WorldWideScience

Sample records for strategies combining targeted

  1. Investigation of strategies for drug delivery by combination targeting of nanocarriers to multiple epitopes or receptors

    Science.gov (United States)

    Papademetriou, Iason Titos

    Development of drug delivery systems (ie. nanocarriers) with controllable composition, architecture, and functionalities is heavily investigated in the field of drug delivery in order to improve clinical interventions. Designing drug nanocarriers which possess targeting properties is critical to enable them to reach the intended site of intervention in the body. To achieve this goal, the surface of drug nanocarriers can be modified with targeting moieties (antibodies, peptides, etc.) addressed to cell surface molecules expressed on the diseased tissues and cells. If these molecules are receptors capable of internalizing bound ligands via endocytosis, targeting can then enable drug transport into cells or across cellular barriers in the body. Yet, addressing nanocarriers to single targets presents limited control over cellular interactions and biodistribution. Since most cell-surface markers are not exclusively expressed in a precise site in vivo, high affinity of targeted nanocarriers may lead to non-desired accumulation in regions of the body associated with low expression. Modification of nanocarriers to achieve combined-targeting (binding to more than one cell-surface receptor) may help modulate binding to cells and also endocytosis, since cell receptors possess distinct functions and features affecting these parameters, such as their expression, location on the plasmalemma, activation in disease, mechanism of endocytosis, etc. Further, targeting nanocarriers to multiple epitopes of the same receptor, a strategy which has never been tested, may also modulate these parameters since they are highly epitope specific. In this dissertation, we investigate the effect of targeting model polymer nanocarriers to: (1) multiple receptors of similar function (intercellular-, platelet-endothelial-, and/or vascular-cell adhesion molecules), (2) multiple receptors of different function (intercellular adhesion molecule 1 and transferrin receptor), or (3) multiple epitopes of

  2. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Janel Kydd

    2017-10-01

    Full Text Available Cancer cells have characteristics of acquired and intrinsic resistances to chemotherapy treatment—due to the hostile tumor microenvironment—that create a significant challenge for effective therapeutic regimens. Multidrug resistance, collateral toxicity to normal cells, and detrimental systemic side effects present significant obstacles, necessitating alternative and safer treatment strategies. Traditional administration of chemotherapeutics has demonstrated minimal success due to the non-specificity of action, uptake and rapid clearance by the immune system, and subsequent metabolic alteration and poor tumor penetration. Nanomedicine can provide a more effective approach to targeting cancer by focusing on the vascular, tissue, and cellular characteristics that are unique to solid tumors. Targeted methods of treatment using nanoparticles can decrease the likelihood of resistant clonal populations of cancerous cells. Dual encapsulation of chemotherapeutic drug allows simultaneous targeting of more than one characteristic of the tumor. Several first-generation, non-targeted nanomedicines have received clinical approval starting with Doxil® in 1995. However, more than two decades later, second-generation or targeted nanomedicines have yet to be approved for treatment despite promising results in pre-clinical studies. This review highlights recent studies using targeted nanoparticles for cancer treatment focusing on approaches that target either the tumor vasculature (referred to as ‘vascular targeting’, the tumor microenvironment (‘tissue targeting’ or the individual cancer cells (‘cellular targeting’. Recent studies combining these different targeting methods are also discussed in this review. Finally, this review summarizes some of the reasons for the lack of clinical success in the field of targeted nanomedicines.

  3. Combining Untargeted and Targeted Proteomic Strategies for Discrimination and Quantification of Cashmere Fibers.

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    Full Text Available Cashmere is regarded as a specialty and luxury fiber due to its scarcity and high economic value. For fiber quality assessment, it is technically very challenging to distinguish and quantify the cashmere fiber from yak or wool fibers because of their highly similar physical appearance and substantial protein sequence homology. To address this issue, we propose a workflow combining untargeted and targeted proteomics strategies for selecting, verifying and quantifying biomarkers for cashmere textile authentication. Untargeted proteomic surveys were first applied to identify 174, 157, and 156 proteins from cashmere, wool and yak fibers, respectively. After marker selection at different levels, peptides turned out to afford much higher selectivity than proteins for fiber species discrimination. Subsequently, parallel reaction monitoring (PRM methods were developed for ten selected peptide markers. The PRM-based targeted analysis of peptide markers enabled accurate determination of fiber species and cashmere percentages in different fiber mixtures. Furthermore, collective use of these peptide makers allowed us to discriminate and quantify cashmere fibers in commercial finished fabrics that have undergone heavy chemical treatments. Cashmere proportion measurement in fabric samples using our proteomic approach was in good agreement with results from traditional light microscopy, yet our method can be more readily standardized to become an objective and robust assay for assessing authenticity of fibers and textiles. We anticipate that the proteomic strategies presented in our study could be further implicated in discovery of quality trait markers for other products containing highly homologous proteomes.

  4. A Novel Therapeutic Strategy for the Treatment of Glioma, Combining Chemical and Molecular Targeting of Hsp90α

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Adi; Shervington, Leroy; Munje, Chinmay; Shervington, Amal, E-mail: aashervington@googlemail.com [Brain Tumour North West, Faculty of Science and Technology, University of Central Lancashire, Preston, PR1 2HE (United Kingdom)

    2011-12-08

    Hsp90α's vital role in tumour survival and progression, together with its highly inducible expression profile in gliomas and its absence in normal tissue and cell lines validates it as a therapeutic target for glioma. Hsp90α was downregulated using the post-transcriptional RNAi strategy (sihsp90α) and a post-translational inhibitor, the benzoquinone antibiotic 17-AAG. Glioblastoma U87-MG and normal human astrocyte SVGp12 were treated with sihsp90α, 17-AAG and concurrent sihsp90α/17-AAG (combined treatment). Both Hsp90α gene silencing and the protein inhibitor approaches resulted in a dramatic reduction in cell viability. Results showed that sihsp90α, 17-AAG and a combination of sihsp90α/17-AAG, reduced cell viability by 27%, 75% and 88% (p < 0.001), respectively, after 72 h. hsp90α mRNA copy numbers were downregulated by 65%, 90% and 99% after 72 h treatment with sihsp90α, 17-AAG and sihsp90α/17-AAG, respectively. The relationship between Hsp90α protein expression and its client Akt kinase activity levels were monitored following treatment with sihsp90α, 17-AAG and sihsp90α/17-AAG. Akt kinase activity was downregulated as a direct consequence of Hsp90α inhibition. Both Hsp90α and Akt kinase levels were significantly downregulated after 72 h. Although, 17-AAG when used as a single agent reduces the Hsp90α protein and the Akt kinase levels, the efficacy demonstrated by combinatorial treatment was found to be far more effective. Combination treatment reduced the Hsp90α protein and Akt kinase levels to 4.3% and 43%, respectively, after 72 h. hsp90α mRNA expression detected in SVGp12 was negligible compared to U87-MG, also, the combination treatment did not compromise the normal cell viability. Taking into account the role of Hsp90α in tumour progression and the involvement of Akt kinase in cell signalling and the anti-apoptotic pathways in tumours, this double targets treatment infers a novel therapeutic strategy.

  5. Bioengineering Strategies for Designing Targeted Cancer Therapies

    Science.gov (United States)

    Wen, Xuejun

    2014-01-01

    The goals of bioengineering strategies for targeted cancer therapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumor, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by nonmalignant cells. Effective cancer-targeting therapies will require both passive- and active targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Designing a targeted therapy includes the selection and optimization of a nanoparticle delivery vehicle for passive accumulation in tumors, a targeting moiety for active receptor-mediated uptake, and stimuli-responsive polymers for control of drug release. The future direction of cancer targeting is a combinatorial approach, in which targeting therapies are designed to use multiple targeting strategies. The combinatorial approach will enable combination therapy for delivery of multiple drugs and dual ligand targeting to improve targeting specificity. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes. PMID:23768509

  6. Rational Combinations of Targeted Agents in AML

    Directory of Open Access Journals (Sweden)

    Prithviraj Bose

    2015-04-01

    Full Text Available Despite modest improvements in survival over the last several decades, the treatment of AML continues to present a formidable challenge. Most patients are elderly, and these individuals, as well as those with secondary, therapy-related, or relapsed/refractory AML, are particularly difficult to treat, owing to both aggressive disease biology and the high toxicity of current chemotherapeutic regimens. It has become increasingly apparent in recent years that coordinated interruption of cooperative survival signaling pathways in malignant cells is necessary for optimal therapeutic results. The modest efficacy of monotherapy with both cytotoxic and targeted agents in AML testifies to this. As the complex biology of AML continues to be elucidated, many “synthetic lethal” strategies involving rational combinations of targeted agents have been developed. Unfortunately, relatively few of these have been tested clinically, although there is growing interest in this area. In this article, the preclinical and, where available, clinical data on some of the most promising rational combinations of targeted agents in AML are summarized. While new molecules should continue to be combined with conventional genotoxic drugs of proven efficacy, there is perhaps a need to rethink traditional philosophies of clinical trial development and regulatory approval with a focus on mechanism-based, synergistic strategies.

  7. Cost-sharing strategies combining targeted public subsidies with private-sector delivery achieve high bednet coverage and reduced malaria transmission in Kilombero Valley, southern Tanzania

    Directory of Open Access Journals (Sweden)

    Kasigudi N

    2007-10-01

    Full Text Available Abstract Background Cost-sharing schemes incorporating modest targeted subsidies have promoted insecticide-treated nets (ITNs for malaria prevention in the Kilombero Valley, southern Tanzania, since 1996. Here we evaluate resulting changes in bednet coverage and malaria transmission. Methods Bednets were sold through local agents at fixed prices representing a 34% subsidy relative to full delivery cost. A further targeted subsidy of 15% was provided to vulnerable groups through discount vouchers delivered through antenatal clinics and regular immunizations. Continuous entomological surveys (2,376 trap nights were conducted from October 2001 to September 2003 in 25 randomly-selected population clusters of a demographic surveillance system which monitored net coverage. Results Mean net usage of 75% (11,982/16,086 across all age groups was achieved but now-obsolete technologies available at the time resulted in low insecticide treatment rates. Malaria transmission remained intense but was substantially reduced: Compared with an exceptionally high historical mean EIR of 1481, even non-users of nets were protected (EIR [fold reduction] = 349 infectious bites per person per year [×4], while the average resident (244 [×6], users of typical nets (210 [×7] and users of insecticidal nets (105 [×14] enjoyed increasing benefits. Conclusion Despite low net treatment levels, community-level protection was equivalent to the personal protection of an ITN. Greater gains for net users and non-users are predicted if more expensive long-lasting ITN technologies can be similarly promoted with correspondingly augmented subsidies. Cost sharing strategies represent an important option for national programmes lacking adequate financing to fully subsidize comprehensive ITN coverage.

  8. Combination antitumor therapy with targeted dual-nanomedicines.

    Science.gov (United States)

    Dai, Wenbing; Wang, Xiaoyou; Song, Ge; Liu, Tongzhou; He, Bing; Zhang, Hua; Wang, Xueqing; Zhang, Qiang

    2017-06-01

    Combination therapy is one of the important treatment strategies for cancer at present. However, the outcome of current combination therapy based on the co-administration of conventional dosage forms is suboptimal, due to the short half-lives of chemodrugs, their deficient tumor selectivity and so forth. Nanotechnology-based targeted delivery systems show great promise in addressing the associated problems and providing superior therapeutic benefits. In this review, we focus on the combination of therapeutic strategies between different nanomedicines or drug-loaded nanocarriers, rather than the co-delivery of different drugs via a single nanocarrier. We introduce the general concept of various targeting strategies of nanomedicines, present the principles of combination antitumor therapy with dual-nanomedicines, analyze their advantages and limitations compared with co-delivery strategies, and overview the recent advances of combination therapy based on targeted nanomedicines. Finally, we reviewed the challenges and future perspectives regarding the selection of therapeutic agents, targeting efficiency and the gap between the preclinical and clinical outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Therapeutic Strategies Targeting Cariogenic Biofilm Microenvironment.

    Science.gov (United States)

    Liu, Y; Ren, Z; Hwang, G; Koo, H

    2018-02-01

    Cariogenic biofilms are highly structured microbial communities embedded in an extracellular matrix, a multifunctional scaffold that is essential for the existence of the biofilm lifestyle and full expression of virulence. The extracellular matrix provides the physical and biological properties that enhance biofilm adhesion and cohesion, as well as create a diffusion-modulating milieu, protecting the resident microbes and facilitating the formation of localized acidic pH niches. These biochemical properties pose significant challenges for the development of effective antibiofilm therapeutics to control dental caries. Conventional approaches focusing solely on antimicrobial activity or enhancing remineralization may not achieve maximal efficacy within the complex biofilm microenvironment. Recent approaches disrupting the biofilm microbial community and the microenvironment have emerged, including specific targeting of cariogenic pathogens, modulation of biofilm pH, and synergistic combination of bacterial killing and matrix degradation. Furthermore, new "smart" nanotechnologies that trigger drug release or activation in response to acidic pH are being developed that could enhance the efficacy of current and prospective chemical modalities. Therapeutic strategies that can locally disrupt the pathogenic niche by targeting the biofilm structure and its microenvironment to eliminate the embedded microorganism and facilitate the action of remineralizing agents may lead to enhanced and precise anticaries approaches.

  10. Strategies for targeted antimicrobial photodynamic therapy

    Science.gov (United States)

    Verma, Sarika; Sallum, Ulysses; Zheng, Xiang; Hasan, Tayyaba

    2009-06-01

    The photophysics and mechanisms of cell killing by photodynamic therapy (PDT) have been extensively studied in recent years, and PDT has received regulatory approval for the treatment of a number of diseases worldwide. As the application of this treatment modality expands with regard to both anatomical sites and diseases, it is important to develop strategies for enhancing PDT outcomes. Our group has focused on developing targeting strategies to enhance PDT for both cancerous as well as anti-microbial applications. In this article, we will discuss photosensitizer modification and conjugation strategies for targeted antimicrobial photodynamic therapy.

  11. COMBINATION OF GOALS STRATEGY REGION

    Directory of Open Access Journals (Sweden)

    Denys Yu. Lapigin

    2015-01-01

    Full Text Available Currently the tools to identify strategicallyimportant objectives of regional development is not enough to build a developmentperspective, relying on something special,what distinguishes each region from therest. The article discusses approaches to the formation of the regional developmentstrategy, which is based on goals set by the results of the analysis of the main factors inthe development of the region. The study is based on the methodology of systems theoryand methods of strategic management. The most important results should include tools tobuild the tree of strategic objectives resultingfrom the implementation of the algorithm forconstructing planes of analysis and development of the region. The results can be used to develop a strategy for the developmentof socio-economic systems of various typesand forms.

