Interfacial shear stress in stratified flow in a horizontal rectangular duct
International Nuclear Information System (INIS)
Lorencez, C.; Kawaji, M.; Murao, Y.
1995-01-01
Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods
Interfacial shear stress in stratified flow in a horizontal rectangular duct
Energy Technology Data Exchange (ETDEWEB)
Lorencez, C.; Kawaji, M. [Univ. of Toronto (Canada); Murao, Y. [Tokushima Univ. (Japan)] [and others
1995-09-01
Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.
Estimation of gas wall shear stress in horizontal stratified gas-liquid pipe flow
International Nuclear Information System (INIS)
Newton, C.H.; Behnia, M.
1996-01-01
Two-phase pipe flows occur in many industrial applications, such as condensers and evaporators, chemical processing equipment, nuclear reactors, and oil pipelines. A variety of basic mechanistic flow models for predicting the pressure gradient and liquid loading characteristics of these types of flows to assist in design calculations has emerged over the past two decades, especially for the stratified and slug flow regimes. These models generally rely on a number of basic assumptions and empirical closure equations. Possibly the most notable of these relates to the evaluation of interfacial shear stresses. However, one of the most important yet least discussed assumptions used in most of these models is that the phase wall shear stresses can be accurately estimated from correlations developed for single-phase pipe flows. The object of this article is to present measurements of gas wall shear up to locations in close proximity to the gas-liquid interface for a variety of interface conditions in developed flow, and to determine the effects of the interface on average gas wall friction factors. In this context the interface may be smooth, rippled or wavy
Analysis of stratified flow mixing
International Nuclear Information System (INIS)
Soo, S.L.; Lyczkowski, R.W.
1985-01-01
The Creare 1/5-scale Phase II experiments which model fluid and thermal mixing of relatively cold high pressure injection (HPI) water into a cold leg of a full-scale pressurized water reactor (PWR) having loop flow are analyzed and found that they cannot achieve complete similarity with respect to characteristic Reynolds and Froude numbers and developing hydrodynamic entry length. Several analyses show that these experiments fall into two distinct regimes of mixing: momentum controlled and gravity controlled (stratification). 18 refs., 9 figs
International Nuclear Information System (INIS)
Cutrim, J.H.; Kizivat, V.
1984-01-01
A simplified method to calculate the stresses in straight pipes due to laminar flow of a stratified medium with two different temperatures is presented. It is based on the equilibrium equations and conservative assumptions as usual in practice. Numerical results are obtained for the 'banana' and 'pera' modes of deformation due to thermal stratification; the former case appears to be most important. In order to be able to perform such a fatigue damage analysis in practice under several complex load conditions, an existing program for fatigue damage analysis was provided with more substantial details. All the assumptions crucial for the use of ASME code were retained. The inclusion of stresses due to stratifications in the fatigue damage analysis is completed through extension of ASME NB 3650. (Author) [pt
Experimental study of unsteady thermally stratified flow
International Nuclear Information System (INIS)
Lee, Sang Jun; Chung, Myung Kyoon
1985-01-01
Unsteady thermally stratified flow caused by two-dimensional surface discharge of warm water into a oblong channel was investigated. Experimental study was focused on the rapidly developing thermal diffusion at small Richardson number. The basic objectives were to study the interfacial mixing between a flowing layer of warm water and an underlying body of cold water and to accumulate experimental data to test computational turbulence models. Mean velocity field measurements were carried out by using NMR-CT(Nuclear Magnetic Resonance-Computerized Tomography). It detects quantitative flow image of any desired section in any direction of flow in short time. Results show that at small Richardson number warm layer rapidly penetrates into the cold layer because of strong turbulent mixing and instability between the two layers. It is found that the transfer of heat across the interface is more vigorous than that of momentum. It is also proved that the NMR-CT technique is a very valuable tool to measure unsteady three dimensional flow field. (Author)
Investigations on flow reversal in stratified horizontal flow
International Nuclear Information System (INIS)
Staebler, T.; Meyer, L.; Schulenberg, T.; Laurien, E.
2005-01-01
The phenomena of flow reversal in stratified flows are investigated in a horizontal channel with application to the Emergency Core Cooling System (ECCS) in Pressurized Water Reactors (PWR). In case of a Loss-of-Coolant-Accident (LOCA), coolant can be injected through a secondary pipe within the feeding line of the primary circuit, the so called hot leg, counter-currently to the steam flow. It is essential that the coolant reaches the reactor core to prevent overheating. Due to high temperatures in such accident scenarios, steam is generated in the core, which escapes from the reactor vessel through the hot leg. In case of sufficiently high steam flow rates, only a reduced amount of coolant or even no coolant will be delivered to the reactor core. The WENKA test facility at the Institute for Nuclear and Energy Technologies (IKET) at Forschungszentrum Karlsruhe is capable to investigate the fluid dynamics of two-phase flows in such scenarios. Water and air flow counter-currently in a horizontal channel made of clear acrylic glass to allow full optical access. Flow rates of water and air can be varied independently within a wide range. Once flow reversal sets in, a strong hysteresis effect must be taken into account. This was quantified during the present investigations. Local experimental data are needed to expand appropriate models on flow reversal in horizontal two-phase flow and to include them into numerical codes. Investigations are carried out by means of Particle Image Velocimetry (PIV) to obtain local flow velocities without disturbing the flow. Due to the wavy character of the flow, strong reflections at the interfacial area must be taken into account. Using fluorescent particles and an optical filter allows eliminating the reflections and recording only the signals of the particles. The challenges in conducting local investigations in stratified wavy flows by applying optical measurement techniques are discussed. Results are presented and discussed allowing
Plane Stratified Flow in a Room Ventilated by Displacement Ventilation
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm; Nickel, J.; Baron, D. J. G.
2004-01-01
The air movement in the occupied zone of a room ventilated by displacement ventilation exists as a stratified flow along the floor. This flow can be radial or plane according to the number of wall-mounted diffusers and the room geometry. The paper addresses the situations where plane flow...
Stratified Coastal Trapped Waves and Mean Flows
National Research Council Canada - National Science Library
Thompson, LuAnne
1998-01-01
Our long term goals are to identify the roles that rectified subinertial waves and mesoscale motions play in the mean-flow transport of fluid properties in the coastal ocean and to apply these ideas...
A Mechanism for Stratifying Lava Flows
Rice, A.
2005-12-01
Relict lava flows (e.g., komatiites) are often reported to be zoned in the vertical, each zone separated by a sharp contact. Such stratifications in igneous flows, both intrusive and extrusive, can be treated as analogues of suspended loads of sediments in rivers and streams, and hence amenable to quantitative treatment derived for the hydraulic environment as long as dynamic similitude is assured. Situations typically encountered in the hydraulic environment are streams carrying a bed load at the bottom of the stream, the bed load separated by a sharp horizon from a sediment load carried above it. This sediment load may be topped by others of decreasing density as one moves to the surface of the flow, with perhaps the uppermost layer clear of any suspended matter. Rules exist for estimating the thickness D of these loads: one of them is given by D ~ 4.4V3/rgcvs where V is the shear velocity or average velocity of the flow, r = (ρs - ρl)/ρl where ρs is the density of the suspended solid matter, ρl the density of the fluid, g the acceleration of gravity, c the concentration of the particulate content and vs the settling velocity. The settling velocity is secured through Stoke's Law and the velocity of the flow is given by V = R2/3S1/2/n where R is the hydraulic radius, S the gradient along which the fluid flows and n is the Manning Coefficient. In the igneous case, the bed load would be composed of primocrysts, i.e., of the first crystals to come out of solution as the flow cools along its run. This would leave the upper portions of the flow more evolved except perhaps for a quenched crust riding atop the flow. As the viscosity of the flow is dependent not only on temperature but on composition and crystal content, the mean velocity of each layer will be different from the layer above and below it. This requires shear at the interface of adjoining stratifications, which brings into play another mechanism: dispersive pressure (the Bagnold effect). Dispersive
The effect of surfactant on stratified and stratifying gas-liquid flows
Heiles, Baptiste; Zadrazil, Ivan; Matar, Omar
2013-11-01
We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow. EPSRC Programme Grant EP/K003976/1.
Local properties of countercurrent stratified steam-water flow
International Nuclear Information System (INIS)
Kim, H.J.
1985-10-01
A study of steam condensation in countercurrent stratified flow of steam and subcooled water has been carried out in a rectangular channel/flat plate geometry over a wide range of inclination angles (4 0 -87 0 ) at several aspect ratios. Variables were inlet water and steam flow rates, and inlet water temperature. Local condensation rates and pressure gradients were measured, and local condensation heat transfer coefficients and interfacial shear stress were calculated. Contact probe traverses of the surface waves were made, which allowed a statistical analysis of the wave properties. The local condensation Nusselt number was correlated in terms of local water and steam Reynolds or Froude numbers, as well as the liquid Prandtl number. A turbulence-centered model developed by Theofanous, et al. principally for gas absorption in several geometries, was modified. A correlation for the interfacial shear stress and the pressure gradient agreed with measured values. Mean water layer thicknesses were calculated. Interfacial wave parameters, such as the mean water layer thickness, liquid fraction probability distribution, wave amplitude and wave frequency, are analyzed
Sutudy on exchange flow under the unstably stratified field
文沢, 元雄
2005-01-01
This paper deals with the exchange flow under the unstably stratified field. The author developed the effective measurement system as well as the numerical analysis program. The system and the program are applied to the helium-air exchange flow in a rectangular channel with inclination. Following main features of the exchange flow were discussed based on the calculated results.(1) Time required for establishing a quasi-steady state exchange flow.(2) The relationship between the inclination an...
Turbulent structure of stably stratified inhomogeneous flow
Iida, Oaki
2018-04-01
Effects of buoyancy force stabilizing disturbances are investigated on the inhomogeneous flow where disturbances are dispersed from the turbulent to non-turbulent field in the direction perpendicular to the gravity force. Attaching the fringe region, where disturbances are excited by the artificial body force, a Fourier spectral method is used for the inhomogeneous flow stirred at one side of the cuboid computational box. As a result, it is found that the turbulent kinetic energy is dispersed as layered structures elongated in the streamwise direction through the vibrating motion. A close look at the layered structures shows that they are flanked by colder fluids at the top and hotter fluids at the bottom, and hence vertically compressed and horizontally expanded by the buoyancy related to the countergradient heat flux, though they are punctuated by the vertical expansion of fluids at the forefront of the layered structures, which is related to the downgradient heat flux, indicating that the layered structures are gravity currents. However, the phase between temperature fluctuations and vertical velocity is shifted by π/2 rad, indicating that temperature fluctuations are generated by the propagation of internal gravity waves.
A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow
International Nuclear Information System (INIS)
Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok
1995-01-01
This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within ±8%
A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow
Energy Technology Data Exchange (ETDEWEB)
Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others
1995-09-01
This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.
Large eddy simulation of turbulent and stably-stratified flows
International Nuclear Information System (INIS)
Fallon, Benoit
1994-01-01
The unsteady turbulent flow over a backward-facing step is studied by mean of Large Eddy Simulations with structure function sub grid model, both in isothermal and stably-stratified configurations. Without stratification, the flow develops highly-distorted Kelvin-Helmholtz billows, undergoing to helical pairing, with A-shaped vortices shed downstream. We show that forcing injected by recirculation fluctuations governs this oblique mode instabilities development. The statistical results show good agreements with the experimental measurements. For stably-stratified configurations, the flow remains more bi-dimensional. We show with increasing stratification, how the shear layer growth is frozen by inhibition of pairing process then of Kelvin-Helmholtz instabilities, and the development of gravity waves or stable density interfaces. Eddy structures of the flow present striking analogies with the stratified mixing layer. Additional computations show the development of secondary Kelvin-Helmholtz instabilities on the vorticity layers between two primary structures. This important mechanism based on baroclinic effects (horizontal density gradients) constitutes an additional part of the turbulent mixing process. Finally, the feasibility of Large Eddy Simulation is demonstrated for industrial flows, by studying a complex stratified cavity. Temperature fluctuations are compared to experimental measurements. We also develop three-dimensional un-stationary animations, in order to understand and visualize turbulent interactions. (author) [fr
Mixing of stratified flow around bridge piers in steady current
DEFF Research Database (Denmark)
Jensen, Bjarne; Carstensen, Stefan; Christensen, Erik Damgaard
2018-01-01
This paper presents the results of an experimental and numerical investigation of the mixing of stratified flow around bridge pier structures. In this study, which was carried out in connection with the Fehmarnbelt Fixed Link environmental impact assessment, the mixing processes of two-layer stra......This paper presents the results of an experimental and numerical investigation of the mixing of stratified flow around bridge pier structures. In this study, which was carried out in connection with the Fehmarnbelt Fixed Link environmental impact assessment, the mixing processes of two......-layer stratification was studied in which the lower level had a higher salinity than the upper layer. The physical experiments investigated two different pier designs. A general study was made regarding forces on the piers in which the effect of the current angle relative to the structure was also included...
Large Eddy Simulation of stratified flows over structures
Brechler J.; Fuka V.
2013-01-01
We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model) to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.
Large Eddy Simulation of stratified flows over structures
Directory of Open Access Journals (Sweden)
Brechler J.
2013-04-01
Full Text Available We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.
Large Eddy Simulation of stratified flows over structures
Fuka, V.; Brechler, J.
2013-04-01
We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model) to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.
Optimal energy growth in a stably stratified shear flow
Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama
2018-02-01
Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.
Direct contact condensation induced transition from stratified to slug flow
International Nuclear Information System (INIS)
Strubelj, Luka; Ezsoel, Gyoergy; Tiselj, Iztok
2010-01-01
Selected condensation-induced water hammer experiments performed on PMK-2 device were numerically modelled with three-dimensional two-fluid models of computer codes NEPTUNE C FD and CFX. Experimental setup consists of the horizontal pipe filled with the hot steam that is being slowly flooded with cold water. In most of the experimental cases, slow flooding of the pipe was abruptly interrupted by a strong slugging and water hammer, while in the selected experimental runs performed at higher initial pressures and temperatures that are analysed in the present work, the transition from the stratified into the slug flow was not accompanied by the water hammer pressure peak. That makes these cases more suitable tests for evaluation of the various condensation models in the horizontally stratified flows and puts them in the range of the available CFD (Computational Fluid Dynamics) codes. The key models for successful simulation appear to be the condensation model of the hot vapour on the cold liquid and the interfacial momentum transfer model. The surface renewal types of condensation correlations, developed for condensation in the stratified flows, were used in the simulations and were applied also in the regions of the slug flow. The 'large interface' model for inter-phase momentum transfer model was compared to the bubble drag model. The CFD simulations quantitatively captured the main phenomena of the experiments, while the stochastic nature of the particular condensation-induced water hammer experiments did not allow detailed prediction of the time and position of the slug formation in the pipe. We have clearly shown that even the selected experiments without water hammer present a tough test for the applied CFD codes, while modelling of the water hammer pressure peaks in two-phase flow, being a strongly compressible flow phenomena, is beyond the capability of the current CFD codes.
Improvements to TRAC models of condensing stratified flow. Pt. 1
International Nuclear Information System (INIS)
Zhang, Q.; Leslie, D.C.
1991-12-01
Direct contact condensation in stratified flow is an important phenomenon in LOCA analyses. In this report, the TRAC interfacial heat transfer model for stratified condensing flow has been assessed against the Bankoff experiments. A rectangular channel option has been added to the code to represent the experimental geometry. In almost all cases the TRAC heat transfer coefficient (HTC) over-predicts the condensation rates and in some cases it is so high that the predicted steam is sucked in from the normal outlet in order to conserve mass. Based on their cocurrent and countercurrent condensing flow experiments, Bankoff and his students (Lim 1981, Kim 1985) developed HTC models from the two cases. The replacement of the TRAC HTC with either of Bankoff's models greatly improves the predictions of condensation rates in the experiment with cocurrent condensing flow. However, the Bankoff HTC for countercurrent flow is preferable because it is based only on the local quantities rather than on the quantities averaged from the inlet. (author)
A study of stratified gas-liquid pipe flow
Energy Technology Data Exchange (ETDEWEB)
Johnson, George W.
2005-07-01
This work includes both theoretical modelling and experimental observations which are relevant to the design of gas condensate transport lines. Multicomponent hydrocarbon gas mixtures are transported in pipes over long distances and at various inclinations. Under certain circumstances, the heavier hydrocarbon components and/or water vapour condense to form one or more liquid phases. Near the desired capacity, the liquid condensate and water is efficiently transported in the form of a stratified flow with a droplet field. During operating conditions however, the flow rate may be reduced allowing liquid accumulation which can create serious operational problems due to large amounts of excess liquid being expelled into the receiving facilities during production ramp-up or even in steady production in severe cases. In particular, liquid tends to accumulate in upward inclined sections due to insufficient drag on the liquid from the gas. To optimize the transport of gas condensates, a pipe diameters should be carefully chosen to account for varying flow rates and pressure levels which are determined through the knowledge of the multiphase flow present. It is desirable to have a reliable numerical simulation tool to predict liquid accumulation for various flow rates, pipe diameters and pressure levels which is not presently accounted for by industrial flow codes. A critical feature of the simulation code would include the ability to predict the transition from small liquid accumulation at high flow rates to large liquid accumulation at low flow rates. A semi-intermittent flow regime of roll waves alternating with a partly backward flowing liquid film has been observed experimentally to occur for a range of gas flow rates. Most of the liquid is transported in the roll waves. The roll wave regime is not well understood and requires fundamental modelling and experimental research. The lack of reliable models for this regime leads to inaccurate prediction of the onset of
Visualization periodic flows in a continuously stratified fluid.
Bardakov, R.; Vasiliev, A.
2012-04-01
To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken
Stability of unstably stratified shear flow between parallel plates
Energy Technology Data Exchange (ETDEWEB)
Fujimura, Kaoru; Kelly, R E
1987-09-01
The linear stability of unstably stratified shear flows between two horizontal parallel plates was investigated. Eigenvalue problems were solved numerically by making use of the expansion method in Chebyshev polynomials, and the critical Rayleigh numbers were obtained accurately in the Reynolds number range of (0.01, 100). It was found that the critical Rayleigh number increases with an increase of the Reynolds number. The result strongly supports previous stability analyses except for the analysis by Makino and Ishikawa (J. Jpn. Soc. Fluid Mech. 4 (1985) 148 - 158) in which a decrease of the critical Rayleigh number was obtained.
Stability of unstably stratified shear flow between parallel plates
International Nuclear Information System (INIS)
Fujimura, Kaoru; Kelly, R.E.
1987-01-01
The linear stability of unstably stratified shear flows between two horizontal parallel plates was investigated. Eigenvalue problems were solved numerically by making use of the expansion method in Chebyshev polynomials, and the critical Rayleigh numbers were obtained accurately in the Reynolds number range of [0.01, 100]. It was found that the critical Rayleigh number increases with an increase of the Reynolds number. The result strongly supports previous stability analyses except for the analysis by Makino and Ishikawa [J. Jpn. Soc. Fluid Mech. 4 (1985) 148 - 158] in which a decrease of the critical Rayleigh number was obtained. (author)
Subcritical to supercritical flow transition in a horizontal stratified flow
International Nuclear Information System (INIS)
Asaka, H.; Kukita, Y.
1995-01-01
The conditions for a transition from hydraulically subcritical to supercritical flow in the hot legs of a pressurized water reactor (PWR) were studied using data obtained from a two-phase natural circulation experiment conducted at the ROSA-IV Large Scale Test Facility (LSTF). The LSTF is a 1/48 volumetrically-scaled simulator of a Westinghouse-type PWR. The conditions for the transition were compared with the theory of Gardner. While the model explains the trend in the experimental data, the quantitative agreement was not satisfactory. It was found that the conditions for the transition from the subcritical to supercritical flow were predicted well by introducing energy loss term into the theory. (author)
Experimental CFD grade data for stratified two-phase flows
Energy Technology Data Exchange (ETDEWEB)
Vallee, Christophe, E-mail: c.vallee@fzd.d [Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, D-01314 Dresden (Germany); Lucas, Dirk; Beyer, Matthias; Pietruske, Heiko; Schuetz, Peter; Carl, Helmar [Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, D-01314 Dresden (Germany)
2010-09-15
Stratified two-phase flows were investigated at two test facilities with horizontal test-sections. For both, rectangular channel cross-sections were chosen to provide optimal observation possibilities for the application of optical measurement techniques. In order to show the local flow structure, high-speed video observation was applied, which delivers the high-resolution in space and time needed for CFD code validation. The first investigations were performed in the Horizontal Air/Water Channel (HAWAC), which is made of acrylic glass and allows the investigation of air/water co-current flows at atmospheric pressure and room temperature. At the channel inlet, a special device was designed for well-defined and adjustable inlet boundary conditions. For the quantitative analysis of the optical measurements performed at the HAWAC, an algorithm was developed to recognise the stratified interface in the camera frames. This allows to make statistical treatments for comparison with CFD calculation results. As an example, the unstable wave growth leading to slug flow is shown from the test-section inlet. Moreover, the hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was investigated in this closed channel. The structure of the hydraulic jump over time is revealed by the calculation of the probability density of the water level. A series of experiments show that the hydraulic jump profile and its position from the inlet vary substantially with the inlet boundary conditions due to the momentum exchange between the phases. The second channel is built in the pressure chamber of the TOPFLOW test facility, which is used to perform air/water and steam/water experiments at pressures of up to 5.0 MPa and temperatures of up to 264 {sup o}C, but under pressure equilibrium with the vessel inside. In the present experiment, the test-section represents a flat model of the hot leg of the German Konvoi pressurised water reactor scaled at
Experimental CFD grade data for stratified two-phase flows
International Nuclear Information System (INIS)
Vallee, Christophe; Lucas, Dirk; Beyer, Matthias; Pietruske, Heiko; Schuetz, Peter; Carl, Helmar
2010-01-01
Stratified two-phase flows were investigated at two test facilities with horizontal test-sections. For both, rectangular channel cross-sections were chosen to provide optimal observation possibilities for the application of optical measurement techniques. In order to show the local flow structure, high-speed video observation was applied, which delivers the high-resolution in space and time needed for CFD code validation. The first investigations were performed in the Horizontal Air/Water Channel (HAWAC), which is made of acrylic glass and allows the investigation of air/water co-current flows at atmospheric pressure and room temperature. At the channel inlet, a special device was designed for well-defined and adjustable inlet boundary conditions. For the quantitative analysis of the optical measurements performed at the HAWAC, an algorithm was developed to recognise the stratified interface in the camera frames. This allows to make statistical treatments for comparison with CFD calculation results. As an example, the unstable wave growth leading to slug flow is shown from the test-section inlet. Moreover, the hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was investigated in this closed channel. The structure of the hydraulic jump over time is revealed by the calculation of the probability density of the water level. A series of experiments show that the hydraulic jump profile and its position from the inlet vary substantially with the inlet boundary conditions due to the momentum exchange between the phases. The second channel is built in the pressure chamber of the TOPFLOW test facility, which is used to perform air/water and steam/water experiments at pressures of up to 5.0 MPa and temperatures of up to 264 o C, but under pressure equilibrium with the vessel inside. In the present experiment, the test-section represents a flat model of the hot leg of the German Konvoi pressurised water reactor scaled at 1
Stratified flow model for convective condensation in an inclined tube
International Nuclear Information System (INIS)
Lips, Stéphane; Meyer, Josua P.
2012-01-01
Highlights: ► Convective condensation in an inclined tube is modelled. ► The heat transfer coefficient is the highest for about 20° below the horizontal. ► Capillary forces have a strong effect on the liquid–vapour interface shape. ► A good agreement between the model and the experimental results was observed. - Abstract: Experimental data are reported for condensation of R134a in an 8.38 mm inner diameter smooth tube in inclined orientations with a mass flux of 200 kg/m 2 s. Under these conditions, the flow is stratified and there is an optimum inclination angle, which leads to the highest heat transfer coefficient. There is a need for a model to better understand and predict the flow behaviour. In this paper, the state of the art of existing models of stratified two-phase flows in inclined tubes is presented, whereafter a new mechanistic model is proposed. The liquid–vapour distribution in the tube is determined by taking into account the gravitational and the capillary forces. The comparison between the experimental data and the model prediction showed a good agreement in terms of heat transfer coefficients and pressure drops. The effect of the interface curvature on the heat transfer coefficient has been quantified and has been found to be significant. The optimum inclination angle is due to a balance between an increase of the void fraction and an increase in the falling liquid film thickness when the tube is inclined downwards. The effect of the mass flux and the vapour quality on the optimum inclination angle has also been studied.
Stratified flows with variable density: mathematical modelling and numerical challenges.
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux
Numerical simulation of stratified shear flow using a higher order Taylor series expansion method
Energy Technology Data Exchange (ETDEWEB)
Iwashige, Kengo; Ikeda, Takashi [Hitachi, Ltd. (Japan)
1995-09-01
A higher order Taylor series expansion method is applied to two-dimensional numerical simulation of stratified shear flow. In the present study, central difference scheme-like method is adopted for an even expansion order, and upwind difference scheme-like method is adopted for an odd order, and the expansion order is variable. To evaluate the effects of expansion order upon the numerical results, a stratified shear flow test in a rectangular channel (Reynolds number = 1.7x10{sup 4}) is carried out, and the numerical velocity and temperature fields are compared with experimental results measured by laser Doppler velocimetry thermocouples. The results confirm that the higher and odd order methods can simulate mean velocity distributions, root-mean-square velocity fluctuations, Reynolds stress, temperature distributions, and root-mean-square temperature fluctuations.
STRESS DISTRIBUTION IN THE STRATIFIED MASS CONTAINING VERTICAL ALVEOLE
Directory of Open Access Journals (Sweden)
Bobileva Tatiana Nikolaevna
2017-08-01
Full Text Available Almost all subsurface rocks used as foundations for various types of structures are stratified. Such heterogeneity may cause specific behaviour of the materials under strain. Differential equations describing the behaviour of such materials contain rapidly fluctuating coefficients, in view of this, solution of such equations is more time-consuming when using today’s computers. The method of asymptotic averaging leads to getting homogeneous medium under study to averaged equations with fixed factors. The present article is concerned with stratified soil mass consisting of pair-wise alternative isotropic elastic layers. In the results of elastic modules averaging, the present soil mass with horizontal rock stratification is simulated by homogeneous transversal-isotropic half-space with isotropy plane perpendicular to the standing axis. Half-space is loosened by a vertical alveole of circular cross-section, and virgin ground is under its own weight. For horizontal parting planes of layers, the following two types of surface conditions are set: ideal contact and backlash without cleavage. For homogeneous transversal-isotropic half-space received with a vertical alveole, the analytical solution of S.G. Lekhnitsky, well known in scientific papers, is used. The author gives expressions for stress components and displacements in soil mass for different marginal conditions on the alveole surface. Such research problems arise when constructing and maintaining buildings and when composite materials are used.
Internal and vorticity waves in decaying stratified flows
Matulka, A.; Cano, D.
2009-04-01
Most predictive models fail when forcing at the Rossby deformation Radius is important and a large range of scales have to be taken into account. When mixing of reactants or pollutants has to be accounted, the range of scales spans from hundreds of Kilometers to the Bachelor or Kolmogorov sub milimiter scales. We present some theoretical arguments to describe the flow in terms of the three dimensional vorticity equations, using a lengthscale related to the vorticity (or enstrophy ) transport. Effect of intermittent eddies and non-homogeneity of diffusion are also key issues in the environment because both stratification and rotation body forces are important and cause anisotropy/non-homogeneity. These problems need further theoretical, numerical and observational work and one approach is to try to maximize the relevant geometrical information in order to understand and therefore predict these complex environmental dispersive flows. The importance of the study of turbulence structure and its relevance in diffusion of contaminants in environmental flows is clear when we see the effect of environmental disasters such as the Prestige oil spill or the Chernobil radioactive cloud spread in the atmosphere. A series of Experiments have been performed on a strongly stratified two layer fluid consisting of Brine in the bottom and freshwater above in a 1 square meter tank. The evolution of the vortices after the passage of a grid is video recorded and Particle tracking is applied on small pliolite particles floating at the interface. The combination of internal waves and vertical vorticity produces two separate time scales that may produce resonances. The vorticity is seen to oscilate in a complex way, where the frecuency decreases with time.
International Nuclear Information System (INIS)
Ishak, Anuar; Nazar, Roslinda; Pop, Ioan
2008-01-01
The mixed convection boundary layer flow through a stable stratified porous medium bounded by a vertical surface is investigated. The external velocity and the surface temperature are assumed to vary as x m , where x is measured from the leading edge of the vertical surface and m is a constant. Numerical solutions for the governing Darcy and energy equations are obtained. The results indicate that the thermal stratification significantly affects the surface shear stress as well as the surface heat transfer, besides delays the boundary layer separation
Direct numerical simulation of stratified gas-liquid flow
International Nuclear Information System (INIS)
Lombardi, P.; De Angelis, V.; Banerjee, S.
1996-01-01
Interactions through an interface between two turbulent flows play an important role in many environmental and industrial problems, e.g. in determining the coupling fluxes of heat mass and momentum, between the ocean and atmosphere, and in the design of gas-liquid contractors for the chemical industry, as well as in determining interactions between phases in nuclear transients that are accompanied by system voiding e.g. LOCAs. Here, the Direct Numerical Simulation (DNS) of the interaction of two turbulent fluids through a flat interface has been simulated. The flow and the temperature fields are computed using a pseudospectral method. This study shows that shear stress at the interface correlates well with the heat flux. Extensive analysis of the near interface turbulence structure has been performed using quadrant analysis. From this it is clear that gas-side sweeps dominate over the high shear stress regions. This suggests that simple parameterizations based on sweep frequency may be adequate for predictions of scalar transport rates
Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena
International Nuclear Information System (INIS)
Vallee, Christophe; Hoehne, Thomas; Prasser, Horst-Michael; Suehnel, Tobias
2008-01-01
For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4 x 10 5 control volumes. The turbulence was modelled separately for each phase using the k-ω-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow
Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena
International Nuclear Information System (INIS)
Vallee, Christophe; Hohne, Thomas; Prasser, Horst-Michael; Suhnel, Tobias
2007-01-01
For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Rossendorf. The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronized with the high-speed camera system. CFD post test simulations of stratified flows were performed using the code ANSYS CFX. The Euler- Euler two fluid model with the free surface option was applied on grids of minimum 4.10 5 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow. (authors)
Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena
Energy Technology Data Exchange (ETDEWEB)
Vallee, Christophe [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)], E-mail: c.vallee@fzd.de; Hoehne, Thomas; Prasser, Horst-Michael; Suehnel, Tobias [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)
2008-03-15
For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4 x 10{sup 5} control volumes. The turbulence was modelled separately for each phase using the k-{omega}-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow.
LES of stratified-wavy flows using novel near-interface treatment
Karnik, Aditya; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Matar, Omar K.
2017-11-01
The pressure drop in horizontal stratified wavy flows is influenced by interfacial shear stress. The near-interface behavior of the lighter phase is akin to that near a moving wall. We employ a front-tracking code, Blue, to simulate and capture the near-interface behaviour of both phases. Blue uses a modified Smagorinsky LES model incorporating a novel near-interface treatment for the sub-grid viscosity, which is influenced by damping due to the wall-like interface, and enhancement of the turbulent kinetic energy (TKE) due to the interfacial waves. Simulations are carried out for both air-water and oil-water stratified configurations to demonstrate the applicability of the present method. The mean velocities and tangential Reynolds stresses are compared with experiments for both configurations. At the higher Re, the waves penetrate well into the buffer region of the boundary layer above the interface thus altering its dynamics. Previous attempts to capture the secondary structures associated with such flows using RANS or standard LES methodologies have been unsuccessful. The ability of the present method to reproduce these structures is due to the correct estimation of the near-interface TKE governing energy transfer from the normal to tangential directions. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
A stratified percolation model for saturated and unsaturated flow through natural fractures
International Nuclear Information System (INIS)
Pyrak-Nolte, L.J.
1990-01-01
The geometry of the asperities of contact between the two surfaces of a fracture and of the adjacent void spaces determines fluid flow through a fracture and the mechanical deformation across a fracture. Heuristically we have developed a stratified continuum percolation model to describe this geometry based on a fractal construction that includes scale invariance and correlation of void apertures. Deformation under stress is analyzed using conservation of rock volume to correct for asperity interpenetration. Single phase flow is analyzed using a critical path along which the principal resistance is a result of laminar flow across the critical neck in this path. Results show that flow decreases with apparent aperture raised to a variable power greater than cubic, as is observed in flow experiments on natural fractures. For two phases, flow of the non-wetting phase is likewise governed by the critical neck along the critical path of largest aperture but flow of the wetting phase is governed by tortuosity. 17 refs., 10 figs
An experimental investigation of stratified two-phase pipe flow at small inclinations
Energy Technology Data Exchange (ETDEWEB)
Espedal, Mikal
1998-12-31
The prediction of stratified flow is important for several industrial applications. Stratified flow experiments were carefully performed in order to investigate the performance of a typical model which uses wall friction factors based on single phase pipe flow as described above. The test facility has a 18.5 m long and 60 mm i.d. (L/D=300) acrylic test section which can be inclined between -10 {sup o} and +10 {sup o}. The liquid holdup was measured by using fast closing valves and the pressure gradients by using three differential pressure transducers. Interfacial waves were measured by thin wire conductance probes mounted in a plane perpendicular to the main flow. The experiments were performed using water and air at atmospheric pressure. The selected test section inclinations were between -3 {sup o} and +0.5 {sup o} to the horizontal plane. A large number of experiments were performed for different combinations of air and water flow rates and the rates were limited to avoid slug flow and stratified flow with liquid droplets. The pressure gradient and the liquid holdup were measured. In addition the wave probes were used to find the wave heights and the wave power spectra. The results show that the predicted pressure gradient using the standard models is approximately 30% lower than the measured value when large amplitude waves are present. When the flow is driven by the interfacial force the test section inclination has minor influence on the deviation between predicted and measured pressure gradients. Similar trends are apparent in data from the literature, although they seem to have gone unnoticed. For several data sets large spread in the predictions are observed when the model described above was used. Gas wall shear stress experiments indicate that the main cause of the deviation between measured and predicted pressure gradient and holdup resides in the modelling of the liquid wall friction term. Measurements of the liquid wall shear stress distribution
Two-phase air-water stratified flow measurement using ultrasonic techniques
International Nuclear Information System (INIS)
Fan, Shiwei; Yan, Tinghu; Yeung, Hoi
2014-01-01
In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable
Hydromagnetic stability of rotating stratified compressible fluid flows
Energy Technology Data Exchange (ETDEWEB)
Srinivasan, V; Kandaswamy, P [Dept. of Mathematics, Bharathiar University, Coimbatore, Tamil Nadu, India; Debnath, L [Dept. of Mathematics, University of Central Florida, Orlando, USA
1984-09-01
The hydromagnetic stability of a radially stratified compressible fluid rotating between two coaxial cylinders is investigated. The stability with respect to axisymmetric disturbances is examined. The fluid system is found to be thoroughly stable to axisymmetric disturbances provided the fluid rotates very rapidly. The system is shown to be unstable to non-axisymmetric disturbances, and the slow amplifying hydromagnetic wave modes propagate against the basic rotation. The lower and upper bounds of the azimuthal phase speeds of the amplifying waves are determined. A quadrant theorem on the slow waves characteristic of a rapidly rotating fluid is derived. Special attention is given to the effects of compressibility of the fluid. Some results concerning the stability of an incompressible fluid system are obtained as special cases of the present analysis.
Two-phase flow through small branches in a horizontal pipe with stratified flow
International Nuclear Information System (INIS)
Smoglie, C.
1985-02-01
In the field of reactor safety the occurrence of a small break in a horizontal primary coolant pipe is of great importance. This report presents the description and results of experiments designed to determine the mass flow rate and quality through a small break at the bottom, the top or the side of a main pipe with stratified gas-liquid flow. If the interface level is far below (above) the branch, only single-phase gas (liquid) flow enters the branch. For smaller distances the interface is locally deformed because of the pressure decrease due to the fluid acceleration near the branch inlet (Bernoulli effect) and liquid (gas) can be entrained. This report contains photographs illustrating the flow phenomena as well as a general correlation to determine the beginning of entrainment. Results are presented on the branch mass flow rate and quality as a function of a normalized distance between the interface and the branch inlet. A model was developed which enables to predict the branch quality and mass flux. Results from air-water flow through horizontal branches, were extrapolated for steam water flow at high pressure with critical branch mass flux. (orig./HS) [de
Two-phase flow through small branches in a horizontal pipe with stratified flow
International Nuclear Information System (INIS)
Smoglie, C.
1984-12-01
This report presents the description and results of experiments designed to determine the mass flow rate and quality through a small break at the bottom, the top or the side of a main pipe with stratified gas-liquid flow. If the interface level is far below (above) the branch, only single-phase gas (liquid) flow enters the branch. For smaller distances the interface is locally deformed because of the pressure decrease due to the fluid acceleration near the branch inlet (Bernoulli effect) and liquid (gas) can be entrained. This report contains photographs illustrating the flow phenomena as well as a general correlation to determine the beginning of entrainment. Results are presented on the branch mass flow rate and quality as a function of a normalized distance between the interface and the branch inlet. A model was developed which enables to predict the branch quality and mass flux. Results from air-water flow through horizontal branches, were extrapolated for steam water flow at high pressure with critical branch mass flux. (orig./HP) [de
Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow
International Nuclear Information System (INIS)
Kuzay, T.M.; Kasza, K.E.
1985-01-01
A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90 0 sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions
Energy Technology Data Exchange (ETDEWEB)
Kuzay, T.M.; Kasza, K.E.
1985-01-01
A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90/sup 0/ sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions.
Mathematical models for two-phase stratified pipe flow
Energy Technology Data Exchange (ETDEWEB)
Biberg, Dag
2005-06-01
The simultaneous transport of oil, gas and water in a single multiphase flow pipe line has for economical and practical reasons become common practice in the gas and oil fields operated by the oil industry. The optimal design and safe operation of these pipe lines require reliable estimates of liquid inventory, pressure drop and flow regime. Computer simulations of multiphase pipe flow have thus become an important design tool for field developments. Computer simulations yielding on-line monitoring and look ahead predictions are invaluable in day-to-day field management. Inaccurate predictions may have large consequences. The accuracy and reliability of multiphase pipe flow models are thus important issues. Simulating events in large pipelines or pipeline systems is relatively computer intensive. Pipe-lines carrying e.g. gas and liquefied gas (condensate) may cover distances of several hundred km in which transient phenomena may go on for months. The evaluation times associated with contemporary 3-D CFD models are thus not compatible with field applications. Multiphase flow lines are therefore normally simulated using specially dedicated 1-D models. The closure relations of multiphase pipe flow models are mainly based on lab data. The maximum pipe inner diameter, pressure and temperature in a multiphase pipe flow lab is limited to approximately 0.3 m, 90 bar and 60{sup o}C respectively. The corresponding field values are, however, much higher i.e.: 1 m, 1000 bar and 200{sup o}C respectively. Lab data does thus not cover the actual field conditions. Field predictions are consequently frequently based on model extrapolation. Applying field data or establishing more advanced labs will not solve this problem. It is in fact not practically possible to acquire sufficient data to cover all aspects of multiphase pipe flow. The parameter range involved is simply too large. Liquid levels and pressure drop in three-phase flow are e.g. determined by 13 dimensionless parameters
Multigrid Computation of Stratified Flow over Two-Dimensional Obstacles
Paisley, M. F.
1997-09-01
A robust multigrid method for the incompressible Navier-Stokes equations is presented and applied to the computation of viscous flow over obstacles in a bounded domain under conditions of neutral stability and stable density stratification. Two obstacle shapes have been used, namely a vertical barrier, for which the grid is Cartesian, and a smooth cosine-shaped obstacle, for which a boundary-conforming transformation is incorporated. Results are given for laminar flows at low Reynolds numbers and turbulent flows at a high Reynolds number, when a simple mixing length turbulence model is included. The multigrid algorithm is used to compute steady flows for each obstacle at low and high Reynolds numbers in conditions of weak static stability, defined byK=ND/πU≤ 1, whereU,N, andDare the upstream velocity, bouyancy frequency, and domain height respectively. Results are also presented for the vertical barrier at low and high Reynolds number in conditions of strong static stability,K> 1, when lee wave motions ensure that the flow is unsteady, and the multigrid algorithm is used to compute the flow at each timestep.
Energy Technology Data Exchange (ETDEWEB)
Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)
1997-12-31
This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)
Energy Technology Data Exchange (ETDEWEB)
Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)
1998-12-31
This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)
Slip analysis of squeezing flow using doubly stratified fluid
Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha
2018-06-01
The non-isothermal flow is modeled and explored for squeezed fluid. The influence of velocity, thermal and solutal slip effects on transport features of squeezed fluid are analyzed through Darcy porous channel when fluid is moving due to squeezing of upper plate towards the stretchable lower plate. Dual stratification effects are illustrated in transport equations. A similarity analysis is performed and reduced governing flow equations are solved using moderated and an efficient convergent approach i.e. Homotopic technique. The significant effects of physical emerging parameters on flow velocity, temperature and fluid concentration are reporting through various plots. Graphical explanations for drag force, Nusselt and Sherwood numbers are stated and examined. The results reveal that minimum velocity field occurs near the plate, whereas it increases far away from the plate for strong velocity slip parameter. Furthermore, temperature and fluid concentration significantly decreases with increased slip effects. The current analysis is applicable in some advanced technological processes and industrial fluid mechanics.
Mixing and entrainment in hydraulically driven stratified sill flows
DEFF Research Database (Denmark)
Nielsen, Morten Holtegaard; Pratt, Larry; Helfrich, Karl
2004-01-01
The investigation involves the hydraulic behaviour of a dense layer of fluid flowing over an obstacle and subject to entrainment of mass and momentum from a dynamically inactive (but possibly moving) overlying fluid. An approach based on the use of reduced gravity, shallow-water theory with a cross......-interface entrainment velocity is compared with numerical simulations based on a model with continuously varying stratification and velocity. The locations of critical flow (hydraulic control) in the continuous model are estimated by observing the direction of propagation of small-amplitude long-wave disturbances...... that the reduced gravity model systematically underestimates inertia and overestimates buoyancy. These differences are quantified by shape coefficients that measure the vertical non-uniformities of the density and horizontal velocity that arise, in part, by incomplete mixing of entrained mass and momentum over...
Fully stratified particle-laden flow in horizontal circular pipe
Czech Academy of Sciences Publication Activity Database
Vlasák, Pavel; Kysela, Bohuš; Chára, Zdeněk
2014-01-01
Roč. 32, č. 2 (2014), s. 179-185 ISSN 0272-6351. [7th International Conference for Conveying and Handling of Particulate Solids (CHoPS). Friedrichshafen, 10.09.2013-13.09.2012] R&D Projects: GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : coarse-grained slurry * flow structure * liquid local velocity * particle velocity * PIV Subject RIV: BK - Fluid Dynamics Impact factor: 0.523, year: 2014
Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability
Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott
2017-11-01
The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.
Numerical simulation of stratified flows with different k-ε turbulence models
International Nuclear Information System (INIS)
Dagestad, S.
1991-01-01
The thesis comprises the numerical simulation of stratified flows with different k-ε models. When using the k-ε model, two equations are solved to describe the turbulence. The k-equation represents the turbulent kinetic energy of the turbulence and the ε-equation is the turbulent dissipation. Different k-ε models predict stratified flows differently. The standard k-ε model leads to higher turbulent mixing than the low-Reynolds model does. For lower Froude numbers, F 0 , this effect becomes enhanced. Buoyancy extension of the k-ε model also leads to less vertical mixing in cases with strong stratification. When the stratification increases, buoyancy-extension becomes larger influence. The turbulent Prandtl number effects have large impact on the transport of heat and the development of the flow. Two different formulae which express the turbulent Prandtl effects have been tested. For unstably stratified flows, the rapid mixing and three-dimensionality of the flow can in fact be computed using a k-ε model when buoyancy-extended is employed. The turbulent heat transfer and thus turbulent production in unstable stratified flows depends strongly upon the turbulent Prandtl number effect. The main conclusions are: Stable stratified flows should be computed with a buoyancy-extended low-Reynolds k-ε model; Unstable stratified flows should be computed with a buoyancy-extended standard k-ε model; The turbulent Prandtl number effects should be included in the computations; Buoyancy-extension has lead to more correct description of the physics for all of the investigated flows. 78 refs., 128 figs., 17 tabs
International Nuclear Information System (INIS)
Lee, Suk Ho; Kim, Hho Jung
1992-01-01
The physical benchmark problem on the direct-contact condensation under the horizontal cocurrent stratified flow was analyzed using the RELAP5/MOD2 and /MOD3 one-dimensional model. Analysis was performed for the Northwestern experiments, which involved condensing steam/water flow in a rectangular channel. The study showed that the RELAP5 interfacial heat transfer model, under the horizontal stratified flow regime, predicted the condensation rate well though the interfacial heat transfer area was underpredicted. However, some discrepancies in water layer thickness and local heat transfer coefficient with experimental results were found especially when there is a wavy interface, and those were satisfied only within the range. (Author)
Experimental investigation on isothermal stratified flow mixing in a horizontal T-junction
Energy Technology Data Exchange (ETDEWEB)
Isaev, Alexander; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme (IKE)
2016-10-15
Turbulent and stratified flows can lead to thermal fatigue in piping systems of nuclear power plants (NPP). Such flows can be investigated in the University of Stuttgart Fluid-Structure-Interaction (FSI) facility with a T-Junction at thermal conditions with temperature differences of up to 255 K and at pressures of maximum 75 bars.
An Instability in Stratified Taylor-Couette Flow
Swinney, Harry
2015-11-01
In the late 1950s Russell Donnelly began conducting experiments at the University of Chicago on flow between concentric rotating cylinders, and his experiments together with complementary theory by his collaborator S. Chandrasekhar did much to rekindle interest in the flow instability discovered and studied by G.I. Taylor (1923). The present study concerns an instability in a concentric cylinder system containing a fluid with an axial density gradient. In 2005 Dubrulle et al. suggested that a `stratorotational instability' (SRI) in this system could provide insight into instability and angular momentum transport in astrophysical accretion disks. In 2007 the stratorotational instability was observed in experiments by Le Bars and Le Gal. We have conducted an experiment on the SRI in a concentric cylinder system (radius ratio η = 0 . 876) with buoyancy frequency N / 2 π = 0.25, 0.50, or 0.75 Hz. For N = 0.75 Hz we observe the SRI onset to occur for Ωouter /Ωinner > η , contrary to the prediction of Shalybkov and Rüdiger. Research conducted with Bruce Rodenborn and Ruy Ibanez.
Analytical Simulation of Flow and Heat Transfer of Two-Phase Nanofluid (Stratified Flow Regime
Directory of Open Access Journals (Sweden)
Mohammad Abbasi
2014-01-01
Full Text Available Nanofluids have evoked immense interest from researchers all around the globe due to their numerous potential benefits and applications in important fields such as cooling electronic parts, cooling car engines and nuclear reactors. An analytical study of fluid flow of in-tube stratified regime of two-phase nanofluid has been carried out for CuO, Al2O2, TiO3, and Au as applied nanoparticles in water as the base liquid. Liquid film thickness, convective heat transfer coefficient, and dryout length have been calculated. Among the considered nano particles, Al2O3 and TiO2 because of providing more amounts of heat transfer along with longer lengths of dryout found as the most appropriate nanoparticles to achieve cooling objectives.
Interfacial friction factors for air-water co-current stratified flow in inclined channels
Energy Technology Data Exchange (ETDEWEB)
Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)
Interfacial friction factors for air-water co-current stratified flow in inclined channels
Energy Technology Data Exchange (ETDEWEB)
Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)
CFD Code Validation against Stratified Air-Water Flow Experimental Data
Directory of Open Access Journals (Sweden)
F. Terzuoli
2008-01-01
Full Text Available Pressurized thermal shock (PTS modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV lifetime is the cold water emergency core cooling (ECC injection into the cold leg during a loss of coolant accident (LOCA. Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mécanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX, and a research code (NEPTUNE CFD. The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling.
CFD Code Validation against Stratified Air-Water Flow Experimental Data
International Nuclear Information System (INIS)
Terzuoli, F.; Galassi, M.C.; Mazzini, D.; D'Auria, F.
2008-01-01
Pressurized thermal shock (PTS) modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV) lifetime is the cold water emergency core cooling (ECC) injection into the cold leg during a loss of coolant accident (LOCA). Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM) Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs) code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mecanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX), and a research code (NEPTUNE CFD). The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling
Prediction of stably stratified homogeneous shear flows with second-order turbulence models
International Nuclear Information System (INIS)
Pereira, J C F; Rocha, J M P
2010-01-01
The present study investigated the role of pressure-correlation second-order turbulence modelling schemes on the predicted behaviour of stably stratified homogeneous vertical-sheared turbulence. The pressure-correlation terms were modelled with a nonlinear formulation (Craft 1991), which was compared with a linear pressure-strain model and the 'isotropization of production' model for the pressure-scalar correlation. Two additional modelling issues were investigated: the influence of the buoyancy term in the kinetic energy dissipation rate equation and the time scale in the thermal production term in the scalar variance dissipation equation. The predicted effects of increasing the Richardson number on turbulence characteristics were compared against a comprehensive set of direct numerical simulation databases. The linear models provide a broadly satisfactory description of the major effects of the Richardson number on stratified shear flow. The buoyancy term in the dissipation equation of the turbulent kinetic energy generates excessively low levels of dissipation. For moderate and large Richardson numbers, the term yields unrealistic linear oscillations in the shear and buoyancy production terms, and therefore should be dropped in this flow (or at least their coefficient c ε3 should be substantially reduced from its standard value). The mechanical dissipation time scale provides marginal improvements in comparison to the scalar time scale in the production. The observed inaccuracy of the linear model in predicting the magnitude of the effects on the velocity anisotropy was demonstrated to be attributed mainly to the defective behaviour of the pressure-correlation model, especially for stronger stratification. The turbulence closure embodying a nonlinear formulation for the pressure-correlations and specific versions of the dissipation equations failed to predict the tendency of the flow to anisotropy with increasing stratification. By isolating the effects of the
A review of recent developments on turbulent entrainment in stratified flows
International Nuclear Information System (INIS)
Cotel, Aline J
2010-01-01
Stratified interfaces are present in many geophysical flow situations, and transport across such an interface is an essential factor for correctly evaluating the physical processes taking place at many spatial and temporal scales in such flows. In order to accurately evaluate vertical and lateral transport occurring when a turbulent flow impinges on a stratified interface, the turbulent entrainment and vorticity generation mechanisms near the interface must be understood and quantified. Laboratory experiments were performed for three flow configurations: a vertical thermal, a sloping gravity current and a vertical turbulent jet with various tilt angles and precession speeds. All three flows impinged on an interface separating a two-layer stably stratified environment. The entrainment rate is quantified for each flow using laser-induced fluorescence and compared to predictions of Cotel and Breidenthal (1997 Appl. Sci. Res. 57 349-66). The possible applications of transport across stratified interfaces include the contribution of hydrothermal plumes to the global ocean energy budget, turbidity currents on the ocean floor, the design of lake de-stratification systems, modeling gas leaks from storage reservoirs, weather forecasting and global climate change.
Theoretical study of evaporation heat transfer in horizontal microfin tubes: stratified flow model
Energy Technology Data Exchange (ETDEWEB)
Honda, H; Wang, Y S [Kyushu Univ., Inst. for Materials Chemistry and Engineering, Kasuga, Fukuoka (Japan)
2004-08-01
The stratified flow model of evaporation heat transfer in helically grooved, horizontal microfin tubes has been developed. The profile of stratified liquid was determined by a theoretical model previously developed for condensation in horizontal microfin tubes. For the region above the stratified liquid, the meniscus profile in the groove between adjacent fins was determined by a force balance between the gravity and surface tension forces. The thin film evaporation model was applied to predict heat transfer in the thin film region of the meniscus. Heat transfer through the stratified liquid was estimated by using an empirical correlation proposed by Mori et al. The theoretical predictions of the circumferential average heat transfer coefficient were compared with available experimental data for four tubes and three refrigerants. A good agreement was obtained for the region of Fr{sub 0}<2.5 as long as partial dry out of tube surface did not occur. (Author)
RANS Modeling of Stably Stratified Turbulent Boundary Layer Flows in OpenFOAM®
Directory of Open Access Journals (Sweden)
Wilson Jordan M.
2015-01-01
Full Text Available Quantifying mixing processes relating to the transport of heat, momentum, and scalar quantities of stably stratified turbulent geophysical flows remains a substantial task. In a stably stratified flow, such as the stable atmospheric boundary layer (SABL, buoyancy forces have a significant impact on the flow characteristics. This study investigates constant and stability-dependent turbulent Prandtl number (Prt formulations linking the turbulent viscosity (νt and diffusivity (κt for modeling applications of boundary layer flows. Numerical simulations of plane Couette flow and pressure-driven channel flow are performed using the Reynolds-averaged Navier-Stokes (RANS framework with the standard k-ε turbulence model. Results are compared with DNS data to evaluate model efficacy for predicting mean velocity and density fields. In channel flow simulations, a Prandtl number formulation for wall-bounded flows is introduced to alleviate overmixing of the mean density field. This research reveals that appropriate specification of Prt can improve predictions of stably stratified turbulent boundary layer flows.
