coal contributed to the increase of the gas flow rate. As the effective stress increased, the increase of gas flow rate in coal turned to be linear. The mechanisms of the phenomena were explored according to the experimental results. The permeability of coal was corrected based on the relationships between the flow velocity and square of gas pressure gradient, which showed advantages in accurately estimating the performance of coal reservoirs.
Gorder, Riley; Aliseda, Alberto
2009-11-01
The carotid artery bifurcation (CAB) is one of the leading site for atherosclerosis, a major cause of mortality and morbidity in the developed world. The specific mechanisms by which perturbed flow at the bifurcation and in the carotid bulge promotes plaque formation and growth are not fully understood. Shear stress, mass transport, and flow residence times are considered dominant factors. Shear stress causes restructuring of endothelial cells at the arterial wall which changes the wall's permeability. Long residence times are associated with enhanced mass transport through increased diffusion of lipids and white blood cells into the arterial wall. Although momentum and mass transfer are traditionally coupled by correlations similar to Reynolds Analogy, the complex flow patterns present in this region due to the pulsatile, transitional, detached flow associated with the complex geometry makes the validity of commonly accepted assumptions uncertain. We create solid models of the CAB from MRI or ultrasound medical images, build flow phantoms on clear polyester resin and use an IOR matching, blood mimicking, working fluid. Using PIV and dye injection techniques the shear stress and scalar transport are experimentally investigated. Our goal is to establish a quantitative relationship between momentum and mass transfer under a wide range of physiologically normal and pathological conditions.
Optimal bounds with semidefinite programming: An application to stress-driven shear flows.
Fantuzzi, G; Wynn, A
2016-04-01
We introduce an innovative numerical technique based on convex optimization to solve a range of infinite-dimensional variational problems arising from the application of the background method to fluid flows. In contrast to most existing schemes, we do not consider the Euler-Lagrange equations for the minimizer. Instead, we use series expansions to formulate a finite-dimensional semidefinite program (SDP) whose solution converges to that of the original variational problem. Our formulation accounts for the influence of all modes in the expansion, and the feasible set of the SDP corresponds to a subset of the feasible set of the original problem. Moreover, SDPs can be easily formulated when the fluid is subject to imposed boundary fluxes, which pose a challenge for the traditional methods. We apply this technique to compute rigorous and near-optimal upper bounds on the dissipation coefficient for flows driven by a surface stress. We improve previous analytical bounds by more than 10 times and show that the bounds become independent of the domain aspect ratio in the limit of vanishing viscosity. We also confirm that the dissipation properties of stress-driven flows are similar to those of flows subject to a body force localized in a narrow layer near the surface. Finally, we show that SDP relaxations are an efficient method to investigate the energy stability of laminar flows driven by a surface stress.
Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response
Bird, R. B.; Giacomin, A. J.; Schmalzer, A. M.; Aumnate, C.
2014-02-01
We examine the simplest relevant molecular model for large-amplitude shear (LAOS) flow of a polymeric liquid: the suspension of rigid dumbbells in a Newtonian solvent. We find explicit analytical expressions for the shear rate amplitude and frequency dependences of the first and third harmonics of the alternating shear stress response. We include a detailed comparison of these predictions with the corresponding results for the simplest relevant continuum model: the corotational Maxwell model. We find that the responses of both models are qualitatively similar. The rigid dumbbell model relies entirely on the dumbbell orientation to explain the viscoelastic response of the polymeric liquid, including the higher harmonics in large-amplitude oscillatory shear flow. Our analysis employs the general method of Bird and Armstrong ["Time-dependent flows of dilute solutions of rodlike macromolecules," J. Chem. Phys. 56, 3680 (1972)] for analyzing the behavior of the rigid dumbbell model in any unsteady shear flow. We derive the first three terms of the deviation of the orientational distribution function from the equilibrium state. Then, after getting the "paren functions," we use these for evaluating the shear stress for LAOS flow. We find the shapes of the shear stress versus shear rate loops predicted to be reasonable.
Effects of flow-induced shear stress on limbal epithelial stem cell growth and enrichment.
Yun Gyeong Kang
Full Text Available The roles of limbal epithelial stem cells (LESCs are widely recognized, but for these cells to be utilized in basic research and potential clinical applications, researchers must be able to efficiently isolate them and subsequently maintain their stemness in vitro. We aimed to develop a biomimetic environment for LESCs involving cells from their in vivo niche and the principle of flow-induced shear stress, and to subsequently demonstrate the potential of this novel paradigm. LESCs, together with neighboring cells, were isolated from the minced limbal tissues of rabbits. At days 8 and 9 of culture, the cells were exposed to a steady flow or intermittent flow for 2 h per day in a custom-designed bioreactor. The responses of LESCs and epithelial cells were assessed at days 12 and 14. LESCs and epithelial cells responded to both types of flow. Proliferation of LESCs, as assessed using a BrdU assay, was increased to a greater extent under steady flow conditions. Holoclones were found under intermittent flow, indicating that differentiation into transient amplifying cells had occurred. Immunofluorescent staining of Bmi-1 suggested that steady flow has a positive effect on the maintenance of stemness. This finding was confirmed by real-time PCR. Notch-1 and p63 were more sensitive to intermittent flow, but this effect was transient. K3 and K12 expression, indicative of differentiation of LESCs into epithelial cells, was induced by flow and lasted longer under intermittent flow conditions. In summary, culture of LESCs in a bioreactor under a steady flow paradigm, rather than one of intermittent flow, is beneficial for both increasing proliferation and maintaining stemness. Conversely, intermittent flow appears to induce differentiation of LESCs. This novel experimental method introduces micro-mechanical stimuli to traditional culture techniques, and has potential for regulating the proliferation and differentiation of LESCs in vitro, thereby
Resende, P.R. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal)]. E-mail: resende@fe.up.pt; Escudier, M.P. [Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH (United Kingdom)]. E-mail: escudier@liv.ac.uk; Presti, F [Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH (United Kingdom); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEM, Universidade do Minho Campus de Azurem, 4800-058 Guimaraes (Portugal)]. E-mail: fpinho@dem.uminho.pt; Cruz, D.O.A. [Departamento de Engenharia Mecanica, Universidade Federal do Para-UFPa Campus Universitario do Guama, 66075-900 Belem, Para (Brazil)]. E-mail: doac@ufpa.br
2006-04-15
An anisotropic low Reynolds number k-{epsilon} turbulence model has been developed and its performance compared with experimental data for fully-developed turbulent pipe flow of four different polymer solutions. Although the predictions of friction factor, mean velocity and turbulent kinetic energy show only slight improvements over those of a previous isotropic model [Cruz, D.O.A., Pinho, F.T., Resende, P.R., 2004. Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newt. Fluid Mech. 121, 127-141], the new turbulence model is capable of predicting the enhanced anisotropy of the Reynolds normal stresses that accompanies polymer drag reduction in turbulent flow.
Ravindranadh BOBBILI; B. RAMAKRISHNA; V. MADHU; A.K. GOGIA
2015-01-01
An artificial neural network (ANN) constitutive model and JohnsoneCook (JeC) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments at various temperatures. A neural network configuration consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tem-peratures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB over a range of temperatures (25?e300 ?C), strains (0.05e0.3) and strain rates (1500e4500 s?1) were employed to formulate JeC model to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading. The JeC model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental data for all strain rates and temperatures.
Flow velocities and bed shear stresses in a stone cover under an oscillatory flow
Stenanato, F.; Nielsen, Anders Wedel; Sumer, B. Mutlu;
2010-01-01
I order to get a better understanding of the interaction between the wave-induced, near-bed oscillatory flow, the stome cover and the sea bed, physical model tests were carried out. The tests were conducted in an oscillating water tunnel. The bottom of the tunnes was covered by one, two and three...
Clustering of floating particles in stratified turbulence
Boffetta, Guido; de Lillo, Filippo; Musacchio, Stefano; Sozza, Alessandro
2016-11-01
We study the dynamics of small floating particles transported by stratified turbulence in presence of a mean linear density profile as a simple model for the confinement and the accumulation of plankton in the ocean. By means of extensive direct numerical simulations we investigate the statistical distribution of floaters as a function of the two dimensionless parameters of the problem. We find that vertical confinement of particles is mainly ruled by the degree of stratification, with a weak dependency on the particle properties. Conversely, small scale fractal clustering, typical of non-neutral particles in turbulence, depends on the particle relaxation time and is only weakly dependent on the flow stratification. The implications of our findings for the formation of thin phytoplankton layers are discussed.
Hot deformation behaviors and flow stress model of GCr15 bearing steel
LIAO Shu-lun; ZHANG Li-wen; YUE Chong-xiang; PEI Ji-bin; GAO Hui-ju
2008-01-01
The hot deformation behaviors of GCr15 bearing steel were investigated by isothermal compression tests, performed on a Gleeble-3800 thermal-mechanical simulator at temperatures between 950℃ and 1 150 ℃ and strain rates between 0.1 and 10s-1.The peak stress and peak strain as functions of processing parameters were obtained. The dependence of peak stress on strain rate and temperature obeys a hyperbolic sine equation with a Zener-Hollomon parameter. By regression analysis, in the temperature range of 950-1150℃ and strain rate range of 0.1-10 s-1, the mean activation energy and the stress exponent were determined to be 351kJ/mol and 4.728, respectively. Meanwhile, models of flow stress and dynamic recrystallization (DRX) grain size were also established. The model predictions show good agreement with experimental results.
Stratified Medicine and Reimbursement Issues
Hans-Joerg eFugel
2012-10-01
Full Text Available Stratified Medicine (SM has the potential to target patient populations who will most benefit from a therapy while reducing unnecessary health interventions associated with side effects. The link between clinical biomarkers/diagnostics and therapies provides new opportunities for value creation to strengthen the value proposition to pricing and reimbursement (P&R authorities. However, the introduction of SM challenges current reimbursement schemes in many EU countries and the US as different P&R policies have been adopted for drugs and diagnostics. Also, there is a lack of a consistent process for value assessment of more complex diagnostics in these markets. New, innovative approaches and more flexible P&R systems are needed to reflect the added value of diagnostic tests and to stimulate investments in new technologies. Yet, the framework for access of diagnostic–based therapies still requires further development while setting the right incentives and appropriate align stakeholders interests when realizing long- term patient benefits. This article addresses the reimbursement challenges of SM approaches in several EU countries and the US outlining some options to overcome existing reimbursement barriers for stratified medicine.
The longitudinal relationship of work stress with peak expiratory flow: a cohort study.
Loerbroks, Adrian; Karrasch, Stefan; Lunau, Thorsten
2017-05-29
Research has suggested that psychological stress is associated with reduced lung function and with the development of respiratory disease. Among the major potential sources of stress in adulthood are working conditions. We aimed to examine the relationship of work stress with lung function. We drew on 4-year prospective data from the Survey of Health, Ageing and Retirement in Europe. The analyzed sample comprised 2627 workers aged 50 years or older who were anamnestically free of respiratory disease. Work stress at baseline was operationalized by abbreviated instruments measuring the well-established effort-reward imbalance model (seven items) and the control component of the job-demand control (two items). Peak expiratory flow (PEF) was determined at baseline and at follow-up. Continuous and categorized (i.e., by the tertile) work stress variables were employed in multivariable linear regression models to predict PEF change. Work stress did not show statistically significant associations with PEF change. For instance, the unstandardized regression coefficient for PEF decline according to high versus low effort-reward imbalance was -1.41 (95% confidence interval = -3.75, 0.94). Our study is the first to examine prospective relationships between work stress and PEF. Overall, we did not observe meaningful associations. Future studies should consider a broader spectrum of spirometric parameters and should expand research to younger and possibly less-selected working populations (i.e., aged <50 years).
VELOCITY DISTRIBUTION IN TRAPEZOID-SECTION OPEN CHANNEL FLOW WITH A NEW REYNOLDS-STRESS EXPRESSION
Ma Zheng
2003-01-01
By considering that the coherent structure is the main cause of the Reynolds stress, a new Reynolds stress expression was given. On this basis the velocity distribution in the trapezoid-section open channel flow was worked out with the pseudo-spectral method. The results were compared with experimental data and the influence of the ratio of length to width of the cross-section and the lateral inclination on the velocity distribution was analyzed. This model can be used the large flux in rivers and open channes.
Creep measurements confirm steady flow after stress maximum in extension of branched polymer melts
Javier Alvarez, Nicolas; Román Marín, José Manuel; Huang, Qian;
2013-01-01
We provide conclusive evidence of nonmonotonic mechanical behavior in the extension of long-chain branched polymer melts. While nonmonotonic behavior is known to occur for solids, for the case of polymeric melts, this phenomenon is in direct contrast with current theoretical models. We rule out...... the possibility of the overshoot being an experimental artifact by confirming the existence of steady flow after a maximum in the ratio of stress to strain rate versus strain under both constant stress and constant strain-rate kinematics. This observation indicates the omission of important physics from current...
Background Oriented Schlieren in a Density Stratified Fluid
Verso, Lilly
2015-01-01
Non-intrusive quantitative fluid density measurements methods are essential in stratified flow experiments. Digital imaging leads to synthetic Schlieren methods in which the variations of the index of refraction are reconstructed computationally. In this study, an important extension to one of these methods, called Background Oriented Schlieren (BOS), is proposed. The extension enables an accurate reconstruction of the density field in stratified liquid experiments. Typically, the experiments are performed by the light source, background pattern, and the camera positioned on the opposite sides of a transparent vessel. The multi-media imaging through air-glass-water-glass-air leads to an additional aberration that destroys the reconstruction. A two-step calibration and image remapping transform are the key components that correct the images through the stratified media and provide non-intrusive full-field density measurements of transparent liquids.
Background oriented schlieren in a density stratified fluid
Verso, Lilly; Liberzon, Alex
2015-10-01
Non-intrusive quantitative fluid density measurement methods are essential in the stratified flow experiments. Digital imaging leads to synthetic schlieren methods in which the variations of the index of refraction are reconstructed computationally. In this study, an extension to one of these methods, called background oriented schlieren, is proposed. The extension enables an accurate reconstruction of the density field in stratified liquid experiments. Typically, the experiments are performed by the light source, background pattern, and the camera positioned on the opposite sides of a transparent vessel. The multimedia imaging through air-glass-water-glass-air leads to an additional aberration that destroys the reconstruction. A two-step calibration and image remapping transform are the key components that correct the images through the stratified media and provide a non-intrusive full-field density measurements of transparent liquids.
A multi-layer description of Reynolds stresses in canonical wall bounded flows
Chen, Xi; Hussain, Fazle; She, Zhen-Su
2015-11-01
A complete description of the Reynolds stress tensor is obtained for all three canonical wall turbulence (channel, pipe and turbulent boundary layer - TBL). The result builds on a multi-layer description of length (order) functions and their ratios, including viscous sublayer, buffer layer, meso-layer for the near wall (inner) region, and bulk flow or a central core (absent in TBL) for the outer region. It is shown that the streamwise mean kinetic-energy profile is quantified with high accuracy over the entire flow domain. The model contains only three Re-dependent parameters for Reynolds number (Re) covering nearly three decades. Furthermore, the inner peak location is predicted to be invariant at y+ = 15, while its magnitude shows notable Re and geometry effects, predicted to be .9.2 for high Re's pipe flows. A mechanism is proposed for the emergence of outer peak in pipes, whose magnitude is predicted to scale as .Reτ0. 05 beyond a critical Reτ about 104(). The recently reported logarithmic dependence in the bulk is recovered, but with an alternative explanation. The result is successfully extended to TBL flows by a fractional total stress and an absence of core. Equally accurate descriptions of vertical and spanwise kinetic-energy are also presented for the three flows. The result has been used to modify turbulent engineering models (i.e. k- ω model) with significant improvement.
Parallel glide: flow of dislocations with internal stress source/sink distribution
Karlo T Raić
2008-01-01
Full Text Available The unexpected glide of dislocations on a plane parallel to the film/substrate interface in ultrathin copper films, which has been called parallel glide (Balk et al 2003 Acta Metall. 51 447, is described using an analytical model. The phenomenon is observed as a problem involving inlet/outlet flow from different positions of a grain boundary into the grain channel. In this sense, parallel glide is presented as the flow of dislocations with an internal stress source/sink distribution.
Charoenphonphanich, C.; Niwa, H.; Ennoji, H.; Iijima, T. [Tokai University, Tokyo (Japan)
1997-10-01
A numerical analysis of the flow and mixing of rich mixture and air inducted into the cylinder through each of the two intake ports of a stratified charge engine have been carried out. Numerical calculations were performed by finite volume method for three types of the intake port configurations: inverse V type, parallel type and V type and two types of valve timing; conventional and late closing (Miller cycle). Velocity field, turbulent kinetic energy and distribution of mixture concentration in the cylinder were examined. 3 refs., 10 figs.
Optimal stratification of item pools in α-stratified computerized adaptive testing
Chang, Hua-Hua; Linden, van der Wim J.
2003-01-01
A method based on 0-1 linear programming (LP) is presented to stratify an item pool optimally for use in α-stratified adaptive testing. Because the 0-1 LP model belongs to the subclass of models with a network flow structure, efficient solutions are possible. The method is applied to a previous item
Randriamampianina, A.; Schiestel, R. [UMR CNRS, Marseille (France). Institut de Recherche sur les Phenomenes; Wilson, M. [University of Bath (United Kingdom). Dept. of Mechanical Engineering
2004-12-01
We present axisymmetric numerical simulation and modelling of the turbulent flow between corotating disks with a stationary outer casing, the enclosed corotating disk pair configuration. This follows previous work on laminar flow for an identical geometry defined by a gap ratio G=0.6 (=s/(b-a)) and a/b=0.5, where a and b are the inner and outer radii, and s is the inter-disk distance [J. Fluid Mech. 434 (2001) 39]. The rotation rate considered in the present case is equivalent to Re=1.46 x 10{sup 5}, where Re (={omega}b{sup 2}/{nu}) is the rotational Reynolds number. This corresponds to a value at which mean flow measurements have been obtained for the same configuration [Flow in a rotating cavity with a peripheral inlet and outlet of cooling air, in: ASME Int. Gas Turbine and Aeroengine Cong., paper 96-GT-309, Birmingham]. In computed laminar regimes, it was found previously for this aspect ratio that the flow structure is first characterized by a shift-and-reflect symmetry at lower values of Re before bifurcating to symmetry breaking at higher rotation rates. For the rotation rate under consideration here, the flow is turbulent and shows an unsteady behaviour in the mean, characterized by flapping of the flow between the two disks, inducing symmetry breaking with respect to the inter-disk midplane. Similarities are observed between the centripetal flow coming from the stationary casing and an impinging jet in a cavity. Comparisons are made between the computed results from the axisymmetric numerical simulation (ANS), a Reynolds Stress Transport Model (RSM) and the available experimental data. The RSM predictions are in close agreement with the mean flow measurements. The ANS results give a more detailed description of the flow characteristics, but suffer from the axisymmetry assumption that is not compatible with the three-dimensional turbulence. (author)
Kersh, Dikla
2013-01-01
Pulsating flows with a \\emph{total reverse flow} phase are ubiquitous in physiological systems in normal and pathological conditions. Irregularity of hemodynamic parameters in such flows is correlated with the appearance and development of several arterial pathologies. We study the relations between flow waveform parameters and the wall shear stress (WSS) related quantities such as mean, root-mean-square, gradient of WSS and the oscillating shear index. The phase-averaged velocity profiles measured by the digital particle image velocimetry are used to estimate WSS utilizing the Womersley pulsating flow model. In addition to the Reynolds and Womersley numbers, another dimensionless parameter, pulsating index (PI) which is the ratio of forward flow rate to the reverse flow rate is required. PI is essential for the complete description of the flow patterns with the total flow reversal. We demonstrate significant effects on the WSS quantities due to the pulsating frequency and PI. Furthermore, the particle reside...
Flow stress equation for multipass hot-rolling of aluminum alloys
无
2001-01-01
A series of simple axisymmetric compression tests were carried out on the computer servo-controlled Gleeble 1 500 machine when strain rates ranged between 0.05-25 s-1 and deformation temperature 300-500 ℃. The results show that flow stress is related to the Zener-Hollonom parameter Z and strain, as well as the static recrystallization fraction between passes during multipass hot deformation of 5182 aluminum alloy. Hence, a modified exponential flow stress equation was presented by considering the values of lnA and β as functions of strain, and by using the uniform softening method and incorporating the static recrystallization fraction between passes to consider the effects of residual strain during multipass hot-rolling of 5182 aluminum alloy. The validity of the equation was examined by a typical non-isothermal multipass deformation test.
Hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis
Awais, M.; Saleem, S.; Hayat, T.; Irum, S.
2016-12-01
This communication presents the magnetohydrodynamics (MHD) flow of a couple-stress nanofluid over a convective moving wall. The flow dynamics are analyzed in the boundary layer region. Convective cooling phenomenon combined with thermophoresis and Brownian motion effects has been discussed. Similarity transforms are utilized to convert the system of partial differential equations into coupled non-linear ordinary differential equation. Optimal homotopy analysis method (OHAM) is utilized and the concept of minimization is employed by defining the average squared residual errors. Effects of couple-stress parameter, convective cooling process parameter and energy enhancement parameters are displayed via graphs and discussed in detail. Various tables are also constructed to present the error analysis and a comparison of obtained results with the already published data. Stream lines are plotted showing a difference of Newtonian fluid model and couplestress fluid model.
Heat stress redistributes blood flow in arteries of the brain during dynamic exercise.
Sato, Kohei; Oue, Anna; Yoneya, Marina; Sadamoto, Tomoko; Ogoh, Shigehiko
2016-04-01
We hypothesized that heat stress would decrease anterior and posterior cerebral blood flow (CBF) during exercise, and the reduction in anterior CBF would be partly associated with large increase in extracranial blood flow (BF). Nine subjects performed 40 min of semirecumbent cycling at 60% of the peak oxygen uptake in hot (35°C; Heat) and thermoneutral environments (25°C; Control). We evaluated BF and conductance (COND) in the external carotid artery (ECA), internal carotid artery (ICA), and vertebral artery (VA) using ultrasonography. During the Heat condition, ICA and VA BF were significantly increased 10 min after the start of exercise (P brain arteries to exercise, which resulted in an alteration in the distribution of cardiac output. Moreover, a hyperthermia-induced increase in extracranial BF might compromise anterior CBF during exercise with heat stress.
Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates
Nizolek, Thomas, E-mail: tnizolek@engr.ucsb.edu; Avallone, Jaclyn T.; Pollock, Tresa M. [Materials Department, University of California Santa Barbara, Santa Barbara, California 93106 (United States); Beyerlein, Irene J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mara, Nathan A. [Institute for Materials Science and the Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2016-02-01
The flow stress, ductility, and in-plane anisotropy are evaluated for bulk accumulative roll bonded copper-niobium nanolaminates with layer thicknesses ranging from 1.8 μm to 15 nm. Uniaxial tensile tests conducted parallel to the rolling direction and transverse direction demonstrate that ductility generally decreases with decreasing layer thickness; however, at 30 nm, both high strengths (1200 MPa) and significant ductility (8%) are achieved. The yield strength increases monotonically with decreasing layer thickness, consistent with the Hall-Petch relationship, and significant in-plane flow stress anisotropy is observed. Taylor polycrystal modeling is used to demonstrate that crystallographic texture is responsible for the in-plane anisotropy and that the effects of texture dominate even at nanoscale layer thicknesses.
Stratified scaffold design for engineering composite tissues.
Mosher, Christopher Z; Spalazzi, Jeffrey P; Lu, Helen H
2015-08-01
A significant challenge to orthopaedic soft tissue repair is the biological fixation of autologous or allogeneic grafts with bone, whereby the lack of functional integration between such grafts and host bone has limited the clinical success of anterior cruciate ligament (ACL) and other common soft tissue-based reconstructive grafts. The inability of current surgical reconstruction to restore the native fibrocartilaginous insertion between the ACL and the femur or tibia, which minimizes stress concentration and facilitates load transfer between the soft and hard tissues, compromises the long-term clinical functionality of these grafts. To enable integration, a stratified scaffold design that mimics the multiple tissue regions of the ACL interface (ligament-fibrocartilage-bone) represents a promising strategy for composite tissue formation. Moreover, distinct cellular organization and phase-specific matrix heterogeneity achieved through co- or tri-culture within the scaffold system can promote biomimetic multi-tissue regeneration. Here, we describe the methods for fabricating a tri-phasic scaffold intended for ligament-bone integration, as well as the tri-culture of fibroblasts, chondrocytes, and osteoblasts on the stratified scaffold for the formation of structurally contiguous and compositionally distinct regions of ligament, fibrocartilage and bone. The primary advantage of the tri-phasic scaffold is the recapitulation of the multi-tissue organization across the native interface through the layered design. Moreover, in addition to ease of fabrication, each scaffold phase is similar in polymer composition and therefore can be joined together by sintering, enabling the seamless integration of each region and avoiding delamination between scaffold layers.
Ha, Hojin; Lantz, Jonas; Haraldsson, Henrik; Casas, Belen; Ziegler, Magnus; Karlsson, Matts; Saloner, David; Dyverfeldt, Petter; Ebbers, Tino
2016-12-01
Flow-induced blood damage plays an important role in determining the hemodynamic impact of abnormal blood flow, but quantifying of these effects, which are dominated by shear stresses in highly fluctuating turbulent flow, has not been feasible. This study evaluated the novel application of turbulence tensor measurements using simulated 4D Flow MRI data with six-directional velocity encoding for assessing hemodynamic stresses and corresponding blood damage index (BDI) in stenotic turbulent blood flow. The results showed that 4D Flow MRI underestimates the maximum principal shear stress of laminar viscous stress (PLVS), and overestimates the maximum principal shear stress of Reynolds stress (PRSS) with increasing voxel size. PLVS and PRSS were also overestimated by about 1.2 and 4.6 times at medium signal to noise ratio (SNR) = 20. In contrast, the square sum of the turbulent viscous shear stress (TVSS), which is used for blood damage index (BDI) estimation, was not severely affected by SNR and voxel size. The square sum of TVSS and the BDI at SNR >20 were underestimated by less than 1% and 10%, respectively. In conclusion, this study demonstrated the feasibility of 4D Flow MRI based quantification of TVSS and BDI which are closely linked to blood damage.
Application of Entropy Concept for Shear Stress Distribution in Laminar Pipe Flow
Choo, Yeon Moon; Choo, Tai Ho; Jung, Donghwi; Seon, Yun Gwan; Kim, Joong Hoon
2016-04-01
In the river fluid mechanics, shear stress is calculated from frictional force caused by viscosity and fluctuating velocity. Traditional shear stress distribution equations have been widely used because of their simplicity. However, they have a critical limitation of requiring energy gradient which is generally difficult to estimate in practice. Especially, measuring velocity/velocity gradient on the boundary layer is difficult in practice. It requires point velocity throughout the entire cross section to calculate velocity gradient. This study proposes shear stress distribution equations for laminar flow based on entropy theory using mean velocity and entropy coefficient. The proposed equations are demonstrated and compared with measured shear stress distribution using Nikuradse's data. Results showed that the coefficient of determination is around 0.99 indicating that the proposed method well describes the true shear stress distribution. Therefore, it was proved that shear stress distribution can be easily and accurately estimated by using the proposed equations. (This research was supported by a gran(13AWMP-B066744-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean Government)
A Note on the bottom shear stress in oscillatory planetary boundary layer flow
Dag Myrhaug
1988-07-01
Full Text Available A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974 measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.
Mixed Convection Flow of Couple Stress Fluid in a Vertical Channel with Radiation and Soret Effects
Kaladhar Kolla
2016-01-01
Full Text Available The radiation and thermal diffusion effects on mixed convection flow of couple stress fluid through a channel are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the Spectral Quasi-linearization Method (QLM. The results, which are discussed with the aid of the dimensionless parameters entering the problem, are seen to depend sensitively on the parameters.