  12. Target Identification Strategies in Plant Chemical Biology

    Directory of Open Access Journals (Sweden)

    Wim eDejonghe

    2014-07-01

    Full Text Available The current needs to understand gene function in plant biology increasingly require more dynamic and conditional approaches opposed to classic genetic strategies. Gene redundancy and lethality can substantially complicate research, which might be solved by applying a chemical genetics approach. Now understood as the study of small molecules and their effect on biological systems with subsequent target identification, chemical genetics is a fast developing field with a strong history in pharmaceutical research and drug discovery. In plant biology however, chemical genetics is still largely in the starter blocks, with most studies relying on forward genetics and phenotypic analysis for target identification, while studies including direct target identification are limited. Here, we provide an overview of recent advances in chemical genetics in plant biology with a focus on target identification. Furthermore, we discuss different strategies for direct target identification and the possibilities and challenges for plant biology

  13. Target marketing strategies for occupational therapy entrepreneurs.

    Science.gov (United States)

    Kautzmann, L N; Kautzmann, F N; Navarro, F H

    1989-01-01

    Understanding marketing techniques is one of the skills needed by successful entre renews. Target marketing is an effective method for occupational therapy entrepreneurs to use in determining when and where to enter the marketplace. The two components of target marketing, market segmentation and the development of marketing mix strategies for each identified market segment, are described. The Profife of Attitudes Toward Health Care (PATH) method of psychographic market segmentation of health care consumers is presented. Occupational therapy marketing mix strategies for each PATH consumer group are delineated and compatible groupings of market segments are suggested.

  14. Structural insights of SmKDAC8 inhibitors: Targeting Schistosoma epigenetics through a combined structure-based 3D QSAR, in vitro and synthesis strategy.

    Science.gov (United States)

    Ballante, Flavio; Reddy, D Rajasekhar; Zhou, Nancy J; Marshall, Garland R

    2017-04-01

    A predictive structure-based 3D QSAR (COMBINEr 2.0) model of the Schistosoma mansoni lysine deacetylase 8 enzyme (SmKDAC8) was developed, validated and used to perform virtual screening (VS) of the NCI Diversity Set V database (1593 compounds). Three external datasets (with congeneric structures to those experimentally resolved in complexes by X-ray and previously reported as SmKDAC8 inhibitors) were employed to compose and validate the most predictive model. Two series characterized by 104 benzodiazepine derivatives (BZDs) and 60 simplified largazole analogs (SLAs), recently reported by our group as human KDAC inhibitors, were tested for their inhibition potency against SmKDAC8 to probe the predictive capability of the quantitative models against compounds with diverse structures. The SmKDAC8 biochemical results confirmed: (1) the benzodiazepine moiety as a valuable scaffold to further investigate when pursuing SmKDAC8 inhibition; (2) the predictive capability of the COMBINEr 2.0 model towards non-congeneric series of compounds, highlighting the most influencing ligand-protein interactions and refining the structure-activity relationships. From the VS investigations, the first 40 top-ranked compounds were obtained and biologically tested for their inhibition potency against SmKDAC8 and hKDACs 1, 3, 6 and 8. Among them, a non-hydroxamic acid benzothiadiazine dioxide derivative (code NSC163639), showed interesting activity and selectivity against SmKDAC8. To further elucidate the structure-activity relationships of NSC163639, two analogs (herein reported as compounds 3 and 4) were synthesized and biologically evaluated. Results suggest the benzothiadiazine dioxide moiety as a promising scaffold to be used in a next step to derive selective SmKDAC8 inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Target Identification Strategies in Plant Chemical Biology

    OpenAIRE

    Wim eDejonghe; Eugenia eRussinova

    2014-01-01

    The current needs to understand gene function in plant biology increasingly require more dynamic and conditional approaches opposed to classic genetic strategies. Gene redundancy and lethality can substantially complicate research, which might be solved by applying a chemical genetics approach. Now understood as the study of small molecules and their effect on biological systems with subsequent target identification, chemical genetics is a fast developing field with a strong history in pharma...

  16. FGFR3 targeting strategies for achondroplasia.

    Science.gov (United States)

    Laederich, Melanie B; Horton, William A

    2012-01-19

    Mutations that exaggerate signalling of the receptor tyrosine kinase fibroblast growth factor receptor 3 (FGFR3) give rise to achondroplasia, the most common form of dwarfism in humans. Here we review the clinical features, genetic aspects and molecular pathogenesis of achondroplasia and examine several therapeutic strategies designed to target the mutant receptor or its signalling pathways, including the use of kinase inhibitors, blocking antibodies, physiologic antagonists, RNAi and chaperone inhibitors. We conclude by discussing the challenges of treating growth plate disorders in children.

  17. M cell-targeted mucosal vaccine strategies.

    Science.gov (United States)

    Yamamoto, M; Pascual, D W; Kiyono, H

    2012-01-01

    Immune responses in the aerodigestive tract are characterized by production and transport of specific IgA antibodies across the epithelium to act as a first line of defense against pathogens in the external environment. To sample antigens on mucosal surfaces in the intestine and upper respiratory tract, the immune system relies on a close collaboration between specialized antigen-sampling epithelial M cells and lymphoid cells. Depending on various factors, local antigen presentation in the mucosal tissue leads to tolerance or initiation of an active immune response. Recently, molecules that could be used to target vaccine antigens to apical M cell surfaces have been identified. Here we review the M cell-targeted vaccine strategy, an approach that could be used to enhance uptake and efficacy of vaccines delivered in the nasal cavity or intestine.

  18. Feature combination strategies for saliency-based visual attention systems

    Science.gov (United States)

    Itti, Laurent; Koch, Christof

    2001-01-01

    Bottom-up or saliency-based visual attention allows primates to detect nonspecific conspicuous targets in cluttered scenes. A classical metaphor, derived from electrophysiological and psychophysical studies, describes attention as a rapidly shiftable `spot-light.' We use a model that reproduces the attentional scan paths of this spotlight. Simple multi-scale `feature maps' detect local spatial discontinuities in intensity, color, and orientation, and are combined into a unique `master' or `saliency' map. The saliency map is sequentially scanned, in order of decreasing saliency, by the focus of attention. We here study the problem of combining feature maps, from different visual modalities (such as color and orientation), into a unique saliency map. Four combination strategies are compared using three databases of natural color images: (1) Simple normalized summation, (2) linear combination with learned weights, (3) global nonlinear normalization followed by summation, and (4) local nonlinear competition between salient locations followed by summation. Performance was measured as the number of false detections before the most salient target was found. Strategy (1) always yielded poorest performance and (2) best performance, with a threefold to eightfold improvement in time to find a salient target. However, (2) yielded specialized systems with poor generalization. Interestingly, strategy (4) and its simplified, computationally efficient approximation (3) yielded significantly better performance than (1), with up to fourfold improvement, while preserving generality.

  19. Target inhibition networks: predicting selective combinations of druggable targets to block cancer survival pathways.

    Directory of Open Access Journals (Sweden)

    Jing Tang

    Full Text Available A recent trend in drug development is to identify drug combinations or multi-target agents that effectively modify multiple nodes of disease-associated networks. Such polypharmacological effects may reduce the risk of emerging drug resistance by means of attacking the disease networks through synergistic and synthetic lethal interactions. However, due to the exponentially increasing number of potential drug and target combinations, systematic approaches are needed for prioritizing the most potent multi-target alternatives on a global network level. We took a functional systems pharmacology approach toward the identification of selective target combinations for specific cancer cells by combining large-scale screening data on drug treatment efficacies and drug-target binding affinities. Our model-based prediction approach, named TIMMA, takes advantage of the polypharmacological effects of drugs and infers combinatorial drug efficacies through system-level target inhibition networks. Case studies in MCF-7 and MDA-MB-231 breast cancer and BxPC-3 pancreatic cancer cells demonstrated how the target inhibition modeling allows systematic exploration of functional interactions between drugs and their targets to maximally inhibit multiple survival pathways in a given cancer type. The TIMMA prediction results were experimentally validated by means of systematic siRNA-mediated silencing of the selected targets and their pairwise combinations, showing increased ability to identify not only such druggable kinase targets that are essential for cancer survival either individually or in combination, but also synergistic interactions indicative of non-additive drug efficacies. These system-level analyses were enabled by a novel model construction method utilizing maximization and minimization rules, as well as a model selection algorithm based on sequential forward floating search. Compared with an existing computational solution, TIMMA showed both enhanced

  20. A Combined Preconditioning Strategy for Nonsymmetric Systems

    Energy Technology Data Exchange (ETDEWEB)

    de Dios, B. Ayuso [Univ. of Bologna (Italy). Dept. of Mathematics; King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Barker, A. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, P. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-04

    Here, we present and analyze a class of nonsymmetric preconditioners within a normal (weighted least-squares) matrix form for use in GMRES to solve nonsymmetric matrix problems that typically arise in finite element discretizations. An example of the additive Schwarz method applied to nonsymmetric but definite matrices is presented for which the abstract assumptions are verified. Variable preconditioner, which combines the original nonsymmetric one and a weighted least-squares version of it, and it is shown to be convergent and provides a viable strategy for using nonsymmetric preconditioners in practice. Numerical results are included to assess the theory and the performance of the proposed preconditioners.

  1. A Combined Preconditioning Strategy for Nonsymmetric Systems

    KAUST Repository

    Ayuso Dios, Blanca

    2014-01-01

    We present and analyze a class of nonsymmetric preconditioners within a normal (weighted least-squares) matrix form for use in GMRES to solve nonsymmetric matrix problems that typically arise in finite element discretizations. An example of the additive Schwarz method applied to nonsymmetric but definite matrices is presented for which the abstract assumptions are verified. A variable preconditioner, combining the original nonsymmetric one and a weighted least-squares version of it, is shown to be convergent and provides a viable strategy for using nonsymmetric preconditioners in practice. Numerical results are included to assess the theory and the performance of the proposed preconditioners.

  2. Multigas reduction strategy under climate stabilization target

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, A. [Inst. of Applied Energy, Tokyo (Japan)

    2005-07-01

    Global warming can be mitigated through the abatement of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride (SF{sub 6}). This study argued that multiple gas reduction flexibility should be assessed when considering effective greenhouse gas (GHG) mitigation strategies. Emissions of non-CO{sub 2} GHGs were calculated endogenously using an integrated assessment model. Multigas reduction potential was measured in relation to long-term atmospheric temperature targets, and the effects on gas life as well as abatement timing uncertainty were considered in terms of cost and technological availability. The model consisted of 5 nodules which considered issues related to energy, climate, land use, macroeconomics, and environmental impacts. The time horizon of the model was 2000 to 2100. An economic utility maximization technology was used to consider global trade balances. Emissions of non-CO{sub 2} gases from specific sources was calculated by multiplying the emission factor and the endogenous parameters within the model. Results were presented for GHG emissions and concentrations in 2 simulation cases: (1) a no climate policy case (NCP); and (2) a transient temperature stabilization (TTS) case. Actions to reduce non-CO{sub 2} GHGs included activity level changes in production and consumption, and additional reductions in abatement costs without sector activity changes. Results of the study showed that reducing global dependency on fossil fuels was an effective way to reduce GHG effects from CO{sub 2}, CH{sub 4} and N{sub 2}O. Additional abatements to reduce N{sub 2}O emissions are required in the agricultural sector. Economic incentives and public outreach programs are needed to offset the high transaction costs of GHG mitigation strategies. It was concluded that both short-term and long-term policies are required to reduce GHG in all sectors. Multigas mitigation is needed to

  3. Target Marketing and Direct Mail: A Smart Campaign Combination.

    Science.gov (United States)

    Brostoff, Mark J.

    1994-01-01

    Market segmentation is a marketing strategy that helps identify and classify a camp's product or service and determine the needs of a targeted market for the purpose of allocating marketing resources. Offers strategies for defining a target market and discusses the benefits of direct mail, deriving a mailing list, and suggestions for using a…

  4. Combined Heuristic Attack Strategy on Complex Networks

    Directory of Open Access Journals (Sweden)

    Marek Šimon

    2017-01-01

    Full Text Available Usually, the existence of a complex network is considered an advantage feature and efforts are made to increase its robustness against an attack. However, there exist also harmful and/or malicious networks, from social ones like spreading hoax, corruption, phishing, extremist ideology, and terrorist support up to computer networks spreading computer viruses or DDoS attack software or even biological networks of carriers or transport centers spreading disease among the population. New attack strategy can be therefore used against malicious networks, as well as in a worst-case scenario test for robustness of a useful network. A common measure of robustness of networks is their disintegration level after removal of a fraction of nodes. This robustness can be calculated as a ratio of the number of nodes of the greatest remaining network component against the number of nodes in the original network. Our paper presents a combination of heuristics optimized for an attack on a complex network to achieve its greatest disintegration. Nodes are deleted sequentially based on a heuristic criterion. Efficiency of classical attack approaches is compared to the proposed approach on Barabási-Albert, scale-free with tunable power-law exponent, and Erdős-Rényi models of complex networks and on real-world networks. Our attack strategy results in a faster disintegration, which is counterbalanced by its slightly increased computational demands.

  5. Better Together: Targeted Combination Therapies in Breast Cancer.

    Science.gov (United States)

    Zanardi, Elisa; Bregni, Giacomo; de Braud, Filippo; Di Cosimo, Serena

    2015-12-01

    Recent discoveries both in cell proliferation and survival mechanisms and new antineoplastic agents have led to deep change in the breast cancer treatment paradigm. Nonetheless, all of the progress in knowledge and strategy has not been enough to overcome mechanisms of escape and resistance put in place by the tumor cells. New targeted agents mean new possibilities for combinations, a viable option to try to stop compensatory pathways of tumor growth activated in response to therapeutics. The main challenges in designing a combined therapy come from the variety of subtypes of breast cancer (luminal A, luminal B, HER2-enriched, and basal-like) and from the multitude of pathways each subtype can exploit. Recent research has focused on dual blockade of HER2 (trastuzumab-lapatinib; trastuzumab-pertuzumab) and concomitant blockade of the endocrine driver and other pathways such as the PI3K/AKT/mTOR pathway (everolimus-exemestane), HER2 (trastuzumab/lapatinib-endocrine therapy) and the cell cycle through cyclin-dependent kinase inhibition (letrozole-palbociclib). This combined and personalized approach to treatment needs a profound knowledge of the mechanisms leading to proliferation in each tumor subtype. Deepening our understanding of tumor growth is mandatory to keep improving the efficacy of combination therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics.