Stratified steady and unsteady two-phase flows between two parallel plates
International Nuclear Information System (INIS)
Sim, Woo Gun
2006-01-01
To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated
Mathematical modeling of turbulent stratified flows. Application of liquid metal fast breeders
Energy Technology Data Exchange (ETDEWEB)
Villand, M; Grand, D [CEA-Service des Transferts Thermiques, Grenoble (France)
1983-07-01
Mathematical model of turbulent stratified flow was proposed under the following assumptions: Newtonian fluid; incompressible fluid; coupling between temperature and momentum fields according to Boussinesq approximation; two-dimensional invariance for translation or rotation; coordinates cartesian or curvilinear. Solutions obtained by the proposed method are presented.
Doubly stratified mixed convection flow of Maxwell nanofluid with heat generation/absorption
Energy Technology Data Exchange (ETDEWEB)
Abbasi, F.M., E-mail: abbasisarkar@gmail.com [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-i-Azam University, 45320, Islamabad 44000 (Pakistan); NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ahmad, B. [NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2016-04-15
Magnetohydrodynamic (MHD) doubly stratified flow of Maxwell nanofluid in presence of mixed convection is analyzed in this article. Effects of thermophoresis, Brownian motion and heat generation/absorption are present. The flow is induced due to linear stretching of sheet. Mathematical formulation is made under boundary layer approach. Expressions of velocity, temperature and nanoparticles concentration are developed. The obtained results are plotted and discussed to examine the variations in temperature and nanoparticles concentration due to different physical parameters. Numerical computations are made to obtain the values of local Nusselt and Sherwood numbers. Impact of sundry parameters on the flow quantities is analyzed graphically. - Highlights: • Double stratified flow of Maxwell nanofluid with mixed convection is modeled. • Thermophoresis and Brownian motion effects are encountered. • Computations are made to obtain the solution expressions. • Numerical values of local Nusselt and Sherwood numbers are computed and examined.
Stratified flows and internal waves in the Vema Fracture Zone of the Mid Atlantic Ridge
Makarenko, Nikolay; Morozov, Eugene; Tarakanov, Roman; Demidova, Tatiana; Frey, Dmitri; Grigorenko, Klim
2017-04-01
In this paper, we study stratified flows and internal waves in the Vema fracture zone of the Mid Atlantic Ridge. This fracture provides intense transportation of cold abyssal waters from the West Atlantic to the equatorial region of the East Atlantic [1]. The results of measurements [2,3] carried out in the cruises of RV Akademik Sergey Vavilov in 2014-2016 are presented. The structure of the near-bottom flow is studied experimentally on the basis of CTD- and LADCP profiling. Theoretical analysis involves mathematical formulation of stratified fluid flow which uses CTD-data obtained from field observation. Spectral properties and kinematic characteristics of internal waves are calculated and discussed. This work was supported by RFBR (grants No 15-01-03942, 16-35-50158). References [1] Morozov E., Demidov A., Tarakanov R. and Zenk W. Abyssal Channels in the Atlantic Ocean: Water Structure and Flows, Springer, Dordrecht, 2010. [2] Morozov E.G., Tarakanov R.Yu., and Makarenko N.I. Flows of Antarctic Bottom Water through fractures in the southern part of the North Mid Atlantic Ridge, Oceanology, 2015, 55, 796-800. [3] Grigorenko K.S., Makarenko N.I., Morozov E.G., Tarakanov R.Yu., and Frey D.I. Stratified flows and internal waves in the Central West Atlantic, J. Physics: Conf. Series, 2016, 722, 012011.
International Nuclear Information System (INIS)
Kussmaul, K.; Mayinger, W.; Diem, H.; Katzenmeier, G.
1993-01-01
Startup at low reactor power may give rise to stratified flow conditions in pipes of boiling water and pressurized water reactors. Stratified flow regimes cause a steep temperature gradient between the cold and the hot fluid layer. This temperature gradient produces high axial stresses which, in the case of intermittent feeding of cold water and an appropriate number of repetitions, in principle may initiate cracking in the feedwater pipe and close to the feeding nozzle. Thermosleeves have been installed in a number of reactors to mitigate thermally induced stresses; they reduce the intensity of thermal transients by means of an insulating fluid annulus developing between the sleeve and the nozzle, in order to measure the temperature and stress gradients occurring in the region of the nozzle edge, the so-called TEMS experiments were carried out under realistic operating conditions, and with different cold water levels within the framework of German research activities in the field of reactor safety at the HDR test facility. The experiments served to simulate the physics phenomena by means of a FE-program and to verify the computational approach by comparisons of measurements and calculations
Interfacial transport characteristics in a gas-liquid or an immiscible liquid-liquid stratified flow
International Nuclear Information System (INIS)
Inoue, A.; Aoki, S.; Aritomi, M.; Kozawa, Y.
1982-01-01
This paper is a review for an interfacial transport characteristics of mass, momentum and energy in a gas-liquid or a immiscible liquid-liquid stratified flow with wavy interface which have been studied in our division. In the experiment, a characteristic of wave motion and its effect to the turbulence near the interface as well as overall flow characteristics like pressure drop, position of the interface were investigated in an air-water, an air-mercury and a water-liquid metal stratified flow. On the other hand, several models based on the mixing length model and a two-equation model of turbulence, with special interfacial boundary conditions in which the wavy surface was regarded as a rough surface correspond to the wavy height, a source of turbulent energy equal to the wave energy and a damped-turbulence due to the surface tension, were proposed to predict the flow characteristics and the interfacial heat transfer in a fully developed and an undeveloped stratified flow and examined by the experimental data. (author)
Transition of Gas-Liquid Stratified Flow in Oil Transport Pipes
Directory of Open Access Journals (Sweden)
D. Lakehal
2011-12-01
Full Text Available Large-Scale Simulation results of the transition of a gas-liquid stratified flow to slug flow regime in circular 3D oil transport pipes under turbulent flow conditions expressed. Free surface flow in the pipe is treated using the Level Set method. Turbulence is approached via the LES and VLES methodologies extended to interfacial two-phase flows. It is shown that only with the Level Set method the flow transition can be accurately predicted, better than with the two-fluid phase-average model. The transition from stratified to slug flow is found to be subsequent to the merging of the secondary wave modes created by the action of gas shear (short waves with the first wave mode (high amplitude long wave. The model is capable of predicting global flow features like the onset of slugging and slug speed. In the second test case, the model predicts different kinds of slugs, the so-called operating slugs formed upstream that fill entirely the pipe with water slugs of length scales of the order of 2-4 D, and lower size (1-1.5 D disturbance slugs, featuring lower hold-up (0.8-0.9. The model predicts well the frequency of slugs. The simulations revealed important parameter effects on the results, such as two-dimensionality, pipe length, and water holdup.
International Nuclear Information System (INIS)
Junqua-Moullet, Alexandra
2003-01-01
This research thesis concerns the modelling and experimentation of biphasic liquid/gas flows (water/air) while using the two-fluid model, a six-equation model. The author first addresses the modelling of interfacial magnitudes for a known topology (problem of two-fluid model closure, closure relationships for some variables, equation for a given configuration). She reports the development of an equation system for interfacial magnitudes. The next parts deal with experiments and report the study of stratified flows in the THALC experiment, and more particularly the study of the interfacial area concentration and of the liquid velocities in such flows. Results are discussed, as well as their consistency
Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs.
West, J. B.; Maloney, J. E.; Castle, B. L.
1972-01-01
This investigation set out to answer two questions: (1) are the distal alveoli in the terminal lung units less well perfused than the proximal alveoli, i.e., is there stratification of blood flow; and (2) if so, does this enhance gas exchange in the presence of stratified inequality of ventilation. Excised dog lungs were ventilated with saline and perfused with blood. Following single inspirations of xenon 133 in saline and various periods of breath holding, the expired xenon concentration against volume was measured and it confirmed marked stratified inequality of ventilation under these conditions. By measuring the rate of depletion of xenon from alveoli during a period of blood flow, we showed that the alveoli which emptied at the end of expiration had 16% less blood flow than those exhaling earlier. However, by measuring the xenon concentration in pulmonary venous blood, we found that about 10% less tracer was transferred from the alveoli into the blood when the inspired xenon was stratified within the respiratory zone. Thus while stratification of blood flow was confirmed, it was shown to impair rather than enhance the efficiency of gas transfer.
Mixed Convection Flow along a Stretching Cylinder in a Thermally Stratified Medium
Directory of Open Access Journals (Sweden)
Swati Mukhopadhyay
2012-01-01
Full Text Available An analysis for the axisymmetric laminar boundary layer mixed convection flow of a viscous and incompressible fluid towards a stretching cylinder immersed in a thermally stratified medium is presented in this paper. Similarity transformation is employed to convert the governing partial differential equations into highly nonlinear ordinary differential equations. Numerical solutions of these equations are obtained by a shooting method. It is found that the heat transfer rate at the surface is lower for flow in a thermally stratified medium compared to that of an unstratified medium. Moreover, both the skin friction coefficient and the heat transfer rate at the surface are larger for a cylinder compared to that for a flat plate.
Experimental and numerical investigation of stratified gas-liquid flow in inclined circular pipes
International Nuclear Information System (INIS)
Faccini, J.L.H.; Sampaio, P.A.B. de; Botelho, M.H.D.S.; Cunha, M.V.; Cunha Filho, J.S.; Su, J.
2012-01-01
In this paper, a stratified gas-liquid flow is experimentally and numerically investigated. Two measurement techniques, namely an ultrasonic technique and a visualization technique, are applied on an inclined circular test section using a fast single transducer pulse-echo technique and a high-speed camera. A numerical model is employed to simulate the stratified gas-liquid flow, formed by a system of non-linear differential equations consisting of the Reynolds averaged Navier-Stokes equations with the κ-ω turbulence model. The test section used in this work is comprised mainly of a transparent circular pipe with inner diameter 1 inch, and inclination angles varying from -2.5 to -10.0 degrees. Numerical solutions are obtained for the liquid height as a function of inclination angles, and compared with our own experimental data. (author)
Analysis of natural convection heat transfer and flows in internally heated stratified liquid pools
International Nuclear Information System (INIS)
Gubaidullin, A.A. Jr.; Dinh, T.N.; Sehgal, B.R.
1999-01-01
In this paper, natural convection flows and heat transfer in a liquid pool, with two superposed immiscible fluid layers, are analyzed. The objective of the study is to examine the effect of interfacial hydrodynamics and to develop a method which enables energy splitting to be evaluated in a stratified liquid pool. The thermal convection, with and without an internal heat source, in a rectangular cavity with different pairs of fluids was numerically simulated by a CFD code FLOW-3D. It was found that the code performs very well for prediction of heat transfer coefficients for different conditions. The hydrodynamic coupling between immiscible layers was found to have minor, if any, impact on the natural convection heat transfer for the conditions examined. Calculated results were used to develop, and validate, a new correlation for energy splitting and for heat transfer in stratified liquid pools
Energy Technology Data Exchange (ETDEWEB)
Liu, Chun-Ho [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Department of Building and Real Estate; Leung, Dennis Y.C. [The University of Hong Kong (Hong Kong). Department of Mechanical Engineering
2006-11-15
This study employs a direct numerical simulation (DNS) technique to study the flow, turbulence structure, and passive scalar plume transport behind line sources in an unstably stratified open channel flow. The scalar transport behaviors for five emission heights (z{sub s}=0, 0.25H, 0.5H, 0.75H, and H, where H is the channel height) at a Reynolds number of 3000, a Prandtl number and a Schmidt number of 0.72, and a Richardson number of -0.2 are investigated. The vertically meandering mean plume heights and dispersion coefficients calculated by the current DNS model agree well with laboratory results and field measurements in literature. It is found that the plume meandering is due to the movement of the positive and negative vertical turbulent scalar fluxes above and below the mean plume heights, respectively. These findings help explaining the plume meandering mechanism in the unstably stratified atmospheric boundary layer. (author)
Energy Technology Data Exchange (ETDEWEB)
Jeon, Seong-Su [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Hong, Soon-Joon, E-mail: sjhong90@fnctech.com [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Ju-Yeop; Seul, Kwang-Won [Korea Institute of Nuclear Safety, 19 Kuseong-dong, Yuseong-gu, Daejon (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of)
2013-01-15
Highlights: Black-Right-Pointing-Pointer This study collected 11 horizontal in-tube condensation models for stratified flow. Black-Right-Pointing-Pointer This study assessed the predictive capability of the models for steam condensation. Black-Right-Pointing-Pointer Purdue-PCCS experiments were simulated using MARS code incorporated with models. Black-Right-Pointing-Pointer Cavallini et al. (2006) model predicts well the data for stratified flow condition. Black-Right-Pointing-Pointer Results of this study can be used to improve condensation model in RELAP5 or MARS. - Abstract: The accurate prediction of the horizontal in-tube condensation heat transfer is a primary concern in the optimum design and safety analysis of horizontal heat exchangers of passive safety systems such as the passive containment cooling system (PCCS), the emergency condenser system (ECS) and the passive auxiliary feed-water system (PAFS). It is essential to analyze and assess the predictive capability of the previous horizontal in-tube condensation models for each flow regime using various experimental data. This study assessed totally 11 condensation models for the stratified flow, one of the main flow regime encountered in the horizontal condenser, with the heat transfer data from the Purdue-PCCS experiment using the multi-dimensional analysis of reactor safety (MARS) code. From the assessments, it was found that the models by Akers and Rosson, Chato, Tandon et al., Sweeney and Chato, and Cavallini et al. (2002) under-predicted the data in the main condensation heat transfer region, on the contrary to this, the models by Rosson and Meyers, Jaster and Kosky, Fujii, Dobson and Chato, and Thome et al. similarly- or over-predicted the data, and especially, Cavallini et al. (2006) model shows good predictive capability for all test conditions. The results of this study can be used importantly to improve the condensation models in thermal hydraulic code, such as RELAP5 or MARS code.
Experimental analysis of an oblique turbulent flame front propagating in a stratified flow
Energy Technology Data Exchange (ETDEWEB)
Galizzi, C.; Escudie, D. [Universite de Lyon, CNRS, CETHIL, INSA-Lyon, UMR5008, F-69621 Cedex (France)
2010-12-15
This paper details the experimental study of a turbulent V-shaped flame expanding in a nonhomogeneous premixed flow. Its aim is to characterize the effects of stratification on turbulent flame characteristics. The setup consists of a stationary V-shaped flame stabilized on a rod and expanding freely in a lean premixed methane-air flow. One of the two oblique fronts interacts with a stratified slice, which has an equivalence ratio close to one and a thickness greater than that of the flame front. Several techniques such as PIV and CH{sup *} chemiluminescence are used to investigate the instantaneous fields, while laser Doppler anemometry and thermocouples are combined with a concentration probe to provide information on the mean fields. First, in order to provide a reference, the homogeneous turbulent case is studied. Next, the stratified turbulent premixed flame is investigated. Results show significant modifications of the whole flame and of the velocity field upstream of the flame front. The analysis of the geometric properties of the stratified flame indicates an increase in flame brush thickness, closely related to the local equivalence ratio. (author)
Tests of the TRAC code against known analytical solutions for stratified flow
International Nuclear Information System (INIS)
Black, P.S.; Leslie, D.C.; Hewitt, G.F.
1987-01-01
The area averaged equations for gas-liquid flow are briefly summarized and related, for the specific case of stratified flow, to the shallow water equations commonly used in hydraulics. These equations are then compared to the equations used in TRAC-PF/MOD1 and are shown to differ in their treatment of the gravity head terms. A modification of the TRAC code is therefore necessary to bring it into line with established shallow water theory. The corrected form of the code was compared with a number of specific cases, each of which throws further light on the code behavior. The following areas are discussed in the paper: (1) the dam break problem; (2) Kelvin-Helmholtz instability; (3) counter-current flow; and (4) slug flow. It is concluded that detailed comparisons of the code with known analytic solutions and with a number of the more complex phenomenological experiments can give useful insights into its behavior
Experimental investigation and physical description of stratified flow in horizontal channels
International Nuclear Information System (INIS)
Staebler, T.
2007-05-01
The interaction between a liquid film and turbulent gas flows plays an important role in many technical applications (e.g. in hydraulic engineering, process engineering and nuclear engineering). The local kinematic and turbulent time-averaged flow quantities for counter-current stratified flows (supercritical and subcritical flows with and without flow reversal) have been measured for the first time. Therefore, the method of Particle Image Velocimetry was applied. By using fluorescent particles in combination with an optical filter it was possible to determine the flow quantities of the liquid phase up to the free surface. Additionally, the gaseous phase was investigated by using the scattering of light of conventional particles. With a further measurement technique the void fraction distribution along the channel height has been determined. For this purpose, a single-tip conductivity probe was developed. Furthermore, water delivery rates and pressure losses along the test section were measured over a wide range of parameters. The measurements also revealed new details on the hysteresis effect after the occurrence of flow reversal. The experimental findings were used to develop and validate a statistical model in which the liquid phase is considered to be an agglomeration of interacting particles. The statistical consideration of the particle interactions delivers a differential equation which can be used to predict the local void fraction distribution with the local turbulent kinematic energies of the liquid phase. Beyond that, an additional statistical description is presented in which the probability density functions of the local void fraction are described by beta-functions. Both theoretical approaches can be used for numerical modelling whereas the statistical model can be used to describe the phase interactions and the statistical description to describe the turbulent fluctuations of the local void fraction. Thus, this work has made available all necessary
International Nuclear Information System (INIS)
Chang, Chih-Hao; Liou, Meng-Sing
2007-01-01
In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations. Secondly, the AUSM + scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM + -up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion
Investigation and mitigation of condensation induced water hammer by stratified flow experiments
Kadakia, Hiral J.
This research primarily focuses on the possibility of using stratified flow in preventing an occurrence of condensation induced water hammer (CIWH) in horizontal pipe involving steam and subcooled water. A two-phase flow loop simulating the passive safety systems of an advanced light water reactor was constructed and a series of stratified flow experiments were carried out involving a system of subcooled water, saturated water, and steam. Special instruments were designed to measure steam flow rate and subcooled liquid velocity. These experiments showed that when flow field conditions meet certain criteria CIWH does occur. Flow conditions used in experiments were typically observed in passive safety systems of an advanced light water cooled reactor. This research summarizes a) literature research and other experimental data that signify an occurrence of CIWH, b) experiments in an effort to show an occurrence of CIWH and the ability to prevent CIWH, c) qualitative and quantitative results to underline the mechanism of CIWH, d) experiments that show CIWH can be prevented under certain conditions, and e) guidelines for the safe operating conditions. Based on initial experiment results it was observed that Bernoulli's effect can play an important role in wave formation and instability. A separate effect table top experiment was constructed with plexi-glass. A series of entrance effect tests and stratified experiments were carried out with different fluids to study wave formation and wave bridging. Special test series experiments were carried out to investigate the presence of a saturated layer. The effect of subcooled water and steam flow on wedge length and depth were recorded. These experiments helped create a model which calculates wedge and depth of wedge for a given condition of steam and subcooled water. A very good comparison between the experiment results and the model was obtained. These experiments also showed that the presence of saturated layer can mitigate
Grants, Ilmars; Gerbeth, Gunter
2010-07-01
The stability of a thermally stratified liquid metal flow is considered numerically. The flow is driven by a rotating magnetic field in a cylinder heated from above and cooled from below. The stable thermal stratification turns out to destabilize the flow. This is explained by the fact that a stable stratification suppresses the secondary meridional flow, thus indirectly enhancing the primary rotation. The instability in the form of Taylor-Görtler rolls is consequently promoted. These rolls can only be excited by finite disturbances in the isothermal flow. A sufficiently strong thermal stratification transforms this nonlinear bypass instability into a linear one reducing, thus, the critical value of the magnetic driving force. A weaker temperature gradient delays the linear instability but makes the bypass transition more likely. We quantify the non-normal and nonlinear components of this transition by direct numerical simulation of the flow response to noise. It is observed that the flow sensitivity to finite disturbances increases considerably under the action of a stable thermal stratification. The capabilities of the random forcing approach to identify disconnected coherent states in a general case are discussed.
Unsteady natural convection flow past an accelerated vertical plate in a thermally stratified fluid
Directory of Open Access Journals (Sweden)
Deka Rudra Kt.
2009-01-01
Full Text Available An exact solution to one-dimensional unsteady natural convection flow past an infinite vertical accelerated plate, immersed in a viscous thermally stratified fluid is investigated. Pressure work term and the vertical temperature advection are considered in the thermodynamic energy equation. The dimensionless governing equations are solved by Laplace Transform techniques for the Prandtl number unity. The velocity and temperature profiles as well as the skin-friction and the rate of heat transfer are presented graphically and discussed the effects of the Grashof number Gr, stratification parameter S at various times t.
Thermalhydraulic study of a stratified flow in a piping elbow (Application to the model Coufast)
International Nuclear Information System (INIS)
Peniguel, C.; Stephan, J.M.
1992-11-01
In PWR's, mechanical damages (cracks) have been detected at the internal faces of steam generator feedwater piping and also in dead legs, when thermal stratification occurs. To gain some understanding on these issues, experimental and numerical programs have been set up at EDF. This paper reports a thermalhydraulic study of an elbow geometry under operating conditions leading to the establishment of a stable stratified flow. Results obtained with ESTET (a three dimensional finite differences-finite volume code solving the averaged Navier-Stokes equations) and comparisons with experimental data obtained on COUFAST (an analytical mock up, scale 1 of a French 900-MW PWR steam generator pipe elbow) are shown
Tsamopoulos, John; Fraggedakis, Dimitris; Dimakopoulos, Yiannis
2015-11-01
We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our Volume-of-Fluid algorithm is used to solve the governing equations. First the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results (Cohen et al. (1999)). Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our results provide deeper insights in the mechanism of the pattern transitions and are in agreement with previous studies on core-annular flow (Kouris & Tsamopoulos (2001 & 2002)), segmented flow (Lac & Sherwood (2009)) and churn flow (Bai et al. (1992)). GSRT of Greece through the program ``Excellence'' (Grant No. 1918, entitled ``FilCoMicrA'').
International Nuclear Information System (INIS)
Gabriel, Stephan Gerhard
2015-01-01
A stratified counter-current two-phase gas/liquid flow can occur in various technical systems. In the past investigations have mainly been motivated by the possible occurrence of these flows in accident scenarios of nuclear light water-reactors and in numerous applications in process engineering. However, the precise forecast of flow parameters, is still challenging, for instance due to their strong dependency on the geometric boundary conditions. A new approach which uses CFD methods (Computational Fluid Dynamics) promises a better understanding of the flow phenomena and simultaneously a higher scalability of the findings. RANS methods (Reynolds Averaged Navier Stokes) are preferred in order to compute industrial processes and geometries. A very deep understanding of the flow behavior and equation systems based on real physics are necessary preconditions to develop the equation system for a reliable RANS approach with predictive power. Therefore, local highly resolved, experimental data is needed in order to provide and validate the required turbulence and phase interaction models. The central objective of this work is to provide the data needed for the code development for these unsteady, turbulent and three-dimensional flows. Experiments were carried out at the WENKA facility (Water Entrainment Channel Karlsruhe) at the Karlsruhe Institute of Technology (KIT). The work consists of a detailed description of the test-facility including a new bended channel, the measurement techniques and the experimental results. The characterization of the new channel was done by flow maps. A high-speed imaging study gives an impression of the occurring flow regimes, and different flow phenomena like droplet separation. The velocity distributions as well as various turbulence values were investigated by particle image velocimetry (PIV). In the liquid phase fluorescent tracer-particles were used to suppress optical reflections from the phase surface (fluorescent PIV, FPIV
Barranco, Joseph
2006-03-01
We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (eg, the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time integrated explicitly, whereas the Coriolis force, buoyancy terms, and pressure/enthalpy gradient are integrated semi- implicitly. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the Message Passing Interface (MPI). As a demonstration of the code, we simulate vortex dynamics in protoplanetary disks and the Kelvin-Helmholtz instability in the dusty midplanes of protoplanetary disks.
Subramanian, Balaji; Carminati, Marco; Luzzatto-Fegiz, Paolo
2017-11-01
In stratified flows, conductivity (combined with temperature) is often used to measure density. The conductivity probes typically used can resolve very fine spatial scales, but on the downside they are fragile, expensive, sensitive to environmental noise and have only single channel capability. Recently a low-cost, robust, arduino-based probe called Conduino was developed, which can be valuable in a wide range of applications where resolving extremely small spatial scales is not needed. This probe uses micro-USB connectors as actual conductivity sensors with a custom designed electronic board for simultaneous acquisition from multiple probes, with conductivity resolution comparable to commercially available PME conductivity probe. A detailed assessment of performance of this Conduino probe is described here. To establish time response and sensitivity as a function of electrode geometry, we build a variety of shapes for different kinds of applications, with tip spacing ranging from 0.5-2.5 mm, and with electrode length ranging from 2.3-6 mm. We set up a two-layer density profile and traverse it rapidly, yielding a time response comparable to PME. The Conduino's multi-channel capability is used to operate probe arrays, which helps to construct density fields in stratified flows.
Mathematical modeling of two phase stratified flow in a microchannel with curved interface
Dandekar, Rajat; Picardo, Jason R.; Pushpavanam, S.
2017-11-01
Stratified or layered two-phase flows are encountered in several applications of microchannels, such as solvent extraction. Assuming steady, unidirectional creeping flow, it is possible to solve the Stokes equations by the method of eigenfunctions, provided the interface is flat and meets the wall with a 90 degree contact angle. However, in reality the contact angle depends on the pair of liquids and the material of the channel, and differs significantly from 90 degrees in many practical cases. For unidirectional flow, this implies that the interface is a circular arc (of constant curvature). We solve this problem within the framework of eigenfunctions, using the procedure developed by Shankar. We consider two distinct cases: (a) the interface meets the wall with the equilibrium contact angle; (b) the interface is pinned by surface treatment of the walls, so that the flow rates determine the apparent contact angle. We show that the contact angle appreciably affects the velocity profile and the volume fractions of the liquids, while limiting the range of flow rates that can be sustained without the interface touching the top/bottom walls. Non-intuitively, we find that the pressure drop is reduced when the more viscous liquid wets the wall.
Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows
Şengül, Taylan; Wang, Shouhong
2018-02-01
The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple
Directory of Open Access Journals (Sweden)
E. J. Suarez-Dominguez
2016-12-01
Full Text Available Production of heavy crude oil in Mexico, and worldwide, is increasing which has led to the application of different methods to reduce viscosity or to enhance transport through stratified flow to continue using the existing infrastructures. In this context, injecting a viscosity improver that does not mix completely with the crude, establishes a liquid-liquid stratified flow. On the basis of a parallel plates model, comparing the increase of flow that occurs in the one-phase case which assumes a complete mixture between the crude and the viscosity improver against another stratified liquid-liquid (no mixing between the oil and compared improver; it was found that in both cases there is a flow increase for the same pressure drop with a maximum for the case in which the flow improver is between the plates and the crude.
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
International Nuclear Information System (INIS)
Brauner, N.; Rovinsky, J.; Maron, D.M.
1995-01-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the 'flow monograms' describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the 'interface monograms', whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system 'operational monogram'. The 'operational monogram' enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
Energy Technology Data Exchange (ETDEWEB)
Brauner, N.; Rovinsky, J.; Maron, D.M. [Tel-Aviv Univ. (Israel)
1995-09-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.
The role of the complete Coriolis force in weakly stratified oceanic flows
Tort, M.; Winters, K. B.; Ribstein, B.; Zeitlin, V.
2016-02-01
Ocean dynamics is usually described using the primitive equations based on the so-called traditional approximation (TA), where the Coriolis force associated with the horizontal component of the planetary rotation is neglected (also called non-traditional (NT) part proportional to cosΦ, see Fig 1.). However, recent studies have shown that the NT part of the Coriolis force plays a non-negligible dynamical role in some particular oceanic flows (see Gerkema et al., 2008 for an extensive review of NT effects for geophysical and astrophysical flows). Here we explore the relevance of including the NT component of the Coriolis force in ocean models, by presenting particular results regarding two different mid-latitude flow configurations after relaxing the TA: Propagation of wind-induced near-inertial waves (NIWs). Under the TA, NIWs propagate toward the equator, the inertially poleward propagation being internally reflected at a depth-independent critical latitude. The combined effects of the NT Coriolis force and weak stratification in the deep ocean leads to the existence of waveguides for sub-inertial waves, which get trapped and propagate further poleward (Winters et al., 2011). Here we consider storm-induced NIWs and their evolution in a non-linear Boussinesq model on the β-plane in the NT approximation. Preliminary results are presented concerning the behavior of the waves in a weakly stratified mixed-layer, where NT effects are expected to be significant. Inertial instability. A detailed linear stability analysis of the Bickley jet at large Rossby numbers in the NT approximation on the f-plane is performed for long waves in a continuously stratified Boussinesq model. For a sufficiently weak stratification, both symmetric and asymmetric inertial instabilities have substantially higher growth rates than in the TA while no discernible differences between the two approximations are observed for strong enough stratifications (Tort et al., 2015).
Free convective flow of a stratified fluid through a porous medium bounded by a vertical plane
Directory of Open Access Journals (Sweden)
H. K. Mondal
1994-01-01
Full Text Available Steady two-dimensional free convection flow of a thermally stratified viscous fluid through a highly porous medium bounded by a vertical plane surface of varying temperature, is considered. Analytical expressions for the velocity, temperature and the rate of heat transfer are obtained by perturbation method. Velocity distribution and rate of heat transfer for different values of parameters are shown in graphs. Velocity distribution is also obtained for certain values of the parameters by integrating the coupled differential equations by Runge-Kutta method and compared with the analytical solution. The chief concern of the paper is to study the effect of equilibrium temperature gradient on the velocity and the rate of heat transfer.
Upscaling of Two-Phase Immiscible Flows in Communicating Stratified Reservoirs
DEFF Research Database (Denmark)
Zhang, Xuan; Shapiro, Alexander; Stenby, Erling Halfdan
2011-01-01
A semi-analytical method for upscaling two-phase immiscible flows in heterogeneous porous media is described. This method is developed for stratified reservoirs with perfect communication between layers (the case of vertical equilibrium), in a viscous dominant regime, where the effects of capillary...... forces and gravity may be neglected. The method is discussed on the example of its basic application: waterflooding in petroleum reservoirs. We apply asymptotic analysis to a system of two-dimensional (2D) mass conservation equations for incompressible fluids. For high anisotropy ratios, the pressure...... and piston-like displacement, and it presumes non-zero exchange between layers. The method generalizes also the study of Yortsos (Transp Porous Media 18:107–129, 1995), taking into account in a more consistent way the interactions between the layers....
Alfven wave resonances and flow induced by nonlinear Alfven waves in a stratified atmosphere
International Nuclear Information System (INIS)
Stark, B. A.; Musielak, Z. E.; Suess, S. T.
1996-01-01
A nonlinear, time-dependent, ideal MHD code has been developed and used to compute the flow induced by nonlinear Alfven waves propagating in an isothermal, stratified, plane-parallel atmosphere. The code is based on characteristic equations solved in a Lagrangian frame. Results show that resonance behavior of Alfven waves exists in the presence of a continuous density gradient and that the waves with periods corresponding to resonant peaks exert considerably more force on the medium than off-resonance periods. If only off-peak periods are considered, the relationship between the wave period and induced longitudinal velocity shows that short period WKB waves push more on the background medium than longer period, non-WKB, waves. The results also show the development of the longitudinal waves induced by finite amplitude Alfven waves. Wave energy transferred to the longitudinal mode may provide a source of localized heating
International Nuclear Information System (INIS)
Kim, Kap; Kim, Hho Jung
1986-01-01
Some studies on direct-contact condensation in cocurrent stratified flow of steam and subcooled water were reviewed. Several approaches have been performed to develop the condensation heat transfer coefficient relationship. The local Nusselt number is correlated in terms of the local water Reynolds and Prandtl numbers as well as the steam Froude number. In addition, a turbulence-centered model, developed principally for gas absorption in several geometries, is modified by using calculated interfacial parameters for the turbulent velocity and length scales. These approaches result in a fairly good agreement with the data, whereas, the turbulence-centered model is here recommended since it is based on the turbulent properties which may be closely related to the condensation phenomena. (Author)
A 3D spectral anelastic hydrodynamic code for shearing, stratified flows
Barranco, Joseph A.; Marcus, Philip S.
2006-11-01
We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g., the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time-integrated explicitly, the pressure/enthalpy terms are integrated semi-implicitly, and the Coriolis force and buoyancy terms are treated semi-analytically. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the message passing interface (MPI). As a demonstration of the code, we simulate the merger of two 3D vortices in the midplane of a protoplanetary disk.
Large Eddy Simulation of Unstably Stratified Turbulent Flow over Urban-Like Building Arrays
Directory of Open Access Journals (Sweden)
Bobin Wang
2013-01-01
Full Text Available Thermal instability induced by solar radiation is the most common condition of urban atmosphere in daytime. Compared to researches under neutral conditions, only a few numerical works studied the unstable urban boundary layer and the effect of buoyancy force is unclear. In this paper, unstably stratified turbulent boundary layer flow over three-dimensional urban-like building arrays with ground heating is simulated. Large eddy simulation is applied to capture main turbulence structures and the effect of buoyancy force on turbulence can be investigated. Lagrangian dynamic subgrid scale model is used for complex flow together with a wall function, taking into account the large pressure gradient near buildings. The numerical model and method are verified with the results measured in wind tunnel experiment. The simulated results satisfy well with the experiment in mean velocity and temperature, as well as turbulent intensities. Mean flow structure inside canopy layer varies with thermal instability, while no large secondary vortex is observed. Turbulent intensities are enhanced, as buoyancy force contributes to the production of turbulent kinetic energy.
UPTF-TRAM test A2. Formation of stratified flow in the hot leg
International Nuclear Information System (INIS)
Tenckhoff; Brand, B.; Weiss, P.
1992-10-01
The separate effect UPTF TRAM Test A2 consisting of six runs was designed to investigate flow regimes in the hot leg of a pressurized water reactor under two-phase natural circulation conditions. In particular, the following phenomena were investigated: - Formation of different flow regimes, e.g. stratified and slug flow in the hot leg under different boundary conditions; -Correlation between flow regime and boundary conditions of the system (mass flows, water level etc.); - Mechanism of the transport of water into the steam generator. The test runs are divided into two groups: a) Test Runs 01a, 01b and 02b with steam injection through the core simulator: In these test runs the steam injection through the core simulator was increased stepwise. In each step the steam injection was kept constant for about 100 s in order to observe steady water distribution in the hot leg and SG-simulator of broken loop. b) Test Runs 03c, 04c and 04d with steam and water injection through the core simulator: These test runs were performed at a constant steam injection rate and the water injection rate was increased stepwise. In order to verify the consistency of scaling with the pressure, the test runs were carried out at different pressures as: a) Runs 01a and 01b at 15 bar, and Run 02b at 3 bar b) Runs 03c, 04c and 04d at 15, 3 and 5 bar respectively. A preliminary evaluation of the test is presented in the Quick Look Report. (orig.) [de
International Nuclear Information System (INIS)
Lee, Byung Ryung
1997-02-01
This paper presents an experimental and theoretical investigation of interfacial friction factor, wave height and transition criterion from wavy to slug flow in a long horizontal air-water countercurrent stratified flow condition. A series of experiments have been conducted in adiabatic countercurrent stratified flow with the round pipe and rectangular duct test section to develop the interfacial friction factor and the criterion of onset of slugging in horizontal air-water countercurrent stratified flow. An adiabatic semi-empirical correlation for interfacial friction factor has been developed based on the surface roughness concept. A comparison of the measured data in this study and of other investigators with the predictions of the present correlation shows that the agreement is within ±30% error, and that the present correlation is applicable to a broader range of water flow rate than the correlations of previous investigators. The theories which can calculate the wave height and criteria of onset of slug flow in a stratified wavy flow regime have been developed based on the concept of total energy conservation and also wave theory. This theoretical criteria agree better with the measured data than the other criteria available in the literature, but the criteria range about 92∼107% of the measured data. An empirical formula for the criterion has been also developed and compared with the formula in the literatures. Comparison between the measured data and the predictions of the present theory shows that the agreement is within ±8%
DEFF Research Database (Denmark)
Winther, G.
1996-01-01
stress Variation in the rolling plane, which may be as high as 20%, are presented. The traditional Taylor model is applied to the data to account for the effect of texture. However, texture effects alone are not enough to explain all of the observed anisotropy. New models which take the combined effects...... of texture and deformation microstructure into account are presented. The models are based on the Taylor and Sachs models but modified with an anisotropic critical shear stress to account for the effect of the microstructure. The agreement between experimental data and model predictions is definitely better...
International Nuclear Information System (INIS)
Bae, Byeong Geon; Yun, Byong Jo; Kim, Kyoung Du
2014-01-01
It was mainly due to the fact that droplet entrainment affects the Peak Cladding Temperature (PCT) of the nuclear fuel rod in the Postulated accident conditions of NPP. Recently, droplet entrainment in the horizontally arranged primary piping system for the NPP is of interest because it affects directly the steam binding phenomena in the steam generators. Pan and Hanratty correlation is the only applicable one for the droplet entrainment rate model for horizontal flow. Moreover, there are no efforts for the model development on the basis of the droplet entrainment principal and physics phenomena. More recently, Korea Atomic Energy Research Institute (KAERI) proposed a new mechanistic droplet generation model applicable in the horizontal pipe for the SPACE code. However, constitutive relations in this new model require three model coefficients which have not yet been decided. The purpose of present work is determining three model coefficients by visualization experiment. For these model coefficients, the major physical parameters regarding the interfacial disturbance wave should be measured in this experiments. There are the wave slope, liquid fraction, wave hypotenuse length, wave velocity, wave frequency, and wavelength in the major physical parameters. The experiment was conducted at an air water horizontal rectangular channel with the PIV system. In this study, the experimental conditions were stratified-way flow during the droplet generation. Three coefficients were determined based on several data related to the interfacial wave. Additionally, we manufactured the parallel wire conductance probe to measure the fluctuating water level over time, and compared the wave height measured by the parallel wire conductance probe and image processing from images taken by high speed camera. Experimental investigation was performed for droplet entrainment from phase interface wave in an air-water stratified flow. In the experiments, we measured major physical parameters
International Nuclear Information System (INIS)
Fraunie, P.; Berrella, S.; Chashechkin, Y.D.; Velasco, D.; Redondo, M.
2008-01-01
A detailed analysis of the flow structure resulting from the combination of turbulence and internal waves is carried out and visualized by means of the Schlieren method on waves in a strongly stratified fluid at the Laboratory of the IPM in Moscow. The joint appearance of the more regular internal wave oscillations and the small-scale turbulence that is confined vertically to the Ozmidov length scale favours the use of a simple geometrical analysis to investigate their time-space span and evolution. This provides useful information on the collapse of internal wave breaking processes in the ocean and the atmosphere. The measurements were performed under a variety of linear stratifications and different grid forcing scales, combining the grid wake and velocity shear. A numerical simulation using LES on the passage of a single bar in a linearly stratified fluid medium has been compared with the experiments identifying the different influences of the environmental agents on the actual affective vertical diffusion of the wakes. The equation of state, which connects the density and salinity, is assumed to be linear, with the coefficient of the salt contraction being included into the definition of salinity or heat. The characteristic internal waves as well as the entire beam width are related to the diameter of the bar, the Richardson number and the peak-to-peak value of oscillations. The ultimate frequency of the infinitesimal periodic internal waves is limited by the maximum buoyancy frequency relating the decrease in the vertical scale with the anisotropy of the velocity turbulent r.m.s. velocity.
Heat and mass transfers between two stratified liquid phases in a bubbly flow
International Nuclear Information System (INIS)
Lapuerta, C.
2006-10-01
During an hypothetical major accident in a pressurized water reactor, the deterioration of the core can produce a stratified pool crossed by a bubbly flow. This latter strongly impacts the heat transfers, whose intensities are crucial in the progression of the accident. In this context, this work is devoted to the diffuse interface modelling for the study of an-isothermal incompressible flows, composed of three immiscible components, with no phase change. In the diffuse interface methods, the system evolution is driven by the minimization of a free energy. The originality of our approach, derived from the Cahn-Hilliard model, is based on the particular form of the energy we proposed, which enables to have an algebraically and dynamically consistent model, in the following sense: on the one hand, the triphasic free energy is equal to the diphasic one when only two phases are present; on the other, if a phase is not initially present then it will not appear during system evolution, this last property being stable with respect to numerical errors. The existence and the uniqueness of weak and strong solutions are proved in two and three dimensions as well as a stability result for metastable states. The modelling of an an-isothermal three phase flow is further accomplished by coupling the Cahn-Hilliard equations with the energy balance and Navier-Stokes equations where surface tensions are taken into account through volume capillary forces. These equations are discretized in time and space in order to preserve properties of continuous model (volume conservation, energy estimate). Different numerical results are given, from the validation case of the lens spreading between two phases, to the study of the heat and mass transfers through a liquid/liquid interface crossed by a single bubble or a series of bubbles. (author)
Heat and mass transfer in the stratified flow with ECCS injection
International Nuclear Information System (INIS)
Strubelj, L.; Tiselj, I.
2007-01-01
One of the most important problems in the light-water nuclear thermal-hydraulics is behaviour of the cold emergency core cooling water injected from the top or from the bottom into the horizontal section of the cold leg near the reactor vessel during the loss of coolant accident. The stratified flows appear where cold water is injected in partially or fully uncovered horizontal cold leg. The hot steam condenses on cold water surface what is also called direct contact condensation. Direct contact condensation and condensation induced water-hammer in a horizontal pipe were experimentally investigated at PMK-2 test facility of the Hungarian Atomic Energy Research Institute KFKI. The cold water is injected through small pipe into lower horizontal part of the section, and then water fills the vertical pipeline and floods the horizontal test section of the pipeline of the PMK-2 integral test facility. As liquid water floods the horizontal part of the pipeline, the counter current horizontally stratified flow is being observed. During the flooding of the pipeline, the steam-liquid interface area increases and therefore the steam condensation rate and the steam velocity also increase and can lead to bubble entrapment. Water level at one cross-section and four local void fraction and temperature at the top of horizontal test pipeline was measured and compared with simulation. Condensed steam increases the water temperature that is why the local temperature measurements are the most important information, from which condensation rate can be estimated, since mass of condensed steam was not measured. Numerical simulation of the experiment with thermal phase change is presented. Surface renewal concept with small eddies is used for calculation of condensation heat transfer coefficient. Two simulations were performed: simulation of whole experimental domain (lower horizontal, vertical and test horizontal pipeline) and simplified simulation of only upper horizontal test section
McSaveney, M. J.
2015-12-01
The transport mechanism of rapid long-runout rock avalanches was a hotly debated topic when I came on the scene in 1967. So how come it is still debated today? My explanation is that it is the expected outcome of peer review, poor comprehension, and technological advances outpacing intellectual advances. Why think about the problem when we can model it! So let us think about the problem. Shreve thought that rock avalanches fell upon and trapped a layer of air. What physics was he thinking about? It is how feathers and tissue papers fall. When my rock avalanches fly, they fly like unlubricated bricks using the physics of projectiles and ballistics. But the main transport mechanism is not flight. The dominant impression from watching a rock avalanche in motion is of fluid flow, as Heim described it in 1882. A rock avalanche is a very large grain flow. Bagnold studied dispersive grain flows, but why should one assume that rock avalanches are dispersive grain flows as many do. The more common grain flow type is a dense grain flow and rock avalanches are dense grain flows in which the weight can and does generate very high stresses at grain contacts. Brittle rock deforms elastically up to its compressive strength, whereupon it breaks, releasing elastic strain as transient elastic strain (seismic energy to a seismologist, acoustic energy to a physicist). Melosh and others have shown that acoustic energy can fluidize a grain mass. There is no exotic physics behind grain flow at high stress. When grains break, the released elastic strain has to go somewhere, and it goes somewhere principally by transmission though grain contacts. Depending on the state of stress at the grain contact, the contact will pass the stress or will slip at conventional values of Coulomb friction. Enough thinking! A physical model of the entire process is too big for any laboratory. So whose numerical model will do it?
Dynamic measurement of liquid film thickness in stratified flow by using ultrasonic echo technique
International Nuclear Information System (INIS)
Serizawa, A.; Nagane, K.; Kamei, T.; Kawara, Z.; Ebisu, T.; Torikoshi, K.
2004-01-01
We developed a technique to measure time-dependent local film thickness in stratified air-water flow over a horizontal plate by using a time of flight of ultrasonic transmission. The ultrasonic echoes reflected at the liquid/air interfaces are detected by a conventional ultrasonic instrumentation, and the signals are analyzed by a personal computer after being digitalized by an A/D converter to give the time of flight for the ultrasonic waves to run over a distance of twice of the film thickness. A 3.8 mm diameter probe type ultrasonic transducer was used in the present work which transmits and receives 10 MHz frequency ultrasonic waves. The estimated spatial resolution with this arrangement is 0.075 mm in film thickness for water. The time resolution, which depends on both the A/D converter and the memory capacity was up to several tens Hz. We also discussed the sensitivity of the method to the inclination angle of the interfaces. (author)
Singh, Kanwar Nain; Partridge, Jamie; Dalziel, Stuart; Caulfield, C. P.; Mathematical Underpinnings of Stratified Turbulence (MUST) Team
2017-11-01
We present results from experiments conducted to study mixing in a two-layer stably-stratified turbulent Taylor-Couette flow. It has previously been observed that there is a quasi-periodic mixing event located at the interface separating the layers. We observe, through conductivity probe measurements, that the power of the mixing event in the frequency spectrum of the density data at the interface is higher when measured near the inner cylinder than in the middle of the annular gap. This is consistent with Oglethorpe's (2014) hypothesis that the mixing structure is triggered near the inner cylinder, and then advects and decays or disperses radially. We also observe that at Ri =g/'Ro (RiΩi)2 7 , where Ri, Ro are the inner and outer cylinder radius, respectively, g ' the reduced gravity characterising the density jump between the layers and Ωi is the rotation rate of the inner cylinder, the power drops significantly at all radial locations, which is reminiscent of the onset of the enhanced flux regime as observed by Oglethorpe et al. (2013). We perform experiments to characterise the spatial extent and dynamics of this mixing structure using particle image velocimetry (PIV) giving further insights into this important mixing process. EPSRC programme Grant EP/K034529/1 & SGPC-CCT Scholarship.
International Nuclear Information System (INIS)
Yao, W.; Coste, P.; Bestion, D.; Boucker, M.
2003-01-01
In this paper, a local 3D two-fluid model for a turbulent stratified flow with/without condensation, which can be used to predict two-phase pressurized thermal shock, is presented. A modified turbulent K- model is proposed with turbulence production induced by interfacial friction. A model of interfacial friction based on a interfacial sublayer concept and three interfacial heat transfer models, namely, a model based on the small eddies controlled surface renewal concept (HDM, Hughes and Duffey, 1991), a model based on the asymptotic behavior of the Eddy Viscosity (EVM), and a model based on the Interfacial Sublayer concept (ISM) are implemented into a preliminary version of the NEPTUNE code based on the 3D module of the CATHARE code. As a first step to apply the above models to predict the two-phase thermal shock, the models are evaluated by comparison of calculated profiles with several experiments: a turbulent air-water stratified flow without interfacial heat transfer; a turbulent steam-water stratified flow with condensation; turbulence induced by the impact of a water jet in a water pool. The prediction results agree well with the experimental data. In addition, the comparison of three interfacial heat transfer models shows that EVM and ISM gave better prediction results while HDM highly overestimated the interfacial heat transfers compared to the experimental data of a steam water stratified flow
SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows
Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu
2017-12-01
A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.
Flow stress anisotropy in aluminium
DEFF Research Database (Denmark)
Juul Jensen, D.; Hansen, N.
1990-01-01
The plastic anisotropy of cold-rolled high purity aluminum (99.996%) and commercially pure aluminum (99.6%) has been investigated. Sample parameters were the initial grain size and the degree of plastic strain (ϵ < 3.00). Flow stresses (0.2% offset) were measured at room temperature by uniaxial t...
The stably stratified internal boundary layer for steady and diurnally varying offshore flow
Garratt, J. R.
1987-03-01
A two-dimensional numerical mesoscale model is used to investigate the internal structure and growth of the stably stratified internal boundary layer (IBL) beneath warm, continental air flowing over a cooler sea. Two situations are studied — steady-state and diurnally varying offshore flow. In the steady-state case, vertical profiles of mean quantities and eddy diffusion coefficients ( K) within the IBL show small, but significant, changes with increasing distance from the coast. The top of the IBL is well defined, with large vertical gradients within the layer and a maximum in the coast-normal wind component near the top. Well away from the coast, turbulence, identified by non-zero K, decreases to insignificant levels near the top of the IBL; the IBL itself is characterised by a critical value of the layer-flux Richardson number equal to 0.18. The overall behaviour of the mean profiles is similar to that found in the horizontally homogeneous stable boundary layer over land. A simple physical model is used to relate the depth of the layer h to several relevant physical parameters viz., x, the distance from the coast and U, the large-scale wind (both normal to the coastline) and gδθ/θ, Δθ being the temperature difference between continental mixed-layer air and sea surface, θ is the mean potential temperature and g is the acceleration due to gravity. Excellent agreement with the numerical results is found, with h = 0.014 x 1/2 U ( gδθ/θ)-1/2. In the diurnally varying case, the mean profiles within the IBL show only small differences from the steady-state case, although diurnal variations, particularly in the wind maximum, are evident within a few hundred kilometres of the coast. A mesoscale circulation normal to the coast, and superimposed upon the mean offshore flow, develops seawards of the coastline with maximum vertical velocities about sunset, of depth about 2 km and horizontal scale ≈ 500 km. The circulation is related to the advection, and
Energy Technology Data Exchange (ETDEWEB)
Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho
2008-12-01
The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i
The structure of the stably stratified internal boundary layer in offshore flow over the sea
Garratt, J. R.; Ryan, B. F.
1989-04-01
Observations obtained mainly from a research aircraft are presented of the mean and turbulent structure of the stably stratified internal boundary layer (IBL) over the sea formed by warm air advection from land to sea. The potential temperature and humidity fields reveal the vertical extent of the IBL, for fetches out to several hundred of kilometres, geostrophic winds of 20 25 m s-1, and potential temperature differences between undisturbed continental air and the sea surface of 7 to 17 K. The dependence of IBL depth on these external parameters is discussed in the context of the numerical results of Garratt (1987), and some discrepancies are noted. Wind observations show the development of a low-level wind maximum (wind component normal to the coast) and rotation of the wind to smaller cross-isobar flow angles. Potential temperature (θ) profiles within the IBL reveal quite a different structure to that found in the nocturnal boundary layer (NBL) over land. Over the sea, θ profiles have large positive curvature with vertical gradients increasing monotonically with height; this reflects the dominance of turbulent cooling within the layer. The behaviour is consistent with known behaviour in the NBL over land where curvature becomes negative (vertical gradients of θ decreasing with height) as radiative cooling becomes dominant. Turbulent properties are discussed in terms of non-dimensional quantities, normalised by the surface friction velocity, as functions of normalised height using the IBL depth. Vertical profiles of these and the normalised wavelength of the spectral maximum agree well with known results for the stable boundary layer over land (Caughey et al., 1979).
Experimental investigation of stratified two-phase flows in the hot leg of a PWR for CFD validation
Energy Technology Data Exchange (ETDEWEB)
Vallee, Christophe; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Tomiyama, Akio [Kobe Univ. (Japan). Graduate School of Engineering; Murase, Michio [Institute of Nuclear Safety System Inc. (INSS), Fukui (Japan)
2012-07-01
Stratified two-phase flows were investigated in two different models of the hot leg of a pressurised water reactor (PWR) in order to provide experimental data for the development and validation of computational fluid dynamics (CFD) codes. Therefore, the local flow structure was visualised with a high-speed video camera. Moreover, one test section was designed with a rectangular cross-section to achieve optimum observation conditions. The phenomenon of counter-current flow limitation (CCFL) was investigated, which may affect the reflux condenser cooling mode in some accident scenarios. (orig.)
Directory of Open Access Journals (Sweden)
Ivana Stiperski
2017-01-01
Full Text Available In this article, we present an overview of the HyIV-CNRS-SecORo (Hydralab IV-CNRS-Secondary Orography and Rotors Experiments laboratory experiments carried out in the CNRM (Centre National de Recherches Météorologiques large stratified water flume. The experiments were designed to systematically study the influence of double obstacles on stably stratified flow. The experimental set-up consists of a two-layer flow in the water tank, with a lower neutral and an upper stable layer separated by a sharp density discontinuity. This type of layering over terrain is known to be conducive to a variety of possible responses in the atmosphere, from hydraulic jumps to lee waves and highly turbulent rotors. In each experiment, obstacles were towed through the tank at a constant speed. The towing speed and the size of the tank allowed high Reynolds-number flow similar to the atmosphere. Here, we present the experimental design, together with an overview of laboratory experiments conducted and their results. We develop a regime diagram for flow over single and double obstacles and examine the parameter space where the secondary obstacle has the largest influence on the flow. Trapped lee waves, rotors, hydraulic jumps, lee-wave interference and flushing of the valley atmosphere are successfully reproduced in the stratified water tank. Obstacle height and ridge separation distance are shown to control lee-wave interference. Results, however, differ partially from previous findings on the flow over double ridges reported in the literature due to the presence of nonlinearities and possible differences in the boundary layer structure. The secondary obstacle also influences the transition between different flow regimes and makes trapped lee waves possible for higher Froude numbers than expected for an isolated obstacle.