Interfacial stress balances in structured continua and free surface flows in ferrofluids
Chaves, Arlex [School of Chemical Engineering, Universidad Industrial de Santander, Calle 9 Cra. 27, Edificio 24, Bucaramanga, Santander (Colombia); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA and Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States)
2014-04-15
Interfacial linear and internal angular momentum balances are obtained for a structured continuum and for the special case of a ferrofluid, a suspension of magnetic nanoparticles in a Newtonian fluid. The interfacial balance equations account for the effects of surface tension and surface tension gradient, magnetic surface excess forces, antisymmetric stresses, and couple stresses in driving interfacial flows in ferrofluids. Application of the interfacial balance equations is illustrated by obtaining analytical expressions for the translational and spin velocity profiles in a thin film of ferrofluid on an infinite flat plate when a rotating magnetic field is applied with axis of rotation parallel to the ferrofluid/air interface. The cases of zero and non-zero spin viscosity are considered for small applied magnetic field amplitude. Expressions for the maximum translational velocity, slope of the translational velocity profile at the ferrofluid/air interface, and volumetric flow rate are obtained and their use to test the relevance of spin viscosity and couple stresses in the flow situation under consideration is discussed.
Acute stress reduces blood flow in the orofacial area, in conscious rabbits.
Roatta, Silvestro; Mohammed, Mazher; Passatore, Magda
2009-04-01
In the complex neurovascular control of the orofacial area, the only vasoconstrictor action is mediated by the sympathetic nervous system; however, its functional role is still unclear as little evidence exists of vasoconstrictor responses to physiological stimuli in both animal and human models. Aim of the present study was to investigate, orofacial vascular responses to acute stress in conscious rabbits. Twenty rabbits, implanted with chronic perivascular flow probes on the facial artery and with a telemetric probe for arterial blood pressure, were subjected to different alerting/stress stimuli, i.e., noise, taps on the rabbit's box, air jet, noxious cutaneous stimuli. Smaller groups of animal also underwent electromyographic (EMG) activity recording from the masseter muscle, unilateral section of the cervical sympathetic nerve (n=8), and alpha-adrenergic blockade with phentolamine (n=6). On average, all stressors evoked a pressor response accompanied by variable changes in heart rate and induced a marked, short-latency reduction in facial artery blood flow, corresponding to a decrease of 37-50% in vascular conductance of the facial artery. Local sympathetic denervation abolished the short-latency (15s) phase of the long-lasting response to the air jet. All vasoconstrictor effects were blocked by phentolamine. Increases in blood flow were observed only in concomitance with masseter EMG activity either during masticatory activity or in the form of brief occasional spontaneous contractions. This study provides evidence of an effective vasoconstrictor control by the sympathetic system in the orofacial area under stress conditions.
G.S. Fu; W.Z. Chen; K.W. Qian
2005-01-01
The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression testusing Gleeble1500 dynamic hot-simulation testing machine. The results show that the A1 sheets possess the remarkable characteristic of steady state flow stress when they are deformed in the temperature range of 350-500℃ at strain rates within the range of 0.01-10.0s-1. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature, which implies that the process of plastic deformation at elevated temperature for this material is thermally activated. Compared with the Al pieces prepared by no or conventional melt-treatment, hot deformation activation energy of Al sheets prepared by high-efficient melt-treatment is the smallest (Q = 168.0kJ/mol), which reveals that the hot working formability of this material is very better, and has directly to do with the effective improvement of its metallurgical quality.
Effect of Shear Stress in Flow on Cultured Cell: Using Rotating Disk at Microscope
Haruka Hino
2016-08-01
Full Text Available An experimental system of the Couette type flow with a rotating disk has been designed to apply wall shear stress quantitatively on the cell culture at the microscopic observation in vitro. The shear stress on the wall is calculated with an estimated Couette type of the velocity profile between the rotating disk and the culture plate. The constant rotational speed (lower than 400 rpm produces the wall shear stress lower than 2 Pa. The rotating disk system is mounted on the stage of an inverted phase contrast microscope to observe the behavior of cells adhered on the plate under the shear flow. Two kinds of cells were used in the test: C2C12 (mouse myoblast cell line, and MC3T3-E1 (mouse osteoblast precursor cell line. The experiments show that C2C12 tends to make orientation diagonal to the stream line, and that MC3T3-E1 tends to make orientation parallel to the stream line. Deformation and exfoliation of cells can be observed under controlled wall shear stress by the experimental system.
Wilson, Jordan M.
of mean shear and buoyancy frequency, S and N, respectively. Length scale estimates for LM are given by LkS ≡ k1/2/S and LkN ≡ k1/2/N, where LkS provides an accurate estimate for eddy viscosity, nut, under neutral to strongly stable conditions for SABL data. The relative influence of shear and buoyancy are given by the ratio of the respective time scales, S--1 and N--1, with the pertinent time scale of the large-scale motions, TP ≡ k/P, through the parameters STP and NTP. L kS's range of applicability is further assessed in a STP-NTP parameter space. In developing these parameterizations, the stress-intensity ratio, c2 , is evaluated using high-Re stably stratified data and is shown to exhibit a near constant value (c2 ≈ 0.25) for stably stratified geophysical turbulence. These findings provide a clear trajectory for numerical modeling of stably stratified geophysical shear turbulence without reliance on stability or damping functions, tuning parameters, or artificial parameterizations. An initial modeling study of moderate-Re channel and Ekman layer flows using the proposed parameterizations confirms this supposition. Finally, it is in this new light that large-scale implications of wind energy can now be considered. As a first step in this process, computational fluid dynamics (CFD) studies of wind turbine interactions are carried out under neutrally stratified conditions. Simulations clearly show that actuator line models provide efficacy in wake generation, interaction, and restoration and highlight model requirements for stably stratified conditions. Results suggest that standard horizontal spacings of 5--10 rotor diameters yield significant reductions in power output and increases turbulence intensity and fatigue loading.
Characterization of Inlet Diffuser Performance for Stratified Thermal Storage
Cimbala, John M.; Bahnfleth, William; Song, Jing
1999-11-01
Storage of sensible heating or cooling capacity in stratified vessels has important applications in central heating and cooling plants, power production, and solar energy utilization, among others. In stratified thermal storage systems, diffusers at the top and bottom of a stratified tank introduce and withdraw fluid while maintaining a stable density gradient and causing as little mixing as possible. In chilled water storage applications, mixing during the formation of the thermocline near an inlet diffuser is the single greatest source of thermal losses. Most stratified chilled water storage tanks are cylindrical vessels with diffusers that are either circular disks that distribute flow radially outward or octagonal rings of perforated pipe that distribute flow both inward and outward radially. Both types produce gravity currents that are strongly influenced by the inlet Richardson number, but the significance of other parameters is not clear. The present investigation considers the dependence of the thermal performance of a perforated pipe diffuser on design parameters including inlet velocity, ambient and inlet fluid temperatures, and tank dimensions for a range of conditions representative of typical chilled water applications. Dimensional analysis is combined with a parametric study using results from computational fluid dynamics to obtain quantitative relationships between design parameters and expected thermal performance.
Guertler, Niels
2011-01-01
Turbulence driven zonal flows play an important role in fusion devices since they improve plasma confinement by limiting the level of anomalous transport. Current theories mostly focus on flow excitation but do not self-consistently describe the nearly stationary zonal flow turbulence equilibrium state. First-principles two-fluid turbulence studies are used to construct a Reynolds stress response functional from observations in turbulent states. This permits, for the first time, a reliable charting of zonal flow turbulence equilibria.
Wall shear stress characterization of a 3D bluff-body separated flow
Fourrié, Grégoire; Keirsbulck, Laurent; Labraga, Larbi
2013-10-01
Efficient flow control strategies aimed at reducing the aerodynamic drag of road vehicles require a detailed knowledge of the reference flow. In this work, the flow around the rear slanted window of a generic car model was experimentally studied through wall shear stress measurements using an electrochemical method. The mean and fluctuating wall shear stress within the wall impact regions of the recirculation bubble and the main longitudinal vortex structures which develop above the rear window are presented. Correlations allow a more detailed characterization of the recirculation phenomenon within the separation bubble. In the model symmetry plane the recirculation structure compares well with simpler 2D configurations; specific lengths, flapping motion and shedding of large-scale vortices are observed, these similarities diminish when leaving the middle plane due to the strong three-dimensionality of the flow. A specific attention is paid to the convection processes occurring within the recirculation: a downstream convection velocity is observed, in accordance with 2D recirculations from the literature, and an upstream convection is highlighted along the entire bubble length which has not been underlined in some previous canonical configurations.
Augmented limb blood flow during neurovascular stress in physically fit women.
Dishman, Rod K; Jackson, Erica M; Nakamura, Yoshio; Ray, Chester A
2013-09-01
The study examined whether cardiorespiratory fitness modifies cardiovascular responses by normotensive men and women during the Stroop color-word interference test. Independent of age and an estimate of body fatness, fitness level was positively related (R² = .39 and .51) to increases in limb blood flow and vascular conductance, coherent with cardiac-vagal withdrawal and a decrease in heart period, among women but not men. Fitness was unrelated to changes in systolic and diastolic blood pressures and muscle sympathetic nerve activity. The augmented hemodynamic responses among fitter women were not consistent with passive vasodilation via withdrawal of sympathetic neural tone. The results encourage further gender comparisons testing whether fitness augments limb blood flow during mental stress by neurohumoral and flow-mediated vasodilatory mechanisms or by increased cardiac output.
Reynolds shear stress and heat flux calculations in a fully developed turbulent duct flow
Antonia, R. A.; Kim, J.
1991-01-01
The use of a modified form of the Van Driest mixing length for a fully developed turbulent channel flow leads to mean velocity and Reynolds stress distributions that are in close agreement with data obtained either from experiments or direct numerical simulations. The calculations are then extended to a nonisothermal flow by assuming a constant turbulent Prandtl number, the value of which depends on the molecular Prandtl number. Calculated distributions of mean temperature and lateral heat flux are in reasonable agreement with the simulations. The extension of the calculations to higher Reynolds numbers provides some idea of the Reynolds number required for scaling on wall variables to apply in the inner region of the flow.
Wall shear stress measurement method based on parallel flow model near vascular wall in echography
Shimizu, Motochika; Tanaka, Tomohiko; Okada, Takashi; Seki, Yoshinori; Nishiyama, Tomohide
2017-07-01
A high-risk vessel of arteriosclerosis is detected by assessing wall shear stress (WSS), which is calculated from the distribution of velocity in a blood flow. A novel echographic method for measuring WSS, which aims to distinguish a normal vessel from a high-risk vessel, is proposed. To achieve this aim, the measurement error should be less than 28.8%. The proposed method is based on a flow model for the area near a vascular wall under a parallel-flow assumption to avoid the influences of error factors. This was verified by an in vitro experiment in which the WSS of a carotid artery phantom was measured. According to the experimental results, the WSS measured by the proposed method correlated with the ground truth measured by particle image velocimetry; in particular, the correlation coefficient and measurement error between them were respectively 0.70 and 27.4%. The proposed method achieved the target measurement performance.
Second law analysis for hydromagnetic couple stress fluid flow through a porous channel
S.O. Kareem
2016-06-01
Full Text Available In this work, the combined effects of magnetic field and ohmic heating on the entropy generation rate in the flow of couple stress fluid through a porous channel are investigated. The equations governing the fluid flow are formulated, non-dimensionalised and solved using a rapidly convergent semi-analytical Adomian decomposition method (ADM. The result of the computation shows a significant dependence of fluid’s thermophysical parameters on Joule’s dissipation as well as decline in the rate of change of fluid momentum due to the interplay between Lorentz and viscous forces. Moreover, the rate of entropy generation in the flow system drops as the magnitude of the magnetic field increases.
Rousse Maria G
2011-04-01
Full Text Available Abstract Background The determination of coronary flow reserve (CFR is an essential concept at the moment of decision-making in ischemic heart disease. There are several direct and indirect tests to evaluate this parameter. In this sense, dobutamine stress echocardiography is one of the pharmacological method most commonly used worldwide. It has been previously demonstrated that CFR can be determined by this technique. Despite our wide experience with dobutamine stress echocardiography, we ignored the necessary heart rate to consider sufficient the test for the analysis of CFR. For this reason, our main goal was to determine the velocity of coronary flow in each stage of dobutamine stress echocardiography and the heart rate value necessary to double the baseline values of coronary flow velocity in the territory of the left anterior descending (LAD coronary artery. Methods A total of 33 consecutive patients were analyzed. The patients included had low risk for coronary artery disease. All the participants underwent dobutamine stress echocardiography and coronary artery flow velocity was evaluated in the distal segment of LAD coronary artery using transthoracic color-Doppler echocardiography. Results The feasibility of determining CFR in the territory of the LAD during dobutamine stress echocardiography was high: 31/33 patients (94%. Mean CFR was 2.67 at de end of dobutamine test. There was an excellent concordance between delta HR (difference between baseline HR and maximum HR and the increase in the CFR (correlation coefficient 0.84. In this sense, we found that when HR increased by 50 beats, CFR was ≥ 2 (CI 93-99.2%. In addition, 96.4% of patients reached a CFR ≥ 2 (IC 91.1 - 99% at 75% of their predicted maximum heart rate. Conclusions We found that the feasibility of dobutamine stress echocardiography to determine CFR in the territory of the LAD coronary artery was high. In this study, it was necessary to achieve a difference of 50 bpm
Wang, Peng-yi; Wang, Zhong-jin, E-mail: wangzj@hit.edu.cn
2016-12-01
Magnetorheological fluid (MR fluid), a kind of smart material, has been used as a new pressure-carrying medium in magnetorheological pressure forming (MRPF). The mechanical property of MR fluid under the pressure significantly affects the sheet formability. However, there is little knowledge on the deformation behavior of MR fluid under three-dimensional stress states. In this paper, a new procedure via a combination of extrusion test and FEM simulation has been proposed to determine the flow stress of MR fluids. The experimental device for extrusion test of MR fluids was designed. The flow stresses of a MR fluid (MRF-J01T) under four different magnetic fields were determined through the proposed procedure. In addition, the obtained flow stresses were used in the following FEM simulations to verify the accuracy by comparing with the experimental results. The simulation results were in good agreement with the experimental data, which supports the correctness and practicability of the proposed method. - Highlights: • An effective procedure is proposed to determine the flow stress of MR fluids. • The rheological behaviour of a MR fluid during extrusion tests is studied. • Flow stress curves of a MR fluid under different magnetic fields are obtained.
Stratified wake of an accelerating hydrofoil
Ben-Gida, Hadar; Gurka, Roi
2015-01-01
Wakes of towed and self-propelled bodies in stratified fluids are significantly different from non-stratified wakes. Long time effects of stratification on the development of the wakes of bluff bodies moving at constant speed are well known. In this experimental study we demonstrate how buoyancy affects the initial growth of vortices developing in the wake of a hydrofoil accelerating from rest. Particle image velocimetry measurements were applied to characterize the wake evolution behind a NACA 0015 hydrofoil accelerating in water and for low Reynolds number and relatively strong and stably stratified fluid (Re=5,000, Fr~O(1)). The analysis of velocity and vorticity fields, following vortex identification and an estimate of the circulation, reveal that the vortices in the stratified fluid case are stretched along the streamwise direction in the near wake. The momentum thickness profiles show lower momentum thickness values for the stratified late wake compared to the non-stratified wake, implying that the dra...
Laser reflection method for determination of shear stress in low density transitional flows
Sathian, Sarith P.; Kurian, Job
2006-03-01
The details of laser reflection method (LRM) for the determination of shear stress in low density transitional flows are presented. The method is employed to determine the shear stress due to impingement of a low density supersonic free jet issuing out from a convergent divergent nozzle on a flat plate. The plate is smeared with a thin oil film and kept parallel to the nozzle axis. For a thin oil film moving under the action of aerodynamic boundary layer, the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope generated by the shear force is done using a position sensing detector (PSD). The thinning rate of the oil film is directly measured which is the major advantage of the LRM. From the oil film slope history, calculation of the shear stress is done using a three-point formula. The range of Knudsen numbers investigated is from 0.028 to 0.516. Pressure ratio across the nozzle varied from 3,500 to 8,500 giving highly under expanded free jets. The measured values of shear, in the overlapping region of experimental parameters, show fair agreement with those obtained by force balance method and laser interferometric method.
The Effect of Water on the Flow of Stress-Activated Electric Currents through Rocks
Jahoda, A. M.; Cyr, G. G.; Dahlgren, R.; Freund, F. T.
2011-12-01
When igneous or high-grade metamorphic rocks are subjected to deviatoric stresses, dormant defects in the matrix of common rock-forming minerals become activated. These defects consist of pairs of oxygen anions in the 1- valence state, e.g. peroxy links such as O3Si-OO-SiO3. When a peroxy bond breaks, O3Si-O:O-SiO3, an electron is transferred from a neighboring O2- causing the donor oxygen, now O-, to turn into a defect electron, also known as a positive hole, that can propagate as a highly mobile positive charge through the rocks1. The current outflow is driven by the battery potential that builds up during this process. The question is how this electric current through rocks is affected by water. When positive holes flow into bulk water, they oxidize H2O to H2O2 and are thereby consumed2. This electrochemical reaction is driven by the potential drop across the rock-water interface. However, no such potential drop occurs across water that fills pores inside the rocks along the path of the electronic charge carriers. We present evidence that the presence of water in the pore space does indeed not "kill" the current flow. This observation leads to the conclusion that stress-activated positive hole currents should be able to flow through water-saturated rocks maybe as well as, possibly even better than through dry rocks. 1 Freund, F. T., et al.: Electric currents streaming out of stressed igneous rocks - A step towards understanding pre-earthquake low frequency EM emissions, Phys. Chem. Earth, 2006, 31, 389-396. 2 Balk, M., et al.: Oxidation of water to hydrogen peroxide at the rock-water interface due to stress-activated electric currents in rocks, Earth Planet. Sci. Lett. 2009, 283, 87-92
Investigating the flow and stress regime at the front of a tidewater outlet glacier
Mercenier, Rémy; Luethi, Martin; Vieli, Andreas; Rohner, Christoph; Small, David
2016-04-01
Dynamic changes in ocean-terminating glaciers are responsible for approximately half of the current high rate of mass loss of the Greenland ice sheet. The related calving process, which occurs when the stresses at the calving front exceed the fracture toughness of ice, is still not well understood and poorly represented in current generation ice-sheet models, but is a crucial requisite to understand and model dynamics and future mass loss of the ice sheet. Here, we use a two-dimensional finite-element model to compute the stress and flow fields near the front of a tidewater outlet glacier. First, we perform a sensitivity analysis for an idealized glacier exploring the effects of variable calving front slope, water depth and basal sliding. We then apply the model to two flowlines of Eqip Sermia, an ocean terminating outlet glacier in West Greenland. Detailed velocity and geometry measurements obtained from terrestrial radar interferometry serve as constraints to the model. These flowline geometries and velocities strongly differ. One flowline ends with a ˜ 50 meter vertical cliff, close to floatation, while the other has a 150-200 meter high grounded front with a ˜ 45° slope and for which extrusion flow is observed. These different geometry settings lead to substantial difference in stress and flow regimes. This stress analysis improves our understanding of how and where the ice is susceptible to failure and crevasse formation for different idealized as well as real conditions. In further work, we aim to use this information as a constraint to investigate the short-term and long-term processes related to outlet glacier calving.
Laboratory and field observations of stress-wave induced changes in oil flow behavior
Roberts, P. M. (Peter M.); Majer, Ernest Luther; Wooden, W. (William); Daley, T. M. (Thomas M.)
2001-01-01
We present recent results of laboratory and field experiments designed to validate and quantify the phenomenon of seismically enhanced oil production in marginal reservoirs. Controlled laboratory experiments were performed where mechanical stress oscillations at 100 Hz or less were applied to sandstone cores while flowing oil and/or brine at constant flow rates. Steady-state flow and simulated flooding experiments indicated that stress stimulation causes significant changes in the ability of one fluid to displace the other and on the preference that the rock has for trapping one fluid over the other. For Berea sandstone, which is highly water wet, stress stimulation caused oil production to be impeded during water floods and caused the bulk fluid pressure drop across the core to increase during steady-state simultaneous flow of oil and brine. A possible explanation of these observations is that stimulation caused the core to become more oil wet. Field stimulation tests on producing reservoirs at Lost Hills, California were performed using a downhole fluid pressure pulsation device. Stimulation was applied in one well for 50 days total during July - November 2000. Two groups of producing wells were monitored for changes in oil cut and oil production during the test. A control group of 26 wells displayed an oil-cut increase of 29% and an oil production increase of 26% which are clearly correlated with the stimulation treatment. A larger group of 60 wells showed 11% oil-cut and 17v0 production increases. Similar increases were observed during the October 1999 Hector Mine earthquake, magnitude 7.1, in the Mojave Desert about 230 miles from Lost Hills. Downhole seismic monitoring of the stimulation wavefield is being used to help quantify the frequency range and energy threshold required for effective production enhancement.
Shafiei, Ehsan; Dehghani, Kamran
2016-09-01
In this study, using a nonlinear estimation of strain hardening rate versus strain, a new phenomenological constitutive equation is developed. Utilizing the presented model, three new equations were presented to determine the peak strain, critical strain for initiation of dynamic recrystallization (DRX), and transition strain associated with the maximum softening rate of DRX. Also, two temperature and strain rate-sensitive parameters were introduced to generate flow stress curve at any desired deformation conditions. The predicted results were found to be in a good agreement with the ones measured experimentally. Maximum errors in prediction of peak strain, critical strain, and transition strain were about 8, 11, and 4%, respectively. In addition, evaluation of maximum errors in prediction of flow stress indicates that the presented constitutive equation gives a more precise estimation of flow stress curves in comparison with the previous models pertaining modeling of single-peak flow stress curves.
Takx, Richard A. P.; Blomberg, Bjorn A.; El Aidi, Hamza; Habets, Jesse; de Jong, Pim A.; Nagel, Eike; Hoffmann, Udo; Leiner, Tim
2015-01-01
Background-Hemodynamically significant coronary artery disease is an important indication for revascularization. Stress myocardial perfusion imaging is a noninvasive alternative to invasive fractional flow reserve for evaluating hemodynamically significant coronary artery disease. The aim was to det
Morphological instabilities of stratified epithelia: a mechanical instability in tumour formation
Risler, Thomas
2013-01-01
Interfaces between stratified epithelia and their supporting stromas commonly exhibit irregular shapes. Undulations are particularly pronounced in dysplastic tissues and typically evolve into long, finger-like protrusions in carcinomas. In a previous work (Basan et al., Phys. Rev. Lett. 106, 158101 (2011)), we demonstrated that an instability arising from viscous shear stresses caused by the constant flow due to cell turnover in the epithelium could drive this phenomenon. While interfacial tension between the two tissues as well as mechanical resistance of the stroma tend to maintain a flat interface, an instability occurs for sufficiently large viscosity, cell-division rate and thickness of the dividing region in the epithelium. Here, extensions of this work are presented, where cell division in the epithelium is coupled to the local concentration of nutrients or growth factors diffusing from the stroma. This enhances the instability by a mechanism similar to that of the Mullins-Sekerka instability in single...
Sahin Ahmed
2014-12-01
Full Text Available This study focuses analytically on the oscillatory hydromagnetic flow of a viscous, incompressible, electrically-conducting, non-Newtonian fluid in an inclined, rotating channel with non-conducting walls, incorporating couple stress effects. The model is then non-dimensionalized with appropriate variables and shown to be controlled by the inverse Ekman number (K2 = 1/Ek, the hydromagnetic body force parameter (M, channel inclination (α, Grashof number (Gr, Prandtl number (Pr, oscillation frequency (ω and time variable (ωT. Analytical solutions are derived using complex variables. Excellent agreement is obtained between both previous and present work. The influence of the governing parameters on the primary velocity, secondary velocity, temperature (θ, primary and secondary flow discharges per unit depth in the channel, and frictional shear stresses due to primary and secondary flow, is studied graphically and using tables. Applications of the study arise in the simulation of the manufacture of electrically-conducting polymeric liquids and hydromagnetic energy systems exploiting rheological working fluids.
Cho, Hyunjoong
The accuracy of process simulation in metal forming by finite element method depends on the accuracy of flow stress data and friction value that are input to FEM programs. Therefore, it is essential that these input values are determined using reliable tests and evaluation methods. This study presents the development of inverse analysis methodology and its application to determine flow stress data of bulk and sheet materials at room and elevated temperatures. The inverse problem is defined as the minimization of the differences between the experimental measurements and the corresponding FEM predictions. Rigid-viscoplastic FEM is used to analyze the metal flow while a numerical optimization algorithm adjusts the material parameters used in the simulation until the calculated response matches the measured data within a specified tolerance. The use of the developed inverse analysis methodology has been demonstrated by applying it to the selected reference rheological tests; cylinder compression test, ring compression test, instrumented indentation test, modified limiting dome height test, and sheet hydraulic bulge test. Furthermore, using the determined material property data, full 3-D finite element simulation models, as examples of industrial applications for orbital forming and thermoforming processes have been developed for reliable process simulation. As results of this study, it was shown that the developed inverse analysis methodology could identify both the material parameters and friction factors from one set of tests, simultaneously. Therefore, this technique can offer a systematic and cost effective way for determining material property data for simulation of metal forming processes.
Galizia, Mauricio S.; Barker, Alex; Collins, Jeremy; Carr, James [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Liao, Yihua [Northwestern University' s Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL (United States); McDermott, Mary M. [Northwestern University' s Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL (United States); Northwestern University' s Feinberg School of Medicine, Department of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States)
2014-04-15
To investigate the influence of atherosclerotic plaques on femoral haemodynamics assessed by two-dimensional (2D) phase-contrast (PC) magnetic resonance imaging (MRI) with three-directional velocity encoding. During 1 year, patients with peripheral artery disease and an ankle brachial index <1.00 were enrolled. After institutional review board approval and written informed consent, 44 patients (age, 70 ± 12 years) underwent common femoral artery MRI. Patients with contra-indications for MRI were excluded. Sequences included 2D time-of-flight, proton-density, T1-weighted and T2-weighted MRI. Electrocardiogram (ECG)-gated 2D PC-MRI with 3D velocity encoding was acquired. A radiologist classified images in five categories. Blood flow, velocity and wall shear stress (WSS) along the vessel circumference were quantified from the PC-MRI data. The acquired images were of good quality for interpretation. There were no image quality problems related to poor ECG-gating or slice positioning. Velocities, oscillatory shear stress and total flow were similar between patients with normal arteries and wall thickening/plaque. Patients with plaques demonstrated regionally increased peak systolic WSS and enhanced WSS eccentricity. Combined multi-contrast morphological imaging of the peripheral arterial wall with PC-MRI with three-directional velocity encoding is a feasible technique. Further study is needed to determine whether flow is an appropriate marker for altered endothelial cell function, vascular remodelling and plaque progression. (orig.)
Stress dependent fluid flow in porous rock: experiments and network modelling
Flornes, Olav
2005-07-01
During the lifetime of a hydrocarbon reservoir, the pore pressure decreases because fluids are drained. Changed pore pressure causes a deformation of the reservoir rock, and the flow channels may be narrowed by the increased weight carried by the rock matrix. Knowledge of how the rocks ability to transport fluids, the permeability, is changed by increased stress can be important for effective reservoir management. In this work, we present experimental results for how permeability changes with applied stress. The materials tested are several different sandstones and one limestone, all having porosities higher than 19 percent. Application of stress is done in a number of different ways. We subject the sample to an isotropic stress, and see how changing this applied stress affects permeability as opposed to changing the pore fluid pressure. This allows for investigating the effective stress law for permeability. Permeability decreased by 10 to 20 percent, when we deformed the materials hydro statically within the elastic regime. For all of our samples, we observed a higher permeability change than predicted by a conventional model for relating porosity and permeability, the Kozeny Carman model. For Red Wildmoor, a sandstone having some clay content, we observed that a change in pore pressure was slightly more important for permeability than a change in the applied stress with the same amount. A sandstone with no clay content, Bad Durckheim, showed the opposite behavior, with applied stress slightly more important than pore pressure. We present a new method for measuring permeability in two directions in the same experiment. We apply different anisotropic stresses, and see if a high stress in one direction causes a difference in permeability changes parallel and perpendicular to maximum stress. We observe that deforming the sample axially, causes a larger decrease in axial permeability than in the radial at low confining pressure. At high confining pressure, the
Solhjoo, Soheil
2014-01-01
A new model has been developed to estimate the flow stress under hot deformation conditions up to the peak of the stress-strain curves. The model is constructed on the basis of the general form of sine functions by introducing an additional exponent. Besides, an equation is derived from the model, w
Analysis on flow stress of magnesium alloys during high temperature deformation
无
2008-01-01
The flow stress of magnesium alloys during hot compression at different temperatures and strain rates was studied by experiments. Materials used were AZ91D alloys in as-cast, homogeneous treatment states, AZ31 and ZK60 alloys in as-cast state.The results show that the thermal simulation curves of different alloys differ from one another at the same deforming condition. The general curves of AZ31 and AZ91D alloys have the character of dynamic recrystallization. There are increase of true stress, drastic falling of true stress and increase of true stress in most curves of ZK60 alloy, while the other curves have the characteristics of dynamic recrystallization. From the analysis the reasonable deforming temperature should be selected from 523 to 673 K for AZ31 and the unhomogenized AZ91D alloy, from 473 to 673 K for the homogenized AZ91D alloy, and it was concluded to be 473 K or 673 K for ZK60 alloy.
Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming
Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf
2009-01-01
The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953....... The work is extended to turbulent bed boundary layers by application of a numerical model. The similarities and differences between laminar and turbulent flow conditions are discussed, and quantitative results for the magnitude of the mean shear stress and drift velocity are presented. Full two...
Modeling of Flow Stress of High Titanium Content 6061 Aluminum Alloy Under Hot Compression
Chen, Wei; Guan, Yingping; Wang, Zhenhua
2016-09-01
Hot compression tests were performed on high titanium content 6061 aluminum alloy (AA 6061-Ti) using a Gleeble-3500 thermomechanical testing system at temperatures from 350 to 510 °C with a constant strain rate in the range of 0.001-10 s-1. Three types of flow stress models were established from the experimental stress-strain curves, the correlation coefficient ( R), mean absolute relative error ( MARE), and root mean square deviation ( RMSD) between the predicted data and the experimental data were also calculated. The results show that the Fields-Backofen model, which includes a softening factor, was the simplest mathematical expression with a level of precision appropriate for the numerical simulations. However, the Arrhenius and artificial neural network (ANN) models were also consistent with the experimental results but they are more limited in their application in terms of their accuracy and the mathematical expression of the models.
Gilbert, P. H.; Giacomin, A. J.
2016-10-01
Recent work has focused on deepening our understanding of the molecular origins of the higher harmonics that arise in the shear stress response of polymeric liquids in large-amplitude oscillatory shear flow. For instance, these higher harmonics have been explained by just considering the orientation distribution of rigid dumbbells suspended in a Newtonian solvent. These dumbbells, when in dilute suspension, form the simplest relevant molecular model of polymer viscoelasticity, and this model specifically neglects interactions between the polymer molecules [R. B. Bird et al., "Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response," J. Chem. Phys. 140, 074904 (2014)]. In this paper, we explore these interactions by examining the Curtiss-Bird model, a kinetic molecular theory designed specifically to account for the restricted motions that arise when polymer chains are concentrated, thus interacting and specifically, entangled. We begin our comparison using a heretofore ignored explicit analytical solution [X.-J. Fan and R. B. Bird, "A kinetic theory for polymer melts. VI. Calculation of additional material functions," J. Non-Newtonian Fluid Mech. 15, 341 (1984)]. For concentrated systems, the chain motion transverse to the chain axis is more restricted than along the axis. This anisotropy is described by the link tension coefficient, ɛ, for which several special cases arise: ɛ = 0 corresponds to reptation, ɛ > 1/8 to rod-climbing, 1/5 ≤ ɛ ≤ 3/4 to reasonable predictions for shear-thinning in steady simple shear flow, and ɛ = 1 to the dilute solution without hydrodynamic interaction. In this paper, we examine the shapes of the shear stress versus shear rate loops for the special cases ɛ = (" separators=" 0 , 1 / 8 , 3 / 8 , 1 ) , and we compare these with those of rigid dumbbell and reptation model predictions.
Magnetic flux concentrations from turbulent stratified convection
Käpylä, P J; Kleeorin, N; Käpylä, M J; Rogachevskii, I
2015-01-01
(abridged) Context: The mechanisms that cause the formation of sunspots are still unclear. Aims: We study the self-organisation of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection. Methods: We perform simulations of magnetoconvection in Cartesian domains that are $8.5$-$24$ Mm deep and $34$-$96$ Mm wide. We impose either a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow. Results: We find that super-equipartition magnetic flux concentrations are formed near the surface with domain depths of $12.5$ and $24$ Mm. The size of the concentrations increases as the box size increases and the largest structures ($20$ Mm horizontally) are obtained in the 24 Mm deep models. The field strength in the concentrations is in the range of $3$-$5$ kG. The concentrations grow approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near the surface and negative in the bulk of the convection zone. Its ...
Core science: Stratified by a sunken impactor
Nakajima, Miki
2016-10-01
There is potential evidence for a stratified layer at the top of the Earth's core, but its origin is not well understood. Laboratory experiments suggest that the stratified layer could be a sunken remnant of the giant impact that formed the Moon.
Valverde, I.; Parish, V.; Tzifa, A.; Head, C.; Sarikouch, S.; Greil, G.; Schaeffter, T.; Razavi, R.; Beerbaum, P.B.J.
2011-01-01
PURPOSE: To evaluate the MR agreement of cardiac function parameters between volumetric (cine SSFP) and phase contrast flow (PC-flow) assessment in patients with repaired tetralogy of Fallot (r-TOF) and chronic pulmonary regurgitation (PR) at rest and under dobutamine stress (DS-MR). MATERIALS AND M
CHEN Bing; CHENG Liang
2004-01-01
Three-dimensional flow around a pipeline span shoulder is simulated using a fractional step finite element method. The Reynolds number, based on the pipe-diameter and the approaching flow velocity, is set at 500 and 5×105to simulate both laminar and turbulent flow. In high Reynolds number case, Smagorinsky SGS closure is used to model the turbulent flows. The flow field visualization by vorticity iso-surfaces shows that a spiral vortex tube is formed around the span shoulder and extends around the span shoulder. The vortex cores defined by the eigenvalues of the symmetric tensor S2+Ω2(S and Ω are respectively the symmetric and antisymmetric parts of the velocity gradient tensor) gives more details of the flow field. It is also found that there are significant bed shear stress concentrations in the span shoulder area. The reasons for the shear stress concentration are discussed.
Prediction of flow stresses at high temperatures with artificial neural networks
汪凌云; 郑廷顺; 刘雪峰; 黄光杰
2001-01-01
On the basis of the data obtained on Gleeble-1500 Thermal Simulator， the predicting models for the relation between stable flow stress during high temperature plastic deformation and deformation strain, strain rate and temperature for 1420 Al-Li alloy have been developed with BP artificial neural networks method. The results show that the model on basis of BPNN is practical and it reflects the actual feature of the deforming process. It states that the difference between the actual value and the output of the model is in order of 5%.
Thermal stresses and deformations in a plate subject to the action of concentrated energy flows
Rudin, G.I.
1988-09-01
A two-dimensional problem concerned with the determination of thermal deformation and the temperature and stress fields in a plate subject to nonhomogeneous heating by a radiative flow of Gaussian type is solved. Cases in which one plate surface is either free or clamped onto a rigid base as well as cases in which the energy source is a laser beam are also considered. Factors such as the thermal diffusivity, specific heat, plate density, linear expansion, shear modulus, optical and energy absorption behavior, and refractivity are incorporated into the solution.
Plastic flow rule for sands with friction, dilation, density and stress state coupling
Wojciechowski Marek
2015-06-01
Full Text Available In this paper we propose a flow rule and failure criterion for sands in plane strain conditions based on Drucker-Prager formulation and enhanced with empirical Houlsby formula, which couples friction, dilation, density and stress state in the material. The resulting elasto-plastic, non-associated, shear hardening material model is implemented as a numerical procedure in the frame of finite element method and a simple compression example is presented. Because of the empirical nature of Houlsby formula, it is believed that results of numerical simulations will be more realistic both in deformation and shear strength estimation of sands.
On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli
Kjellstroem, B.; Hedberg, S.
1966-08-15
It is commonly assumed that for turbulent flow in annuli the radii of zero shear and maximum velocity are coincident. By inspection of the differential equations for such flow and by an integral analysis it is shown that this is not necessarily true. To check whether important differences could occur, experiments were made in which velocity and shear stress distributions were measured in one smooth and two partially rough annuli. The results show no difference in the radii for the smooth annulus, but for the partially rough annuli there was a small but significant difference. This difference explains the breakdown of Hall's transformation theory reported by other investigators. The error introduced by use of Hall's theory is however small, of the order of 10 % or less.
Optimal bounds with semidefinite programming: an application to stress driven shear flows
Fantuzzi, G
2015-01-01
We introduce an innovative numerical technique based on convex optimization to solve a range of infinite dimensional variational problems arising from the application of the background method to fluid flows. In contrast to most existing schemes, we do not consider the Euler-Lagrange equations for the minimizer. Instead, we use series expansions to formulate a finite dimensional semidefinite program (SDP) whose solution converges to that of the original variational problem. The formulation is rigorous, meaning that a solution of the SDP gives a certifiably feasible solution for the infinite dimensional problem. Moreover, SDPs can be easily formulated when the fluid is subject to imposed boundary fluxes, which pose a challenge for the traditional methods. We apply this technique to compute rigorous and near-optimal upper bounds on the dissipation coefficient for flows driven by a surface stress. We improve previous analytical bounds by more than 10 times, and show that the bounds become independent of the domai...
Psychological stress impairs hepatic blood flow via central CRF receptors in mice.
Chida, Yoichi; Sudo, Nobuyuki; Kubo, Chiharu
2005-02-25
Some previous works have further expanded the 'Brain-Gut axis', that is a bi-directional interaction between the gut and brain function, into a relationship of the brain with the liver. However, all the details of such brain-liver relationship were not fully understood because appropriate animal models had not been established yet. Here we developed a novel animal model, in which hepatic blood flow of conscious mice could be measured in real-time. In addition, using this model, we also demonstrated that exposure to psychological stress considerably reduced hepatic blood flow via central CRF receptors. Thus, this new model is considered to be a useful and promising tool for elucidating the precise effects of emotional factors on liver function.
A Fixpoint Semantics for Stratified Databases
沈一栋
1993-01-01
Przmusinski extended the notion of stratified logic programs,developed by Apt,Blair and Walker,and by van Gelder,to stratified databases that allow both negative premises and disjunctive consequents.However,he did not provide a fixpoint theory for such class of databases.On the other hand,although a fixpoint semantics has been developed by Minker and Rajasekar for non-Horn logic programs,it is tantamount to traditional minimal model semantics which is not sufficient to capture the intended meaning of negation in the premises of clauses in stratified databases.In this paper,a fixpoint approach to stratified databases is developed,which corresponds with the perfect model semantics.Moreover,algorithms are proposed for computing the set of perfect models of a stratified database.
Feedback between intracellular flow, signaling and active stresses in Physarum plasmodial fragments
Zhang, Shun; Guy, Robert; Del Alamo, Juan Carlos
2016-11-01
Physarum polycephalum is a multinucleated slime mold whose endoplasm flows periodically driven by the contraction of its ectoplasm, a dense shell of F-actin cross-linked by myosin molecular motors and attached to the cell membrane. Ectoplasm contractions are regulated by calcium ions whose propagation is in turn governed by the flow. We study experimentally how this feedback leads to auto-oscillation by simultaneously measuring endoplasmic flow speed and rheological properties, the traction stresses between the ectoplasm and its substratum and the distribution of endoplasmic free calcium ions. We find that physarum fragments smaller than 100 microns remain round and stay in place. However, larger fragments break symmetry leading to sustained forward locomotion, in process that is reminiscent of an interfacial instability that seems to settle around two different limit cycles (traveling waves and standing waves). By using different adhesive coatings in the substratum we investigate the role of substratum friction in the emergence of coherent endoplasmic flow patterns and overall physarum fragment locomotion.
High temperature gradient micro-sensor for wall shear stress and flow direction measurements
Ghouila-Houri, C.; Claudel, J.; Gerbedoen, J.-C.; Gallas, Q.; Garnier, E.; Merlen, A.; Viard, R.; Talbi, A.; Pernod, P.
2016-12-01
We present an efficient and high-sensitive thermal micro-sensor for near wall flow parameters measurements. By combining substrate-free wire structure and mechanical support using silicon oxide micro-bridges, the sensor achieves a high temperature gradient, with wires reaching 1 mm long for only 3 μm wide over a 20 μm deep cavity. Elaborated to reach a compromise solution between conventional hot-films and hot-wire sensors, the sensor presents a high sensitivity to the wall shear stress and to the flow direction. The sensor can be mounted flush to the wall for research studies such as turbulence and near wall shear flow analysis, and for technical applications, such as flow control and separation detection. The fabrication process is CMOS-compatible and allows on-chip integration. The present letter describes the sensor elaboration, design, and micro-fabrication, then the electrical and thermal characterizations, and finally the calibration experiments in a turbulent boundary layer wind tunnel.
Stress, faulting and fluid flow in the Coso Geothermal Field, CA
Davatzes, N. C.; Hickman, S.
2006-12-01
and account for related surface hydrothermal activity. This interpretation is also consistent with local GPS- and InSAR-based surface displacement vectors which indicate subsidence above the Main Field and East Flank. At reservoir depth, preliminary results from borehole image, temperature, and mud log analyses indicate that fluid flow in the geothermal field is concentrated in the densely fractured damage zones of large faults that are well oriented for slip. In contrast, the cores of these faults appear to function as hydrologic barriers and separate regions of distinct fluid inclusion chemistry and temperature gradient. In addition, significant horizontal principal stress rotations are recorded by drilling-induced structures in borehole image logs. These variations in the azimuth of induced structures indicate local stress heterogeneity induced by active fault slip and are consistent with the high rates of seismicity observed in the geothermal field which might impact damage zone behavior. In the regions between large faults, distributed fracture networks appear to play only a minor role in transferring fluids despite relatively high fracture density that include some fractures well-oriented for slip. This geomechanical model provides a first step in studying the mechanical interactions and permeability of fault zones, their natural evolution, and their response to engineered stimulation. In addition, this model is a critical element of the stimulation strategy that will be applied to Enhanced Geothermal Systems (EGS) well 46A-19RD in the southwest portion of the geothermal field.
Gas slug ascent through rheologically stratified conduits
Capponi, Antonio; James, Mike R.; Lane, Steve J.
2016-04-01
Textural and petrological evidence has indicated the presence of viscous, degassed magma layers at the top of the conduit at Stromboli. This layer acts as a plug through which gas slugs burst and it is thought to have a role in controlling the eruptive dynamics. Here, we present the results of laboratory experiments which detail the range of slug flow configurations that can develop in a rheologically stratified conduit. A gas slug can burst (1) after being fully accommodated within the plug volume, (2) whilst its base is still in the underlying low-viscosity liquid or (3) within a low-viscosity layer dynamically emplaced above the plug during the slug ascent. We illustrate the relevance of the same flow configurations at volcanic-scale through a new experimentally-validated 1D model and 3D computational fluid dynamic simulations. Applied to Stromboli, our results show that gas volume, plug thickness, plug viscosity and conduit radius control the transition between each configuration; in contrast, the configuration distribution seems insensitive to the viscosity of magma beneath the plug, which acts mainly to deliver the slug into the plug. Each identified flow configuration encompasses a variety of processes including dynamic narrowing and widening of the conduit, generation of instabilities along the falling liquid film, transient blockages of the slug path and slug break-up. All these complexities, in turn, lead to variations in the slug overpressure, mirrored by changes in infrasonic signatures which are also associated to different eruptive styles. Acoustic amplitudes are strongly dependent on the flow configuration in which the slugs burst, with both acoustic peak amplitudes and waveform shapes reflecting different burst dynamics. When compared to infrasonic signals from Stromboli, the similarity between real signals and laboratory waveforms suggests that the burst of a slug through a plug may represent a viable first-order mechanism for the generation of
Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel', A L
2016-08-01
Magnetic resonance angiography was used to examine blood flow in great arteries of hypertensive ISIAH and normotensive Wistar rats. In hypertensive ISIAH rats, increased vascular resistance in the basin of the abdominal aorta and renal arteries as well as reduced fraction of total renal blood flow were found. In contrast, blood flow through both carotid arteries in ISIAH rats was enhanced, which in suggests more intensive blood supply to brain regulatory centers providing enhanced stress reactivity of these rats characterized by stress-dependent arterial hypertension.
关晖; 苏晓冰; 田俊杰
2011-01-01
The internal waves exist in the density stratified sea water, and have important effects to the stability and hovering ability of the motion of submarines. Using the finite volume algorithm with adaptive semi-structure grids, the multi-grid method and the volume of fluid method to solve Navier-Stokes equations , a numerical internal solitary wave flume, based on the idea of pushing two plates in opposite directions in the tank, with the ability of wave generation was developed, and the validity for such a method was numerically confirmed. The results were compared well with the analytical solution of KdV equation. The evolution of internal solitary waves was carried out, which laid a solid foundation for the future study of the interactions between internal solitary waves and submarines.%海洋内波是发生在密度分层海水中的波动，对潜艇航行的稳定性和悬停性都有重要影响。本文采用有限体积自适应半结构多重网格法求解Navier-Stokes方程，并用VOF(Volume of Fluid)方法追踪两层流体界面，应用双推板造波法进行内孤立波数值造波，对两层流体中的内孤立波数值造波方法进行研究和探讨。数值模拟结果证实了该数值水槽数值造波的有效性和可靠性，并将潜艇放入数值水槽中，研究内孤立波流场演化的过程，为后续研究潜艇的水动力学特性打下了基础。
Engels, Gerwin Erik; Blok, Sjoerd Leendert Johannes; van Oeveren, Willem
2016-09-18
Hemocompatibility of blood contacting medical devices has to be evaluated before their intended application. To assess hemocompatibility, blood flow models are often used and can either consist of in vivo animal models or in vitro blood flow models. Given the disadvantages of animal models, in vitro blood flow models are an attractive alternative. The in vitro blood flow models available nowadays mostly focus on generating continuous flow instead of generating a pulsatile flow with certain wall shear stress, which has shown to be more relevant in maintaining hemostasis. To address this issue, the authors introduce a blood flow model that is able to generate a pulsatile flow and wall shear stress resembling the physiological situation, which the authors have coined the "Haemobile." The authors have validated the model by performing Doppler flow measurements to calculate velocity profiles and (wall) shear stress profiles. As an example, the authors evaluated the thrombogenicity of two drug eluting stents, one that was already on the market and one that was still under development. After identifying proper conditions resembling the wall shear stress in coronary arteries, the authors compared the stents with each other and often used reference materials. These experiments resulted in high contrast between hemocompatible and incompatible materials, showing the exceptional testing capabilities of the Haemobile. In conclusion, the authors have developed an in vitro blood flow model which is capable of mimicking physiological conditions of blood flow as close as possible. The model is convenient in use and is able to clearly discriminate between hemocompatible and incompatible materials, making it suitable for evaluating the hemocompatible properties of medical devices.
Polymer Stress-Gradient Induced Migration in Thin Film Flow Over Topography
Tsouka, Sophia; Dimakopoulos, Yiannis; Tsamopoulos, John
2014-11-01
We consider the 2D, steady film flow of a dilute polymer solution over a periodic topography. We examine how the distribution of polymer in the planarization of topographical features is affected by flow intensity and physical properties. The thermodynamically acceptable, Mavrantzas-Beris two-fluid Hamiltonian model is used for polymer migration. The resulting system of differential equations is solved via the mixed FE method combined with an elliptic grid generation scheme. We present numerical results for polymer concentration, stress, velocity and flux of components as a function of the non-dimensional parameters of the problem (Deborah, Peclet, Reynolds and Capillary numbers, ratio of solvent viscosity to total liquid viscosity and geometric features of the topography). Polymer migration to the free surface is enhanced when the cavity gets steeper and deeper. This increases the spatial extent of the polymer depletion layer and induces strong banding in the stresses away from the substrate wall, especially in low polymer concentration. Macromolecules with longer relaxation times are predicted to migrate towards the free surface more easily, while high surface tension combined with a certain range of Reynolds numbers affects the free surface deformations. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.
Gilbert, Peter; Giacomin, A. Jeffrey; Schmalzer, Andrew; Bird, R. B.
Recent work has focused on understanding the molecular origins of higher harmonics that arise in the shear stress response of polymeric liquids in large-amplitude oscillatory shear flow. These higher harmonics have been explained using only the orientation distribution of a dilute suspension of rigid dumbbells in a Newtonian fluid, which neglects molecular interactions and is the simplest relevant molecular model of polymer viscoelasticity [R.B. Bird et al., J Chem Phys, 140, 074904 (2014)]. We explore these molecular interactions by examining the Curtiss-Bird model, a kinetic molecular theory that accounts for restricted polymer motions arising when chains are concentrated [Fan and Bird, JNNFM, 15, 341 (1984)]. For concentrated systems, the chain motion transverse to the chain axis is more restricted than along the axis. This anisotropy is described by the link tension coefficient, ɛ, for which several special cases arise: ɛ =0 corresponds to reptation, ɛ > 1 1 8 8 to rod-climbing, 1 1 2 2 >= ɛ >= 3 3 4 4 to reasonable shear-thinning predictions in steady simple shear flow, and ɛ =1 to a dilute solution of chains. We examine the shapes of the shear stress versus shear rate loops for the special cases, ɛ = 0 , 1 0 , 1 8 , 3 3 8 8 8 , 3 3 8 8 , 1 , of the Curtiss-Bird model, and we compare these with those of rigid dumbbell and reptation model predictions.
Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes
Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv
2007-04-01
In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.
Effects of Heat Stress on Ocular Blood Flow During Exhaustive Exercise
Tsukasa Ikemura
2014-03-01
Full Text Available The hypothesis that heat stress reduces the ocular blood flow response to exhaustive exercise was tested by measuring ocular blood flow, blood pressure, and end- tidal carbon dioxide partial pressure (PETCO2 in 12 healthy males while they performed cycle ergometer exercise at 75% of the maximal heart rate at ambient temperatures of 20°C (control condition and 35°C (heat condition, until exhaustion. The blood flows in the retinal and choroidal vasculature (RCV, the superior temporal retinal arteriole (STRA and the superior nasal retinal arteriole (SNRA were recorded at rest and at 6 and 16 min after the start of exercise period and at exhaustion [after 16 ± 2 min (mean ± SE and 24 ± 3 min of exercise in the heat and control condition, respectively]. The mean arterial pressure at exhaustion was significantly lower in the heat condition than in the control condition at both 16 min and exhaustion. The degree of PETCO2 reduction did not differ significantly between the two thermal conditions at either 16 min or exhaustion. The blood flow velocity in the RCV significantly increased from the resting baseline value at 6 min in both thermal conditions (32 ± 6% and 25 ± 5% at 20°C and 35°C, respectively. However, at 16 min the increase in RCV blood flow velocity had returned to the resting baseline level only in the heat condition. At exhaustion, the blood flows in the STRA and SNRA had decreased significantly from the resting baseline value in the heat condition (STRA: -19 ± 5% and SNRA: -30 ± 6%, and SNRA blood flow was lower than that in the control condition (-14 ± 6% vs -30 ± 6% at 20°C and 35°C, respectively, despite the finding that both thermal conditions induced the same reductions in PETCO2 and vascular conductance. These findings suggested that the heat condition decreases or suppresses ocular blood flow via attenuation of pressor response during exhaustive exercise.
Flow stress of oxygen-enriched Zircaloy-2 between 1023 and 1873 K
Choubey, R. (McGill Univ., Montreal, Quebec, Canada); Jonas, J.J.; Holt, R.A.; Ells, C.E.
1982-01-01
The solute strengthening effect of oxygen in commercial-purity Zircaloy-2 was investigated over the temperature range 1023 to 1873 K, strain rate range 10/sup -4/ to 10/sup -1/s/sup -1/, and oxygen concentration range 1260 to 12 360ppm. The flow parameters were determined in the fully ..cap alpha.. and fully ..beta.. as well as (..cap alpha.. + ..beta..) phase domains. In the two-phase region, the flow curves were characterized by significant yield drops as long as the ..beta.. volume fraction was over about 50 percent. This effect is ascribed to the enrichment of the ..beta..-phase in the subsitutional solutes iron and possibly chromium. The flow curves were otherwise normal. For the single-phase ..cap alpha.. and ..beta.. structures, the yield and steady-state stresses obeyed the general relation sigma=sigma/sub 0/ exp (kc), where sigma/sub 0/ and k are constants, and c represents the oxygen concentration (weight percent). The average values of k/sub ..cap alpha../ and k/sub ..beta../ were determined to be 0.57+/-0.16 and 0.34+/-0.10, respectively. The strain rate sensitivities fell in the following ranges, depending on the phases present: 0.15 to 0.20, 0.27 to 0.32, and 0.22 to 0.25 for the ..cap alpha.., ..beta.., and (..cap alpha.. + ..beta..) materials, respectively. The experimental activation energies decreased with stress in the ranges 450 to 330 kJ/mol(50 to 150 MPa) and 150 to 120kJ/mol(1 to 5 MPa) for the ..cap alpha..- and ..beta..-Zircaloy-2, respectively. The extrapolated zero stress values of Q were 530 and 170kJ/mol, and are associated with the dominant dynamic recovery mechanism in each phase. The observed steady-state as well as yield stresses correspond closely to the rule-of-mixture predictions but lie considerably above the values interpolated from the fully ..cap alpha..-phase and fully ..beta..-phase. This is ascribed to the very powerful strengthening effect of oxygen on the ..cap alpha..-phase when it is enriched during the formation of
The Effect of Grain Size and Strain on the Tensile Flow Stress of Aluminium at Room Temperature
Hansen, Niels
1977-01-01
Tensile-stress-strain data over a strain range from 0.2 to 30% were obtained at room temperature for 99.999 and 99.5% aluminium as a function of grain size. The yield stress-grain size relationship can be expressed by a Petch-Hall relation with approximately the same slope for the two materials. ...... stress-grain size relationship was analyzed in terms of matrix strengthening and grain boundary strengthening according to the dislocation concept of Ashby. At intermediate strains this approach gives a good description of the effect of strain, grain size and purity on the flow stress....
Salek, M Mehdi; Jones, Steven M; Martinuzzi, Robert J
2009-11-01
The effects of non-uniform hydrodynamic conditions resulting from flow cell geometry (square and rectangular cross-section) on Pseudomonas aeruginosa 01 (PAO1) biofilm formation, location, and structure were investigated for nominally similar flow conditions using a combination of confocal scanning laser microscope (CSLM) and computational fluid dynamics (CFD). The thickness and surface coverage of PAO1 biofilms were observed to vary depending on the location in the flow cell and thus also the local wall shear stress. The biofilm structure in a 5:1 (width to height) aspect ratio rectangular flow cell was observed to consist mainly of a layer of bacterial cells with thicker biofilm formation observed in the flow cell corners. For square cross-section (1:1 aspect ratio) flow cells, generally thicker and more uniform surface coverage biofilms were observed. Mushroom shaped structures with hollow centers and wall breaks, indicative of 'seeding' dispersal structures, were found exclusively in the square cross-section tubes. Exposure of PAO1 biofilms grown in the flow cells to gentamicin revealed a difference in susceptibility. Biofilms grown in the rectangular flow cell overall exhibited a greater susceptibility to gentamicin compared to those grown in square flow cells. However, even within a given flow cell, differences in susceptibility were observed depending on location. This study demonstrates that the spanwise shear stress distribution within the flow cells has an important impact on the location of colonization and structure of the resultant biofilm. These differences in biofilm structure have a significant impact on the susceptibility of the biofilms grown within flow channels. The impact of flow modification due to flow cell geometry should be considered when designing flow cells for laboratory investigation of bacterial biofilms.