    Directory of Open Access Journals (Sweden)

    Ehud Segal

    Full Text Available There is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced "living polymerization" technique, the reversible addition-fragmentation chain transfer (RAFT, we conjugated the aminobisphosphonate alendronate (ALN, and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropylmethacrylamide (HPMA copolymer through a Glycine-Glycine-Proline-Norleucine linker, cleaved by cathepsin K, a cysteine protease overexpressed at resorption sites in bone tissues. In this approach, dual targeting is achieved. Passive accumulation is possible due to the increase in molecular weight following polymer conjugation of the drugs, thus extravasating from the tumor leaky vessels and not from normal healthy vessels. Active targeting to the calcified tissues is achieved by ALN's affinity to bone mineral.The anti-angiogenic and antitumor potency of HPMA copolymer-ALN-TNP-470 conjugate was evaluated both in vitro and in vivo. We show that free and conjugated ALN-TNP-470 have synergistic anti-angiogenic and antitumor activity by inhibiting proliferation, migration and capillary-like tube formation of endothelial and human osteosarcoma cells in vitro. Evaluation of anti-angiogenic, antitumor activity and body distribution of HPMA copolymer-ALN-TNP-470 conjugate was performed on severe combined immunodeficiency (SCID male mice inoculated with mCherry-labeled MG-63-Ras human osteosarcoma and by modified Miles permeability assay. Our targeted bi-specific conjugate reduced VEGF-induced vascular hyperpermeability by 92% and remarkably inhibited osteosarcoma growth in mice by 96%.This is the first report to describe a new concept of a narrowly-dispersed combined polymer therapeutic designed to target both tumor and

  7. Combination microwave ovens: an innovative design strategy.

    Science.gov (United States)

    Tinga, Wayne R; Eke, Ken

    2012-01-01

    Reducing the sensitivity of microwave oven heating and cooking performance to load volume, load placement and load properties has been a long-standing challenge for microwave and microwave-convection oven designers. Conventional design problem and solution methods are reviewed to provide greater insight into the challenge and optimum operation of a microwave oven after which a new strategy is introduced. In this methodology, a special load isolating and energy modulating device called a transducer-exciter is used containing an iris, a launch box, a phase, amplitude and frequency modulator and a coupling plate designed to provide spatially distributed coupling to the oven. This system, when applied to a combined microwave-convection oven, gives astounding performance improvements to all kinds of baked and roasted foods including sensitive items such as cakes and pastries, with the only compromise being a reasonable reduction in the maximum available microwave power. Large and small metal utensils can be used in the oven with minimal or no performance penalty on energy uniformity and cooking results. Cooking times are greatly reduced from those in conventional ovens while maintaining excellent cooking performance.

  8. Target contact and exploration strategies in haptic search

    NARCIS (Netherlands)

    van Polanen, V.; Bergmann Tiest, W.M.; Kappers, A.M.L.

    2014-01-01

    In a haptic search task, one has to detect the presence of a target among distractors using the sense of touch. A salient target can be detected faster than a non-salient target. However, little is known about the exploration strategies that are used, especially in 3D search tasks where items are

  9. Chemotherapeutic targets in parasites: contemporary strategies

    National Research Council Canada - National Science Library

    Mansour, Tag E; Mansour, Joan MacKinnon

    2002-01-01

    ... identify effective antiparasitic agents. An introduction to the early development of parasite chemotherapy is followed by an overview of biophysical techniques and genomic and proteomic analyses. Several chapters are devoted to specific types of chemotherapeutic agents and their targets in malaria, trypanosomes, leishmania, and amitochondrial...

  10. Subcellular targeting strategies for drug design and delivery.

    Science.gov (United States)

    Rajendran, Lawrence; Knölker, Hans-Joachim; Simons, Kai

    2010-01-01

    Many drug targets are localized to particular subcellular compartments, yet current drug design strategies are focused on bioavailability and tissue targeting and rarely address drug delivery to specific intracellular compartments. Insights into how the cell traffics its constituents to these different cellular locations could improve drug design. In this Review, we explore the fundamentals of membrane trafficking and subcellular organization, as well as strategies used by pathogens to appropriate these mechanisms and the implications for drug design and delivery.

  11. Improvement of cancer immunotherapy by combining molecular targeted therapy

    Directory of Open Access Journals (Sweden)

    Yutaka eKawakami

    2013-05-01

    Full Text Available In human cancer cells, a constitutive activation of MAPK, STAT3, β-catenin, and various other signaling pathways triggers multiple immunosuppressive cascades. These cascades result in the production of immunosuppressive molecules (e.g. TGF-β, IL-10, IL-6, VEGF, and CCL2 and induction of immunosuppressive immune cells (e.g. regulatory T cells, tolerogenic dendritic cells, and myeloid derived suppressor cells. Consequently, immunosuppressive conditions are formed in tumor-associated microenvironments, including the tumor and sentinel lymph nodes. Some of these cancer-derived cytokines and chemokines impair immune cells and render them immunosuppressive via the activation of signaling molecules, such as STAT3, in the immune cells. Thus, administration of signal inhibitors may inhibit the multiple immunosuppressive cascades by acting simultaneously on both cancer and immune cells at the key regulatory points in the cancer-immune network. Since common signaling pathways are involved in manifestation of several hallmarks of cancer, including cancer cell proliferation/survival, invasion/metastasis, and immunosuppression, targeting these shared signaling pathways in combination with immunotherapy may be a promising strategy for cancer treatment.

  12. Synergistic target combination prediction from curated signaling networks: Machine learning meets systems biology and pharmacology.

    Science.gov (United States)

    Chua, Huey Eng; Bhowmick, Sourav S; Tucker-Kellogg, Lisa

    2017-10-01

    Given a signaling network, the target combination prediction problem aims to predict efficacious and safe target combinations for combination therapy. State-of-the-art in silico methods use Monte Carlo simulated annealing (mcsa) to modify a candidate solution stochastically, and use the Metropolis criterion to accept or reject the proposed modifications. However, such stochastic modifications ignore the impact of the choice of targets and their activities on the combination's therapeutic effect and off-target effects, which directly affect the solution quality. In this paper, we present mascot, a method that addresses this limitation by leveraging two additional heuristic criteria to minimize off-target effects and achieve synergy for candidate modification. Specifically, off-target effects measure the unintended response of a signaling network to the target combination and is often associated with toxicity. Synergy occurs when a pair of targets exerts effects that are greater than the sum of their individual effects, and is generally a beneficial strategy for maximizing effect while minimizing toxicity. mascot leverages on a machine learning-based target prioritization method which prioritizes potential targets in a given disease-associated network to select more effective targets (better therapeutic effect and/or lower off-target effects); and on Loewe additivity theory from pharmacology which assesses the non-additive effects in a combination drug treatment to select synergistic target activities. Our experimental study on two disease-related signaling networks demonstrates the superiority of mascot in comparison to existing approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. United Nations Decade on Biodiversity: Strategies, targets and action plans

    Directory of Open Access Journals (Sweden)

    Oana Popescu

    2015-06-01

    Full Text Available Nowadays, the loss of biodiversity is one of the most serious environmental threats on a global scale, requiring joint international actions for its conservation and sustainable use. Convention on Biological Diversity represents the basis of all strategies, projects and action plans aimed at protecting biodiversity. Within the Sustainable Development Strategy from 2001, European Union has set the target to stop the loss of biodiversity and restoring the habitats and natural systems by 2010. Beginning with 2010, the European strategies are covering the period 2011-2020 – the United Nations Decade on Biodiversity – for which clear targets were set, such as Aichi targets, or those included in the EU Biodiversity Strategy for 2020. For Romania, protecting biodiversity is a national priority, reflected in strategic political documents, as is The fifth National Report on the Convention on Biological Diversity (2014, which presents a strategic vision on the Romanian biodiversity for the 2014-2020 horizons.

  14. A combined strategy for solving quadratic assignment problem

    Science.gov (United States)

    Ahyaningsih, Faiz

    2017-08-01

    The quadratic assignment problem is a combinatorial problem of deciding the placement of facilities in specified locations in such a way as to minimize a nonconvex objective function expressed in terms of flow between facilities, and distance between location. Due to the non-convexity nature of the problem, therefore to get a `good' starting point is necessary in order to obtain a better optimal solution. In this paper we propose a combined strategy (random point strategy to get initial starting point and then use forward exchange strategy and backward exchange strategy to get `optimal' solution). As a computational experience we've solved the problem of Esc 16b, Esc 16c and Esc 16h from QAPLIB. Finally, we present a comparative study between Combined Strategy and Data -Guided Lexisearch Algorithm. The computational study shows the effectiveness of our proposed combined strategy.

  15. Combined strategies in the management of obesity.

    Science.gov (United States)

    Dixon, John B; Dixon, Maureen E

    2006-01-01

    Obesity is a chronic relapsing disease requiring a similar long term approach to management as that of other chronic conditions. Management needs to be multifaceted aiming to achieve sustainable behavioural changes to physical activity and diet to alter the patient and family microenvironment to one favouring better weight control. A range of therapies including specific diets, calorie counting, meal replacements, very low calorie diets, pharmacotherapy, intragastric balloons and surgery can provide very useful additional benefit. Use of these should be guided by the extent of weight loss required to reduce BMI to an acceptable level with regard to the patient's ethnicity, risk and comorbid conditions. Patients need to set goals that are optimistic, but realistic, and understand the benefits of sustained modest weight loss and the likelihood of weight regain requiring repeat episodes of weight loss. Practitioners need to be informed about the efficacy of current therapies and their combinations to enhance choice of suitable methods for achieving the optimal weight loss required by the patient. They will also need to anticipate trigger points for renewed periods of weight loss in the event of weight regain, as relapse is likely but not a reason for abandoning the battle.

  16. Radiolabeling Strategies for Tumor-Targeting Proteinaceous Drugs

    Directory of Open Access Journals (Sweden)

    Grant Sugiura

    2014-02-01

    Full Text Available Owing to their large size proteinaceous drugs offer higher operative information content compared to the small molecules that correspond to the traditional understanding of druglikeness. As a consequence these drugs allow developing patient-specific therapies that provide the means to go beyond the possibilities of current drug therapy. However, the efficacy of these strategies, in particular “personalized medicine”, depends on precise information about individual target expression rates. Molecular imaging combines non-invasive imaging methods with tools of molecular and cellular biology and thus bridges current knowledge to the clinical use. Moreover, nuclear medicine techniques provide therapeutic applications with tracers that behave like the diagnostic tracer. The advantages of radioiodination, still the most versatile radiolabeling strategy, and other labeled compounds comprising covalently attached radioisotopes are compared to the use of chelator-protein conjugates that are complexed with metallic radioisotopes. With the techniques using radioactive isotopes as a reporting unit or even the therapeutic principle, care has to be taken to avoid cleavage of the radionuclide from the protein it is linked to. The tracers used in molecular imaging require labeling techniques that provide site specific conjugation and metabolic stability. Appropriate choice of the radionuclide allows tailoring the properties of the labeled protein to the application required. Until the event of positron emission tomography the spectrum of nuclides used to visualize cellular and biochemical processes was largely restricted to iodine isotopes and 99m-technetium. Today, several nuclides such as 18-fluorine, 68-gallium and 86-yttrium have fundamentally extended the possibilities of tracer design and in turn caused the need for the development of chemical methods for their conjugation.

  17. A combination strategy for tracking the serial criminal

    Science.gov (United States)

    He, Chuan; Zhang, Yuan-Biao; Wan, Jiadi; Yu, Wenjing

    2010-08-01

    We build a Geographic Profiling Model to generate the criminal's geographical profile, by combining two complementary strategies: the Spatial Distribution Strategy and the Probability Distance Strategy. In the first strategy, we designate the mean of all the known crime sites as the anchor point, and build a Standard Deviational Ellipse Model, considering the effect of landscape. In the second strategy, we take many factors such as the buffer zone and distance decay theory into consideration and calculate the probability of the offender's residence in a certain area by using the Bayesian Theorem and the Rossmo Algorithm. Then, we combine the result of two strategies and get three search areas suit different conditions of the police to track the serial criminal. Apply the model to the English serial killer Peter Sutcliffe's case, the calculation result shows that the model can effectively be used to track serial criminal.

  18. Strategy combination during execution of memory strategies in young and older adults.

    Science.gov (United States)

    Hinault, Thomas; Lemaire, Patrick; Touron, Dayna

    2017-05-01

    The present study investigated whether people can combine two memory strategies to encode pairs of words more efficiently than with a single strategy, and age-related differences in such strategy combination. Young and older adults were asked to encode pairs of words (e.g., satellite-tunnel). For each item, participants were told to use either the interactive-imagery strategy (e.g., mentally visualising the two words and making them interact), the sentence-generation strategy (i.e., generate a sentence linking the two words), or with strategy combination (i.e., generating a sentence while mentally visualising it). Participants obtained better recall performance on items encoded with strategy combination than on items encoded with interactive-imagery or sentence-generation strategies. Moreover, we found age-related decline in such strategy combination. These findings have important implications to further our understanding of execution of memory strategies, and suggest that strategy combination occurs in a variety of cognitive domains.

  19. Combining multiple influence strategies to increase consumer compliance

    NARCIS (Netherlands)

    Kaptein, M.C.; Duplinsky, S.

    2013-01-01

    In this paper, we investigate the effects and implications of utilising multiple social influence strategies simultaneously to endorse a single product or call to action. In three, studies we show that combinations of social influence strategies do not increase compliance - this is contrary to

  20. Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells

    Science.gov (United States)

    Oishi, Naoki; Wang, Xin Wei

    2011-01-01

    The cancer stem cell (CSC) hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment. Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). It is believed that hepatic progenitor cells (HPCs) could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC. Here we provide a brief review of

  1. Predicting targeted drug combinations based on Pareto optimal patterns of coexpression network connectivity.

    Science.gov (United States)

    Penrod, Nadia M; Greene, Casey S; Moore, Jason H

    2014-01-01

    Molecularly targeted drugs promise a safer and more effective treatment modality than conventional chemotherapy for cancer patients. However, tumors are dynamic systems that readily adapt to these agents activating alternative survival pathways as they evolve resistant phenotypes. Combination therapies can overcome resistance but finding the optimal combinations efficiently presents a formidable challenge. Here we introduce a new paradigm for the design of combination therapy treatment strategies that exploits the tumor adaptive process to identify context-dependent essential genes as druggable targets. We have developed a framework to mine high-throughput transcriptomic data, based on differential coexpression and Pareto optimization, to investigate drug-induced tumor adaptation. We use this approach to identify tumor-essential genes as druggable candidates. We apply our method to a set of ER(+) breast tumor samples, collected before (n = 58) and after (n = 60) neoadjuvant treatment with the aromatase inhibitor letrozole, to prioritize genes as targets for combination therapy with letrozole treatment. We validate letrozole-induced tumor adaptation through coexpression and pathway analyses in an independent data set (n = 18). We find pervasive differential coexpression between the untreated and letrozole-treated tumor samples as evidence of letrozole-induced tumor adaptation. Based on patterns of coexpression, we identify ten genes as potential candidates for combination therapy with letrozole including EPCAM, a letrozole-induced essential gene and a target to which drugs have already been developed as cancer therapeutics. Through replication, we validate six letrozole-induced coexpression relationships and confirm the epithelial-to-mesenchymal transition as a process that is upregulated in the residual tumor samples following letrozole treatment. To derive the greatest benefit from molecularly targeted drugs it is critical to design combination

  2. Stakeholder analysis and mapping as targeted communication strategy.

    Science.gov (United States)

    Shirey, Maria R

    2012-09-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author highlights the importance of stakeholder theory and discusses how to apply the theory to conduct a stakeholder analysis. This article also provides an explanation of how to use related stakeholder mapping techniques with targeted communication strategies.