International Nuclear Information System (INIS)
Roshani, G.H.; Nazemi, E.; Roshani, M.M.
2017-01-01
In this paper, a novel method is proposed for predicting the density of liquid phase in stratified regime of liquid-gas two phase flows by utilizing dual modality densitometry technique and artificial neural network (ANN) model of radial basis function (RBF). The detection system includes a 137 Cs radioactive source and two NaI(Tl) detectors for registering transmitted and scattered photons. At the first step, a Monte Carlo simulation model was utilized to obtain the optimum position for the scattering detector in dual modality densitometry configuration. At the next step, an experimental setup was designed based on obtained optimum position for detectors from simulation in order to generate the required data for training and testing the ANN. The results show that the proposed approach could be successfully applied for predicting the density of liquid phase in stratified regime of gas-liquid two phase flows with mean relative error (MRE) of less than 0.701. - Highlights: • Density of liquid phase in stratified regime of two phase flows was predicted. • Combination of dual modality densitometry technique and ANN was utilized. • Detection system includes a 137 Cs radioactive source and two NaI(Tl) detectors. • MCNP simulation was done to obtain the optimum position for the scattering detector. • An experimental setup was designed to generate the required data for training the ANN.
Horizontal stratified flow model for the 1-D module of WCOBRA/TRAC-TF2: modeling and validation
Energy Technology Data Exchange (ETDEWEB)
Liao, J.; Frepoli, C.; Ohkawa, K., E-mail: liaoj@westinghouse.com [Westinghouse Electric Company LLC, LOCA Integrated Services I, Cranberry Twp, Pennsylvania (United States)
2011-07-01
For a two-phase flow in a horizontal pipe, the individual phases may separate by gravity. This horizontal stratification significantly impacts the interfacial drag, interfacial heat transfer and wall drag of the two phase flow. For a PWR small break LOCA, the horizontal stratification in cold legs is a highly important phenomenon during loop seal clearance, boiloff and recovery periods. The low interfacial drag in the stratified flow directly controls the time period for the loop clearance and the level of residual water in the loop seal. Horizontal stratification in hot legs also impacts the natural circulation stage of a small break LOCA. In addition, the offtake phenomenon and cold leg condensation phenomenon are also affected by the occurrence of horizontal stratification in the cold legs. In the 1-D module of the WCOBRA/TRAC-TF2 computer code, a horizontal stratification criterion was developed by combining the Taitel-Dukler model and the Wallis-Dobson model, which approximates the viscous Kelvin-Helmholtz neutral stability boundary. The objective of this paper is to present the horizontal stratification model implemented in the code and its assessment against relevant data. The adequacy of the horizontal stratification transition criterion is confirmed by examining the code-predicted flow regime in a horizontal pipe with the measured data in the flow regime map. The void fractions (or liquid level) for the horizontal stratified flow in cold leg or hot leg are predicted with a reasonable accuracy. (author)
Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow
DEFF Research Database (Denmark)
Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey
2015-01-01
For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...
International Nuclear Information System (INIS)
Salgado, Cesar M.; Brandao, Luis Eduardo; Pereira, Claudio M.N.A.; Ramos, Robson; Schirru, Roberto; Silva, Ademir X.
2007-01-01
This work presents methodology based on the use of nuclear technique and artificial intelligence for attainment of volume fractions in stratified and annular multiphase flow regime, oil-water-gas, very frequent in the offshore industry petroliferous. Using the principles of absorption and scattering of gamma-rays and an adequate geometry scheme of detection with two detectors and two energies measurement are gotten and they vary as changes in the volume fractions of flow regime occur. The MCNP-X code was used in order to provide the data training for artificial neural network that matched such information with the respective actual volume fractions of each material. (author)
Energy Technology Data Exchange (ETDEWEB)
Salgado, Cesar M.; Brandao, Luis Eduardo; Pereira, Claudio M.N.A.; Ramos, Robson [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: otero@ien.gov.br; brandao@ien.gov.br; cmnap@ien.gov.br; robson@ien.gov.br; Schirru, Roberto; Silva, Ademir X. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Energia Nuclear (PEN)]. E-mails: ademir@con.ufrj.br; schirru@lmp.ufrj.br
2007-07-01
This work presents methodology based on the use of nuclear technique and artificial intelligence for attainment of volume fractions in stratified and annular multiphase flow regime, oil-water-gas, very frequent in the offshore industry petroliferous. Using the principles of absorption and scattering of gamma-rays and an adequate geometry scheme of detection with two detectors and two energies measurement are gotten and they vary as changes in the volume fractions of flow regime occur. The MCNP-X code was used in order to provide the data training for artificial neural network that matched such information with the respective actual volume fractions of each material. (author)
Flow of two stratified fluids in an open channel with addition of fluids along the channel length
International Nuclear Information System (INIS)
Gardner, G.C.
1980-01-01
It is shown that two stably stratified fluids flowing in an open channel have two critical flow conditions. The one at higher flowrates is equivalent to the choked flow condition of a single fluid over a broad-crested weir, when the Froude number is unity. The lower critical condition imposes restrictions, which define the system if fluids are added progressively along the channel length and the flowrates increase from low to high values. However, if the flowrate does not become sufficiently large to pass through the lower critical condition, this condition will then define a form of choking, which again determines the system. It is shown that an important special case, with the proportional flowrates of the two fluids kept constant, has an analytical solution in which the relative depths of the fluids is a constant along the channel. Other systems must be solved numerically. (orig.)
Experimental investigation of stratified two-phase flows in the hot leg of a PWR for CFD validation
Energy Technology Data Exchange (ETDEWEB)
Vallee, Christophe; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Tomiyama, Akio [Kobe Univ (Japan). Graduate School of Engineering; Murase, Michio [Institute of Nuclear Safety System, Inc. (INSS), Fukui (Japan)
2012-12-15
Stratified 2-phase flows were investigated in 2 different models of the hot leg of a pressurised water reactor (PWR) in order to provide experimental data for the development and validation of computational fluid dynamics (CFD) codes. Therefore, the local flow structure was visualised with a high-speed video camera. Moreover, one test section was designed with a rectangular cross-section to achieve optimal observation conditions. The phenomenon of counter-current flow limitation (CCFL) was investigated, which may affect the reflux condenser cooling mode in some accident scenarios. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and saturated water at boundary conditions of up to 50 bar and 264 C. The measured CCFL characteristics were compared with similar experimental data and correlations available in the literature. This shows that the channel height is the characteristic length to be used in the Wallis parameter for channels with rectangular cross-sections. Furthermore, the experimental results confirm that the Wallis similarity is appropriate to scale CCFL in the hot leg of a PWR over a wide range of pressure and temperature conditions. Finally, an image processing algorithm was developed to recognise the stratified interface in the camera frames. Subsequently, the interfacial structure along the hot leg was visualised by the representation of the probability distribution of the water level. (orig.)
Khan, M. Ijaz; Waqas, M.; Alsaedi, A.; Hayat, T.; Khan, M. Imran
2017-11-01
The mixed convective flow of an Eyring-Powell nanomaterial in a doubly stratified medium is addressed in this paper. The stretching surface has varying thickness. The nanofluid model given by Buongiorno is utilized in the formulation of energy and concentration expressions. Heat generation is also retained. Ordinary differential systems are obtained by utilizing the transformations procedure. Homotopy series solutions containing exponentially functions are developed. Significant characteristics of influential variables for velocity, temperature, nanoparticle concentration, skin friction coefficient and Nusselt and Sherwood numbers are reported through graphs and tables. It is found that stratification phenomenon leads to a decay in temperature and nanoparticle concentration.
Energy Technology Data Exchange (ETDEWEB)
Chu, In Cheol; Yu, Seon Oh; Chun, Moon Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Byong Sup; Kim, Yang Seok; Kim, In Hwan; Lee, Sang Won [Korea Electric Power Research Institute, Taejon (Korea, Republic of)
1998-12-31
An interfacial condensation heat transfer phenomenon in a steam/water countercurrent stratified flow in a nearly horizontal pipe has been experimentally investigated. The present study has been focused on the measurement of the temperature and velocity distributions within the water layer. In particular, the water layer thickness used in the present work is large enough so that the turbulent mixing is limited and the thermal stratification is established. As a result, the thermal resistance of the water layer to the condensation heat transfer is increased significantly. An empirical correlation of the interfacial condensation heat transfer has been developed. The present correlation agrees with the data within {+-} 15%. 5 refs., 6 figs. (Author)
Chashechkin, Yu. D.; Bardakov, R. N.
2018-02-01
By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.
Doubly stratified MHD tangent hyperbolic nanofluid flow due to permeable stretched cylinder
Nagendramma, V.; Leelarathnam, A.; Raju, C. S. K.; Shehzad, S. A.; Hussain, T.
2018-06-01
An investigation is exhibited to analyze the presence of heat source and sink in doubly stratified MHD incompressible tangent hyperbolic fluid due to stretching of cylinder embedded in porous space under nanoparticles. To develop the mathematical model of tangent hyperbolic nanofluid, movement of Brownian and thermophoretic are accounted. The established equations of continuity, momentum, thermal and solutal boundary layers are reassembled into sets of non-linear expressions. These assembled expressions are executed with the help of Runge-Kutta scheme with MATLAB. The impacts of sundry parameters are illustrated graphically and the engineering interest physical quantities like skin friction, Nusselt and Sherwood number are examined by computing numerical values. It is clear that the power-law index parameter and curvature parameter shows favorable effect on momentum boundary layer thickness whereas Weissennberg number reveals inimical influence.
Lim, Lam Ghai; Pao, William K. S.; Hamid, Nor Hisham; Tang, Tong Boon
2016-01-01
A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design. PMID:27384567
Directory of Open Access Journals (Sweden)
Lam Ghai Lim
2016-07-01
Full Text Available A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function, with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design.
International Nuclear Information System (INIS)
Yonomoto, Taisuke; Tasaka, Kanji
1988-01-01
A theoretical and experimental study was conducted to understand two-phase flow discharged from a stratified two-phase region through a small break. This problem is important for an analysis of a small break loss-of-coolant accident (LOCA) in a light water reactor (LWR). The present theoretical results show that a break quality is a function of h/h b , where h is the elevation difference between a bulk water level in the upstream region and break and b the suffix for entrainment initiation. This result is consistent with existing eperimental results in literature. An air-water experiment was also conducted changing a break orientation as an experimental parameter to develop and assess the model. Comparisons between the model and the experimental results show that the present model can satisfactorily predict the flow rate and the quality at the break without using any adjusting constant when liquid entrainment occurs in a stratified two-phase region. When gas entrainment occurs, the experimental data are correlated well by using a single empirical constant. (author)
Lim, Lam Ghai; Pao, William K S; Hamid, Nor Hisham; Tang, Tong Boon
2016-07-04
A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a 'sine-like' function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design.
Jaravel, Thomas; Labahn, Jeffrey; Ihme, Matthias
2017-11-01
The reliable initiation of flame ignition by high-energy spark kernels is critical for the operability of aviation gas turbines. The evolution of a spark kernel ejected by an igniter into a turbulent stratified environment is investigated using detailed numerical simulations with complex chemistry. At early times post ejection, comparisons of simulation results with high-speed Schlieren data show that the initial trajectory of the kernel is well reproduced, with a significant amount of air entrainment from the surrounding flow that is induced by the kernel ejection. After transiting in a non-flammable mixture, the kernel reaches a second stream of flammable methane-air mixture, where the successful of the kernel ignition was found to depend on the local flow state and operating conditions. By performing parametric studies, the probability of kernel ignition was identified, and compared with experimental observations. The ignition behavior is characterized by analyzing the local chemical structure, and its stochastic variability is also investigated.
Three-Dimensional Adjustment of Stratified Flow Over a Sloping Bottom
National Research Council Canada - National Science Library
Chapman, David
2002-01-01
This study focused on understanding how advection of density within the bottom boundary layer influence the three-dimensional structure, evolution, and dynamics of both the bottom boundary layer and the overlying (interior) flow...
Electrohydrodynamic stability of two stratified power law liquid in couette flow
International Nuclear Information System (INIS)
Eldabe, N.T.
1988-01-01
Consideration is given to the stability of the flow of two power law liquids under the influence of normal electric field between two infinite parallel planes when one of the planes moves with constant velocity in its own plane. It is found that the electric fields have a dramatic effect and can be chosen to stabilize or destabilize the flow. The effects of the power law parameters on the problem are examinated
Bilal, S.; Rehman, Khalil Ur; Malik, M. Y.
Present study is addressed to express the implementation of Keller-Box technique on physical problem in the field of fluid rheology, for this purpose the Williamson fluid flow is considered along a cylindrical stretching surface manifested with temperature stratification. The flow model is translated mathematically in terms of differential equations. Numerical simulation is executed to trace out the solution structure of developed differential system. The graphical outcomes for the flow regime of two different geometries (i-e cylindrical and plane surface) are reported and examined towards involved physical parameters. Furthermore, the local skin friction coefficient and local Nusselt number are computed numerically. A remarkable agreement of present study is noticed with the previously published results, which confirms the implementation and validation of Keller-Box scheme and it will serve as a helping source for the future correspondence.
International Nuclear Information System (INIS)
Komori, S.
1996-01-01
A supercomputer is a nice tool for simulating environmental flows. The Center for Global Environmental Research (CGER) of the National Institute for Environmental Studies purchased a supercomputer SX-3 of CGER about three years ago, and it has been used for various environmental simulations since. Although one of the main purposes for which the supercomputer was used was to simulate global warming with a general circulation model (GCM), our research organization used the supercomputer for more fundamental work to investigate heat and mass transfer mechanisms in environmental flows. Our motivations for this work was the fact that GCMs involve a number of uncertain submodels related to heat and mass transfer in turbulent atmospheric and oceanic flows. It may be easy to write research reports by running GCMs which were developed in western countries, but it is difficult for numerical scientists to do original work with such second-hand GCMs. In this sense, we thought that it would be more original to study the fundamentals of heat and mass transfer mechanisms in environmental flows rather than to run a GCM. Therefore, we tried to numerically investigate turbulence structure and scalar transfer both at the air-sea interface and in thermally stratified flows, neither of which were well modeled by GCMs. We also employed laboratory experiments to clarify the turbulence structure and scalar transfer mechanism, since numerical simulations are not sufficiently powerful to clarify all aspects of turbulence structure and scalar transfer mechanisms. A numerical technique is a promising tool to complement measurements of processes that cannot be clarified by turbulence measurements in environmental flows. It should also be noted that most of the interesting phenomena in environmental flows can be elucidated by laboratory or field measurements but not by numerical simulations alone. Thus, it is of importance to combine laboratory or field measurements with numerical simulations
On singular limits arising in the scale analysis of stratified fluid flows
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Klein, R.; Novotný, A.; Zatorska, E.
2016-01-01
Roč. 26, č. 3 (2016), s. 419-443 ISSN 0218-2025 Grant - others:European Research Council(XE) MATHEF(320078) Institutional support: RVO:67985840 Keywords : isentropic fluid flow * strong stratification * singular limit * anelastic approximation Subject RIV: BA - General Mathematics Impact factor: 2.860, year: 2016 http://www.worldscientific.com/doi/10.1142/S021820251650007X
International Nuclear Information System (INIS)
Samuel Martin, C.
2005-01-01
Full text of publication follows: An experimental apparatus was designed for the purpose of investigating the phenomenon of condensation-induced water hammer in an ammonia refrigeration system. Water hammer was initiated by introducing warm ammonia gas over static subcooled ammonia liquid placed in a horizontal 146.3 mm diameter carbon steel pipe 6.0 m in length. By means of fast response piezoelectric pressure transducers and a high speed data acquisition system rapid dynamic pressures were recorded whenever a shock event occurred. Moreover, by means of top-mounted diaphragm pressure transducers the speed of liquid slugs propagating along the pipe was determined. The occurrence of condensation induced water hammer depended upon three major variables; namely, (1) initial liquid depth, (2) liquid temperature, and (3) mass flow rate of warm gas. For given liquid depth and temperature, once the warm gas threshold conditions were exceeded shocks occurred with greater magnitude as the mass flow rate of gas input was increased. With adequate subcooling condensation-induced water hammer occurred for initial liquid depths ranging from 25% to 95% of internal pipe diameter. The threshold mass flow rate of warm gas necessary to initiate water hammer was greater as the initial liquid depth was lowered. Based upon experimental results obtained from four pressure transducers located on the top of the test pipe conditions corresponding to bridging were ascertained. For various initial liquid depths the onset of instability from stratified flow to bridging was correlated with the Taitel-Dukler instability criterion. (author)
Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank
DEFF Research Database (Denmark)
Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan
2005-01-01
are facing west. The collector tilt is 15° from horizontal for all collectors. Both the east-facing and the west-facing collectors have their own solar collector loop, circulation pump, external heat exchanger and control system. The external heat exchangers are used to transfer the heat from the solar......In year 2000 a 336 m² solar domestic hot water system was built in Sundparken, Elsinore, Denmark. The solar heating system is a low flow system with a 10000 l hot-water tank. Due to the orientation of the buildings half of the solar collectors are facing east, half of the solar collectors...... collector fluid to the domestic water. The domestic water is pumped from the bottom of the hot-water tank to the heat exchanger and back to the hot-water tank through stratification inlet pipes. The return flow from the DHW circulation pipe also enters the tank through stratification inlet pipes. The tank...
International Nuclear Information System (INIS)
Ababou, R.
1991-08-01
This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs
Stratified charge rotary engine - Internal flow studies at the MSU engine research laboratory
Hamady, F.; Kosterman, J.; Chouinard, E.; Somerton, C.; Schock, H.; Chun, K.; Hicks, Y.
1989-01-01
High-speed visualization and laser Doppler velocimetry (LDV) systems consisting of a 40-watt copper vapor laser, mirrors, cylindrical lenses, a high speed camera, a synchronization timing system, and a particle generator were developed for the study of the fuel spray-air mixing flow characteristics within the combustion chamber of a motored rotary engine. The laser beam is focused down to a sheet approximately 1 mm thick, passing through the combustion chamber and illuminates smoke particles entrained in the intake air. The light scattered off the particles is recorded by a high speed rotating prism camera. Movies are made showing the air flow within the combustion chamber. The results of a movie showing the development of a high-speed (100 Hz) high-pressure (68.94 MPa, 10,000 psi) fuel jet are also discussed. The visualization system is synchronized so that a pulse generated by the camera triggers the laser's thyratron.
Benilov, E. S.
2018-05-01
This paper examines quasigeostrophic flows in an ocean that can be subdivided into an upper active layer (AL) and a lower passive layer (PL), with the flow and density stratification mainly confined to the former. Under this assumption, an asymptotic model is derived parameterizing the effect of the PL on the AL. The model depends only on the PL's depth, whereas its Väisälä-Brunt frequency turns out to be unimportant (as long as it is small). Under an additional assumption-that the potential vorticity field in the PL is well-diffused and, thus, uniform-the derived model reduces to a simple boundary condition. This condition is to be applied at the AL/PL interface, after which the PL can be excluded from consideration.
International Nuclear Information System (INIS)
Ebihara, Ken-ichi
2005-03-01
paper, first, the validity and the usefulness of the lattice-gas model and the lattice Boltzmann method for the numerical analysis of two-phase flow are examined by applying the two-phase fluid model of these methods to the phenomena of the falling droplet and the rising bubble. Next, on the basis of the examination of its numerical results, the horizontal stratified two-phase flow, which is the fundamental and important flow and often observed in a practical situation, is simulated by use of the HCZ model that is the two-phase fluid model of the lattice Boltzmann method proposed by He, Chen, and Zhang. The HCZ model can simulate Rayleigh-Taylor instability which shows complex interfacial phenomena. It is verified that the simulated interfacial growth is subject to the Kelvin-Helmholtz instability theory and can reproduce the curve concerning the interfacial growth of the theoretical flow regime map proposed by Taitel and Dukler (T-D map). Furthermore, it is found that the interfacial growth in the channel with the narrow width needs more superficial flow velocity than that given by the T-D map. In the simulation of the droplet generation in the horizontal stratified two-phase flow, it is verified that the HCZ model can also reproduce the experimental correlation proposed by Ishii and Grolmes within the range of the distribution of experimental data. According to the results of this report, it is found that the HCZ model of the lattice Boltzmann method can simulate complex interfacial phenomena in the horizontal stratified two-phase flow and reproduce the theoretical flow regime map and the experimental correlation. Considering the application of this model to more practical two-phase flow, it is also seen that this model has some problems which have to be solved, such as practical density difference, thermal influence and so on. (author)
International Nuclear Information System (INIS)
Ijaz, Umer Zeeshan; Khambampati, Anil Kumar; Kim, Kyung Youn; Chung, Soon Il; Kim, Sin
2008-01-01
In this paper, we estimate a time-varying interfacial boundary in stratified flows of two immiscible liquids using electrical resistance tomography. The interfacial boundary is approximated with front points spaced discretely along the interface. The design variables to be estimated are the locations of the front points, which are varying with the moving interface. The inverse problem is treated as a stochastic nonlinear state estimation problem with the nonstationary phase boundary (state) being estimated with the aid of an unscented Kalman filter. Numerical experiments are performed to evaluate the performance of an unscented Kalman filter. Specifically, a detailed analysis has been done on the effect of the number of front points and contrast ratio on the reconstruction performance. The reconstruction results show that an unscented Kalman filter is better suited for estimation in comparison to the conventional extended Kalman filter
Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines
Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.
Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.
Large Eddy and Interface Simulation (LEIS) of liquid entrainment in turbulent stratified flow
International Nuclear Information System (INIS)
Gulati, S.; Buongiorno, J.; Lakehal, D.
2011-01-01
Dryout of the liquid film on the fuel rods in BWR fuel assemblies leads to an abrupt decrease in heat transfer coefficient and can result in fuel failure. The process of mechanical mass transfer from the continuous liquid field into the continuous vapor field along the liquid-vapor interface is called entrainment and is the dominant depletion mechanism for the liquid film in annular flow. Using interface tracking methods combined with a Large Eddy Simulation approach, implemented in the Computational Multi-Fluid Dynamics (CMFD) code TransAT®, we are studying entrainment phenomena in BWR fuel assemblies. In this paper we report on the CMFD simulation approaches and the current validation effort for the code. (author)
Reynolds stress and shear flow generation
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.
2001-01-01
The so-called Reynolds stress may give a measure of the self-consistent flow generation in turbulent fluids and plasmas by the small-scale turbulent fluctuations. A measurement of the Reynolds stress can thus help to predict flows, e.g. shear flows in plasmas. This may assist the understanding...... of improved confinement scenarios such as H-mode confinement regimes. However, the determination of the Reynolds stress requires measurements of the plasma potential, a task that is difficult in general and nearly impossible in hot plasmas in large devices. In this work we investigate an alternative method......, based on density measurements, to estimate the Reynolds stress, and demonstrate the validity range of this quantity, which we term the pseudo-Reynolds stress. The advantage of such a quantity is that accurate measurements of density fluctuations are much easier to obtain experimentally. Prior...
International Nuclear Information System (INIS)
Vallee, Christophe
2012-01-01
Stratified two-phase flows were investigated at different test facilities with horizontal test sections in order to provide an experimental database for the development and validation of computational fluid dynamics (CFD) codes. These channels were designed with rectangular cross-sections to enable optimal observation conditions for the application of optical measurement techniques. Consequently, the local flow structure was visualised with a high-speed video camera, delivering data with highresolution in space and time as needed for CFD code validation. Generic investigations were performed at atmospheric pressure and room temperature in two air/water channels made of acrylic glass. Divers preliminary experiments were conducted with various measuring systems in a test section mounted between two separators. The second test facility, the Horizontal Air/Water Channel (HAWAC), is dedicated to co-current flow investigations. The hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was studied in this closed channel. Moreover, the instable wave growth leading to slug flow was investigated from the test section inlet. For quantitative analysis of the optical measurements, an algorithm was developed to recognise the stratified interface in the camera frames, allowing statistical treatments for comparison with CFD calculation results. The third test apparatus was installed in the pressure chamber of the TOPFLOW test facility in order to be operated at reactor typical conditions under pressure equilibrium with the vessel atmosphere. The test section representing a flat model of the hot leg of the German Konvoi pressurised water reactor (PWR) scaled at 1:3 is equipped with large glass side walls in the region of the elbow and of the steam generator inlet chamber to allow visual observations. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and water at
Energy Technology Data Exchange (ETDEWEB)
Vallee, Christophe
2012-08-22
Stratified two-phase flows were investigated at different test facilities with horizontal test sections in order to provide an experimental database for the development and validation of computational fluid dynamics (CFD) codes. These channels were designed with rectangular cross-sections to enable optimal observation conditions for the application of optical measurement techniques. Consequently, the local flow structure was visualised with a high-speed video camera, delivering data with highresolution in space and time as needed for CFD code validation. Generic investigations were performed at atmospheric pressure and room temperature in two air/water channels made of acrylic glass. Divers preliminary experiments were conducted with various measuring systems in a test section mounted between two separators. The second test facility, the Horizontal Air/Water Channel (HAWAC), is dedicated to co-current flow investigations. The hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was studied in this closed channel. Moreover, the instable wave growth leading to slug flow was investigated from the test section inlet. For quantitative analysis of the optical measurements, an algorithm was developed to recognise the stratified interface in the camera frames, allowing statistical treatments for comparison with CFD calculation results. The third test apparatus was installed in the pressure chamber of the TOPFLOW test facility in order to be operated at reactor typical conditions under pressure equilibrium with the vessel atmosphere. The test section representing a flat model of the hot leg of the German Konvoi pressurised water reactor (PWR) scaled at 1:3 is equipped with large glass side walls in the region of the elbow and of the steam generator inlet chamber to allow visual observations. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and water at
Liu, Tianyang; Chan, Hiu Ning; Grimshaw, Roger; Chow, Kwok Wing
2017-11-01
The spatial structure of small disturbances in stratified flows without background shear, usually named the `Taylor-Goldstein equation', is studied by employing the Boussinesq approximation (variation in density ignored except in the buoyancy). Analytical solutions are derived for special wavenumbers when the Brunt-Väisälä frequency is quadratic in hyperbolic secant, by comparison with coupled systems of nonlinear Schrödinger equations intensively studied in the literature. Cases of coupled Schrödinger equations with four, five and six components are utilized as concrete examples. Dispersion curves for arbitrary wavenumbers are obtained numerically. The computations of the group velocity, second harmonic, induced mean flow, and the second derivative of the angular frequency can all be facilitated by these exact linear eigenfunctions of the Taylor-Goldstein equation in terms of hyperbolic function, leading to a cubic Schrödinger equation for the evolution of a wavepacket. The occurrence of internal rogue waves can be predicted if the dispersion and cubic nonlinearity terms of the Schrödinger equations are of the same sign. Partial financial support has been provided by the Research Grants Council contract HKU 17200815.
International Nuclear Information System (INIS)
Majumdar, P.; Mukhopadyay, D.; Lele, H.G.; Gupta, S.K.
2000-08-01
Whether in process industries or nuclear industries, we come across lot of horizontal components, where two-phase or two-component fluids exist in normal or abnormal working conditions. Situations which lead to separation of the phases sees vapour pull through or liquid entrainment phenomena occurring when fluid discharges from horizontal components to the off - take branches. In order to capture the phenomena and applying it to the Indian PHWR during LOCA, a program 'BFQ' has been developed using various models for different fluids and conditions. These models have been validated with various experimental data available in the literature. Smoglie's model has been found to comply with most of the experiments even though it has been developed for air-water system. A modification of the model also been successfully used for feeders located at 45 deg. The result has been well validated with Hassan (1997) experiment for the same configuration. For a typical case of LOCA, RELAP4/MOD6, a widely used Homogenous model for simulating systems, is found to over predict the off-take flow quality from Header under stratified flow condition. (author)
Wiederhold, Andreas; Ebert, Reschad; Resagk, Christian; Research Training Group: "Lorentz Force Velocimetry; Lorentz Force Eddy Current Testing" Team
2016-11-01
We report about the feasibility of Lorentz force velocimetry (LFV) for various flow profiles. LFV is a contactless non-invasive technique to measure flow velocity and has been developed in the last years in our institute. This method is advantageous if the fluid is hot, aggressive or opaque like glass melts or liquid metal flows. The conducted experiments shall prove an increased versatility for industrial applications of this method. For the force measurement we use an electromagnetic force compensation balance. As electrolyte salty water is used with an electrical conductivity in the range of 0.035 which corresponds to tap water up to 20 Sm-1. Because the conductivity is six orders less than that of liquid metals, here the challenging bottleneck is the resolution of the measurement system. The results show only a slight influence in the force signal at symmetric and strongly asymmetric flow profiles. Furthermore we report about the application of LFV to stratified two-phase flows. We show that it is possible to detect interface instabilities, which is important for the dimensioning of liquid metal batteries. Deutsche Forschungsgemeinschaft DFG.
Energy Technology Data Exchange (ETDEWEB)
Kuntoro, Hadiyan Yusuf, E-mail: hadiyan.y.kuntoro@mail.ugm.ac.id; Majid, Akmal Irfan; Deendarlianto, E-mail: deendarlianto@ugm.ac.id [Center for Energy Studies, Gadjah Mada University, Sekip K-1A Kampus UGM, Yogyakarta 55281 (Indonesia); Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika 2, Yogyakarta 55281 (Indonesia); Hudaya, Akhmad Zidni; Dinaryanto, Okto [Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika 2, Yogyakarta 55281 (Indonesia)
2016-06-03
Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methods and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (h{sub L}) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.
Grain orientation, deformation microstructure and flow stress
International Nuclear Information System (INIS)
Hansen, N.; Huang, X.; Winther, G.
2008-01-01
Dislocation structures in deformed metals have been analyzed quantitatively by transmission electron microscopy, high-resolution electron microscopy and Kikuchi line analysis. A general pattern for the microstructural evolution with increasing strain has been established and structural parameters have been defined and quantified. It has been found that two dislocation patterns co-exist in all grains, however, with very different characteristics dependent on grain orientation. This correlation with the grain orientation has been applied in modeling of the tensile flow stress and the flow stress anisotropy of fcc polycrystals. In conclusion some future research areas are briefly outlined
Energy Technology Data Exchange (ETDEWEB)
Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho
2011-01-01
The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.
International Nuclear Information System (INIS)
Shen, Colin Y.; Evans, Thomas E.
2004-01-01
A non-hydrostatic density-stratified hydrodynamic model with a free surface has been developed from the vorticity equations rather than the usual momentum equations. This approach has enabled the model to be obtained in two different forms, weakly non-hydrostatic and fully non-hydrostatic, with the computationally efficient weakly non-hydrostatic form applicable to motions having horizontal scales greater than the local water depth. The hydrodynamic model in both its weakly and fully non-hydrostatic forms is validated numerically using exact nonlinear non-hydrostatic solutions given by the Dubriel-Jacotin-Long equation for periodic internal gravity waves, internal solitary waves, and flow over a ridge. The numerical code is developed based on a semi-Lagrangian scheme and higher order finite-difference spatial differentiation and interpolation. To demonstrate the applicability of the model to coastal ocean situations, the problem of tidal generation of internal solitary waves at a shelf-break is considered. Simulations carried out with the model obtain the evolution of solitary wave generation and propagation consistent with past results. Moreover, the weakly non-hydrostatic simulation is shown to compare favorably with the fully non-hydrostatic simulation. The capability of the present model to simulate efficiently relatively large scale non-hydrostatic motions suggests that the weakly non-hydrostatic form of the model may be suitable for application in a large-area domain while the computationally intensive fully non-hydrostatic form of the model may be used in an embedded sub-domain where higher resolution is needed
Energy Technology Data Exchange (ETDEWEB)
Chang H. Oh; Eung S. Kim
2009-12-01
The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced
1994-10-10
support plant and animal life . The ocean is stably stratified, which acts to inhibit vertical mixing. Munk (1966) has show that a basin-averaged...fall int a range specified batwoexi L,., wid Lr.+Ad. For each individual profile which contains uiversions , rq.2 can be used to obtain the empirical
Directory of Open Access Journals (Sweden)
M. Farooq
Full Text Available This article studies MHD double stratified stagnation point flow of Carreau fluid towards a non linear stretchable surface with radiation. Features of heat and mass transfer are evaluated by using convective boundary conditions. Resulting nonlinear problems are solved and studied for the velocity, temperature and concentration fields. Heat and mass transfer rates in addition to skin friction are discussed. Besides this for the verification of the present findings, the results of presented analysis have been compared with the available works in particular situations and reasonable agreement is noted. Keywords: Convective boundary condition, Thermal radiation, Double stratification, Stagnation point flow
Directory of Open Access Journals (Sweden)
R. Mantovani
2002-01-01
Full Text Available This paper presents the analysis of symmetric circulations of a rotating baroclinic flow, forced by a steady thermal wind and dissipated by Laplacian friction. The analysis is performed with numerical time-integration. Symmetric flows, vertically bound by horizontal walls and subject to either periodic or vertical wall lateral boundary conditions, are investigated in the region of parameter-space where unstable small amplitude modes evolve into stable stationary nonlinear solutions. The distribution of solutions in parameter-space is analysed up to the threshold of chaotic behaviour and the physical nature of the nonlinear interaction operating on the finite amplitude unstable modes is investigated. In particular, analysis of time-dependent energy-conversions allows understanding of the physical mechanisms operating from the initial phase of linear instability to the finite amplitude stable state. Vertical shear of the basic flow is shown to play a direct role in injecting energy into symmetric flow since the stage of linear growth. Dissipation proves essential not only in limiting the energy of linearly unstable modes, but also in selecting their dominant space-scales in the finite amplitude stage.
Fan, Yifan; Hunt, Julian; Yin, Shi; Li, Yuguo
2018-03-01
The mean and random components of the velocity field at very low wind speeds in a convective boundary layer (CBL) over a wide urban area are dominated by large eddy structures—either turbulent plumes or puffs. In the mixed layer at either side of the edges of urban areas, local mean recirculating flows are generated by sharp horizontal temperature gradients. These recirculation regions also control the mean shear profile and the bent-over plumes across the mixed layer, extending from the edge to the center of the urban area. A simplified physical model was proposed to calculate the mean flow speed at the edges of urban areas. Water tank experiments were carried out to study the mean recirculating flow and turbulent plume structures. The mean speed at urban edges was measured by the particle image velocimetry (PIV), and the plume structures were visualized by the thermalchromic liquid crystal (TLC) sheets. The horizontal velocity calculated by the physical model at the urban edge agrees well with that measured in the water tank experiments, with a root mean square of 0.03. The experiments also show that the pattern of the mean flow over the urban area changes significantly if the shape of the heated area changes or if the form of the heated urban area becomes sub-divided, for example by the creation of nearby but separated "satellite cities." The convective flow over the square urban area is characterized as the diagonal inflow at the lower level and the side outflow at the upper level. The outflow of the small city can be drawn into the inflow region of the large city in the "satellite city" case. A conceptual analysis shows how these changes significantly affect the patterns of dispersion of pollutants in different types of urban areas.
Energy Technology Data Exchange (ETDEWEB)
Miyoshi, Koji, E-mail: miyoshi.koj@inss.co.jp; Takenaka, Nobuyuki; Ishida, Taisuke; Sugimoto, Katsumi
2017-05-15
Highlights: • Thermal hydraulics phenomena were discussed in a spray pipe of pressurizer. • Temperature fluctuation was investigated in a stratified steam-water two-phase. • Remarkable liquid temperature fluctuations were observed in the liquid layer. • The observed temperature fluctuations were caused by the internal gravity wave. • The temperature fluctuations decreased with increasing dissolved oxygen. - Abstract: Temperature fluctuation phenomena in a stratified steam-water two-phase flow in a horizontal rectangular duct, which simulate a pressurizer spray pipe of a pressurized water reactor, were studied experimentally. Vertical distributions of the temperature and the liquid velocity were measured with water of various dissolved oxygen concentrations. Large liquid temperature fluctuations were observed when the water was deaerated well and dissolved oxygen concentration was around 10 ppb. The large temperature fluctuations were not observed when the oxygen concentration was higher. It was shown that the observed temperature fluctuations were caused by the internal gravity wave since the Richardson numbers were larger than 0.25 and the temperature fluctuation frequencies were around the Brunt-Väisälä frequencies in the present experimental conditions. The temperature fluctuations decreased by the non-condensable gas since the non-condensable gas suppressed the condensation and the temperature difference in the liquid layer was small.
Seadawy, Aly R.
2017-12-01
In this study, we presented the problem formulations of models for internal solitary waves in a stratified shear flow with a free surface. The nonlinear higher order of extended KdV equations for the free surface displacement is generated. We derived the coefficients of the nonlinear higher-order extended KdV equation in terms of integrals of the modal function for the linear long-wave theory. The wave amplitude potential and the fluid pressure of the extended KdV equation in the form of solitary-wave solutions are deduced. We discussed and analyzed the stability of the obtained solutions and the movement role of the waves by making graphs of the exact solutions.
Vertical Distribution of Tidal Flow Reynolds Stress in Shallow Sea
Institute of Scientific and Technical Information of China (English)
SONG Zhi-yao; NI Zhi-hui; LU Guo-nian
2009-01-01
Based on the results of the tidal flow Reynolds stresses of the field observations,indoor experiments,and numerical models,the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper.Having been well verified with the field data and experimental data,the proposed distribution of Reynolds stress is also compared with numerical model results,and a good agreement is obtained,showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration,upward when the tidal flow is of deceleration.Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress,turbulent generation,transmission,and so on.The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit,but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.
Chronic Stress Impairs Collateral Blood Flow Recovery in Aged Mice
2014-10-15
of oxidative stress in atherosclerosis. American of Journal in Cardiology , 91, 7A–11A. 11. Balkaya, M., Prinz, V., Custodis, F., et al. (2011...femoral artery occlusion (Figs. 2 and 5). Fig. 2 Blood flow recovery measurement after FAL. Blood flow mea- sured for control ( open circle) and stressed...peripheral arterial disease. Journal General and International Medication, 18(6), 461–467. 5. Yan, L. L., Liu, K., Matthews, K. A., et al. (2003). Psychosocial
Stimulated bioluminescence by fluid shear stress associated with pipe flow
Energy Technology Data Exchange (ETDEWEB)
Cao Jing; Wang Jiangan; Wu Ronghua, E-mail: caojing981@126.com [Col. of Electronic Eng., Naval University of Engineering, Wuhan 430033 (China)
2011-01-01
Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm{sup 2}. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.
International Nuclear Information System (INIS)
Kweon, H.; Park, K. C.
2001-01-01
An analogy for evaporative heat transfer with mass transfer was derived. From von-Karman analogy which has been applied between heat and momentum transfer in single phase turbulent flow, a modified Karman analogy was suggested at present paper. Nusselt number from this analogy showed good agreement with experimental results. Such a result shows that the analogy for a complex heat transfer mode between heat transfer and momentum transfer accompanying evaporation or condensation on the interface can be established
Li, Ning; Champion, Wyatt M.; Imam, Jemal; Sidhu, Damansher; Salazar, Joseph R.; Majestic, Brian J.; Montoya, Lupita D.
2018-06-01
Communities in the Navajo Nation face public health burdens caused in part by the combustion of wood and coal for indoor heating using stoves that are old or in disrepair. Wood and coal combustion emits particulate matter (PM) with aerodynamic diameter combustion-derived PM2.5 on Navajo Nation residents. This study tested the hypothesis that PM2.5 generated from solid fuel combustion in stoves commonly used by Navajo residents would induce stratified oxidative stress responses ranging from activation of antioxidant defense to inflammation and cell death in mouse macrophages (RAW 264.7). PM2.5 emitted from burning Ponderosa Pine (PP) and Utah Juniper (UJ) wood and Black Mesa (BM) and Fruitland (FR) coal in a stove representative of those widely used by Navajo residents were collected, and their aqueous suspensions used for cellular exposure. PM from combustion of wood had significantly more elemental carbon (EC) (15%) and soluble Ni (0.0029%) than the samples from coal combustion (EC: 3%; Ni: 0.0019%) and was also a stronger activator of antioxidant enzyme heme oxygenase-1 (11-fold increase vs. control) than that from coal (5-fold increase). Only PM from PP-wood (12-fold) and BM-coal (3-fold) increased the release of inflammatory cytokine tumor necrosis factor alpha. Among all samples, PP-wood consistently had the strongest oxidative stress and inflammatory effects. PM components, i.e. low-volatility organic carbon, EC, Cu, Ni and K were positively correlated with the cellular responses. Results showed that, at the concentrations tested, emissions from all fuels did not have significant cytotoxicity. These findings suggest that PM2.5 emitted from combustion of wood and coal commonly used by Navajo residents may negatively impact the health of this community.
Energy Technology Data Exchange (ETDEWEB)
Pasquier-Guilbert, N
2004-12-15
Simultaneous knowledge of local velocity and equivalence ratio is very important in numerous combustion applications and especially for direct injection engines where the flame propagates through a heterogeneous concentration distribution of fuel-air mixture. This study reproduce heterogeneities of equivalence ratio with propane and air in a constant volume combustion vessel. The local influence of velocity and equivalence ratio on the propagation of a spark-ignited flame is studied. To create a stratification, a rich axisymmetric pulsed jet is injected in a leaner chamber and the mixing is ignited. Two optical diagnostics are used simultaneously, PIV for velocity and FARLIF for equivalence ratio, with or without combustion. All properties and range of applications of PIV and FARLIF have been verified. These methods were then used to study the characteristics of stratified combustion. (author)
Interplay between cytoskeletal stresses and cell adaptation under chronic flow.
Directory of Open Access Journals (Sweden)
Deepika Verma
Full Text Available Using stress sensitive FRET sensors we have measured cytoskeletal stresses in α-actinin and the associated reorganization of the actin cytoskeleton in cells subjected to chronic shear stress. We show that long-term shear stress reduces the average actinin stress and this effect is reversible with removal of flow. The flow-induced changes in cytoskeletal stresses are found to be dynamic, involving a transient decrease in stress (phase-I, a short-term increase (3-6 min (Phase-II, followed by a longer-term decrease that reaches a minimum in ~20 min (Phase-III, before saturating. These changes are accompanied by reorganization of the actin cytoskeleton from parallel F-actin bundles to peripheral bundles. Blocking mechanosensitive ion channels (MSCs with Gd(3+ and GsMTx4 (a specific inhibitor eliminated the changes in cytoskeletal stress and the corresponding actin reorganization, indicating that Ca(2+ permeable MSCs participate in the signaling cascades. This study shows that shear stress induced cell adaptation is mediated via MSCs.
Flow stress, subgrain size, and subgrain stability at elevated temperature
International Nuclear Information System (INIS)
Sherby, O.D.; Klundt, R.H.; Miller, A.K.
1977-01-01
Well defined subgrain boundaries dominate the microstructural changes occurring during plastic flow of polycrystalline metals at elevated temperature. The quantitative influence of subgrain size on elevated-temperature plastic flow is considered. Based on the results of tests under constant-stress and constant-structure conditions, and equation is developed which predicts the creep rate as a function of subgrain size, stress, diffusion coefficient, and elastic modulus. In general, the subgrain size is a unique function of the current modulus-compensated flow stress, but if fine subgrains can be introduced and stabilized, large increases in creep strength may result. The applicability of the phenomenological relation developed to the behavior of dispersion-strengthened materials (where the second-phase particles may predetermine the effective subgrain size) is discussed. When subgrain effects are included, it is shown that the creep rate is less dependent on stacking fault energy than has been previously thought
Local microstructure and flow stress in deformed metals
DEFF Research Database (Denmark)
Zhang, Xiaodan; Hansen, Niels; Nielsen, Chris Valentin
2017-01-01
The microstructure and flow stress of metals are related through many well-known strength-structure relationships based on structural parameters, where grain size and dislocation density are examples. In heterogeneous structures, the local stress and strain are important as they will affect...... the bulk properties. A microstructural method is presented which allows the local stress in a deformed metal to be estimated based on microstructural parameters determined by an EBSD analysis. These parameters are the average spacing of deformation introduced boundaries and the fraction of high angle...... boundaries. The method is demonstrated for two heterogeneous structures: (i) a gradient (sub)surface structure in steel deformed by shot peening; (ii) a heterogeneous structure introduced by friction between a tool and a workpiece of aluminum. Flow stress data are calculated based on the microstructural...
Stress Analysis of Fuel Rod under Axial Coolant Flow
Energy Technology Data Exchange (ETDEWEB)
Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung [Chungnam National University, Daejeon (Korea, Republic of); Park, Num Kyu; Jeon, Kyung Rok [Kerea Nuclear Fuel., Daejeon (Korea, Republic of)
2010-05-15
A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions
Stress Analysis of Fuel Rod under Axial Coolant Flow
International Nuclear Information System (INIS)
Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung; Park, Num Kyu; Jeon, Kyung Rok
2010-01-01
A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions
Two-phase flow experiments through intergranular stress corrosion cracks
International Nuclear Information System (INIS)
Collier, R.P.; Norris, D.M.
1984-01-01
Experimental studies of critical two-phase water flow, through simulated and actual intergranular stress corrosion cracks, were performed to obtain data to evaluate a leak flow rate model and investigate acoustic transducer effectiveness in detecting and sizing leaks. The experimental program included a parametric study of the effects of crack geometry, fluid stagnation pressure and temperature, and crack surface roughness on leak flow rate. In addition, leak detection, location, and leak size estimation capabilities of several different acoustic transducers were evaluated as functions of leak rate and transducer position. This paper presents flow rate data for several different cracks and fluid conditions. It also presents the minimum flows rate detected with the acoustic sensors and a relationship between acoustic signal strength and leak flow rate
Estimation of flow rates through intergranular stress corrosion cracks
International Nuclear Information System (INIS)
Collier, R.P.; Norris, D.M.
1984-01-01
Experimental studies of critical two-phase water flow, through simulated and actual intergranular stress corrosion cracks, were performed to obtain data to evaluate a leak flow rate model and investigate acoustic transducer effectiveness in detecting and sizing leaks. The experimental program included a parametric study of the effects of crack geometry, fluid stagnation pressure and temperature, and crack surface roughness on leak flow rate. In addition, leak detection, location, and leak size estimation capabilities of several different acoustic transducers were evaluated as functions of leak rate and transducer position. This paper presents flow rate data for several different cracks and fluid conditions. It also presents the minimum flow rate detected with the acoustic sensors and a relationship between acoustic signal strength and leak flow rate
Flow rate dependency of critical wall shear stress in a radial-flow cell
DEFF Research Database (Denmark)
Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.
2009-01-01
In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersion...... of a water or ethanol suspension of starch granules on the surfaces. Depending on the substrate and on the suspending liquid, the aggregates differed in size and shape. Aggregate removal was studied at two flow rates. At the lower flow rate (Re-inlet = 955), the values of critical wall shear stress...... for the different surfaces suggested that capillary forces were, for all of them, playing an important role in aggregate adhesion since aqueous based aggregates were always more difficult to remove. At the higher flow rate (Re-inlet = 2016) the critical wall shear stress increased as a result of the change...
Peacock, Tom; Blanchette, Francois; Bush, John W. M.
2005-04-01
We present the results of an experimental investigation of the flows generated by monodisperse particles settling at low Reynolds number in a stably stratified ambient with an inclined sidewall. In this configuration, upwelling beneath the inclined wall associated with the Boycott effect is opposed by the ambient density stratification. The evolution of the system is determined by the relative magnitudes of the container depth, h, and the neutral buoyancy height, hn = c0(ρp-ρf)/|dρ/dz|, where c0 is the particle concentration, ρp the particle density, ρf the mean fluid density and dρ/dz Boycott layer transports dense fluid from the bottom to the top of the system; subsequently, the upper clear layer of dense saline fluid is mixed by convection. For sufficiently strong stratification, h > hn, layering occurs. The lowermost layer is created by clear fluid transported from the base to its neutral buoyancy height, and has a vertical extent hn; subsequently, smaller overlying layers develop. Within each layer, convection erodes the initially linear density gradient, generating a step-like density profile throughout the system that persists after all the particles have settled. Particles are transported across the discrete density jumps between layers by plumes of particle-laden fluid.
Couple stress fluid flow in a rotating channel with peristalsis
Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.
2018-04-01
This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.
Stress modeling in colloidal dispersions undergoing non-viscometric flows
Dolata, Benjamin; Zia, Roseanna
2017-11-01
We present a theoretical study of the stress tensor for a colloidal dispersion undergoing non-viscometric flow. In such flows, the non-homogeneous suspension stress depends on not only the local average total stresslet-the sum of symmetric first moments of both the hydrodynamic traction and the interparticle force-but also on the average quadrupole, octupole, and higher-order moments. To compute the average moments, we formulate a six dimensional Smoluchowski equation governing the microstructural evolution of a suspension in an arbitrary fluid velocity field. Under the conditions of rheologically slow flow, where the Brownian relaxation of the particles is much faster than the spatiotemporal evolution of the flow, the Smoluchowski equation permits asymptotic solution, revealing a suspension stress that follows a second-order fluid constitutive model. We obtain a reciprocal theorem and utilize it to show that all constitutive parameters of the second-order fluid model may be obtained from two simpler linear-response problems: a suspension undergoing simple shear and a suspension undergoing isotropic expansion. The consequences of relaxing the assumption of rheologically slow flow, including the appearance of memory and microcontinuum behaviors, are discussed.
Flow stress asymmetry and cyclic stress--strain response in a BCC Ti--V alloy
International Nuclear Information System (INIS)
Koss, D.A.; Wojcik, C.C.
1976-01-01
The cyclic stress-strain response of relatively stable bcc β-phase Ti--40 percent V alloy single crystals was studied. Flow stress asymmetry found in the alloy is attributed to the fact that screw dislocations, when gliding on a (211) plane, are more mobile in the twinning direction than in the antitwinning direction. Thus the flow stress of the crystal is greater when it is sheared in the antitwinning direction than in the twinning direction (the latter case results when crystals of the 100 orientation are stressed in tension and those of the 110 orientation are stressed in compression). Such behavior can be a result of the core of a screw dislocation being asymmetric under stress which causes the flow stress asymmetry observed. It should be noted that screw dislocations dominate the low temperature deformation structure of Ti-40V, which strongly suggests deformation is controlled by screw dislocation motion. The observation in Mo that the microyield stress is independent of crystal orientation could be a result of edge dislocation motion controlling microyield in that instance and this observation would not be inconsistent with screw dislocation motion controlling the macroscopic (epsilon/sub p/ greater than 0.05 percent) deformation measured here
Sensor for Boundary Shear Stress in Fluid Flow
Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.
2012-01-01
The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.
Effects of couple stresses in MHD channel flow
International Nuclear Information System (INIS)
Soundalgekar, V.M.; Aranake, R.N.
1977-01-01
An analysis of fully developed MHD channel flow of an electrically conducting incompressible fluid, taking into account the couple stresses, is carried out. Exact solutions are derived for velocity profiles, current density, skin-friction and coefficient of mass flux. They are influenced by the magnetic field, the loading parameter k, and the non-dimensional parameter (a=b 1 /lambda). Their variations with respect to M, k and a are represented graphically, this is followed by a physical discussion. It is observed that the couple stresses are more effective in the presence of a very weak magnetic field. (Auth.)
Effects of flow unsteadiness on the wall shear stress
International Nuclear Information System (INIS)
Amiri, K; Cervantes, M J; Raisee, M
2012-01-01
Measurements were performed on pulsating fully turbulent flows in a pipe test rig with a diameter of 100 mm. Sinusoidal oscillatory flow at different frequencies was superimposed on a mean flow of averaged Reynolds number Re=20000 based on the pipe diameter. The measurements have been performed at different forcing frequencies (0.001 + < 0.08) covering all the oscillatory regimes; quasi-steady, relaxation, quasi laminar and high frequency. The amplitude of the flow oscillation was small enough to allow a linear response in the measurements, i.e., all flow parameters showed an oscillatory behavior at the frequency of the flow. The amplitude of the oscillatory flow was about 10% of the mean velocity in all cases. The results include mean and phase averaged values of different parameters. The centerline velocity was measured by a 2D LDA system. Hot film and constant temperature anemometry system was used to determine the wall shear stress. Bulk velocity and pressure gradient along the pipe were also acquired. The results showed a good agreement with the previous analytical, experimental and numerical results available in the literature.
Effects of couple stresses on MHD Couette flow
International Nuclear Information System (INIS)
Soundalgekar, V.M.; Aranake, R.N.
1978-01-01
An exact analysis of the effects of the couple stresses on the MHD Couette flow of an electrically conducting, viscous incompressible fluid is carried out. Closed form solutions are derived for the velocity, the current density, the skin-friction at the lower plate, the force to move the upper plate, and the coefficient of mass flux for (i) A→infinity, and (ii) 2M/A 1, where a is the couple stress parameter and M is the Hartmann number. These are shown graphically followed by a discussion. During the course of discussion the effects of A are quantitatively compared with those in the ordinary case. It is observed that in the presence of a magnetic field the skin friction is affected by the couple stresses. (Auth.)