Mukhopadhyay, Banibrata
2016-01-01
We show that the removal of angular momentum is possible in the presence of large scale magnetic stresses, arisen by fields much stronger than that required for magnetorotational instability, in geometrically thick, advective, sub-Keplerian accretion flows around black holes in steady-state, in the complete absence of alpha-viscosity. The efficiency of such angular momentum transfer via Maxwell stress, with the field well below its equipartition value, could be equivalent to that of alpha-viscosity, arisen via Reynolds stress, with $\\alpha=0.01-0.08$. We find in our simpler vertically averaged advective disk model that stronger the magnetic field and/or larger the vertical-gradient of azimuthal component of magnetic field, stronger the rate of angular momentum transfer is, which in turn may lead to a faster rate of outflowing matter, which has important implications to describe the hard spectral states of black hole sources. When the generic origin of alpha-viscosity is still being explored, mechanism of effi...
Strain rate dependence of the flow stress and work hardening of {gamma}`
Ezz, S.S. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Sun, Y.Q. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Hirsch, P.B. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom)
1995-02-15
The strain rate ({epsilon}) sensitivity of the flow stress ({tau}), {beta}=({delta}{tau}/{delta} ln{epsilon}), of crystals of {gamma}` in the temperature (T) range of the yield stress anomaly obeys a Cottrell-Stokes law when plotted against {tau}{sub h}={tau}-{tau}{sub y}, where {tau}{sub y} is the yield stress at 0.01% strain. The slopes are approximately 1%, decrease with increasing T and are approximately independent of orientation. {tau}{sub h} is due to work hardening and depends on the prestrain {epsilon}, {epsilon} and T. Transmission electron microscopy observations suggest that at 2% strain at 600 K and 720 K, {tau}{sub h} and {beta} are mainly controlled by forest obstacles. At 600 K, the forest consists largely of [101] dislocations on the (010) cross slip plane threading the (111) planes and generated by bowing of the [101] primary screws (Kear-Wilsdorf locks). At 720 K, the forest is non-uniform and consists of [101] on (010), primary cube [110] on (001) and secondary octahedral slip dislocations. At room temperature, the strength of the obstacles is weaker and it is suggested that they are mainly jogs on edge dislocations generated by cross slip of screw segments. At 2% strain, fine slip on (010) and (001) contributes increasingly to strain with increasing T and this correlates with the decrease in the work-hardening rate. ((orig.))
H Dattu; M Subbiah
2015-09-01
We consider the linear stability problem of inviscid, incompressible swirling flows with radius-dependent density with respect to two-dimensional disturbances. Some results of Miles on the parallel flow stability theory are extended to the swirling flow stability theory. In particular, series solutions for the stability equation for swirling flows are obtained and these solutions are used in the study of the variation of the Reynolds stress. For singular neutral modes it is shown that the Reynolds stress varies like the inverse square of the radial distance in agreement with the homogeneous flow result of Maslowe & Nigam. It is also proved that singular neutral modes do not exist whenever the value of the Richardson number at the critical layer exceeds one quarter.
Experimental study of the solid-liquid interface in a yield-stress fluid flow upstream of a step
Luu, Li-Hua; Pierre, Philippe; Guillaume, Chambon
2014-11-01
We present an experimental study where a yield-stress fluid is implemented to carefully examine the interface between a liquid-like unyielded region and a solid-like yielded region. The studied hydrodynamics consists of a rectangular pipe-flow disturbed by the presence of a step. Upstream of the step, a solid-liquid interface between a dead zone and a flow zone appears. This configuration can both model geophysical erosion phenomenon in debris flows or find applications for industrial extrusion processes. We aim to investigate the dominant physical mechanism underlying the formation of the static domain, by combining the rheological characterization of the yield-stress fluid with local measurements of the related hydrodynamic parameters. In this work, we use a model fluid, namely polymer micro-gel Carbopol, that exhibits a Hershel-Bulkley viscoplastic rheology. Exploiting the fluid transparency, the flow is monitored by Particle Image Velocimetry thanks to internal visualization technique. In particular, we demonstrate that the flow above the dead zone roughly behaves as a plug flow whose velocity profile can successfully be described by a Poiseuille equation including a Hershel-Bulkley rheology (PHB theory), with exception of a thin zone at the close vicinity of the static domain. The border inside the flow zone above which the so-called PHB flow starts, is found to be the same regardless of the flow rate and to move with a constant velocity that increases with the flow rate. We interpret this feature as a slip frontier.
Turbulent thermal diffusion in strongly stratified turbulence: theory and experiments
Amir, G; Eidelman, A; Elperin, T; Kleeorin, N; Rogachevskii, I
2016-01-01
Turbulent thermal diffusion is a combined effect of the temperature stratified turbulence and inertia of small particles. It causes the appearance of a non-diffusive turbulent flux of particles in the direction of the turbulent heat flux. This non-diffusive turbulent flux of particles is proportional to the product of the mean particle number density and the effective velocity of inertial particles. The theory of this effect has been previously developed only for small temperature gradients and small Stokes numbers (Phys. Rev. Lett. {\\bf 76}, 224, 1996). In this study a generalized theory of turbulent thermal diffusion for arbitrary temperature gradients and Stokes numbers has been developed. The laboratory experiments in the oscillating grid turbulence and in the multi-fan produced turbulence have been performed to validate the theory of turbulent thermal diffusion in strongly stratified turbulent flows. It has been shown that the ratio of the effective velocity of inertial particles to the characteristic ve...
FLOW STRESS MODEL FOR COLD-FORMED 40HM CONSTRUCTIONAL STEEL
Anna Dziubińska
2014-03-01
Full Text Available The paper presents the results of research undertaken to investigate cold forming process for 40HM constructional steel suitable for heat treatment. In the first part of the paper, mechanical properties of this steel and its industrial applications are described. The second part of the paper presents the results of the analysis of flow curves for two kinds of steel specimens: those that were subjected to annealing and those that did not undergo any heat treatment. It was found that the application of heat treatment had a significant effect on improving the forming conditions for this steel at room temperature. The experimental flow curves obtained in a compression test were described by constitutive equations illustrating the dependence between flow stresses and strain value. In order to determine the equation coefficients, the Generalized Reduced Gradient method implemented in Microsoft Excel was used. Based on the obtained equations, a material model will be developed to perform numerical simulations of cold forming for 40HM steel, using FEM-based software that aids the design of metal forming technologies.
High-resolution compact shear stress sensor for direct measurement of skin friction in fluid flow
Xu, Muchen; Kim, Chang-Jin ``Cj''
2015-11-01
The high-resolution measurement of skin friction in complex flows has long been of great interest but also a challenge in fluid mechanics. Compared with indirect measurement methods (e.g., laser Doppler velocimetry), direct measurement methods (e.g., floating element) do not involve any analogy and assumption but tend to suffer from instrumentation challenges, such as low sensing resolution or misalignments. Recently, silicon micromachined floating plates showed good resolution and perfect alignment but were too small for general purposes and too fragile to attach other surface samples repeatedly. In this work, we report a skin friction sensor consisting of a monolithic floating plate and a high-resolution optical encoder to measure its displacement. The key for the high resolution is in the suspension beams, which are very narrow (e.g., 0.25 mm) to sense small frictions along the flow direction but thick (e.g., 5 mm) to be robust along all other directions. This compact, low profile, and complete sensor is easy to use and allows repeated attachment and detachment of surface samples. The sheer-stress sensor has been tested in water tunnel and towing tank at different flow conditions, showing high sensing resolution for skin friction measurement. Supported by National Science Foundation (NSF) (No. 1336966) and Defense Advanced Research Projects Agency (DARPA) (No. HR0011-15-2-0021).
Engel, Frank; Rhoads, Bruce L.
2016-01-01
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.
Pedersen, John A; Lichter, Seth; Swartz, Melody A
2010-03-22
Interstitial flow is an important regulator of various cell behaviors both in vitro and in vivo, yet the forces that fluid flow imposes on cells embedded in a 3D extracellular matrix (ECM), and the effects of matrix architecture on those forces, are not well understood. Here, we demonstrate how fiber alignment can affect the shear and pressure forces on the cell and ECM. Using computational fluid dynamics simulations, we show that while the solutions of the Brinkman equation accurately estimate the average fluid shear stress and the drag forces on a cell within a 3D fibrous medium, the distribution of shear stress on the cellular surface as well as the peak shear stresses remain intimately related to the pericellular fiber architecture and cannot be estimated using bulk-averaged properties. We demonstrate that perpendicular fiber alignment of the ECM yields lower shear stress and pressure forces on the cells and higher stresses on the ECM, leading to decreased permeability, while parallel fiber alignment leads to higher stresses on cells and increased permeability, as compared to a cubic lattice arrangement. The Spielman-Goren permeability relationships for fibrous media agreed well with CFD simulations of flow with explicitly considered fibers. These results suggest that the experimentally observed active remodeling of ECM fibers by fibroblasts under interstitial flow to a perpendicular alignment could serve to decrease the shear and drag forces on the cell.
金艳
2015-01-01
Objective To explore the application effect of stratified nursing combined with flexible shift arrangement among nurses in surgery department.Methods We carried out nursing model reform in nursing department to improve nursing efficacy and reduce work stress of nurses. Stratified management combined with flexible shift arrangement were implemented. Nurses' work stress, working enthusiasm, subjective well-being and life quality before and after the nursing model reform were compared. Results After the implementation of stratified management combined with flexible shift arrangement, nurses' working enthusiasm was better than before, and their work stress and professional burnout were less than before. The differences were statistically significant (P<0.05). In the aspect of life quality, the scores of nurses' mental status, appetite and sleep quality were significantly higher than before, and nurses' situation in the aspect of happiness index was also better than before with significant difference (P<0.05). Conclusion Stratified management combined with flexible shift arrangement can take full advantage of nurses at various levels and their talents while lessening their work pressure and raising subjective well-being.%目的探讨层级护理联合弹性排班在外科护士护理中的应用效果。方法为提高外科护士的护理效能，降低护士工作压力，我院护理部改革护理模式，对护士实施层级管理并进行弹性排班，比较护理管理模式改革前后护士工作压力、工作积极性、幸福感和生活质量的变化。结果层级管理联合弹性排班后，护士的工作积极性高于管理前，工作压力和倦怠感低于管理前，均有统计学意义(P<0.05)。护士在精神状态、食欲、睡眠等生活质量方面的评分均高于管理前，幸福指数方面好于管理前，有统计学意义(P<0.05)。结论层级管理联合弹性排班能够充分发挥各层级护士的优势，人尽其才
The cycle of instability: stress release and fissure flow as controls on gully head retreat
Collison, A. J. C.
2001-01-01
Gully head and wall retreat has commonly been attributed to fluvial scour and head collapse as a result of soil saturation, sapping or piping. The empirical evidence to substantiate these conceptual models is sparse, however, and often contradictory. This paper explores the hydrological and mechanical controls on gully head and wall stability by modelling the hydrology, stability and elastic deformation of a marl gully complex in Granada Province, south-east Spain. The hydrological and slope-stability simulations show that saturated conditions can be reached only where preferential fissure flow channels water from tension cracks into the base of the gully head, and that vertical or subvertical heads will be stable unless saturation is achieved. Owing to the high unsaturated strengths of marl measured in this research, failure in unsaturated conditions is possible only where the gully head wall is significantly undercut. Head retreat thus requires the formation of either a tension crack or an undercut hollow. Finite-element stress analysis of eroding slopes reveals a build up of shear stress at the gully head base, and a second stress anomaly just upslope of the head wall. Although tension cracks on gully heads have often been attributed to slope unloading, this research provides strong evidence that the so called sapping hollow commonly found in the gully headwall base is also a function of stress release. Although further research is needed, it seems possible that pop out failures in river channels may be caused by the same process. The hydrological analysis shows that, once a tension crack has developed, throughflow velocity in the gully headwall will increase by an order of magnitude, promoting piping and enlargement of this weakened area. It is, therefore, possible to envisage a cycle of gully expansion in which erosion, channel incision or human action unloads the slope below a gully head, leading to stress patterns that account for the tension crack and a
Aoki, Shigehisa, E-mail: aokis@cc.saga-u.ac.jp [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Ikeda, Satoshi [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Takezawa, Toshiaki [Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ibaraki (Japan); Kishi, Tomoya [Department of Internal Medicine, Saga University, Saga (Japan); Makino, Junichi [Makino Clinic, Saga (Japan); Uchihashi, Kazuyoshi; Matsunobu, Aki [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Noguchi, Mitsuru [Department of Urology, Faculty of Medicine, Saga University, Saga (Japan); Sugihara, Hajime [Department of Physical Therapy, International University of Health and Welfare, Fukuoka (Japan); Toda, Shuji [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)
2011-12-16
Highlights: Black-Right-Pointing-Pointer Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. Black-Right-Pointing-Pointer Fluid streaming is a potent factor for peritoneal fibrosis in PD. Black-Right-Pointing-Pointer We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. Black-Right-Pointing-Pointer A history of fluid streaming exposure promoted mesothelial proliferative activity. Black-Right-Pointing-Pointer We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial-mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed
Termini, Donatella
2016-12-01
The cross-sectional circulation, which develops in meandering bends, exerts an important role in velocity and the boundary shear stress redistributions. This paper considers the effect of vegetation on cross-sectional flow and bed shear distribution along a high-curvature bend. The analysis is conducted with the aid of data collected in a large-amplitude meandering flume during a reference experiment without vegetation and an experiment with vegetation on the bed. The results show that the presence of vegetation modifies the curvature-induced flow pattern and the directionality of turbulent structures. In fact, in the presence of vegetation, the turbulent structures tend to develop within and between the vegetated elements. The pattern of cross-sectional flow, modified by the presence of vegetation, affects the bed shear stress distribution along the bend so that the core of the highest value of the bed shear stress does not reach the outer bank.
无
2010-01-01
We investigates the effect of Taylor-Grtler vortex on the Reynolds stress transport in the rotating turbulent channel flow by direct numerical simulation. The Taylor-Grtler vortex is detected by longitudinal average of velocity fluctuation in the channel and defined as TG fluctuation. It has been found that turbulent diffusion is significant in the Reynolds stress transportation at the suction side of rotating turbulent channel in contrast with the turbulent channel flow without rotation and Taylor-Grtler vortex plays an important role in the turbulent diffusion in Reynolds stress transport. The paper focuses on the low and moderate rotation number, but the effect of the rotation number on the Reynolds stress transport is also reported.
Flow Stress Model of Stainless Steel OCr13Ni5Mo at Elevated Temperature
DONG Wan-peng; CHEN Jun; LI Wen-jun
2008-01-01
For a more accurate forming calculation and numerical simulation of hydraulic turbine blade,experimental studies on the flow stress of stainless steel OCr13Ni5Mo were carried out upon Gleeble-1500 thermal simulator under different deformation conditions.The results then were analyzed and the effects of all influencing factors were summarized consequently.New mathematic models were conceived.Utilizing the software Matlab,regression coefficients were calculated by the least square method.The model has an eminent capability of curve-fitting performance with impact structure whose correlation coefficient is up to 0.908 0 and the cosine coefficient is 0.995 8.All mathematic models and process parameters can be used in engineering calculations or computer simulations.
Evolution of dislocation patterns and its application in prediction of flow stress
ZHOU Zhimin; SUN Yanrui
2004-01-01
The feature of dislocation patterns generated in plastic deformation is the ordered structure of alternative appearance of high and low dislocation density zones. With regard to the system of edge and screw dislocations, a nonlinear partial differential equation (eq. (13) in the text)including high order terms is established based on the reaction-diffusion equation. The contribution of cross slip of screw dislocations to the edge dislocation density is also considered in the analysis. The established equation has the typical feature of nonlinear system. Therefore, one does not need to deal with the complex expressions of the reaction and generation terms for dislocations. By theoretical analysis, the distance between adjacent high dislocation density zones (cell size or distance between cell walls) is obtained. By using this relationship, the flow stresses of ultrafine grained (UFG)copper and aluminum are predicted. The calculated results are well consistent with the experimental.
Flow and bed shear stresses in scour protections around a pile in a current
Nielsen, Anders Wedel; Liu, Xiaofeng; Sumer, B. Mutlu
2013-01-01
with uniformly distributed coarse stones and a lower filter layer with finer stones. For the numerical simulations, the Flow-3D software was used. The scour protection layers were simulated with different numerical approaches, namely regularly arranged spheres, porous media, or their combinations (hybrid models...... on it in an unfavourable manner. Using physical models and 3D computational fluid dynamic (CFD) numerical simulations, the velocity and bed shear stresses are investigated in complex scour protections around mono piles in steady current. In the physical model the scour protections consisted of an upper cover layer......). Numerical simulations with one or four layers of cover stones without filter layer were first computed. Three additional simulations were then made for a scour protection with a cover layer and a single filter layer. Finally, a simulation of a full scale foundation and scour protection was made with porous...
Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress
Paterson, C.
2014-09-14
© 2014 © The Author, 2014. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals.permissions@oup.com. The steady flow of a slowly varying rivulet with prescribed flux in the azimuthal direction round a large stationary horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress is investigated. In particular, we focus on the case where the volume flux is downwards but the shear stress is upwards, for which there is always a solution corresponding to a rivulet flowing down at least part of one side of the cylinder. We consider both a rivulet with constant non-zero contact angle but slowly varying width (that is, de-pinned contact lines) and a rivulet with constant width but slowly varying contact angle (that is, pinned contact lines), and show that they have qualitatively different behaviour. When shear is present, a rivulet with constant non-zero contact angle can never run all the way from the top to the bottom of the cylinder, and so we consider the scenario in which an infinitely wide two-dimensional film of uniform thickness covers part of the upper half of the cylinder and \\'breaks\\' into a single rivulet with constant non-zero contact angle. In contrast, a sufficiently narrow rivulet with constant width can run all the way from the top to the bottom of the cylinder, whereas a wide rivulet can do so only if its contact lines de-pin, and so we consider the scenario in which the contact lines of a wide rivulet de-pin on the lower half of the cylinder.
SUNHaiyan; WANGWeijing; 等
2002-01-01
In accordance to the anisotropic feature of turbulent flow, an anisotropic algebraic stress model is adopted to predict the turbulent flow field and turbulent characteristics generated by a Rushton disc turbine with the improved inner-outer iterative procedure. The predicted turbulent flow is compared with experimental data and the simulation by the standard κ-ε turbulence model. The anisotropic algebraic stress model is found to give better prediction than the standard κ-ε turbulence model. The predicted turbulent flow field is in accordance to experimental data and the trend of the turbulence intensity can be effectively reflected in the simulation. The distribution of turbulent shear rate in the stirred tanks was simulated with the established numerical procedure.
Strongly Stratified Turbulence Wakes and Mixing Produced by Fractal Wakes
Dimitrieva, Natalia; Redondo, Jose Manuel; Chashechkin, Yuli; Fraunie, Philippe; Velascos, David
2017-04-01
This paper describes Shliering and Shadowgraph experiments of the wake induced mixing produced by tranversing a vertical or horizontal fractal grid through the interfase between two miscible fluids at low Atwood and Reynolds numbers. This is a configuration design to models the mixing across isopycnals in stably-stratified flows in many environmental relevant situations (either in the atmosphere or in the ocean. The initial unstable stratification is characterized by a reduced gravity: g' = gΔρ ρ where g is gravity, Δρ being the initial density step and ρ the reference density. Here the Atwood number is A = g' _ 2 g . The topology of the fractal wake within the strong stratification, and the internal wave field produces both a turbulent cascade and a wave cascade, with frecuen parametric resonances, the envelope of the mixing front is found to follow a complex non steady 3rd order polinomial function with a maximum at about 4-5 Brunt-Vaisalla non-dimensional time scales: t/N δ = c1(t/N) + c2g Δρ ρ (t/N)2 -c3(t/N)3. Conductivity probes and Shliering and Shadowgraph visual techniques, including CIV with (Laser induced fluorescence and digitization of the light attenuation across the tank) are used in order to investigate the density gradients and the three-dimensionality of the expanding and contracting wake. Fractal analysis is also used in order to estimate the fastest and slowest growing wavelengths. The large scale structures are observed to increase in wave-length as the mixing progresses, and the processes involved in this increase in scale are also examined.Measurements of the pointwise and horizontally averaged concentrations confirm the picture obtained from past flow visualization studies. They show that the fluid passes through the mixing region with relatively small amounts of molecular mixing,and the molecular effects only dominate on longer time scales when the small scales have penetrated through the large scale structures. The Non
ABA flow modelling in Ricinus communis exposed to salt stress and variable nutrition
Peuke, Andreas D.
2016-01-01
In a series of experiments with Ricinus communis, abscisic acid (ABA) concentrations in tissues and transport saps, its de novo biosynthesis, long-distance transport, and metabolism (degradation) were affected by nutritional conditions, nitrogen (N) source, and nutrient limitation, or salt stress. In the present study these data were statistically re-evaluated, and new correlations presented that underpin the importance of this universal phytohormone. The biggest differences in ABA concentration were observed in xylem sap. N source had the strongest effect; however, nutrient limitation (particularly phosphorus limitation) and salt also had significant effects. ABA was found in greater concentration in phloem sap compared with xylem sap; however, the effect of treatment on ABA concentration in phloem was lower. In the leaves, ABA concentration was most variable compared with the other tissues. This variation was only affected by the N source. In roots, ABA was significantly decreased by nutrient limitation. Of the compartments in which ABA was quantified, xylem sap ABA concentration was most significantly correlated with leaf stomatal conductance and leaf growth. Additionally, ABA concentration in xylem was significantly correlated to that in phloem, indicating a 6-fold concentration increase from xylem to phloem. The ABA flow model showed that biosynthesis of ABA in roots affected the xylem flow of ABA. Moreover, ABA concentration in xylem affected the degradation of the phytohormone in shoots and also its export from shoots via phloem. The role of phloem transport is discussed since it stimulates ABA metabolism in roots. PMID:27440939
Quantification of disturbed wall shear stress patterns in complex cardiovascular flows
Arzani, Amirhossein; Shadden, Shawn C.
2014-11-01
Wall shear stress (WSS) affects the cardiovascular system in numerous ways, and is thought to play an important role in the pathology of many cardiovascular diseases. The (endothelial) cells lining the inner wall of blood vessels, and perhaps the cells inside the vessel wall, can actively sense WSS and respond both chemically and mechanically. The complexity of WSS in cardiovascular flows extends both spatially and temporally. Furthermore, WSS has magnitude and direction. These facets make simple quantification of WSS in cardiovascular applications difficult. In this study we propose a framework to quantify measures such as WSS angle gradient, WSS magnitude gradient, WSS angle time derivative and WSS magnitude time derivative. We will explain the relation of these parameters to the tensorial WSS gradient and WSS vector time derivative, and propose a new methodology to unify these concepts into a single measure. The correlation between these metrics and more common WSS metrics used in the literature will be demonstrated. For demonstration, these methods will be used for the quantification of complex blood flow inside abdominal aortic aneurysms.
Muscle blood flow and muscle metabolism during exercise and heat stress
Nielsen, Bodil; Savard, G; Richter, Erik
1990-01-01
environment a steady state was reached at 30 min. When the subjects were shifted to the hot room, the core temperature and heart rate started to rise and reached values greater than 39 degrees C and near-maximal values, respectively, at the termination of the exercise. The leg blood flow (thermodilution......The effect of heat stress on blood flow and metabolism in an exercising leg was studied in seven subjects walking uphill (12-17%) at 5 km/h on a treadmill for 90 min or until exhaustion. The first 30 min of exercise were performed in a cool environment (18-21 degrees C); then subjects moved...... to an adjacent room at 40 degrees C and continued to exercise at the same speed and inclination for a further 60 min or to exhaustion, whichever occurred first. The rate of O2 consumption, 2.6 l/min (1.8-3.3) (average from cool and hot conditions), corresponded to 55-77% of their individual maximums. In the cool...
Continuous Dependence on the Density for Stratified Steady Water Waves
Chen, Robin Ming; Walsh, Samuel
2016-02-01
There are two distinct regimes commonly used to model traveling waves in stratified water: continuous stratification, where the density is smooth throughout the fluid, and layer-wise continuous stratification, where the fluid consists of multiple immiscible strata. The former is the more physically accurate description, but the latter is frequently more amenable to analysis and computation. By the conservation of mass, the density is constant along the streamlines of the flow; the stratification can therefore be specified by prescribing the value of the density on each streamline. We call this the streamline density function. Our main result states that, for every smoothly stratified periodic traveling wave in a certain small-amplitude regime, there is an L ∞ neighborhood of its streamline density function such that, for any piecewise smooth streamline density function in that neighborhood, there is a corresponding traveling wave solution. Moreover, the mapping from streamline density function to wave is Lipschitz continuous in a certain function space framework. As this neighborhood includes piecewise smooth densities with arbitrarily many jump discontinues, this theorem provides a rigorous justification for the ubiquitous practice of approximating a smoothly stratified wave by a layered one. We also discuss some applications of this result to the study of the qualitative features of such waves.
Huang, Wei; Yang, Shi-Jian; Zhang, Shi-Bao; Zhang, Jiao-Lin; Cao, Kun-Fang
2012-04-01
Resurrection plants could survive severe drought stress, but the underlying mechanism for protecting their photosynthetic apparatus against drought stress is unclear. Cyclic electron flow (CEF) has been documented as a crucial mechanism for photoprotection in Arabidopsis and tobacco. We hypothesized that CEF plays an important role in protecting photosystem I (PSI) and photosystem II (PSII) against drought stress for resurrection plants. To address this hypothesis, the effects of mild drought stress on light energy distribution in PSII and P700 redox state were examined in a resurrection plant Paraboea rufescens. Cyclic electron flow was not activated below the photosynthetic photon flux density (PPFD) of 400 μmol m⁻² s⁻¹ in leaves without drought stress. However, CEF was activated under low light in leaves with mild drought stress, and the effective quantum yield of PSII significantly decreased. Meanwhile, non-photochemical quenching (NPQ) was significantly stimulated not only under high light but also under low light. Compared with the control, the fraction of overall P700 that cannot be oxidized in a given state (PSI acceptor side limitation) under high light was maintained at low level of 0.1 in leaves with water deficit, indicating that the over-reduction of the PSI acceptor side was prevented by the significant stimulation of CEF. Furthermore, methyl viologen could significantly increase the PSII photo-inhibition induced by high light compared with chloramphenicol. These results suggested that CEF is an important mechanism for protecting PSI and PSII from drought stress in resurrection plants.
Computation of mixing in large stably stratified enclosures
Zhao, Haihua
This dissertation presents a set of new numerical models for the mixing and heat transfer problems in large stably stratified enclosures. Basing on these models, a new computer code, BMIX++ (Berkeley mechanistic MIXing code in C++), was developed by Christensen (2001) and the author. Traditional lumped control volume methods and zone models cannot model the detailed information about the distributions of temperature, density, and pressure in enclosures and therefore can have significant errors. 2-D and 3-D CFD methods require very fine grid resolution to resolve thin substructures such as jets, wall boundaries, yet such fine grid resolution is difficult or impossible to provide due to computational expense. Peterson's scaling (1994) showed that stratified mixing processes in large stably stratified enclosures can be described using one-dimensional differential equations, with the vertical transport by free and wall jets modeled using standard integral techniques. This allows very large reductions in computational effort compared to three-dimensional numerical modeling of turbulent mixing in large enclosures. The BMIX++ code was developed to implement the above ideas. The code uses a Lagrangian approach to solve 1-D transient governing equations for the ambient fluid and uses analytical models or 1-D integral models to compute substructures. 1-D transient conduction model for the solid boundaries, pressure computation and opening models are also included to make the code more versatile. The BMIX++ code was implemented in C++ and the Object-Oriented-Programming (OOP) technique was intensively used. The BMIX++ code was successfully applied to different types of mixing problems such as stratification in a water tank due to a heater inside, water tank exchange flow experiment simulation, early stage building fire analysis, stratification produced by multiple plumes, and simulations for the UCB large enclosure experiments. Most of these simulations gave satisfying
McCoy, S. W.; Kean, J. W.; Coe, J. A.; Tucker, G. E.; Staley, D. M.; Wasklewicz, T. A.