  3. Combination of using prodrug-modified cationic liposome nanocomplexes and a potentiating strategy via targeted co-delivery of gemcitabine and docetaxel for CD44-overexpressed triple negative breast cancer therapy.

    Science.gov (United States)

    Fan, Yang; Wang, Qingjie; Lin, Guimei; Shi, Yanbin; Gu, Zili; Ding, Tingting

    2017-10-15

    In this study, novel prodrug-modified cationic liposome nanocomplexes (Combo NCs) were reported for gemcitabine (GEM) and docetaxel (DTX) co-delivery. This nanoplatform exhibited multiple favorable characteristics, such as a 'green' fabrication with a one-step chemical reaction, appropriate size (∼200nm) and distribution (PDIinvolve in modulating GEM associated enzymes thus enhancing the efficacy of GEM. Consequently, this nanoplatform provided a novel solution for achieving targeted co-delivery and potentiating effect in cancer therapy. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. A proposal for combining mapping, localization and target recognition

    Science.gov (United States)

    Grönwall, Christina; Hendeby, Gustaf; Sinivaara, Kristian

    2015-10-01

    Simultaneous localization and mapping (SLAM) is a well-known positioning approach in GPS-denied environments such as urban canyons and inside buildings. Autonomous/aided target detection and recognition (ATR) is commonly used in military application to detect threats and targets in outdoor environments. This papers present approaches to combine SLAM with ATR in ways that compensate for the drawbacks in each method. The methods use physical objects that are recognizable by ATR as unambiguous features in SLAM, while SLAM provides the ATR with better position estimates. Landmarks in the form of 3D point features based on normal aligned radial features (NARF) are used in conjunction with identified objects and 3D object models that replace landmarks when possible. This leads to a more compact map representation with fewer landmarks, which partly compensates for the introduced cost of the ATR. We analyze three approaches to combine SLAM and 3D-data; point-point matching ignoring NARF features, point-point matching using the set of points that are selected by NARF feature analysis, and matching of NARF features using nearest neighbor analysis. The first two approaches are is similar to the common iterative closest point (ICP). We propose an algorithm that combines EKF-SLAM and ATR based on rectangle estimation. The intended application is to improve the positioning of a first responder moving through an indoor environment, where the map offers localization and simultaneously helps locate people, furniture and potentially dangerous objects such as gas canisters.

  5. Molecular targeting agents in the context of primary chemoradiation strategies.

    Science.gov (United States)

    Laban, Simon; Wang, Chia Jung; Münscher, Adrian; Tribius, Silke; Schafhausen, Philippe; Knecht, Rainald

    2013-05-01

    Demands for organ preservation and increasing knowledge in molecular tumor biology have lead to the development of molecular targeting agents. These substances have also been incorporated into concomitant and sequential chemoradiation protocols. This study was conducted using a systematic literature review. In head and neck squamous cell carcinoma (HNSCC), the inhibition of epidermal growth factor receptor (EGFR) signaling as a central step in carcinogenesis, progression, and metastasis is the predominant approach. Although EGFR targeting substances are commonly used, the specific influence of molecular targeting therapies on patient outcome remains unclear. In this review, results from recent clinical trials in the area of primary chemoradiation in the combination with EGFR targeting agents are discussed. Encouraging results from recent trials need to be confirmed in larger patient cohorts and cost-effectiveness analyses have to be undertaken. Phase III studies need to confirm these results before, time and again, new phase II studies are initiated. Copyright © 2012 Wiley Periodicals, Inc.

  6. Cancer nanomedicine: from targeted delivery to combination therapy.

    Science.gov (United States)

    Xu, Xiaoyang; Ho, William; Zhang, Xueqing; Bertrand, Nicolas; Farokhzad, Omid

    2015-04-01

    The advent of nanomedicine marks an unparalleled opportunity to advance the treatment of various diseases, including cancer. The unique properties of nanoparticles (NPs), such as large surface-to-volume ratio, small size, the ability to encapsulate various drugs, and tunable surface chemistry, give them many advantages over their bulk counterparts. This includes multivalent surface modification with targeting ligands, efficient navigation of the complex in vivo environment, increased intracellular trafficking, and sustained release of drug payload. These advantages make NPs a mode of treatment potentially superior to conventional cancer therapies. This review highlights the most recent developments in cancer treatment using NPs as drug delivery vehicles, including promising opportunities in targeted and combination therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Iron metabolism: a promising target for antibacterial strategies.

    Science.gov (United States)

    Ballouche, Mathieu; Cornelis, Pierre; Baysse, Christine

    2009-11-01

    In the fight against pathogenic and opportunistic bacteria, development and spreading of resistance to antibiotics is an increasing public health problem. The available antibacterial treatments are becoming less and less effective, making urgent the discovery of new active molecules. One strategy that has been explored to bypass the bacterial adaptation to drugs is to target the iron metabolism of bacteria, since iron is critical for all bacteria to grow. To date, three major ways have been assessed to exploit weaknesses in the bacterial iron metabolism: the "Trojan Horse strategy" which takes advantages of natural iron-uptake systems to deliver antimicrobial compounds inside the cells; the use of iron-antagonists and iron-chelators in order to reduce iron availability and the inhibition of enzymatic steps of iron metabolism via chemical compounds. This review discusses these antibacterial strategies interfering with several levels of the bacterial iron metabolism, with a special emphasis on recently published and/or patented discoveries.

  8. Aging, rule-violation checking strategies, and strategy combination: An EEG study in arithmetic.

    Science.gov (United States)

    Hinault, Thomas; Lemaire, Patrick

    2017-10-01

    In arithmetic, rule-violation checking strategies are used while participants solve problems that violate arithmetic rules, like the five rule (i.e., products of problems including five as an operand end with either five or zero; e.g., 5×14=70) or the parity rule (i.e., when at least one of the two operands is even, the product is also even; otherwise the product is odd; e.g., 4×13=52). When problems violate both rules, participants use strategy combination and have better performance on both-rule than on one-rule violation problems (i.e., five or parity rule). Aging studies found that older adults efficiently use one-rule violation checking strategies but have difficulties to combine two strategies. To better understand these aging effects, we used EEG and found important age-related changes while participants used rule-violation checking strategies. We compared participants' performance while they verified arithmetic problems that differ in number and type of violated rule. More specifically, both-rule violation problems elicited larger negativity than one-rule violation problems between 600 and 800ms. Five-rule violation problems differed from parity-rule violation problems between 1100 and 1200ms. Moreover, rule-violation checking strategies and strategy combination involved delta, theta, and lower alpha frequencies. Age-related changes in ERPs and frequency were associated with less efficient strategy combination. Moreover, efficient use of one-rule violation checking strategies in older adults was associated with changes in ERPs and frequency. These findings contribute to further our understanding of age-related changes and invariance in arithmetic strategies, and in combination of arithmetic strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Immunological therapy in urological malignancy: novel combination strategies.

    Science.gov (United States)

    Finley, David S; Pouliot, Frederic; Chin, Arnold I; Shuch, Brian; Pantuck, Alan J; Belldegrun, Arie S; Dekernion, Jean B

    2011-02-01

    At present, immunotherapy in urological malignancy is experiencing a renaissance, particularly with the emergence of a host of innovative cancer vaccines. Herein, we will review promising immunotherapeutic approaches and evaluate the data supporting their inclusion in novel combination strategies. © 2010 The Japanese Urological Association.

  10. Comparing Cost-Effectiveness of HIV Testing Strategies: Targeted and Routine Testing in Washington, DC.

    Directory of Open Access Journals (Sweden)

    Amanda D Castel

    Full Text Available Routine HIV testing is an essential approach to identifying undiagnosed infections, linking people to care and treatment, and preventing new infections. In Washington, DC, where HIV prevalence is 2.4%, a combination of routine and targeted testing approaches has been implemented since 2006.We sought to evaluate the cost effectiveness of the District of Columbia (DC Department of Health's routine and targeted HIV testing implementation strategies. We collected HIV testing data from 3 types of DC Department of Health-funded testing sites (clinics, hospitals, and community-based organizations; collected testing and labor costs; and calculated effectiveness measures including cost per new diagnosis and cost per averted transmission.Compared to routine testing, targeted testing resulted in higher positivity rates (1.33% vs. 0.44%. Routine testing averted 34.30 transmissions per year compared to targeted testing at 17.78. The cost per new diagnosis was lower for targeted testing ($2,467 vs. $7,753 per new diagnosis as was the cost per transmission averted ($33,160 vs. $104,205. When stratified by testing site, both testing approaches were most cost effective in averting new transmissions when conducted by community based organizations ($25,037 routine; $33,123 targeted compared to hospitals or clinics.While routine testing identified more newly diagnosed infections and averted more infections than targeted testing, targeted testing is more cost effective per diagnosis and per transmission averted overall. Given the high HIV prevalence in DC, the DC Department of Health's implementation strategy should continue to encourage routine testing implementation with emphasis on a combined testing strategy among community-based organizations.

  11. Comparison of feature combination strategies for saliency-based visual attention systems

    Science.gov (United States)

    Itti, Laurent; Koch, Christof

    1999-05-01

    Bottom-up or saliency-based visual attention allows primates to detect non-specific conspicuous targets in cluttered scenes. A classical metaphor, derived from electrophysiological and psychophysical studies, describes attention as a rapidly shiftable 'spotlight'. The model described here reproduces the attentional scanpaths of this spotlight: Simple multi-scale 'feature maps' detect local spatial discontinuities in intensity, color, orientation or optical flow, and are combined into a unique 'master' or 'saliency' map. the saliency map is sequentially scanned, in order of decreasing saliency, by the focus of attention. We study the problem of combining feature maps, from different visual modalities and with unrelated dynamic ranges, into a unique saliency map. Four combination strategies are compared using three databases of natural color images: (1) Simple normalized summation, (2) linear combination with learned weights, (3) global non-linear normalization followed by summation, and (4) local non-linear competition between salient locations. Performance was measured as the number of false detections before the most salient target was found. Strategy (1) always yielded poorest performance and (2) best performance, with a 3- to 8-fold improvement in time to find a salient target. However, (2) yielded specialized systems with poor generations. Interestingly, strategy (4) and its simplified, computationally efficient approximation (3) yielded significantly better performance than (1), with up to 4-fold improvement, while preserving generality.

  12. Novel strategies for ultrahigh specific activity targeted nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong

    2012-12-13

    We have developed novel strategies optimized for preparing high specific activity radiolabeled nanoparticles, targeting nuclear imaging of low abundance biomarkers. Several compounds have been labeled with F-18 and Cu-64 for radiolabeling of SCK-nanoparticles via Copper(I) catalyzed or copper-free alkyne-azide cyclolization. Novel strategies have been developed to achieve ultrahigh specific activity with administrable amount of dose for human study using copper-free chemistry. Ligands for carbonic anhydrase 12 (CA12), a low abundance extracellular biomarker for the responsiveness of breast cancer to endocrine therapie, have been labeled with F-18 and Cu-64, and one of them has been evaluated in animal models. The results of this project will lead to major improvements in the use of nanoparticles in nuclear imaging and will significantly advance their potential for detecting low abundance biomarkers of medical importance.

  13. Feature Extraction and Selection Strategies for Automated Target Recognition

    Science.gov (United States)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-01-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  14. Quantitative proteomics in cardiovascular research: global and targeted strategies

    Science.gov (United States)

    Shen, Xiaomeng; Young, Rebeccah; Canty, John M.; Qu, Jun

    2014-01-01

    Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases (CVD) and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation. PMID:24920501

  15. Developing A Combined Strategy For Solving Quadratic Assignment Problem

    Directory of Open Access Journals (Sweden)

    Faiz Ahyaningsih

    2015-08-01

    Full Text Available Abstract The quadratic assigment problem QAP is one of the most interesting and most challenging combinatorial optimization problems in existence. In this paper we propose a random point strategy to get a starting point and then we use a combination methods to get optimal solution. As a computational experience weve solved QAP 30 x 30 adopted from Nugent and backboard wiring problem 42 amp61620 42 adopted from Skorin-Kapov.

  16. Role of targeted therapy in combination with surgery in renal cell carcinoma.

    Science.gov (United States)

    Bex, Axel; Powles, Thomas; Karam, Jose A

    2016-01-01

    Surgical complete resection is the only curative treatment of renal cell carcinoma including patients with locally advanced disease and those with limited metastatic disease. Patients at high risk of recurrence after complete resection might theoretically benefit from adjuvant and neoadjuvant systemic treatment strategies to prolong disease-free survival and ultimately overall survival. Another rationale for using targeted therapy includes downsizing/downstaging of surgically complex locally advanced renal cell carcinoma to facilitate complete resection or primary tumors to allow for nephron-sparing strategies. Unfortunately, a considerable percentage of patients are diagnosed with metastatic disease at first presentation. Although large population-based studies consistently show a survival benefit after cytoreductive nephrectomy in the targeted therapy era, confounding factors preclude definite conclusions for this heterogeneous patient group until ongoing phase III trials are published. Presurgical targeted therapy has been proposed to identify patients with clinical benefit and potentially long-term survival after cytoreductive nephrectomy. Recently, the use of targeted therapy before or after local treatment of metastases has been reported in small retrospective series. The present review revisits the current evidence base of targeted therapy in combination with surgery for the various disease stages in renal cell carcinoma. © 2015 The Japanese Urological Association.

  17. Targeted treatment strategies for sustainable worm control in small ruminants.

    Science.gov (United States)

    Besier, R B

    2008-02-01

    Sustainable worm control strategies are based largely on ensuring that a source of worms not exposed to anthelmintics ("in refugia") remains after treatments are given, so that resistant worms do not become a dominant part of the total population. In environments with seasonally poor survival of worm larvae on pasture, this may require withholding treatments from a proportion of animals when the whole group would normally be treated. The "targeted treatment" approach involves using anthelmintics on an individual animal basis according to indications of parasitic effects, regardless of parasite burdens. For Haemonchus contortus, the FAMACHA system, based on the easily-visualised index of anaemia, has proved effective provided that labour is available for frequent inspections. For non-haematophagous nematodes, recent research indicates the potential of production parameters such as body weight change (sheep) and milk yield (dairy goats), providing that parasitic effects can be differentiated from nutritional and other factors. Continuing investigations are necessary to indicate the most appropriate indices for different situations, so that the refugia effect is maximized for the least risk of disease and production loss. Of prime importance, targeted treatment strategies must be practical to implement if they are to achieve widespread adoption.