Adipose tissue and skeletal muscle blood flow during mental stress
Energy Technology Data Exchange (ETDEWEB)
Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.
1989-01-01
Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.
Adipose tissue and skeletal muscle blood flow during mental stress
International Nuclear Information System (INIS)
Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.
1989-01-01
Mental stress [a modified Stroop color word conflict test (CWT)] increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation
Stress strain flow curves for Cu-OFP
International Nuclear Information System (INIS)
Sandstroem, Rolf; Hallgren, Josefin
2009-04-01
Stress strain curves of oxygen free copper alloyed with phosphorus Cu-OFP have been determined in compression and tension. The compression tests were performed at room temperature for strain rates between 10 -5 and 10 -3 1/s. The tests in tension covered the temperature range 20 to 175 deg C for strain rates between 10 -7 and 5x10 -3 1/s. The results in compression and tension were close for similar strain rates. A model for stress strain curves has been formulated using basic dislocation mechanisms. The model has been set up in such a way that fitting of parameters to the curves is avoided. By using a fundamental creep model as a basis a direct relation to creep data has been established. The maximum engineering flow stress in tension is related to the creep stress giving the same strain rate. The model reproduces the measured flow curves as function of temperature and strain rate in the investigated interval. The model is suitable to use in finite-element computations of structures in Cu-OFP
El-Asrag, Hossam A.; Ju, Yiguang
2013-04-01
Direct numerical simulations (DNSs) of a stratified flow in a homogeneous compression charge ignition (HCCI) engine are performed to investigate the exhaust gas recirculation (EGR) and temperature/mixture stratification effects on the autoignition of synthetic dimethyl ether (DME) in the negative temperature combustion region. Detailed chemistry for a DME/air mixture is employed and solved by a hybrid multi-time scale (HMTS) algorithm to reduce the computational cost. The effect of ? to mimic the EGR effect on autoignition are studied. The results show that adding ? enhances autoignition by rapid OH radical pool formation (34-46% reduction in ignition delay time) and changes the ignition heat release rates at different ignition stages. Sensitivity analysis is performed and the important reactions pathways affecting the autoignition are specified. The DNS results show that the scales introduced by thermal and mixture stratifications have a strong effect after the low temperature chemistry (LTC) ignition especially at the locations of high scalar dissipation rates. Compared to homogenous ignition, stratified ignitions show similar first autoignition delay times, but 18% reduction in the second and third ignition delay times. The results also show that molecular transport plays an important role in stratified low temperature ignition, and that the scalar mixing time scale is strongly affected by local ignition in the stratified flow. Two ignition-kernel propagation modes are observed: a wave-like, low-speed, deflagrative mode and a spontaneous, high-speed, ignition mode. Three criteria are introduced to distinguish these modes by different characteristic time scales and Damkhöler numbers using a progress variable conditioned by an ignition kernel indicator. The low scalar dissipation rate flame front is characterized by high displacement speeds and high mixing Damkhöler number. The proposed criteria are applied successfully at the different ignition stages and
Suppression of stratified explosive interactions
Energy Technology Data Exchange (ETDEWEB)
Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics
1998-01-01
Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)
National Research Council Canada - National Science Library
Zhou, Hong; Forest, M. G
2006-01-01
.... The morphology has various physical realizations, all coupled through the model equations: the orientational distribution of the ensemble of rods, anisotropic viscoelastic stresses, and flow feedback...
International Nuclear Information System (INIS)
Kwon, H.; Park, G. C.
2000-01-01
The object of experiment is improved model of evaporative heat transfer coefficient using interfacial friction factor on evaporation. Experiments have been conducted with near-vertical(87 .deg.) flat plate on evaporation for air-water countercurrent stratified flow. Experiment facility is consisted of 1.7m length and 0.2 X 0.005m cross section, the one side direct heating system which have 10kw power capacity. The interfacial shear stress, pressure drop and temperatures in test section were measured. These parameters were measured by DP-103 pressure transducer, K-type thermocouple, RTD and Hot Wire Anemometer(HWA). Experimental results were inclination as increased interfacial shear stress with increased the evaporation rate. Interfacial shear stress was increased as increased water flow rate and air flow rate too. For the evaluation of the measured evaporative heat transfer coefficients and physical understanding of the evaporation phenomena, the evaporative heat transfer coefficients were obtained through the simple calculation process by the use of mass transfer coefficient correlation and the experimental data of wavy film surface effect on shear and on evaporation
Dipyridamole cerebral flow stress test evaluating ischemic cerebrovascular diseases
International Nuclear Information System (INIS)
Xiu, Y.; Chen, S.; Sun, X.; Liu, S.; Li, W.; Fan, W.; Wang, X.
2000-01-01
To detect the clinical value of dipyridamole cerebral blood flow stress test in cerebrovascular diseases (CVD). Nineteen patients (9 male, 10 female, mean age=65) who were diagnosed as CVD were included. One suffered from infarct, two suffered from thrombosis, one feel dizziness. All 4 performed rest and stress test. The other 15 were VBI, 9 of them performed stress test. Rest and stress test were done two-day method using Elscint Apex SP-6 SPECT equipped with low energy all purpose collimator. Rest perfusion imaging was started 30 min after injecting 1.11 GBq 99m Tc-ECD. Dipyridamole stress test was done within one week. 0.56 mg/Kg dipyridamole was injected intravenously during 4 min the same dose of ECD was injected 2 min later. The acquisition started 30 min later with the same parameter. Heart rate, ECG and the patient's complaint were monitored 2 min before and after dipyridamole. After correction for attenuation, transverse, coronal and sagittal slices were reconstructed. Eighteen ROIs were drawn symmetrically on cingulate, frontal, temporal-parietal, temporal, occipital, vision cortex, basal ganglia, superior frontal and parietal on the 3 rd , 6 th , 9 th transverse slices, selecting the contralateral as the reference region. The counts per pixel in each ROI were divided by the counts of the mirror region to obtain the relative uptake ratio. We think it abnormality when the ratio is above 1,1 or below 0.9. The sensitivity for rest and stress rCBF test was compared. rCBF was decreased at 10 of 19 patients (sensitivity 52.6%). 14 had low rCBF after dipyridamole (sensitivity 72.3%), Among the patients who studied stress test, 6 had normal rCBF at rest and low rCBF after stress. The abnormal area was enlarged after dipyridamole for 1 patients, 2 improved and 2 unchanged. 8 of 15 VBI had normal rCBF at rest (sensitivity 53.3%). 9 of 15 VBI performed stress test. rCBF was normal at rest for 5 patients, rCBF was decreased after stress, it was improved for one
Stress, Flow and Particle Transport in Rock Fractures
Energy Technology Data Exchange (ETDEWEB)
Koyama, Tomofumi
2007-09-15
The fluid flow and tracer transport in a single rock fracture during shear processes has been an important issue in rock mechanics and is investigated in this thesis using Finite Element Method (FEM) and streamline particle tracking method, considering evolutions of aperture and transmissivity with shear displacement histories under different normal stresses, based on laboratory tests. The distributions of fracture aperture and its evolution during shear were calculated from the initial aperture fields, based on the laser-scanned surface roughness features of replicas of rock fracture specimens, and shear dilations measured during the coupled shear-flow-tracer tests in laboratory performed using a newly developed testing apparatus in Nagasaki University, Nagasaki, Japan. Three rock fractures of granite with different roughness characteristics were used as parent samples from which nine plaster replicas were made and coupled shear-flow tests was performed under three normal loading conditions (two levels of constant normal loading (CNL) and one constant normal stiffness (CNS) conditions). In order to visualize the tracer transport, transparent acrylic upper parts and plaster lower parts of the fracture specimens were manufactured from an artificially created tensile fracture of sandstone and the coupled shear-flow tests with fluid visualization was performed using a dye tracer injected from upstream and a CCD camera to record the dye movement. A special algorithm for treating the contact areas as zero-aperture elements was used to produce more accurate flow field simulations by using FEM, which is important for continued simulations of particle transport, but was often not properly treated in literature. The simulation results agreed well with the flow rate data obtained from the laboratory tests, showing that complex histories of fracture aperture and tortuous flow channels with changing normal stresses and increasing shear displacements, which were also captured
DECOVALEX I - Test Case 1: Coupled stress-flow model
International Nuclear Information System (INIS)
Rosengren, L.; Christianson, M.
1995-12-01
This report presents the results of the coupled stress-flow model, test case 1 of Decovalex. The model simulates the fourth loading cycle of a coupled stress-flow test and subsequent shearing up to and beyond peak shear resistance. The first loading sequence (A) consists of seven normal loading steps: 0, 5, 15, 25, 15, 5, 0 MPa. The second loading sequence (B) consists of the following eight steps: unstressed state, normal boundary loading of 25 MPa (no shearing), and then shearing of 0.5, 0.8, 2, 4, 2, 0 mm. Two different options regarding the rock joint behaviour were modeled in accordance with the problem definition. In option 1 a linear elastic joint model with Coulomb slip criterion was used. In option 2 a non-linear empirical (i.e. Barton-Bandis) joint model was used. The hydraulic condition during both load sequence A and B was a constant head of 5 m at the inlet point and 0 m at the outlet point. All model runs presented in this report were performed using the two-dimensional distinct element computer code UDEC, version 1.8. 30 refs, 36 figs
Directory of Open Access Journals (Sweden)
FU Ping
2017-08-01
Full Text Available The flow stress behavior of 5083 aluminum alloy was investigated under hot compression deformation at 523-723K,strain rates of 0.01-10s-1 and true strains of 0-0.7 with Gleeble-3800 thermal simulator. Based on the heat transfer effect on alloy deformation heat effect, the flow stress curves were corrected. The results show that influence of heat conduction can not be neglected and becomes more obvious with the increase of true strain. The corrected flow stress has little influence on the peak stress, but the steady flow stress softening trends to be diminished to some degree. The flow stress can be predicted by the Zener-Hollomon parameters in the constitutive equation. The corrected measured value exhibits a good agreement with the flow stress predicted by the constitutive equation, and the average relative error is only 5.21%.
Khalil-Ur-Rehman; Malik, M. Y.; Bilal, S.; Bibi, M.
The current analysis reports the untapped characteristics of magneto-hydrodynamic dual convection boundary layer stagnation point flow of Powell-Eyring fluid by way of cylindrical surface. Flow exploration is carried out with the combined effects of thermal and solutal stratification. The strength of temperature and concentration adjacent to the cylindrical surface is assumed to be greater than the ambient fluid. Flow conducting mathematically modelled equations are fairly transformed into system of coupled non-linear ordinary differential equations with the aid of suitable transformations. The computations are made against these resultant coupled equations through shooting technique by the support of fifth order Runge-Kutta algorithm. A parametric study is performed to examine the effect logs of various pertinent flow controlling parameters on the velocity, temperature and concentration flow regime. The achieved outcomes are validated by developing comparison with existing published literature. In addition, numerical values of skin friction coefficient and Nusselt number are presented graphically for two different geometries namely, plate and cylinder.
Wall shear stress fixed points in blood flow
Arzani, Amirhossein; Shadden, Shawn
2017-11-01
Patient-specific computational fluid dynamics produces large datasets, and wall shear stress (WSS) is one of the most important parameters due to its close connection with the biological processes at the wall. While some studies have investigated WSS vectorial features, the WSS fixed points have not received much attention. In this talk, we will discuss the importance of WSS fixed points from three viewpoints. First, we will review how WSS fixed points relate to the flow physics away from the wall. Second, we will discuss how certain types of WSS fixed points lead to high biochemical surface concentration in cardiovascular mass transport problems. Finally, we will introduce a new measure to track the exposure of endothelial cells to WSS fixed points.
Gravity-driven groundwater flow and slope failure potential: 1. Elastic effective-stress model
Iverson, Richard M.; Reid, Mark E.
1992-01-01
Hilly or mountainous topography influences gravity-driven groundwater flow and the consequent distribution of effective stress in shallow subsurface environments. Effective stress, in turn, influences the potential for slope failure. To evaluate these influences, we formulate a two-dimensional, steady state, poroelastic model. The governing equations incorporate groundwater effects as body forces, and they demonstrate that spatially uniform pore pressure changes do not influence effective stresses. We implement the model using two finite element codes. As an illustrative case, we calculate the groundwater flow field, total body force field, and effective stress field in a straight, homogeneous hillslope. The total body force and effective stress fields show that groundwater flow can influence shear stresses as well as effective normal stresses. In most parts of the hillslope, groundwater flow significantly increases the Coulomb failure potential Φ, which we define as the ratio of maximum shear stress to mean effective normal stress. Groundwater flow also shifts the locus of greatest failure potential toward the slope toe. However, the effects of groundwater flow on failure potential are less pronounced than might be anticipated on the basis of a simpler, one-dimensional, limit equilibrium analysis. This is a consequence of continuity, compatibility, and boundary constraints on the two-dimensional flow and stress fields, and it points to important differences between our elastic continuum model and limit equilibrium models commonly used to assess slope stability.
Turbulent oscillating channel flow subjected to a free-surface stress.
Kramer, W.; Clercx, H.J.H.; Armenio, V.
2010-01-01
The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations. The orientation of the surface stress is parallel with the oscillating pressure gradient and a purely pulsating mean flow develops. The Reynolds number
Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.
Wilson, Thad E
2017-05-01
Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.
Generation of sheared poloidal flows via Reynolds stress and transport barrier physics
International Nuclear Information System (INIS)
Hidalgo, C.; Pedrosa, M.A.; Sanchez, E.; Balbin, R.; Lopez-Fraguas, A.; Milligen, B. van; Silva, C.; Fernandes, H.; Varandas, C.A.F.; Riccardi, C.; Carrozza, R.; Fontanesi, M.; Carreras, B.A.; Garcia, L.
2000-01-01
A view of the latest experimental results and progress in the understanding of the role of poloidal flows driven by fluctuations via Reynolds stress is given. Reynolds stress shows a radial gradient close to the velocity shear layer location in tokamaks and stellarators, indicating that this mechanism may drive significant poloidal flows in the plasma boundary. Observation of the generation of ExB sheared flows via Reynolds stress at the ion Bernstein resonance layer has been noticed in toroidal magnetized plasmas. The experimental evidence of sheared ExB flows linked to the location of rational surfaces in stellarator plasmas might be interpreted in terms of Reynolds stress sheared driven flows. These results show that ExB sheared flows driven by fluctuations can play an important role in the generation of transport barriers. (author)
Unsteady Helical Flows of a Size-Dependent Couple-Stress Fluid
Rubbab, Qammar; Mirza, Itrat Abbas; Siddique, Imran; Irshad, Saadia
2017-01-01
The helical flows of couple-stress fluids in a straight circular cylinder are studied in the framework of the newly developed, fully determinate linear couple-stress theory. The fluid flow is generated by the helical motion of the cylinder with time-dependent velocity. Also, the couple-stress vector is given on the cylindrical surface and the nonslip condition is considered. Using the integral transform method, analytical solutions to the axial velocity, azimuthal velocity, nonsymmetric force...
Exact solutions for MHD flow of couple stress fluid with heat transfer
Directory of Open Access Journals (Sweden)
Najeeb Alam Khan
2016-01-01
Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.
Flow and Stress Field Analysis of Different Fluids and Blades for Fermentation Process
Cheng-Chi Wang; Po-Jen Cheng; Kuo-Chi Liu; Ming-Yi Tsai
2014-01-01
Fermentation techniques are applied for the biotechnology and are widely used for food manufacturing, materials processing, chemical reaction, and so forth. Different fluids and types of blades in the tank for fermentation cause distinct flow and stress field distributions on the surface between fluid and blade and various flow reactions in the tank appear. This paper is mainly focused on the analysis of flow field with different fluid viscosities and also studied the stress field acting on t...
DEFF Research Database (Denmark)
Rasmussen, Henrik K.; Bejenariu, Anca Gabriela; Hassager, Ole
2010-01-01
to the flow in the non-linear flow regime. This has allowed highly elastic measurements within the limit of pure orientational stress, as the time of the flow was considerably smaller than the Rouse time. A Doi-Edwards [J. Chem. Soc., Faraday Trans. 2 74, 1818-1832 (1978)] type of constitutive model...... with the assumption of pure configurational stress was accurately able to predict the startup as well as the reversed flow behavior. This confirms that this commonly used theoretical picture for the flow of polymeric liquids is a correct physical principle to apply. c 2010 The Society of Rheology. [DOI: 10.1122/1.3496378]...
Energy Technology Data Exchange (ETDEWEB)
Lapuerta, C
2006-10-15
During an hypothetical major accident in a pressurized water reactor, the deterioration of the core can produce a stratified pool crossed by a bubbly flow. This latter strongly impacts the heat transfers, whose intensities are crucial in the progression of the accident. In this context, this work is devoted to the diffuse interface modelling for the study of an-isothermal incompressible flows, composed of three immiscible components, with no phase change. In the diffuse interface methods, the system evolution is driven by the minimization of a free energy. The originality of our approach, derived from the Cahn-Hilliard model, is based on the particular form of the energy we proposed, which enables to have an algebraically and dynamically consistent model, in the following sense: on the one hand, the triphasic free energy is equal to the diphasic one when only two phases are present; on the other, if a phase is not initially present then it will not appear during system evolution, this last property being stable with respect to numerical errors. The existence and the uniqueness of weak and strong solutions are proved in two and three dimensions as well as a stability result for metastable states. The modelling of an an-isothermal three phase flow is further accomplished by coupling the Cahn-Hilliard equations with the energy balance and Navier-Stokes equations where surface tensions are taken into account through volume capillary forces. These equations are discretized in time and space in order to preserve properties of continuous model (volume conservation, energy estimate). Different numerical results are given, from the validation case of the lens spreading between two phases, to the study of the heat and mass transfers through a liquid/liquid interface crossed by a single bubble or a series of bubbles. (author)
Prediction of flow- induced dynamic stress in an axial pump impeller using FEM
International Nuclear Information System (INIS)
Gao, J Y; Hou, Y S; Xi, S Z; Cai, Z H; Yao, P P; Shi, H L
2013-01-01
Axial pumps play an important role in water supply and flood control projects. Along with growing requirements for high reliability and large capacity, the dynamic stress of axial pumps has become a key problem. Unsteady flow is a significant reason which results structural dynamic stress of a pump. This paper reports on a flow-induced dynamic stress simulation in an axial pump impeller at three flow conditions by using FEM code. The pressure pulsation obtained from flow simulation using CFD code was set as the force boundary condition. The results show that the maximum stress of impeller appeared at joint between blade and root flange near trailing edge or joint between blade and root flange near leading edge. The dynamic stress of the two zones was investigated under three flow conditions (0.8Q d , 1.0Q d , 1.1Q d ) in time domain and frequency domain. The frequencies of stress at zones of maximum stress are 22.9Hz and 37.5Hz as the fundamental frequency and its harmonics. The fundamental frequencies are nearly equal to vane passing frequency (22.9 Hz) and 3 times blade passing frequency (37.5Hz). The first dominant frequency at zones of maximum stress is equal to the vane passing frequency due to rotor-stator interaction between the vane and the blade. This study would be helpful for axial pumps in reducing stress, improving structure design and fatigue life
Kleczek, M.; Steeneveld, G.J.; Paci, A.; Calmer, R.; Belleudy, A.; Canonici, J.C.; Murguet, F.; Valette, V.
2014-01-01
This paper reports on a laboratory experiment in the CNRM-GAME (Toulouse) stratified water flume of a stably stratified boundary layer, in order to quantify the momentum transfer due to orographically induced gravity waves by gently undulating hills in a boundary layer flow. In a stratified fluid, a
Ocular blood flow decreases during passive heat stress in resting humans
Ikemura, Tsukasa; Miyaji, Akane; Kashima, Hideaki; Yamaguchi, Yuji; Hayashi, Naoyuki
2013-01-01
Background Heat stress induces various physiological changes and so could influence ocular circulation. This study examined the effect of heat stress on ocular blood flow. Findings Ocular blood flow, end-tidal carbon dioxide (P ETCO2) and blood pressure were measured for 12 healthy subjects wearing water-perfused tube-lined suits under two conditions of water circulation: (1) at 35°C (normothermia) for 30 min and (2) at 50°C for 90 min (passive heat stress). The blood-flow velocities in the s...
Shear flow generation by Reynolds stress and suppression of resistive g-modes
International Nuclear Information System (INIS)
Sugama, H.; Horton, W.
1993-08-01
Suppression of resistive g-mode turbulence by background shear flow generated from a small external flow source and amplified by the fluctuation-induced Reynolds stress is demonstrated and analyzed. The model leads to a paradigm for the low-to-high (L-H) confinement mode transition. To demonstrate the L-H transition model, single-helicity nonlinear fluid simulations using the vorticity equation for the electrostatic potential, the pressure fluctuation equation and the background poloidal flow equation are used in the sheared slab configuration. The relative efficiency of the external flow and the Reynolds stress for producing shear flow depends on the poloidal flow damping parameter ν which is given by neoclassical theory. For large ν, the external flow is a dominant contribution to the total background poloidal shear flow and its strength predicted by the neoclassical theory is not enough to suppress the turbulence significantly. In contrast, for small ν, we show that the fluctuations drive a Reynolds stress that becomes large and suddenly, at some critical point in time, shear flow much larger than the external flow is generated and leads to an abrupt, order unity reduction of the turbulent transport just like that of the L-H transition in tokamak experiments. It is also found that, even in the case of no external flow, the shear flow generation due to the Reynolds stress occurs through the nonlinear interaction of the resistive g-modes and reduces the transport. To supplement the numerical solutions we derive the Landau equation for the mode amplitude of the resistive g-mode taking into account the fluctuation-induced shear flow and analyze the opposite action of the Reynolds stress in the resistive g turbulence compared with the classical shear flow Kelvin-Helmholtz (K-H) driven turbulence
Gas mass transfer for stratified flows
International Nuclear Information System (INIS)
Duffey, R.B.; Hughes, E.D.
1995-01-01
We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh t = (2/√π)Sc 1/2 , where Sh t is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature
Kitagawa, Yasuhide; Narimoto, Kazutaka; Urata, Satoko; Kawaguchi, Shohei; Kuribayashi, Masato; Namiki, Mikio
2016-07-01
We noninvasively compared urinary flow in both pre- and post-transobturator tape (TOT) procedures in stress urinary incontinence (SUI) patients using previously reported corrected flow-age nomograms in healthy women. This retrospective cohort study included patients who underwent a successful TOT procedure to treat SUI. Non-instrumented uroflowmetry was performed before and 3 months after surgery. Corrected maximum flow rate (cQmax) and average flow rate (cQave) were calculated using Qmax/√voided volume (VV) and Qave/√VV respectively. The ratio of corrected flow to age-adjusted corrected flow in healthy women was calculated in each patient. Each parameter was compared against pre-TOT and 3-months post-TOT values. Sixty-two patients were eligible for study inclusion. All urinary flow parameters were significantly higher pre-TOT than at 3 months post-TOT. The number of patients with cQmax and cQave over mean flow-age nomogram, compared with healthy women, before the TOT procedure decreased 3 months post-TOT; however, in many patients, cQmax and cQave were higher than in the corrected flow-age nomogram post-TOT. No significant difference in the ratio of cQmax to age-adjusted cQmax between pre- and post-TOT in the normal urinary flow group was observed, but significantly decreased in the high urinary flow group 3 months after TOT. Urinary flow rates were higher in SUI patients compared with age-matched controls and successful TOT procedures normalized urinary flows in patients with high urinary flow. A simple evaluation of urinary flow using a corrected flow-age nomogram may be clinically useful in SUI patients.
Directory of Open Access Journals (Sweden)
Bertin H.
2006-11-01
Full Text Available Nous abordons l'étude des écoulements polyphasiques en milieu poreux hétérogène d'un point de vue théorique (méthodologie de la prise de moyenne à grande échelle et expérimental. Dans une première partie nous présentons la méthodologie permettant d'obtenir les équations à grande échelle. Le point de départ de l'étude est les équations locales, analogues aux équations de Darcy généralisées obtenues par prise de moyenne des équations de Stokes à l'échelle du pore. La prise de moyenne à grande échelle de ces équations permet d'écrire un système d'équations où les coefficients de transport équivalents sont calculés à partir des données locales, par la résolution d'un problème de fermeture explicité dans le cas quasi-statique (effets capillaires dominants. La seconde partie de notre travail concerne l'étude expérimentale d'un écoulement eau-huile dans un milieu poreux stratifié constitué de deux régions de caractéristiques physiques différentes. Les champs de saturation bidimensionnels sont mesurés tout au long de l'imbibition par absorption d'un rayonnement gamma. Les résultats expérimentaux, évolution de la fraction volumique moyenne par section en fonction du temps, sont comparés aux résultats d'une simulation numérique des équations de transport où les coefficients utilisés ont été déterminés par la méthode de prise de moyenne à grande échelle. Two-phase flow in heterogeneous porous media is studied from a theoretical point of view (the large-scale averaging method and experimentally. In the first part, we present the methodology leading to the large-scale equations. The starting point of the study is the local equation, analogous to the generalized Darcy's law obtained by averaging the Stokes equation at the pore level. The large-scale averaging of these equations leads to a system where the equivalent transport coefficients are computed from the local data by solving a closure
Jia, Yali; Bagnaninchi, Pierre O.; Yang, Ying; Haj, Alicia El; Hinds, Monica T.; Kirkpatrick, Sean J.; Wang, Ruikang K.
2009-05-01
Establishing a relationship between perfusion rate and fluid shear stress in a 3D cell culture environment is an ongoing and challenging task faced by tissue engineers. We explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low- and high-porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml.min-1. The DOCT results show that the behavior of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low-porosity and high-porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore, with a mean shear stress of 0.49+/-0.3 dyn.cm-2 and 0.38+/-0.2 dyn.cm-2, respectively. In addition, we show that the scaffold's porosity and interconnectivity can be quantified by combining analyses of the 3D structural and flow images obtained from DOCT.
Numerical simulations of the stratified oceanic bottom boundary layer
Taylor, John R.
Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory
PIV Measurement of Wall Shear Stress and Flow Structures within an Intracranial Aneurysm Model
Chow, Ricky; Sparrow, Eph; Campbell, Gary; Divani, Afshin; Sheng, Jian
2012-11-01
The formation and rupture of an intracranial aneurysm (IA) is a debilitating and often lethal event. Geometric features of the aneurysm bulb and upstream artery, such as bulb size, bulb shape, and curvature of the artery, are two groups of factors that define the flow and stresses within an IA. Abnormal flow stresses are related to rupture. This presentation discusses the development of a quasi-3D PIV technique and its application in various glass models at Re = 275 and 550 to experimentally assess at a preliminary level the impact of geometry and flow rate. Some conclusions are to be drawn linking geometry of the flow domain to rupture risk. The extracted results also serve as the baseline case and as a precursor to a companion presentation by the authors discussing the impact of flow diverters, a new class of medical devices. The PIV experiments were performed in a fully index-matched flow facility, allowing for unobstructed observations over complex geometry. A reconstruction and analysis method was devised to obtain 3D mean wall stress distributions and flow fields. The quasi 3D measurements were reconstructed from orthogonal planes encompassing the entire glass model, spaced 0.4mm apart. Wall shear stresses were evaluated from the near-wall flow viscous stresses.
Reynolds-Stress and Triple-Product Models Applied to Flows with Rotation and Curvature
Olsen, Michael E.
2016-01-01
Predictions for Reynolds-stress and triple product turbulence models are compared for flows with significant rotational effects. Driver spinning cylinder flowfield and Zaets rotating pipe case are to be investigated at a minimum.
Schwarz, Janina C. V.; Duivenvoorden, Raphaël; Nederveen, Aart J.; Stroes, Erik S. G.; VanBavel, Ed
2015-01-01
Endothelial shear stress (ESS) dynamics are a major determinant of atherosclerosis development. The frequently used Poiseuille method to estimate ESS dynamics has important limitations. Therefore, we investigated whether Womersley flow may provide a better alternative for estimation of ESS while
A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis
Jagad, P. I.; Puranik, B. P.; Date, A. W.
2018-01-01
A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell
Numerical simulation of random stresses on an annular turbulent flow
International Nuclear Information System (INIS)
Marti-Moreno, Marta
2000-01-01
The flow along a circular cylinder may induce structural vibrations. For the predictive analysis of such vibrations, the turbulent forcing spectrum needs to be characterized. The aim of this work is to study the turbulent fluid forces acting on a single tube in axial flow. More precisely we have performed numerical simulations of an annular flow. These simulations were carried out on a cylindrical staggered mesh by a finite difference method. We consider turbulent flow with Reynolds number up to 10 6 . The Large Eddy Simulation Method has been used. A survey of existent experiments showed that hydraulic diameter acts as an important parameter. We first showed the accuracy of the numerical code by reproducing the experiments of Mulcahy. The agreement between pressure spectra from computations and from experiments is good. Then, we applied this code to simulate new numerical experiments varying the hydraulic diameter and the flow velocity. (author) [fr
Flow and Stress Field Analysis of Different Fluids and Blades for Fermentation Process
Directory of Open Access Journals (Sweden)
Cheng-Chi Wang
2014-02-01
Full Text Available Fermentation techniques are applied for the biotechnology and are widely used for food manufacturing, materials processing, chemical reaction, and so forth. Different fluids and types of blades in the tank for fermentation cause distinct flow and stress field distributions on the surface between fluid and blade and various flow reactions in the tank appear. This paper is mainly focused on the analysis of flow field with different fluid viscosities and also studied the stress field acting on the blades with different scales and shapes of them under specific rotational speed. The results show that the viscosity of fluid influences the flow field and stress distributions on the blades. The maximum stress that acts on the blade is increased with the increasing of viscosity. On the other hand, the ratio of blade length to width influences stress distributions on the blade. At the same time, the inclined angle of blade is also the key parameter for the consideration of design and appropriate inclined angle of blade will decrease the maximum stress. The results provide effective means of gaining insights into the flow and stress distribution of fermentation process.
The Strain and Grain Size Dependence of the Flow Stress of Copper
DEFF Research Database (Denmark)
Hansen, Niels; Ralph, B.
1982-01-01
Tensile stress strain data for 99.999% copper at room and liquid nitrogen temperature as a function of grain size are presented together with some microstructural observations made by transmission electron microscopy. It is shown that the flow stress data, at constant strain may be expressed...
MC3D modelling of stratified explosion
International Nuclear Information System (INIS)
Picchi, S.; Berthoud, G.
1999-01-01
It is known that a steam explosion can occur in a stratified geometry and that the observed yields are lower than in the case of explosion in a premixture configuration. However, very few models are available to quantify the amount of melt which can be involved and the pressure peak that can be developed. In the stratified application of the MC3D code, mixing and fragmentation of the melt are explained by the growth of Kelvin Helmholtz instabilities due to the shear flow of the two phase coolant above the melt. Such a model is then used to recalculate the Frost-Ciccarelli tin-water experiment. Pressure peak, speed of propagation, bubble shape and erosion height are well reproduced as well as the influence of the inertial constraint (height of the water pool). (author)
MC3D modelling of stratified explosion
Energy Technology Data Exchange (ETDEWEB)
Picchi, S.; Berthoud, G. [DTP/SMTH/LM2, CEA, 38 - Grenoble (France)
1999-07-01
It is known that a steam explosion can occur in a stratified geometry and that the observed yields are lower than in the case of explosion in a premixture configuration. However, very few models are available to quantify the amount of melt which can be involved and the pressure peak that can be developed. In the stratified application of the MC3D code, mixing and fragmentation of the melt are explained by the growth of Kelvin Helmholtz instabilities due to the shear flow of the two phase coolant above the melt. Such a model is then used to recalculate the Frost-Ciccarelli tin-water experiment. Pressure peak, speed of propagation, bubble shape and erosion height are well reproduced as well as the influence of the inertial constraint (height of the water pool). (author)
The stress generated by non-Brownian fibers in turbulent channel flow simulations
Gillissen, J.J.J.; Boersma, B.J.; Mortensen, P.H.; Andersson, H.I.
2007-01-01
Turbulent fiber suspension channel flow is studied using direct numerical simulation. The effect of the fibers on the fluid mechanics is governed by a stress tensor, involving the distribution of fiber position and orientation. Properties of this function in channel flow are studied by computing the
Effect of couple stresses on hydromagnetic flow of blood through a ...
African Journals Online (AJOL)
The function of the coronary network is to supply blood to the heart; however, in cases of Coronary Artery Disease, the geometry has great influence on the nature of the blood flow and the overall performance of the heart. In this paper, the unsteady non-Newtonian flow of blood under couple stresses and a uniform external ...
Temperature and blood flow distribution in the human leg during passive heat stress.
Chiesa, Scott T; Trangmar, Steven J; González-Alonso, José
2016-05-01
The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. Copyright © 2016 the American Physiological Society.
Shear flow generation by Reynolds stress and suppression of resistive g modes
International Nuclear Information System (INIS)
Sugama, H.; Horton, W.
1993-01-01
The authors have investigated suppression of the resistive g mode turbulence by background shear flow produced by the external source and by the fluctuation-induced Reynolds stress. For that purpose, the authors used the model consisting of the equations describing the electrostatic potential φ≡(φ 0 +φ) and the pressure fluctuation p of the resistive g mode, and the equation for the background poloidal flow. They have done the single-helicity nonlinear simulations using the model equations in the sheared slab configuration. They find that, in the nonlinear turbulent regime, significant suppression of the turbulent transport is realized only when the shear flow v' E exceeds that which makes the fastest-growing linear modes marginally stable. With the shear flow which decreases the fastest linear growth rates by about a half, the turbulent transport in the saturated state is about the same as in the case of no shear flow. As seen from the equation for the background flow v E , the relative efficiency of the external flow and the Reynolds stress for producing shear flow depends on the parameter ν. For large ν, the external flow is a dominant contribution to the total background poloidal shear flow although its strength predicted by the neoclassical theory is not enough to suppress the turbulence significantly. On the other hand, for small ν, they observe that, as the fluctuations grow, the Reynolds stress becomes large and suddenly at some critical point in time shear flow much larger than the external one is generated and leads to the significant reduction of the turbulent transport just like that of the L-H transition in tokamak experiments. It is remarkable that the Reynolds stress due to the resistive g mode fluctuations works not as a conventional viscosity term weakening the shear flow but as a negative viscosity term enhancing it
Analytical solutions of couple stress fluid flows with slip boundary conditions
Directory of Open Access Journals (Sweden)
Devakar M.
2014-09-01
Full Text Available In the present article, the exact solutions for fundamental flows namely Couette, Poiseuille and generalized Couette flows of an incompressible couple stress fluid between parallel plates are obtained using slip boundary conditions. The effect of various parameters on velocity for each problem is discussed. It is found that, for each of the problems, the solution in the limiting case as couple stresses approaches to zero is similar to that of classical viscous Newtonian fluid. The results indicate that, the presence of couple stresses decreases the velocity of the fluid.
Bubble Formation in Yield Stress Fluids Using Flow-Focusing and T-Junction Devices.
Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise
2015-05-22
We study the production of bubbles inside yield stress fluids (YSFs) in axisymmetric T-junction and flow-focusing devices. Taking advantage of yield stress over capillary stress, we exhibit a robust break-up mechanism reminiscent of the geometrical operating regime in 2D flow-focusing devices for Newtonian fluids. We report that when the gas is pressure driven, the dynamics is unsteady due to hydrodynamic feedback and YSF deposition on the walls of the channels. However, the present study also identifies pathways for potential steady-state production of bubbly YSFs at large scale.
Determination of stresses in gas-turbine disks subjected to plastic flow and creep
Millenson, M B; Manson, S S
1948-01-01
A finite-difference method previously presented for computing elastic stresses in rotating disks is extended to include the computation of the disk stresses when plastic flow and creep are considered. A finite-difference method is employed to eliminate numerical integration and to permit nontechnical personnel to make the calculations with a minimum of engineering supervision. Illustrative examples are included to facilitate explanation of the procedure by carrying out the computations on a typical gas-turbine disk through a complete running cycle. The results of the numerical examples presented indicate that plastic flow markedly alters the elastic-stress distribution.
Winkel, Leah C; Hoogendoorn, Ayla; Xing, Ruoyu; Wentzel, Jolanda J; Van der Heiden, Kim
2015-07-01
Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
STAFAN, Fluid Flow, Mechanical Stress in Fractured Rock of Nuclear Waste Repository
International Nuclear Information System (INIS)
Huyakorn, P.; Golis, M.J.
1989-01-01
1 - Description of program or function: STAFAN (Stress And Flow Analysis) is a two-dimensional, finite-element code designed to model fluid flow and the interaction of fluid pressure and mechanical stresses in a fractured rock surrounding a nuclear waste repository. STAFAN considers flow behavior of a deformable fractured system with fracture-porous matrix interactions, the coupling effects of fluid pressure and mechanical stresses in a medium containing discrete joints, and the inelastic response of the individual joints of the rock mass subject to the combined fluid pressure and mechanical loading. 2 - Restrictions on the complexity of the problem: STAFAN does not presently contain thermal coupling, and it is unable to simulate inelastic deformation of the rock mass and variably saturated or two-phase flow in the fractured porous medium system
Miller, Todd S.; Bugliosi, Edward F.
2013-01-01
In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department and the Town of Dryden, New York, began a study of the stratified-drift aquifer system in the Virgil Creek and Dryden Lake Valleys in the Town of Dryden, Tompkins County. The study provided geohydrologic data needed by the town and county to develop a strategy to manage and protect their water resources. In this study area, three extensive confined sand and gravel aquifers (the upper, middle, and lower confined aquifers) compose the stratified-drift aquifer system. The Dryden Lake Valley is a glaciated valley oriented parallel to the direction of ice movement. Erosion by ice extensively widened and deepened the valley, truncated bedrock hillsides, and formed a nearly straight, U-shaped bedrock trough. The maximum thickness of the valley fill in the central part of the valley is about 400 feet (ft). The Virgil Creek Valley in the east part of the study area underwent less severe erosion by ice than the Dryden Lake Valley, and hence, it has a bedrock floor that is several hundred feet higher in altitude than that in the Dryden Lake Valley. The sources and amounts of recharge were difficult to identify in most areas because the confined aquifers are overlain by confining units. However, in the vicinity of the Virgil Creek Dam, the upper confined aquifer crops out at land surface in the floodplain of a gorge eroded by Virgil Creek, and this is where the aquifer receives large amounts of recharge from precipitation that directly falls over the aquifer and from seepage losses from Virgil Creek. The results of streamflow measurements made in Virgil Creek where it flows through the gorge indicated that the stream lost 1.2 cubic feet per second (ft3/s) or 0.78 million gallons per day (Mgal/d) of water in the reach extending from 220 ft downstream from the dam to 1,200 ft upstream from the dam. In the southern part of the study area, large amounts of recharge also replenish the
Ocular blood flow decreases during passive heat stress in resting humans.
Ikemura, Tsukasa; Miyaji, Akane; Kashima, Hideaki; Yamaguchi, Yuji; Hayashi, Naoyuki
2013-12-06
Heat stress induces various physiological changes and so could influence ocular circulation. This study examined the effect of heat stress on ocular blood flow. Ocular blood flow, end-tidal carbon dioxide (P(ET)CO2) and blood pressure were measured for 12 healthy subjects wearing water-perfused tube-lined suits under two conditions of water circulation: (1) at 35 °C (normothermia) for 30 min and (2) at 50 °C for 90 min (passive heat stress). The blood-flow velocities in the superior temporal retinal arteriole (STRA), superior nasal retinal arteriole (SNRA), and the retinal and choroidal vessels (RCV) were measured using laser-speckle flowgraphy. Blood flow in the STRA and SNRA was calculated from the integral of a cross-sectional map of blood velocity. PETCO2 was clamped at the normothermia level by adding 5% CO2 to the inspired gas. Passive heat stress had no effect on the subjects' blood pressures. The blood-flow velocity in the RCV was significantly lower after 30, 60 and 90 min of passive heat stress than the normothermic level, with a peak decrease of 18 ± 3% (mean ± SE) at 90 min. Blood flow in the STRA and SNRA decreased significantly after 90 min of passive heat stress conditions, with peak decreases of 14 ± 3% and 14 ± 4%, respectively. The findings of this study suggest that passive heat stress decreases ocular blood flow irrespective of the blood pressure or arterial partial pressure of CO2.
Temperature and strain-rate dependence of the flow stress of ultrapure tantalum single crystals
International Nuclear Information System (INIS)
Werner, M.
1987-01-01
Measurements of the temperature dependence of the cyclic flow stress of ultrapure tantalum single crystals (RRR >∼ 14000) are extended to lower temperatures. After cyclic deformation well into saturation at 400 K, the temperature dependence of the flow stress is measured between 80 and 450 K at five different plastic resolved shear-strain rates, ε pl , in the range 2 x 10 -5 to 6 x 10 -3 s -1 . Below a critical temperature T k the flow stress is dominantly controlled by the mobility of screw dislocations. A recent theory of Seeger describes the 'thermal' component, σ*, of the flow stress (resolved shear stress) in the temperature and stress regime where the strain rate is determined by the formation and migration of kink pairs. The analytical expressions are valid in well-defined ranges of stress and temperature. The evaluation of the experimental data yields a value for the formation enthalpy of two isolated kinks 2H k = 0.98 eV. From the low-stress (σ* k = 2.0 x 10 -6 m 2 s -1 . The product of the density of mobile screw dislocations and the distance between insurmountable obstacles is found to be 2 x 10 -5 m -1 . The stress dependence of the kink-pair formation enthalpy H kp follows the theoretically predicted curve in the elastic-interaction stress regime. At the transition to the line-tension approximation (near σ* ∼ 80 MPa) the activation volume increases rather abruptly. Moreover, the quantitative analysis involves kinks other than those of minimum height. The most likely candidates are kinks on {211} planes. (author)
Estimation of shear stress in counter-current gas-liquid annular two-phase flow
International Nuclear Information System (INIS)
Abe, Yutaka; Akimoto, Hajime; Murao, Yoshio
1991-01-01
The accuracy of the correlations of the friction factor is important for the counter-current flow (CCF) analysis with two-fluid model. However, existing two fluid model codes use the correlations of friction factors for co-current flow or correlation developed based on the assumption of no wall shear stress. The assessment calculation for two fluid model code with those existing correlations of friction factors shows the falling water flow rate is overestimated. Analytical model is developed to calculate the shear stress distribution in water film at CCF in order to get the information on the shear stress at the interface and the wall. The analytical results with the analysis model and Bharathan's CCF data shows that the wall shear stress acting on the falling water film is almost same order as the interfacial shear stress and the correlations for co-current flow cannot be applied to the counter-current flow. Tentative correlations of the interfacial and the wall friction factors are developed based on the results of the present study. (author)
Characterization Of Flow Stress Of Different AA6082 Alloys By Means Of Hot Torsion Test
International Nuclear Information System (INIS)
Donati, Lorenzo; El Mehtedi, Mohamad
2011-01-01
FEM simulations are become the most powerful tools in order to optimize the different aspects of the extrusion process and an accurate flow stress definition of the alloy is a prerequisite for a reliable effectiveness of the simulation. In the paper the determination of flow stress by means of hot torsion test is initially presented and discussed: the several approximations that are usually introduced in flow stress computation are described and computed for an AA6082 alloy in order to evidence the final effect on curves shapes. The procedure for regressing the parameters of the sinhyperbolic flow stress definition is described in detailed and applied to the described results. Then four different alloys, extracted by different casting batches but all namely belonging to the 6082 class, were hot torsion tested in comparable levels of temperature and strain rate up to specimen failure. The results are analyzed and discussed in order to understand if a mean flow stress behavior can be identified for the whole material class at the different tested conditions or if specific testing conditions (chemical composition of the alloy, specimen shape, etc) influence the materials properties to a higher degree.
Flow stress anisotropy caused by geometrically necessary boundaries
DEFF Research Database (Denmark)
Hansen, N.; Juul Jensen, D.
1992-01-01
of dislocations. A model has been proposed for this microstructural anisotropy based on the assumptions that (i) the average slip plane is at an angle of 45-degrees to the direction of the applied stress and that (ii) a strengthening parameter is the mean distance in the slip plane between the geometrically...... necessary boundaries. For different macroscopic arrangements of such boundaries, the model predictions are in good qualitative and quantitative agreement with experiments....
Non-Newtonian plastic flow of a Ni-Si-B metallic glass at low stresses
International Nuclear Information System (INIS)
Csach, K.; Fursova, Y.V.; Khonik, V.A.; Ocelik, V.
1998-01-01
The problem of the rheological behavior of metallic glasses (MGs) is quite important both from theoretical and practical viewpoints. Early experiments carried out on MGs at temperatures T > 300 K using low shear stress levels revealed plastic flow to be Newtonian while measurements at relative high shear stresses (more than 200 to 400 MPa, depending on temperature, thermal prehistory of samples and chemical composition) indicated a non-linear behavior with 1 < m < 12. Numerous investigations performed later both on as-cast and relaxed MGs of various chemical compositions using a number of testing methods (tensile creep, tensile and bend stress relaxation) showed that a transition from Newtonian behavior at low stresses to a non-linear flow at high stresses was observed. At present, such a situation is considered to be generally accepted. The authors performed precise creep measurements of a Ni-Si-B metallic glass. The results obtained indicate that plastic flow in this case at low tensile stress (12 le σ le 307 MPa) is clearly non-Newtonian and, consequently, the viscosity is stress dependent
Electromagnetic waves in stratified media
Wait, James R; Fock, V A; Wait, J R
2013-01-01
International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne
Communication: a relationship between hardness and flow stress of ordered Zr3Al polycrystals
International Nuclear Information System (INIS)
Schulson, E.M.; Roy, J.A.
1977-01-01
The purpose of this note is to describe a relationship between hardness and flow stress for the ordered L1$sub 2$ phase Zr$sub 3$Al, a possible structural material for use in nuclear power reactors. Experimental data obtained with the Zr-8.9% Al alloy lead to the conclusion that the hardness of polycrystalline Zr$sub 3$Al obeys an expression of the Hall-Petch form. When combined with a similar expression for flow stress, established previously, a simple relationship is obtained for flow stress in terms of hardness of well annealed material. Hardness measurements thus provide a rapid and inexpensive assessment of the strength of Zr$sub 3$Al. 8 refs
Stress and flow analyses of ultraviolet-curable resin during curing
Umezaki, Eisaku; Okano, Akira; Koyama, Hiroto
2014-06-01
The stress and flow generated in ultraviolet (UV)-curable resin during curing in molds were measured to investigate their relationship. The specimens were molds consisting of glass plates and acrylic bars, and UV-curable liquid resin. The specimens were illuminated from above with UV rays. Photoelastic and visual images were separately obtained at a constant time interval using cameras during curing. To help obtain the visual images, acrylic powder was mixed with the liquid resin. The stress was obtained from the photoelastic images by a digital photoelastic technique with phase stepping, and the flow was obtained from the visual images by a particle-tracking velocimetry technique. Results indicate that the stress generated in the UV-curable resin during curing depends on the degree of contact between the mold and the cured area of the resin, and is hardly related to the flow.
FlowPing - The New Tool for Throughput and Stress Testing
Directory of Open Access Journals (Sweden)
Ondrej Vondrous
2015-01-01
Full Text Available This article presents a new tool for network throughput and stress testing. The FlowPing tool is easy to use, and its basic output is very similar to standard Linux ping application. The FlowPing tool is not limited to reach-ability or round trip time testing but is capable of complex UDP based throughput stress testing with rich reporting capabilities on client and server sides. Our new tool implements features, which allow the user to perform tests with variable packet size and traffic rate. All these features can be used in one single test run. This allows the user to use and develop new methodologies for network throughput and stress testing. With the FlowPing tool, it is easy to perform the test with the slowly increasing the amount of network traffic and monitor the behavior of network when the congestion occurs.
Kleeorin, N.
2018-06-01
We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.
Stratified medicine and reimbursement issues
Fugel, Hans-Joerg; Nuijten, Mark; Postma, Maarten
2012-01-01
Stratified Medicine (SM) has the potential to target patient populations who will most benefit from a therapy while reducing unnecessary health interventions associated with side effects. The link between clinical biomarkers/diagnostics and therapies provides new opportunities for value creation to
Grigioni, Mauro; Daniele, Carla; D'Avenio, Giuseppe; Barbaro, Vincenzo
2002-05-01
Turbulent flow generated by prosthetic devices at the bloodstream level may cause mechanical stress on blood particles. Measurement of the Reynolds stress tensor and/or some of its components is a mandatory step to evaluate the mechanical load on blood components exerted by fluid stresses, as well as possible consequent blood damage (hemolysis or platelet activation). Because of the three-dimensional nature of turbulence, in general, a three-component anemometer should be used to measure all components of the Reynolds stress tensor, but this is difficult, especially in vivo. The present study aimed to derive the maximum Reynolds shear stress (RSS) in three commercially available prosthetic heart valves (PHVs) of wide diffusion, starting with monodimensional data provided in vivo by echo Doppler. Accurate measurement of PHV flow field was made using laser Doppler anemometry; this provided the principal turbulence quantities (mean velocity, root-mean-square value of velocity fluctuations, average value of cross-product of velocity fluctuations in orthogonal directions) needed to quantify the maximum turbulence-related shear stress. The recorded data enabled determination of the relationship, the Reynolds stresses ratio (RSR) between maximum RSS and Reynolds normal stress in the main flow direction. The RSR was found to be dependent upon the local structure of the flow field. The reported RSR profiles, which permit a simple calculation of maximum RSS, may prove valuable during the post-implantation phase, when an assessment of valve function is made echocardiographically. Hence, the risk of damage to blood constituents associated with bileaflet valve implantation may be accurately quantified in vivo.
International Nuclear Information System (INIS)
Tonkovic, Zdenko; Skozrit, Ivica; Alfirevic, Ivo
2008-01-01
The influence of the choice of flow stress on the plastic collapse estimation of axially cracked steam generator (SG) tubes is considered. The plastic limit and collapse loads of thick-walled tubes with external axial semi-elliptical surface cracks are investigated by three-dimensional non-linear finite element (FE) analyses. The limit pressure solution as a function of the crack depth, length and tube geometry has been developed on the basis of extensive FE limit load analyses employing the elastic-perfectly plastic material behaviour and small strain theory. Unlike the existing solutions, the newly developed analytical approximation of the plastic limit pressure for thick-walled tubes is applicable to a wide range of crack dimensions. Further, the plastic collapse analysis with a real strain-hardening material model and a large deformation theory is performed and an analytical approximation for the estimation of the flow stress is proposed. Numerical results show that the flow stress, defined by some failure assessment diagram (FAD) methods, depends not only on the tube material, but also on the crack geometry. It is shown that the plastic collapse pressure results, in the case of deeper cracks obtained by using the flow stress as the average of the yield stress and the ultimate tensile strength, can become unsafe
Cox, Christopher; Plesniak, Michael W.
2017-11-01
One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.
Eshagh, Mehdi; Steinberger, Bernhard; Tenzer, Robert; Tassara, Andrés
2018-05-01
Based on Hager and O'Connell's solution to mantle flow equations, the stresses induced by mantle convection are determined using the density and viscosity structure in addition to topographic data and a plate velocity model. The solution to mantle flow equations requires the knowledge of mantle properties that are typically retrieved from seismic information. Large parts of the world are, however, not yet covered sufficiently by seismic surveys. An alternative method of modeling the stress field was introduced by Runcorn. He formulated a direct relation between the stress field and gravity data, while adopting several assumptions, particularly disregarding the toroidal mantle flow component and mantle viscosity variations. A possible way to overcome theoretical deficiencies of Runcorn's theory as well as some practical limitations of applying Hager and O'Connell's theory (in the absence of seismic data) is to combine these two methods. In this study, we apply a least-squares analysis to combine these two methods based on the gravity data inversion constraint on mantle flow equations. In particular, we use vertical gravity gradients from the Gravity field and steady state Ocean Circulation Explorer that are corrected for the gravitational contribution of crustal density heterogeneities prior to applying a localized gravity-gradient inversion. This gravitational contribution is estimated based on combining the Vening Meinesz-Moritz and flexural isostatic theories. Moreover, we treat the non-isostatic effect implicitly by applying a band-limited kernel of the integral equation during the inversion. In numerical studies of modeling, the stress field within the South American continental lithosphere we compare the results obtained after applying Runcorn and Hager and O'Connell's methods as well as their combination. The results show that, according to Hager and O'Connell's (mantle flow) solution, the maximum stress intensity is inferred under the northern Andes
Molecular characteristics of stress overshoot for polymer melts under start-up shear flow.
Jeong, Sohdam; Kim, Jun Mo; Baig, Chunggi
2017-12-21
Stress overshoot is one of the most important nonlinear rheological phenomena exhibited by polymeric liquids undergoing start-up shear at sufficient flow strengths. Despite considerable previous research, the fundamental molecular characteristics underlying stress overshoot remain unknown. Here, we analyze the intrinsic molecular mechanisms behind the overshoot phenomenon using atomistic nonequilibrium molecular dynamics simulations of entangled linear polyethylene melts under shear flow. Through a detailed analysis of the transient rotational chain dynamics, we identify an intermolecular collision angular regime in the vicinity of the chain orientation angle θ ≈ 20° with respect to the flow direction. The shear stress overshoot occurs via strong intermolecular collisions between chains in the collision regime at θ = 15°-25°, corresponding to a peak strain of 2-4, which is an experimentally well-known value. The normal stress overshoot appears at approximately θ = 10°, at a corresponding peak strain roughly equivalent to twice that for the shear stress. We provide plausible answers to several basic questions regarding the stress overshoot, which may further help understand other nonlinear phenomena of polymeric systems.