2010-12-01
When mixtures of soil, rock and water flow down slope as a debris flow they can entrain and transport large amounts of bed sediment and erode underlying bedrock. Although sediment entrainment and bedrock scour by debris flows are commonplace in steep terrain, there are few measurements to constrain key terms in event-scale debris-flow routing models or longer-term landscape evolution models that include the effects of bedrock erosion by debris-flows. Particularly conspicuous are the lack of bed sediment entrainment measurements and measurements of the evolving stress state at the flow-bedrock interface as the shielding layer of sediment is removed and sediment entrainment gives way to bedrock erosion. Here we present data from the headwaters of a debris-flow basin at Chalk Cliffs, Colorado, where we directly measured entrainment of channel sediment and the evolving stress state at the bedrock interface during three debris-flow events. We made these measurements through the combined the use of a novel sediment entrainment sensor and a force plate with more commonly used video imagery and instrumentation, to measure pore-fluid pressure, flow stage, soil moisture, and rainfall during the three debris-flow events. We extended these at-a-point process measurements to evaluate the reach-scale response using pre- and post-event terrestrial laser scans. During the three separate debris-flow events approximately 1.1 m, 0.5 m, and 0.4 m of unconsolidated bed sediment were entrained. Following entrainment of the sediment, bedrock was scoured by flows that ranged from water-poor coarse-grained surge fronts to water-rich turbulent flows with vigorous bedload transport. In all cases, entrainment of bed sediment was progressive, rather than by a single en masse failure of the sediment at the sediment-bedrock interface. The measured rates were dependent on bed sediment water content. When the bed sediment was unsaturated, entrainment was relatively slow, generally taking several
Stably stratified magnetized stars in general relativity
Yoshida, Shijun; Shibata, Masaru
2012-01-01
We construct magnetized stars composed of a fluid stably stratified by entropy gradients in the framework of general relativity, assuming ideal magnetohydrodynamics and employing a barotropic equation of state. We first revisit basic equations for describing stably-stratified stationary axisymmetric stars containing both poloidal and toroidal magnetic fields. As sample models, the magnetized stars considered by Ioka and Sasaki (2004), inside which the magnetic fields are confined, are modified to the ones stably stratified. The magnetized stars newly constructed in this study are believed to be more stable than the existing relativistic models because they have both poloidal and toroidal magnetic fields with comparable strength, and magnetic buoyancy instabilities near the surface of the star, which can be stabilized by the stratification, are suppressed.
Reda, Daniel C.; Muratore, Joseph J., Jr.; Heineck, James T.
1993-01-01
Time and flow-direction responses of shearstress-sensitive liquid crystal coatings were explored experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing Schlieren system and recorded with a 1000 frame/sec color video camera. Liquid crystal responses to these changing-shear environments were then recorded with the same video system, documenting color-play response times equal to, or faster than, the time interval between sequential frames (i.e., 1 millisecond). For the flow-direction experiments, a planar test surface was exposed to equal-magnitude and known-direction surface shear stresses generated by both normal and tangential subsonic jet-impingement flows. Under shear, the sense of the angular displacement of the liquid crystal dispersed (reflected) spectrum was found to be a function of the instantaneous direction of the applied shear. This technique thus renders dynamic flow reversals or flow divergences visible over entire test surfaces at image recording rates up to 1 KHz. Extensions of the technique to visualize relatively small changes in surface shear stress direction appear feasible.
Reda, Daniel C.; Muratore, Joseph J., Jr.; Heineck, James T.
1993-01-01
Time and flow-direction responses of shearstress-sensitive liquid crystal coatings were explored experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing Schlieren system and recorded with a 1000 frame/sec color video camera. Liquid crystal responses to these changing-shear environments were then recorded with the same video system, documenting color-play response times equal to, or faster than, the time interval between sequential frames (i.e., 1 millisecond). For the flow-direction experiments, a planar test surface was exposed to equal-magnitude and known-direction surface shear stresses generated by both normal and tangential subsonic jet-impingement flows. Under shear, the sense of the angular displacement of the liquid crystal dispersed (reflected) spectrum was found to be a function of the instantaneous direction of the applied shear. This technique thus renders dynamic flow reversals or flow divergences visible over entire test surfaces at image recording rates up to 1 KHz. Extensions of the technique to visualize relatively small changes in surface shear stress direction appear feasible.
Berzi, D.; Vescovi, Dalila
2015-01-01
We use previous results from discrete element simulations of simple shear flows of rigid, identical spheres in the collisional regime to show that the volume fractiondependence of the stresses is singular at the shear rigidity. Here, we identify the shear rigidity, which is a decreasing function of
GAO Jian-xin; XU Xiao-feng; SONG Ke-xing; LI Pei-quan; GUO Xiu-hua; LIU Rui-hua
2006-01-01
Alumina dispersion strengthened copper composite (nano-Al2O3/Cu composite) was recently emerged as a kind of potentially viable and attractive engineering material for applications requiring high strength, high thermal and electrical conductivities and resistance to softening at elevated temperatures. The nano-Al2O3/Cu composite was produced by internal oxidation. The microstructures of the composite were analyzed by the TEM and its hot deformation behavior was investigated by means of continuous compression tests performed on a Gleeble 1500 thermo-simulator. Making use of the modified algorithm-Levenberg-Marquardt (L-M) algorithm BP neural network, a model for predicting the flow stresses during hot deformation was set up on the base of the experimental data. Results show that the microstructures of the composite are characterized by uniform distribution of nano-Al2O3 particles in Cu-matrix. The sliding of dislocations is the main deformation mechanism. The dynamic recovery is the main softening mode with the flow stress decreasing gently from 500 ℃ to 850 ℃. The recrystallization of Cu-matrix can be retarded late into as high as 850 ℃, when it happens only partially. The well-trained BP neural network model can accurately describe the influence of the temperature, strain rate, and true strain on the flow stresses, therefore, it can precisely predict the flow stresses of the composite under given deforming conditions and provide a new way to optimize hot deforming process parameters.
Yujiang Li; Lianwang Chen; Pei Tan; Hong Li
2014-01-01
The channel flow model was gradually being accepted with the more important multidisci-plinary evidences from geology and geophysics, but how the lower crustal flow influenced the surface de-formation quantitatively was unknown. Here, we develop a three-dimensional viscoelastic model to ex-plore the mechanical relations between the lower crustal flow and the surface deformation in western Si-chuan. Based on numerous tests, our results show that the modeled results fit well with the observed GPS data when the lower crust flows faster than the upper crust about 11 mm/a in the rhombic block, which can be useful to understand the possible mechanism of the surface deformation in western Sichuan. Moreover, taking the Xianshuihe fault as an example, we preliminarily analyze the relation between the active fault and stress field, according to the boundary constraints that deduced from the best model. The results show that the maximum shear stress on the Xianshuihe fault zone is mainly located in the fault terminal, intersections and the bend of the fault geometry, the stress level on the northwestern segment that has the high slip rate is relatively high. Additionally, with the reduction of the Young’s modulus in the fault zone, it’s conducive to generate the greater strain distribution, hence forming the high stress level.
Amor, Kaouther Ben; Breeuwer, Pieter; Verbaarschot, Patrick; Rombouts, Frank M; Akkermans, Antoon D L; De Vos, Willem M; Abee, Tjakko
2002-11-01
Using a flow cytometry-based approach, we assessed the viability of Bifidobacterium lactis DSM 10140 and Bifidobacterium adolescentis DSM 20083 during exposure to bile salt stress. Carboxyfluorescein diacetate (cFDA), propidium iodide (PI), and oxonol [DiBAC4(3)] were used to monitor esterase activity, membrane integrity, and membrane potential, respectively, as indicators of bacterial viability. Single staining with these probes rapidly and noticeably reflected the behavior of the two strains during stress exposure. However, the flow cytometry results tended to overestimate the viability of the two strains compared to plate counts, which appeared to be related to the nonculturability of a fraction of the population as a result of sublethal injury caused by bile salts. When the cells were simultaneously stained with cFDA and PI, flow cytometry and cell sorting revealed a striking physiological heterogeneity within the stressed bifidobacterium population. Three subpopulations could be identified based on their differential uptake of the probes: cF-stained, cF and PI double-stained, and PI-stained subpopulations, representing viable, injured, and dead cells, respectively. Following sorting and recovery, a significant fraction of the double-stained subpopulation (40%) could resume growth on agar plates. Our results show that in situ assessment of the physiological activity of stressed bifidobacteria using multiparameter flow cytometry and cell sorting may provide a powerful and sensitive tool for assessment of the viability and stability of probiotics.
Ben Amor, K.; Breeuwer, P.; Verbaarschot, P.; Rombouts, F.M.; Akkermans, A.D.L.; Vos, de W.M.; Abee, T.
2002-01-01
Using a flow cytometry-based approach, we assessed the viability of Bifidobacterium lactis DSM 10140 and Bifidobacterium adolescentis DSM 20083 during exposure to bile salt stress. Carboxyfluorescein diacetate (cFDA), propidium iodide (PI), and oxonol [DiBAC4(3)] were used to monitor esterase activi
Tripathi, Dharmendra; Anwar Bég, O
2013-11-01
Magnetic fields are increasingly being utilized in endoscopy and gastric transport control. In this regard, the present study investigates the influence of a transverse magnetic field in the transient peristaltic rheological transport. An electrically-conducting couple stress non-Newtonian model is employed to accurately simulate physiological fluids in peristaltic flow through a sinusoidally contracting channel of finite length. This model is designed for computing the intra-bolus oesophageal and intestinal pressures during the movement of food bolus in the digestive system under magneto-hydro-dynamic effects. Long wavelength and low Reynolds number approximations have been employed to reduce the governing equations from nonlinear to linear form, this being a valid approach for creeping flows which characterizes physiological dynamics. Analytical approximate solutions for axial velocity, transverse velocity, pressure gradient, local wall shear stress and volumetric flow rate are obtained for the non-dimensional conservation equations subject to appropriate boundary conditions. The effects of couple stress parameter and transverse magnetic field on the velocity profile, pressure distribution, local wall shear stress and the averaged flow rate are discussed with the aid of computational results. The comparative study of non-integral and integral number of waves propagating along the finite length channel is also presented. Magnetic field and non-Newtonian properties are found to strongly influence peristaltic transport.
Xiao, Zhenghua; Zhang, Bengui; Zhang, Eryong; Xu, Weilin; Shi, Yingkang; Guo, Yingqiang
2011-02-01
This study was aimed to compare the differences of adhesion properties of endothelial cells (EC) from arteries (AEC), veins (VEC) and capillaries (MVEC) under shear stress condition, and to explore whether they can get the same adhesive ability as graft in similar shear stress conditions. With mended parallel plate flow apparatus and peristalsis pump providing fluid shear stress used, endothelial culture models were established in vitro with the same environmental factors as steady culture. To compare the adhesion among three kinds of endothelial cells under dynamic condition and static condition, the dynamic change of cytoskeletal actin filaments and the effects of different adhesive proteins coated on the adhesion of EC to the glass were studied. The cultured endothelial cells under flow conditions were extended and arranged along the direction of flow. The adhesive ability from high to low under static condition were AEC, MVEC and VEC (VEC compared with AEC or MVEC, P different between AEC and MVEC. But VEC was significantly different (P stress fibers were formed, which even interconnected to form a whole in the MVEC. The adhesion of AEC, VEC and MVEC under shear stress conditions are more significantly increased than those under the static culture conditions, and the MVEC can achieve the same adhesion as AEC.
陆耀军; 周力行; 沈熊
2000-01-01
The Reynolds stress transport equation model (DSM) is used to predict the strongly swirling turbulent flows in a liquid-liquid hydrocyclone, and the predictions are compared with LDV measurements . Predictions properly give the flow behavior observed in experiments, such as the Rankine-vortex structure and double peaks near the inlet region in tangential velocity profile, the downward flow near the wall and upward flow near the core in axial velocity profiles. In the inlet or upstream region of the hydrocyclone, the reverse flow near the axis is well predicted, but in the region with smaller cone angle and cylindrical section, there are some discrepancies between the model predictions and the LDV measurements. Predictions show that the pressure is small in the near-axis region and increases to the maximum near the wall. Both predictions and measurements indicate that the turbulence in hydrocy-clones is inhomogeneous and anisotropic.
无
2000-01-01
The Reynolds stress transport equation model (DSM) is used to predict the strongly swirling turbulent flows in a liquid-liquid hydrocyclone, and the predictions are compared with LDV measurements. Predictions properly give the flow behavior observed in experiments, such as the Rankine-vortex structure and double peaks near the inlet region in tangential velocity profile, the downward flow near the wall and upward flow near the core in axial velocity profiles. In the inlet or upstream region of the hydrocyclone, the reverse flow near the axis is well predicted, but in the region with smaller cone angle and cylindrical section, there are some discrepancies between the model predictions and the LDV measurements. Predictions show that the pressure is small in the near-axis region and increases to the maximum near the wall. Both predictions and measurements indicate that the turbulence in hydrocyclones is inhomogeneous and anisotropic.
Thermals in stratified regions of the ISM
Rodriguez-Gonzalez, Ary
2013-01-01
We present a model of a "thermal" (i.e., a hot bubble) rising within an exponentially stratified region of the ISM. This model includes terms representing the ram pressure braking and the entrainment of environmental gas into the thermal. We then calibrate the free parameters associated with these two terms through a comparison with 3D numerical simulations of a rising bubble. Finally, we apply our "thermal" model to the case of a hot bubble produced by a SN within the stratified ISM of the Galactic disk.
On Stratified Vortex Motions under Gravity.
2014-09-26
AD-A156 930 ON STRATIFIED VORTEX MOTIONS UNDER GRAVITY (U) NAVAL i/i RESEARCH LAB WASHINGTON DC Y T FUNG 20 JUN 85 NRL-MIR-5564 UNCLASSIFIED F/G 20/4...Under Gravity LCn * Y. T. Fung Fluid Dynamics Branch - Marine Technologyv Division June 20, 1985 SO Cyk. NAVAL RESEARCH LABORATORY Washington, D.C...DN880-019 TITLE (Include Security Classification) On Stratified Vortex Motions Under Gravity 12 PERSONAL AUTHOR(S) Funa, Y.T. 13a. TYPE OF REPORT 13b
THERMALS IN STRATIFIED REGIONS OF THE ISM
A. Rodríguez-González
2013-01-01
Full Text Available We present a model of a “thermal” (i.e., a hot bubble rising within an exponentially stratified region of the ISM. This model includes terms representing the ram pressure braking and the entrainment of environmental gas into the thermal. We then calibrate the free parameters associated with these two terms through a comparison with 3D numerical simulations of a rising bubble. Finally, we apply our “thermal” model to the case of a hot bubble produced by a SN within the stratified ISM of the Galactic disk.
Hua, Dan; Suzuki, Hiroki; Mochizuki, Shinsuke
2017-09-01
A local wall shear stress measurement technique has been developed using a thin plate, referred to as a sublayer plate which is attached to the wall in the sublayer of a near-wall turbulent flow. The pressure difference between the leading and trailing edges of the plate is correlated to the known wall shear stress obtained in the fully developed turbulent channel flow. The universal calibration curve can be well represented in dimensionless form, and the sensitivity of the proposed method is as high as that of the sublayer fence, even if the sublayer fence is enveloped by the linear sublayer. The results of additional experiments prove that the sublayer plate has fairly good angular resolution in detecting the direction of the local wall shear stress vector.
福冨, 清; 長谷川, 富市; Fukutomi, Kiyoshi; Hasegawa, Tomiichi
1988-01-01
By assuming a uniformly converging radial flow on the upstream side of an orifice and integrating the equation of motion, an expression was derived to estimate elongational stresses for dilute polymer solutions at the orifice exit from pressure drops between the upstream and downstream of the orifice. The expression shown that the dilute polymer solutions usually give lower values of pressure drop than the solvent (water) does. An experiment was carried out to obtain the pressure drops for th...
English, Joseph M.
2017-05-31
The petroleum prospectivity of an exhumed basin is largely dependent on the ability of pre-existing traps to retain oil and gas volumes during and after the exhumation event. Although faults may act as lateral seals in petroleum traps, they may start to become hydraulically conductive again and enable fluid flow and hydrocarbon leakage during fault reactivation. We constrain the present day in situ stresses of the exhumed Illizi Basin in Algeria and demonstrate that the primary north–south and NW–SE (vertical strike-slip) fault systems in the study area are close to critical stress (i.e. an incipient state of shear failure). By contrast, the overpressured and unexhumed Berkine Basin and Hassi Messaoud areas to the north do not appear to be characterized by critical stress conditions. We present conceptual models of stress evolution and demonstrate that a sedimentary basin with benign in situ stresses at maximum burial may change to being characterized by critical stress conditions on existing fault systems during exhumation. These models are supportive of the idea that the breaching of a closed, overpressured system during exhumation of the Illizi Basin may have been a driving mechanism for the regional updip flow of high-salinity formation water within the Ordovician reservoirs during Eocene–Miocene time. This work also has implications for petroleum exploration in exhumed basins. Fault-bounded traps with faults oriented at a high angle to the maximum principal horizontal stress direction in strike-slip or normal faulting stress regimes are more likely to have retained hydrocarbons in exhumed basins than fault-bounded traps with faults that are more optimally oriented for shear failure and therefore have a greater propensity to become critically stressed during exhumation.
Mikel' son, Yu.Ya.; Yakovich, A.T.; Pavlov, S.I.
1978-01-01
Turbulent stresses are considered in an incompressible fluid due to MHD flow induced within an axisymmetric region by electromagnetic forces on the basis of the linearized equation of motion as well as on the basis of the stress tensor in terms of average velocities and turbulent viscosity. The turbulent viscosity is treated according to the Boussinesq hypothesis (constant turbulent viscosity), according to the generalized Karman hypothesis (turbulent viscosity a function of the derivatives of the velocity components with respect to the respective coordinates), or as the product of its coordinate functions. The results of numerical calculations indicate a close agreement between all these formulas for an average MHD flow and experimental data. Calculations including this additional turbulent force, appropriately related to the flow parameters, are applicable to the design of liquid-metal devices. 7 references, 3 figures.
Pan Zhipeng
2017-01-01
Full Text Available Inconel 718 is a typical hard-to-machine material that requires thermally enhanced machining technology such as laser-assisted milling. Based upon finite element analysis, this study simulates the forces in the laser-assisted milling process of Inconel 718 considering the effects of grain growth due to γ' and γ" phases. The γ" phase is unstable and becomes the δ phase, which is likely to precipitate at a temperature over 750 °C. The temperature around the center of spot in the experiments is 850 °C, so the phase transformation and grain growth happen throughout the milling process. In the analysis, this study includes the microstructure evolution while accounting for the effects of dynamic recrystallization and grain growth through the Avrami model. The grain growth reduces the yield stress and flow stress, which improves the machinability. In finite element analysis (FEA, several boundary conditions of temperature varying with time are defined to simulate the movement of laser spot, and the constitutive model is described by Johnson-Cook equation. In experiments, this study collects three sets of cutting forces and finds that the predicted values are in close agreements with measurements especially in feed direction, in which the smallest error is around 5%. In another three simulations, this study also examines the effect of laser preheating on the cutting forces by comparison with a traditional milling process without laser assist. When the laser is off, the forces increase in all cases, which prove the softening effect of laser-assisted milling. In addition, when the axial depth of milling increases, the laser has a more significant influence, especially in axial direction, in which the force with laser is more than 18% smaller than the one without laser. Overall, this study validates the influence of laser-assisted milling on Inconel 718 by predicting the cutting forces in FEA.
Topography mediates plant water stress: coupling groundwater flow and rhizosphere-xylem hydraulics
Mackay, D. S.; Tai, X.
2016-12-01
Explicit representation of groundwater movement and its subsidy to the unsaturated zone have long been recognized to affect land surface fluxes. But its impact on mediating plant safety during drought has not yet been evaluated, due to the oversimplified representation of the soil-plant-atmospheric continuum in current mainstream land surface models. Here we evaluated the interaction between groundwater processes and plant hydraulics by integrating a three-dimensional groundwater model - ParFlow with a physiologically sophisticated plant model - TREES. A series of simulation experiments using representative hillslope shapes during a general dry down period were carried out to explore the impacts of topography, soil properties, and plant traits - maximum hydraulic conductance (Kmax), root area (Ar), and vulnerability to cavitation on plant hydraulic stress and the potential feedbacks to soil water spatial dynamics. From an initial condition of uniform pressure, lateral redistribution dominated the first stage when soils were wet, resulting in various water table depths. As drought progressed, the tension wetted zone provided a water subsidy to the root zone, causing various rates of soil dry down at different locations. In the end, the root zone soil water remains stable and dry, with diurnal fluctuations induced by the hydraulic redistribution of plant roots. Plants, in general, had higher transpiration and lower hydraulic stress on concave hillslopes. The same plant growing on fine-textured soils had higher transpiration rate, and therefore stronger feedbacks to the water table depths, compared to coarse-textured soil. But these responses could further vary by plant traits. For locations with shallow water table, Kmax is the most important factor determining plant function. When soil is dry, plants with higher Ar and more resistant xylem sustained higher transpiration rates. Those promising performance suggests that the coupled model could be a powerful tool for
Nitrogen transformations in stratified aquatic microbial ecosystems
Revsbech, Niels Peter; Risgaard-Petersen, N.; Schramm, Andreas
2006-01-01
Abstract New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about n...
Teixeira, André L; Padilla, Jaume; Vianna, Lauro C
2017-07-01
We recently showed that 5 days of reduced daily physical activity impair popliteal artery, but not brachial artery, flow-mediated dilation (FMD). However, the mechanisms by which physical inactivity causes leg vascular dysfunction are unclear. We reason that a reduction in leg blood flow-induced shear stress is a primary underlying mechanism by which reduced daily physical activity impairs popliteal artery FMD. Thus the purpose of this study was to determine whether increased leg blood flow and shear stress during inactivity prevent the reduction in popliteal artery FMD. Bilateral popliteal artery FMD measures were performed at baseline and after 5 days of a transition from high (>10,000 steps/day) to low levels (physical activity in 13 healthy and physically active men [20 ± 2 (SD) yr]. During the inactive period, one foot was submerged in ~42°C water (i.e., heated leg) three times a day for 30 min each period, to increase blood flow and thus shear stress, whereas the contralateral leg remained dry and served as internal control (i.e., nonheated leg). During heating, popliteal artery mean shear rate was increased in the heated leg (change of 119.3 ± 26.4%, P physical activity in the control nonheated leg (P results support the hypothesis that reduced leg blood flow-induced shear stress during physical inactivity is a key underlying mechanism mediating leg vascular dysfunction.NEW & NOTEWORTHY We found that the impairment in popliteal artery flow-mediated dilation caused by physical inactivity can be prevented by increased shear stress. These findings indicate that reduced leg blood flow-induced shear stress during physical inactivity may be a key underlying mechanism mediating the detrimental leg vascular effects of physical inactivity. Heating the foot area may be used as a nonpharmacological therapy to combat inactivity-induced leg vascular dysfunction, especially in people who are unable or unwilling to be active. Copyright © 2017 the American
Fluid flow shear stress upregulates prostanoid receptor EP2 but not EP4 in murine podocytes.
Srivastava, Tarak; McCarthy, Ellen T; Sharma, Ram; Kats, Alexander; Carlton, Carol G; Alon, Uri S; Cudmore, Patricia A; El-Meanawy, Ashraf; Sharma, Mukut
2013-01-01
Podocytes in the glomerular filtration barrier regulate the passage of plasma proteins into urine. Capillary pressure and ultrafiltration impact the structure and function of podocytes. The mechanism of podocyte injury by fluid flow shear stress (FFSS) from hyperfiltration in chronic kidney disease (CKD) is not completely understood. Recently, we demonstrated increased synthesis of prostaglandin E2 in podocytes exposed to FFSS. Here, we determine the effect of FFSS on prostanoid receptors EP1-EP4 in cultured podocytes and in Os/+ mouse kidney, a model of hyperfiltration. Results of RT-PCR, qRT-PCR, immunoblotting and immunofluorescence studies indicate that cultured podocytes express EP1, EP2 and EP4 but not EP3. FFSS resulted in upregulated expression of only EP2 in podocytes. Kidney immunostaining showed significantly increased expression of EP2 in Os/+ mice compared with littermate controls. These novel results suggest that EP2 may be responsible for mediating podocyte injury from hyperfiltration-induced augmented FFSS in CKD.
High Temperature Stress Analysis on 61-pin Test Assembly for Reactor Core Sub-channel Flow Test
Lee, Dongwon; Kim, Hyungmo; Lee, Hyeongyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
In this study, a high temperature heat transfer and stress analysis of a 61-pin test fuel assembly scaled down from the full scale 217-pin sub-assembly was conducted. The reactor core subchannel flow characteristic test will be conducted to evaluate uncertainties in computer codes used for reactor core thermal hydraulic design. Stress analysis for a 61-pin fuel assembly scaled down from Prototype Generation IV Sodium-cooled Fast Reactor was conducted and structural integrity in terms of load controlled stress limits was conducted. In this study, The evaluations on load-controlled stress limits for a 61-pin test fuel assembly to be used for reactor core subchannel flow distribution tests were conducted assuming that the test assembly is installed in a Prototype Generation IV Sodium-cooled fast reactor core. The 61-pin test assembly has the geometric similarity on P/D and H/D with PGSFR and material of fuel assembly is austenitic stainless steel 316L. The stress analysis results showed that 4.05MPa under primary load occurred at mid part of the test assembly and it was shown that the value of 4.05Mpa was far smaller than the code allowable of 127MPa. , it was shown that the stress intensity due to due to primary load is very small. The stress analysis results under primary and secondary loads showed that maximum stress intensity of 84.08MPa occurred at upper flange tangent to outer casing and the value was well within the code allowable of 268.8MPa. Integrity evaluations based on strain limits and creep-fatigue damage are underway according to the elevated design codes.
Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian
2016-06-01
Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars.
Ghorbanpour Arani, A.; Roudbari, M. A.
2014-11-01
This paper investigates the electro-thermal nonlocal wave propagation of fluid-conveying single-walled Boron Nitride nanotubes (SWBNNTs) using nonlocal piezoelasticity with surface stress, initial stress and Knudsen-dependent flow velocity effect. SWBNNT is embedded in a vicsoelastic medium which is simulated as visco-Pasternak foundation. Using Euler-Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. A detailed parametric study is conducted, focusing on the combined effects of the electric parameters, viscoelastic medium, initial stress, surface stress, Knudsen number (Kn) and small scale on the wave propagation behaviour of the fluid-conveying SWBNNT. The results show that for smaller values of wave number the dispersion relation for different fluid viscosities seems to be similar. At the higher values of wave numbers, increase in the wave frequency values is remarkable due to increase in fluid viscosity. The electric field as a smart controller, surface effect, initial stress, temperature change and slip velocity effect have significant role on the wave frequency. The results of this work is hoped to be of use in design and manufacturing of smart MEMS/NEMS in advanced medical applications such as drug delivery systems with great applications in biomechanics.
Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan, Islamic Republic of Iran. (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Roudbari, M.A. [Faculty of Mechanical Engineering, University of Kashan, Kashan, Islamic Republic of Iran. (Iran, Islamic Republic of)
2014-11-01
This paper investigates the electro-thermal nonlocal wave propagation of fluid-conveying single-walled Boron Nitride nanotubes (SWBNNTs) using nonlocal piezoelasticity with surface stress, initial stress and Knudsen-dependent flow velocity effect. SWBNNT is embedded in a vicsoelastic medium which is simulated as visco-Pasternak foundation. Using Euler–Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. A detailed parametric study is conducted, focusing on the combined effects of the electric parameters, viscoelastic medium, initial stress, surface stress, Knudsen number (Kn) and small scale on the wave propagation behaviour of the fluid-conveying SWBNNT. The results show that for smaller values of wave number the dispersion relation for different fluid viscosities seems to be similar. At the higher values of wave numbers, increase in the wave frequency values is remarkable due to increase in fluid viscosity. The electric field as a smart controller, surface effect, initial stress, temperature change and slip velocity effect have significant role on the wave frequency. The results of this work is hoped to be of use in design and manufacturing of smart MEMS/NEMS in advanced medical applications such as drug delivery systems with great applications in biomechanics.
Kefayati, Sarah; Poepping, Tamie L
2010-01-01
The carotid artery bifurcation is a common site of atherosclerosis which is a major leading cause of ischemic stroke. The impact of stenosis in the atherosclerotic carotid artery is to disturb the flow pattern and produce regions with high shear rate, turbulence, and recirculation, which are key hemodynamic factors associated with plaque rupture, clot formation, and embolism. In order to characterize the disturbed flow in the stenosed carotid artery, stereoscopic PIV measurements were performed in a transparent model with 50% stenosis under pulsatile flow conditions. Simulated ECG gating of the flowrate waveform provides external triggering required for volumetric reconstruction of the complex flow patterns. Based on the three-component velocity data in the lumen region, volumetric shear-stress patterns were derived.