  18. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    Science.gov (United States)

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  19. Targeting Cancer using Polymeric Nanoparticle mediated Combination Chemotherapy

    Science.gov (United States)

    Gad, Aniket; Kydd, Janel; Piel, Brandon; Rai, Prakash

    2016-01-01

    Cancer forms exhibiting poor prognosis have been extensively researched for therapeutic solutions. One of the conventional modes of treatment, chemotherapy shows inadequacy in its methodology due to imminent side-effects and acquired drug-resistance by cancer cells. However, advancements in nanotechnology have opened new frontiers to significantly alleviate collateral damage caused by current treatments via innovative delivery techniques, eliminating pitfalls encountered in conventional treatments. Properties like reduced drug-clearance and increased dose efficacy by the enhanced permeability and retention effect deem nanoparticles suitable for this application. Optimization of size, surface charge and surface modifications have provided nanoparticles with stealth properties capable of evading immune responses, thus deeming them as excellent carriers of chemotherapeutic agents. Biocompatible and biodegradable forms of polymers enhance the bioavailability of chemotherapeutic agents, and permit a sustained and time-dependent release of drugs which is a characteristic of their composition, thereby providing a controlled therapeutic approach. Studies conducted in vitro and animal models have also demonstrated a synergism in cytotoxicity given the mechanism of action of anticancer drugs when administered in combination providing promising results. Combination therapy has also shown implications in overcoming multiple-drug resistance, which can however be subdued by the adaptable nature of tumor microenvironment. Surface modifications with targeting moieties can therefore feasibly increase nanoparticle uptake by specific receptor-ligand interactions, increasing dose efficacy which can seemingly overcome drug-resistance. This article reviews recent trends and investigations in employing polymeric nanoparticles for effectively delivering combination chemotherapy, and modifications in delivery parameters enhancing dose efficacy, thus validating the potential in this

  20. Evaluation of Targeted Influenza Vaccination Strategies via Population Modeling

    Science.gov (United States)

    Glasser, John; Taneri, Denis; Feng, Zhilan; Chuang, Jen-Hsiang; Tüll, Peet; Thompson, William; Mason McCauley, Mary; Alexander, James

    2010-01-01

    Background Because they can generate comparable predictions, mathematical models are ideal tools for evaluating alternative drug or vaccine allocation strategies. To remain credible, however, results must be consistent. Authors of a recent assessment of possible influenza vaccination strategies conclude that older children, adolescents, and young adults are the optimal targets, no matter the objective, and argue for vaccinating them. Authors of two earlier studies concluded, respectively, that optimal targets depend on objectives and cautioned against changing policy. Which should we believe? Methods and Findings In matrices whose elements are contacts between persons by age, the main diagonal always predominates, reflecting contacts between contemporaries. Indirect effects (e.g., impacts of vaccinating one group on morbidity or mortality in others) result from off-diagonal elements. Mixing matrices based on periods in proximity with others have greater sub- and super-diagonals, reflecting contacts between parents and children, and other off-diagonal elements (reflecting, e.g., age-independent contacts among co-workers), than those based on face-to-face conversations. To assess the impact of targeted vaccination, we used a time-usage study's mixing matrix and allowed vaccine efficacy to vary with age. And we derived mortality rates either by dividing observed deaths attributed to pneumonia and influenza by average annual cases from a demographically-realistic SEIRS model or by multiplying those rates by ratios of (versus adding to them differences between) pandemic and pre-pandemic mortalities. Conclusions In our simulations, vaccinating older children, adolescents, and young adults averts the most cases, but vaccinating either younger children and older adults or young adults averts the most deaths, depending on the age distribution of mortality. These results are consistent with those of the earlier studies. PMID:20862297

  1. Evaluation of targeted influenza vaccination strategies via population modeling.

    Directory of Open Access Journals (Sweden)

    John Glasser

    Full Text Available BACKGROUND: Because they can generate comparable predictions, mathematical models are ideal tools for evaluating alternative drug or vaccine allocation strategies. To remain credible, however, results must be consistent. Authors of a recent assessment of possible influenza vaccination strategies conclude that older children, adolescents, and young adults are the optimal targets, no matter the objective, and argue for vaccinating them. Authors of two earlier studies concluded, respectively, that optimal targets depend on objectives and cautioned against changing policy. Which should we believe? METHODS AND FINDINGS: In matrices whose elements are contacts between persons by age, the main diagonal always predominates, reflecting contacts between contemporaries. Indirect effects (e.g., impacts of vaccinating one group on morbidity or mortality in others result from off-diagonal elements. Mixing matrices based on periods in proximity with others have greater sub- and super-diagonals, reflecting contacts between parents and children, and other off-diagonal elements (reflecting, e.g., age-independent contacts among co-workers, than those based on face-to-face conversations. To assess the impact of targeted vaccination, we used a time-usage study's mixing matrix and allowed vaccine efficacy to vary with age. And we derived mortality rates either by dividing observed deaths attributed to pneumonia and influenza by average annual cases from a demographically-realistic SEIRS model or by multiplying those rates by ratios of (versus adding to them differences between pandemic and pre-pandemic mortalities. CONCLUSIONS: In our simulations, vaccinating older children, adolescents, and young adults averts the most cases, but vaccinating either younger children and older adults or young adults averts the most deaths, depending on the age distribution of mortality. These results are consistent with those of the earlier studies.

  2. Combination Therapy for Multi-Target Manipulation of Secondary Brain Injury Mechanisms.

    Science.gov (United States)

    Somayaji, Mahadevabharath R; Mahadevabharath, R; Przekwas; Andrzej, J; Gupta; Raj, K

    2017-08-28

    Traumatic brain injury (TBI) is a major healthcare problem that affects millions of people worldwide. Despite advances in understanding and developing preventative and treatment strategies using preclinical animal models, clinical trials to date have failed, and a "magic bullet" for effectively treating TBI-induced damage does not exist. Thus, novel pharmacological strategies to effectively manipulate the complex and heterogeneous pathophysiology of secondary injury mechanisms are needed. Given that goal, this paper discusses the relevance and advantages of combination therapies (COMTs) for "multi-target manipulation" of the injury cascade by administering multiple drugs to achieve an optimal therapeutic window of opportunity (e.g., temporally broad window) and compares these regimens to monotherapies that manipulate a single target with a single drug at a time. Furthermore, we posit that integrated mechanistic multiscale models that combine primary biomechanics, secondary injury mechano-/neurobiology, pharmacology and mathematical programming techniques could account for vast differences in the biological space and time scales and help to accelerate drug development, optimize combination pharmacotherapy protocols and improve treatment outcomes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Therapeutic strategies for targeting the ovarian tumor stroma.

    Science.gov (United States)

    Ko, Song Yi; Naora, Honami

    2014-06-16

    Epithelial ovarian cancer is the most lethal type of gynecologic malignancy. Sixty percent of women who are diagnosed with ovarian cancer present with advanced-stage disease that involves the peritoneal cavity and these patients have a 5-year survival rate of less than 30%. For more than two decades, tumor-debulking surgery followed by platinum-taxane combination chemotherapy has remained the conventional first-line treatment of ovarian cancer. Although the initial response rate is 70%-80%, most patients with advanced-stage ovarian cancer eventually relapse and succumb to recurrent chemoresistant disease. A number of molecular aberrations that drive tumor progression have been identified in ovarian cancer cells and intensive efforts have focused on developing therapeutic agents that target these aberrations. However, increasing evidence indicates that reciprocal interactions between tumor cells and various types of stromal cells also play important roles in driving ovarian tumor progression and that these stromal cells represent attractive therapeutic targets. Unlike tumor cells, stromal cells within the tumor microenvironment are in general genetically stable and are therefore less likely to become resistant to therapy. This concise review discusses the biological significance of the cross-talk between ovarian cancer cells and three major types of stromal cells (endothelial cells, fibroblasts, macrophages) and the development of new-generation therapies that target the ovarian tumor microenvironment.

  4. Macrophage Targeted Theranostics as Personalized Nanomedicine Strategies for Inflammatory Diseases

    Science.gov (United States)

    Patel, Sravan Kumar; Janjic, Jelena M.

    2015-01-01

    Inflammatory disease management poses challenges due to the complexity of inflammation and inherent patient variability, thereby necessitating patient-specific therapeutic interventions. Theranostics, which integrate therapeutic and imaging functionalities, can be used for simultaneous imaging and treatment of inflammatory diseases. Theranostics could facilitate assessment of safety, toxicity and real-time therapeutic efficacy leading to personalized treatment strategies. Macrophages are an important cellular component of inflammatory diseases, participating in varied roles of disease exacerbation and resolution. The inherent phagocytic nature, abundance and disease homing properties of macrophages can be targeted for imaging and therapeutic purposes. This review discusses the utility of theranostics in macrophage ablation, phenotype modulation and inhibition of their inflammatory activity leading to resolution of inflammation in several diseases. PMID:25553105

  5. Understanding the fate of chlorogenic acids in coffee roasting using mass spectrometry based targeted and non-targeted analytical strategies.

    Science.gov (United States)

    Jaiswal, Rakesh; Matei, Marius F; Golon, Agnieszka; Witt, Matthias; Kuhnert, Nikolai

    2012-09-01

    Coffee is one of mankind's most popular beverages obtained from green coffee beans by roasting. Much effort has been expended towards the chemical characterisation of the components of the roasted coffee bean, frequently termed melanoidines, which are dominated byproducts formed from its most relevant secondary metabolites - chlorogenic acids. However, impeded by a lack of suitable authentic reference standards and analytical techniques sufficiently powerful for providing insight into an extraordinarily complex enigmatic material, unsurprisingly little structural and mechanistic information about the products of coffee roasting is available. Here we report on the characterisation of low molecular weight melanoidine fractions of roasted coffee using a conceptually novel combination of targeted and non-targeted mass spectrometrical techniques. We provide an unprecedented account of the chemical composition of roasted coffee beans. Using a targeted analytical approach we show for the first time, by comparison to authentic reference standards obtained by chemical synthesis, that chlorogenic acids follow four distinct reaction pathways including epimerization, acyl migration, lactonisation and dehydration. The analytical strategy employed in a non-targeted approach uses high resolution mass spectrometry to identify the most abundant molecular formulas present in roasted coffee samples and model roasts followed by van Krevelen and homologous series analysis. We identified the molecular formulas formed from reactions of chlorogenic acids, carbohydrates and proteins, both between classes of compounds and within same classes of compounds. Furthermore, we identified two new classes of compounds formed from chlorogenic acids during roasting, chlorogenic acid acetates and O-phenolic quinoyl and shikimoyl esters of chlorogenic acids.

  6. Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility.

    Science.gov (United States)

    Tian, Sheng; Sun, Huiyong; Pan, Peichen; Li, Dan; Zhen, Xuechu; Li, Youyong; Hou, Tingjun

    2014-10-27

    In this study, to accommodate receptor flexibility, based on multiple receptor conformations, a novel ensemble docking protocol was developed by using the naïve Bayesian classification technique, and it was evaluated in terms of the prediction accuracy of docking-based virtual screening (VS) of three important targets in the kinase family: ALK, CDK2, and VEGFR2. First, for each target, the representative crystal structures were selected by structural clustering, and the capability of molecular docking based on each representative structure to discriminate inhibitors from non-inhibitors was examined. Then, for each target, 50 ns molecular dynamics (MD) simulations were carried out to generate an ensemble of the conformations, and multiple representative structures/snapshots were extracted from each MD trajectory by structural clustering. On average, the representative crystal structures outperform the representative structures extracted from MD simulations in terms of the capabilities to separate inhibitors from non-inhibitors. Finally, by using the naïve Bayesian classification technique, an integrated VS strategy was developed to combine the prediction results of molecular docking based on different representative conformations chosen from crystal structures and MD trajectories. It was encouraging to observe that the integrated VS strategy yields better performance than the docking-based VS based on any single rigid conformation. This novel protocol may provide an improvement over existing strategies to search for more diverse and promising active compounds for a target of interest.

  7. Molecularly targeted drug combinations demonstrate selective effectiveness for myeloid- and lymphoid-derived hematologic malignancies

    Science.gov (United States)

    Eide, Christopher A.; Kaempf, Andy; Khanna, Vishesh; Savage, Samantha L.; Rofelty, Angela; English, Isabel; Ho, Hibery; Pandya, Ravi; Bolosky, William J.; Poon, Hoifung; Deininger, Michael W.; Collins, Robert; Swords, Ronan T.; Watts, Justin; Pollyea, Daniel A.; Medeiros, Bruno C.; Traer, Elie; Tognon, Cristina E.; Mori, Motomi; Druker, Brian J.; Tyner, Jeffrey W.

    2017-01-01

    Translating the genetic and epigenetic heterogeneity underlying human cancers into therapeutic strategies is an ongoing challenge. Large-scale sequencing efforts have uncovered a spectrum of mutations in many hematologic malignancies, including acute myeloid leukemia (AML), suggesting that combinations of agents will be required to treat these diseases effectively. Combinatorial approaches will also be critical for combating the emergence of genetically heterogeneous subclones, rescue signals in the microenvironment, and tumor-intrinsic feedback pathways that all contribute to disease relapse. To identify novel and effective drug combinations, we performed ex vivo sensitivity profiling of 122 primary patient samples from a variety of hematologic malignancies against a panel of 48 drug combinations. The combinations were designed as drug pairs that target nonoverlapping biological pathways and comprise drugs from different classes, preferably with Food and Drug Administration approval. A combination ratio (CR) was derived for each drug pair, and CRs were evaluated with respect to diagnostic categories as well as against genetic, cytogenetic, and cellular phenotypes of specimens from the two largest disease categories: AML and chronic lymphocytic leukemia (CLL). Nearly all tested combinations involving a BCL2 inhibitor showed additional benefit in patients with myeloid malignancies, whereas select combinations involving PI3K, CSF1R, or bromodomain inhibitors showed preferential benefit in lymphoid malignancies. Expanded analyses of patients with AML and CLL revealed specific patterns of ex vivo drug combination efficacy that were associated with select genetic, cytogenetic, and phenotypic disease subsets, warranting further evaluation. These findings highlight the heuristic value of an integrated functional genomic approach to the identification of novel treatment strategies for hematologic malignancies. PMID:28784769

  8. [Targeting B cells in multiple sclerosis. Current concepts and strategies].