A new sensor for stress measurement based on blood flow fluctuations
Fine, I.; Kaminsky, A. V.; Shenkman, L.
2016-03-01
It is widely recognized that effective stress management could have a dramatic impact on health care and preventive medicine. In order to meet this need, efficient and seamless sensing and analytic tools for the non-invasive stress monitoring during daily life are required. The existing sensors still do not meet the needs in terms of specificity and robustness. We utilized a miniaturized dynamic light scattering sensor (mDLS) which is specially adjusted to measure skin blood flow fluctuations and provides multi- parametric capabilities. Based on the measured dynamic light scattering signal from the red blood cells flowing in skin, a new concept of hemodynamic indexes (HI) and oscillatory hemodynamic indexes (OHI) have been developed. This approach was utilized for stress level assessment for a few usecase scenario. The new stress index was generated through the HI and OHI parameters. In order to validate this new non-invasive stress index, a group of 19 healthy volunteers was studied by measuring the mDLS sensor located on the wrist. Mental stress was induced by using the cognitive dissonance test of Stroop. We found that OHIs indexes have high sensitivity to the mental stress response for most of the tested subjects. In addition, we examined the capability of using this new stress index for the individual monitoring of the diurnal stress level. We found that the new stress index exhibits similar trends as reported for to the well-known diurnal behavior of cortisol levels. Finally, we demonstrated that this new marker provides good sensitivity and specificity to the stress response to sound and musical emotional arousal.
Stratified charge rotary engine combustion studies
Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.
1989-07-01
Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.
An algebraic stress/flux model for two-phase turbulent flow
International Nuclear Information System (INIS)
Kumar, R.
1995-12-01
An algebraic stress model (ASM) for turbulent Reynolds stress and a flux model for turbulent heat flux are proposed for two-phase bubbly and slug flows. These mathematical models are derived from the two-phase transport equations for Reynolds stress and turbulent heat flux, and provide C μ , a turbulent constant which defines the level of eddy viscosity, as a function of the interfacial terms. These models also include the effect of heat transfer. When the interfacial drag terms and the interfacial momentum transfer terms are absent, the model reduces to a single-phase model used in the literature
Turbulent Reynolds stress and quadrant event activity in wind flow over a coastal foredune
Chapman, Connie A.; Walker, Ian J.; Hesp, Patrick A.; Bauer, Bernard O.; Davidson-Arnott, Robin G. D.
2012-05-01
Recent research on quasi-instantaneous turbulent kinematic Reynolds stresses (RS, - u'w') and decomposed quadrant event activity (e.g., ejections and sweeps) over dunes in fluvial settings and in wind tunnels has shown that turbulent stresses at the toe of a dune often exceed time-averaged, streamwise shear stress (ρ u * 2) estimates. It is believed that semi-coherent turbulent structures are conveyed toward the bed along concave streamlines in this region and that impact of these structures cause fluctuations in local surface stresses that assist in grain entrainment. This has been hypothesized to explain how sand is supplied to the windward slope through a region of flow stagnation. Toward the crest, surface stress increases and becomes dominated by streamwise accelerations resulting from streamline compression and convexity that suppress vertical motions. High-frequency (32 Hz) measurements of turbulent wind flow from 3-D ultrasonic anemometers are analyzed for oblique onshore flow over a vegetated coastal foredune in Prince Edward Island, Canada. Reynolds stress and quadrant activity distributions varied with height (0.60 m and 1.66 m) and location over the dune. In general, quadrant 2 ejection (u' 0) and quadrant 4 sweep activity (u' > 0, w' 0, w' > 0) and quadrant 3 inward interaction (u' dune and may help to explain sand transport potential and dune maintenance. For example, areas with a high frequency of ejection and sweep activity may have higher rates of sediment entrainment and transport, whereas areas with lower ejection and sweep activity and an increase in outward and inward interactions, which contribute negatively to Reynolds stress generation, may experience a greater potential for deposition. Further research on associations between quadrant event activity and coincident sand transport is required to confirm this hypothesis and the resultant significance of the flow exuberance effect in aeolian dune morphodynamics.
Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.
1999-01-01
The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge
International Nuclear Information System (INIS)
Archambeau, C.B.
1994-01-01
A fractured solid under stress loading (or unloading) can be viewed as behaving macroscopically as a medium with internal, hidden, degrees of freedom, wherein changes in fracture geometry (i.e. opening, closing and extension) and flow of fluid and gas within fractures will produce major changes in stresses and strains within the solid. Likewise, the flow process within fractures will be strongly coupled to deformation within the solid through boundary conditions on the fracture surfaces. The effects in the solid can, in part, be phenomenologically represented as inelastic or plastic processes in the macroscopic view. However, there are clearly phenomena associated with fracture growth and open fracture fluid flows that produce effects that can not be described using ordinary inelastic phenomenology. This is evident from the fact that a variety of energy release phenomena can occur, including seismic emissions of previously stored strain energy due to fracture growth, release of disolved gas from fluids in the fractures resulting in enhanced buoyancy and subsequent energetic flows of gas and fluids through the fracture system which can produce raid extension of old fractures and the creation of new ones. Additionally, the flows will be modulated by the opening and closing of fractures due to deformation in the solid, so that the flow process is strongly coupled to dynamical processes in the surrounding solid matrix, some of which are induced by the flow itself
Directory of Open Access Journals (Sweden)
Minghui Li
2016-05-01
Full Text Available The permeability of coal is a critical parameter in estimating the performance of coal reservoirs. Darcy’s law describes the flow pattern that the permeability has a linear relationship with the flow velocity. However, the stress induced deformation and damage can significantly influence the gas flow pattern and permeability of coal. Coals from Songzao coalfield in Chongqing, southwest China were collected for the study. The gas flow velocities under different injection gas pressures and effective stresses in the intact coal and damaged coal were tested using helium, incorporating the role of gas flow pattern on the permeability of coal. The relationships between the flow velocity and square of gas pressure gradient were discussed, which can help us to investigate the transformation conditions of gas linear flow and gas nonlinear flow in the coal. The results showed that the gas flow in the intact coal existed pseudo-initial flow rate under low effective stress. The low-velocity non-Darcy gas flow gradually occurred and the start-up pressure gradient increased in the coal as the effective stress increased. The gas flow rate in the damaged coal increased nonlinearly as the square of pressure gradient increased under low effective stress. The instability of gas flow caused by high ratio of injection gas pressure over effective stress in the damaged coal contributed to the increase of the gas flow rate. As the effective stress increased, the increase of gas flow rate in coal turned to be linear. The mechanisms of the phenomena were explored according to the experimental results. The permeability of coal was corrected based on the relationships between the flow velocity and square of gas pressure gradient, which showed advantages in accurately estimating the performance of coal reservoirs.
A film-based wall shear stress sensor for wall-bounded turbulent flows
Amili, Omid; Soria, Julio
2011-07-01
In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.
influence of delta ferrite on the flow stress grain size relationship
African Journals Online (AJOL)
user
SIZE RELATIONSHIP OF AN AUSTENITIC STAINLESS STEEL by ... The effect of delta ferrite on the flow stress-grain size relation is investigated. ... some of these deviations, new models have .... J. N. Petch, J of Iron and Steel Inst., 174 25,.
DETECTING FOREST STRESS AND DECLINE IN RESPONSE TO INCREASING RIVER FLOW IN SOUTHWEST FLORIDA, USA
Forest stress and decline resulting from increased river flows were investigated in Myakka River State Park (MRSP), Florida, USA. Since 1977, land-use changes around the upper Myakka River watershed have resulted in significant increases in water entering the river, which have...
Muscle blood flow and muscle metabolism during exercise and heat stress
DEFF Research Database (Denmark)
Nielsen, Bodil; Savard, G; Richter, Erik
1990-01-01
The effect of heat stress on blood flow and metabolism in an exercising leg was studied in seven subjects walking uphill (12-17%) at 5 km/h on a treadmill for 90 min or until exhaustion. The first 30 min of exercise were performed in a cool environment (18-21 degrees C); then subjects moved...
The Stratified Legitimacy of Abortions.
Kimport, Katrina; Weitz, Tracy A; Freedman, Lori
2016-12-01
Roe v. Wade was heralded as an end to unequal access to abortion care in the United States. However, today, despite being common and safe, abortion is performed only selectively in hospitals and private practices. Drawing on 61 interviews with obstetrician-gynecologists in these settings, we examine how they determine which abortions to perform. We find that they distinguish between more and less legitimate abortions, producing a narrative of stratified legitimacy that privileges abortions for intended pregnancies, when the fetus is unhealthy, and when women perform normative gendered sexuality, including distress about the abortion, guilt about failure to contracept, and desire for motherhood. This stratified legitimacy can perpetuate socially-inflected inequality of access and normative gendered sexuality. Additionally, we argue that the practice by physicians of distinguishing among abortions can legitimate legislative practices that regulate and restrict some kinds of abortion, further constraining abortion access. © American Sociological Association 2016.
Application of a Full Reynolds Stress Model to High Lift Flows
Lee-Rausch, E. M.; Rumsey, C. L.; Eisfeld, B.
2016-01-01
A recently developed second-moment Reynolds stress model was applied to two challenging high-lift flows: (1) transonic flow over the ONERA M6 wing, and (2) subsonic flow over the DLR-F11 wing-body configuration from the second AIAA High Lift Prediction Workshop. In this study, the Reynolds stress model results were contrasted with those obtained from one- and two{equation turbulence models, and were found to be competitive in terms of the prediction of shock location and separation. For an ONERA M6 case, results from multiple codes, grids, and models were compared, with the Reynolds stress model tending to yield a slightly smaller shock-induced separation bubble near the wing tip than the simpler models, but all models were fairly close to the limited experimental surface pressure data. For a series of high-lift DLR{F11 cases, the range of results was more limited, but there was indication that the Reynolds stress model yielded less-separated results than the one-equation model near maximum lift. These less-separated results were similar to results from the one-equation model with a quadratic constitutive relation. Additional computations need to be performed before a more definitive assessment of the Reynolds stress model can be made.
RADIAL STABILITY IN STRATIFIED STARS
International Nuclear Information System (INIS)
Pereira, Jonas P.; Rueda, Jorge A.
2015-01-01
We formulate within a generalized distributional approach the treatment of the stability against radial perturbations for both neutral and charged stratified stars in Newtonian and Einstein's gravity. We obtain from this approach the boundary conditions connecting any two phases within a star and underline its relevance for realistic models of compact stars with phase transitions, owing to the modification of the star's set of eigenmodes with respect to the continuous case
Effect of the induced magnetic field on peristaltic flow of a couple stress fluid
International Nuclear Information System (INIS)
Mekheimer, Kh.S.
2008-01-01
We have analyzed the MHD flow of a conducting couple stress fluid in a slit channel with rhythmically contracting walls. In this analysis we are taking into account the induced magnetic field. Analytical expressions for the stream function, the magnetic force function, the axial pressure gradient, the axial induced magnetic field and the distribution of the current density across the channel are obtained using long wavelength approximation. The results for the pressure rise, the frictional force per wave length, the axial induced magnetic field and distribution of the current density across the channel have been computed numerically and the results were studied for various values of the physical parameters of interest, such as the couple stress parameter γ, the Hartmann number M, the magnetic Reynolds number R m and the time averaged mean flow rate θ. Contour plots for the stream and magnetic force functions are obtained and the trapping phenomena for the flow field is discussed
Energy Technology Data Exchange (ETDEWEB)
Resende, P.R. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal)]. E-mail: resende@fe.up.pt; Escudier, M.P. [Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH (United Kingdom)]. E-mail: escudier@liv.ac.uk; Presti, F [Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH (United Kingdom); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEM, Universidade do Minho Campus de Azurem, 4800-058 Guimaraes (Portugal)]. E-mail: fpinho@dem.uminho.pt; Cruz, D.O.A. [Departamento de Engenharia Mecanica, Universidade Federal do Para-UFPa Campus Universitario do Guama, 66075-900 Belem, Para (Brazil)]. E-mail: doac@ufpa.br
2006-04-15
An anisotropic low Reynolds number k-{epsilon} turbulence model has been developed and its performance compared with experimental data for fully-developed turbulent pipe flow of four different polymer solutions. Although the predictions of friction factor, mean velocity and turbulent kinetic energy show only slight improvements over those of a previous isotropic model [Cruz, D.O.A., Pinho, F.T., Resende, P.R., 2004. Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newt. Fluid Mech. 121, 127-141], the new turbulence model is capable of predicting the enhanced anisotropy of the Reynolds normal stresses that accompanies polymer drag reduction in turbulent flow.
International Nuclear Information System (INIS)
Resende, P.R.; Escudier, M.P.; Presti, F; Pinho, F.T.; Cruz, D.O.A.
2006-01-01
An anisotropic low Reynolds number k-ε turbulence model has been developed and its performance compared with experimental data for fully-developed turbulent pipe flow of four different polymer solutions. Although the predictions of friction factor, mean velocity and turbulent kinetic energy show only slight improvements over those of a previous isotropic model [Cruz, D.O.A., Pinho, F.T., Resende, P.R., 2004. Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newt. Fluid Mech. 121, 127-141], the new turbulence model is capable of predicting the enhanced anisotropy of the Reynolds normal stresses that accompanies polymer drag reduction in turbulent flow
Bulthuis, Marjolein S; Jan Jager, Derk H; Brand, Henk S
2018-03-09
This aimed to assess the potential role of chronic stress in saliva secretion, xerostomia, and oral health in a population attending a saliva clinic. Data of 114 patients who met the inclusion criteria and completed all questionnaires were analyzed in this study. Participants completed several validated questionnaires, including the Perceived Stress Scale, the Oral Health Impact Profile (OHIP-14), Xerostomia Inventory (XI), and Bother xerostomia Index (BI). Subsequently, the unstimulated, chewing-stimulated, and citric acid-stimulated saliva secretion rates were determined gravimetrically. Data were evaluated using Spearman's correlation analysis and the Mann-Whitney U test. A significant correlation was observed between perceived stress and XI score (r = 0.312, p = 0.001), as well as between perceived stress and BI score (r = 0.334, p = 0.001). Stress levels also were significantly associated with OHIP-14 scores (r = 0.420, p stress and salivary flow rate could not be established. In this population, perceived chronic stress seems to be related to several aspects of dry mouth, including the perception of dry mouth, suffering from dry mouth, and the impact on quality of life. These effects were independent of the use of psychotropic medication. No actual reduction in salivary flow was found. Further studies to explore the causal linkage of stress with xerostomia seem warranted. Perceived chronic stress seems to be related with several aspects of dry mouth. This finding might be relevant in future prevention and treatment of xerostomia.
The effect of existing turbulence on stratified shear instability
Kaminski, Alexis; Smyth, William
2017-11-01
Ocean turbulence is an essential process governing, for example, heat uptake by the ocean. In the stably-stratified ocean interior, this turbulence occurs in discrete events driven by vertical variations of the horizontal velocity. Typically, these events have been modelled by assuming an initially laminar stratified shear flow which develops wavelike instabilities, becomes fully turbulent, and then relaminarizes into a stable state. However, in the real ocean there is always some level of turbulence left over from previous events, and it is not yet understood how this turbulence impacts the evolution of future mixing events. Here, we perform a series of direct numerical simulations of turbulent events developing in stratified shear flows that are already at least weakly turbulent. We do so by varying the amplitude of the initial perturbations, and examine the subsequent development of the instability and the impact on the resulting turbulent fluxes. This work is supported by NSF Grant OCE1537173.
Estimation of the supplementary axial wall stress generated at peak flow by an arterial stenosis
International Nuclear Information System (INIS)
Doriot, Pierre-Andre
2003-01-01
Mechanical stresses in arterial walls are known to be implicated in the development of atherosclerosis. While shear stress and circumferential stress have received a lot of attention, axial stress has not. Yet, stenoses can be intuitively expected to produce a supplementary axial stress during flow systole in the region immediately proximal to the constriction cone. In this paper, a model for the estimation of this effect is presented, and ten numerical examples are computed. These examples show that the cyclic increase in axial stress can be quite considerable in severe stenoses (typically 120% or more of the normal stress value). This result is in best agreement with the known mechanical or morphological risk factors of stenosis progression and restenosis (hypertension, elevated pulse pressure, degree of stenosis, stenosis geometry, residual stenosis, etc). The supplementary axial stress generated by a stenosis might create the damages in the endothelium and in the elastic membranes which potentiate the action of the other risk factors (hyperlipidaemia, diabetes, etc). It could thus be an important cause of stenosis progression and of restenosis
Estimation of the supplementary axial wall stress generated at peak flow by an arterial stenosis
Doriot, Pierre-André
2003-01-01
Mechanical stresses in arterial walls are known to be implicated in the development of atherosclerosis. While shear stress and circumferential stress have received a lot of attention, axial stress has not. Yet, stenoses can be intuitively expected to produce a supplementary axial stress during flow systole in the region immediately proximal to the constriction cone. In this paper, a model for the estimation of this effect is presented, and ten numerical examples are computed. These examples show that the cyclic increase in axial stress can be quite considerable in severe stenoses (typically 120% or more of the normal stress value). This result is in best agreement with the known mechanical or morphological risk factors of stenosis progression and restenosis (hypertension, elevated pulse pressure, degree of stenosis, stenosis geometry, residual stenosis, etc). The supplementary axial stress generated by a stenosis might create the damages in the endothelium and in the elastic membranes which potentiate the action of the other risk factors (hyperlipidaemia, diabetes, etc). It could thus be an important cause of stenosis progression and of restenosis.
Ternet, D.J.; Larson, R.G.; Leal, L.G.
2001-01-01
In this work we attempt to determine the origin of damped stress oscillations upon flow start-up of a nematic liquid crystalline monodomain. These damped stress oscillations were first observed by Gu et¿al. (1993) in the cone-plate flow cell and have since also been observed by Mather et¿al. (1997)
Momentum balance and stresses in a suspension of spherical particles in a plane Couette flow
Rahmani, Mona; Hammouti, Abdelkader; Wachs, Anthony
2018-04-01
Non-Brownian suspension of monodisperse spherical particles, with volume fractions ranging between ϕ = 0.05 and 0.38 and particle Reynolds numbers ranging between Rep = 0.002 and 20, in plane Couette shear flows is investigated using three-dimensional particle-resolved numerical simulations. We examine the effects of volume fraction and particle Reynolds number on the macroscopic and microscopic stresses in the fluid phase. The effective viscosity of the suspension is in a good agreement with the previous empirical and experimental studies. At Rep = 20, however, the effective viscosity increases significantly compared to the lower particle Reynolds number simulations in the Stokes flow regime. Examining the stresses over the depth of the Couette gap reveals that this increase in wall shear stresses at high particle Reynolds numbers is mainly due to the significantly higher particle phase stress contributions. Next, we examine the momentum balance in the fluid and particle phase for different regimes to assess the significance of particle/particle interaction and fluid and particle inertia. At the highest particle Reynolds number and volume fraction, the particle inertia plays a dominant role in the momentum balance and the fluid inertia is non-negligible, while the short-lived contact forces are negligible compared to these effects. For all other regimes, the fluid inertia is negligible, but the particle inertia and contact forces are important in the momentum balance. Reynolds stresses originated from velocity fluctuations do not contribute significantly to the suspension stresses in any of the regimes we have studied, while the reduction in the shear-induced particle rotation can be a reason for higher wall shear stress at Rep = 20. Finally, we study the kinematics of particles, including their velocity fluctuations, rotation, and diffusion over the depth of the Couette gap. The particle diffusion coefficients in the cross flow direction exhibit an abrupt
Augmentative effect of pulsatility on the wall shear stress in tube flow.
Nakata, M; Tatsumi, E; Tsukiya, T; Taenaka, Y; Nishimura, T; Nishinaka, T; Takano, H; Masuzawa, T; Ohba, K
1999-08-01
Wall shear stress (WSS) has been considered to play an important role in the physiological and metabolic functions of the vascular endothelial cells. We investigated the effects of the pulse rate and the maximum flow rate on the WSS to clarify the influence of pulsatility. Water was perfused in a 1/2 inch transparent straight cylinder with a nonpulsatile centrifugal pump and a pulsatile pneumatic ventricular assist device (VAD). In nonpulsatile flow (NF), the flow rate was changed 1 to 6 L/min by 1 L/min increments to obtain standard values of WSS at each flow rate. In pulsatile flow (PF), the pulse rate was controlled at 40, 60, and 80 bpm, and the maximum flow rate was varied from 3.3 to 12.0 L/min while the mean flow rate was kept at 3 L/min. The WSS was estimated from the velocity profile at measuring points using the laser illuminated fluorescence method. In NF, the WSS was 12.0 dyne/cm2 at 3 L/min and 33.0 dyne/cm2 at 6 L/min. In PF, the pulse rate change with the same mean, and the maximum flow rate did not affect WSS. On the other hand, the increase in the maximum flow rate at the constant mean flow rate of 3 L/min augmented the mean WSS from 13.1 to 32.9 dyne/cm2. We concluded that the maximum flow rate exerted a substantial augmentative effect on WSS, and the maximum flow rate was a dominant factor of pulsatility in this effect.
Dana, Saumik; Ganis, Benjamin; Wheeler, Mary F.
2018-01-01
In coupled flow and poromechanics phenomena representing hydrocarbon production or CO2 sequestration in deep subsurface reservoirs, the spatial domain in which fluid flow occurs is usually much smaller than the spatial domain over which significant deformation occurs. The typical approach is to either impose an overburden pressure directly on the reservoir thus treating it as a coupled problem domain or to model flow on a huge domain with zero permeability cells to mimic the no flow boundary condition on the interface of the reservoir and the surrounding rock. The former approach precludes a study of land subsidence or uplift and further does not mimic the true effect of the overburden on stress sensitive reservoirs whereas the latter approach has huge computational costs. In order to address these challenges, we augment the fixed-stress split iterative scheme with upscaling and downscaling operators to enable modeling flow and mechanics on overlapping nonmatching hexahedral grids. Flow is solved on a finer mesh using a multipoint flux mixed finite element method and mechanics is solved on a coarse mesh using a conforming Galerkin method. The multiscale operators are constructed using a procedure that involves singular value decompositions, a surface intersections algorithm and Delaunay triangulations. We numerically demonstrate the convergence of the augmented scheme using the classical Mandel's problem solution.
Influence of sequential room-temperature compressive creep on flow stress of TA2
Mengyuan, Zhang; Boqin, Gu; Jiahui, Tao
2018-03-01
This paper studied the sequential room temperature compressive creep and its effects on compressive properties of TA2 with stress-control loading pattern by using cylindrical compressive test specimen. The significant time-dependent deformation under constant load was observed in the TA2 at room temperature, and the deformation was dependent on the loading process under the same loading stress rate. It was also found that the occurrence of room temperature compressive creep obviously enhanced the subsequent yielding strength and flow stress of TA2 due to the increase of network dislocation density. And the effects of room temperature creep on the strain rate-stress behavior could be explained by the local mobile dislocation density model.
Stability of Miscible Displacements Across Stratified Porous Media
Energy Technology Data Exchange (ETDEWEB)
Shariati, Maryam; Yortsos, Yanis C.
2000-09-11
This report studied macro-scale heterogeneity effects. Reflecting on their importance, current simulation practices of flow and displacement in porous media were invariably based on heterogeneous permeability fields. Here, it was focused on a specific aspect of such problems, namely the stability of miscible displacements in stratified porous media, where the displacement is perpendicular to the direction of stratification.
Analysis of Zero Reynolds Shear Stress Appearing in Dilute Surfactant Drag-Reducing Flow
Directory of Open Access Journals (Sweden)
Weiguo Gu
2011-01-01
Full Text Available Dilute surfactant solution of 25 ppm in the two-dimensional channel is investigated experimentally compared with water flow. Particle image velocimetry (PIV system is used to take 2D velocity frames in the streamwise and wall-normal plane. Based on the frames of instantaneous vectors and statistical results, the phenomenon of zero Reynolds shear stress appearing in the drag-reducing flow is discussed. It is found that 25 ppm CTAC solution exhibits the highest drag reduction at Re = 25000 and loses drag reduction completely at Re = 40000. When drag reduction lies in the highest, Reynolds shear stress disappears and reaches zero although the RMS of the velocity fluctuations is not zero. By the categorization in four quadrants, the fluctuations of 25 ppm CTAC solution are distributed in all four quadrants equally at Re = 25000, which indicates that turnaround transportation happens in drag-reducing flow besides Reynolds shear stress transportation. Moreover, the contour distribution of streamwise velocity and the fluctuations suggests that turbulence transportation is depressed in drag-reducing flow. The viscoelasticity is possible to decrease the turbulence transportation and cause the turnaround transportation.
Stratified growth in Pseudomonas aeruginosa biofilms
DEFF Research Database (Denmark)
Werner, E.; Roe, F.; Bugnicourt, A.
2004-01-01
In this study, stratified patterns of protein synthesis and growth were demonstrated in Pseudomonas aeruginosa biofilms. Spatial patterns of protein synthetic activity inside biofilms were characterized by the use of two green fluorescent protein (GFP) reporter gene constructs. One construct...... synthesis was restricted to a narrow band in the part of the biofilm adjacent to the source of oxygen. The zone of active GFP expression was approximately 60 Am wide in colony biofilms and 30 Am wide in flow cell biofilms. The region of the biofilm in which cells were capable of elongation was mapped...... by treating colony biofilms with carbenicillin, which blocks cell division, and then measuring individual cell lengths by transmission electron microscopy. Cell elongation was localized at the air interface of the biofilm. The heterogeneous anabolic patterns measured inside these biofilms were likely a result...
The longitudinal relationship of work stress with peak expiratory flow: a cohort study.
Loerbroks, Adrian; Karrasch, Stefan; Lunau, Thorsten
2017-10-01
Research has suggested that psychological stress is associated with reduced lung function and with the development of respiratory disease. Among the major potential sources of stress in adulthood are working conditions. We aimed to examine the relationship of work stress with lung function. We drew on 4-year prospective data from the Survey of Health, Ageing and Retirement in Europe. The analyzed sample comprised 2627 workers aged 50 years or older who were anamnestically free of respiratory disease. Work stress at baseline was operationalized by abbreviated instruments measuring the well-established effort-reward imbalance model (seven items) and the control component of the job-demand control (two items). Peak expiratory flow (PEF) was determined at baseline and at follow-up. Continuous and categorized (i.e., by the tertile) work stress variables were employed in multivariable linear regression models to predict PEF change. Work stress did not show statistically significant associations with PEF change. For instance, the unstandardized regression coefficient for PEF decline according to high versus low effort-reward imbalance was -1.41 (95% confidence interval = -3.75, 0.94). Our study is the first to examine prospective relationships between work stress and PEF. Overall, we did not observe meaningful associations. Future studies should consider a broader spectrum of spirometric parameters and should expand research to younger and possibly less-selected working populations (i.e., aged <50 years).
Experimental study of the flow rules of a 316 stainless steel at high and low stresses
International Nuclear Information System (INIS)
Delobelle, P.; Oytana, C.
1984-01-01
Creep flow rules of 316L stainless steel are studied in tensile and axial-torsion experiments. Through tensile and biaxial proportional loadings it is shown that at low creep values of epsilonkT/DGb a single kinematical variable: the internal stress takes a part in these laws. This is confirmed in non-proportional experiments. The power law with the power of nsup(*)approx.=2 relates applied and internal stresses. At higher creep rates a second scalar internal variable must be introduced and the power law no longer applies. Limiting functions in steady creep are determined for hardening and recovery. (orig.)
International Nuclear Information System (INIS)
Fakori-Monazah, M.R.; Todreas, N.E.
1977-08-01
A simulated model of triangular array rods with pitch to diameter ratio of 1.10 (as a test section) and air as the fluid flow was used to study the LMFBR hydraulic parameters. The wall shear stress distribution around the rod periphery, friction factors, static pressure distributions and turbulence intensity corresponding to various Reynolds numbers ranging from 4140 to 36170 in the central subchannel were measured. Various approaches for measurement of wall shear stress were compared. The measurement was performed using the Preston tube technique with the probe outside diameter equal to 0.014 in
Reynolds-Stress and Triple-Product Models Applied to a Flow with Rotation and Curvature
Olsen, Michael E.
2016-01-01
Turbulence models, with increasing complexity, up to triple product terms, are applied to the flow in a rotating pipe. The rotating pipe is a challenging case for turbulence models as it contains significant rotational and curvature effects. The flow field starts with the classic fully developed pipe flow, with a stationary pipe wall. This well defined condition is then subjected to a section of pipe with a rotating wall. The rotating wall introduces a second velocity scale, and creates Reynolds shear stresses in the radial-circumferential and circumferential-axial planes. Furthermore, the wall rotation introduces a flow stabilization, and actually reduces the turbulent kinetic energy as the flow moves along the rotating wall section. It is shown in the present work that the Reynolds stress models are capable of predicting significant reduction in the turbulent kinetic energy, but triple product improves the predictions of the centerline turbulent kinetic energy, which is governed by convection, dissipation and transport terms, as the production terms vanish on the pipe axis.
Physical modelling of granular flows at multiple-scales and stress levels
Take, Andy; Bowman, Elisabeth; Bryant, Sarah
2015-04-01
The rheology of dry granular flows is an area of significant focus within the granular physics, geoscience, and geotechnical engineering research communities. Studies performed to better understand granular flows in manufacturing, materials processing or bulk handling applications have typically focused on the behavior of steady, continuous flows. As a result, much of the research on relating the fundamental interaction of particles to the rheological or constitutive behaviour of granular flows has been performed under (usually) steady-state conditions and low stress levels. However, landslides, which are the primary focus of the geoscience and geotechnical engineering communities, are by nature unsteady flows defined by a finite source volume and at flow depths much larger than typically possible in laboratory experiments. The objective of this paper is to report initial findings of experimental studies currently being conducted using a new large-scale landslide flume (8 m long, 2 m wide slope inclined at 30° with a 35 m long horizontal base section) and at elevated particle self-weight in a 10 m diameter geotechnical centrifuge to investigate the granular flow behavior at multiple-scales and stress levels. The transparent sidewalls of the two flumes used in the experimental investigation permit the combination of observations of particle-scale interaction (using high-speed imaging through transparent vertical sidewalls at over 1000 frames per second) with observations of the distal reach of the landslide debris. These observations are used to investigate the applicability of rheological models developed for steady state flows (e.g. the dimensionless inertial number) in landslide applications and the robustness of depth-averaged approaches to modelling dry granular flow at multiple scales. These observations indicate that the dimensionless inertial number calculated for the flow may be of limited utility except perhaps to define a general state (e.g. liquid
Free Falling in Stratified Fluids
Lam, Try; Vincent, Lionel; Kanso, Eva
2017-11-01
Leaves falling in air and discs falling in water are examples of unsteady descents due to complex interaction between gravitational and aerodynamic forces. Understanding these descent modes is relevant to many branches of engineering and science such as estimating the behavior of re-entry space vehicles to studying biomechanics of seed dispersion. For regularly shaped objects falling in homogenous fluids, the motion is relatively well understood. However, less is known about how density stratification of the fluid medium affects the falling behavior. Here, we experimentally investigate the descent of discs in both pure water and in stable linearly stratified fluids for Froude numbers Fr 1 and Reynolds numbers Re between 1000 -2000. We found that stable stratification (1) enhances the radial dispersion of the disc at landing, (2) increases the descent time, (3) decreases the inclination (or nutation) angle, and (4) decreases the fluttering amplitude while falling. We conclude by commenting on how the corresponding information can be used as a predictive model for objects free falling in stratified fluids.
Stratified Medicine and Reimbursement Issues
Directory of Open Access Journals (Sweden)
Hans-Joerg eFugel
2012-10-01
Full Text Available Stratified Medicine (SM has the potential to target patient populations who will most benefit from a therapy while reducing unnecessary health interventions associated with side effects. The link between clinical biomarkers/diagnostics and therapies provides new opportunities for value creation to strengthen the value proposition to pricing and reimbursement (P&R authorities. However, the introduction of SM challenges current reimbursement schemes in many EU countries and the US as different P&R policies have been adopted for drugs and diagnostics. Also, there is a lack of a consistent process for value assessment of more complex diagnostics in these markets. New, innovative approaches and more flexible P&R systems are needed to reflect the added value of diagnostic tests and to stimulate investments in new technologies. Yet, the framework for access of diagnostic–based therapies still requires further development while setting the right incentives and appropriate align stakeholders interests when realizing long- term patient benefits. This article addresses the reimbursement challenges of SM approaches in several EU countries and the US outlining some options to overcome existing reimbursement barriers for stratified medicine.
Flow and bed shear stresses in scour protections around a pile in a current
DEFF Research Database (Denmark)
Nielsen, Anders Wedel; Liu, Xiaofeng; Sumer, B. Mutlu
2013-01-01
on it in an unfavourable manner. Using physical models and 3D computational fluid dynamic (CFD) numerical simulations, the velocity and bed shear stresses are investigated in complex scour protections around mono piles in steady current. In the physical model the scour protections consisted of an upper cover layer...... simulations are capable of calculating the flow velocities when the scour protection is represented by regular arranged spheres, while the turbulence in general is underestimated. The velocity can also be calculated using porous media flow approach, but the accuracy is not as good as for spheres...
Design of dry sand soil stratified sampler
Li, Erkang; Chen, Wei; Feng, Xiao; Liao, Hongbo; Liang, Xiaodong
2018-04-01
This paper presents a design of a stratified sampler for dry sand soil, which can be used for stratified sampling of loose sand under certain conditions. Our group designed the mechanical structure of a portable, single - person, dry sandy soil stratified sampler. We have set up a mathematical model for the sampler. It lays the foundation for further development of design research.
Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking
Energy Technology Data Exchange (ETDEWEB)
Mueller, R. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Rossoll, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)], E-mail: andreas.rossoll@epfl.ch; Weber, L. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Bourke, M.A.M. [Los Alamos National Laboratory (LANL), LANSCE-12, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States); Dunand, D.C. [Northwestern University, Department of Materials Science and Engineering, Evanston, IL 60208 (United States); Mortensen, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)
2008-10-15
A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments.
Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking
International Nuclear Information System (INIS)
Mueller, R.; Rossoll, A.; Weber, L.; Bourke, M.A.M.; Dunand, D.C.; Mortensen, A.
2008-01-01
A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments
International Nuclear Information System (INIS)
Claytor, T.N.; Kupperman, D.S.
1985-05-01
A program is under way at Argonne National Laboratory (ANL) to develop an independent capability to assess the effectiveness of current and proposed techniques for acoustic leak detection (ALD) in reactor coolant systems. The program will establish whether meaningful quantitative data on flow rates and leak location can be obtained from acoustic signatures of leaks due to intergranular stress corrosion cracks (TGSCCs) and fatigue cracks, and whether these can be distinguished from other types of leaks. 5 refs., 3 figs
International Nuclear Information System (INIS)
Fulger, M.; Lucan, D.; Radulescu, M.; Velciu, L.
2003-01-01
Nuclear steam generator tubes operate in high temperature water and on the secondary side in restricted flow areas many nonvolatile impurities accidentally introduced into circuit tend to concentrate. The concentration process leads to the formation of highly aggressive alkaline or acid solutions in crevices, and these solutions can cause stress corrosion cracking (SCC) on stressed tube materials. Even though alloy 800 has shown to be highly resistant to general corrosion in high temperature water, it has been found that the steam generator tubes may crack during service from the primary and/or secondary side. Stress corrosion cracking is still a serious problem occurring on outside tubes in operating steam generators. The purpose of this study was to evaluate the environmental factors affecting the stress corrosion cracking of steam generators tubing. The main test method was the exposure for 1000 hours into static autoclaves of plastically stressed C-rings of Incoloy 800 in caustic solutions (10% NaOH) and acidic chloride solutions because such environments may sometimes form accidentally in crevices on secondary side of tubes. Because the kinetics of corrosion of metals is indicated by anodic polarization curves, in this study, some stressed specimens were anodically polarized in caustic solutions in electrochemical cell, and other in chloride acidic solutions. The results presented as micrographs, potentiokinetic curves, and electrochemical parameters have been compared to establish the SCC behavior of Incoloy 800 in such concentrated environments. (authors)
Comparison of erythrocyte dynamics in shear flow under different stress-free configurations
Cordasco, Daniel; Yazdani, Alireza; Bagchi, Prosenjit
2014-04-01
An open question that has persisted for decades is whether the cytoskeleton of a red blood cell is stress-free or under a stress. This question is important in the context of theoretical modeling of cellular motion under a flowing condition where it is necessary to make an assumption about the stress-free state. Here, we present a 3D numerical study to compare the cell dynamics in a simple shear flow under two different stress-free states, a biconcave discocyte representing the resting shape of the cell, and a nearly spherical oblate shape. We find that whether the stress-free states make a significant difference or not depends on the viscosity of the suspending medium. If the viscosity is close to that of blood plasma, the two stress-free states do not show any significant difference in cell dynamics. However, when the suspending medium viscosity is well above that of the physiological range, as in many in vitro studies, the shear rate separating the tank-treading and tumbling dynamics is observed to be higher for the biconcave stress-free state than the spheroidal state. The former shows a strong shape oscillation with repeated departures from the biconcave shape, while the latter shows a nearly stable biconcave shape. It is found that the cell membrane in the biconcave stress-free state is under a compressive stress and a weaker bending force density, leading to a periodic compression of the cell. The shape oscillation then leads to a higher energy barrier against membrane tank-tread leading to an early transition to tumbling. However, if the cells are released with a large off-shear plane angle, the oscillations can be suppressed due to an azimuthal motion of the membrane along the vorticity direction leading to a redistribution of the membrane points and lowering of the energy barrier, which again results in a nearly similar behavior of the cells under the two different stress-free states. A variety of off-shear plane dynamics is observed, namely, rolling
Algebraic stress model for axial flow in a bare rod-bundle
International Nuclear Information System (INIS)
de Lemos, M.J.S.
1987-01-01
The problem of predicting transport properties for momentum and heat across the boundaries of interconnected channels has been the subject of many investigations. In the particular case of axial flow through rod-bundles, transport coefficients for channel faces aligned with rod centers are known to be considerably higher than those calculated by simple isotropic theories. And yet, it was been found that secondary flows play only a minor role in this overall transport, being turbulence highly enhanced across that hypothetical surface. In order to numerically predict the correct amount of the quantity being transported, the approach taken by many investigators was then to artificially increase the diffusion coefficient obtained via a simple isopropic theory (usually the standard k-ε model) and numerically match the correct experimentally observed mixing rates. The present paper reports an attempt to describe the turbulent stresses by means of an Algebraic Stress Model for turbulence. Relative turbulent kinetic energy distribution in all three directions are presented and compared with experiments in a square lattice. The strong directional dependence of transport terms are then obtained via a model for the Reynolds stresses. The results identify a need for a better representation of the mean-flow field part of the pressure-strain correlation term
Sensor for direct measurement of the boundary shear stress in fluid flow
Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Sherrit, Stewart; Chang, Zensheu; Chen, Beck; Widholm, Scott; Ostlund, Patrick
2011-04-01
The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear and normal stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear and normal stress and their fluctuations are attractive alternatives. However, this approach is a challenging one especially for high spatial resolution and high fidelity measurements. The authors designed and fabricated a prototype miniature shear stress sensor including an EDM machined floating plate and a high-resolution optical encoder. Tests were performed both in air as well as operation in water with controlled flow. The sensor sensitivity, stability and signal-to-noise level were measured and evaluated. The detailed test results and a discussion of future work will be presented in this paper.
Energy Technology Data Exchange (ETDEWEB)
Charoenphonphanich, C; Niwa, H; Ennoji, H; Iijima, T [Tokai University, Tokyo (Japan)
1997-10-01
A numerical analysis of the flow and mixing of rich mixture and air inducted into the cylinder through each of the two intake ports of a stratified charge engine have been carried out. Numerical calculations were performed by finite volume method for three types of the intake port configurations: inverse V type, parallel type and V type and two types of valve timing; conventional and late closing (Miller cycle). Velocity field, turbulent kinetic energy and distribution of mixture concentration in the cylinder were examined. 3 refs., 10 figs.
Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations).
Tada, Shigeru; Tarbell, John M
2002-02-01
We describe a three-dimensional numerical simulation of interstitial flow through the medial layer of an artery accounting for the complex entrance condition associated with fenestral pores in the internal elastic lamina (IEL) to investigate the fluid mechanical environment around the smooth muscle cells (SMCs) right beneath the IEL. The IEL was modeled as an impermeable barrier to water flow except for the fenestral pores, which were assumed to be uniformly distributed over the IEL. The medial layer was modeled as a heterogeneous medium composed of a periodic array of cylindrical SMCs embedded in a continuous porous medium representing the interstitial proteoglycan and collagen matrix. Depending on the distance between the IEL bottom surface and the upstream end of the proximal layer of SMCs, the local shear stress on SMCs right beneath the fenestral pore could be more than 10 times higher than that on the cells far removed from the IEL under the conditions that the fenestral pore diameter and area fraction of pores were kept constant at 1.4 microm and 0.05, respectively. Thus these proximal SMCs may experience shear stress levels that are even higher than endothelial cells exposed to normal blood flow (order of 10 dyn/cm(2)). Furthermore, entrance flow through fenestral pores alters considerably the interstitial flow field in the medial layer over a spatial length scale of the order of the fenestral pore diameter. Thus the spatial gradient of shear stress on the most superficial SMC is noticeably higher than computed for endothelial cell surfaces.
Study of flow stress and spall strength of additively manufactured Ti-6-4 alloy
Cohen, Amitay; Paris, Vitaly; Yosef-Hai, Arnon; Gudinetsky, Eli; Tiferet, Eitan
2017-06-01
The use of additive manufacturing (AM) by Electron Beam Melting (EBM) or Selective Laser Melting (SLM) has extensively grown in the past few years. A major goal in AM is to manufacture materials with mechanical properties at least as good as traditionally manufactured materials. In this work we present results of planar impact tests and Split Hopkinson Pressure Bar tests (SHPB) on Ti-6-4 manufactured by EBM and SLM processes. Results of planar impact tests on SLM samples display slightly higher spall strength compared to EBM while the stress at Hugoniot elastic limit (HEL) is practically the same. Stress strain curves based on SHPB measurements at two different strain rates present similar plastic flow stresses for SLM and EBM processed Ti-6-4 alloy, while the flow stress is about 20% higher than reported for commercial reference material. The strain to failure of both materials shows considerable strain rate sensitivity. The results of post-mortem analysis of spall fracture will also be presented.
Armstrong, R. W.; Balasubramanian, N.
2017-08-01
It is shown that: (i) nano-grain nickel flow stress and hardness data at ambient temperature follow a Hall-Petch (H-P) relation over a wide range of grain size; and (ii) accompanying flow stress and strain rate sensitivity measurements follow an analogous H-P relationship for the reciprocal "activation volume", (1/v*) = (1/A*b) where A* is activation area. Higher temperature flow stress measurements show a greater than expected reduction both in the H-P kɛ and in v*. The results are connected with smaller nano-grain size (tested at very low imposed strain rates.
Statistical properties of wall shear stress fluctuations in turbulent channel flows
International Nuclear Information System (INIS)
Keirsbulck, L.; Labraga, L.; Gad-el-Hak, M.
2012-01-01
Highlights: ► Accurate measurements of instantaneous wall shear stress are conducted. ► LDA is used to measure near-wall streamwise velocity. ► Electrochemical probe is used to measure wall shear stress. ► Frequency response and non-uniform correction methods were used to provide an accurate, well-resolved wall-statistics database. ► Reynolds number dependency of the statistical wall quantities is investigated. - Abstract: Instantaneous velocity and wall shear stress measurements are conducted in a turbulent channel flow in the Kármán number range of Re τ = 74–400. A one-dimensional LDA system is used to measure the streamwise velocity fluctuations, and an electrochemical technique is utilized to measure the instantaneous wall shear stress. For the latter, frequency response and nonuniform correction methods are used to provide an accurate, well-resolved wall statistics database. The Reynolds number dependency of the statistical wall quantities is carefully investigated. The corrected relative wall shear stress fluctuations fit well with the best DNS data available and meet the need for clarification of the small discrepancy observed in the literature between the experimental and numerical results of such quantities. Higher-order statistics of the wall shear stress, spectra, and the turbulence kinetic energy budget at the wall are also investigated. The present paper shows that the electrochemical technique is a powerful experimental method for hydrodynamic studies involving highly unsteady flows. The study brings with it important consequences, especially in the context of the current debate regarding the appropriate scaling as well as the validation of new predictive models of near-wall turbulence.
Han, Jingyan; Shuvaev, Vladimir V; Davies, Peter F; Eckmann, David M; Muro, Silvia; Muzykantov, Vladimir R
2015-07-28
Targeting nanocarriers (NC) to endothelial cell adhesion molecules including Platelet-Endothelial Cell Adhesion Molecule-1 (PECAM-1 or CD31) improves drug delivery and pharmacotherapy of inflammation, oxidative stress, thrombosis and ischemia in animal models. Recent studies unveiled that hydrodynamic conditions modulate endothelial endocytosis of NC targeted to PECAM-1, but the specificity and mechanism of effects of flow remain unknown. Here we studied the effect of flow on endocytosis by human endothelial cells of NC targeted by monoclonal antibodies Ab62 and Ab37 to distinct epitopes on the distal extracellular domain of PECAM. Flow in the range of 1-8dyn/cm(2), typical for venous vasculature, stimulated the uptake of spherical Ab/NC (~180nm diameter) carrying ~50 vs 200 Ab62 and Ab37 per NC, respectively. Effect of flow was inhibited by disruption of cholesterol-rich plasmalemma domains and deletion of PECAM-1 cytosolic tail. Flow stimulated endocytosis of Ab62/NC and Ab37/NC via eliciting distinct signaling pathways mediated by RhoA/ROCK and Src Family Kinases, respectively. Therefore, flow stimulates endothelial endocytosis of Ab/NC in a PECAM-1 epitope specific manner. Using ligands of binding to distinct epitopes on the same target molecule may enable fine-tuning of intracellular delivery based on the hemodynamic conditions in the vascular area of interest. Copyright © 2015 Elsevier B.V. All rights reserved.
Wall shear stress characterization of a 3D bluff-body separated flow
Fourrié, Grégoire; Keirsbulck, Laurent; Labraga, Larbi
2013-10-01
Efficient flow control strategies aimed at reducing the aerodynamic drag of road vehicles require a detailed knowledge of the reference flow. In this work, the flow around the rear slanted window of a generic car model was experimentally studied through wall shear stress measurements using an electrochemical method. The mean and fluctuating wall shear stress within the wall impact regions of the recirculation bubble and the main longitudinal vortex structures which develop above the rear window are presented. Correlations allow a more detailed characterization of the recirculation phenomenon within the separation bubble. In the model symmetry plane the recirculation structure compares well with simpler 2D configurations; specific lengths, flapping motion and shedding of large-scale vortices are observed, these similarities diminish when leaving the middle plane due to the strong three-dimensionality of the flow. A specific attention is paid to the convection processes occurring within the recirculation: a downstream convection velocity is observed, in accordance with 2D recirculations from the literature, and an upstream convection is highlighted along the entire bubble length which has not been underlined in some previous canonical configurations.
Second law analysis for hydromagnetic couple stress fluid flow through a porous channel
Directory of Open Access Journals (Sweden)
S.O. Kareem
2016-06-01
Full Text Available In this work, the combined effects of magnetic field and ohmic heating on the entropy generation rate in the flow of couple stress fluid through a porous channel are investigated. The equations governing the fluid flow are formulated, non-dimensionalised and solved using a rapidly convergent semi-analytical Adomian decomposition method (ADM. The result of the computation shows a significant dependence of fluid’s thermophysical parameters on Joule’s dissipation as well as decline in the rate of change of fluid momentum due to the interplay between Lorentz and viscous forces. Moreover, the rate of entropy generation in the flow system drops as the magnitude of the magnetic field increases.
Chung, Jihwa; Kim, Kyoung Hwa; Lee, Seok Cheol; An, Shung Hyun; Kwon, Kihwan
2015-10-01
Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.
Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression.
Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin
2018-03-21
20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850-1200 °C and strain rates of 0.01/s-1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot.
Laser reflection method for determination of shear stress in low density transitional flows
Sathian, Sarith P.; Kurian, Job
2006-03-01
The details of laser reflection method (LRM) for the determination of shear stress in low density transitional flows are presented. The method is employed to determine the shear stress due to impingement of a low density supersonic free jet issuing out from a convergent divergent nozzle on a flat plate. The plate is smeared with a thin oil film and kept parallel to the nozzle axis. For a thin oil film moving under the action of aerodynamic boundary layer, the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope generated by the shear force is done using a position sensing detector (PSD). The thinning rate of the oil film is directly measured which is the major advantage of the LRM. From the oil film slope history, calculation of the shear stress is done using a three-point formula. The range of Knudsen numbers investigated is from 0.028 to 0.516. Pressure ratio across the nozzle varied from 3,500 to 8,500 giving highly under expanded free jets. The measured values of shear, in the overlapping region of experimental parameters, show fair agreement with those obtained by force balance method and laser interferometric method.
Velocity and shear stress distribution downstream of mechanical heart valves in pulsatile flow.
Giersiepen, M; Krause, U; Knott, E; Reul, H; Rau, G
1989-04-01
Ten mechanical valves (TAD 27 mm): Starr-Edwards Silastic Ball, Björk-Shiley Standard, Björk-Shiley Concave-Convex, Björk-Shiley Monostrut, Hall-Kaster (Medtronic-Hall), OmniCarbon, Bicer Val, Sorin, Saint-Jude Medical and Hemex (Duromedics) are investigated in a comparative in vitro study. The velocity and turbulent shear stress profiles of the valves were determined by Laser Doppler anemometry in two different downstream axes within a model aortic root. Depending on the individual valve design, velocity peaks up to 1.5 m/s and turbulent shear stress peaks up to 150 N/m2 were measured during the systolic phase. These shear stress peaks mainly occurred in areas of flow separation and intense momentum exchange. Directly downstream of the valves (measuring axis 0.55.dAorta) turbulent shear stress peaks occurred at peak systole and during the deceleration phase, while in the second measuring axis (1.5.dAorta) turbulence levels were lower. Shear stress levels were high at the borders of the fluid jets. The results are discussed from a fluid-dynamic point of view.
Direct measurement of wall shear stress in a reattaching flow with a photonic sensor
International Nuclear Information System (INIS)
Ayaz, U K; Ioppolo, T; Ötügen, M V
2013-01-01
Wall shear stress measurements are carried out in a planar backward-facing step flow using a micro-optical sensor. The sensor is essentially a floating element system and measures the shear stress directly. The transduction method to measure the floating element deflection is based on the whispering gallery optical mode (WGM) shifts of a dielectric microsphere. This method is capable of measuring floating element displacements of the order of a nanometer. The floating element surface is circular with a diameter of ∼960 µm, which is part of a beam that is in contact with the dielectric microsphere. The sensor is calibrated for shear stress as well as pressure sensitivity yielding 7.3 pm Pa −1 and 0.0236 pm Pa −1 for shear stress and pressure sensitivity, respectively. Hence, the contribution by the wall pressure is less than two orders of magnitude smaller than that of shear stress. Measurements are made for a Reynolds number range of 2000–5000 extending to 18 step heights from the step face. The results are in good agreement with those of earlier reports. An analysis is also carried out to evaluate the performance of the WGM sensor including measurement sensitivity and bandwidth. (paper)
Haraldsson, Henrik; Kefayati, Sarah; Ahn, Sinyeob; Dyverfeldt, Petter; Lantz, Jonas; Karlsson, Matts; Laub, Gerhard; Ebbers, Tino; Saloner, David
2018-04-01
To measure the Reynolds stress tensor using 4D flow MRI, and to evaluate its contribution to computed pressure maps. A method to assess both velocity and Reynolds stress using 4D flow MRI is presented and evaluated. The Reynolds stress is compared by cross-sectional integrals of the Reynolds stress invariants. Pressure maps are computed using the pressure Poisson equation-both including and neglecting the Reynolds stress. Good agreement is seen for Reynolds stress between computational fluid dynamics, simulated MRI, and MRI experiment. The Reynolds stress can significantly influence the computed pressure loss for simulated (eg, -0.52% vs -15.34% error; P Reynolds stress (P Reynolds stress tensor. The additional information provided by this method improves the assessment of pressure gradients across a stenosis in the presence of turbulence. Unlike conventional methods, which are only valid if the flow is laminar, the proposed method is valid for both laminar and disturbed flow, a common presentation in diseased vessels. Magn Reson Med 79:1962-1971, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
English, Joseph M.; Finkbeiner, Thomas; English, Kara L.; Yahia Cherif, Rachida
2017-01-01
start to become hydraulically conductive again and enable fluid flow and hydrocarbon leakage during fault reactivation. We constrain the present day in situ stresses of the exhumed Illizi Basin in Algeria and demonstrate that the primary north
Elongational flow of polymer melts at constant strain rate, constant stress and constant force
Wagner, Manfred H.; Rolón-Garrido, Víctor H.