Effects of virtual water flow on regional water resources stress: A case study of grain in China.
Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute
2016-04-15
Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.
Ahmari, Saeed A L; Bunch, T Jared; Modesto, Karen; Stussy, Vicky; Dichak, Amy; Seward, James B; Pellikka, Patricia A; Chandrasekaran, Krishnaswamy
2008-06-15
Traditional cardiovascular risk factors have been shown to cause microvascular dysfunction. Most studies that have evaluated microcirculation rely on invasive measurement tools. We used dobutamine stress echocardiography, a validated method to measure coronary flow velocity (CFV) and coronary flow reserve (CFR), in a previously unstudied population without known significant coronary artery disease to determine the impact of traditional risk factors on CFR. Consecutive patients who had no evidence of regional wall motion abnormalities at rest or during dobutamine stress echocardiography were studied. Left anterior descending artery CFV was measured at baseline and at peak dobutamine stress and CFR was calculated as the ratio of peak stress CFV to baseline CFV. Fifty-nine consecutive patients (28 men) with mean age of 66.8+/-14.5 years were studied. CFR was lower in patients with diabetes mellitus (DM) compared with those without (1.7+/-0.74 vs 2.48+/-0.98, p50 mm Hg), and obesity with a wide pulse pressure. In a multivariate model, DM, obesity, and wide pulse pressure were significantly associated with variation in CFR (p<0.0008). In conclusion, CFR was abnormal in patients with DM, hypertension, and obesity. CFR impairment is exaggerated as the number of risk factors increases. Despite a negative dobutamine stress echocardiographic result, aggressive risk factor assessment and control should be implemented in patients with coronary risk factors due to an underlying abnormal CFR.
Intermittent Turbulence in Stratified Flow over a Canopy
Boing, S.; Jonker, H.J.J.; Wiel, van de B.J.H.; Moene, A.F.
2010-01-01
During the night turbulence can often be very intermittent, occurring in sudden vigorous bursts after prolonged periods of low-intensity. Several mechanisms have been proposed to explain intermittency. The present study focuses on the role of porous surface elements, which influence the mean wind
Experiments in stratified gas-liquid pipe flow
Birvalski, M.
2015-01-01
The growing demand for energy in the future will necessitate the production of natural gas from fields which are located farther offshore, in deep water and in very cold environments. This will confront us with difficulties in ensuring continuous production of the fluids (natural gas, condensate and
A Non-Fickian Mixing Model for Stratified Turbulent Flows
2013-09-30
Berselli et al., 2011) and in ocean models ( Marques and Özgökmen, 2012). Our approach in Özgökmen et al. (2012) is perhaps the first truly multi-scale...Transport in Star Eddies: Star eddies have been observed from MODIS SST images in both the summer 2011 and winter 2012 LatMix cruises. I have...published, refereed]. Marques , G.M. and T.M. Özgökmen: On modeling the turbulent exchange in buoyancy-driven fronts. Ocean Modelling [submitted
Experiments in stratified gas-liquid pipe flow
Birvalski, M.
2015-01-01
The growing demand for energy in the future will necessitate the production of natural gas from fields which are located farther offshore, in deep water and in very cold environments. This will confront us with difficulties in ensuring continuous production of the fluids (natural gas, condensate and
Fakori-Monazah, M.R.; Todreas, N.E.
1977-08-01
A simulated model of triangular array rods with pitch to diameter ratio of 1.10 (as a test section) and air as the fluid flow was used to study the LMFBR hydraulic parameters. The wall shear stress distribution around the rod periphery, friction factors, static pressure distributions and turbulence intensity corresponding to various Reynolds numbers ranging from 4140 to 36170 in the central subchannel were measured. Various approaches for measurement of wall shear stress were compared. The measurement was performed using the Preston tube technique with the probe outside diameter equal to 0.014 in.
Bhuiyan, A. S.; Biswas, M. R.
2011-11-01
The effects of pressure stress work and viscous dissipation in mixed convection flow along a vertical flat plate have been investigated. The results are obtained numerically by transforming the governing system of boundary layer equations into a system of non-dimensional equations. Numerical results for different values of pressure stress work parameter, viscous dissipation parameter, and Prandtl number have been obtained. The velocity profiles, temperature distributions, skin friction coefficient, and the rate of heat transfer have been presented graphically for the effects of the aforementioned parameters. Results are compared with previous investigation.
龚金海; 梁法春; 刘德绪; 燕慧
2012-01-01
Traditional invasive liquid film measurement method such as conductance probe technique is not suitable for the gas-liquid two-phase flow system with high pressure, flammable,combustible and corrosity medium. A novel method was proposed based on infrared imaging for gas-liquid two phase stratified flow liquid film height measurement. In order to improve the measurement accuracy, a heating belt was applied to improve the temperature difference between the gas and liquid,the film height was obtained using infrared imaging to distinguish gas-liquid interface. A VOF multiphase flow model was used to simulate the temperature distribution of the pipe section under constant heat flux,based on this,the experiments were carried out at an air-water two-phase flow loop and the infrared image were obtained using an infrared camera. The gas-liquid interface position was determined according to the temperature gradient characteristics. The measurement results were compared with capacitance probe method. It showed during the experimental range,the maximum measurement error was 8. 2% .%对于输送高压、易燃易爆、强腐蚀性介质的气液两相流管道,电导探针等传统的介入式液膜厚度测量方法不适用.针对这种情况,提出了通过红外热像测量气液两相分层流液膜厚度的新方法:在管道外壁敷设加热带,通过施加恒定热流密度来增加气液相温差,通过采集红外图像识别气液界面获得液膜高度.在建立VOF多相流模型模拟恒定热流密度条件下管截面上温度分布特征基础上,实验在气液两相流环道上进行,采用热像仪采集管壁红外图像,真实液膜厚度由介入式电容探针测量,在试验范围内红外方法液膜厚度测量最大误差8.2％.
Zhang De-Sheng
2015-01-01
Full Text Available The prediction accuracies of partially-averaged Navier-Stokes model and improved shear stress transport k-ω turbulence model for simulating the unsteady cavitating flow around the hydrofoil were discussed in this paper. Numerical results show that the two turbulence models can effectively reproduce the cavitation evolution process. The numerical prediction for the cycle time of cavitation inception, development, detachment, and collapse agrees well with the experimental data. It is found that the vortex pair induced by the interaction between the re-entrant jet and mainstream is responsible for the instability of the cavitation shedding flow.
Eegunjobi, A. S.; Makinde, O. D.
Numerical analysis of the intrinsic irreversibility of a mixed convection hydromagnetic flow of an electrically conducting couple stress fluid through upright channel filled with a saturated porous medium and radiative heat transfer was carried out. The thermodynamics first and second laws were employed to examine the problem. We obtained the dimensionless nonlinear differential equations and solves numerically with shooting procedure joined with a fourth order Runge-Kutta-Fehlberg integration scheme. The temperature and velocity obtained, used to analyse the entropy generation rate together with some various physical parameters of the flow. Our results are presented graphically and talk over.
Effect of turbulent fluctuations on the behaviour of fountains in stratified environments
Freire, D.; Cabeza, C.; Pauletti, S.; Sarasúa, G.; Bove, I.; Usera, G.; Martí, A. C.
2010-09-01
The interaction between a turbulent fountain and its stratified environment was studied. A heavy fluid, cold water, was injected vertically upwards into a linearly stratified medium. The round heavy-fluid jet reaches a maximum height before it begins to fall due to the effect of gravity. Because of the effects of friction and mixing, the vertical momentum and density of the jet fluid decrease as it submerges to an intermediate height of zero buoyancy. At this point, the jet fluid spreads as a horizontal front, intruding into the stratified environment. The degree of fluctuation in the proximity of the injection point was studied under both unrestricted- and restricted-flow configurations at the injection, using two differently sized stainless-steel woven-wire screens at the injection port as flow-restricting means. Using visualization and velocimetry techniques, both maximum and spreading heights were found to decrease with increasing turbulence at the point of injection.
... diabetes. Shopdiabetes.org: Your Stress-Free System for Family Dinners! - 2017-03-book-oclock-scramble.html Shopdiabetes.org Your Stress-Free System for Family Dinners! A year of delicious meals to help prevent ...
... sudden negative change, such as losing a job, divorce, or illness Traumatic stress, which happens when you ... stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health
Multi Dimensional CTL and Stratified Datalog
Theodore Andronikos
2010-02-01
Full Text Available In this work we define Multi Dimensional CTL (MD-CTL in short by extending CTL which is thedominant temporal specification language in practice. The need for Multi Dimensional CTL is mainlydue to the advent of semi-structured data. The common path nature of CTL and XPath which provides asuitable model for semi-structured data, has caused the emergence of work on specifying a relation amongthem aiming at exploiting the nice properties of CTL. Although the advantages of such an approach havealready been noticed [36, 26, 5], no formal definition of MD-CTL has been given. The goal of this workis twofold; a we define MD-CTL and prove that the “nice” properties of CTL (linear model checking andbounded model property transfer also to MD-CTL, b we establish new results on stratified Datalog. Inparticular, we define a fragment of stratified Datalog called Multi Branching Temporal (MBT in shortprograms that has the same expressive power as MD-CTL. We prove that by devising a linear translationbetween MBT and MD-CTL. We actually give the exact translation rules for both directions. We furtherbuild on this relation to prove that query evaluation is linear and checking satisfiability, containment andequivalence are EXPTIME–complete for MBT programs. The class MBT is the largest fragment of stratifiedDatalog for which such results exist in the literature.
Thermal mixing in a stratified environment
Kraemer, Damian; Cotel, Aline
1999-11-01
Laboratory experiments of a thermal impinging on a stratified interface have been performed. The thermal was released from a cylindrical reservoir located at the bottom of a Lucite tank. The stratified interface was created by filling the tank with two different saline solutions. The density of the lower layer is greater than that of the upper layer and the thermal fluid, thereby creating a stable stratification. A pH indicator, phenolphthalein, is used to visualize and quantify the amount of mixing produced by the impingement of the thermal at the interface. The upper layer contains a mixture of water, salt and sodium hydroxide. The thermal fluid is composed of water, sulfuric acid and phenolphthalein. When the thermal entrains and mixes fluid from the upper layer, a chemical reaction takes place, and the resulting mixed fluid is now visible. The ratio of base to acid, called the equivalence ratio, was varied throughout the experiments, as well as the Richardson number. The Richardson number is the ratio of potential to kinetic energy, and is based on the thermal quantities at the interface. Results indicate that the amount of mixing produced is proportional to the Richardson number raised to the -3/2 power. Previous experiments (Zhang and Cotel 1999) revealed that the entrainment rate of a thermal in a stratified environment follows the same power law.
Lodge, Robert W. D.; Lescinsky, David T.
2009-09-01
Desiccation of starch-water slurries is a useful analog for the production of polygonal fractures/columnar joints in cooling lava flows. When left to dry completely, a simple mixture of 1:1 starch and water will produce columns that appear remarkably similar to natural columnar joints formed in cooled lava flows. Columns form when the accumulation of isotropic stress exceeds the tensile strength of a material, at which point a fracture forms and advances through the material perpendicular to the desiccating surface. Individual fractures will initially form orthogonal to the desiccation surface but will quickly evolve into a hexagonal fracture network that advances incrementally through the material. However, some fracture patterns found within natural lava flows are not hexagonal ( Lodge and Lescinsky, 2009-this issue), but rather have fracture lengths that are much longer than the distance to adjacent fractures. These fractures are commonly found at lava flows that have interacted with glacial ice during emplacement. The purpose of this study is to utilize starch analog experiments to better understand the formation of these fractures and the stress regimes responsible for their non-hexagonal patterns. To simulate anisotropic conditions during cooling, the starch slurry was poured into a container with a movable wall that was attached to a screw-type jack. The jack was then set to slowly extend or retract while the slurry desiccated. This resulted in either a decrease or increase in the chamber cross-sectional area thus creating compressional or extensional regimes. Decreasing chamber area (DCA) experiments resulted in fractures with larger lengths parallel to the direction of wall movement (also direction of compression). It also caused localized thrust faulting and curved column development. Increasing chamber area (ICA) experiments produced a zone of horizontal column development along the expanding margin (produced when the wall detached from the sample
Mickleborough Timothy D
2008-09-01
Full Text Available Abstract Background Normalization of brachial artery flow-mediated dilation (FMD to individual shear stress area under the curve (peak FMD:SSAUC ratio has recently been proposed as an approach to control for the large inter-subject variability in reactive hyperemia-induced shear stress; however, the adoption of this approach among researchers has been slow. The present study was designed to further examine the efficacy of FMD normalization to shear stress in reducing measurement variability. Methods Five different magnitudes of reactive hyperemia-induced shear stress were applied to 20 healthy, physically active young adults (25.3 ± 0. 6 yrs; 10 men, 10 women by manipulating forearm cuff occlusion duration: 1, 2, 3, 4, and 5 min, in a randomized order. A venous blood draw was performed for determination of baseline whole blood viscosity and hematocrit. The magnitude of occlusion-induced forearm ischemia was quantified by dual-wavelength near-infrared spectrometry (NIRS. Brachial artery diameters and velocities were obtained via high-resolution ultrasound. The SSAUC was individually calculated for the duration of time-to-peak dilation. Results One-way repeated measures ANOVA demonstrated distinct magnitudes of occlusion-induced ischemia (volume and peak, hyperemic shear stress, and peak FMD responses (all p AUC (p = 0.785. Conclusion Our data confirm that normalization of FMD to SSAUC eliminates the influences of variable shear stress and solidifies the utility of FMD:SSAUC ratio as an index of endothelial function.
T Hayat; Maryam Iqbal; Humaira Yasmin; Fuad E Alsaadi; Huijun Gao
2015-07-01
A mathematical model is developed to analyse the peristaltic flow of couple-stress fluid in an inclined asymmetric channel with convective conditions. Soret and Dufour and Hall effects are taken into account. Analysis has been carried out in a wave frame of reference. Expressions for velocity, pressure gradient, temperature and concentration are constructed. Pumping and trapping phenomena are examined. Impact of sundry parameters on the velocity, temperature and concentration is discussed.
Kemppainen, D. J.; Hammitt, F. G.
1974-01-01
The phenomenon of cavitation flow damage is discussed. The initial phases of damage and the effect of external stresses on the extent to which damage is incurred are analyzed. Three experimental facilities were used to procure the data required: (1) a water loop with venturi, (2) a mercury loop with venturi, and (3) a vibratory facility (stationary specimen, nonflow system). A description of each system is provided for the clarification of test conditions. Photographs of typical cavitation damage instances are included.
2002-01-01
Using a flow cytometry-based approach, we assessed the viability of Bifidobacterium lactis DSM 10140 and Bifidobacterium adolescentis DSM 20083 during exposure to bile salt stress. Carboxyfluorescein diacetate (cFDA), propidium iodide (PI), and oxonol [DiBAC4(3)] were used to monitor esterase activity, membrane integrity, and membrane potential, respectively, as indicators of bacterial viability. Single staining with these probes rapidly and noticeably reflected the behavior of the two strain...
Choon Hwai Yap; Xiaoqin Liu; Kerem Pekkan
2014-01-01
Characterizaton of the Vessel Geometry, Flow Mechanics and Wall Shear Stress in the Great Arteries of Wildtype Prenatal Mouse Choon Hwai Yap1, Xiaoqin Liu2, Kerem Pekkan3* 1 Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore, 2 Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America, 3 Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh...
Kyung Min Kim
Full Text Available Shear stress activates cellular signaling involved in cellular proliferation, differentiation, and migration. However, the mechanisms of mesenchymal stem cell (MSC differentiation under interstitial flow are not fully understood. Here, we show the increased osteogenic differentiation of MSCs under exposure to constant, extremely low shear stress created by osmotic pressure-induced flow in a microfluidic chip. The interstitial level of shear stress in the proposed microfluidic system stimulated nuclear localization of TAZ (transcriptional coactivator with PDZ-binding motif, a transcriptional modulator of MSCs, activated TAZ target genes such as CTGF and Cyr61, and induced osteogenic differentiation. TAZ-depleted cells showed defects in shear stress-induced osteogenic differentiation. In shear stress induced cellular signaling, Rho signaling pathway was important forthe nuclear localization of TAZ. Taken together, these results suggest that TAZ is an important mediator of interstitial flow-driven shear stress signaling in osteoblast differentiation of MSCs.
Firouznia, Mohammadhossein; Metzger, Bloen; Ovarlez, Guillaume; Hormozi, Sarah
2016-11-01
The flows of non-Newtonian slurries, often suspensions of noncolloidal particles in yield stress fluids, are ubiquitous in many natural phenomena and industrial processes. Investigating the microstructure is essential allowing the refinement of macroscopic equations for complex suspensions. One important constraint on the dynamics of a Stokesian suspension is reversibility, which is not necessarily valid for complex fluids. The interaction of two particles in a reversing shear flow of complex fluids is a guide to understand the behavior of complex suspensions. We study the hydrodynamic interaction of two small freely-moving spheres in a linear flow field of yield stress fluids. An important point is that non-Newtonian fluid effects can be varied and unusual. Depending on the shear rate, even a yield stress fluid might show hysteresis, shear banding and elasticity at the local scales that need to be taken into account. We study these effects with the aid of conventional rheometry, Particle Image Velocimetry and Particle Tracking Velocimetry in an original apparatus. We show our preliminary experimental results. NSF.
Stress Perfusion Coronary Flow Reserve Versus Cardiac Magnetic Resonance for Known or Suspected CAD.
Kato, Shingo; Saito, Naka; Nakachi, Tatsuya; Fukui, Kazuki; Iwasawa, Tae; Taguri, Masataka; Kosuge, Masami; Kimura, Kazuo
2017-08-15
Phase-contrast (PC) cine magnetic resonance imaging (MRI) of the coronary sinus is a noninvasive method to quantify coronary flow reserve (CFR). This study sought to compare the prognostic value of CFR by cardiac magnetic resonance (CMR) and stress perfusion CMR to predict major adverse cardiac events (MACE). Participants included 276 patients with known coronary artery disease (CAD) and 400 with suspected CAD. CFR was calculated as myocardial blood flow during adenosine triphosphate infusion divided by myocardial blood flow at rest using PC cine MRI of the coronary sinus. During a median follow-up of 2.3 years, 47 patients (7%) experienced MACE. Impaired CFR (10% ischemia on stress perfusion CMR were significantly associated with MACE in patients with known CAD (hazard ratio [HR]: 5.17 and HR: 5.10, respectively) and suspected CAD (HR: 14.16 and HR: 6.50, respectively). The area under the curve for predicting MACE was 0.773 for CFR and 0.731 for stress perfusion CMR (p = 0.58) for patients with known CAD, and 0.885 for CFR and 0.776 for stress perfusion CMR (p = 0.059) in the group with suspected CAD. In patients with known CAD, sensitivity, specificity, and positive and negative predictive values to predict MACE were 64%, 91%, 38%, and 97%, respectively, for CFR, and 82%, 59%, 15%, and 97%, respectively, for stress perfusion CMR. In the suspected CAD group, these values were 65%, 99%, 80%, and 97%, respectively, for CFR, and 72%, 83%, 22%, and 98%, respectively, for stress perfusion CMR. The predictive values of CFR and stress perfusion CMR for MACE were comparable in patients with known CAD. In patients with suspected CAD, CFR showed higher HRs and areas under the curve than stress perfusion CMR, suggesting that CFR assessment by PC cine MRI might provide better risk stratification for patients with suspected CAD. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Simultaneous fluid-flow, heat-transfer and solid-stress computation in a single computer code
Spalding, D.B. [Concentration Heat and Momentum Ltd, London (United Kingdom)
1997-12-31
Computer simulation of flow- and thermally-induced stresses in mechanical-equipment assemblies has, in the past, required the use of two distinct software packages, one to determine the forces and the temperatures, and the other to compute the resultant stresses. The present paper describes how a single computer program can perform both tasks at the same time. The technique relies on the similarity of the equations governing velocity distributions in fluids to those governing displacements in solids. The same SIMPLE-like algorithm is used for solving both. Applications to 1-, 2- and 3-dimensional situations are presented. It is further suggested that Solid-Fluid-Thermal, ie SFT analysis may come to replace CFD on the one hand and the analysis of stresses in solids on the other, by performing the functions of both. (author) 7 refs.
Gustof, P.; Hornik, A.
2016-09-01
In the paper, numeric calculations of thermal stresses of the piston in a turbocharged Diesel engine in the initial phase of its work were carried out based on experimental studies and the data resulting from them. The calculations were made using a geometrical model of the piston in a five-cylinder turbocharged Diesel engine with a capacity of about 2300 cm3, with a direct fuel injection to the combustion chamber and a power rating of 85 kW. In order to determine the thermal stress, application of own mathematical models of the heat flow in characteristic surfaces of the piston was required to show real processes occurring on the surface of the analysed component. The calculations were performed using a Geostar COSMOS/M program module. A three-dimensional geometric model of the piston was created in this program based on a real component, in order to enable the calculations and analysis of thermal stresses during non-stationary heat flow. Modelling of the thermal stresses of the piston for the engine speed n=4250 min-1 and engine load λ=1.69 was carried out.
Duddu, Ravindra
2009-05-01
We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.
Sochi, Taha
2015-01-01
We investigate the possibility that the spatial dependency of stress in generalized Newtonian flow systems is a function of the applied pressure field and the conduit geometry but not of the fluid rheology. This possibility is well established for the case of a one-dimensional flow through simply connected regions, specifically tubes of circular uniform cross sections and plane thin slits. If it can also be established for the more general case of generalized Newtonian flow through non-circular or multiply connected geometries, such as the two-dimensional flow through conduits of rectangular or elliptical cross sections or the flow through annular circular pipes, then analytical or semi-analytical or highly accurate numerical solutions; regarding stress, rate of strain, velocity profile and volumetric flow rate; for these geometries can be obtained from the stress function, which can be easily obtained from the Newtonian case, in combination with the constitutive rheological relation for the particular non-Ne...
Stress-induced decrease of uterine blood flow in sheep is mediated by alpha 1-adrenergic receptors.
Dreiling, Michelle; Bischoff, Sabine; Schiffner, Rene; Rupprecht, Sven; Kiehntopf, Michael; Schubert, Harald; Witte, Otto W; Nathanielsz, Peter W; Schwab, Matthias; Rakers, Florian
2016-09-01
Prenatal maternal stress can be transferred to the fetus via a catecholamine-dependent decrease of uterine blood flow (UBF). However, it is unclear which group of adrenergic receptors mediates this mechanism of maternal-fetal stress transfer. We hypothesized that in sheep, alpha 1-adrenergic receptors may play a key role in catecholamine mediated UBF decrease, as these receptors are mainly involved in peripheral vasoconstriction and are present in significant number in the uterine vasculature. After chronic instrumentation at 125 ± 1 days of gestation (dGA; term 150 dGA), nine pregnant sheep were exposed at 130 ± 1 dGA to acute isolation stress for one hour without visual, tactile, or auditory contact with their flockmates. UBF, blood pressure (BP), heart rate (HR), stress hormones, and blood gases were determined before and during this isolation challenge. Twenty-four hours later, experiments were repeated during alpha 1-adrenergic receptor blockage induced by a continuous intravenous infusion of urapidil. In both experiments, ewes reacted to isolation with an increase in serum norepinephrine, cortisol, BP, and HR as typical signs of activation of sympatho-adrenal and the hypothalamic-pituitary-adrenal axis. Stress-induced UBF decrease was prevented by alpha 1-adrenergic receptor blockage. We conclude that UBF decrease induced by maternal stress in sheep is mediated by alpha 1-adrenergic receptors. Future studies investigating prevention strategies of impact of prenatal maternal stress on fetal health should consider selective blockage of alpha 1-receptors to interrupt maternal-fetal stress transfer mediated by utero-placental malperfusion.
The Effects Of L-Arginine And L-Name On Coronary Flow And Oxidative Stress In Isolated Rat Hearts
Sobot Tanja
2015-12-01
Full Text Available The aim of this experimental study was to assess the effects of the acute administration of L-arginine alone and in combination with L-NAME (a non-selective NO synthase inhibitor on the coronary flow and oxidative stress markers in isolated rat hearts. The experimental study was performed on hearts isolated from Wistar albino rats (n=12, male, 8 weeks old, body mass of 180-200 g. Retrograde perfusion of the isolated preparations was performed using a modified method according to the Langendorff technique with a gradual increase in the perfusion pressure (40–120 cmH2O. The following values were measured in the collected coronary effluents: coronary flow, released nitrites (NO production marker, superoxide anion radical and the index of lipid peroxidation (measured as thiobarbiturate reactive substances. The experimental protocol was performed under controlled conditions, followed by the administration of L-arginine alone (1 mmol and L-arginine (1 mmol + L-NAME (30 μmol. The results indicated that L-arginine did not significantly increase the coronary flow or the release of NO, TBARS and the superoxide anion radical. These effects were partially blocked by the joint administration of L-arginine + L-NAME, which indicated their competitive effect. Hence, the results of our study do not demonstrate significant effects of L-arginine administration on the coronary flow and oxidative stress markers in isolated rat hearts.
Arshad Khan
Full Text Available This study investigates the effects of an arbitrary wall shear stress on unsteady magnetohydrodynamic (MHD flow of a Newtonian fluid with conjugate effects of heat and mass transfer. The fluid is considered in a porous medium over a vertical plate with ramped temperature. The influence of thermal radiation in the energy equations is also considered. The coupled partial differential equations governing the flow are solved by using the Laplace transform technique. Exact solutions for velocity and temperature in case of both ramped and constant wall temperature as well as for concentration are obtained. It is found that velocity solutions are more general and can produce a huge number of exact solutions correlative to various fluid motions. Graphical results are provided for various embedded flow parameters and discussed in details.
Wang Yu; Huang Haiyou [Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Xie Jianxin, E-mail: jxxie@mater.ustb.edu.cn [Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083 (China)
2011-12-15
Highlights: Black-Right-Pointing-Pointer Continuous columnar-grained (CCG) copper exhibits excellent plastic extensibility with a true strain of 13.5. Black-Right-Pointing-Pointer It was explained from the view of texture evolution and the flow stress calculation based on texture constitution. Black-Right-Pointing-Pointer The relatively low content of Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket fiber texture accounts for the excellent extensibility of CCG copper. - Abstract: The texture evolution and microstructure in continuous columnar-grained (CCG) polycrystalline copper during wire drawing at room temperature were investigated quantitatively using the electron backscatter diffraction (EBSD) technique, and the stored energy and flow stress were calculated based on the texture constitution and structural parameters of different texture components measured by high resolution EBSD. The results indicate that the development of Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket texture within original Left-Pointing-Angle-Bracket 1 0 0 Right-Pointing-Angle-Bracket columnar grains was significantly slower compared with that in equiaxed polycrystalline copper, e.g. the volumetric ratio of the Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket to Left-Pointing-Angle-Bracket 1 0 0 Right-Pointing-Angle-Bracket component in columnar-grain copper was 0.82 at the strain of 2.98, while it was 2.96 in equiaxed polycrystalline copper at the same strain. The relatively low content of Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket fiber texture accounted for the low flow stress, low work hardening rate and excellent cold plastic extensibility of the columnar-grained polycrystalline copper. The average size of the dislocation cells developed within the Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket fiber was the minimum among all the deformation texture components, and decreased rapidly with the increase of
Nielsen, Peter V.; Jensen, Rasmus Lund; Litewnicki, Michal;
2009-01-01
This study investigates the characteristics of human exhalation. Experiments are performed on a breathing thermal manikin in a test room. The manikin is heated, and an artificial lung is used to generate varying air flows with specific flow rates and temperatures for breathing. Smoke visualisation...... is used to show the formation, movement and disappearance of the exhalation jets from both nose and mouth. The exhalation of breathing without ventilation in the room, and with stratified surroundings (displacement ventilation) is analysed....