    Science.gov (United States)

    Menge, T; Büdingen, H-C; Dalakas, M C; Kieseier, B C; Hartung, H-P

    2009-02-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating autoimmune disease of the CNS and a leading cause of lasting neurological disability in younger adults. In the last decade our knowledge of its immunopathogenesis expanded vastly. It is now widely appreciated that B cells are key players in the autoreactive immune network. They exert far more functions than merely being the precursors of antibody-producing plasma cells. B cells act as efficient antigen-presenting cells and may stimulate an autoreactive immune response through secretion of proinflammatory cytokines. It is thus only logical to test therapeutic strategies targeting B cells in MS. Rituximab is a depleting chimeric monoclonal antibody directed against CD20 and expressed on developing, naïve, and memory B cells but not stem or plasma cells. Several smaller studies have been conducted that led to a placebo controlled, double blind phase II study on efficacy which was reported recently. The results are very promising, meeting not only the primary endpoint of reduction of the surrogate MRI marker of contrast-enhancing lesions but also showing a reduction in clinical relapse rate of patients treated with rituximab. This review discusses the role of autoreactive B cells in the context of MS, analyzes the B-cell-depleting treatment studies reported, and provides information on planned and future B-cell-directed therapeutic strategies in MS.

  9. How can we integrate IP strategy with corporate strategy? Combining IP strategy with management strategy making process

    OpenAIRE

    田中, 義敏; Tanaka, Yoshitoshi

    2013-01-01

    Intellectual property systems have been introduced and used in manycountries as a global standard. However, its practical utilisation is still not yetmature because of the lack of IP strategy. Each enterprise has to define aunique IP strategy and be differentiated by other enterprises because the outsideenvironment and internal resource are different. IP people have to havebetter understandings on strategy making process, which is fundamental to themanagement field. In addition, IP strategy s...

  10. Cooperative Targets of Combined mTOR/HDAC Inhibition Promote MYC Degradation.

    Science.gov (United States)

    Simmons, John K; Michalowski, Aleksandra M; Gamache, Benjamin J; DuBois, Wendy; Patel, Jyoti; Zhang, Ke; Gary, Joy; Zhang, Shuling; Gaikwad, Snehal; Connors, Daniel; Watson, Nicholas; Leon, Elena; Chen, Jin-Qiu; Kuehl, W Michael; Lee, Maxwell P; Zingone, Adriana; Landgren, Ola; Ordentlich, Peter; Huang, Jing; Mock, Beverly A

    2017-09-01

    Cancer treatments often require combinations of molecularly targeted agents to be effective. mTORi (rapamycin) and HDACi (MS-275/entinostat) inhibitors have been shown to be effective in limiting tumor growth, and here we define part of the cooperative action of this drug combination. More than 60 human cancer cell lines responded synergistically (CI<1) when treated with this drug combination compared with single agents. In addition, a breast cancer patient-derived xenograft, and a BCL-XL plasmacytoma mouse model both showed enhanced responses to the combination compared with single agents. Mice bearing plasma cell tumors lived an average of 70 days longer on combination treatment compared with single agents. A set of 37 genes cooperatively affected (34 downregulated; 3 upregulated) by the combination responded pharmacodynamically in human myeloma cell lines, xenografts, and a P493 model, and were both enriched in tumors, and correlated with prognostic markers in myeloma patient datasets. Genes downregulated by the combination were overexpressed in several untreated cancers (breast, lung, colon, sarcoma, head and neck, myeloma) compared with normal tissues. The MYC/E2F axis, identified by upstream regulator analyses and validated by immunoblots, was significantly inhibited by the drug combination in several myeloma cell lines. Furthermore, 88% of the 34 genes downregulated have MYC-binding sites in their promoters, and the drug combination cooperatively reduced MYC half-life by 55% and increased degradation. Cells with MYC mutations were refractory to the combination. Thus, integrative approaches to understand drug synergy identified a clinically actionable strategy to inhibit MYC/E2F activity and tumor cell growth in vivoMol Cancer Ther; 16(9); 2008-21. ©2017 AACR. ©2017 American Association for Cancer Research.

  11. Combining immunotherapy with oncogene-targeted therapy: a new road for melanoma treatment

    Directory of Open Access Journals (Sweden)

    Mariana eAris

    2015-02-01

    Full Text Available Cutaneous melanoma arises from the malignant transformation of skin melanocytes; its incidence and mortality have been increasing steadily over the last fifty-years, now representing 3% of total tumors. Once melanoma metastasizes, prognosis is somber and therapeutic options are limited. However, the discovery of prevalent BRAF mutations in at least 50% of melanoma tumors led to development of BRAF inhibitors, and other drugs targeting the MAPK pathway including MEK inhibitors, are changing this reality. These recently approved treatments for metastatic melanoma have made a significant impact on patient survival; though the results are shadowed by the appearance of drug-resistance. Combination therapies provide a rational strategy to potentiate efficacy and potentially overcome resistance. Undoubtedly, the last decade has also born an renaissance of immunotherapy, and encouraging advances in metastatic melanoma treatment are illuminating the road. Immune checkpoint blockades, such as CTLA-4 antagonist-antibodies, and multiple cancer vaccines are now invaluable arms of anti-tumor therapy. Recent work has brought to light the delicate relationship between tumor biology and the immune system. Host immunity contributes to the antitumor activity of oncogene-targeted inhibitors within a complex network of cytokines and chemokines. Therefore, combining immunotherapy with oncogene-targeted drugs may be the key to melanoma control. Here we review ongoing clinical studies of combination therapies using both oncogene inhibitors and immunotherapeutic strategies in melanoma patients. We will revisit the preclinical evidence that tested sequential and concurrent schemes in suitable animal models and formed the basis for the current trials. Finally, we will discuss potential future directions of the field.

  12. A novel strategy to achieve effective drug delivery: exploit cells as carrier combined with nanoparticles.

    Science.gov (United States)

    Pang, Liang; Zhang, Chun; Qin, Jing; Han, Limei; Li, Ruixiang; Hong, Chao; He, Huining; Wang, Jianxin

    2017-11-01

    Cell-mediated drug delivery systems employ specific cells as drug vehicles to deliver drugs to targeted sites. Therapeutics or imaging agents are loaded into these cells and then released in diseased sites. These specific cells mainly include red blood cells, leukocytes, stem cells and so on. The cell acts as a Trojan horse to transfer the drug from circulating blood to the diseased tissue. In such a system, these cells keep their original properties, which allow them to mimic the migration behavior of specific cells to carry drug to the targeted site after in vivo administration. This strategy elegantly combines the advantages of both carriers, i.e. the adjustability of nanoparticles (NPs) and the natural functions of active cells, which therefore provides a new perspective to challenge current obstacles in drug delivery. This review will describe a fundamental understanding of these cell-based drug delivery systems, and discuss the great potential of combinational application of cell carrier and NPs.

  13. Nanomedicine strategies for sustained, controlled, and targeted treatment of cancer stem cells of the digestive system.

    Science.gov (United States)

    Xie, Fang-Yuan; Xu, Wei-Heng; Yin, Chuan; Zhang, Guo-Qing; Zhong, Yan-Qiang; Gao, Jie

    2016-10-15

    Cancer stem cells (CSCs) constitute a small proportion of the cancer cells that have self-renewal capacity and tumor-initiating ability. They have been identified in a variety of tumors, including tumors of the digestive system. CSCs exhibit some unique characteristics, which are responsible for cancer metastasis and recurrence. Consequently, the development of effective therapeutic strategies against CSCs plays a key role in increasing the efficacy of cancer therapy. Several potential approaches to target CSCs of the digestive system have been explored, including targeting CSC surface markers and signaling pathways, inducing the differentiation of CSCs, altering the tumor microenvironment or niche, and inhibiting ATP-driven efflux transporters. However, conventional therapies may not successfully eradicate CSCs owing to various problems, including poor solubility, stability, rapid clearance, poor cellular uptake, and unacceptable cytotoxicity. Nanomedicine strategies, which include drug, gene, targeted, and combinational delivery, could solve these problems and significantly improve the therapeutic index. This review briefly summarizes the ongoing development of strategies and nanomedicine-based therapies against CSCs of the digestive system.

  14. Tropism-Modification Strategies for Targeted Gene Delivery Using Adenoviral Vectors

    Directory of Open Access Journals (Sweden)

    Andrew H. Baker

    2010-10-01

    Full Text Available Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX, which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs. These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon, pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies, can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of “bridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX, or alternatively, through the use of polymer

  15. Combining target enrichment with barcode multiplexing for high throughput SNP discovery

    Directory of Open Access Journals (Sweden)

    Lunke Sebastian

    2010-11-01

    Full Text Available Abstract Background The primary goal of genetic linkage analysis is to identify genes affecting a phenotypic trait. After localisation of the linkage region, efficient genetic dissection of the disease linked loci requires that functional variants are identified across the loci. These functional variations are difficult to detect due to extent of genetic diversity and, to date, incomplete cataloguing of the large number of variants present both within and between populations. Massively parallel sequencing platforms offer unprecedented capacity for variant discovery, however the number of samples analysed are still limited by cost per sample. Some progress has been made in reducing the cost of resequencing using either multiplexing methodologies or through the utilisation of targeted enrichment technologies which provide the ability to resequence genomic areas of interest rather that full genome sequencing. Results We developed a method that combines current multiplexing methodologies with a solution-based target enrichment method to further reduce the cost of resequencing where region-specific sequencing is required. Our multiplex/enrichment strategy produced high quality data with nominal reduction of sequencing depth. We undertook a genotyping study and were successful in the discovery of novel SNP alleles in all samples at uniplex, duplex and pentaplex levels. Conclusion Our work describes the successful combination of a targeted enrichment method and index barcode multiplexing to reduce costs, time and labour associated with processing large sample sets. Furthermore, we have shown that the sequencing depth obtained is adequate for credible SNP genotyping analysis at uniplex, duplex and pentaplex levels.

  16. New Strategies Using Antibody Combinations to Increase Cancer Treatment Effectiveness

    Directory of Open Access Journals (Sweden)

    Isabel Corraliza-Gorjón

    2017-12-01

    Full Text Available Antibodies have proven their high value in antitumor therapy over the last two decades. They are currently being used as the first-choice to treat some of the most frequent metastatic cancers, like HER2+ breast cancers or colorectal cancers, currently treated with trastuzumab (Herceptin and bevacizumab (Avastin, respectively. The impressive therapeutic success of antibodies inhibiting immune checkpoints has extended the use of therapeutic antibodies to previously unanticipated tumor types. These anti-immune checkpoint antibodies allowed the cure of patients devoid of other therapeutic options, through the recovery of the patient’s own immune response against the tumor. In this review, we describe how the antibody-based therapies will evolve, including the use of antibodies in combinations, their main characteristics, advantages, and how they could contribute to significantly increase the chances of success in cancer therapy. Indeed, novel combinations will consist of mixtures of antibodies against either different epitopes of the same molecule or different targets on the same tumor cell; bispecific or multispecific antibodies able of simultaneously binding tumor cells, immune cells or extracellular molecules; immunomodulatory antibodies; antibody-based molecules, including fusion proteins between a ligand or a receptor domain and the IgG Fab or Fc fragments; autologous or heterologous cells; and different formats of vaccines. Through complementary mechanisms of action, these combinations could contribute to elude the current limitations of a single antibody which recognizes only one particular epitope. These combinations may allow the simultaneous attack of the cancer cells by using the help of the own immune cells and exerting wider therapeutic effects, based on a more specific, fast, and robust response, trying to mimic the action of the immune system.

  17. Immunotherapeutic strategies targeting Natural killer T cell responses in cancer

    Science.gov (United States)

    Shissler, Susannah C.; Bollino, Dominique R.; Tiper, Irina V.; Bates, Joshua; Derakhshandeh, Roshanak; Webb, Tonya J.

    2017-01-01

    Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T-cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where Type II cells generally suppress tumor immunity while Type I NKT cells can enhance antitumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell targeted therapies for the treatment of cancer. PMID:27393665

  18. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy

    Science.gov (United States)

    Xiao, Bo; Han, Moon Kwon; Viennois, Emilie; Wang, Lixin; Zhang, Mingzhen; Si, Xiaoying; Merlin, Didier

    2015-10-01

    Nanoparticle (NP)-based combination chemotherapy has been proposed as an effective strategy for achieving synergistic effects and targeted drug delivery for colon cancer therapy. Here, we fabricated a series of hyaluronic acid (HA)-functionalized camptothecin (CPT)/curcumin (CUR)-loaded polymeric NPs (HA-CPT/CUR-NPs) with various weight ratios of CPT to CUR (1 : 1, 2 : 1 and 4 : 1). The resultant spherical HA-CPT/CUR-NPs had a desirable particle size (around 289 nm), relative narrow size distribution, and slightly negative zeta potential. These NPs exhibited a simultaneous sustained release profile for both drugs throughout the time frame examined. Subsequent cellular uptake experiments demonstrated that the introduction of HA to the NP surface endowed NPs with colon cancer-targeting capability and markedly increased cellular uptake efficiency compared with chitosan-coated NPs. Importantly, the combined delivery of CPT and CUR in one HA-functionalized NP exerted strong synergistic effects. HA-CPT/CUR-NP (1 : 1) showed the highest antitumor activity among the three HA-CPT/CUR-NPs, resulting in an extremely low combination index. Collectively, our findings indicate that this HA-CPT/CUR-NP can be exploited as an efficient formulation for colon cancer-targeted combination chemotherapy.Nanoparticle (NP)-based combination chemotherapy has been proposed as an effective strategy for achieving synergistic effects and targeted drug delivery for colon cancer therapy. Here, we fabricated a series of hyaluronic acid (HA)-functionalized camptothecin (CPT)/curcumin (CUR)-loaded polymeric NPs (HA-CPT/CUR-NPs) with various weight ratios of CPT to CUR (1 : 1, 2 : 1 and 4 : 1). The resultant spherical HA-CPT/CUR-NPs had a desirable particle size (around 289 nm), relative narrow size distribution, and slightly negative zeta potential. These NPs exhibited a simultaneous sustained release profile for both drugs throughout the time frame examined. Subsequent cellular uptake experiments

  19. Targeted Screening Strategies to Detect Trypanosoma cruzi Infection in Children

    Science.gov (United States)

    Levy, Michael Z.; Kawai, Vivian; Bowman, Natalie M.; Waller, Lance A.; Cabrera, Lilia; Pinedo-Cancino, Viviana V.; Seitz, Amy E.; Steurer, Frank J.; Cornejo del Carpio, Juan G.; Cordova-Benzaquen, Eleazar; Maguire, James H.; Gilman, Robert H.; Bern, Caryn