2013-04-01
Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.
The Effect of Grain Size and Strain on the Tensile Flow Stress of Aluminium at Room Temperature
DEFF Research Database (Denmark)
Hansen, Niels
1977-01-01
stress-grain size relationship was analyzed in terms of matrix strengthening and grain boundary strengthening according to the dislocation concept of Ashby. At intermediate strains this approach gives a good description of the effect of strain, grain size and purity on the flow stress.......Tensile-stress-strain data over a strain range from 0.2 to 30% were obtained at room temperature for 99.999 and 99.5% aluminium as a function of grain size. The yield stress-grain size relationship can be expressed by a Petch-Hall relation with approximately the same slope for the two materials....... The flow stress-grain size relationship can adequately be expressed by a modified Petch-Hall relation; for 99.999% aluminium material the slope increases with strain through a maximum around 15–20%, whereas for 99.5% aluminium the slope decreases with the strain to zero at strains about 10%. The flow...
Bower, Allan F.; Guduru, Pradeep R.; Sethuraman, Vijay A.
2011-01-01
We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in deta...
International Nuclear Information System (INIS)
Vergote, M; Schoor, M Van; Xu, Y; Jachmich, S; Weynants, R
2006-01-01
We describe the results of a measurement campaign on the CASTOR tokamak where the drive of flows and zonal flows by Reynolds stress was investigated by means of a dual probe head system allowing us to measure the properties of the electrostatic turbulence and the rotation velocities at the same location and at the same moment. We compare these experimental results with a turbulence model linked to a one dimensional fluid model describing the electrostatic turbulence and its influence on the background flow. The turbulence is simulated locally on the basis of the Hasegawa-Wakatani equations, completed with magnetic inhomogeneity terms. In the fluid model the toroidal geometry is correctly taken into account, while various sources and sinks like viscosity, interaction with neutrals, Reynolds stress and electric current induced by biasing are included. The good agreement of the predicted flow with the measured one demonstrates that in a pure cylindrical geometry the modelled strength of Reynolds stress acceleration of flow is overestimated
Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels
Energy Technology Data Exchange (ETDEWEB)
Sun Mingyue, E-mail: mysun@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Luhan, Hao; Shijian, Li; Dianzhong, Li; Yiyi, Li [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)
2011-11-15
Highlights: > A series of flow stress constitutive equations for SA508-3 steel were successfully established. > The experimental results under different conditions have validated the constitutive equations. > An industrial application of the model was present to simulate a large conical shell forging process. - Abstract: Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.
Spatio-temporal structure of turbulent Reynolds stress zonal flow drive in 3D magnetic configuration
International Nuclear Information System (INIS)
Schmid, B; Ramisch, M; Manz, P; Stroth, U
2017-01-01
The poloidal dependence of the zonal flow drive and the underlying Reynolds stress structure are studied at the stellarator experiment TJ-K by means of a poloidal Langmuir-probe array. This gives the unique possibility to study the locality of the Reynolds stress in a complex toroidal magnetic geometry. It is found that the Reynolds stress is not homogeneously distributed along the flux surface but has a strong poloidal asymmetry where it is concentrated on the outboard side with a maximum above the midplane. The average tilt of the turbulent structures is thereby reflected in the anisotropy of the bivariant velocity distribution. Using a conditional averaging technique the temporal dynamics reveal that the zonal flow drive is also maximal in this particular region. The results suggest an influence of the magnetic field line curvature, which controls the underlying plasma turbulence. The findings are a basis for further comparison with turbulence simulations in 3D geometry and demonstrate the need for a global characterisation of plasma turbulence. (paper)
Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels
International Nuclear Information System (INIS)
Sun Mingyue; Hao Luhan; Li Shijian; Li Dianzhong; Li Yiyi
2011-01-01
Highlights: → A series of flow stress constitutive equations for SA508-3 steel were successfully established. → The experimental results under different conditions have validated the constitutive equations. → An industrial application of the model was present to simulate a large conical shell forging process. - Abstract: Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.
International Nuclear Information System (INIS)
Kim, Jae Yong; Yoon, Kyung Ho; Kang, Heung Seok; Lee, Young Ho; Lee, Kang Hee; Kim, Hyung Kyu
2009-01-01
A fuel assembly is composed of 5 major components, such as a top end piece (TEP), a bottom end piece (BEP), spacer grids (SGs), guide tubes (GTs) and an instrumentation tube (IT) and fuel rods (FRs). There are no ASME criteria about all components except for a TEP/BEP. The TEP/BEP should satisfy stress intensity limits in case of condition A and B of ASME, Section III, Division 1 . Subsection NB. In a dual cooled fuel assembly, the array and position of fuels are changed from those of a conventional PWR fuel assembly to achieve a power uprating. The flow plates of top/bottom end pieces (TEP/BEP) have to be modified into proper shape to provide flow holes to direct the heated coolant into/out of the fuel assembly but structural intensity of these plates within a 22.241 kN axial loading should satisfy Tresca stress limits in ASME code. In this paper, stress linearization procedure and strength evaluation of a newly designed BEP for the dual cooled fuel assembly are described
Padé approximant for normal stress differences in large-amplitude oscillatory shear flow
Poungthong, P.; Saengow, C.; Giacomin, A. J.; Kolitawong, C.; Merger, D.; Wilhelm, M.
2018-04-01
Analytical solutions for the normal stress differences in large-amplitude oscillatory shear flow (LAOS), for continuum or molecular models, normally take the inexact form of the first few terms of a series expansion in the shear rate amplitude. Here, we improve the accuracy of these truncated expansions by replacing them with rational functions called Padé approximants. The recent advent of exact solutions in LAOS presents an opportunity to identify accurate and useful Padé approximants. For this identification, we replace the truncated expansion for the corotational Jeffreys fluid with its Padé approximants for the normal stress differences. We uncover the most accurate and useful approximant, the [3,4] approximant, and then test its accuracy against the exact solution [C. Saengow and A. J. Giacomin, "Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow," Phys. Fluids 29, 121601 (2017)]. We use Ewoldt grids to show the stunning accuracy of our [3,4] approximant in LAOS. We quantify this accuracy with an objective function and then map it onto the Pipkin space. Our two applications illustrate how to use our new approximant reliably. For this, we use the Spriggs relations to generalize our best approximant to multimode, and then, we compare with measurements on molten high-density polyethylene and on dissolved polyisobutylene in isobutylene oligomer.
PHOTOSPHERIC EMISSION FROM STRATIFIED JETS
International Nuclear Information System (INIS)
Ito, Hirotaka; Nagataki, Shigehiro; Ono, Masaomi; Lee, Shiu-Hang; Mao, Jirong; Yamada, Shoichi; Pe'er, Asaf; Mizuta, Akira; Harikae, Seiji
2013-01-01
We explore photospheric emissions from stratified two-component jets, wherein a highly relativistic spine outflow is surrounded by a wider and less relativistic sheath outflow. Thermal photons are injected in regions of high optical depth and propagated until the photons escape at the photosphere. Because of the presence of shear in velocity (Lorentz factor) at the boundary of the spine and sheath region, a fraction of the injected photons are accelerated using a Fermi-like acceleration mechanism such that a high-energy power-law tail is formed in the resultant spectrum. We show, in particular, that if a velocity shear with a considerable variance in the bulk Lorentz factor is present, the high-energy part of observed gamma-ray bursts (GRBs) photon spectrum can be explained by this photon acceleration mechanism. We also show that the accelerated photons might also account for the origin of the extra-hard power-law component above the bump of the thermal-like peak seen in some peculiar bursts (e.g., GRB 090510, 090902B, 090926A). We demonstrate that time-integrated spectra can also reproduce the low-energy spectrum of GRBs consistently using a multi-temperature effect when time evolution of the outflow is considered. Last, we show that the empirical E p -L p relation can be explained by differences in the outflow properties of individual sources
Energy Technology Data Exchange (ETDEWEB)
Galizia, Mauricio S.; Barker, Alex; Collins, Jeremy; Carr, James [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Liao, Yihua [Northwestern University' s Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL (United States); McDermott, Mary M. [Northwestern University' s Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL (United States); Northwestern University' s Feinberg School of Medicine, Department of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States)
2014-04-15
To investigate the influence of atherosclerotic plaques on femoral haemodynamics assessed by two-dimensional (2D) phase-contrast (PC) magnetic resonance imaging (MRI) with three-directional velocity encoding. During 1 year, patients with peripheral artery disease and an ankle brachial index <1.00 were enrolled. After institutional review board approval and written informed consent, 44 patients (age, 70 ± 12 years) underwent common femoral artery MRI. Patients with contra-indications for MRI were excluded. Sequences included 2D time-of-flight, proton-density, T1-weighted and T2-weighted MRI. Electrocardiogram (ECG)-gated 2D PC-MRI with 3D velocity encoding was acquired. A radiologist classified images in five categories. Blood flow, velocity and wall shear stress (WSS) along the vessel circumference were quantified from the PC-MRI data. The acquired images were of good quality for interpretation. There were no image quality problems related to poor ECG-gating or slice positioning. Velocities, oscillatory shear stress and total flow were similar between patients with normal arteries and wall thickening/plaque. Patients with plaques demonstrated regionally increased peak systolic WSS and enhanced WSS eccentricity. Combined multi-contrast morphological imaging of the peripheral arterial wall with PC-MRI with three-directional velocity encoding is a feasible technique. Further study is needed to determine whether flow is an appropriate marker for altered endothelial cell function, vascular remodelling and plaque progression. (orig.)
Aghaei Jouybari, Mostafa; Yuan, Junlin
2017-11-01
Direct numerical simulations of turbulent channel flows are carried out over two surfaces: a synthesized sand-grain surface and a realistic turbine roughness that is characterized by more prominent large-scale surface features. To separate the effects of wall-normal variation of the roughness area fraction from the (true) variation of flow statistics, the governing equations are area-averaged using intrinsic averaging, contrary to the usually practice based on the total area (i.e., superficial averaging). Additional terms appear in the mean-momentum equation resulted from the wall-normal variation of the solid fraction and play a role in the near-wall balance. Results from surfaces with a step solidity function (e.g., cubes) will also be discussed. Compared to the sand grains, the turbine surface generates stronger form-induced fluctuations, despite weaker dispersive shear stress. This is associated with more significant form-induced productions (comparable to shear production) in Reynolds stress budgets, weaker pressure work, and, consequently, more anisotropic redistribution of turbulent kinetic energy in the roughness sublayer, which potentially leads to different turbulent responses between the two surfaces in non-equilibrium flows.
Stress dependent fluid flow in porous rock: experiments and network modelling
Energy Technology Data Exchange (ETDEWEB)
Flornes, Olav
2005-07-01
During the lifetime of a hydrocarbon reservoir, the pore pressure decreases because fluids are drained. Changed pore pressure causes a deformation of the reservoir rock, and the flow channels may be narrowed by the increased weight carried by the rock matrix. Knowledge of how the rocks ability to transport fluids, the permeability, is changed by increased stress can be important for effective reservoir management. In this work, we present experimental results for how permeability changes with applied stress. The materials tested are several different sandstones and one limestone, all having porosities higher than 19 percent. Application of stress is done in a number of different ways. We subject the sample to an isotropic stress, and see how changing this applied stress affects permeability as opposed to changing the pore fluid pressure. This allows for investigating the effective stress law for permeability. Permeability decreased by 10 to 20 percent, when we deformed the materials hydro statically within the elastic regime. For all of our samples, we observed a higher permeability change than predicted by a conventional model for relating porosity and permeability, the Kozeny Carman model. For Red Wildmoor, a sandstone having some clay content, we observed that a change in pore pressure was slightly more important for permeability than a change in the applied stress with the same amount. A sandstone with no clay content, Bad Durckheim, showed the opposite behavior, with applied stress slightly more important than pore pressure. We present a new method for measuring permeability in two directions in the same experiment. We apply different anisotropic stresses, and see if a high stress in one direction causes a difference in permeability changes parallel and perpendicular to maximum stress. We observe that deforming the sample axially, causes a larger decrease in axial permeability than in the radial at low confining pressure. At high confining pressure, the
International Nuclear Information System (INIS)
Sugiyama, Hitoshi; Akiyama, Mitsunobu; Shinohara, Yasunori; Hitomi, Daisuke
1997-01-01
A numerical analysis has been performed for three dimensional developing turbulent flow in a 90deg bent tube with straight inlet and outlet sections by an algebraic Reynolds stress model. To our knowledge, very little has been reported about detailed comparison between calculated results and experimental data containing Reynolds stresses. In calculation, an algebraic Reynolds stress model together with a boundary-fitted coordinate system is applied to a 90deg bent tube in order to solve anisotropic turbulent flow precisely. The calculated results display comparatively good agreement with the experimental data of time averaged velocity and secondary vectors. In addition, the present method predicts as a characteristic feature that the intensity of secondary flow near the inner wall is increased immediately downstream from the bend outlet by the pressure gradient. With regard to comparison of Reynolds stresses, the present method is able to reproduce well the distributions of streamwise normal stress and shear stress defined streamwise and radial velocity fluctuation except for the shear stress defined streamwise and circumferential velocity fluctuation. The present calculation has been found to simulate many features of the developing flow in bent tube satisfactorily, but it has a tendency to underpredict the Reynolds stresses. (author)
Wall shear stress from a rotating cylinder in cross flow using the electrochemical technique
International Nuclear Information System (INIS)
Labraga, L.; Bourabaa, N.; Berkah, T.
2002-01-01
The wall shear rate from a rotating cylinder in a uniform flow was measured with flush-mounted electrochemical mass transfer probes. The experiments were performed using two rectangular electrodes in a sandwich arrangement. Initially, the frequency response of that probe was numerically studied using an inverse mass transfer method in order to restore the whole wall shear stress in the time domain starting from the measured transfer coefficients given by the split probe. The experiments were performed in the range of velocity ratios 0 4, points of zero shear stress on the rotating cylinder vanish, which is in fact consistent with the previous arguments that the cylinder is surrounded by a set of closed streamlines. This experimental study shows that, when their dynamic behaviour is known, the electrochemical probes are able to sense complex fine structures not observed up to now by previous analytical, numerical or experimental methods, even when non-linear effects are not negligible. (orig.)
A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis
Jagad, P. I.
2018-04-12
A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell-Centered Colocated Variables. Part I: Discretization, International Journal of Heat and Mass Transfer, vol. 48 (6), 1117-1127, 2005) is extended to include the solid-body stress analysis. The transport terms for a cell-face are evaluated in a structured grid-like manner. The Cartesian gradients at the center of each cell-face are evaluated using the coordinate transformation relations. The accuracy of the procedure is demonstrated by solving several benchmark problems involving different boundary conditions, source terms, and types of loading.
Universal rescaling of flow curves for yield-stress fluids close to jamming
Dinkgreve, M.; Paredes, J.; Michels, M. A. J.; Bonn, D.
2015-07-01
The experimental flow curves of four different yield-stress fluids with different interparticle interactions are studied near the jamming concentration. By appropriate scaling with the distance to jamming all rheology data can be collapsed onto master curves below and above jamming that meet in the shear-thinning regime and satisfy the Herschel-Bulkley and Cross equations, respectively. In spite of differing interactions in the different systems, master curves characterized by universal scaling exponents are found for the four systems. A two-state microscopic theory of heterogeneous dynamics is presented to rationalize the observed transition from Herschel-Bulkley to Cross behavior and to connect the rheological exponents to microscopic exponents for the divergence of the length and time scales of the heterogeneous dynamics. The experimental data and the microscopic theory are compared with much of the available literature data for yield-stress systems.
On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli
Energy Technology Data Exchange (ETDEWEB)
Kjellstroem, B; Hedberg, S
1966-08-15
It is commonly assumed that for turbulent flow in annuli the radii of zero shear and maximum velocity are coincident. By inspection of the differential equations for such flow and by an integral analysis it is shown that this is not necessarily true. To check whether important differences could occur, experiments were made in which velocity and shear stress distributions were measured in one smooth and two partially rough annuli. The results show no difference in the radii for the smooth annulus, but for the partially rough annuli there was a small but significant difference. This difference explains the breakdown of Hall's transformation theory reported by other investigators. The error introduced by use of Hall's theory is however small, of the order of 10 % or less.
Shear stress from hot-film sensors in unsteady gas flow
International Nuclear Information System (INIS)
Cole, K.D.
1991-01-01
In this paper a data analysis procedure is proposed for obtaining unsteady wall shear stress from flush-mounted hot-film anemometer measurements. The method is based on a two-dimensional heat transfer model of the unsteady heat transfer in both the hot-film sensor and in the gas flow. The sensor thermal properties are found from preliminary calibration experiments at zero flow. Numerical experiments are used to demonstrate the data analysis method using simulated sensor signals that are corrupted with noise. The numerical experiments show that noise in the data propagates into the results so that data smoothing may be important in analyzing experimental data. Because the data analysis procedure is linear, a linear digital filter is constructed that could be used for processing large amounts of experimental data. However, further refinements will be needed before the method can be applied to experimental data
On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli
International Nuclear Information System (INIS)
Kjellstroem, B.; Hedberg, S.
1966-08-01
It is commonly assumed that for turbulent flow in annuli the radii of zero shear and maximum velocity are coincident. By inspection of the differential equations for such flow and by an integral analysis it is shown that this is not necessarily true. To check whether important differences could occur, experiments were made in which velocity and shear stress distributions were measured in one smooth and two partially rough annuli. The results show no difference in the radii for the smooth annulus, but for the partially rough annuli there was a small but significant difference. This difference explains the breakdown of Hall's transformation theory reported by other investigators. The error introduced by use of Hall's theory is however small, of the order of 10 % or less
Stress-Activated Electric Currents in the Earth Crust: How they Can and Cannot Flow (Invited)
Freund, F. T.; Bleier, T. E.; Bortnik, J.; Dahlgren, R.
2010-12-01
Dormant electronic charge carriers exist in rocks. They “wake up” when stresses are applied: electrons e’ and positive holes, h., the latter being defect electrons in the oxygen anion sublattice of minerals [1, 2]. The h. can flow out of the stressed subvolume. They can spread into the unstressed surrounding, turning the rocks into p-type semiconductors. They travel fast and far using energy levels at the upper edge of the valence bands. Contrary to the h., the co-activated electrons e’ cannot flow out and propagate through unstressed rocks: they are stuck in the activation volume. The situation is akin to that in an electrochemical battery except that, in the “rock battery”, the positive charge carriers are not cations but positive holes h.. In the laboratory it is easy to close the battery circuit by offering the electrons a metal contact and connecting the stressed and unstressed rock with a metal wire. This is useful to demonstrate the functioning of the “rock battery”. In the field the h. outflow from a stressed rock volume is restricted as long as there is no return path. This is an important point when we try to understand why pre-earthquake EM emission is widely considered “unreliable” [3, 4]. However, there are at least three conditions, under which circuit closure can be achieved in the field under realistic pre-earthquake situations: (i) via n-type conducting rocks; (ii) via electrolytic conductivity of water; and (iii) via the air when the air above the epicentral region becomes highly ionized. We report on examples where these three conditions might have allowed large currents to flow and strong EM signals to be emitted. [1] Freund, F.T. et al.: Electric currents streaming out of stressed igneous rocks - A step towards understanding pre-earthquake low frequency EM emissions, Phys. Chem. Earth 31, 389-396 (2006). [2] Freund, F.T.: Charge generation and propagation in rocks, J. Geodyn. 33, 545-572 (2002). [3] Johnston, M.J.S. and
Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel', A L
2016-08-01
Magnetic resonance angiography was used to examine blood flow in great arteries of hypertensive ISIAH and normotensive Wistar rats. In hypertensive ISIAH rats, increased vascular resistance in the basin of the abdominal aorta and renal arteries as well as reduced fraction of total renal blood flow were found. In contrast, blood flow through both carotid arteries in ISIAH rats was enhanced, which in suggests more intensive blood supply to brain regulatory centers providing enhanced stress reactivity of these rats characterized by stress-dependent arterial hypertension.
Role of advanced refuelling and heating on edge Reynolds stress-induced poloidal flow in HL-1M
International Nuclear Information System (INIS)
Hong Wenyu; Wang Enyao; Li Qiang; Cao Jianyong; Yan Longwen
2002-01-01
The radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric fields have been measured in the plasma boundary region of the HL-1M tokamak using a multi-array of Mach/Langmuir probes. In the experiments of ohmic discharge, lower hybrid current drive, supersonic molecular beam injection (SMBI) and multi-shot pellet injection, the correlation between the Reynolds stress and poloidal flow in the edge plasma is presented. The radial profile changes of the Reynolds stress and poloidal flow velocity V pol with lower hybrid wave injection power and SMBI injection are obtained. The results indicate that the sheared poloidal flow can be generated in tokamak plasma due to the radially varying Reynolds stress
International Nuclear Information System (INIS)
Hattori, Hirofumi; Kono, Amane; Houra, Tomoya
2016-01-01
Highlights: • We study various thermally-stratified turbulent boundary layers having adverse pressure gradient (APG) by means of DNS. • The detailed turbulent statistics and structures in various thermally-stratified turbulent boundary layers having APG are discussed. • It is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification. • In the case of strong stable stratification with or without APG, the flow separation is observed in the downstream region. - Abstract: The objective of this study is to investigate and observe turbulent heat transfer structures and statistics in thermally-stratified turbulent boundary layers subjected to a non-equilibrium adverse pressure gradient (APG) by means of direct numerical simulation (DNS). DNSs are carried out under conditions of neutral, stable and unstable thermal stratifications with a non-equilibrium APG, in which DNS results reveal heat transfer characteristics of thermally-stratified non-equilibrium APG turbulent boundary layers. In cases of thermally-stratified turbulent boundary layers affected by APG, heat transfer performances increase in comparison with a turbulent boundary layer with neutral thermal stratification and zero pressure gradient (ZPG). Especially, it is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification (WSBL). Thus, the analysis for both the friction coefficient and Stanton number in the case of WSBL with/without APG is conducted using the FIK identity in order to investigate contributions from the transport equations, in which it is found that both Reynolds-shear-stress and the mean convection terms
Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes
Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv
2007-04-01
In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.
Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes
International Nuclear Information System (INIS)
Umbrello, Domenico; Rizzuti, Stefania; Outeiro, Jose C.; Shivpuri, Rajiv
2007-01-01
In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change
Heat stress redistributes blood flow in arteries of the brain during dynamic exercise.
Sato, Kohei; Oue, Anna; Yoneya, Marina; Sadamoto, Tomoko; Ogoh, Shigehiko
2016-04-01
We hypothesized that heat stress would decrease anterior and posterior cerebral blood flow (CBF) during exercise, and the reduction in anterior CBF would be partly associated with large increase in extracranial blood flow (BF). Nine subjects performed 40 min of semirecumbent cycling at 60% of the peak oxygen uptake in hot (35°C; Heat) and thermoneutral environments (25°C; Control). We evaluated BF and conductance (COND) in the external carotid artery (ECA), internal carotid artery (ICA), and vertebral artery (VA) using ultrasonography. During the Heat condition, ICA and VA BF were significantly increased 10 min after the start of exercise (P Heat. Compared with the Control, either BF or COND of ICA and VA at the end of Heat tended to be lower, but not significantly. In contrast, ECA BF and COND at the end of Heat were both higher than levels in the Control condition (P Heat, a reduction in ICA BF appears to be associated with a decline in end-tidal CO2 tension (r = 0.84), whereas VA BF appears to be affected by a change in cardiac output (r = 0.87). In addition, a change in ECA BF during Heat was negatively correlated with a change in ICA BF (r = -0.75). Heat stress resulted in modification of the vascular response of head and brain arteries to exercise, which resulted in an alteration in the distribution of cardiac output. Moreover, a hyperthermia-induced increase in extracranial BF might compromise anterior CBF during exercise with heat stress. Copyright © 2016 the American Physiological Society.
Large-Scale, Continuous-Flow Production of Stressed Biomass (Desulfovibrio vulgaris Hildenborough)
Energy Technology Data Exchange (ETDEWEB)
Geller, Jil T.; Borglin, Sharon E.; Fortney, Julian L.; Lam, Bonita R.; Hazen, Terry C.; Biggin, Mark D.
2010-05-01
The Protein Complex Analysis Project (PCAP, http://pcap.lbl.gov/), focuses on high-throughput analysis of microbial protein complexes in the anaerobic, sulfate-reducing organism, DesulfovibriovulgarisHildenborough(DvH).Interest in DvHas a model organism for bioremediation of contaminated groundwater sites arises from its ability to reduce heavy metals. D. vulgarishas been isolated from contaminated groundwater of sites in the DOE complex. To understand the effect of environmental changes on the organism, midlog-phase cultures are exposed to nitrate and salt stresses (at the minimum inhibitory concentration, which reduces growth rates by 50percent), and compared to controls of cultures at midlogand stationary phases. Large volumes of culture of consistent quality (up to 100 liters) are needed because of the relatively low cell density of DvHcultures (one order of magnitude lower than E. coli, for example) and PCAP's challenge to characterize low-abundance membrane proteins. Cultures are grown in continuous flow stirred tank reactors (CFSTRs) to produce consistent cell densities. Stressor is added to the outflow from the CFSTR, and the mixture is pumped through a plug flow reactor (PFR), to provide a stress exposure time of 2 hours. Effluent is chilled and held in large carboys until it is centrifuged. A variety of analyses -- including metabolites, total proteins, cell density and phospholipidfatty-acids -- track culture consistency within a production run, and differences due to stress exposure and growth phase for the different conditions used. With our system we are able to produce the requisite 100 L of culture for a given condition within a week.
A study on regional cerebral blood flow at rest and stress state in anxiety disorder patients
International Nuclear Information System (INIS)
Wan Li; Liu Jian
2002-01-01
Objective: To investigate he characteristics of rest and stress regional cerebral blood flow (rCBF) in naive anxiety disorder patients. Methods: Twenty naive anxiety disorder patients were enrolled in the study with twenty healthy volunteers as controls. The rest and stress 99 Tc m -ethylene cystein dimer (ECD) SPECT were performed separately at 2 consecutive days, Raven reasoning test was used as a stressor. Results: 1) Compared to the healthy controls, the patients' rest rCBF of the frontal lobe, temporal lobe, thalamus and basal ganglia were significantly lower (P<0.05 and 0.01). 2)The patients' stress rCBF of the frontal lobe, temporal lobe, part occipital lobe, part parietal lobe, thalamus and basal ganglia were significantly lower compared to the healthy controls' (P<0.05 and 0.01). 3) Opposite to the healthy controls, the rCBF of patients increased significantly after stressor simulating. Conclusions: The hypofunction of frontal lobe, temporal lobe, thalamus and basal ganglia may exist in naive anxiety disorder patients. The abnormal rCBF of patients after simulating may be one of the characteristics of anxiety disorder
Non-Newtonian stress tensor and thermal conductivity tensor in granular plane shear flow
Alam, Meheboob; Saha, Saikat
2014-11-01
The non-Newtonian stress tensor and the heat flux in the plane shear flow of smooth inelastic disks are analysed from the Grad-level moment equations using the anisotropic Gaussian as a reference. Closed-form expressions for shear viscosity, pressure, first normal stress difference (N1) and the dissipation rate are given as functions of (i) the density or the area fraction (ν), (ii) the restitution coefficient (e), (iii) the dimensionless shear rate (R), (iv) the temperature anisotropy [ η, the difference between the principal eigenvalues of the second moment tensor] and (v) the angle (ϕ) between the principal directions of the shear tensor and the second moment tensor. Particle simulation data for a sheared hard-disk system is compared with theoretical results, with good agreement for p, μ and N1 over a large range of density. In contrast, the predictions from a Navier-Stokes order constitutive model are found to deviate significantly from both the simulation and the moment theory even at moderate values of e. We show that the gradient of the deviatoric part of the kinetic stress drives a heat current and the thermal conductivity is characterized by an anisotropic 2nd rank tensor for which explicit expressions are derived.
Engel, Frank; Rhoads, Bruce L.
2016-01-01
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.
Measuring mixing efficiency in experiments of strongly stratified turbulence
Augier, P.; Campagne, A.; Valran, T.; Calpe Linares, M.; Mohanan, A. V.; Micard, D.; Viboud, S.; Segalini, A.; Mordant, N.; Sommeria, J.; Lindborg, E.
2017-12-01
Oceanic and atmospheric models need better parameterization of the mixing efficiency. Therefore, we need to measure this quantity for flows representative of geophysical flows, both in terms of types of flows (with vortices and/or waves) and of dynamical regimes. In order to reach sufficiently large Reynolds number for strongly stratified flows, experiments for which salt is used to produce the stratification have to be carried out in a large rotating platform of at least 10-meter diameter.We present new experiments done in summer 2017 to study experimentally strongly stratified turbulence and mixing efficiency in the Coriolis platform. The flow is forced by a slow periodic movement of an array of large vertical or horizontal cylinders. The velocity field is measured by 3D-2C scanned horizontal particles image velocimetry (PIV) and 2D vertical PIV. Six density-temperature probes are used to measure vertical and horizontal profiles and signals at fixed positions.We will show how we rely heavily on open-science methods for this study. Our new results on the mixing efficiency will be presented and discussed in terms of mixing parameterization.
International Nuclear Information System (INIS)
Yakinthos, K.; Vlahostergios, Z.; Goulas, A.
2008-01-01
A new effort to model the flow in a 90 deg. rectangular duct by adopting three low-Reynolds-number turbulence models, two eddy-viscosity models (a linear and a non-linear) and a Reynolds-stress model, is presented. The complex flow development is a challenge for the application of turbulence models in order to assess their capability to capture the secondary flow and the developing vortices due to curvature and strong pressure gradient effects. The numerical results show that both the non-linear eddy-viscosity and the Reynolds-stress models can provide good results, especially for the velocity distributions. The superiority of the Reynolds-stress model is shown primarily in the Reynolds-stress distributions, which have the best quality among the predictions from the other models. On the other hand, the main advantage of the non-linear model is its simplicity and the smaller needed CPU cost, compared to the Reynolds-stress model. Additionally, in some stations of the flow development, the non-linear model provides good velocity distributions. The linear model gives lower quality predictions for the Reynolds-stress distributions, although it is capable in providing quite satisfactory results for the velocity distributions
Pontone, Gianluca; Muscogiuri, Giuseppe; Andreini, Daniele; Guaricci, Andrea I; Guglielmo, Marco; Mushtaq, Saima; Baggiano, Andrea; Conte, Edoardo; Beltrama, Virginia; Annoni, Andrea; Formenti, Alberto; Mancini, Elisabetta; Rabbat, Mark G; Pepi, Mauro
2016-12-01
The increased number of patients with coronary artery disease (CAD) in developed countries is of great clinical relevance and involves a large burden of the healthcare system. The management of these patients is focused on relieving symptoms and improving clinical outcomes. Therefore the ideal test would provide the correct diagnosis and actionable information. To this aim, several non-invasive functional imaging modalities are usually used as gatekeeper to invasive coronary angiography (ICA), but their diagnostic yield remains low with limited accuracy when compared to obstructive CAD at the time of ICA or invasive fractional flow reserve (FFR). Invasive FFR is considered the gold standard for the evaluation of functionally relevant CAD. Therefore, an urgent need for non-invasive techniques that evaluate both the functional and morphological severity of CAD is growing. Coronary computed tomography angiography (CCTA) has emerged as a unique non-invasive technique providing coronary artery anatomic imaging. More recently, the evaluation of FFR with CCTA (FFR CT ) has demonstrated high diagnostic performance compared to invasive FFR. Additionally, stress myocardial computed tomography perfusion (CTP) represents a novel tool for the diagnosis of ischemia with high diagnostic accuracy. Compared to nuclear imaging and cardiac magnetic resonance imaging, both FFR CT and stress-CTP, allow us to integrate the anatomical evaluation of coronary arteries with the functional relevance of coronary artery lesions having the potential to revolutionize the diagnostic paradigm of suspected CAD. FFR CT and stress-CTP could be assimilated in diagnostic pathways of patients with stable CAD and will likely result in a decrease of invasive diagnostic procedures and costs. The current review evaluates the technical aspects and clinical experience of FFR CT and stress-CTP in the evaluation of functionally relevant CAD discussing the strengths and weaknesses of each approach.
Nordgaard, Håvard; Swillens, Abigail; Nordhaug, Dag; Kirkeby-Garstad, Idar; Van Loo, Denis; Vitale, Nicola; Segers, Patrick; Haaverstad, Rune; Lovstakken, Lasse
2010-12-01
Competitive flow from native coronary vessels is considered a major factor in the failure of coronary bypass grafts. However, the pathophysiological effects are not fully understood. Low and oscillatory wall shear stress (WSS) is known to induce endothelial dysfunction and vascular disease, like atherosclerosis and intimal hyperplasia. The aim was to investigate the impact of competitive flow on WSS in mammary artery bypass grafts. Using computational fluid dynamics, WSS was calculated in a left internal mammary artery (LIMA) graft to the left anterior descending artery in a three-dimensional in vivo porcine coronary artery bypass graft model. The following conditions were investigated: high competitive flow (non-significant coronary lesion), partial competitive flow (significant coronary lesion), and no competitive flow (totally occluded coronary vessel). Time-averaged WSS of LIMA at high, partial, and no competitive flow were 0.3-0.6, 0.6-3.0, and 0.9-3.0 Pa, respectively. Further, oscillatory WSS quantified as the oscillatory shear index (OSI) ranged from (maximum OSI = 0.5 equals zero net WSS) 0.15 to 0.35, OSI similar to the no competitive flow condition. Graft flow is highly dependent on the degree of competitive flow. High competitive flow was found to produce unfavourable WSS consistent with endothelial dysfunction and subsequent graft narrowing and failure. Partial competitive flow, however, may be better tolerated as it was found to be similar to the ideal condition of no competitive flow.
International Nuclear Information System (INIS)
Aoki, Shigehisa; Ikeda, Satoshi; Takezawa, Toshiaki; Kishi, Tomoya; Makino, Junichi; Uchihashi, Kazuyoshi; Matsunobu, Aki; Noguchi, Mitsuru; Sugihara, Hajime; Toda, Shuji
2011-01-01
Highlights: ► Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. ► Fluid streaming is a potent factor for peritoneal fibrosis in PD. ► We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. ► A history of fluid streaming exposure promoted mesothelial proliferative activity. ► We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial–mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed. The present findings show that fluid flow stress exerts a prolonged bioactive effect on mesothelial cells after termination
von Knobelsdorff-Brenkenhoff, Florian; Karunaharamoorthy, Achudhan; Trauzeddel, Ralf Felix; Barker, Alex J; Blaszczyk, Edyta; Markl, Michael; Schulz-Menger, Jeanette
2016-01-01
Background Aortic stenosis (AS) leads to variable stress for the left ventricle (LV) and consequently a broad range of LV remodeling. Study aim was to describe blood flow patterns in the ascending aorta of AS patients and determine their association with remodeling. Methods and Results Thirty-seven patients with AS (14 mild, 8 moderate, 15 severe; age 63±13 years) and 37 healthy controls (age 60±10 years) underwent 4D-flow MRI. Helical and vortical flow formations and flow eccentricity were assessed in the ascending aorta. Normalized flow displacement from the vessel center and peak systolic wall shear stress (WSSpeak) in the ascending aorta were quantified. LV remodeling was assessed based on LV mass index (LVMI-I) and the ratio of LV mass to enddiastolic volume (relative wall mass; RWM). Marked helical and vortical flow formation and eccentricity were more prevalent in patients with AS than in healthy subjects, and AS patients exhibited an asymmetric and elevated distribution of WSSpeak. In AS, aortic orifice area was strongly negatively associated with vortical flow formation (p=0.0274), eccentricity (p=0.0070) and flow displacement (p=0.0021). Bicuspid aortic valve was associated with more intense helical (p=0.0098) and vortical flow formation (p=0.0536), higher flow displacement (p=0.11) and higher WSSpeak (p=0.0926). LVM-I and RWM were significantly associated with aortic orifice area (p=0.0611, p=0.0058) and flow displacement (p=0.0058, p=0.0283). Conclusions In this pilot study, AS leads to abnormal blood flow pattern and WSSpeak in the ascending aorta. In addition to aortic orifice area, normalized flow displacement was significantly associated with LV remodeling. PMID:26917824
International Nuclear Information System (INIS)
Xu, G.S.; Wan, B.N.; Li, J.
2005-01-01
The radial profiles of electrostatic and magnetic Reynolds stress (Maxwell stress) have been measured in the plasma boundary region of HT-7 tokamak. Experimental results show that the radial gradient of electrostatic Reynolds stress (ERS) changes sign across the last closed flux surface, and the neoclassical flow damping and the damping due to charge exchange processes are balanced by the radial gradient of ERS, which sustains the equilibrium sheared flow structure in a steady state. The contribution of magnetic Reynolds stress was found unimportant in a low β plasma. Detailed analyses indicate that the propagation properties of turbulence in radial and poloidal directions and the profiles of potential fluctuation level are responsible for the radial structure of ERS. (author)
Abbas, S. S.; Nasif, M. S.; Said, M. A. M.; Kadhim, S. K.
2017-10-01
Structural stresses developed in an artificial bileaflet mechanical heart valve (BMHV) due to pulsed blood flow may cause valve failure due to yielding. In this paper, von-Mises stresses are computed and compared for BMHV placed in two types of aortic root geometries that are aortic root with axisymmetric sinuses and with axisymmetric bulb, at different physiological blood flow rates. With BMHV placed in an aortic root with axisymmetric sinuses, the von-Mises stresses developed in the valve were found to be up to 47% higher than BMHV placed in aortic root with axisymmetric bulb under similar physiological conditions. High velocity vectors and therefore high von-Mises stresses have been observed for BMHV placed in aortic root with axisymmetric sinuses, that can lead to valve failure.
An analysis of the flow stress of a two-phase alloy system, Ti-6Al-4V
International Nuclear Information System (INIS)
Reed-Hill, R.E.; Iswaran, C.V.; Kaufman, M.J.
1996-01-01
An analysis of the tensile deformation behavior of a two-phase body-centered cubic (bcc)-hexagonal close-packed (hcp) alloy, Ti-6Al-4V, has been made. This has shown that the temperature dependence of the flow stress, the logarithm of the effective stress, and the strain-rate sensitivities can be described by simple analytical equations if the thermally activated strain-rate equation contains the Yokobori activation enthalpy H = H 0 ln (σ* 0 /σ*), where H 0 is a constant, σ* the effective stress, and σ* 0 its 0 K value. The flow stress-temperature plateau region (500 to 600 K) also can be rationalized analytically in terms of oxygen dynamic strain aging in the alpha phase
Effect of T-stress on the cleavage crack growth resistance resulting from plastic flow
DEFF Research Database (Denmark)
Tvergaard, Viggo
1998-01-01
Crack growth is studied numerically for cases where fracture occurs by atomic separation, sc that the length scale of the fracture process is typically much smaller than the dislocation spacing. Thus, the crack growth mechanism is brittle, but due to plastic flow at some distance from the crack tip......, the materials show crack growth resistance. It is shown here that the resistance is strongly dependent on the value of the non-singular T-stress, acting parallel to the crack plane. The numerical technique employed makes use of a thin dislocation-free strip of elastic material inside which the crack propagates......, with the material outside described by continuum plasticity. Thus the width of the strip is a material length scale comparable to the dislocation spacing or the dislocation cell size....
Hydromagnetic effect on inclined peristaltic flow of a couple stress fluid
Directory of Open Access Journals (Sweden)
G.C. Shit
2014-12-01
Full Text Available In this paper, we have investigated the effect of channel inclination on the peristaltic transport of a couple stress fluid in the presence of externally applied magnetic field. The slip velocity at the channel wall has been taken into account. Under the long wave length and low-Reynolds number assumptions, the analytical solutions for axial velocity, stream function, pressure gradient and pressure rise are obtained. The computed results are presented graphically by taking valid numerical data for non-dimensional physical parameters available in the existing scientific literatures. The results revealed that the trapping fluid can be eliminated and the central line axial velocity can be reduced with a considerable extent by the application of magnetic field. The flow phenomena for the pumping characteristics, trapping and reflux are furthermore investigated. The study shows that the slip parameter and Froude number play an important role in controlling axial pressure gradient.
Porous media fluid flow, heat, and mass transport model with rock stress coupling
International Nuclear Information System (INIS)
Runchal, A.K.
1980-01-01
This paper describes the physical and mathematical basis of a general purpose porous media flow model, GWTHERM. The mathematical basis of the model is obtained from the coupled set of the classical governing equations for the mass, momentum and energy balance. These equations are embodied in a computational model which is then coupled externally to a linearly elastic rock-stress model. This coupling is rather exploratory and based upon empirical correlations. The coupled model is able to take account of time-dependent, inhomogeneous and anisotropic features of the hydrogeologic, thermal and transport phenomena. A number of applications of the model have been made. Illustrations from the application of the model to nuclear waste repositories are included
Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress
Paterson, C.
2014-09-14
© 2014 © The Author, 2014. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals.permissions@oup.com. The steady flow of a slowly varying rivulet with prescribed flux in the azimuthal direction round a large stationary horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress is investigated. In particular, we focus on the case where the volume flux is downwards but the shear stress is upwards, for which there is always a solution corresponding to a rivulet flowing down at least part of one side of the cylinder. We consider both a rivulet with constant non-zero contact angle but slowly varying width (that is, de-pinned contact lines) and a rivulet with constant width but slowly varying contact angle (that is, pinned contact lines), and show that they have qualitatively different behaviour. When shear is present, a rivulet with constant non-zero contact angle can never run all the way from the top to the bottom of the cylinder, and so we consider the scenario in which an infinitely wide two-dimensional film of uniform thickness covers part of the upper half of the cylinder and \\'breaks\\' into a single rivulet with constant non-zero contact angle. In contrast, a sufficiently narrow rivulet with constant width can run all the way from the top to the bottom of the cylinder, whereas a wide rivulet can do so only if its contact lines de-pin, and so we consider the scenario in which the contact lines of a wide rivulet de-pin on the lower half of the cylinder.
International Nuclear Information System (INIS)
More, Ameya; Dutta, B.K.; Durgaprasad, P.V.; Arya, A.K.
2012-01-01
Fe-Cr based Ferritic/Martensitic (F/M) steels are the candidate structural materials for future fusion reactors. In this work, a multi-scale approach comprising atomistic Molecular Dynamics (MD) simulations and Discrete Dislocation Dynamics (DDD) simulations are used to model the effect of irradiation dose on the flow stress of F/M steels. At the atomic scale, molecular dynamics simulations are used to study the dislocation interaction with irradiation induced defects, i.e. voids and He bubbles. Whereas, the DDD simulations are used to estimate the change in flow stress of the material as a result of irradiation hardening. (author)
Ramana Reddy, J. V.; Srikanth, D.; Das, Samir K.
2017-08-01
A couple stress fluid model with the suspension of silver nanoparticles is proposed in order to investigate theoretically the natural convection of temperature and concentration. In particular, the flow is considered in an artery with an obstruction wherein the rheology of blood is taken as a couple stress fluid. The effects of the permeability of the stenosis and the treatment procedure involving a catheter are also considered in the model. The obtained non-linear momentum, temperature and concentration equations are solved using the homotopy perturbation method. Nanoparticles and the two viscosities of the couple stress fluid seem to play a significant role in the flow regime. The pressure drop, flow rate, resistance to the fluid flow and shear stress are computed and their effects are analyzed with respect to various fluids and geometric parameters. Convergence of the temperature and its dependency on the degree of deformation is effectively depicted. It is observed that the Nusselt number increases as the volume fraction increases. Hence magnification of molecular thermal dispersion can be achieved by increasing the nanoparticle concentration. It is also observed that concentration dispersion is greater for severe stenosis and it is maximum at the first extrema. The secondary flow of the axial velocity in the stenotic region is observed and is asymmetric in the tapered artery. The obtained results can be utilized in understanding the increase in heat transfer and enhancement of mass dispersion, which could be used for drug delivery in the treatment of stenotic conditions.
Measurements of wall shear stress in a planar turbulent Couette flow with porous walls
Beuther, Paul
2013-11-01
Measurements of drag on a moving web in a multi-span festoon show a stronger than expected dependency on the porosity of the web. The experiments suggest a wall shear stress 3-4 times larger than non-porous webs or historical Couette flow data for solid walls. Previous DNS studies by Jimenez et al. (JFM Vol 442) of boundary layers with passive porous surfaces predict a much smaller increase in wall shear stress for a porous wall of only 40%. Other DNS studies by Quadrio et al. (JFM Vol 576) of porous walls with periodic transpiration do show a large increase in drag under certain periodic conditions of modest amplitude. Although those results are aligned in magnitude with this study, the exact reason for the observed high drag for porous webs in this present study is not understood because there was no external disturbance applied to the web. It can be hypothesized that natural flutter of the web results in a similar mechanism shown in the periodic DNS study, but when the natural flutter was reduced by increasing web tension, there was only a small decrease of the drag. A key difference in this study is that because of the multiple parallel spans in a festoon, any transpiration in one layer must act in the opposite manner on the adjacent span.
Relating high-temperature flow stress of AISI 316 stainless steel to strain and strain rate
International Nuclear Information System (INIS)
Matteazzi, S.; Paitti, G.; Boerman, D.
1982-01-01
The authors have performed an experimental determination of tensile stress-strain curves for different strain rates (4.67 x 10 - 5 , 4.67 x 10 - 2 s - 1 ) and for a variety of temperature conditions (773-1073 K) of AISI 316H stainless steel (annealed conditions) and also a computer analysis of the experimental curves using a fitting program which takes into consideration different constitutive relations describing the plastic flow behaviour of the metals. The results show that the materials tested are clearly affected by strain rate only at the highest temperature investigated (1073 K) and that the plastic strain is the more significant variable. Of the constitutive equations considered, Voce's relation gives the best fit for the true stress-time-strain curves. However, the Ludwik and Ludwigson equations also provide a description of the experimental data, whereas Hollomon's equation does not suitably characterize AISI 316H stainless steel and can be applied with some accuracy only at 1073 K. (author)
... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...
Jia, Yali; Bagnaninchi, Pierre O.; Wang, Ruikang K.
2008-02-01
Mechanical stimuli can be introduced to three dimensional (3D) cell cultures by use of perfusion bioreactor. Especially in musculoskeletal tissues, shear stress caused by fluid flow generally increase extra-cellular matrix (ECM) production and cell proliferation. The relationship between the shear stress and the tissue development in situ is complicated because of the non-uniform pore distribution within the cell-seeded scaffold. In this study, we firstly demonstrated that Doppler optical coherence tomography (DOCT) is capable of monitoring localized fluid flow and shear stress in the complex porous scaffold by examining their variation trends at perfusion rate of 5, 8, 10 and 12 ml/hr. Then, we developed the 3D porous cellular constructs, cell-seeded chitosan scaffolds monitored during several days by DOCT. The fiber based fourier domain DOCT employed a 1300 nm superluminescent diode with a bandwidth of 52 nm and a xyz resolution of 20×20×15 μm in free space. This setup allowed us not only to assess the cell growth and ECM deposition by observing their different scattering behaviors but also to further investigate how the cell attachment and ECM production has the effect on the flow shear stress and the relationship between flow rate and shear stress in the developing tissue construct. The possibility to monitor continuously the constructs under perfusion will easily indicate the effect of flow rate or shear stress on the cell viability and cell proliferation, and then discriminate the perfusion parameters affecting the pre-tissue formation rate growth.
Visualization of mole fraction distribution of slow jet forming stably stratified field
International Nuclear Information System (INIS)
Fumizawa, Motoo; Hishida, Makoto
1990-01-01
An experimental study has been performed to investigate the behavior of flow and mass transfer in gaseous slow jet in which buoyancy force opposed the flow forming stably stratified field. The study has been performed to understand the basic features of air ingress phenomena at pipe rupture accident of the high temperature gas-cooled reactor. A displacement fringe technique was adopted in Mach-Zehnder interferometer to visualize the mole fraction distribution. As the result, the followings were obtained: (1) The stably stratified fields were formed in the vicinity of the outlet of the slow jet. The penetration distance of the stably stratified fields increased with Froude number. (2) Mass fraction distributions in the stably stratified fields were well correlated with the present model using the ramp mole velocity profile. (author)
Directory of Open Access Journals (Sweden)
Frank C G van Bussel
Full Text Available Flow-mediated dilation is aimed at normalization of local wall shear stress under varying blood flow conditions. Blood flow velocity and vessel diameter are continuous and opposing influences that modulate wall shear stress. We derived an index FMDv to quantify wall shear stress normalization performance by flow-mediated dilation in the brachial artery. In 22 fasting presumed healthy men, we first assessed intra- and inter-session reproducibilities of two indices pFMDv and mFMDv, which consider the relative peak and relative mean hyperemic change in flow velocity, respectively. Second, utilizing oral glucose loading, we evaluated the tracking performance of both FMDv indices, in comparison with existing indices [i.e., the relative peak diameter increase (%FMD, the peak to baseline diameter ratio (Dpeak/Dbase, and the relative peak diameter increase normalized to the full area under the curve of blood flow velocity with hyperemia (FMD/shearAUC or with area integrated to peak hyperemia (FMD/shearAUC_peak]. Inter-session and intra-session reproducibilities for pFMDv, mFMDv and %FMD were comparable (intra-class correlation coefficients within 0.521-0.677 range. Both pFMDv and mFMDv showed more clearly a reduction after glucose loading (reduction of ~45%, p≤0.001 than the other indices (% given are relative reductions: %FMD (~11%, p≥0.074; Dpeak/Dbase (~11%, p≥0.074; FMD/shearAUC_peak (~20%, p≥0.016 and FMD/shearAUC (~38%, p≤0.038. Further analysis indicated that wall shear stress normalization under normal (fasting conditions is already far from ideal (FMDv << 1, which (therefore does not materially change with glucose loading. Our approach might be useful in intervention studies to detect intrinsic changes in shear stress normalization performance in conduit arteries.
Duddu, Ravindra; Chopp, David L.; Moran, Brian
2009-01-01
of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions
Yang, Yong; Chai, Xueguang
2018-05-01
When a bulk superconductor endures the magnetization process, enormous mechanical stresses are imposed on the bulk, which often leads to cracking. In the present work, we aim to resolve the viscous flux flow velocity υ 0/w, i.e. υ 0 (because w is a constant) and the stress distribution in a long rectangular slab superconductor for the decreasing external magnetic field (B a ) after zero-field cooling (ZFC) and field cooling (FC) using the Kim model and viscous flux flow equation simultaneously. The viscous flux flow velocity υ 0/w and the magnetic field B* at which the body forces point away in all of the slab volumes during B a reduction, are determined by both B a and the decreasing rate (db a /dt) of the external magnetic field normalized by the full penetration field B p . In previous studies, υ 0/w obtained by the Bean model with viscous flux flow is only determined by db a /dt, and the field B* that is derived only from the Kim model is a positive constant when the maximum external magnetic field is chosen. This means that the findings in this paper have more physical contents than the previous results. The field B* stress changing with decreasing field B a after ZFC if B* ≤ 0. The effect of db a /dt on the stress is significant in the cases of both ZFC and FC.
On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics
F.J. Gaspar Lorenz (Franscisco); C. Rodrigo (Carmen)
2017-01-01
textabstractThe fixed-stress split method has been widely used as solution method in the coupling of flow and geomechanics. In this work, we analyze the behavior of an inexact version of this algorithm as smoother within a geometric multigrid method, in order to obtain an efficient monolithic solver
International Nuclear Information System (INIS)
Baek, Seong Gu; Park, Seung O.
2003-01-01
This paper provides the assessment of prediction performance of explicit algebraic stress and heat-flux models under conditions of mixed convective gas flows in a strongly-heated vertical tube. Two explicit algebraic stress models and four algebraic heat-flux models are selected for assessment. Eight combinations of explicit algebraic stress and heat-flux models are used in predicting the flows experimentally studied by Shehata and McEligot (IJHMT 41(1998) p.4333) in which property variation was significant. Among the various model combinations, the Wallin and Johansson (JFM 403(2000) p. 89) explicit algebraic stress model-Abe, Kondo, and Nagano (IJHFF 17(1996) p. 228) algebraic heat-flux model combination is found to perform best. We also found that the dimensionless wall distance y + should be calculated based on the local property rather than the property at the wall for property-variation flows. When the buoyancy or the property variation effects are so strong that the flow may relaminarize, the choice of the basic platform two-equation model is a most important factor in improving the predictions
Interfacial shear stress and hold-up in an air-water annular two-phase flow
International Nuclear Information System (INIS)
Fukano, T.; Ousaka, A.; Kawakami, Y.; Tominaga, A.
1991-01-01
This paper reports on an experimental investigation that was made into hold-up, frictional pressure drop and interfacial shear stress of an air-water two-phase annular flow in horizontal and vertical up- and downward flows to make clear the effects of tube diameter and flow direction on them. The tube diameters examined are 10mm, 16mm and 26mm. Both the hold-up and the pressure drop considerably changed with time. Especially, the amplitude of the variation of the hold-up was quite larger in comparison with its averaged value in the cause of disturbance wave flow. for the time averaged hold-up and interfacial friction factor, we got new correlations, by which we can estimate them within an accuracy of ±20% and ±30%, respectively, independent of the flow direction and the tube diameter
Ethanol dehydration to ethylene in a stratified autothermal millisecond reactor.