Hydrodynamics of stratified epithelium: steady state and linearized dynamics
Yeh, Wei-Ting
2015-01-01
A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue is assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description for tissue dynamics at long-wavelength, long-time limit is developed, and the analysis reveals important insight for the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface could enhance small perturbations. This destabilizing mechanism is general for continuous self-renewal multi-layered tissues, it could be related to the origin of certain tissue morphology and developing pattern.
Hydrodynamics of stratified epithelium: Steady state and linearized dynamics
Yeh, Wei-Ting; Chen, Hsuan-Yi
2016-05-01
A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.
Direct simulation of the stably stratified turbulent Ekman layer
Coleman, G. N.; Ferziger, J. H.; Spalart, P. R.
1992-01-01
The Navier-Stokes equations and the Boussinesq approximation were used to compute a 3D time-dependent turbulent flow in the stably stratified Ekman layer over a smooth surface. The simulation data are found to be in very good agreement with atmospheric measurements when nondimensionalized according to Nieuwstadt's local scaling scheme. Results suggest that, when Reynolds number effects are taken into account, the 'constant Froud number' stable layer model (Brost and Wyngaard, 1978) and the 'shearing length' stable layer model (Hunt, 1985) for the dissipitation rate of turbulent kinetic energy are both valid. It is concluded that there is good agreement between the direct numerical simulation results and large-eddy simulation results obtained by Mason and Derbyshire (1990).
Second order closure for stratified convection: bulk region and overshooting
Biferale, L; Sbragaglia, M; Scagliarini, A; Toschi, F; Tripiccione, R
2011-01-01
The parameterization of small-scale turbulent fluctuations in convective systems and in the presence of strong stratification is a key issue for many applied problems in oceanography, atmospheric science and planetology. In the presence of stratification, one needs to cope with bulk turbulent fluctuations and with inversion regions, where temperature, density -or both- develop highly non-linear mean profiles due to the interactions between the turbulent boundary layer and the unmixed -stable- flow above/below it. We present a second order closure able to cope simultaneously with both bulk and boundary layer regions, and we test it against high-resolution state-of-the-art 2D numerical simulations in a convective and stratified belt for values of the Rayleigh number, up to Ra = 10^9. Data are taken from a Rayleigh-Taylor system confined by the existence of an adiabatic gradient.
The fully nonlinear stratified geostrophic adjustment problem
Coutino, Aaron; Stastna, Marek
2017-01-01
The study of the adjustment to equilibrium by a stratified fluid in a rotating reference frame is a classical problem in geophysical fluid dynamics. We consider the fully nonlinear, stratified adjustment problem from a numerical point of view. We present results of smoothed dam break simulations based on experiments in the published literature, with a focus on both the wave trains that propagate away from the nascent geostrophic state and the geostrophic state itself. We demonstrate that for Rossby numbers in excess of roughly 2 the wave train cannot be interpreted in terms of linear theory. This wave train consists of a leading solitary-like packet and a trailing tail of dispersive waves. However, it is found that the leading wave packet never completely separates from the trailing tail. Somewhat surprisingly, the inertial oscillations associated with the geostrophic state exhibit evidence of nonlinearity even when the Rossby number falls below 1. We vary the width of the initial disturbance and the rotation rate so as to keep the Rossby number fixed, and find that while the qualitative response remains consistent, the Froude number varies, and these variations are manifested in the form of the emanating wave train. For wider initial disturbances we find clear evidence of a wave train that initially propagates toward the near wall, reflects, and propagates away from the geostrophic state behind the leading wave train. We compare kinetic energy inside and outside of the geostrophic state, finding that for long times a Rossby number of around one-quarter yields an equal split between the two, with lower (higher) Rossby numbers yielding more energy in the geostrophic state (wave train). Finally we compare the energetics of the geostrophic state as the Rossby number varies, finding long-lived inertial oscillations in the majority of the cases and a general agreement with the past literature that employed either hydrostatic, shallow-water equation-based theory or
Inverse scattering of dispersive stratified structures
Skaar, Johannes
2012-01-01
We consider the inverse scattering problem of retrieving the structural parameters of a stratified medium consisting of dispersive materials, given knowledge of the complex reflection coefficient in a finite frequency range. It is shown that the inverse scattering problem does not have a unique solution in general. When the dispersion is sufficiently small, such that the time-domain Fresnel reflections have durations less than the round-trip time in the layers, the solution is unique and can be found by layer peeling. Numerical examples with dispersive and lossy media are given, demonstrating the usefulness of the method for e.g. THz technology.
Nonlinear gravity-wave interactions in stratified turbulence
Remmel, Mark; Sukhatme, Jai; Smith, Leslie M.
2014-04-01
To investigate the dynamics of gravity waves in stratified Boussinesq flows, a model is derived that consists of all three-gravity-wave-mode interactions (the GGG model), excluding interactions involving the vortical mode. The GGG model is a natural extension of weak turbulence theory that accounts for exact three-gravity-wave resonances. The model is examined numerically by means of random, large-scale, high-frequency forcing. An immediate observation is a robust growth of the so-called vertically sheared horizontal flow (VSHF). In addition, there is a forward transfer of energy and equilibration of the nonzero-frequency (sometimes called "fast") gravity-wave modes. These results show that gravity-wave-mode interactions by themselves are capable of systematic interscale energy transfer in a stratified fluid. Comparing numerical simulations of the GGG model and the full Boussinesq system, for the range of Froude numbers ( Fr) considered (0.05 ≤ Fr ≤ 1), in both systems the VSHF is hardest to resolve. When adequately resolved, VSHF growth is more vigorous in the GGG model. Furthermore, a VSHF is observed to form in milder stratification scenarios in the GGG model than the full Boussinesq system. Finally, fully three-dimensional nonzero-frequency gravity-wave modes equilibrate in both systems and their scaling with vertical wavenumber follows similar power-laws. The slopes of the power-laws obtained depend on Fr and approach -2 (from above) at Fr = 0.05, which is the strongest stratification that can be properly resolved with our computational resources.
Measurement and Interpretation of Flow Stress Data for the Simulation of Metal-Forming Processes
2010-01-01
fitting constants that differ in each equation): Ludwik Equation: c)εb(aσ += , (29) Voce Equation: )]εcexp([1*a][baσ −−−+= (30) Swift...stress at low strains (ɘ.2) and to overestimate the stress for high strains. For heavily prestrained materials, c ~ 1. The Voce and Swift equations tend
The Micro-Pillar Shear-Stress Sensor MPS3 for Turbulent Flow
Grosse, S.; Schröder, W.
2009-01-01
Wall-shear stress results from the relative motion of a fluid over a body surface as a consequence of the no-slip condition of the fluid in the vicinity of the wall. To determine the two-dimensional wall-shear stress distribution is of utter importance in theoretical and applied turbulence research.
Turbulent oscillating channel flow subjected to a free-surface stress.
Kramer, W.; Clercx, H.J.H.; Armenio, V.
2010-01-01
The channel ﬂow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations. The orientation of the surface stress is parallel with the oscillating pressure gradient and a purely pulsating mean ﬂow develops. The Reynolds number is
Development and calibration of buried wire gages for wall shear stress measurements in fluid flow
Murthy, Sreedhara V.; Steinle, Frank W.
1988-01-01
Special methods were developed to arrange 'Buried Wire Gage' inserts flush to the contoured flow surfaces of instrument plugs of a boundary-layer flow apparatus. The fabrication process was aimed at producing proper bonding of the sensor wire to the substrate surface, without causing excessive surface waviness. A large number of gages were built and first calibrated for the resistance-temperature characteristics. The gages were then installed in a flow calibration apparatus and operated from a constant temperature anemometer system for a series of flow settings to derive the calibration constants of each of the gages. The flow settings included a range of subsonic freestream Mach numbers in order to help establish the gage calibration characteristics for compressible flow fields. This paper provides a description of the buried wire gage technique, an explanation of the method evolved for making proper gages, the procedure for calibrating the gages and the results of measurements performed for determining the calibration constants.
Maroules, Christopher D.; Peshock, Ronald M. (Dept. of Radiology, Univ. of Texas Southwestern Medical Center, Dallas, TX (United States)), e-mail: Ron.Peshock@UTSouthwestern.edu; Chang, Alice Y.; Kontak, Andrew (Dept. of Internal Medicine, Univ. of Texas Southwestern Medical Center, Dallas, TX (United States)); Dimitrov, Ivan; Kotys, Melanie (Dept. of Philips Medical Systems, Cleveland, OH (United States))
2010-05-15
Background: Coronary sinus (CS) flow in response to a provocative stress has been used as a surrogate measure of coronary flow reserve, and velocity-encoded cine (VEC) magnetic resonance imaging (MRI) is an established technique for measuring CS flow. In this study, the cold pressor test (CPT) was used to measure CS flow response because it elicits an endothelium-dependent coronary vasodilation that may afford greater sensitivity for detecting early changes in coronary endothelial function. Purpose: To investigate the feasibility and reproducibility of CS flow reactivity (CSFR) to CPT using spiral VEC MRI at 3 Tesla in a sample of asymptomatic women with cardiovascular risk factors. Material and Methods: Fourteen asymptomatic women (age 38 years +- 10) with cardiovascular risk factors were studied using 3D spiral VEC MRI of the CS at 3 T. The CPT was utilized as a provocative stress to measure changes in CS flow. CSFR to CPT was calculated from the ratio of CS flow during peak stress to baseline CS flow. Results: CPT induced a significant hemodynamic response as measured by a 45% increase in rate-pressure product (P<0.01). A significant increase in CS volume flow was also observed (baseline, 116 +- 26 ml/min; peak stress, 152 +- 34 ml/min, P=0.01). CSFR to CPT was 1.31 +- 0.20. Test-retest variability of CS volume flow was 5% at baseline and 6% during peak stress. Conclusion: Spiral CS VEC MRI at 3 T is a feasible and reproducible technique for measuring CS flow in asymptomatic women at risk for cardiovascular disease. Significant changes in CSFR to CPT are detectable, without demanding pharmacologic stress
Wiewiora, Maciej; Piecuch, Jerzy; Glűck, Marek; Slowinska-Lozynska, Ludmila; Sosada, Krystyn
2013-01-01
The aim of this study was to evaluate the effects of obesity on wall shear stress and its relationship to erythrocyte aggregation. We studied 35 morbidly obese patients who were qualified for bariatric surgery. The control group consisted of 20 non-obese people. Blood rheological measurements were performed using the Laser-assisted Optical Rotational Cell Analyzer (Mechatronics, the Netherlands) and a cone-plate viscometer (Brookfield DV-II). The venous flow dynamics were assessed using a duplex ultrasound. The shear rate was estimated from the measured blood flow velocity and the diameter of the femoral vein. Venous wall shear stress was calculated from the whole blood viscosity and the shear rate. The shear rate (P < 0.005) and the venous wall shear stress (P < 0.05) were significantly lower in obese patients compared with the controls. The aggregation index (P < 0.001), syllectogram amplitude - AMP (P < 0.05) and Tslow (P < 0.001) were significantly higher in the obese patients; the aggregation half-time (P < 0.001) and Tfast (P < 0.001) were decreased compared with the control group. Multivariate regression analyses found waist circumference (β -0.31, P < 0.05), thigh circumference (β 0.33, P < 0.05) and Tslow (β -0.47, P < 0.005) to be variables that independently influenced the shear rate. Nevertheless, the AMP (β 0.34, P < 0.05) and Tslow (β -0.47, P < 0.01) were independent predictors that influenced the wall shear stress. This study indicates that there is a relationship between wall shear stress in the femoral vein and the rheological impairment of the RBC among obese patients, but further studies are necessary to confirm this suggestion.
Dynamics of Vorticity Defects in Stratified Shear
2010-10-19
Salmon). Woods Hole Oceanographic Institution Technical Report. [16] A. E. Gill, A mechanism for instability of plane Couette flow and of Poiseuille flow ...airfoil, Gill[16] modelled the base-state to be a Couette flow with slight distortions. This severely simplified the linear stability calculations and...provided integral dispersion relationships. Next Lerner and Knobloch[24] performed long-wavelength stability studies on a distorted Couette flow . The
STRATIFIED MODEL FOR ESTIMATING FATIGUE CRACK GROWTH RATE OF METALLIC MATERIALS
YANG Yong-yu; LIU Xin-wei; YANG Fan
2005-01-01
The curve of relationship between fatigue crack growth rate and the stress strength factor amplitude represented an important fatigue property in designing of damage tolerance limits and predicting life of metallic component parts. In order to have a morereasonable use of testing data, samples from population were stratified suggested by the stratified random sample model (SRAM). The data in each stratum corresponded to the same experiment conditions. A suitable weight was assigned to each stratified sample according to the actual working states of the pressure vessel, so that the estimation of fatigue crack growth rate equation was more accurate for practice. An empirical study shows that the SRAM estimation by using fatigue crack growth rate data from different stoves is obviously better than the estimation from simple random sample model.
Lee, Seung Jun; Park, Ik Kyu; Yoon, Han Young [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jae, Byoung [School of Mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)
2017-01-15
Two-fluid equations are widely used to obtain averaged behaviors of two-phase flows. This study addresses a problem that may arise when the two-fluid equations are used for multi-dimensional bubbly flows. If steady drag is the only accounted force for the interfacial momentum transfer, the disperse-phase velocity would be the same as the continuous-phase velocity when the flow is fully developed without gravity. However, existing momentum equations may show unphysical results in estimating the relative velocity of the disperse phase against the continuous-phase. First, we examine two types of existing momentum equations. One is the standard two-fluid momentum equation in which the disperse-phase is treated as a continuum. The other is the averaged momentum equation derived from a solid/ fluid particle motion. We show that the existing equations are not proper for multi-dimensional bubbly flows. To resolve the problem mentioned above, we modify the form of the Reynolds stress terms in the averaged momentum equation based on the solid/fluid particle motion. The proposed equation shows physically correct results for both multi-dimensional laminar and turbulent flows.
DNS of stratified spatially-developing turbulent thermal boundary layers
Araya, Guillermo; Castillo, Luciano; Jansen, Kenneth
2012-11-01
Direct numerical simulations (DNS) of spatially-developing turbulent thermal boundary layers under stratification are performed. It is well known that the transport phenomena of the flow is significantly affected by buoyancy, particularly in urban environments where stable and unstable atmospheric boundary layers are encountered. In the present investigation, the Dynamic Multi-scale approach by Araya et al. (JFM, 670, 2011) for turbulent inflow generation is extended to thermally stratified boundary layers. Furthermore, the proposed Dynamic Multi-scale approach is based on the original rescaling-recycling method by Lund et al. (1998). The two major improvements are: (i) the utilization of two different scaling laws in the inner and outer parts of the boundary layer to better absorb external conditions such as inlet Reynolds numbers, streamwise pressure gradients, buoyancy effects, etc., (ii) the implementation of a Dynamic approach to compute scaling parameters from the flow solution without the need of empirical correlations as in Lund et al. (1998). Numerical results are shown for ZPG flows at high momentum thickness Reynolds numbers (~ 3,000) and a comparison with experimental data is also carried out.
Vannucchi, P.; Ujiie, K.; Stroncik, N.; IODP Exp. 334 Scientific Party; Yatheesh, V.
version: Sci. Drill.: 15; 2013; 23-30 IODP Expedition 334: An Investigation of the Sedimentary Record, Fluid Flow and State of Stress on Top of the Seismogenic Zone of an Erosive Subduction Margin Paola Vannucchi1, Kohtaro Ujiie2, Nicole Stroncik3..., N. and IODP Expedition 334 Scientific Party, 2013. IODP Expedition 334: An Investigation of the sedimentary record, fluid flow and state of stress on top of the seismogenic zone of an erosive subduction margin. Scientific Drilling, vol. 15, 23...
Meehan, R. T.
1986-01-01
Understanding the role of circulating peptide hormones in the pathogenesis of space-flight induced disorders would be greatly facilitated by a method which monitors chronic levels of hormones and their effects upon in vivo cell physiology. Single and simultaneous multiparameter flow cytometry analysis was employed to identify subpopulations of mononuclear cells bearing receptors for ACTH, Endorphin, and Somatomedin-C using monoclonal antibodies and monospecific antisera with indirect immunofluorescence. Blood samples were obtained from normal donors and subjects participating in decompression chamber studies (acute stress), medical student academic examination (chronic stress), and a drug study (Dexamethasone). Preliminary results indicate most ACTH and Endorphin receptor positive cells are monocytes and B-cells, exhibit little diurnal variation but the relative percentages of receptor positive cells are influenced by exposure to various stressors and ACTH inhibition. This study demonstrates the capability of flow cytometry analysis to study cell surface hormone receptor regulation which should allow insight into neuroendocrine modulation of the immune and other cellular systems during exposure to stress or microgravity.
Turbulent stresses and particle break-up criteria in particle-laden pipe flows
Oliveira, J.L.G.; van der Geld, C.W.M.; Kuerten, Johannes G.M.
Three-dimensional particle tracking velocimetry (3D-PTV) is applied to particle-laden pipe flows at Reynolds number 10,300, based on the bulk velocity and the pipe diameter. The effects of flow direction (upward or downward) and mean concentration (in the range 0.5 105–3.2 105) on the production of
Regional Flow Simulation in Fractured Aquifers Using Stress-Dependent Parameters
Preisig, G; Perrochet, P
2011-01-01
A model function relating effective stress to fracture permeability is developed from Hooke's law, implemented in the tensorial form of Darcy's law, and used to evaluate discharge rates and pressure distributions at regional scales. The model takes into account elastic and statistical fracture parameters, and is able to simulate real stress-dependent permeabilities from laboratory to field studies. This modeling approach gains in phenomenology in comparison to the classical ones because the permeability tensors may vary in both strength and principal directions according to effective stresses. Moreover this method allows evaluation of the fracture porosity changes, which are then translated into consolidation of the medium.
Simulation model of stratified thermal energy storage tank using finite difference method
Waluyo, Joko
2016-06-01
Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be
Cioffi, Margherita; Moretti, Matteo; Manbachi, Amir; Chung, Bong Geun; Khademhosseini, Ali; Dubini, Gabriele
2010-08-01
In this paper, microfluidic devices containing microwells that enabled cell docking were investigated. We theoretically assessed the effect of geometry on recirculation areas and wall shear stress patterns within microwells and studied the relationship between the computational predictions and experimental cell docking. We used microchannels with 150 microm diameter microwells that had either 20 or 80 microm thickness. Flow within 80 microm deep microwells was subject to extensive recirculation areas and low shear stresses (<0.5 mPa) near the well base; whilst these were only presented within a 10 microm peripheral ring in 20 microm thick microwells. We also experimentally demonstrated that cell docking was significantly higher (p < 0.01) in 80 microm thick microwells as compared to 20 microm thick microwells. Finally, a computational tool which correlated physical and geometrical parameters of microwells with their fluid dynamic environment was developed and was also experimentally confirmed.
Ravindranadh BOBBILI; V. MADHU; A.K. GOGIA
2014-01-01
An artificial neural network (ANN) constitutive model is developed for high strength armor steel tempered at 500 ?C, 600 ?C and 650 ?C based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures (500e650 ?C), strains (0.05e0.2) and strain rates (1000e5500/s) are employed to formulate JeC model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the JeC model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.
Küntz, M.; Dyskin, A.; Lavallée, P.
1998-01-01
A steady-state flow method is used to examine micromechanisms of brittle failure in 2D elastic cracked media submitted to uniaxial compressive stress. The steady-state flow experiments were conducted with an incompressible Newtonian fluid in a Hele Shaw cell. Thin linear rubber inclusions were
Keller, Hanne Dauer
2015-01-01
Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....
Keller, Hanne Dauer
2015-01-01
Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....
Sobh, Ayman M
2013-10-01
In this article, the influence of heat and mass transfer on peristaltic transport of a couple stress fluid in a uniform tube with slip conditions on the wall is studied. The problem can model the blood flow in living creatures. Under long wavelength approximation and zero Reynolds number, exact solutions for the axial velocity component, pressure gradient, and both temperature and concentration fields are derived. The pressure rise is computed numerically and explained graphically. Moreover, effects of various physical parameters of the problem on temperature distribution, concentration field, and trapping are studied and discussed graphically.
Kazi Humayun Kabir
2015-01-01
Full Text Available An analysis is presented to investigate the influences of viscous and pressure stress work on MHD natural convection flow along a uniformly heated vertical wavy surface. The governing equations are first modified and then transformed into dimensionless non-similar equations by using set of suitable transformations. The transformed boundary layer equations are solved numerically using the implicit finite difference method, known as Keller-box scheme. Numerical results for the velocity profiles, temperature profiles, skin friction coefficient, the rate of heat transfers, streamlines and isotherms are shown graphically. Some results of skin friction, rate of heat transfer are presented in tabular form for selected values of physical parameters.
McDowell, L M; Burzio, L A; Waite, J H; Schaefer, J
1999-07-16
13C2H rotational echo double resonance NMR has been used to provide the first evidence for the formation of quinone-derived cross-links in mussel byssal plaques. Labeling of byssus was achieved by allowing mussels to filter feed from seawater containing L-[phenol-4-13C]tyrosine and L-[ring-d4]tyrosine for 2 days. Plaques and threads were harvested from two groups of mussels over a period of 28 days. One group was maintained in stationary water while the other was exposed to turbulent flow at 20 cm/s. The flow-stressed byssal plaques exhibited significantly enhanced levels of 5, 5'-di-dihydroxyphenylalanine cross-links. The average concentration of di-dihydroxyphenylalanine cross-links in byssal plaques is 1 per 1800 total protein amino acid residues.
Stratified growth in Pseudomonas aeruginosa biofilms
Werner, E.; Roe, F.; Bugnicourt, A.;
2004-01-01
In this study, stratified patterns of protein synthesis and growth were demonstrated in Pseudomonas aeruginosa biofilms. Spatial patterns of protein synthetic activity inside biofilms were characterized by the use of two green fluorescent protein (GFP) reporter gene constructs. One construct...... carried an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible gfpmut2 gene encoding a stable GFP. The second construct carried a GFP derivative, gfp-AGA, encoding an unstable GFP under the control of the growth-rate-dependent rrnBp(1) promoter. Both GFP reporters indicated that active protein...... of oxygen limitation in the biofilm. Oxygen microelectrode measurements showed that oxygen only penetrated approximately 50 mum into the biofilm. P. aeruginosa was incapable of anaerobic growth in the medium used for this investigation. These results show that while mature P. aeruginosa biofilms contain...
Bayesian Stratified Sampling to Assess Corpus Utility
Hochberg, J; Thomas, T; Hall, S; Hochberg, Judith; Scovel, Clint; Thomas, Timothy; Hall, Sam
1998-01-01
This paper describes a method for asking statistical questions about a large text corpus. We exemplify the method by addressing the question, "What percentage of Federal Register documents are real documents, of possible interest to a text researcher or analyst?" We estimate an answer to this question by evaluating 200 documents selected from a corpus of 45,820 Federal Register documents. Stratified sampling is used to reduce the sampling uncertainty of the estimate from over 3100 documents to fewer than 1000. The stratification is based on observed characteristics of real documents, while the sampling procedure incorporates a Bayesian version of Neyman allocation. A possible application of the method is to establish baseline statistics used to estimate recall rates for information retrieval systems.
On turbulence in a stratified environment
Sarkar, Sutanu
2015-11-01
John Lumley, motivated by atmospheric observations, made seminal contributions to the statistical theory (Lumley and Panofsky 1964, Lumley 1964) and second-order modeling (Zeman and Lumley 1976) of turbulence in the environment. Turbulent processes in the ocean share many features with the atmosphere, e.g., shear, stratification, rotation and rough topography. Results from direct and large eddy simulations of two model problems will be used to illustrate some of the features of turbulence in a stratified environment. The first problem concerns a shear layer in nonuniform stratification, a situation typical of both the atmosphere and the ocean. The second problem, considered to be responsible for much of the turbulent mixing that occurs in the ocean interior, concerns topographically generated internal gravity waves. Connections will be made to data taken during observational campaigns in the ocean.
Coronary Computed Tomography Angiography Derived Fractional Flow Reserve and Plaque Stress
Nørgaard, Bjarne Linde; Leipsic, Jonathon; Koo, Bon-Kwon;
2016-01-01
Fractional flow reserve (FFR) measured during invasive coronary angiography is an independent prognosticator in patients with coronary artery disease and the gold standard for decision making in coronary revascularization. The integration of computational fluid dynamics and quantitative anatomic...
Gardhagen, Roland; Karlsson, Matts
2012-11-01
Large eddy simulations of pulsating blood flow in an idealized model of a human aorta with a coarctation and a post-stenotic dilatation were conducted before and after treatment of the stenosis using Ansys Fluent. The aim was to study wall shear stress (WSS), which influences the function of endothelial cells, and turbulence, which may play a role in thrombus formation. Phase average values of WSS before the treatment revealed high shear in the stenosis at peak systole, as expected, but also at the end of the dilatation. In the dilatation backflow causes a negative peak. Diastolic WSS is characterized by low amplitude oscillations, which promotes atherogenesis. Also noticeable is the asymmetric pattern between the inner and outer sides of the vessel caused by the arch upstream of the stenosis. Thus, large spatial, temporal, and probably asymmetric WSS gradients in the already diseased region suggest increased risk for further endothelial dysfunction. This reflects a complex, partly turbulent, flow pattern that may disturb the blood flow in the abdominal aorta. After treatment of the stenosis, but not the dilatation, fluctuations of velocity and WSS were still found, thus harmful flow conditions still exist.
Stratified sampling design based on data mining.
Kim, Yeonkook J; Oh, Yoonhwan; Park, Sunghoon; Cho, Sungzoon; Park, Hayoung
2013-09-01
To explore classification rules based on data mining methodologies which are to be used in defining strata in stratified sampling of healthcare providers with improved sampling efficiency. We performed k-means clustering to group providers with similar characteristics, then, constructed decision trees on cluster labels to generate stratification rules. We assessed the variance explained by the stratification proposed in this study and by conventional stratification to evaluate the performance of the sampling design. We constructed a study database from health insurance claims data and providers' profile data made available to this study by the Health Insurance Review and Assessment Service of South Korea, and population data from Statistics Korea. From our database, we used the data for single specialty clinics or hospitals in two specialties, general surgery and ophthalmology, for the year 2011 in this study. Data mining resulted in five strata in general surgery with two stratification variables, the number of inpatients per specialist and population density of provider location, and five strata in ophthalmology with two stratification variables, the number of inpatients per specialist and number of beds. The percentages of variance in annual changes in the productivity of specialists explained by the stratification in general surgery and ophthalmology were 22% and 8%, respectively, whereas conventional stratification by the type of provider location and number of beds explained 2% and 0.2% of variance, respectively. This study demonstrated that data mining methods can be used in designing efficient stratified sampling with variables readily available to the insurer and government; it offers an alternative to the existing stratification method that is widely used in healthcare provider surveys in South Korea.
Information content of household-stratified epidemics
T.M. Kinyanjui
2016-09-01
Full Text Available Household structure is a key driver of many infectious diseases, as well as a natural target for interventions such as vaccination programs. Many theoretical and conceptual advances on household-stratified epidemic models are relatively recent, but have successfully managed to increase the applicability of such models to practical problems. To be of maximum realism and hence benefit, they require parameterisation from epidemiological data, and while household-stratified final size data has been the traditional source, increasingly time-series infection data from households are becoming available. This paper is concerned with the design of studies aimed at collecting time-series epidemic data in order to maximize the amount of information available to calibrate household models. A design decision involves a trade-off between the number of households to enrol and the sampling frequency. Two commonly used epidemiological study designs are considered: cross-sectional, where different households are sampled at every time point, and cohort, where the same households are followed over the course of the study period. The search for an optimal design uses Bayesian computationally intensive methods to explore the joint parameter-design space combined with the Shannon entropy of the posteriors to estimate the amount of information in each design. For the cross-sectional design, the amount of information increases with the sampling intensity, i.e., the designs with the highest number of time points have the most information. On the other hand, the cohort design often exhibits a trade-off between the number of households sampled and the intensity of follow-up. Our results broadly support the choices made in existing epidemiological data collection studies. Prospective problem-specific use of our computational methods can bring significant benefits in guiding future study designs.
Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong
2017-05-01
In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.