    2007-01-01

    Background Millions of people are infected with Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Anti-trypanosomal drug therapy can cure infected individuals, but treatment efficacy is highest early in infection. Vector control campaigns disrupt transmission of T. cruzi, but without timely diagnosis, children infected prior to vector control often miss the window of opportunity for effective chemotherapy. Methods and Findings We performed a serological survey in children 2–18 years old living in a peri-urban community of Arequipa, Peru, and linked the results to entomologic, spatial and census data gathered during a vector control campaign. 23 of 433 (5.3% [95% CI 3.4–7.9]) children were confirmed seropositive for T. cruzi infection by two methods. Spatial analysis revealed that households with infected children were very tightly clustered within looser clusters of households with parasite-infected vectors. Bayesian hierarchical mixed models, which controlled for clustering of infection, showed that a child's risk of being seropositive increased by 20% per year of age and 4% per vector captured within the child's house. Receiver operator characteristic (ROC) plots of best-fit models suggest that more than 83% of infected children could be identified while testing only 22% of eligible children. Conclusions We found evidence of spatially-focal vector-borne T. cruzi transmission in peri-urban Arequipa. Ongoing vector control campaigns, in addition to preventing further parasite transmission, facilitate the collection of data essential to identifying children at high risk of T. cruzi infection. Targeted screening strategies could make integration of diagnosis and treatment of children into Chagas disease control programs feasible in lower-resource settings. PMID:18160979

  20. An Energy-Efficient Sleep Strategy for Target Tracking Sensor Networks

    Directory of Open Access Journals (Sweden)

    Juan FENG

    2014-02-01

    Full Text Available Energy efficiency is very important for sensor networks since sensor nodes have limited energy supply from battery. So far, many researches have been focused on this issue, while less emphasis was placed on the optimal sleep time of each node. This paper proposed an adaptive energy conservation strategy for target tracking based on a grid network structure, where each node autonomously determines when and if to sleep. It allows sensor nodes far away from targets to sleep to save energy and guarantee the tracking accuracy. The proposed approach extend network lifetime by adopting an adaptive sleep scheduling scheme that combines the local power management (PM and the adaptive coordinate PM strategies to schedule the activities of sensor nodes. And each node can choose an optimal sleep time so as to make system adaptive and energy-efficient. We show the performance of our approach in terms of energy drop, comparing it to a naive approach, dynamic PM with fixed sleep time and the coordinate PM strategies. From the experimental results, it is readily seen that the efficiency of the proposed approach.

  1. Improved Quantitative Plant Proteomics via the Combination of Targeted and Untargeted Data Acquisition.

    Science.gov (United States)

    Hart-Smith, Gene; Reis, Rodrigo S; Waterhouse, Peter M; Wilkins, Marc R

    2017-01-01

    Quantitative proteomics strategies - which are playing important roles in the expanding field of plant molecular systems biology - are traditionally designated as either hypothesis driven or non-hypothesis driven. Many of these strategies aim to select individual peptide ions for tandem mass spectrometry (MS/MS), and to do this mixed hypothesis driven and non-hypothesis driven approaches are theoretically simple to implement. In-depth investigations into the efficacies of such approaches have, however, yet to be described. In this study, using combined samples of unlabeled and metabolically (15)N-labeled Arabidopsis thaliana proteins, we investigate the mixed use of targeted data acquisition (TDA) and data dependent acquisition (DDA) - referred to as TDA/DDA - to facilitate both hypothesis driven and non-hypothesis driven quantitative data collection in individual LC-MS/MS experiments. To investigate TDA/DDA for hypothesis driven data collection, 7 miRNA target proteins of differing size and abundance were targeted using inclusion lists comprised of 1558 m/z values, using 3 different TDA/DDA experimental designs. In samples in which targeted peptide ions were of particularly low abundance (i.e., predominantly only marginally above mass analyser detection limits), TDA/DDA produced statistically significant increases in the number of targeted peptides identified (230 ± 8 versus 80 ± 3 for DDA; p = 1.1 × 10(-3)) and quantified (35 ± 3 versus 21 ± 2 for DDA; p = 0.038) per experiment relative to the use of DDA only. These expected improvements in hypothesis driven data collection were observed alongside unexpected improvements in non-hypothesis driven data collection. Untargeted peptide ions with m/z values matching those in inclusion lists were repeatedly identified and quantified across technical replicate TDA/DDA experiments, resulting in significant increases in the percentages of proteins repeatedly quantified in TDA/DDA experiments only relative to DDA

  2. Targeting the NF-κB Pathway as a Combination Therapy for Advanced Thyroid Cancer.

    Directory of Open Access Journals (Sweden)

    Nikita Pozdeyev

    Full Text Available NF-κB signaling plays an important role in tumor cell proliferation, cell survival, angiogenesis, invasion, metastasis and drug/radiation resistance. Combination therapy involving NF-κB pathway inhibition is an attractive strategy for the treatment of advanced forms of thyroid cancer. This study was designed to test the efficacy of NF-κB pathway inhibition in combination with cytotoxic chemotherapy, using docetaxel and ionizing radiation in in vitro models of thyroid cancer. We found that while both docetaxel and ionizing radiation activated NF-κB signaling in thyroid cancer cells, there was no synergistic effect on cell proliferation and/or programmed cell death with either genetic (transduction of a dominant negative mutant form of IκBα or pharmacologic (proteasome inhibitor bortezomib and IKKβ inhibitor GO-Y030 inhibition of the NF-κB pathway in thyroid cancer cell lines BCPAP, 8505C, THJ16T and SW1736. Docetaxel plus bortezomib synergistically decreased in vitro invasion of 8505C cells, but not in the other cell lines. Screening of a panel of clinically relevant targeted therapies for synergy with genetic NF-κB inhibition in a proliferation/cytotoxicity assay identified the histone deacetylase (HDAC inhibitor suberoylanilide hydroxamic acid (SAHA as a potential candidate. However, the synergistic effect was confirmed only in the BCPAP cells. These results indicate that NF-κB inhibitors are unlikely to be beneficial as combination therapy with taxane cytotoxic chemotherapy, external radiation therapy or radioiodine therapy. There may be unique circumstances where NF-κB inhibitors may be considered in combination with docetaxel to reduce tumor invasion or in combination with HDAC inhibitors to reduce tumor growth, but this does not appear to be a combination therapy that could be broadly applied to patients with advanced thyroid cancer. Further research may identify which subsets of patients/tumors may respond to this therapeutic

  3. Antigen-targeting strategies using single-domain antibody fragments

    NARCIS (Netherlands)

    Duarte, Joao Nuno Silva

    2017-01-01

    Antibodies display high selectivity and affinity and have been the preferred platform for antigen targeting. Despite the development of antigen-delivery systems that enable T cell activation, targeting approaches that enhance antibody responses need improvement. This need specially applies to poorly

  4. Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer.

    Science.gov (United States)

    Chavez-Gonzalez, Antonieta; Bakhshinejad, Babak; Pakravan, Katayoon; Guzman, Monica L; Babashah, Sadegh

    2017-02-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens. A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy.

  5. Strategies to improve intracellular drug delivery by targeted liposomes

    NARCIS (Netherlands)

    Fretz, M.M.

    2007-01-01

    Biotechnological advances increased the number of novel macromolecular drugs and new drug targets. The latter are mostly found intracellular. Unfortunately, most of the new macromolecular drugs rely on drug delivery tools for their intracellular delivery because their unfavourable physicochemical

  6. Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening

    Directory of Open Access Journals (Sweden)

    Yoon-Dong Park

    2016-08-01

    Full Text Available Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development.

  7. Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities

    Directory of Open Access Journals (Sweden)

    Malini Olivo

    2010-05-01

    Full Text Available Photodynamic therapy (PDT has emerged as one of the important therapeutic options in the management of cancer and other diseases. PDT involves a tumor-localized photosensitizer (PS, which when appropriately illuminated by visible light converts oxygen into cytotoxic reactive oxygen species (ROS, that attack key structural entities within the targeted cells, ultimately resulting in necrosis or apoptosis. Though PDT is a selective modality, it can be further enhanced by combining other targeted therapeutic strategies that include the use of synthetic peptides and nanoparticles for selective delivery of photosensitizers. Another potentially promising strategy is the application of targeted therapeutics that exploit a myriad of critical pathways involved in tumorigenesis and metastasis. Vascular disrupting agents that eradicate tumor vasculature during PDT and anti-angiogenic agents that targets specific molecular pathways and prevent the formation of new blood vessels are novel therapeutic approaches that have been shown to improve treatment outcome. In addition to the well-documented mechanisms of direct cell killing and damage to the tumor vasculature, PDT can also activate the body’s immune response against tumors. Numerous pre-clinical studies and clinical observations have demonstrated the immuno-stimulatory capability of PDT. Herein, we aim to integrate the most important findings with regard to the combination of PDT and other novel targeted therapy approaches, detailing its potential in cancer photomedicine.

  8. Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor.

    Science.gov (United States)

    Yoon, Hong Yeol; Shin, Min Lee; Shim, Man Kyu; Lee, Sangmin; Na, Jin Hee; Koo, Heebeom; Lee, Hyukjin; Kim, Jong-Ho; Lee, Kuen Yong; Kim, Kwangmeyung; Kwon, Ick Chan

    2017-05-01

    Biological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles. We observed that azide-containing chemical reporters were successfully generated onto surface glycans of various tumor cells such as lung cancer (A549), brain cancer (U87), and breast cancer (BT-474, MDA-MB231, MCF-7) via metabolic engineering in vitro. In addition, we compared tumor targeting of artificial azide reporter with bicyclononyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-CNPs) and integrin α v β 3 with cyclic RGD-conjugated CNPs (cRGD-CNPs) in vitro and in vivo. Fluorescence intensity of azide-reporter-targeted BCN-CNPs in tumor tissues was 1.6-fold higher and with a more uniform distribution compared to that of cRGD-CNPs. Moreover, even in the isolated heterogeneous U87 cells, BCN-CNPs could bind artificial azide reporters on tumor cells more uniformly (∼92.9%) compared to cRGD-CNPs. Therefore, the artificial azide-reporter-targeting strategy can be utilized for targeting heterogeneous tumor cells via bioorthogonal click reaction and may provide an alternative method of tumor targeting for further investigation in cancer therapy.

  9. Targeting Millennials: Social Media Strategies within Higher Education

    Science.gov (United States)

    Sessa, Whitney L.

    2015-01-01

    Using a quantitative survey method with an online questionnaire as the data collection tool, the author surveyed 189 social media managers working at American Higher Education institutions to identify forms of social media in use, along with the most popular strategies that colleges and universities use with Facebook.

  10. Effectiveness of 'target' strategies on perceived motivational climate ...

    African Journals Online (AJOL)

    Grounded in Achievement Goal Theory of Nicholls (1989), the aim of this study was to assess the development of four teaching interventions based on the TARGET areas of Ames (1992) and verify their effect on the perceived motivational climate at situational level in Physical Education (PE) classes. Participants were 580 ...

  11. Characterizing Types of Human Mobility to Inform Differential and Targeted Malaria Elimination Strategies in Northeast Cambodia.

    Science.gov (United States)

    Peeters Grietens, Koen; Gryseels, Charlotte; Dierickx, Susan; Bannister-Tyrrell, Melanie; Trienekens, Suzan; Uk, Sambunny; Phoeuk, Pisen; Suon, Sokha; Set, Srun; Gerrets, René; Hoibak, Sarah; Muela Ribera, Joan; Hausmann-Muela, Susanna; Tho, Sochantha; Durnez, Lies; Sluydts, Vincent; d'Alessandro, Umberto; Coosemans, Marc; Erhart, Annette

    2015-11-23

    Human population movements currently challenge malaria elimination in low transmission foci in the Greater Mekong Subregion. Using a mixed-methods design, combining ethnography (n = 410 interviews), malariometric data (n = 4996) and population surveys (n = 824 indigenous populations; n = 704 Khmer migrants) malaria vulnerability among different types of mobile populations was researched in the remote province of Ratanakiri, Cambodia. Different structural types of human mobility were identified, showing differential risk and vulnerability. Among local indigenous populations, access to malaria testing and treatment through the VMW-system and LLIN coverage was high but control strategies failed to account for forest farmers' prolonged stays at forest farms/fields (61% during rainy season), increasing their exposure (p = 0.002). The Khmer migrants, with low acquired immunity, active on plantations and mines, represented a fundamentally different group not reached by LLIN-distribution campaigns since they were largely unregistered (79%) and unaware of the local VMW-system (95%) due to poor social integration. Khmer migrants therefore require control strategies including active detection, registration and immediate access to malaria prevention and control tools from which they are currently excluded. In conclusion, different types of mobility require different malaria elimination strategies. Targeting mobility without an in-depth understanding of malaria risk in each group challenges further progress towards elimination.

  12. Cancer classification: Mutual information, target network and strategies of therapy.

    Science.gov (United States)

    Hsu, Wen-Chin; Liu, Chan-Cheng; Chang, Fu; Chen, Su-Shing

    2012-10-02

    Cancer therapy is a challenging research area because side effects often occur in chemo and radiation therapy. We intend to study a multi-targets and multi-components design that will provide synergistic results to improve efficiency of cancer therapy. We have developed a general methodology, AMFES (Adaptive Multiple FEature Selection), for ranking and selecting important cancer biomarkers based on SVM (Support Vector Machine) classification. In particular, we exemplify this method by three datasets: a prostate cancer (three stages), a breast cancer (four subtypes), and another prostate cancer (normal vs. cancerous). Moreover, we have computed the target networks of these biomarkers as the signatures of the cancers with additional information (mutual information between biomarkers of the network). Then, we proposed a robust framework for synergistic therapy design approach which includes varies existing mechanisms. These methodologies were applied to three GEO datasets: GSE18655 (three prostate stages), GSE19536 (4 subtypes breast cancers) and GSE21036 (prostate cancer cells and normal cells) shown in. We selected 96 biomarkers for first prostate cancer dataset (three prostate stages), 72 for breast cancer (luminal A vs. luminal B), 68 for breast cancer (basal-like vs. normal-like), and 22 for another prostate cancer (cancerous vs. normal. In addition, we obtained statistically significant results of mutual information, which demonstrate that the dependencies among these biomarkers can be positive or negative. We proposed an efficient feature ranking and selection scheme, AMFES, to select an important subset from a large number of features for any cancer dataset. Thus, we obtained the signatures of these cancers by building their target networks. Finally, we proposed a robust framework of synergistic therapy for cancer patients. Our framework is not only supported by real GEO datasets but also aim to a multi-targets/multi-components drug design tool, which improves

  13. Ionospheric Data Assimilation and Targeted Observation Strategies: Proof of Concept Analysis in a Geomagnetic Storm Event

    Science.gov (United States)

    Kostelich, Eric; Durazo, Juan; Mahalov, Alex

    2017-11-01

    The dynamics of the ionosphere involve complex interactions between the atmosphere, solar wind, cosmic radiation, and Earth's magnetic field. Geomagnetic storms arising from solar activity can perturb these dynamics sufficiently to disrupt radio and satellite communications. Efforts to predict ``space weather,'' including ionospheric dynamics, require the development of a data assimilation system that combines observing systems with appropriate forecast models. This talk will outline a proof-of-concept targeted observation strategy, consisting of the Local Ensemble Transform Kalman Filter, coupled with the Thermosphere Ionosphere Electrodynamics Global Circulation Model, to select optimal locations where additional observations can be made to improve short-term ionospheric forecasts. Initial results using data and forecasts from the geomagnetic storm of 26-27 September 2011 will be described. Work supported by the Air Force Office of Scientific Research (Grant Number FA9550-15-1-0096) and by the National Science Foundation (Grant Number DMS-0940314).