Skinner, Michael J; Michor, Edward L; Fan, Wei; Tsapatsis, Michael; Bhan, Aditya; Schmidt, Lanny D
2011-08-22
The concurrent decomposition and deoxygenation of ethanol was accomplished in a stratified reactor with 50-80 ms contact times. The stratified reactor comprised an upstream oxidation zone that contained Pt-coated Al(2)O(3) beads and a downstream dehydration zone consisting of H-ZSM-5 zeolite films deposited on Al(2)O(3) monoliths. Ethanol conversion, product selectivity, and reactor temperature profiles were measured for a range of fuel:oxygen ratios for two autothermal reactor configurations using two different sacrificial fuel mixtures: a parallel hydrogen-ethanol feed system and a series methane-ethanol feed system. Increasing the amount of oxygen relative to the fuel resulted in a monotonic increase in ethanol conversion in both reaction zones. The majority of the converted carbon was in the form of ethylene, where the ethanol carbon-carbon bonds stayed intact while the oxygen was removed. Over 90% yield of ethylene was achieved by using methane as a sacrificial fuel. These results demonstrate that noble metals can be successfully paired with zeolites to create a stratified autothermal reactor capable of removing oxygen from biomass model compounds in a compact, continuous flow system that can be configured to have multiple feed inputs, depending on process restrictions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Grain distinct stratified nanolayers in aluminium alloys
Energy Technology Data Exchange (ETDEWEB)
Donatus, U., E-mail: uyimedonatus@yahoo.com [School of Materials, The University of Manchester, Manchester, M13 9PL, England (United Kingdom); Thompson, G.E.; Zhou, X.; Alias, J. [School of Materials, The University of Manchester, Manchester, M13 9PL, England (United Kingdom); Tsai, I.-L. [Oxford Instruments NanoAnalysis, HP12 2SE, High Wycombe (United Kingdom)
2017-02-15
The grains of aluminium alloys have stratified nanolayers which determine their mechanical and chemical responses. In this study, the nanolayers were revealed in the grains of AA6082 (T6 and T7 conditions), AA5083-O and AA2024-T3 alloys by etching the alloys in a solution comprising 20 g Cr{sub 2}O{sub 3} + 30 ml HPO{sub 3} in 1 L H{sub 2}O. Microstructural examination was conducted on selected grains of interest using scanning electron microscopy and electron backscatter diffraction technique. It was observed that the nanolayers are orientation dependent and are parallel to the {100} planes. They have ordered and repeated tunnel squares that are flawed at the sides which are aligned in the <100> directions. These flawed tunnel squares dictate the tunnelling corrosion morphology as well as appearing to have an affect on the arrangement and sizes of the precipitation hardening particles. The inclination of the stratified nanolayers, their interpacing, and the groove sizes have significant influence on the corrosion behaviour and seeming influence on the strengthening mechanism of the investigated aluminium alloys. - Highlights: • Stratified nanolayers in aluminium alloy grains. • Relationship of the stratified nanolayers with grain orientation. • Influence of the inclinations of the stratified nanolayers on corrosion. • Influence of the nanolayers interspacing and groove sizes on hardness and corrosion.
Development of a natural gas stratified charge rotary engine
Energy Technology Data Exchange (ETDEWEB)
Sierens, R.; Verdonck, W.
1985-01-01
A water model has been used to determine the positions of separate inlet ports for a natural gas, stratified charge rotary engine. The flow inside the combustion chamber (mainly during the induction period) has been registered by a film camera. From these tests the best locations of the inlet ports have been obtained, a prototype of this engine has been built by Audi NSU and tested in the laboratories of the university of Gent. The results of these tests, for different stratification configurations, are given. These results are comparable with the best results obtained by Audi NSU for a homogeneous natural gas rotary engine.
DEFF Research Database (Denmark)
Shibasaki, M.; Rasmussen, P.; Secher, Niels H.
2009-01-01
as an absence of sweating and cutaneous vasodilatation during a whole-body heat stress. Upon this confirmation, adenosine was perfused through one of the microdialysis probes to increase skin blood flow similar to that of the unblocked site. After internal temperature increased approximately 0.7 degrees C......During heat stress, isometric handgrip (IHG) exercise causes cutaneous vasoconstriction, but it remains controversial whether neural mechanisms are responsible for this observation. The objective of this study was to test the hypothesis that cutaneous vasoconstriction during IHG exercise in heat...... stressed individuals occurs via a neural mechanism. An axillary nerve blockade was performed to block efferent nerve traffic to the left forearm in seven healthy subjects. Two intradermal microdialysis probes were placed within forearm skin of the blocked area. Forearm skin blood flow was measured by laser...
Directory of Open Access Journals (Sweden)
A.S. Eegunjobi
Full Text Available Numerical analysis of the intrinsic irreversibility of a mixed convection hydromagnetic flow of an electrically conducting couple stress fluid through upright channel filled with a saturated porous medium and radiative heat transfer was carried out. The thermodynamics first and second laws were employed to examine the problem. We obtained the dimensionless nonlinear differential equations and solves numerically with shooting procedure joined with a fourth order Runge-Kutta-Fehlberg integration scheme. The temperature and velocity obtained, used to analyse the entropy generation rate together with some various physical parameters of the flow. Our results are presented graphically and talk over. Keywords: MHD channel flow, Couple stress fluid, Porous medium, Thermal radiation, Entropy generation, Injection/suction
English, Joseph M.
2017-05-31
The petroleum prospectivity of an exhumed basin is largely dependent on the ability of pre-existing traps to retain oil and gas volumes during and after the exhumation event. Although faults may act as lateral seals in petroleum traps, they may start to become hydraulically conductive again and enable fluid flow and hydrocarbon leakage during fault reactivation. We constrain the present day in situ stresses of the exhumed Illizi Basin in Algeria and demonstrate that the primary north–south and NW–SE (vertical strike-slip) fault systems in the study area are close to critical stress (i.e. an incipient state of shear failure). By contrast, the overpressured and unexhumed Berkine Basin and Hassi Messaoud areas to the north do not appear to be characterized by critical stress conditions. We present conceptual models of stress evolution and demonstrate that a sedimentary basin with benign in situ stresses at maximum burial may change to being characterized by critical stress conditions on existing fault systems during exhumation. These models are supportive of the idea that the breaching of a closed, overpressured system during exhumation of the Illizi Basin may have been a driving mechanism for the regional updip flow of high-salinity formation water within the Ordovician reservoirs during Eocene–Miocene time. This work also has implications for petroleum exploration in exhumed basins. Fault-bounded traps with faults oriented at a high angle to the maximum principal horizontal stress direction in strike-slip or normal faulting stress regimes are more likely to have retained hydrocarbons in exhumed basins than fault-bounded traps with faults that are more optimally oriented for shear failure and therefore have a greater propensity to become critically stressed during exhumation.
Directory of Open Access Journals (Sweden)
Pan Zhipeng
2017-01-01
Full Text Available Inconel 718 is a typical hard-to-machine material that requires thermally enhanced machining technology such as laser-assisted milling. Based upon finite element analysis, this study simulates the forces in the laser-assisted milling process of Inconel 718 considering the effects of grain growth due to γ' and γ" phases. The γ" phase is unstable and becomes the δ phase, which is likely to precipitate at a temperature over 750 °C. The temperature around the center of spot in the experiments is 850 °C, so the phase transformation and grain growth happen throughout the milling process. In the analysis, this study includes the microstructure evolution while accounting for the effects of dynamic recrystallization and grain growth through the Avrami model. The grain growth reduces the yield stress and flow stress, which improves the machinability. In finite element analysis (FEA, several boundary conditions of temperature varying with time are defined to simulate the movement of laser spot, and the constitutive model is described by Johnson-Cook equation. In experiments, this study collects three sets of cutting forces and finds that the predicted values are in close agreements with measurements especially in feed direction, in which the smallest error is around 5%. In another three simulations, this study also examines the effect of laser preheating on the cutting forces by comparison with a traditional milling process without laser assist. When the laser is off, the forces increase in all cases, which prove the softening effect of laser-assisted milling. In addition, when the axial depth of milling increases, the laser has a more significant influence, especially in axial direction, in which the force with laser is more than 18% smaller than the one without laser. Overall, this study validates the influence of laser-assisted milling on Inconel 718 by predicting the cutting forces in FEA.
Stratified charge rotary engine for general aviation
Mount, R. E.; Parente, A. M.; Hady, W. F.
1986-01-01
A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.
International Nuclear Information System (INIS)
Khabbouchi, Imed; Guellouz, Mohamed Sadok; Tavoularis, Stavros
2009-01-01
Synchronised hot-film and hot-wire measurements were made in the narrower region of a rectangular channel containing a cylindrical rod. The hot-film probe was mounted flush with the channel bottom wall to measure the wall shear stress, while the hot-wire probe was placed at a fixed position, selected in order to easily detect the passage of coherent structures. Mean and rms profiles of the wall shear stress show the influence of the gap to diameter ratio on their respective distributions. The latter presented peculiarities that could only be explained by the presence of coherent structures in the flow between the rod and the wall. Evidence of this presence is seen in the velocity power spectra. The strong influence of the coherent structures on the wall shear stress spatial and temporal distributions is established through velocity-wall shear stress cross-correlations functions and through conditionally sampled measurements
International Nuclear Information System (INIS)
Xu, Y.; Shesterikov, I.; Berte, M.; Dumortier, P.; Van Schoor, M.; Vergote, M.; Hidalgo, C.; Krämer-Flecken, A.; Koslowski, R.
2013-01-01
Direct measurements of residual stress (force) have been executed at the edge of the TEXTOR tokamak using multitip Langmuir and Mach probes, together with counter-current NBI torque to balance the existing toroidal rotation. Substantial residual stress and force have been observed at the plasma boundary, confirming the existence of a finite residual stress as possible mechanisms to drive the intrinsic toroidal rotation. In low-density discharges, the residual stress displays a quasi-linear dependence on the local pressure gradient, consistent with theoretical predictions. At high-density shots the residual stress and torque are strongly suppressed. The results show close correlation between the residual stress and the E r × B flow shear rate, suggesting a minimum threshold of the E × B flow shear required for the k ∥ symmetry breaking. These findings provide the first experimental evidence of the role of E r × B sheared flows in the development of residual stresses and intrinsic rotation. (letter)
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Makoto; Arakawa, Chuichi; Tagori, Tetsuo [Ishikawajima-Harima Heavy Industries, Co., Ltd., Tokyo (Japan) Univ. of Tokyo, Tokyo (Japan). Faculty of Engineering Univ. of Tsukuba, Tsukuba (Japan)
1990-02-25
It is considered that exhaust gas energy of turbofan engine is partly collected to realize the improvement of propulsion efficiency together with the reduction of noise appeared by the change in velocity distribution of exhaust gas flow. Then Lobe mixer was studied and its effectiveness was widely recognized, however the development of more realistic prediction method of exhaust nozzle system including Lobe mixer, is not completed yet. The stress equation model with low Reynolds Number which is easily used by the expansion of Launder Reece Rodi model in three dimension coordinate system was newly constructed. Applicability of the stress equation in more complicated flow field was greatly improved. While the above model was applied to Lobe mixer system, then the qualitative reproduction of mixing process accompanied with flow around Lobe and longitudinal eddy of core or bi-pass flow, was realized. There is room for improvement of pressure strain correlation term and behavior of Reynolds stress very close by wall surface in this model. 16 refs., 9 figs., 1 tab.
Kefayati, Sarah; Poepping, Tamie L
2010-01-01
The carotid artery bifurcation is a common site of atherosclerosis which is a major leading cause of ischemic stroke. The impact of stenosis in the atherosclerotic carotid artery is to disturb the flow pattern and produce regions with high shear rate, turbulence, and recirculation, which are key hemodynamic factors associated with plaque rupture, clot formation, and embolism. In order to characterize the disturbed flow in the stenosed carotid artery, stereoscopic PIV measurements were performed in a transparent model with 50% stenosis under pulsatile flow conditions. Simulated ECG gating of the flowrate waveform provides external triggering required for volumetric reconstruction of the complex flow patterns. Based on the three-component velocity data in the lumen region, volumetric shear-stress patterns were derived.
Nitrogen transformations in stratified aquatic microbial ecosystems
DEFF Research Database (Denmark)
Revsbech, N. P.; Risgaard-Petersen, N.; Schramm, A.
2006-01-01
Abstract New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about n...
International Nuclear Information System (INIS)
Irace, C.; Tamburini, S.; Bertucci, B.; Franceschi, M.S. de; Gnasso, A.
2006-01-01
The aim of our study was to evaluate the effect of the intravenous contrast media iomeprol on wall shear stress, blood flow and vascular parameters in the common carotid and brachial artery. Thirty outpatients undergoing thoracic or abdominal spiral CT scans were studied. The internal diameter and flow velocity of the common carotid and brachial artery were evaluated by ultrasound, and blood viscosity was measured before and after low osmolality iomeprol (Iomeron 350) injection. The wall shear stress, blood flow and pulsatility index were calculated. To test the differences between groups, the Wilcoxon rank test and Mann Whitney U test were applied. Blood viscosity decreased slightly, but significantly after contrast media (4.6±0.7 vs. 4.5±0.7 mPa.s, P=0.02). Contrarily, blood flow and wall shear stress did not change in the common carotid artery, but significantly decreased in the brachial artery (0.9±0.4 vs. 0.6±0.3 ml/s, P<0.0001, and 41.5±13.9 vs. 35.3±11.0 dynes/cm2, P<0.002, respectively), whereas the pulsatility index significantly increased in the brachial artery (5.0±3.3 vs. 7.5±5.3, P<0.001). Iomeprol injection causes blood flow and wall shear stress reduction of the brachial artery; the rise in the pulsatility index suggests an increase in peripheral vascular resistance. Further investigation is needed to evaluate whether these modifications can be clinically relevant. (orig.)
Directory of Open Access Journals (Sweden)
Yu-Mei He
2017-05-01
Full Text Available Objective: To study the relationship between umbilical blood flow ultrasound characteristics of perioperative fetal intrauterine hypoxia and maternal as well as fetal oxidative stress injury. Methods: 108 puerperae giving birth in our hospital between May 2014 and October 2016 were selected and divided into normal pregnancy group with neonatal Apgar score >7 points and intrauterine hypoxia group with neonatal Apgar score ≤7 points, color Doppler diasonograph was used to determine umbilical blood flow ultrasound parameters, umbilical cord blood was collected to determine the levels of oxidative stress products, and the placenta was collected to determine the levels of oxidative stress products and related apoptosis molecules. Results: During 24–30 weeks, 31–36 weeks and 37–41 weeks of pregnancy, umbilical blood flow resistance index (RI, pulsatility index (PI and diastolic velocity/systolic velocity (S/D of intrauterine hypoxia group were significantly higher than those of normal pregnancy group (P<0.05; malondialdehyde (MDA, oxidized low-density lipoprotein (ox- LDL, 8-isoprostanes (8-iso, and heat shock protein 70 (HSP-70 levels in umbilical cord blood of intrauterine hypoxia group were significantly higher than those of normal pregnancy group (P<0.05, MDA, oxLDL, 8-ios, HSP-70, Fas, FasL and Bax levels in placenta tissue were significantly higher than those of normal pregnancy group (P<0.05, and Bcl-2 and XIAP levels were significantly lower than those of normal pregnancy group (P<0.05; RI, PI and S/ D were positively correlated with MDA, oxLDL, 8-ios and HSP-70 levels in umbilical cord blood and placenta tissue, positively correlated with Fas, FasL and Bax levels in placenta tissue, and negatively correlated with Bcl-2 and XIAP levels in placental tissue. Conclusions: The increased umbilical blood flow resistance and decreased flow volume of fetal intrauterine hypoxia are closely related to maternal, fetal and placental oxidative
Experiments in stratified gas-liquid pipe flow
Birvalski, M.
2015-01-01
The growing demand for energy in the future will necessitate the production of natural gas from fields which are located farther offshore, in deep water and in very cold environments. This will confront us with difficulties in ensuring continuous production of the fluids (natural gas, condensate and
Directory of Open Access Journals (Sweden)
Sami Ullah Khan
2018-03-01
Full Text Available The aim of this article is to highlight the unsteady mixed convective couple stress nanoliquid flow passed through stretching surface. The flow is generated due to periodic oscillations of sheet. An appropriate set of dimensionless variables are used to reduce the independent variables in governing equations arising from mathematical modeling. An analytical solution has been computed by employing the technique of homotopy method. The outcomes of various sundry parameters like couple stress parameter, the ratio of angular velocity to stretching rate, thermophoresis parameter, Hartmann number, Prandtl number, heat source/sink parameter, Schmidt number described graphically and in tabular form. It is observed that the velocity profile increases by increasing mixed convection parameter and concentration buoyancy parameter. The temperature enhances for larger values of Hartmann number and Brownian. The concentration profile increases by increasing thermophoresis parameter. Results show that wall shear stress increases by increasing couple stress parameter and ratio of oscillating frequency to stretching rate. Keywords: Oscillatory surface, Couple stress fluid, Nanoparticles, Heat absorption/generation
Effects of virtual water flow on regional water resources stress: A case study of grain in China.
Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute
2016-04-15
Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan, Islamic Republic of Iran. (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Roudbari, M.A. [Faculty of Mechanical Engineering, University of Kashan, Kashan, Islamic Republic of Iran. (Iran, Islamic Republic of)
2014-11-01
This paper investigates the electro-thermal nonlocal wave propagation of fluid-conveying single-walled Boron Nitride nanotubes (SWBNNTs) using nonlocal piezoelasticity with surface stress, initial stress and Knudsen-dependent flow velocity effect. SWBNNT is embedded in a vicsoelastic medium which is simulated as visco-Pasternak foundation. Using Euler–Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. A detailed parametric study is conducted, focusing on the combined effects of the electric parameters, viscoelastic medium, initial stress, surface stress, Knudsen number (Kn) and small scale on the wave propagation behaviour of the fluid-conveying SWBNNT. The results show that for smaller values of wave number the dispersion relation for different fluid viscosities seems to be similar. At the higher values of wave numbers, increase in the wave frequency values is remarkable due to increase in fluid viscosity. The electric field as a smart controller, surface effect, initial stress, temperature change and slip velocity effect have significant role on the wave frequency. The results of this work is hoped to be of use in design and manufacturing of smart MEMS/NEMS in advanced medical applications such as drug delivery systems with great applications in biomechanics.
International Nuclear Information System (INIS)
Ghorbanpour Arani, A.; Roudbari, M.A.
2014-01-01
This paper investigates the electro-thermal nonlocal wave propagation of fluid-conveying single-walled Boron Nitride nanotubes (SWBNNTs) using nonlocal piezoelasticity with surface stress, initial stress and Knudsen-dependent flow velocity effect. SWBNNT is embedded in a vicsoelastic medium which is simulated as visco-Pasternak foundation. Using Euler–Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. A detailed parametric study is conducted, focusing on the combined effects of the electric parameters, viscoelastic medium, initial stress, surface stress, Knudsen number (Kn) and small scale on the wave propagation behaviour of the fluid-conveying SWBNNT. The results show that for smaller values of wave number the dispersion relation for different fluid viscosities seems to be similar. At the higher values of wave numbers, increase in the wave frequency values is remarkable due to increase in fluid viscosity. The electric field as a smart controller, surface effect, initial stress, temperature change and slip velocity effect have significant role on the wave frequency. The results of this work is hoped to be of use in design and manufacturing of smart MEMS/NEMS in advanced medical applications such as drug delivery systems with great applications in biomechanics
Directory of Open Access Journals (Sweden)
Zhang De-Sheng
2015-01-01
Full Text Available The prediction accuracies of partially-averaged Navier-Stokes model and improved shear stress transport k-ω turbulence model for simulating the unsteady cavitating flow around the hydrofoil were discussed in this paper. Numerical results show that the two turbulence models can effectively reproduce the cavitation evolution process. The numerical prediction for the cycle time of cavitation inception, development, detachment, and collapse agrees well with the experimental data. It is found that the vortex pair induced by the interaction between the re-entrant jet and mainstream is responsible for the instability of the cavitation shedding flow.
Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress
Paterson, C.; Wilson, S. K.; Duffy, B. R.
2014-01-01
large stationary horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress is investigated. In particular, we focus on the case where the volume flux is downwards but the shear stress is upwards, for which there is always a
International Nuclear Information System (INIS)
Memon, R.A.; Solangi, M.A.
2013-01-01
The impacts of rotational velocity and inertia on velocity gradients and stresses are addressed under present study. The non-Newtonian behaviour of inelastic rotating flows is predicted by employing Power law model. A numerical model has been developed for mixing flow within a cylindrical vessel along a couple of stirrers. A time marching FEM (Finite Element Method) is employed to predict the required solution. Predicted solutions are presented for minimum to maximum values in terms of contour plots of velocity gradients and shear stresses, over the range. The long term application of this research will be used to improve the design of mixers and processing products. The predicted results are used to generate the capability and are in good agreement with numerical results to the mixer design that will ultimately effect the processing of dough products. (author)
Induction of cyclic electron flow around photosystem I during heat stress in grape leaves.
Sun, Yongjiang; Geng, Qingwei; Du, Yuanpeng; Yang, Xinghong; Zhai, Heng
2017-03-01
Photosystem II (PSII) in plants is susceptible to high temperatures. The cyclic electron flow (CEF) around PSI is thought to protect both PSII and PSI from photodamage. However, the underlying physiological mechanisms of the photosynthetic electron transport process and the role of CEF in grape at high temperatures remain unclear. To investigate this issue, we examined the responses of PSII energy distribution, the P700 redox state and CEF to high temperatures in grape leaves. After exposing 'Cabernet Sauvignon' leaves to various temperatures (25, 30, 35, 40 and 45°C) in the light (600μmol photons m -2 s -1 ) for 4h, the maximum quantum yield of PSII (Fv/Fm) significantly decreased at high temperatures (40 and 45°C), while the maximum photo-oxidizable P700 (Pm) was not affected. As the temperature increased, higher initial rates of increase in post-illumination Chl fluorescence were detected, which were accompanied by an increase in high energy state quenching (qE). The chloroplast NAD(P)H dehydrogenase-dependent CEF (NDH-dependent CEF) activities were different among grape cultivators. 'Gold Finger' with greater susceptibility to photoinhibition, exhibited lower NDH-dependent CEF activities under acute heat stress than a more heat tolerant 'Cabernet Sauvignon'. These results suggest that overclosure of PSII reaction centers at high temperature resulted in the photoinhibition of PSII, while the stimulation of CEF in grape played an important role in the photoprotection of PSII and PSI at high temperatures through contributing to the generation of a proton gradient. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Mickleborough Timothy D
2008-09-01
Full Text Available Abstract Background Normalization of brachial artery flow-mediated dilation (FMD to individual shear stress area under the curve (peak FMD:SSAUC ratio has recently been proposed as an approach to control for the large inter-subject variability in reactive hyperemia-induced shear stress; however, the adoption of this approach among researchers has been slow. The present study was designed to further examine the efficacy of FMD normalization to shear stress in reducing measurement variability. Methods Five different magnitudes of reactive hyperemia-induced shear stress were applied to 20 healthy, physically active young adults (25.3 ± 0. 6 yrs; 10 men, 10 women by manipulating forearm cuff occlusion duration: 1, 2, 3, 4, and 5 min, in a randomized order. A venous blood draw was performed for determination of baseline whole blood viscosity and hematocrit. The magnitude of occlusion-induced forearm ischemia was quantified by dual-wavelength near-infrared spectrometry (NIRS. Brachial artery diameters and velocities were obtained via high-resolution ultrasound. The SSAUC was individually calculated for the duration of time-to-peak dilation. Results One-way repeated measures ANOVA demonstrated distinct magnitudes of occlusion-induced ischemia (volume and peak, hyperemic shear stress, and peak FMD responses (all p AUC (p = 0.785. Conclusion Our data confirm that normalization of FMD to SSAUC eliminates the influences of variable shear stress and solidifies the utility of FMD:SSAUC ratio as an index of endothelial function.
Directory of Open Access Journals (Sweden)
Pei-Ling Hsu
2018-01-01
Full Text Available Ganoderma mushrooms, used in traditional Chinese medicine to promote health and longevity, have become widely accepted as herbal supplements. Ganoderma lucidum (GL, a commonly seen ganoderma species, is commercially cultivated under controlled conditions for more consistent chemical composition. The medicinal properties of GL are attributable to its antioxidant and anti-inflammatory activities. We intended to assess the effect of GL in atherosclerosis, an arterial condition associated with chronic oxidative stress and inflammation, using a carotid-artery-ligation mouse model. Flow turbulence created in the ligated artery induces oxidative stress and neointimal hyperplasia, a feature of early atherogenesis. Daily oral GL prevented neointimal thickening 2 weeks after ligation. Moreover, the ganoderma triterpenoid (GT crude extract isolated from GL abolished ligation-induced neointima formation. Mechanistically, endothelial dysfunction was observed 3 days after ligation before any structural changes could be detected. GTs alleviated the oxidative stress and restored the atheroresistent status of endothelium by inhibiting the induction of a series of atherogenic factors, including endothelin-1, von Willebrand factor, and monocyte chemoattractant protein-1 after 3-day ligation. The anti-inflammatory activity of GTs was tested in cultured human umbilical vein endothelial cells (HUVECs exposed to disturbed flow in an in vitro perfusion system. GTs abolished the induction of proinflammatory VCAM-1, TNF-α, and IL-6 by oscillatory shear stress. Moreover, the antioxidant activity of GTs was tested in HUVECs against the insult of H2O2. GTs dissipated the cellular superoxide accumulation imposed by H2O2, thereby mitigating H2O2-induced cell damage and proatherogenic response. Our results revealed the atheroprotective properties of ganoderma mushrooms and identified triterpenoids as the critical constituents for those effects. GTs prevent atherogenesis by
Capponi, Antonio; Lane, Stephen J.; James, Mike R.
2017-06-01
The interpretation of geophysical measurements at active volcanoes is vital for hazard assessment and for understanding fundamental processes such as magma degassing. For Strombolian activity, interpretations are currently underpinned by first-order fluid dynamic models which give relatively straightforward relationships between geophysical signals and gas and magma flow. However, recent petrological and high-speed video evidence has indicated the importance of rheological stratification within the conduit and, here, we show that under these conditions, the straightforward relationships break down. Using laboratory analogue experiments to represent a rheologically-stratified conduit we characterise the distinct variations in the shear stress exerted on the upper sections of the flow tube and in the gas pressures measured above the liquid surface, during different degassing flow configurations. These signals, generated by varying styles of gas ascent, expansion and burst, can reflect field infrasonic measurements and ground motion proximal to a vent. The shear stress signals exhibit timescales and trends in qualitative agreement with the near-vent inflation-deflation cycles identified at Stromboli. Therefore, shear stress along the uppermost conduit may represent a plausible source of near-vent tilt, and conduit shear contributions should be considered in the interpretation of ground deformation, which is usually attributed to pressure sources only. The same range of flow processes can produce different experimental infrasonic waveforms, even for similar masses of gas escape. The experimental data resembled infrasonic waveforms acquired from different vents at Stromboli associated with different eruptive styles. Accurate interpretation of near-vent ground deformation, infrasonic signal and eruptive style therefore requires detailed understanding of: a) spatiotemporal magma rheology in the shallow conduit, and b) shallow conduit geometry, as well as bubble
Directory of Open Access Journals (Sweden)
Kyung Min Kim
Full Text Available Shear stress activates cellular signaling involved in cellular proliferation, differentiation, and migration. However, the mechanisms of mesenchymal stem cell (MSC differentiation under interstitial flow are not fully understood. Here, we show the increased osteogenic differentiation of MSCs under exposure to constant, extremely low shear stress created by osmotic pressure-induced flow in a microfluidic chip. The interstitial level of shear stress in the proposed microfluidic system stimulated nuclear localization of TAZ (transcriptional coactivator with PDZ-binding motif, a transcriptional modulator of MSCs, activated TAZ target genes such as CTGF and Cyr61, and induced osteogenic differentiation. TAZ-depleted cells showed defects in shear stress-induced osteogenic differentiation. In shear stress induced cellular signaling, Rho signaling pathway was important forthe nuclear localization of TAZ. Taken together, these results suggest that TAZ is an important mediator of interstitial flow-driven shear stress signaling in osteoblast differentiation of MSCs.
Stress Perfusion Coronary Flow Reserve Versus Cardiac Magnetic Resonance for Known or Suspected CAD.
Kato, Shingo; Saito, Naka; Nakachi, Tatsuya; Fukui, Kazuki; Iwasawa, Tae; Taguri, Masataka; Kosuge, Masami; Kimura, Kazuo
2017-08-15
Phase-contrast (PC) cine magnetic resonance imaging (MRI) of the coronary sinus is a noninvasive method to quantify coronary flow reserve (CFR). This study sought to compare the prognostic value of CFR by cardiac magnetic resonance (CMR) and stress perfusion CMR to predict major adverse cardiac events (MACE). Participants included 276 patients with known coronary artery disease (CAD) and 400 with suspected CAD. CFR was calculated as myocardial blood flow during adenosine triphosphate infusion divided by myocardial blood flow at rest using PC cine MRI of the coronary sinus. During a median follow-up of 2.3 years, 47 patients (7%) experienced MACE. Impaired CFR (10% ischemia on stress perfusion CMR were significantly associated with MACE in patients with known CAD (hazard ratio [HR]: 5.17 and HR: 5.10, respectively) and suspected CAD (HR: 14.16 and HR: 6.50, respectively). The area under the curve for predicting MACE was 0.773 for CFR and 0.731 for stress perfusion CMR (p = 0.58) for patients with known CAD, and 0.885 for CFR and 0.776 for stress perfusion CMR (p = 0.059) in the group with suspected CAD. In patients with known CAD, sensitivity, specificity, and positive and negative predictive values to predict MACE were 64%, 91%, 38%, and 97%, respectively, for CFR, and 82%, 59%, 15%, and 97%, respectively, for stress perfusion CMR. In the suspected CAD group, these values were 65%, 99%, 80%, and 97%, respectively, for CFR, and 72%, 83%, 22%, and 98%, respectively, for stress perfusion CMR. The predictive values of CFR and stress perfusion CMR for MACE were comparable in patients with known CAD. In patients with suspected CAD, CFR showed higher HRs and areas under the curve than stress perfusion CMR, suggesting that CFR assessment by PC cine MRI might provide better risk stratification for patients with suspected CAD. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Guehl, Nicolas J; Normandin, Marc D; Wooten, Dustin W; Rozen, Guy; Ruskin, Jeremy N; Shoup, Timothy M; Woo, Jonghye; Ptaszek, Leon M; Fakhri, Georges El; Alpert, Nathaniel M
2017-09-01
We have recently reported a method for measuring rest-stress myocardial blood flow (MBF) using a single, relatively short, PET scan session. The method requires two IV tracer injections, one to initiate rest imaging and one at peak stress. We previously validated absolute flow quantitation in ml/min/cc for standard bull's eye, segmental analysis. In this work, we extend the method for fast computation of rest-stress MBF parametric images. We provide an analytic solution to the single-scan rest-stress flow model which is then solved using a two-dimensional table lookup method (LM). Simulations were performed to compare the accuracy and precision of the lookup method with the original nonlinear method (NLM). Then the method was applied to 16 single scan rest/stress measurements made in 12 pigs: seven studied after infarction of the left anterior descending artery (LAD) territory, and nine imaged in the native state. Parametric maps of rest and stress MBF as well as maps of left (f LV ) and right (f RV ) ventricular spill-over fractions were generated. Regions of interest (ROIs) for 17 myocardial segments were defined in bull's eye fashion on the parametric maps. The mean of each ROI was then compared to the rest (K 1r ) and stress (K 1s ) MBF estimates obtained from fitting the 17 regional TACs with the NLM. In simulation, the LM performed as well as the NLM in terms of precision and accuracy. The simulation did not show that bias was introduced by the use of a predefined two-dimensional lookup table. In experimental data, parametric maps demonstrated good statistical quality and the LM was computationally much more efficient than the original NLM. Very good agreement was obtained between the mean MBF calculated on the parametric maps for each of the 17 ROIs and the regional MBF values estimated by the NLM (K 1map LM = 1.019 × K 1 ROI NLM + 0.019, R 2 = 0.986; mean difference = 0.034 ± 0.036 mL/min/cc). We developed a table lookup method for fast
Simultaneous fluid-flow, heat-transfer and solid-stress computation in a single computer code
Energy Technology Data Exchange (ETDEWEB)
Spalding, D B [Concentration Heat and Momentum Ltd, London (United Kingdom)
1998-12-31
Computer simulation of flow- and thermally-induced stresses in mechanical-equipment assemblies has, in the past, required the use of two distinct software packages, one to determine the forces and the temperatures, and the other to compute the resultant stresses. The present paper describes how a single computer program can perform both tasks at the same time. The technique relies on the similarity of the equations governing velocity distributions in fluids to those governing displacements in solids. The same SIMPLE-like algorithm is used for solving both. Applications to 1-, 2- and 3-dimensional situations are presented. It is further suggested that Solid-Fluid-Thermal, ie SFT analysis may come to replace CFD on the one hand and the analysis of stresses in solids on the other, by performing the functions of both. (author) 7 refs.
Simultaneous fluid-flow, heat-transfer and solid-stress computation in a single computer code
Energy Technology Data Exchange (ETDEWEB)
Spalding, D.B. [Concentration Heat and Momentum Ltd, London (United Kingdom)
1997-12-31
Computer simulation of flow- and thermally-induced stresses in mechanical-equipment assemblies has, in the past, required the use of two distinct software packages, one to determine the forces and the temperatures, and the other to compute the resultant stresses. The present paper describes how a single computer program can perform both tasks at the same time. The technique relies on the similarity of the equations governing velocity distributions in fluids to those governing displacements in solids. The same SIMPLE-like algorithm is used for solving both. Applications to 1-, 2- and 3-dimensional situations are presented. It is further suggested that Solid-Fluid-Thermal, ie SFT analysis may come to replace CFD on the one hand and the analysis of stresses in solids on the other, by performing the functions of both. (author) 7 refs.
Equipment for extracting and conveying stratified minerals
Energy Technology Data Exchange (ETDEWEB)
Blumenthal, G.; Kunzer, H.; Plaga, K.
1991-08-14
This invention relates to equipment for extracting stratified minerals and conveying the said minerals along the working face, comprising a trough shaped conveyor run assembled from lengths, a troughed extraction run in lengths matching the lengths of conveyor troughing, which is linked to the top edge of the working face side of the conveyor troughing with freedom to swivel vertically, and a positively guided chain carrying extraction tools and scrapers along the conveyor and extraction runs.
Inviscid incompressible limits of strongly stratified fluids
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Jin, B.J.; Novotný, A.
2014-01-01
Roč. 89, 3-4 (2014), s. 307-329 ISSN 0921-7134 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes system * anelastic approximation * stratified fluid Subject RIV: BA - General Mathematics Impact factor: 0.528, year: 2014 http://iospress.metapress.com/content/d71255745tl50125/?p=969b60ae82634854ab8bd25505ce1f71&pi=3
Duddu, Ravindra
2009-05-01
We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.
Gustof, P.; Hornik, A.
2016-09-01
In the paper, numeric calculations of thermal stresses of the piston in a turbocharged Diesel engine in the initial phase of its work were carried out based on experimental studies and the data resulting from them. The calculations were made using a geometrical model of the piston in a five-cylinder turbocharged Diesel engine with a capacity of about 2300 cm3, with a direct fuel injection to the combustion chamber and a power rating of 85 kW. In order to determine the thermal stress, application of own mathematical models of the heat flow in characteristic surfaces of the piston was required to show real processes occurring on the surface of the analysed component. The calculations were performed using a Geostar COSMOS/M program module. A three-dimensional geometric model of the piston was created in this program based on a real component, in order to enable the calculations and analysis of thermal stresses during non-stationary heat flow. Modelling of the thermal stresses of the piston for the engine speed n=4250 min-1 and engine load λ=1.69 was carried out.
Nitrogen transformations in stratified aquatic microbial ecosystems
DEFF Research Database (Denmark)
Revsbech, Niels Peter; Risgaard-Petersen, N.; Schramm, Andreas
2006-01-01
Abstract New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about n...... performing dissimilatory reduction of nitrate to ammonium have given new dimensions to the understanding of nitrogen cycling in nature, and the occurrence of these organisms and processes in stratified microbial communities will be described in detail.......Abstract New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about...... nitrogen fixation, nitrification, denitrification, and dissimilatory reduction of nitrate to ammonium, and about the microorganisms performing the processes, has been produced by use of these techniques. During the last decade the discovery of anammmox bacteria and migrating, nitrate accumulating bacteria...
Large eddy simulation of stably stratified turbulence
International Nuclear Information System (INIS)
Shen Zhi; Zhang Zhaoshun; Cui Guixiang; Xu Chunxiao
2011-01-01
Stably stratified turbulence is a common phenomenon in atmosphere and ocean. In this paper the large eddy simulation is utilized for investigating homogeneous stably stratified turbulence numerically at Reynolds number Re = uL/v = 10 2 ∼10 3 and Froude number Fr = u/NL = 10 −2 ∼10 0 in which u is root mean square of velocity fluctuations, L is integral scale and N is Brunt-Vaïsälä frequency. Three sets of computation cases are designed with different initial conditions, namely isotropic turbulence, Taylor Green vortex and internal waves, to investigate the statistical properties from different origins. The computed horizontal and vertical energy spectra are consistent with observation in atmosphere and ocean when the composite parameter ReFr 2 is greater than O(1). It has also been found in this paper that the stratification turbulence can be developed under different initial velocity conditions and the internal wave energy is dominated in the developed stably stratified turbulence.
Dong, Zhihua; Li, Wei; Long, Mujun; Gui, Lintao; Chen, Dengfu; Huang, Yunwei; Vitos, Levente
2015-08-01
The influence of temperature reversion in secondary cooling and its reversion rate on hot ductility and flow stress-strain curve of C-Mn steel has been investigated. Tensile specimens were cooled at various regimes. One cooling regime involved cooling at a constant rate of 100 °C min-1 to the test temperature, while the others involved temperature reversion processes at three different reversion rates before deformation. After hot tensile test, the evolution of mechanical properties of steel was analyzed at various scales by means of microstructure observation, ab initio prediction, and thermodynamic calculation. Results indicated that the temperature reversion in secondary cooling led to hot ductility trough occurring at higher temperature with greater depth. With increasing temperature reversion rate, the low temperature end of ductility trough extended toward lower temperature, leading to wider hot ductility trough with slightly reducing depth. Microstructure examinations indicated that the intergranular fracture related to the thin film-like ferrite and (Fe,Mn)S particles did not changed with varying cooling regimes; however, the Widmanstatten ferrite surrounding austenite grains resulted from the temperature reversion process seriously deteriorated the ductility. In addition, after the temperature reversion in secondary cooling, the peak stress on the flow curve slightly declined and the peak of strain to peak stress occurred at higher temperature. With increasing temperature reversion rate, the strain to peak stress slightly increased, while the peak stress showed little variation. The evolution of plastic modulus and strain to peak stress of austenite with varying temperature was in line with the theoretical prediction on Fe.
Stress-induced decrease of uterine blood flow in sheep is mediated by alpha 1-adrenergic receptors.
Dreiling, Michelle; Bischoff, Sabine; Schiffner, Rene; Rupprecht, Sven; Kiehntopf, Michael; Schubert, Harald; Witte, Otto W; Nathanielsz, Peter W; Schwab, Matthias; Rakers, Florian
2016-09-01
Prenatal maternal stress can be transferred to the fetus via a catecholamine-dependent decrease of uterine blood flow (UBF). However, it is unclear which group of adrenergic receptors mediates this mechanism of maternal-fetal stress transfer. We hypothesized that in sheep, alpha 1-adrenergic receptors may play a key role in catecholamine mediated UBF decrease, as these receptors are mainly involved in peripheral vasoconstriction and are present in significant number in the uterine vasculature. After chronic instrumentation at 125 ± 1 days of gestation (dGA; term 150 dGA), nine pregnant sheep were exposed at 130 ± 1 dGA to acute isolation stress for one hour without visual, tactile, or auditory contact with their flockmates. UBF, blood pressure (BP), heart rate (HR), stress hormones, and blood gases were determined before and during this isolation challenge. Twenty-four hours later, experiments were repeated during alpha 1-adrenergic receptor blockage induced by a continuous intravenous infusion of urapidil. In both experiments, ewes reacted to isolation with an increase in serum norepinephrine, cortisol, BP, and HR as typical signs of activation of sympatho-adrenal and the hypothalamic-pituitary-adrenal axis. Stress-induced UBF decrease was prevented by alpha 1-adrenergic receptor blockage. We conclude that UBF decrease induced by maternal stress in sheep is mediated by alpha 1-adrenergic receptors. Future studies investigating prevention strategies of impact of prenatal maternal stress on fetal health should consider selective blockage of alpha 1-receptors to interrupt maternal-fetal stress transfer mediated by utero-placental malperfusion.
The Effects Of L-Arginine And L-Name On Coronary Flow And Oxidative Stress In Isolated Rat Hearts
Directory of Open Access Journals (Sweden)
Sobot Tanja
2015-12-01
Full Text Available The aim of this experimental study was to assess the effects of the acute administration of L-arginine alone and in combination with L-NAME (a non-selective NO synthase inhibitor on the coronary flow and oxidative stress markers in isolated rat hearts. The experimental study was performed on hearts isolated from Wistar albino rats (n=12, male, 8 weeks old, body mass of 180-200 g. Retrograde perfusion of the isolated preparations was performed using a modified method according to the Langendorff technique with a gradual increase in the perfusion pressure (40–120 cmH2O. The following values were measured in the collected coronary effluents: coronary flow, released nitrites (NO production marker, superoxide anion radical and the index of lipid peroxidation (measured as thiobarbiturate reactive substances. The experimental protocol was performed under controlled conditions, followed by the administration of L-arginine alone (1 mmol and L-arginine (1 mmol + L-NAME (30 μmol. The results indicated that L-arginine did not significantly increase the coronary flow or the release of NO, TBARS and the superoxide anion radical. These effects were partially blocked by the joint administration of L-arginine + L-NAME, which indicated their competitive effect. Hence, the results of our study do not demonstrate significant effects of L-arginine administration on the coronary flow and oxidative stress markers in isolated rat hearts.
Honig, Hen; Ofer, Lior; Kaim, Moshe; Jacobi, Shamay; Shinder, Dima; Gershon, Eran
2016-07-15
The use of ultrasound imaging for the examination of reproductive organs has contributed substantially to the fertility management of dairy cows around the world. This method has many advantages such as noninvasiveness and immediate availability of information. Adding Doppler index to the ultrasound imaging examination, improved the estimation of blood volume and flow rate to the ovaries in general and to the dominant follicle in particular. The aim of this study was to examine changes in the blood flow to the dominant follicle and compare them to the follicular development throughout the cycle. We further set out to examine the effects of different types of cooling management during the summer on the changes in blood flow to the dominant follicle. For this purpose, 24 Israeli-Holstein dairy cows, under heat stress, were randomly assigned one of two groups: one was exposed to five cooling sessions per day (5CS) and the other to eight cooling sessions per day (8CS). Blood flow to the dominant follicle was measured daily using Doppler index throughout the estrous cycle. No differences in the preovulatory dominant follicle diameter were detected between the two cooling management regimens during the cycle. However, the length of the first follicular wave was significantly longer, whereas the second follicular wave was nonsignificantly shorter in the 5CS group as compared to the 8CS group. In addition, no difference in blood flow was found during the first 18 days of the cycle between the two groups. However, from Day 20 until ovulation a higher rate of blood flow was measured in the ovaries of cows cooled 8 times per day as compared to the 5CS group. No differences in progesterone levels were noted. Finally, the estrous cycle length was shorter in the 8CS group as compared to the 5CS group. Our data suggest that blood flow to the dominant follicle and estrous cycle length is affected by heat stress. Using the appropriate cooling management during heat stress can
Gandía-Barberá, Sergio; Hoyas, Sergio; Oberlack, Martin; Kraheberger, Stefanie
2018-04-01
The length and width of the long and wide structures appearing in turbulent Couette flows are studied by means of a new dataset of direct numerical simulation covering a stepped transition from pure Couette flow to pure Poiseuille one, at Reτ ≈ 130, based on the stationary wall. The existence of these structures is linked to the averaged Reynolds stress, u v ¯ : as soon as in any part of the channel u v ¯ changes its sign, the structures disappear. The length and width of the rolls are found to be, approximately, 50h and 2.5h, respectively. For this Reynolds number, simulations with a domain shorter than 100h cannot properly describe the behaviour of the longest structures of the flow.
E25 stratified torch ignition engine emissions and combustion analysis
International Nuclear Information System (INIS)
Rodrigues Filho, Fernando Antonio; Baêta, José Guilherme Coelho; Teixeira, Alysson Fernandes; Valle, Ramón Molina; Fonseca de Souza, José Leôncio
2016-01-01
Highlights: • A stratified torch ignition (STI) engine was built and tested. • The STI engines was tested in a wide range of load and speed. • Significant reduction on emissions was achieved by means of the STI system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine. • HC emission is the main drawback of the stratified torch ignition engine. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and greenhouse gases (GHG). This fact associated with fast global vehicle fleet growth calls for prompt scientific community technological solutions in order to promote a significant reduction in vehicle fuel consumption and emissions, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition (STI) engine was built from a commercial existing baseline engine. In this system, combustion starts in a pre-combustion chamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy, being able to generate a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for a very low fuel flow rate. In this work the engine out-emissions of CO, NOx, HC and CO_2 of the STI engine are presented and a detailed analysis supported by the combustion parameters is conducted. The results obtained in this work show a significant decrease in the specific emissions of CO, NOx and CO_2 of the STI engine in comparison with the baseline engine. On the other hand, HC specific emission increased due to wall wetting from the fuel hitting in the pre-combustion chamber wall.
... taking care of an aging parent. With mental stress, the body pumps out hormones to no avail. Neither fighting ... with type 1 diabetes. This difference makes sense. Stress blocks the body from releasing insulin in people with type 2 ...
Kim, Kyoungyoun; Sureshkumar, Radhakrishna
2018-03-01
The effects of polymer stresses on the analogy between momentum and heat transfer are examined by using a direct numerical simulation (DNS) of viscoelastic turbulent channel flows using a constant heat flux boundary condition. The Reynolds number based on the friction velocity and channel half height is 125, and the Prandtl number is 5. The polymer stress is modeled using the finitely extensible nonlinear elastic-Peterlin constitutive model, and low (15%), intermediate (34%), and high drag reduction (DR) (52%) cases are examined. The Colburn analogy is found to be inapplicable for viscoelastic turbulent flows, suggesting dissimilarity between the momentum and heat transfer at the macroscopic coefficient level. The mean temperature profile also shows behaviour different from the mean velocity profile in drag-reduced flows. In contrast to the dissimilarity in the mean profiles, the turbulent Prandtl number Prt predicted by the DNS is near unity. This implies that turbulent heat transfer is still analogous to turbulent momentum transfer in drag-reduced flows, as in Newtonian flow. An increase in DR is accompanied by an increase in the correlation coefficient ρuθ between the instantaneous fluctuations in the streamwise velocity u and temperature θ. The correlation coefficient between u' and wall-normal velocity fluctuations v', ρ-u v, exhibits a profile similar to that of ρ-θ v in drag-reduced and Newtonian flows. Finally, the budget analysis of the transport equations of turbulent heat flux shows a strong similarity between the turbulent momentum and heat transfer, which is consistent with the predictions of Prt near unity.
Padilla, Jaume; Johnson, Blair D; Newcomer, Sean C; Wilhite, Daniel P; Mickleborough, Timothy D; Fly, Alyce D; Mather, Kieren J; Wallace, Janet P
2008-09-04
Normalization of brachial artery flow-mediated dilation (FMD) to individual shear stress area under the curve (peak FMD:SSAUC ratio) has recently been proposed as an approach to control for the large inter-subject variability in reactive hyperemia-induced shear stress; however, the adoption of this approach among researchers has been slow. The present study was designed to further examine the efficacy of FMD normalization to shear stress in reducing measurement variability. Five different magnitudes of reactive hyperemia-induced shear stress were applied to 20 healthy, physically active young adults (25.3 +/- 0. 6 yrs; 10 men, 10 women) by manipulating forearm cuff occlusion duration: 1, 2, 3, 4, and 5 min, in a randomized order. A venous blood draw was performed for determination of baseline whole blood viscosity and hematocrit. The magnitude of occlusion-induced forearm ischemia was quantified by dual-wavelength near-infrared spectrometry (NIRS). Brachial artery diameters and velocities were obtained via high-resolution ultrasound. The SSAUC was individually calculated for the duration of time-to-peak dilation. One-way repeated measures ANOVA demonstrated distinct magnitudes of occlusion-induced ischemia (volume and peak), hyperemic shear stress, and peak FMD responses (all p index of endothelial function.
Barbaro, V; Grigioni, M; Daniele, C; D'Avenio, G; Boccanera, G
1997-11-01
The investigation of the flow field generated by cardiac valve prostheses is a necessary task to gain knowledge on the possible relationship between turbulence-derived stresses and the hemolytic and thrombogenic complications in patients after valve replacement. The study of turbulence flows downstream of cardiac prostheses, in literature, especially concerns large-sized prostheses with a variable flow regime from very low up to 6 L/min. The Food and Drug Administration draft guidance requires the study of the minimum prosthetic size at a high cardiac output to reach the maximum Reynolds number conditions. Within the framework of a national research project regarding the characterization of cardiovascular endoprostheses, an in-depth study of turbulence generated downstream of bileaflet cardiac valves is currently under way at the Laboratory of Biomedical Engineering of the Istituto Superiore di Sanita. Four models of 19 mm bileaflet valve prostheses were used: St Jude Medical HP, Edwards Tekna, Sorin Bicarbon, and CarboMedics. The prostheses were selected for the nominal Tissue Annulus Diameter as reported by manufacturers without any assessment of valve sizing method, and were mounted in aortic position. The aortic geometry was scaled for 19 mm prostheses using angiographic data. The turbulence-derived shear stresses were investigated very close to the valve (0.35 D0), using a bidimensional Laser Doppler anemometry system and applying the Principal Stress Analysis. Results concern typical turbulence quantities during a 50 ms window at peak flow in the systolic phase. Conclusions are drawn regarding the turbulence associated to valve design features, as well as the possible damage to blood constituents.
International Nuclear Information System (INIS)
Maroules, Christopher D.; Peshock, Ronald M.; Chang, Alice Y.; Kontak, Andrew; Dimitrov, Ivan; Kotys, Melanie
2010-01-01
Background: Coronary sinus (CS) flow in response to a provocative stress has been used as a surrogate measure of coronary flow reserve, and velocity-encoded cine (VEC) magnetic resonance imaging (MRI) is an established technique for measuring CS flow. In this study, the cold pressor test (CPT) was used to measure CS flow response because it elicits an endothelium-dependent coronary vasodilation that may afford greater sensitivity for detecting early changes in coronary endothelial function. Purpose: To investigate the feasibility and reproducibility of CS flow reactivity (CSFR) to CPT using spiral VEC MRI at 3 Tesla in a sample of asymptomatic women with cardiovascular risk factors. Material and Methods: Fourteen asymptomatic women (age 38 years ± 10) with cardiovascular risk factors were studied using 3D spiral VEC MRI of the CS at 3 T. The CPT was utilized as a provocative stress to measure changes in CS flow. CSFR to CPT was calculated from the ratio of CS flow during peak stress to baseline CS flow. Results: CPT induced a significant hemodynamic response as measured by a 45% increase in rate-pressure product (P<0.01). A significant increase in CS volume flow was also observed (baseline, 116 ± 26 ml/min; peak stress, 152 ± 34 ml/min, P=0.01). CSFR to CPT was 1.31 ± 0.20. Test-retest variability of CS volume flow was 5% at baseline and 6% during peak stress. Conclusion: Spiral CS VEC MRI at 3 T is a feasible and reproducible technique for measuring CS flow in asymptomatic women at risk for cardiovascular disease. Significant changes in CSFR to CPT are detectable, without demanding pharmacologic stress
Measurement and Interpretation of Flow Stress Data for the Simulation of Metal-Forming Processes
2010-01-01
fitting constants that differ in each equation): Ludwik Equation: c)εb(aσ += , (29) Voce Equation: )]εcexp([1*a][baσ −−−+= (30) Swift...stress at low strains (ɘ.2) and to overestimate the stress for high strains. For heavily prestrained materials, c ~ 1. The Voce and Swift equations tend
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Jun; Park, Ik Kyu; Yoon, Han Young [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jae, Byoung [School of Mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)
2017-01-15
Two-fluid equations are widely used to obtain averaged behaviors of two-phase flows. This study addresses a problem that may arise when the two-fluid equations are used for multi-dimensional bubbly flows. If steady drag is the only accounted force for the interfacial momentum transfer, the disperse-phase velocity would be the same as the continuous-phase velocity when the flow is fully developed without gravity. However, existing momentum equations may show unphysical results in estimating the relative velocity of the disperse phase against the continuous-phase. First, we examine two types of existing momentum equations. One is the standard two-fluid momentum equation in which the disperse-phase is treated as a continuum. The other is the averaged momentum equation derived from a solid/ fluid particle motion. We show that the existing equations are not proper for multi-dimensional bubbly flows. To resolve the problem mentioned above, we modify the form of the Reynolds stress terms in the averaged momentum equation based on the solid/fluid particle motion. The proposed equation shows physically correct results for both multi-dimensional laminar and turbulent flows.