Powell, Karin; Ethun, Kelly; Taylor, Douglas K
2016-09-21
Euthanasia protocols are designed to mitigate the stress experienced by animals, and an environment that induces minimal stress helps achieve that goal. A protocol that is efficient and practical in a typical animal research facility is also important. Light intensity, isoflurane, and CO2 flow rate were studied for their impact on the stress response of mice during CO2 euthanasia. Behavior was observed and scored during euthanasia and serum corticosterone was measured immediately after death. Unsurprisingly, animals euthanized with a high-flow rate of CO2 became unconscious in the least amount of time, while animals euthanized with a low-flow rate required the most time to reach unconsciousness. There was a significant increase in anxious behaviors in animals in the isoflurane group (F1,12 = 6.67, P = 0.024), the high-flow rate CO2 group (F1,12 = 10.24, P = 0.007), and bright chamber group (F1,12 = 7.27, P = 0.019). Serum corticosterone was highest in the isoflurane group (124.72 ± 83.98 ng/ml), however there was no significant difference in corticosterone levels observed for the other study variables of light and flow-rate. A darkened chamber and low CO2 flow rates help to decrease stress experienced during CO2 euthanasia, while the use of isoflurane was observed to increase the stress response during euthanasia.
Large eddy simulation of unsteady lean stratified premixed combustion
Duwig, C. [Division of Fluid Mechanics, Department of Energy Sciences, Lund University, SE 221 00 Lund (Sweden); Fureby, C. [Division of Weapons and Protection, Warheads and Propulsion, The Swedish Defense Research Agency, FOI, SE 147 25 Tumba (Sweden)
2007-10-15
Premixed turbulent flame-based technologies are rapidly growing in importance, with applications to modern clean combustion devices for both power generation and aeropropulsion. However, the gain in decreasing harmful emissions might be canceled by rising combustion instabilities. Unwanted unsteady flame phenomena that might even destroy the whole device have been widely reported and are subject to intensive studies. In the present paper, we use unsteady numerical tools for simulating an unsteady and well-documented flame. Computations were performed for nonreacting, perfectly premixed and stratified premixed cases using two different numerical codes and different large-eddy-simulation-based flamelet models. Nonreacting simulations are shown to agree well with experimental data, with the LES results capturing the mean features (symmetry breaking) as well as the fluctuation level of the turbulent flow. For reacting cases, the uncertainty induced by the time-averaging technique limited the comparisons. Given an estimate of the uncertainty, the numerical results were found to reproduce well the experimental data in terms both of mean flow field and of fluctuation levels. In addition, it was found that despite relying on different assumptions/simplifications, both numerical tools lead to similar predictions, giving confidence in the results. Moreover, we studied the flame dynamics and particularly the response to a periodic pulsation. We found that above a certain excitation level, the flame dynamic changes and becomes rather insensitive to the excitation/instability amplitude. Conclusions regarding the self-growth of thermoacoustic waves were drawn. (author)
Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G
2010-11-01
Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.
Davatzes, Nicholas C.; Hickman, Stephen H.
2009-01-01
A suite of geophysical logs has been acquired for structural, fluid flow and stress analysis of well 27-15 in the Desert Peak Geothermal Field, Nevada, in preparation for stimulation and development of an Enhanced Geothermal System (EGS). Advanced Logic Technologies Borehole Televiewer (BHTV) and Schlumberger Formation MicroScanner (FMS) image logs reveal extensive drilling-induced tensile fractures, showing that the current minimum compressive horizontal stress, Shmin, in the vicinity of well 27-15 is oriented along an azimuth of 114±17°. This orientation is consistent with the dip direction of recently active normal faults mapped at the surface and with extensive sets of fractures and some formation boundaries seen in the BHTV and FMS logs. Temperature and spinner flowmeter surveys reveal several minor flowing fractures that are well oriented for normal slip, although over-all permeability in the well is quite low. These results indicate that well 27-15 is a viable candidate for EGS stimulation and complements research by other investigators including cuttings analysis, a reflection seismic survey, pressure transient and tracer testing, and micro-seismic monitoring.
Kaladhar, K.; Srinivasacharya, D.
2016-12-01
The chemical reaction, Soret and Dufour effects on steady flow of a couple stress fluid between two rotating disks are studied. The lower disc is rotating with angular velocity Ω1 where as the upper disc is rotating with Ω2. The density variation in centrifugal and Coriolis force terms are taken into consideration by invoking a linear density-temperature relation and Boussinesq approximation to account the buoyancy effects. The non-linear governing partial differential equations are transformed into system of ordinary differential equations by using the similarity transformations. Homotopy Analysis Method (HAM) has been used to solve the resulting equations. Graphical illustrations of the dimensionless velocity, concentration and temperature profiles are presented at different values of the emerging parameter of the present study. It has been found that as an increase in couple stresses leads to the decrease in velocity, temperature and increase in concentration of the fluid. Flow velocities, temperature and concentration profiles are decreases with an increase in reaction parameter.
Chakraborty, Pritam; Biner, S. Bulent
2015-10-01
Ferritic-martensitic steels are currently being considered as structural materials in fusion and Gen-IV nuclear reactors. These materials are expected to experience high dose radiation, which can increase their ductile to brittle transition temperature and susceptibility to failure during operation. Hence, to estimate the safe operational life of the reactors, precise evaluation of the ductile to brittle transition temperatures of ferritic-martensitic steels is necessary. Owing to the scarcity of irradiated samples, particularly at high dose levels, micro-mechanistic models are being employed to predict the shifts in the ductile to brittle transition temperatures. These models consider the ductile damage evolution, in the form of nucleation, growth and coalescence of voids; and the brittle fracture, in the form of probabilistic cleavage initiation, to estimate the influence of irradiation on the ductile to brittle transition temperature. However, the assessment of irradiation dependent material parameters is challenging and influences the accuracy of these models. In the present study, the effects of irradiation on the overall flow stress and ductile damage behavior of two ferritic-martensitic steels is parametrically investigated. The results indicate that the ductile damage model parameters are mostly insensitive to irradiation levels at higher dose levels though the resulting flow stress behavior varies significantly.
Jensen, Line Skov; Lova, Lotte; Hansen, Zandra Kulikovsky; Schønemann, Emilie; Larsen, Line Lyngby; Colberg Olsen, Maria Sophia; Juhl, Nadja; Magnussen, Bogi Roin
2012-01-01
Stress er en tilstand som er meget omdiskuteret i samfundet, og dette besværliggør i en vis grad konkretiseringen af mulige løsningsforslag i bestræbelsen på at forebygge den såkaldte folkesygdom. Hovedkonklusionen er, at selv om der bliver gjort meget for at forebygge, er der ikke meget der aktivt kan sættes i værk for at reducere antallet af stressramte, før en fælles forståelse af stressårsager og effektiv stresshåndtering er fremlagt. Problemformuleringen er besvaret gennem en undersø...
MM97.48 Influence of multidirectional deformation mode on flow stress behaviour during cold forming
Lindegren, Maria; Pavel, Huml; Mendoza, Camus Luis
1997-01-01
In the present experimental investigation the influence of strain path on behaviour and final properties has been simulated in uni-, two- and three-directional deformation regimes. Pure iron and a low carbon steel have been investigated considering stress strain behaviour. Brass and copper...
MM97.48 Influence of multidirectional deformation mode on flow stress behaviour during cold forming
Lindegren, Maria; Pavel, Huml; Mendoza, Camus Luis
1997-01-01
In the present experimental investigation the influence of strain path on behaviour and final properties has been simulated in uni-, two- and three-directional deformation regimes. Pure iron and a low carbon steel have been investigated considering stress strain behaviour. Brass and copper specim...
Stress relaxation and reversed flow of low-density polyethylene melts following uniaxial extension
Huang, Qian; Rasmussen, Henrik K.; Skov, Anne Ladegaard
2012-01-01
The extensional dynamics of two low-density polyethylene melts Lupolen 3020D and Lupolen 1840D, both showing a stress overshoot in start-up of uniaxial extension [Rasmussen, H. K., J. K. Nielsen, A. Bach, and O.Hassager, 'Viscosity overshoot in the start-up of uniaxial elongation of low density p...
Blood flow in internal carotid and vertebral arteries during orthostatic stress
Sato, Kohei; Fisher, James P; Seifert, Thomas;
2012-01-01
during HUT and the magnitude of the attenuation in RoR was greater in the VA [0.25 ± 0.03 /s Supine vs. 0.16 ± 0.02 /s HUT (-33.9 ± 5.8 %), P s (-10.6 ± 13.4 %), P > 0.05]. These data indicate that orthostatic stress evokes regional...
Lagrangian viscoelastic flow computations using a generalized molecular stress function model
Rasmussen, Henrik K.
2002-01-01
–Sawyers fluid to a fluid described by a generalized molecular stress function (MSF) model allowing the use of dissipative convective constraint release in the constitutive equation. The convergence of the method is demonstrated on the axis-symmetric problem of the inflation of a polymeric membrane only...
Mirajkar, Harish N
2016-01-01
The presence of stratified layer in atmosphere and ocean leads to buoyant vertical motions, commonly referred to as plumes. It is important to study the mixing dynamics of a plume at a local scale in order to model their evolution and growth. Such a characterization requires measuring the velocity and density of the mixing fluids simultaneously. Here, we present the results of a buoyant plume propagating in a linearly stratified medium with a density difference of 0.5%, thus yielding a buoyancy frequency of N=0.15 s^{-1}. To understand the plume behaviour, statistics such as centerline and axial velocities along varying downstream locations, turbulent kinetic energy, Reynolds stress, and buoyancy flux were measured. The centerline velocity was found to decrease with increase in height. The Reynolds stress and buoyancy flux profiles showed the presence of a unstable layer and the mixing associated within that layer.
Measuring Stress-dependent Fluid Flow Behavior in Fractured Porous Media
Huo, Da; Benson, Sally
2014-05-01
Maintaining long-term storage of CO2 is one of the most important factors for selecting the site for a geological CO2 storage project. Nevertheless, it is important to be prepared for possible leakage due to leaking wells or leakage pathways through the seal of a storage reservoir. This research project is motivated by the need to understand unexpected CO2 leakage. The goal of this research is to investigate stress-dependent fracture permeability and relative permeability of CO2/brine systems. Laboratory measurements of fracture permeability and fracture apertures have been made as a function of effective stress. The phenomenon that permeability decreases with effective pressure increase is observed. Due to deformation of the fracture surface during periods with high effective stress, hysteretic behavior of fractured rock permeability is also observed in core flood experiments. A series of experiments are conducted to investigate permeability hysteresis. A single saw-cut fracture is created in the rock sample to simplify the problem and to focus on the fracture itself. Permeability is measured using a high pressure core flood apparatus with X-Ray CT scanning to measure the fracture aperture distributions. Two permeability data sets, including a high permeability fractured Berea Sandstone and a low permeability fractured Israeli Zenifim Formation sandstone, show clear hysteretic behavior in both permeability and fracture aperture in repeated cycles of compression and decompression. Due to closure of the fracture aperture, when a fractured rock is compressed axially, the permeability has an exponential decline with effective pressure, as expected from stress-dependent permeability theory. When the fractured rock is decompressed afterwards, permeability increases, but not along the compression pathway and never returns to the original value. Depending on the nature of the fracture and host rock, permeability can decrease from a factor of 2 to 40. After one or more
Viscous flow in simple curved gaps. I - An asymptotic theory. II - Viscous stress and shape function
Fan, D.-N.; Tong, W.
1989-01-01
The present asymptotic theory for generalized incompressible two-dimensional steady flow in curved channels has been constructed in the limit when gas thickness approaches zero with its lateral dimensions fixed; successive asymptotic solution terms are analytically generated by quadratures. In the second part of this work, the curvature of the gap treated is arbitrary. It is established that each term in the series solution of velocity and pressure is the product of a scale factor and a universal shape functions. Various interaction modes between the volume rate-of-flow, curvature, and its variations, are identified and quantitatively characterized.
Estrada, Rosendo; Giridharan, Guruprasad A; Nguyen, Mai-Dung; Roussel, Thomas J; Shakeri, Mostafa; Parichehreh, Vahidreza; Prabhu, Sumanth D; Sethu, Palaniappan
2011-04-15
The phenotype and function of vascular cells in vivo are influenced by complex mechanical signals generated by pulsatile hemodynamic loading. Physiologically relevant in vitro studies of vascular cells therefore require realistic environments where in vivo mechanical loading conditions can be accurately reproduced. To accomplish a realistic in vivo-like loading environment, we designed and fabricated an Endothelial Cell Culture Model (ECCM) to generate physiological pressure, stretch, and shear stress profiles associated with normal and pathological cardiac flow states. Cells within this system were cultured on a stretchable, thin (∼500 μm) planar membrane within a rectangular flow channel and subject to constant fluid flow. Under pressure, the thin planar membrane assumed a concave shape, representing a segment of the blood vessel wall. Pulsatility was introduced using a programmable pneumatically controlled collapsible chamber. Human aortic endothelial cells (HAECs) were cultured within this system under normal conditions and compared to HAECs cultured under static and "flow only" (13 dyn/cm(2)) control conditions using microscopy. Cells cultured within the ECCM were larger than both controls and assumed an ellipsoidal shape. In contrast to static control control cells, ECCM-cultured cells exhibited alignment of cytoskeletal actin filaments and high and continuous expression levels of β-catenin indicating an in vivo-like phenotype. In conclusion, design, fabrication, testing, and validation of the ECCM for culture of ECs under realistic pressure, flow, strain, and shear loading seen in normal and pathological conditions was accomplished. The ECCM therefore is an enabling technology that allows for study of ECs under physiologically relevant biomechanical loading conditions in vitro. © 2011 American Chemical Society
ZHANG Yongfang; WU Peng; GUO Bo; L Yanjun; LIU Fuxi; YU Yingtian
2015-01-01
The instability of the rotor dynamic system supported by oil journal bearing is encountered frequently, such as the half-speed whirl of the rotor, which is caused by oil film lubricant with nonlinearity. Currently, more attention is paid to the physical characteristics of oil film due to an oil-lubricated journal bearing being the important supporting component of the bearing-rotor systems and its nonlinear nature. In order to analyze the lubrication characteristics of journal bearings efficiently and save computational efforts, an approximate solution of nonlinear oil film forces of a finite length turbulent journal bearing with couple stress flow is proposed based on Sommerfeld and Ocvirk numbers. Reynolds equation in lubrication of a finite length turbulent journal bearing is solved based on multi-parametric principle. Load-carrying capacity of nonlinear oil film is obtained, and the results obtained by different methods are compared. The validation of the proposed method is verified, meanwhile, the relationships of load-carrying capacity versus eccentricity ratio and width-to-diameter ratio under turbulent and couple stress working conditions are analyzed. The numerical results show that both couple stress flow and eccentricity ratio have obvious influence on oil film pressure distribution, and the proposed method approximates the load-carrying capacity of turbulent journal bearings efficiently with various width-to-diameter ratios. This research proposes an approximate solution of oil film load-carrying capacity of turbulent journal bearings with different width-to-diameter ratios, which are suitable for high eccentricity ratios and heavy loads.
Chia-Wen Tsao
2015-12-01
Full Text Available Microfluidic devices provide low sample consumption, high throughput, high integration, and good environment controllability advantages. An alternative to conventional bioreactors, microfluidic devices are a simple and effective platform for stem cell investigations. In this study, we describe the design of a microfluidic device as a chemical and mechanical shear stress bioreactor to stimulate rat bone marrow stromal cells (rBMSCs into neuronal cells. 1-methyl-3-isobutylxanthine (IBMX was used as a chemical reagent to induce rBMSCs differentiation into neurons. Furthermore, the shear stress applied to rBMSCs was generated by laminar microflow in the microchannel. Four parallel microfluidic chambers were designed to provide a multiplex culture platform, and both the microfluidic chamber-to-chamber, as well as microfluidic device-to-device, culture stability were evaluated. Our research shows that rBMSCs were uniformly cultured in the microfluidic device and differentiated into neuronal cells with IBMX induction. A three-fold increase in the neuronal cell differentiation ratio was noted when rBMSCs were subjected to both IBMX and fluid flow shear stress stimulation. Here, we propose a microfluidic device which is capable of providing chemical and physical stimulation, and could accelerate neuronal cell differentiation from bone marrow stromal cells.
Lubrication of textured surfaces: a general theory for flow and shear stress factors.
Scaraggi, Michele
2012-08-01
We report on a mean field theory of textured surface lubrication. We study the fluid flow dynamics occurring at the interface as a function of the texture characteristics, e.g. texture area density, shape and distribution of microstructures, and local slip lengths. The present results may be very important for the investigation of tailored microtextured surfaces for low-friction hydrodynamic applications.
Hassager, Ole; Mortensen, Kell; Bach, Anders
2012-01-01
We use small-angle neutron scattering to measure the molecular stretching in polystyrene melts undergoing steady elongational flow at large stretch rates. The radius of gyration of the central segment of a partly deuterated polystyrene molecule is, in the stretching direction, increasing with the...
Bisdom, Kevin; Nick, Hamid; Bertotti, Giovanni
2017-01-01
stresssensitive fracture permeability and matrix flow to determine the full permeability tensor. The applicability of this workflow is illustrated using an outcropping carbonate pavement in the Potiguar basin in Brazil, from which 1082 fractures are digitised. The permeability tensor for a range of matrix...
Effect of T-stress on the cleavage crack growth resistance resulting from plastic flow
Tvergaard, Viggo
1998-01-01
Crack growth is studied numerically for cases where fracture occurs by atomic separation, sc that the length scale of the fracture process is typically much smaller than the dislocation spacing. Thus, the crack growth mechanism is brittle, but due to plastic flow at some distance from the crack t...
3D time-dependent flow computations using a molecular stress function model with constraint release
Rasmussen, Henrik Koblitz
2002-01-01
The numerical simulation of time dependent viscoelastic flow (in three dimensions) is of interest in connection with a variety of polymer processing operations. The application of the numerical simulation techniques is in the analysis and design of polymer processing problems. This is operations,...
Wallace, James M
2013-01-01
Almost 50 years ago Bob Brodkey and his student, Corino, conceived of and carried out a visualization experiment for the very near wall region of a turbulent pipe flow that, together with the turbulent boundary layer visualization of Kline et al., excited the turbulence research community. Using a high-speed movie camera mounted on a lathe bed that recorded magnified images in a frame of reference moving with the flow, they observed the motions of submicron particles in the sub-layer, buffer-layer and lower part of the log-layer. Surprisingly, these motions were not nearly so locally random as was the general view of turbulence at the time. Rather, connected regions of the near wall flow decelerated and then erupted away from the wall in what they called "ejections". These decelerated motions were followed by larger scale connected motions toward the wall from above that they called "sweeps". They estimated that ejections accounted for 70% of the Reynolds shear stress at Re_d = 20,000 while only occurring abo...
Statistical Analysis for Long Term Correlations in the Stress Time Series of Jerky Flow
Kugiumtzis, D; Kugiumtzis, Dimitris; Aifantis, Elias C.
2004-01-01
Stress time series from the PLC effect typically exhibit stick-slips of upload and download type. These data contain strong short-term correlations of a nonlinear type. We investigate whether there are also long term correlations, i.e. the successive up-down patterns are generated by a deterministic mechanism. A statistical test is conducted for the null hypothesis that the sequence of the up-down patterns is totally random. The test is constructed by means of surrogate data, suitably generated to represent the null hypothesis. Linear and nonlinear estimates are used as test statistics, namely autocorrelation, mutual information and Lyapunov exponents, which are found to have proper performance for the test. The test is then applied to three stress time series under different experimental conditions. Rejections are obtained for one of them and not with all statistics. From the overall results we cannot conclude that the underlying mechanism to the PLC effect has long memory.
SHEN Jian(沈健); G.Gottstein
2004-01-01
The evolution of microstructural variables, including the densities of mobile dislocation, immobile dislocation at the cell interiors, immobile dislocation in the cell walls, as well as total dislocation density, of an Al-Mg-Si aluminium alloy during thermomechanical processing were simulated based on a three-internal-variables-model (3IVM) involving dislocation climb and interaction. Optimization was carried out to fit the calculated stress-strain curves to the experimental data of the Al-Mg-Si alloy with minimum mean deviation. Precipitations were taken into consideration of modeling. The stress-strain curves predicted by the kinetic equations of state in the 3IVM have a good agreement with the experimental data.
Stability characteristics of jets in linearly-stratified, rotating fluids
Chen, Rui-Rong; Boyer, Don L.; Tao, Lijun
A series of laboratory experiments are conducted concerning an azimuthal jet of a linearly stratified rotating fluid in a cylindrical geometry. The jet is characterized by vertical and horizontal shear and the question of the stability of the flow is considered experimentally. The jet is driven by a source-sink method characterized by a volume flow rate of strength Q. BecauseQ has no direct geophysical significance a combined external set of dimensionless parameters is introduced. These include the Rossby, Richardson and Ekman numbers, the jet aspect ratio and two geometrical parameters. A RossbyRo against RichardsonRi number flow regime diagram is presented which shows that the wave mode of the instability generally decreases with increasingRo andRi, for fixedRi andRo, respectively. In accordance with Killworth's (1980) linear stability analysis, the wave mode for smallRi (Ri ⪉ 15) depends principally onRi with the instability being largely a baroclinic one. For largerRi(Ri ⪉ 100), again as predicted by Killworth's theory, the wave mode depends primarily onRo, the instability being a barotropic one. The regime diagram can be used to estimate the wave-length of jet instabilities in the atmosphere and oceans. These estimates suggest that the wave-lengths decrease with increasing jet velocity, decreasing jet width (equivalent to increasing horizontal shear) and increasing vertical shear, other parameters being fixed. An azimuthal topography aligned along the jet has the tendency to stabilize the jet in the sense that the amplitude of the instability is shown to be dramatically smaller in the presence of the topography, other parameters being fixed. The topography also tends to increase the wave-length of the instability. A scaling analysis is advanced, and supporting experimental data presented, relating the external and internal parameters utilized.
Chen, Yuhang; Schellekens, Michiel; Zhou, Shiwei; Cadman, Joseph; Li, Wei; Appleyard, Richard; Li, Qing
2011-08-01
Tissue scaffolds aim to provide a cell-friendly biomechanical environment for facilitating cell growth. Existing studies have shown significant demands for generating a certain level of wall shear stress (WSS) on scaffold microstructural surfaces for promoting cellular response and attachment efficacy. Recently, its role in shear-induced erosion of polymer scaffold has also drawn increasing attention. This paper proposes a bi-directional evolutionary structural optimization (BESO) approach for design of scaffold microstructure in terms of the WSS uniformity criterion, by downgrading highly-stressed solid elements into fluidic elements and/or upgrading lowly-stressed fluidic elements into solid elements. In addition to this, a computational model is presented to simulate shear-induced erosion process. The effective stiffness and permeability of initial and optimized scaffold microstructures are characterized by the finite element based homogenization technique to quantify the variations of mechanical properties of scaffold during erosion. The illustrative examples show that a uniform WSS is achieved within the optimized scaffold microstructures, and their architectural and biomechanical features are maintained for a longer lifetime during shear-induced erosion process. This study provides a mathematical means to the design optimization of cellular biomaterials in terms of the WSS criterion towards controllable shear-induced erosion.
Double criticality and the two-way Boussinesq equation in stratified shallow water hydrodynamics
Bridges, Thomas J.; Ratliff, Daniel J.
2016-06-01
Double criticality and its nonlinear implications are considered for stratified N-layer shallow water flows with N = 1, 2, 3. Double criticality arises when the linearization of the steady problem about a uniform flow has a double zero eigenvalue. We find that there are two types of double criticality: non-semisimple (one eigenvector and one generalized eigenvector) and semi-simple (two independent eigenvectors). Using a multiple scales argument, dictated by the type of singularity, it is shown that the weakly nonlinear problem near double criticality is governed by a two-way Boussinesq equation (non-semisimple case) and a coupled Korteweg-de Vries equation (semisimple case). Parameter values and reduced equations are constructed for the examples of two-layer and three-layer stratified shallow water hydrodynamics.
Andersen, Mads; Gustafsson, Finn; Madsen, Per Lav
2010-01-01
Functional assessment of continuous-flow left ventricular assist devices (LVADs) is usually performed with the patient at rest. This study compared echocardiographic indices of contraction and filling pressure with invasive measures in 12 ambulatory LVAD patients undergoing symptom-limited bicycl...... parallel with cardiac output) and diastolic E/e' ratio decreased (correlating inversely with diastolic pulmonary artery pressure). These findings emphasize the potential role of exercise echocardiography in studying exercise hemodynamics in LVAD patients....
The Near Wake of Bluff Bodies in Stratified Fluids and the Emergence of Late Wake Characteristics
2010-10-29
Kundu and Ira Cohen. Fluid Mechanics , Third Edition. Elsevier Inc., 2004. [27] S. Lee. A numerical study of the unsteady wake behind a sphere in a...found in the stratified fluid flows is the existence of the standing lee wave, which is a laminar mechanism . Above a Reynolds number of 2000, it is...computational cost to both model the proper fluid mechanics on the sphere and reproduce the far-wake is prohibitively expensive with current
Numerical modeling of mixing in large stably stratified enclosures using TRACMIX++
Christensen, Jakob
This PhD dissertation focuses on the numerical modeling of stably stratified large enclosures. In stably stratified volumes, the distribution of temperature, species concentration etc become essentially 1-D throughout most of the enclosure. When the fluid in an enclosure is stratified, wall boundary buoyant jets, forced buoyant jets (injection of fluid) and natural convection plumes become the primary sources of mixing. The time constants for the buoyant jets may be considered as much smaller than the time constant for the mixing of the stratified ambient fluid, provided the combined volume occupied by the buoyant jets is small compared to the volume of the enclosure. Therefore, fluid transport by the buoyant jets may be considered as occurring instantaneously. For this reason this work focuses on deriving a numerical method which is able to solve the 1-D vertical fluid conservation equations, as given in Peterson (1994). Starting with the Eulerian fluid conservation equations given in Peterson (1994), a set of Lagrangian fluid conservation equations were derived. Combining the Lagrangian approach with operator splitting such that the convective step and the diffusive step is separated renders a very efficient, accurate, and stable numerical method as it is shown in this text. Since the stratified flow field frequently exhibits very strong gradients or so-called fronts, the generation of these fronts has to be accurately detected and tracked by the numerical method. Flow in stably stratified large enclosure has typically been modeled in the past using 1- or 2-zone models. The present model is new in that it belongs to the K-zone models where the number of zones is arbitrarily large and depends on the complexity of the solution and the accuracy requirement set by the user. Because fronts are present in the flow field, a Lagrangian type numerical method is used. A Lagrangian method facilitates front tracking and prevents numerical diffusion from altering the shape of
Sawko, Robert; Thompson, Chris P.
2010-09-01
This paper presents a series of numerical simulations of non-Newtonian fluids in high Reynolds number flows in circular pipes. The fluids studied in the computations have shear-thinning and yield stress properties. Turbulence is described using the Reynolds-Averaged Navier-Stokes (RANS) equations with the Boussinesq eddy viscosity hypothesis. The evaluation of standard, two-equation models led to some observations regarding the order of magnitude as well as probabilistic information about the rate of strain. We argue that an accurate estimate of the rate of strain tensor is essential in capturing important flow features. It is first recognised that an apparent viscosity comprises two flow dependant components: one originating from rheology and the other from the turbulence model. To establish the relative significance of the terms involved, an order of magnitude analysis has been performed. The main observation supporting further discussion is that in high Reynolds number regimes the magnitudes of fluctuating rates of strain and fluctuating vorticity dominate the magnitudes of their respective averages. Since these quantities are included in the rheological law, the values of viscosity obtained from the fluctuating and mean velocity fields are different. Validation against Direct Numerical Simulation data shows at least an order of magnitude discrepancy in some regions of the flow. Moreover, the predictions of the probabilistic analysis show a favourable agreement with statistics computed from DNS data. A variety of experimental, as well as computational data has been collected. Data come from the latest experiments by Escudier et al. [1], DNS from Rudman et al. [2] and zeroth-order turbulence models of Pinho [3]. The fluid rheologies are described by standard power-law and Herschel-Bulkley models which make them suitable for steady state calculations of shear flows. Suitable regularisations are utilised to secure numerical stability. Two new models have been