Directory of Open Access Journals (Sweden)
V. G. Deinega
2013-04-01
Full Text Available Introduction. It is well known that active forms of oxygen, such as hydrogen peroxide, superoxide anion, hydroxyl radical and others are involved in different pathological conditions, such as cell necrosis, senescence, apoptosis, autophagy, inflammatory responses, remodeling of extracellular matrix and blood vessels, endothelial dysfunction, inactivation of antiproteases, and impaired tissue repair. The pathological increased production of mentioned active forms is called “oxidative stress”. From the literature data, we know that oxidative stress is involved in pathogenesis of arterial hypertension (AH, chronic obstructive pulmonary disease (COPD, atherosclerosis and others. The influence of oxidative stress on cardiovascular disorders in patients with combined flow of COPD and AH is not clearly known. Objective. To study peculiarities and links between parameters of oxidative stress and lesions of heart and vessels in patients with combined flow of COPD and AH. Materials and methods. A total of 101 patients with COPD, AH and with combined flow of COPD and AH were examined. The patients were divided into 3 groups. The first group was formed by patients with AH (n=29 the second group was formed by patients with COPD (n=29, the third group was formed by patients with combined flow of COPD and AH (n=57. Control group was formed from healthy persons of the same age and sex (n=22.All patients underwent spirography, echocardiography, ultrasound measurement of common carotid artery intimal-medial thickness and estimation of endhothelium-dependent vasodilatation. As oxidative stress markers, the levels of oxidative protein modification, spontaneous and iron induced aldehydephenylhydrazone’s (APH, ketondinitrophenylhydrazone’s (KPH and medium size molecules (MSM were measured. Results. Patients with combined flow of COPD and AH had higher levels of spontaneous APH (p<0,01 comparing with first and second group. The levels of spontaneous KPH were
[Causes of emergency dizziness stratified by etiology].
Qiao, Wenying; Liu, Jianguo; Zeng, Hong; Liu, Yugeng; Jia, Weihua; Wang, Honghong; Liu, Bo; Tan, Jing; Li, Changqing
2014-06-03
To explore the causes of emergency dizziness stratified to improve the diagnostic efficiency. A total of 1 857 cases of dizziness at our emergency department were collected and their etiologies stratified by age and gender. The top three diagnoses were benign paroxysmal positional vertigo (BPPV, 31.7%), hypertension (24.0%) and posterior circulation ischemia (PCI, 20.5%). Stratified by age, the main causes of dizziness included BPPV (n = 6), migraine-associated vertigo (n = 2), unknown cause (n = 1) for the group of vertigo (14.5%) and neurosis (7.3%) for 18-44 years; BPPV (36.8%), hypertension (22.4%) and migraine-associated vertigo (11.2%) for 45-59 years; hypertension (30.8%), PCI (29.8%) and BPPV (22.9%) for 60-74 years; PCI (30.7%), hypertension (28.6%) and BPPV (25.5%) for 75-92 years. BPPV, migraine and neurosis were more common in females while hypertension and PCI predominated in males (all P hypertension, neurosis and migraine showed the following significant demographic features: BPPV, PCI, hypertension, neurosis and migraine may be the main causes of dizziness. BPPV should be considered initially when vertigo was triggered repeatedly by positional change, especially for young and middle-aged women. And the other common causes of dizziness were migraine-associated vertigo, neurosis and Meniere's disease.Hypertension should be screened firstly in middle-aged and elderly patients presenting mainly with head heaviness and stretching. In elders with dizziness, BPPV is second in constituent ratio to PCI and hypertension.In middle-aged and elderly patients with dizziness, psychological factors should be considered and diagnosis and treatment should be offered timely.
Directory of Open Access Journals (Sweden)
Fengkui Cui
2018-01-01
Full Text Available To obtain a good surface layer performance of the complex functional profile during the high-speed cold roll-beating forming process, this paper analyzed the metal plastic flow and residual stress-formed mechanism by using a theoretical model of the metal flow and residual stress generation. By using simulation software, the cold roll-beating forming process of a spline shaft was simulated and analyzed. The metal flow and residual stress formation law in the motion were researched. In a practical experiment, the changes in the grains in the spline tooth profile section and the residual stress distribution on the tooth profile were studied. A microcorrespondence relationship was established between the metal plastic flow and the residual stress generation. The conclusions indicate that the rate at which the metal flow decreases changes gradually at different metal layers. The residual stress value is directly related to the plastic flow difference. As the roll-beating speed increases, the uneven degree of plastic deformation at the workpiece surface increases, and the residual stress in the tooth profile is generally greater. At the same roll-beating speed, the rate change trend of the metal flow decreases gradually from the surface to the inner layer and from the dedendum to the addendum. The residual stress distribution on the surface of the tooth profile decreases from the dedendum to the addendum. These findings provide a basis and guidance for the controlled use of residual stress, obtaining better surface layer quality in the high-speed cold roll-beating process of the complex functional profile.
White dwarf stars with chemically stratified atmospheres
Muchmore, D.
1982-01-01
Recent observations and theory suggest that some white dwarfs may have chemically stratified atmospheres - thin layers of hydrogen lying above helium-rich envelopes. Models of such atmospheres show that a discontinuous temperature inversion can occur at the boundary between the layers. Model spectra for layered atmospheres at 30,000 K and 50,000 K tend to have smaller decrements at 912 A, 504 A, and 228 A than uniform atmospheres would have. On the basis of their continuous extreme ultraviolet spectra, it is possible to distinguish observationally between uniform and layered atmospheres for hot white dwarfs.
Bayesian stratified sampling to assess corpus utility
Energy Technology Data Exchange (ETDEWEB)
Hochberg, J.; Scovel, C.; Thomas, T.; Hall, S.
1998-12-01
This paper describes a method for asking statistical questions about a large text corpus. The authors exemplify the method by addressing the question, ``What percentage of Federal Register documents are real documents, of possible interest to a text researcher or analyst?`` They estimate an answer to this question by evaluating 200 documents selected from a corpus of 45,820 Federal Register documents. Bayesian analysis and stratified sampling are used to reduce the sampling uncertainty of the estimate from over 3,100 documents to fewer than 1,000. A possible application of the method is to establish baseline statistics used to estimate recall rates for information retrieval systems.
Stratified B-trees and versioning dictionaries
Twigg, Andy; Byde, Andrew; Milos, Grzegorz; Moreton, Tim; Wilkes, John; Wilkie, Tom
2011-01-01
A classic versioned data structure in storage and computer science is the copy-on-write (CoW) B-tree -- it underlies many of today's file systems and databases, including WAFL, ZFS, Btrfs and more. Unfortunately, it doesn't inherit the B-tree's optimality properties; it has poor space utilization, cannot offer fast updates, and relies on random IO to scale. Yet, nothing better has been developed since. We describe the `stratified B-tree', which beats all known semi-external memory versioned B...
Lagrangian viscoelastic flow computations using a generalized molecular stress function model
DEFF Research Database (Denmark)
Rasmussen, Henrik K.
2002-01-01
A new finite element technique for the numerical simulation of 3D time-dependent flow of viscoelastic fluid is presented. The technique is based on a Lagrangian kinematics description of the fluid flow. It represents a further development of the 3D Lagrangian integral method (3D-LIM) from a Rivlin...
Microstructure of Turbulence in the Stably Stratified Boundary Layer
Sorbjan, Zbigniew; Balsley, Ben B.
2008-11-01
The microstructure of a stably stratified boundary layer, with a significant low-level nocturnal jet, is investigated based on observations from the CASES-99 campaign in Kansas, U.S.A. The reported, high-resolution vertical profiles of the temperature, wind speed, wind direction, pressure, and the turbulent dissipation rate, were collected under nocturnal conditions on October 14, 1999, using the CIRES Tethered Lifting System. Two methods for evaluating instantaneous (1-sec) background profiles are applied to the raw data. The background potential temperature is calculated using the “bubble sort” algorithm to produce a monotonically increasing potential temperature with increasing height. Other scalar quantities are smoothed using a running vertical average. The behaviour of background flow, buoyant overturns, turbulent fluctuations, and their respective histograms are presented. Ratios of the considered length scales and the Ozmidov scale are nearly constant with height, a fact that can be applied in practice for estimating instantaneous profiles of the dissipation rate.
Hydrodynamics of stratified epithelium: Steady state and linearized dynamics
Yeh, Wei-Ting; Chen, Hsuan-Yi
2016-05-01
A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.
DEFF Research Database (Denmark)
Nielsen, Peter V.; Jensen, Rasmus Lund; Litewnicki, Michal
2009-01-01
This study investigates the characteristics of human exhalation. Experiments are performed on a breathing thermal manikin in a test room. The manikin is heated, and an artificial lung is used to generate varying air flows with specific flow rates and temperatures for breathing. Smoke visualisation...... is used to show the formation, movement and disappearance of the exhalation jets from both nose and mouth. The exhalation of breathing without ventilation in the room, and with stratified surroundings (displacement ventilation) is analysed....
Soil mixing of stratified contaminated sands.
Al-Tabba, A; Ayotamuno, M J; Martin, R J
2000-02-01
Validation of soil mixing for the treatment of contaminated ground is needed in a wide range of site conditions to widen the application of the technology and to understand the mechanisms involved. Since very limited work has been carried out in heterogeneous ground conditions, this paper investigates the effectiveness of soil mixing in stratified sands using laboratory-scale augers. This enabled a low cost investigation of factors such as grout type and form, auger design, installation procedure, mixing mode, curing period, thickness of soil layers and natural moisture content on the unconfined compressive strength, leachability and leachate pH of the soil-grout mixes. The results showed that the auger design plays a very important part in the mixing process in heterogeneous sands. The variability of the properties measured in the stratified soils and the measurable variations caused by the various factors considered, highlighted the importance of duplicating appropriate in situ conditions, the usefulness of laboratory-scale modelling of in situ conditions and the importance of modelling soil and contaminant heterogeneities at the treatability study stage.
Stratified coastal ocean interactions with tropical cyclones
Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.
2016-01-01
Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963
Stratified Simulations of Collisionless Accretion Disks
Energy Technology Data Exchange (ETDEWEB)
Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Tokyo, 113-0033 (Japan)
2017-06-10
This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale, stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.
Directory of Open Access Journals (Sweden)
Shahriyar Keshavarz
2017-11-01
Full Text Available This paper develops a framework to obtain the flow stress of nickel-based superalloys as a function of γ-γ’ morphology. The yield strength is a major factor in the design of these alloys. This work provides additional effects of γ’ morphology in the design scope that has been adopted for the model developed by authors. In general, the two-phase γ-γ’ morphology in nickel-based superalloys can be divided into three variables including γ’ shape, γ’ volume fraction and γ’ size in the sub-grain microstructure. In order to obtain the flow stress, non-Schmid crystal plasticity constitutive models at two length scales are employed and bridged through a homogenized multi-scale framework. The multi-scale framework includes two sub-grain and homogenized grain scales. For the sub-grain scale, a size-dependent, dislocation-density-based finite element model (FEM of the representative volume element (RVE with explicit depiction of the γ-γ’ morphology is developed as a building block for the homogenization. For the next scale, an activation-energy-based crystal plasticity model is developed for the homogenized single crystal of Ni-based superalloys. The constitutive models address the thermo-mechanical behavior of nickel-based superalloys for a large temperature range and include orientation dependencies and tension-compression asymmetry. This homogenized model is used to obtain the morphology dependence on the flow stress in nickel-based superalloys and can significantly expedite crystal plasticity FE simulations in polycrystalline microstructures, as well as higher scale FE models in order to cast and design superalloys.
Kozlov, É. V.; Koneva, N. A.; Trishkina, L. I.
2014-06-01
The evolution of dislocation substructures formed in polycrystalline Cu-Al and Cu-Mn alloys undergoing large plastic deformations is studied, using transmission electron microscopy. Microband and fragmented substructures are examined. The Al and Mn alloying element concentrations for which the substructures are formed have been found. The mechanisms involved in the formation of the substructures during the substructural evolution in the alloys subjected to deformation have been revealed. Parameters describing the substructures under study have been measured. The dependence of the parameters on the flow stress has been established.
International Nuclear Information System (INIS)
Seeger, A.
1995-01-01
The strong temperature and strain-rate dependence of the flow stress of high-purity refractory body-centred cubic metals has been shown to be an intrinsic property and is usually ascribed to a high Peierls barrier of a o left angle 111 right angle /2 screw dislocations. These barriers are overcome by the formation of kink pairs on the screw dislocations. The paper reports on recent, very complete flow-stress data on ultra-high purity Mo crystals obtained by two different experimental techniques and covering the temperature range 4 K to 460 K. The results are in accord with earlier work of Brunner and Diehl on α-Fe, who showed that below the so-called knee temperature, T K , three regimes in the temperature variation of the flow-stress should be distinguished. Two of them are fully accounted for by the same glide mechanism, namely elementary glide steps on {211} planes. The so-called upper bend separating these two regimes in an inherent feature of the theory of kink-pair formation and does not indicate a change in the glide mechanism. There is, however, strong evidence that the so-called lower bend, separating the range of {211} elementary glide steps from the low-temperature flow-stress regime, is due to a change in the glide mechanism. It is argued that at the lower bend the screw-dislocation cores undergo a ''first-order phase transition'' from a low-temperature configuration that allows glide of a given screw dislocation on any of its three {110} glide planes to a high-temperature configuration that can glide only on one definite {211} plane. Between T K and the lower-bend temperature, T, bcc metals may show the unique phenomena of alloy and irradiation softening. With regard to the latter phenomenon, Brunner and Diehl distinguish between ''primary'' and ''secondary'' softening. It is shown that alloy softening and the ''secondary irradiation softening'' of bcc metals may be explained by an ''overheating'' of the phase transition in the dislocation core. (orig./WL)
Zhang, Ziyu; Yuan, Lang; Lee, Peter D; Jones, Eric; Jones, Julian R
2014-11-01
Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier-Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements. © 2014 Wiley Periodicals, Inc.
Boersen, Johannes T; Groot Jebbink, Erik; Versluis, Michel; Slump, Cornelis H; Ku, David N; de Vries, Jean-Paul P M; Reijnen, Michel M P J
2017-12-01
Endovascular aneurysm repair (EVAR) with a modular endograft has become the preferred treatment for abdominal aortic aneurysms. A novel concept is endovascular aneurysm sealing (EVAS), consisting of dual endoframes surrounded by polymer-filled endobags. This dual-lumen configuration is different from a bifurcation with a tapered trajectory of the flow lumen into the two limbs and may induce unfavorable flow conditions. These include low and oscillatory wall shear stress (WSS), linked to atherosclerosis, and high shear rates that may result in thrombosis. An in vitro study was performed to assess the impact of EVAR and EVAS on flow patterns and WSS. Four abdominal aortic aneurysm phantoms were constructed, including three stented models, to study the influence of the flow divider on flow (Endurant [Medtronic, Minneapolis, Minn], AFX [Endologix, Irvine, Calif], and Nellix [Endologix]). Experimental models were tested under physiologic resting conditions, and flow was visualized with laser particle imaging velocimetry, quantified by shear rate, WSS, and oscillatory shear index (OSI) in the suprarenal aorta, renal artery (RA), and common iliac artery. WSS and OSI were comparable for all models in the suprarenal aorta. The RA flow profile in the EVAR models was comparable to the control, but a region of lower WSS was observed on the caudal wall compared with the control. The EVAS model showed a stronger jet flow with a higher shear rate in some regions compared with the other models. Small regions of low WSS and high OSI were found near the distal end of all stents in the common iliac artery compared with the control. Maximum shear rates in each region of interest were well below the pathologic threshold for acute thrombosis. The different stent designs do not influence suprarenal flow. Lower WSS is observed in the caudal wall of the RA after EVAR and a higher shear rate after EVAS. All stented models have a small region of low WSS and high OSI near the distal outflow
Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong
2018-02-01
In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.
Powell, Karin; Ethun, Kelly; Taylor, Douglas K
2016-09-21
Euthanasia protocols are designed to mitigate the stress experienced by animals, and an environment that induces minimal stress helps achieve that goal. A protocol that is efficient and practical in a typical animal research facility is also important. Light intensity, isoflurane, and CO2 flow rate were studied for their impact on the stress response of mice during CO2 euthanasia. Behavior was observed and scored during euthanasia and serum corticosterone was measured immediately after death. Unsurprisingly, animals euthanized with a high-flow rate of CO2 became unconscious in the least amount of time, while animals euthanized with a low-flow rate required the most time to reach unconsciousness. There was a significant increase in anxious behaviors in animals in the isoflurane group (F1,12 = 6.67, P = 0.024), the high-flow rate CO2 group (F1,12 = 10.24, P = 0.007), and bright chamber group (F1,12 = 7.27, P = 0.019). Serum corticosterone was highest in the isoflurane group (124.72 ± 83.98 ng/ml), however there was no significant difference in corticosterone levels observed for the other study variables of light and flow-rate. A darkened chamber and low CO2 flow rates help to decrease stress experienced during CO2 euthanasia, while the use of isoflurane was observed to increase the stress response during euthanasia.
Monte Carlo stratified source-sampling
International Nuclear Information System (INIS)
Blomquist, R.N.; Gelbard, E.M.
1997-01-01
In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo open-quotes eigenvalue of the worldclose quotes problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. The original test-problem was treated by a special code designed specifically for that purpose. Recently ANL started work on a method for dealing with more realistic eigenvalue of the world configurations, and has been incorporating this method into VIM. The original method has been modified to take into account real-world statistical noise sources not included in the model problem. This paper constitutes a status report on work still in progress
Ecosystem metabolism in a stratified lake
DEFF Research Database (Denmark)
Stæhr, Peter Anton; Christensen, Jesper Philip Aagaard; Batt, Ryan D.
2012-01-01
, differences were not significant. During stratification, daily variability in epilimnetic DO was dominated by metabolism (46%) and air-water gas exchange (44%). Fluxes related to mixed-layer deepening dominated in meta- and hypolimnic waters (49% and 64%), while eddy diffusion (1% and 14%) was less important....... Although air-water gas exchange rates differed among the three formulations of gas-transfer velocity, this had no significant effect on metabolic rates....... that integrates rates across the entire depth profile and includes DO exchange between depth layers driven by mixed-layer deepening and eddy diffusivity. During full mixing, NEP was close to zero throughout the water column, and GPP and R were reduced 2-10 times compared to stratified periods. When present...
Thermal instability in a stratified plasma
International Nuclear Information System (INIS)
Hermanns, D.F.M.; Priest, E.R.
1989-01-01
The thermal instability mechansism has been studied in connection to observed coronal features, like, e.g. prominences or cool cores in loops. Although these features show a lot of structure, most studies concern the thermal instability in an uniform medium. In this paper, we investigate the thermal instability and the interaction between thermal modes and the slow magneto-acoustic subspectrum for a stratified plasma slab. We fomulate the relevant system of equations and give some straightforward properties of the linear spectrum of a non-uniform plasma slab, i.e. the existence of continuous parts in the spectrum. We present a numerical scheme with which we can investigate the linear spectrum for equilibrium states with stratification. The slow and thermal subspectra of a crude coronal model are given as a preliminary result. (author). 6 refs.; 1 fig
Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G
2010-11-01
Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.
Information content of household-stratified epidemics
Directory of Open Access Journals (Sweden)
T.M. Kinyanjui
2016-09-01
Full Text Available Household structure is a key driver of many infectious diseases, as well as a natural target for interventions such as vaccination programs. Many theoretical and conceptual advances on household-stratified epidemic models are relatively recent, but have successfully managed to increase the applicability of such models to practical problems. To be of maximum realism and hence benefit, they require parameterisation from epidemiological data, and while household-stratified final size data has been the traditional source, increasingly time-series infection data from households are becoming available. This paper is concerned with the design of studies aimed at collecting time-series epidemic data in order to maximize the amount of information available to calibrate household models. A design decision involves a trade-off between the number of households to enrol and the sampling frequency. Two commonly used epidemiological study designs are considered: cross-sectional, where different households are sampled at every time point, and cohort, where the same households are followed over the course of the study period. The search for an optimal design uses Bayesian computationally intensive methods to explore the joint parameter-design space combined with the Shannon entropy of the posteriors to estimate the amount of information in each design. For the cross-sectional design, the amount of information increases with the sampling intensity, i.e., the designs with the highest number of time points have the most information. On the other hand, the cohort design often exhibits a trade-off between the number of households sampled and the intensity of follow-up. Our results broadly support the choices made in existing epidemiological data collection studies. Prospective problem-specific use of our computational methods can bring significant benefits in guiding future study designs.
Information content of household-stratified epidemics.
Kinyanjui, T M; Pellis, L; House, T
2016-09-01
Household structure is a key driver of many infectious diseases, as well as a natural target for interventions such as vaccination programs. Many theoretical and conceptual advances on household-stratified epidemic models are relatively recent, but have successfully managed to increase the applicability of such models to practical problems. To be of maximum realism and hence benefit, they require parameterisation from epidemiological data, and while household-stratified final size data has been the traditional source, increasingly time-series infection data from households are becoming available. This paper is concerned with the design of studies aimed at collecting time-series epidemic data in order to maximize the amount of information available to calibrate household models. A design decision involves a trade-off between the number of households to enrol and the sampling frequency. Two commonly used epidemiological study designs are considered: cross-sectional, where different households are sampled at every time point, and cohort, where the same households are followed over the course of the study period. The search for an optimal design uses Bayesian computationally intensive methods to explore the joint parameter-design space combined with the Shannon entropy of the posteriors to estimate the amount of information in each design. For the cross-sectional design, the amount of information increases with the sampling intensity, i.e., the designs with the highest number of time points have the most information. On the other hand, the cohort design often exhibits a trade-off between the number of households sampled and the intensity of follow-up. Our results broadly support the choices made in existing epidemiological data collection studies. Prospective problem-specific use of our computational methods can bring significant benefits in guiding future study designs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Stratified sampling design based on data mining.
Kim, Yeonkook J; Oh, Yoonhwan; Park, Sunghoon; Cho, Sungzoon; Park, Hayoung
2013-09-01
To explore classification rules based on data mining methodologies which are to be used in defining strata in stratified sampling of healthcare providers with improved sampling efficiency. We performed k-means clustering to group providers with similar characteristics, then, constructed decision trees on cluster labels to generate stratification rules. We assessed the variance explained by the stratification proposed in this study and by conventional stratification to evaluate the performance of the sampling design. We constructed a study database from health insurance claims data and providers' profile data made available to this study by the Health Insurance Review and Assessment Service of South Korea, and population data from Statistics Korea. From our database, we used the data for single specialty clinics or hospitals in two specialties, general surgery and ophthalmology, for the year 2011 in this study. Data mining resulted in five strata in general surgery with two stratification variables, the number of inpatients per specialist and population density of provider location, and five strata in ophthalmology with two stratification variables, the number of inpatients per specialist and number of beds. The percentages of variance in annual changes in the productivity of specialists explained by the stratification in general surgery and ophthalmology were 22% and 8%, respectively, whereas conventional stratification by the type of provider location and number of beds explained 2% and 0.2% of variance, respectively. This study demonstrated that data mining methods can be used in designing efficient stratified sampling with variables readily available to the insurer and government; it offers an alternative to the existing stratification method that is widely used in healthcare provider surveys in South Korea.
International Nuclear Information System (INIS)
Chakraborty, Pritam; Biner, S.Bulent
2015-01-01
Ferritic-martensitic steels are currently being considered as structural materials in fusion and Gen-IV nuclear reactors. These materials are expected to experience high dose radiation, which can increase their ductile to brittle transition temperature and susceptibility to failure during operation. Hence, to estimate the safe operational life of the reactors, precise evaluation of the ductile to brittle transition temperatures of ferritic-martensitic steels is necessary. Owing to the scarcity of irradiated samples, particularly at high dose levels, micro-mechanistic models are being employed to predict the shifts in the ductile to brittle transition temperatures. These models consider the ductile damage evolution, in the form of nucleation, growth and coalescence of voids; and the brittle fracture, in the form of probabilistic cleavage initiation, to estimate the influence of irradiation on the ductile to brittle transition temperature. However, the assessment of irradiation dependent material parameters is challenging and influences the accuracy of these models. In the present study, the effects of irradiation on the overall flow stress and ductile damage behavior of two ferritic-martensitic steels is parametrically investigated. The results indicate that the ductile damage model parameters are mostly insensitive to irradiation levels at higher dose levels though the resulting flow stress behavior varies significantly.
Simulation model of stratified thermal energy storage tank using finite difference method
Waluyo, Joko
2016-06-01
Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be
DEFF Research Database (Denmark)
Keller, Hanne Dauer
2015-01-01
Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....
Fledderus, M.
2012-01-01
Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.
Influence of Sewer Sediments on Flow Friction and Shear Stress Distribution
DEFF Research Database (Denmark)
Perrusquia, G.; Petersen, O.; Larsen, Torben
1995-01-01
Most sewers contain more or less deposited sediments. The paper discusses the distribution of the boundary shear stresses and the hydraulic resistance in part-full sewer pipes with such deposited sediments. The discussion is based on a series of numerical experiments using a validated numerical...
Coupled ADCPs can yield complete Reynolds stress tensor profiles in geophysical surface flows
Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.
2011-01-01
We introduce a new technique to measure profiles of each term in the Reynolds stress tensor using coupled acoustic Doppler current profilers (ADCPs). The technique is based on the variance method which is extended to the case with eight acoustic beams. Methods to analyze turbulence from a single
Analysis of heat transfer and stress in the pipe with hot fluid flowing through
International Nuclear Information System (INIS)
Charoensri, Apisara; Pichestapong, Pipat; Rodthongkom, Chouvana
2003-10-01
At incomplete mixing area of high temperature and low temperature liquid near the surface of structures, temperature fluctuation of liquid gives thermal fatigue damage to wall structure. This phenomenon is called thermal striping. For designing of piping system, it is important to know thermal stresses of structure due to heat convection. In this study, authors proposed a simplified evaluation method to predict thermal stress from temperature fluctuation, for rational design against thermal striping. It is required to estimate structural responses to temperature fluctuation of fluid. The attenuation process is a thermal coupling problem between fluids and structures and has a sensitive characteristics to frequencies of temperature fluctuations were analyzed by FINAS, which is a computer program based on the finite element method by comparisons of theoretical method. When the inner surface of the pipe is due to heat convection of contained fluid with sinusoidal temperature fluctuation and the outer surface is kept insulated, temperature distribution of structure is analyzed by solving the equation of transient heat conduction. From these temperature distributions, induced thermal stresses in the structure are calculated by thermal elastic analysis. Frequency response characteristics of structures and its mechanism were investigated by both numerical and theoretical methods. Based on above investigation, a structural response diagram was derived, which can predict stress amplitude of structures from temperature amplitude and frequency of fluids
Wingo, Jonathan E.; Low, David A.; Keller, David M.; Brothers, R. Matthew; Shibasaki, Manabu; Crandall, Craig G.
2010-01-01
Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdial...
Coronary Computed Tomography Angiography Derived Fractional Flow Reserve and Plaque Stress
DEFF Research Database (Denmark)
Nørgaard, Bjarne Linde; Leipsic, Jonathon; Koo, Bon-Kwon
2016-01-01
Fractional flow reserve (FFR) measured during invasive coronary angiography is an independent prognosticator in patients with coronary artery disease and the gold standard for decision making in coronary revascularization. The integration of computational fluid dynamics and quantitative anatomic...... and physiologic modeling now enables simulation of patient-specific hemodynamic parameters including blood velocity, pressure, pressure gradients, and FFR from standard acquired coronary computed tomography (CT) datasets. In this review article, we describe the potential impact on clinical practice...... and the science behind noninvasive coronary computed tomography (CT) angiography derived fractional flow reserve (FFRCT) as well as future applications of this technology in treatment planning and quantifying forces on atherosclerotic plaques....
Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong
2016-12-28
In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition
Ji, Cheng; Wang, Zilin; Wu, Chenhui; Zhu, Miaoyong
2018-04-01
According to the calculation results of a 3D thermomechanical-coupled finite-element (FE) model of GCr15 bearing steel bloom during a heavy reduction (HR) process, the variation ranges in the strain rate and strain under HR were described. In addition, the hot deformation behavior of the GCr15 bearing steel was studied over the temperature range from 1023 K to 1573 K (750 °C to 1300 °C) with strain rates of 0.001, 0.01, and 0.1 s-1 in single-pass thermosimulation compression experiments. To ensure the accuracy of the constitutive model, the temperature range was divided into two temperature intervals according to the fully austenitic temperature of GCr15 steel [1173 K (900 °C)]. Two sets of material parameters for the constitutive model were derived based on the true stress-strain curves of the two temperature intervals. A flow stress constitutive model was established using a revised Arrhenius-type constitutive equation, which considers the relationships among the material parameters and true strain. This equation describes dynamic softening during hot compression processes. Considering the effect of glide and climb on the deformation mechanism, the Arrhenius-type constitutive equation was modified by a physically based approach. This model is the most accurate over the temperatures ranging from 1173 K to 1573 K (900 °C to 1300 °C) under HR deformation conditions (ignoring the range from 1273 K to 1573 K (1000 °C to 1300 °C) with a strain rate of 0.1 s-1). To ensure the convergence of the FE calculation, an approximated method was used to estimate the flow stress at temperatures greater than 1573 K (1300 °C).
Zhang, Yongfang; Wu, Peng; Guo, Bo; Lü, Yanjun; Liu, Fuxi; Yu, Yingtian
2015-01-01
The instability of the rotor dynamic system supported by oil journal bearing is encountered frequently, such as the half-speed whirl of the rotor, which is caused by oil film lubricant with nonlinearity. Currently, more attention is paid to the physical characteristics of oil film due to an oil-lubricated journal bearing being the important supporting component of the bearing-rotor systems and its nonlinear nature. In order to analyze the lubrication characteristics of journal bearings efficiently and save computational efforts, an approximate solution of nonlinear oil film forces of a finite length turbulent journal bearing with couple stress flow is proposed based on Sommerfeld and Ocvirk numbers. Reynolds equation in lubrication of a finite length turbulent journal bearing is solved based on multi-parametric principle. Load-carrying capacity of nonlinear oil film is obtained, and the results obtained by different methods are compared. The validation of the proposed method is verified, meanwhile, the relationships of load-carrying capacity versus eccentricity ratio and width-to-diameter ratio under turbulent and couple stress working conditions are analyzed. The numerical results show that both couple stress flow and eccentricity ratio have obvious influence on oil film pressure distribution, and the proposed method approximates the load-carrying capacity of turbulent journal bearings efficiently with various width-to-diameter ratios. This research proposes an approximate solution of oil film load-carrying capacity of turbulent journal bearings with different width-to-diameter ratios, which are suitable for high eccentricity ratios and heavy loads.
Saengow, C.; Giacomin, A. J.
2017-12-01
The Oldroyd 8-constant framework for continuum constitutive theory contains a rich diversity of popular special cases for polymeric liquids. In this paper, we use part of our exact solution for shear stress to arrive at unique exact analytical solutions for the normal stress difference responses to large-amplitude oscillatory shear (LAOS) flow. The nonlinearity of the polymeric liquids, triggered by LAOS, causes these responses at even multiples of the test frequency. We call responses at a frequency higher than twice the test frequency higher harmonics. We find the new exact analytical solutions to be compact and intrinsically beautiful. These solutions reduce to those of our previous work on the special case of the corotational Maxwell fluid. Our solutions also agree with our new truncated Goddard integral expansion for the special case of the corotational Jeffreys fluid. The limiting behaviors of these exact solutions also yield new explicit expressions. Finally, we use our exact solutions to see how η∞ affects the normal stress differences in LAOS.
DEFF Research Database (Denmark)
Bisdom, Kevin; Nick, Hamid; Bertotti, Giovanni
2017-01-01
stresssensitive fracture permeability and matrix flow to determine the full permeability tensor. The applicability of this workflow is illustrated using an outcropping carbonate pavement in the Potiguar basin in Brazil, from which 1082 fractures are digitised. The permeability tensor for a range of matrix...
DEFF Research Database (Denmark)
Hassager, Ole; Mortensen, Kell; Bach, Anders
2012-01-01
We use small-angle neutron scattering to measure the molecular stretching in polystyrene melts undergoing steady elongational flow at large stretch rates. The radius of gyration of the central segment of a partly deuterated polystyrene molecule is, in the stretching direction, increasing...... exhibited by the linear polystyrene melt....
3D time-dependent flow computations using a molecular stress function model with constraint release
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz
2002-01-01
The numerical simulation of time dependent viscoelastic flow (in three dimensions) is of interest in connection with a variety of polymer processing operations. The application of the numerical simulation techniques is in the analysis and design of polymer processing problems. This is operations,......, such as thermoforming, blow moulding, compression moulding, gas-assisted injection moulding, simultaneous multi-component injection moulding....
Flow stress and dynamic strain-ageing of β-transformed Zircaloy-4
International Nuclear Information System (INIS)
Woo, O.T.; Tseng, D.; Tangri, K.; MacEwen, S.R.
1979-01-01
The 0.2% yield stress of β-transformed Zircaloy-4 was found to be independent of prior-β grain size but varied as the inverse of the transformed β plate width. A dislocation loop expansion model originally proposed by Langford and Cohen (1969) for cold-drawn iron wires is used to explain the inverse plate width dependence. Both air-cooled and water-quenched samples exhibited dynamic strain-ageing effects in approximately the same temperature range of 573 to 673 K: (a) a local minimum in strain-rate sensitivity is associated with a peak or an inflection point in the temperature dependence of the 0.2% yield stress for water-quenched or air-cooled samples respectively, and (b) yield drops were observed in strain rate change tests. (Auth.)
International Nuclear Information System (INIS)
Childs, T.H.C.
1974-01-01
This paper is concerned with the friction interaction between an En1A chip and a cemented tungsten--titanium carbide cutting tool during turning En1A on a lathe at speeds between 0.25 and 7.5 m s -1 and at feeds of 0.13 and 0.26 mm rev -1 . The mean friction stress has been measured and deductions made from chip shape measurements about the variation of the friction stress over the rake face. Three regimes of continuous chip formation were seen. In the first, the mean friction stress was independent of strain rate and temperature, in the second it depended on temperature and in the third, at the highest cutting speeds, it depended on temperature and feed. In the third regime, softening of the chip material caused by frictional heating limited the friction force, but the softening temperature depended on the heating rate of the chip material. Softening occurred at 700 0 C when the rate of heating from room temperature was 5.4 x 10 5 0 C s -1 and at 1160 0 C when the rate was 1.7 x 10 7 0 C s -1 . (U.S.)
Shock, stress or signal? Implications of freshwater flows for a top-level estuarine predator.
Directory of Open Access Journals (Sweden)
Matthew D Taylor
Full Text Available Physicochemical variability in estuarine systems plays an important role in estuarine processes and in the lifecycles of estuarine organisms. In particular, seasonality of freshwater inflow to estuaries may be important in various aspects of fish lifecycles. This study aimed to further understand these relationships by studying the movements of a top-level estuarine predator in response to physicochemical variability in a large, temperate south-east Australian estuary (Shoalhaven River. Mulloway (Argyrosomus japonicus, 47-89 cm total length were surgically implanted with acoustic transmitters, and their movements and migrations monitored over two years via fixed-position VR2W acoustic receivers configured in a linear array along the length of the estuary. The study period included a high degree of abiotic variability, with multiple pulses (exponentially high flows over a short period of time in fresh water to the estuary, as well as broader seasonal variation in flow, temperature and conductivity. The relative deviation of fish from their modal location in the estuary was affected primarily by changes in conductivity, and smaller fish (n = 4 tended to deviate much further downstream from their modal position in the estuary than larger fish (n = 8. High-flow events which coincided with warmer temperatures tended to drive mature fish down the estuary and potentially provided a spawning signal to stimulate aggregation of adults near the estuary mouth; however, this relationship requires further investigation. These findings indicate that pulse and press effects of freshwater inflow and associated physicochemical variability play a role in the movements of mulloway, and that seasonality of large freshwater flows may be important in spawning. The possible implications of river regulation and the extraction of freshwater for consumptive uses on estuarine fishes are discussed.
Improved patient selection by stratified surgical intervention
DEFF Research Database (Denmark)
Wang, Miao; Bünger, Cody E; Li, Haisheng
2015-01-01
BACKGROUND CONTEXT: Choosing the best surgical treatment for patients with spinal metastases remains a significant challenge for spine surgeons. There is currently no gold standard for surgical treatments. The Aarhus Spinal Metastases Algorithm (ASMA) was established to help surgeons choose...... the most appropriate surgical intervention for patients with spinal metastases. PURPOSE: The purpose of this study was to evaluate the clinical outcome of stratified surgical interventions based on the ASMA, which combines life expectancy and the anatomical classification of patients with spinal metastases...... survival times in the five surgical groups determined by the ASMA were 2.1 (TS 0-4, TC 1-7), 5.1 (TS 5-8, TC 1-7), 12.1 (TS 9-11, TC 1-7 or TS 12-15, TC 7), 26.0 (TS 12-15, TC 4-6), and 36.0 (TS 12-15, TC 1-3) months. The 30-day mortality rate was 7.5%. Postoperative neurological function was maintained...
Classification of archaeologically stratified pumice by INAA
International Nuclear Information System (INIS)
Peltz, C.; Bichler, M.
2001-01-01
In the framework of the research program 'Synchronization of Civilization in the Eastern Mediterranean Region in the 2nd Millenium B.C.' instrumental neutron activation analysis (INAA) was used to determine 30 elements in pumice from archaeological excavations to reveal their specific volcanic origin. The widespread pumiceous products of several eruptions in the Aegean region were used as abrasive tools and were therefore popular trade objects. A remarkable quantity of pumice and pumiceous tephra (several km 3 ) was produced by the 'Minoan eruption' of Thera (Santorini), which is assumed to have happened between 1450 and 1650 B.C. Thus the discovery of the primary fallout of 'Minoan' tephra in archaeologically stratified locations can be used as a relative time mark. Additionally, pumice lumps used as abrasive can serve for dating by first appearance. Essential to an identification of the primary volcanic source is the knowledge that pumices from the Aegean region can easily be distinguished by their trace element distribution patterns, as previous work has shown. The elements Al, Ba, Ca, Ce, Co, Cr, Cs, Dy, Eu, Fe, Hf, K, La, Lu, Mn, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, Ti, U, V, Yb, Zn and Zr were determined in 16 samples of pumice lumps from excavations in Tell-el-Dab'a and Tell-el-Herr (Egypt). Two irradiation cycles and five measurement runs were applied. A reliable identification of the samples is achieved by comparing these results to the database compiled in previous studies. (author)
Turbulent fluxes in stably stratified boundary layers
International Nuclear Information System (INIS)
L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii
2008-01-01
We present here an extended version of an invited talk we gave at the international conference 'Turbulent Mixing and Beyond'. The dynamical and statistical description of stably stratified turbulent boundary layers with the important example of the stable atmospheric boundary layer in mind is addressed. Traditional approaches to this problem, based on the profiles of mean quantities, velocity second-order correlations and dimensional estimates of the turbulent thermal flux, run into a well-known difficulty, predicting the suppression of turbulence at a small critical value of the Richardson number, in contradiction to observations. Phenomenological attempts to overcome this problem suffer from various theoretical inconsistencies. Here, we present an approach taking into full account all the second-order statistics, which allows us to respect the conservation of total mechanical energy. The analysis culminates in an analytic solution of the profiles of all mean quantities and all second-order correlations, removing the unphysical predictions of previous theories. We propose that the approach taken here is sufficient to describe the lower parts of the atmospheric boundary layer, as long as the Richardson number does not exceed an order of unity. For much higher Richardson numbers, the physics may change qualitatively, requiring careful consideration of the potential Kelvin-Helmoholtz waves and their interaction with the vortical turbulence.
Fledderus, M.
2012-01-01
Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.
Analysis of Turbulent Combustion in Simplified Stratified Charge Conditions
Moriyoshi, Yasuo; Morikawa, Hideaki; Komatsu, Eiji
The stratified charge combustion system has been widely studied due to the significant potentials for low fuel consumption rate and low exhaust gas emissions. The fuel-air mixture formation process in a direct-injection stratified charge engine is influenced by various parameters, such as atomization, evaporation, and in-cylinder gas motion at high temperature and high pressure conditions. It is difficult to observe the in-cylinder phenomena in such conditions and also challenging to analyze the following stratified charge combustion. Therefore, the combustion phenomena in simplified stratified charge conditions aiming to analyze the fundamental stratified charge combustion are examined. That is, an experimental apparatus which can control the mixture distribution and the gas motion at ignition timing was developed, and the effects of turbulence intensity, mixture concentration distribution, and mixture composition on stratified charge combustion were examined. As a result, the effects of fuel, charge stratification, and turbulence on combustion characteristics were clarified.
Electromagnetic energy density and stress tensor in a warm plasma with finite flow velocity
International Nuclear Information System (INIS)
Choi, Cheong R.; Lee, Nam C.
2004-01-01
The expressions of the average of energy density and the average stress tensor of the electromagnetic field in a warm collisionless plasma moving with a finite velocity are obtained by using a microscopic method that uses the fluid description of plasma. The result contains terms involved with derivatives of the dielectric tensor with respect to the velocity, which explicitly represent the effects of the finite velocity of the medium. In the zero-velocity limit, the results reduce to the well-known expressions for a plasma at rest with temporal and spatial dispersion
Regulating the Flow of Change to Reduce Fontline Nurse Stress and Burnout.
Koppel, Jenna; Virkstis, Katherine; Strumwasser, Sarah; Katz, Marie; Boston-Fleischhauer, Carol
2015-11-01
The nursing workforce is at the center of many changes associated with care delivery transformation. To achieve this transformation, frontline nursing staff must be engaged in their work, committed to their organization's mission, and capable of delivering high-quality care. To identify top opportunities for driving nursing engagement, researchers from The Advisory Board Company analyzed engagement survey responses from more than 343 000 employees at 575 healthcare organizations. In this article, the authors describe 3 strategies for addressing 1 of the greatest opportunities for improving nurse engagement: ensuring nurses feel their organization helps them reduce stress and burnout.
Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model
2014-09-19
the numerical code OpenFOAM R©. 1 Introduction Turbulent bubbly flows are encountered in many industrially relevant applications, such as chemical in...performed using the OpenFOAM -2.2.2 computational code utilizing a cell- center-based finite volume method on an unstructured numerical grid. The...the mean Courant number is always below 0.4. The utilized turbulence models were implemented into the so-called twoPhaseEulerFoam solver in OpenFOAM , to
Abiriand Bhekisipho Twala, Olufunminiyi
2017-08-01
In this paper, a multilayer feedforward neural network with Bayesian regularization constitutive model is developed for alloy 316L during high strain rate and high temperature plastic deformation. The input variables are strain rate, temperature and strain while the output value is the flow stress of the material. The results show that the use of Bayesian regularized technique reduces the potential of overfitting and overtraining. The prediction quality of the model is thereby improved. The model predictions are in good agreement with experimental measurements. The measurement data used for the network training and model comparison were taken from relevant literature. The developed model is robust as it can be generalized to deformation conditions slightly below or above the training dataset.
Modelling of vapour explosion in stratified geometrie
International Nuclear Information System (INIS)
Picchi, St.
1999-01-01
When a hot liquid comes into contact with a colder volatile liquid, one can obtain in some conditions an explosive vaporization, told vapour explosion, whose consequences can be important on neighbouring structures. This explosion needs the intimate mixing and the fine fragmentation between the two liquids. In a stratified vapour explosion, these two liquids are initially superposed and separated by a vapor film. A triggering of the explosion can induce a propagation of this along the film. A study of experimental results and existent models has allowed to retain the following main points: - the explosion propagation is due to a pressure wave propagating through the medium; - the mixing is due to the development of Kelvin-Helmholtz instabilities induced by the shear velocity between the two liquids behind the pressure wave. The presence of the vapour in the volatile liquid explains experimental propagation velocity and the velocity difference between the two fluids at the pressure wave crossing. A first model has been proposed by Brayer in 1994 in order to describe the fragmentation and the mixing of the two fluids. Results of the author do not show explosion propagation. We have therefore built a new mixing-fragmentation model based on the atomization phenomenon that develops itself during the pressure wave crossing. We have also taken into account the transient aspect of the heat transfer between fuel drops and the volatile liquid, and elaborated a model of transient heat transfer. These two models have been introduced in a multi-components, thermal, hydraulic code, MC3D. Results of calculation show a qualitative and quantitative agreement with experimental results and confirm basic options of the model. (author)
International Nuclear Information System (INIS)
Reuter, W.G.; Place, T.A.
1981-01-01
An accurate assessment of the influence of defects on structural component integrity is needed. Generally accepted analytical techniques are not available for the very ductile materials used in many nuclear reactor components. Some results are presented from a test programme to obtain data by which to evaluate proposed models. Plate and pipe specimens containing surface flaws were fabricated from annealed Type 304 stainless steel and tested at room temperature. An evaluation of an empirical equation based on flow stress is presented. In essentially all instances the flow stress is not a constant but varies as a function of the size of the surface flaw. (author)
Directory of Open Access Journals (Sweden)
Yu Wang
2016-04-01
Full Text Available Multiple-factor analysis and optimization play a critical role in the the ability to maximizethe stimulated reservoir volume (SRV and the success of economic shale gas production. In this paper, taking the typical continental naturally fractured silty laminae shale in China as anexample, response surface methodology (RSM was employed to optimize multiple hydraulic fracturing parameters to maximize the stimulated area in combination with numerical modeling based on the coupled flow-stress-damage (FSD approach. This paper demonstrates hydraulic fracturing effectiveness by defining two indicesnamelythe stimulated reservoir area (SRA and stimulated silty laminae area (SLA. Seven uncertain parameters, such as laminae thickness, spacing, dip angle, cohesion, internal friction angle (IFA, in situ stress difference (SD, and an operational parameter-injection rate (IR with a reasonable range based on silty Laminae Shale, Southeastern Ordos Basin, are used to fit a response of SRA and SLA as the objective function, and finally identity the optimum design under the parameters based on simultaneously maximizingSRA and SLA. In addition, asensitivity analysis of the influential factors is conducted for SRA and SLA. The aim of the study is to improve the artificial ability to control the fracturing network by means of multi-parameteroptimization. This work promises to provide insights into the effective exploitation of unconventional shale gas reservoirs via optimization of the fracturing design for continental shale, Southeastern Ordos Basin, China.
Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming
DEFF Research Database (Denmark)
Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf
2009-01-01
The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953......-dimensional simulations of standing waves have also been made by application of a general purpose Navier-Stokes solver. The results agree well with those obtained by the boundary layer analysis. Wave reflection from a plane sloping wall is also investigated by using the same numerical model and by physical laboratory...
Wang, C. R.; Hingst, W. R.; Porro, A. R.
1991-01-01
The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.
Reynolds stress scaling in pipe flow turbulence-first results from CICLoPE.
Örlü, R; Fiorini, T; Segalini, A; Bellani, G; Talamelli, A; Alfredsson, P H
2017-03-13
This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×10 4 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend-Perry constant of A 2 ≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend-Perry constant, i.e. A 2,w ≈A 2 /2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Miller, V. M.; Semiatin, S. L.; Szczepanski, C.; Pilchak, A. L.
2018-06-01
The ability to predict the evolution of crystallographic texture during hot work of titanium alloys in the α + β temperature regime is greatly significant to numerous engineering disciplines; however, research efforts are complicated by the rapid changes in phase volume fractions and flow stresses with temperature in addition to topological considerations. The viscoplastic self-consistent (VPSC) polycrystal plasticity model is employed to simulate deformation in the two phase field. Newly developed parameter selection schemes utilizing automated optimization based on two different error metrics are considered. In the first optimization scheme, which is commonly used in the literature, the VPSC parameters are selected based on the quality of fit between experiment and simulated flow curves at six hot-working temperatures. Under the second newly developed scheme, parameters are selected to minimize the difference between the simulated and experimentally measured α textures after accounting for the β → α transformation upon cooling. It is demonstrated that both methods result in good qualitative matches for the experimental α phase texture, but texture-based optimization results in a substantially better quantitative orientation distribution function match.
Directory of Open Access Journals (Sweden)
Fadel Elie
2011-09-01
Full Text Available Abstract Background Involvement of inflammation in pulmonary hypertension (PH has previously been demonstrated and recently, immune-modulating dendritic cells (DCs infiltrating arterial lesions in patients suffering from idiopathic pulmonary arterial hypertension (IPAH and in experimental monocrotaline-induced PH have been reported. Occurrence of perivascular inflammatory cells could be linked to local increase of oxidative stress (OS, as it has been shown for systemic atherosclerosis. The impact of OS on vascular remodeling in PH is still to be determined. We hypothesized, that augmented blood-flow could increase OS and might thereby contribute to DC/inflammatory cell-recruitment and smooth-muscle-cell-proliferation. Methods We applied a monocrotaline-induced PH-model and combined it with permanent flow-challenge. Thirty Sprague-Dawley rats were assigned to following groups: control, monocrotaline-exposure (MCT, monocrotaline-exposure/pneumonectomy (MCT/PE. Results Hemodynamic exploration demonstrated most severe effects in MCT/PE, corresponding in histology to exuberant medial and adventitial remodeling of pulmonary muscular arteries, and intimal remodeling of smaller arterioles; lung-tissue PCR evidenced increased expression of DCs-specific fascin, CD68, proinflammatory cytokines (IL-6, RANTES, fractalkine in MCT/PE and to a lesser extent in MCT. Major OS enzyme NOX-4 was maximal in MCT/PE. Antioxidative stress enzymes Mn-SOD and glutathion-peroxidase-1 were significantly elevated, while HO-1 showed maximal expression in MCT with significant decrease in MCT/PE. Catalase was decreased in MCT and MCT/PE. Expression of NOX-4, but also of MN-SOD in MCT/PE was mainly attributed to a highly increased number of interstitial and perivascular CXCR4/SDF1 pathway-recruited mast-cells. Stress markers malonedialdehyde and nitrotyrosine were produced in endothelial cells, medial smooth muscle and perivascular leucocytes of hypertensive vasculature
Essemine, Jemaa; Xiao, Yi; Qu, Mingnan; Mi, Hualing; Zhu, Xin-Guang
2017-04-01
Previously we have shown that a quick down-regulation in PSI activity compares to that of PSII following short-term heat stress for two rice groups including C4023 and Q4149, studied herein. These accessions were identified to have different natural capacities in driving cyclic electron flow (CEF) around PSI; i.e., low CEF (lcef) and high CEF (hcef) for C4023 and Q4149, respectively. The aim of this study was to investigate whether these two lines have different mechanisms of protecting photosystem II from photodamage under heat stress. We observed a stepwise alteration in the shape of Chl a fluorescence induction (OJIP) with increasing temperature treatment. The effect of 44°C treatment on the damping in Chl a fluorescence was more pronounced in C4023 than in Q4149. Likewise, we noted a disruption in the I-step, a decline in the F v due to a strong damping in the F m , and a slight increase in the F 0 . Normalized data demonstrated that the I-step seems more susceptible to 44°C in C4023 than in Q4149. We also measured the redox states of plastocyanin (PC) and P 700 by monitoring the transmission changes at 820nm (I 820 ), and observed a disturbance in the oxidation/reduction kinetics of PC and P 700 . The decline in the amplitude of their oxidation was shown to be about 29% and 13% for C4023 and Q4149, respectively. The electropotential component (Δφ) of ms-DLE appeared more sensitive to temperature stress than the chemical component (ΔpH), and the impact of heat was more evident and drastic in C4023 than in Q4149. Under heat stress, we noticed a concomitant decline in the primary photochemistry of PSII as well as in both the membrane energization process and the lumen protonation for both accessions, and it is evident that heat affects these parameters more in C4023 than in Q4149. All these data suggest that higher CET can confer higher photoprotection to PSII in rice lines, which can be a desirable trait during rice breeding, especially in the context of a
Chambers, David W
2008-01-01
We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.
Aligning the Economic Value of Companion Diagnostics and Stratified Medicines
Directory of Open Access Journals (Sweden)
Edward D. Blair
2012-11-01
Full Text Available The twin forces of payors seeking fair pricing and the rising costs of developing new medicines has driven a closer relationship between pharmaceutical companies and diagnostics companies, because stratified medicines, guided by companion diagnostics, offer better commercial, as well as clinical, outcomes. Stratified medicines have created clinical success and provided rapid product approvals, particularly in oncology, and indeed have changed the dynamic between drug and diagnostic developers. The commercial payback for such partnerships offered by stratified medicines has been less well articulated, but this has shifted as the benefits in risk management, pricing and value creation for all stakeholders become clearer. In this larger healthcare setting, stratified medicine provides both physicians and patients with greater insight on the disease and provides rationale for providers to understand cost-effectiveness of treatment. This article considers how the economic value of stratified medicine relationships can be recognized and translated into better outcomes for all healthcare stakeholders.
Modeling the Conducting Stably-Stratified Layer of the Earth's Core
Petitdemange, L.; Philidet, J.; Gissinger, C.
2017-12-01
Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.
van Ooij, Pim; Garcia, Julio; P