  14. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease

    Science.gov (United States)

    Gourdie, Robert G.; Dimmeler, Stefanie; Kohl, Peter

    2016-01-01

    Our understanding of cardiac fibroblast functions has moved beyond their roles in heart structure and extracellular matrix generation, and now includes contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development. PMID:27339799

  15. Sustainable bioethanol production combining biorefinery principles and intercropping strategies

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, M.H.; Haugaard-Nielsen, H.; Petersson, A.; Thomsen, A.B.; Jensen, E.S. [Risoe National Lab., DTU, Biosystems Dept., Roskilde (Denmark)

    2007-05-15

    Ethanol produced from pretreatment and microbial fermentation of biomass has great potential to become a sustainable transportation fuel in the near future. First generation biofuel focus on starch (from grain) fermentation, but in the present study that is regarded as a too important food source. In recent years 2nd generation technologies are developed utilizing bulk residues like wheat straw, woody materials, and corn stover. However, there is a need for integrating the biomass starting point into the energy manufacturing steps to secure that bioenergy is produced from local adapted raw materials with limited use of non-renewable fossil fuels. Produced crops can be transformed into a number of useful products using the concept of biorefining, where no waste streams are produced. An advantage of intercropping is that the intercrop components composition can be designed to produce a medium (for microbial fermentation) containing all essential nutrients. Thereby addition of e.g. urea and other fermentation nutrients produced from fossil fuels can be avoided. Intercropping, defined as the growing of two or more species simultaneously on the same area of land, is a cropping strategy based on the manipulation of plant interactions in time and space to maximize growth and productivity. Cereal-legume intercropping data from field trials show the possibility to improve the use of nitrogen resources, because the non fixing species (e.g. wheat) efficiently exploits soil mineral N sources while at the same time atmospheric N from the N{sub 2}-fixing species (e.g. pea) enter the cropping system reducing the need for N fertilizer application. Nitrogen fertilization is responsible for more than 85 % of the greenhouse gas emissions from wheat grain production in Denmark. Increase of fertilizer N supply promotes the growth of wheat and results in a decreased pea N accumulation and a different proportion of intercrop components. Intercropping introduce a dynamic change of plant

  16. External triggering and triggered targeting strategies for drug delivery

    Science.gov (United States)

    Wang, Yanfei; Kohane, Daniel S.

    2017-06-01

    Drug delivery systems that are externally triggered to release drugs and/or target tissues hold considerable promise for improving the treatment of many diseases by minimizing nonspecific toxicity and enhancing the efficacy of therapy. These drug delivery systems are constructed from materials that are sensitive to a wide range of external stimuli, including light, ultrasound, electrical and magnetic fields, and specific molecules. The responsiveness conferred by these materials allows the release of therapeutics to be triggered on demand and remotely by a physician or patient. In this Review, we describe the rationales for such systems and the types of stimuli that can be deployed, and provide an outlook for the field.

  17. Therapeutic strategies for targeting the ovarian tumor stroma

    OpenAIRE

    Ko, Song Yi; Naora, Honami

    2014-01-01

    Epithelial ovarian cancer is the most lethal type of gynecologic malignancy. Sixty percent of women who are diagnosed with ovarian cancer present with advanced-stage disease that involves the peritoneal cavity and these patients have a 5-year survival rate of less than 30%. For more than two decades, tumor-debulking surgery followed by platinum-taxane combination chemotherapy has remained the conventional first-line treatment of ovarian cancer. Although the initial response rate is 70%-80%, m...

  18. Targeting Nucleophosmin 1 Represents a Rational Strategy for Radiation Sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Sekhar, Konjeti R. [Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Benamar, Mouadh [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Venkateswaran, Amudhan; Sasi, Soumya [Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Penthala, Narsimha R.; Crooks, Peter A. [Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Hann, Stephen R. [Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Geng, Ling [Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Balusu, Ramesh [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (United States); Abbas, Tarek [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Freeman, Michael L., E-mail: michael.freeman@vanderbilt.edu [Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States)

    2014-08-01

    Purpose: To test the hypothesis that small molecule targeting of nucleophosmin 1 (NPM1) represents a rational approach for radiosensitization. Methods and Materials: Wilde-type and NPM1-deficient mouse embryo fibroblasts (MEFs) were used to determine whether radiosensitization produced by the small molecule YTR107 was NPM1 dependent. The stress response to ionizing radiation was assessed by quantifying pNPM1, γH2AX, and Rad51 foci, neutral comet tail moment, and colony formation. NPM1 levels in a human-derived non-small-cell lung cancer (NSCLC) tissue microarray (TMA) were determined by immunohistochemistry. YTR107-mediated radiosensitization was assessed in NSCLC cell lines and xenografts. Results: Use of NPM1-null MEFs demonstrated that NPM1 is critical for DNA double- strand break (DSB) repair, that loss of NPM1 increases radiation sensitivity, and that YTR107-mediated radiosensitization is NPM1 dependent. YTR107 was shown to inhibit NPM1 oligomerization and impair formation of pNPM1 irradiation-induced foci that colocalized with γH2AX foci. Analysis of the TMA demonstrated that NPM1 is overexpressed in subsets of NSCLC. YTR107 inhibited DNA DSB repair and radiosensitized NSCLC lines and xenografts. Conclusions: These data demonstrate that YTR107-mediated targeting of NPM1 impairs DNA DSB repair, an event that increases radiation sensitivity.

  19. Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics

    Science.gov (United States)

    Kevin Weitemier; Shannon C.K. Straub; Richard C. Cronn; Mark Fishbein; Roswitha Schmickl; Angela McDonnell; Aaron. Liston

    2014-01-01

    • Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. • Methods and Results: Genome and transcriptome assemblies for milkweed ( Asclepias syriaca ) were used to design enrichment probes for 3385...

  20. Targeting adipocyte apoptosis: a novel strategy for obesity therapy.

    Science.gov (United States)

    Zhang, Yu; Huang, Cheng

    2012-01-06

    Obesity is an increasing world problem that may cause several metabolic complications including insulin resistance, hyperlipidemia, hypertension, and atherosclerosis. Development of therapeutic drugs for obesity has been proven difficult. Current strategies for weight reduction are inhibition of food intake through the central nervous system or blocking the absorption of lipids in the gut. These therapies have many side effects, so new treatments are urgently needed. Fat loss could also be achieved through a decrease in the size and number of adipocytes through apoptosis. Apoptosis is a normal phenomenon of cell death for the purpose of maintaining homeostasis. Induction of apoptosis is a reasonable way to remove adipocytes in obese patients. It is reported that several adipokines and natural products play roles in induction of adipocyte apoptosis. Here we review the recent progress of the roles and mechanisms of adipocyte apoptosis induced by leptin, tumor necrosis factor-α (TNF-α), and natural compounds. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Strategies for Designing and Monitoring Malaria Vaccines Targeting Diverse Antigens

    Science.gov (United States)

    Barry, Alyssa E.; Arnott, Alicia

    2014-01-01

    After more than 50 years of intensive research and development, only one malaria vaccine candidate, “RTS,S,” has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now cataloged the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarize the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximize the potential of future malaria vaccine candidates. PMID

  2. Strategies for designing and monitoring malaria vaccines targeting diverse antigens

    Directory of Open Access Journals (Sweden)

    Alyssa E Barry

    2014-07-01

    Full Text Available After more than 50 years of intensive research and development, only one malaria vaccine candidate, RTS,S, has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now catalogued the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarise the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximise the potential of future malaria vaccine

  3. Redox therapy in neonatal sepsis: reasons, targets, strategy, and agents.

    Science.gov (United States)

    Bajčetić, Milica; Spasić, Snežana; Spasojević, Ivan

    2014-09-01

    Neonatal sepsis is one of the most fulminating conditions in neonatal intensive care units. Antipathogen and supportive care are administered routinely, but do not deliver satisfactory results. In addition, the efforts to treat neonatal sepsis with anti-inflammatory agents have generally shown to be futile. The accumulating data imply that intracellular redox changes intertwined into neonatal sepsis redox cycle represent the main cause of dysfunction of mitochondria and cells in neonatal sepsis. Our aim here is to support the new philosophy in neonatal sepsis treatment, which involves the integration of mechanisms that are responsible for cellular dysfunction and organ failure, the recognition of the most important targets, and the selection of safe agents that can stop the neonatal sepsis redox cycle by hitting the hot spots. Redox-active agents that could be beneficial for neonatal sepsis treatment according to these criteria include lactoferrin, interleukin 10, zinc and selenium supplements, ibuprofen, edaravone, and pentoxifylline.

  4. Combination-targeting to multiple endothelial cell adhesion molecules modulates binding, endocytosis, and in vivo biodistribution of drug nanocarriers and their therapeutic cargoes.

    Science.gov (United States)

    Papademetriou, Iason; Tsinas, Zois; Hsu, Janet; Muro, Silvia

    2014-08-28

    Designing of drug nanocarriers to aid delivery of therapeutics is an expanding field that can improve medical treatments. Nanocarriers are often functionalized with elements that recognize cell-surface molecules involved in subcellular transport to improve targeting and endocytosis of therapeutics. Combination-targeting using several affinity elements further modulates this outcome. The most studied example is endothelial targeting via multiple cell adhesion molecules (CAMs), which mimics the strategy of leukocytes to adhere and traverse the vascular endothelium. Yet, the implications of this strategy on intracellular transport and in vivo biodistribution remain uncharacterized. We examined this using nanocarriers functionalized for dual- or triple-targeting to intercellular, platelet-endothelial, and/or vascular CAMs (ICAM-1, PECAM-1, VCAM-1). These molecules differ in expression level, location, pathological stimulation, and/or endocytic pathway. In endothelial cells, binding of PECAM-1/VCAM-1-targeted nanocarriers was intermediate to single-targeted counterparts and enhanced in disease-like conditions. ICAM-1/PECAM-1-targeted nanocarriers surpassed PECAM-1/VCAM-1 in control, but showed lower selectivity toward disease-like conditions. Triple-targeting resulted in binding similar to ICAM-1/PECAM-1 combination and displayed the highest selectivity in disease-like conditions. All combinations were effectively internalized by the cells, with slightly better performance when targeting receptors of different endocytic pathways. In vivo, ICAM-1/PECAM-1-targeted nanocarriers outperformed PECAM-1/VCAM-1 in control and disease-like conditions, and triple-targeted counterparts slightly enhanced this outcome in some organs. As a result, delivery of a model therapeutic cargo (acid sphingomyelinase, deficient in Niemann-Pick disease A-B) was enhanced to all affected organs by triple-targeted nanocarriers, particularly in disease-like conditions. Therefore, multi-CAM targeting

  5. UP Finder: A COBRA toolbox extension for identifying gene overexpression strategies for targeted overproduction

    OpenAIRE

    Wang, Xi; Yu, Liang; Chen, Shulin

    2017-01-01

    Overexpression of key genes is a basic strategy for overproducing target products via metabolic engineering. Traditionally, identifying those key genes/pathways largely relies on the knowledge of biochemistry and bioinformatics. In this study, a modeling tool named UP Finder was developed to facilitate the rapid identification of gene overexpression strategies. It was based on the COBRA toolbox under MATLAB environment. All the key gene/pathway targets are identified in one click after simply...

  6. Improved Input Combination Strategy for Increased Productivity And ...

    African Journals Online (AJOL)

    The aim was to introduce a new input combination package, compare it with the local production practices and use the result to tackle the rice productivity problem of the area. The new package comprised improved varieties of lowland rice, inorganic fertilizer, herbicide and planting technique, whereas the local production ...

  7. 40 Is the New 65? Older Adults and Niche Targeting Strategies in the Online Dating Industry

    Directory of Open Access Journals (Sweden)

    Derek Blackwell

    2016-10-01

    Full Text Available Niche dating sites have become a popular trend in the online dating industry; yet, little is known about the specialization strategies these sites use to cater to their users’ needs. Moreover, previous research alludes to the idea that many of these sites may be engaging in pseudo-individualization—a deceptive technique that creates an illusion of specialization. This study focuses on niche dating sites for older adults, one of the fastest growing niches in online dating. Through a qualitative content analysis and close reading of older-adult dating sites, I seek to determine how and to what extent online dating sites that target older adults actually customize their services to benefit this population. Three key findings emerge: (1 the use of mass segmentation, a strategy that combines elements of both mass marketing and market segmentation; (2 a strategic broadening of the boundaries of the older-adult niche; and (3 the use of deceptive advertising to attract users. These findings suggest that older-adult dating sites are, in fact, engaging in pseudo-individualization. They also highlight some of the unique aspects of online media that facilitate this practice. Implications for both online daters and site producers are discussed.

  8. Structures of Cryptococcus neoformans Protein Farnesyltransferase Reveal Strategies for Developing Inhibitors That Target Fungal Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.; Kelly, Shannon M.; Hellinga, Homme W.; Alspaugh, J. Andrew; Beese, Lorena S. (Duke)

    2012-09-17

    Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities and differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.

  9. Strategies and tools to improve crop productivity by targeting photosynthesis.

    Science.gov (United States)

    Nuccio, Michael L; Potter, Laura; Stiegelmeyer, Suzy M; Curley, Joseph; Cohn, Jonathan; Wittich, Peter E; Tan, Xiaoping; Davis, Jimena; Ni, Junjian; Trullinger, Jon; Hall, Rick; Bate, Nicholas J

    2017-09-26

    Crop productivity needs to substantially increase to meet global food and feed demand for a rapidly growing world population. Agricultural technology developers are pursuing a variety of approaches based on both traditional technologies such as genetic improvement, pest control and mechanization as well as new technologies such as genomics, gene manipulation and environmental modelling to develop crops that are capable of meeting growing demand. Photosynthesis is a key biochemical process that, many suggest, is not yet optimized for industrial agriculture or the modern global environment. We are interested in identifying control points in maize photoassimilation that are amenable to gene manipulation to improve overall productivity. Our approach encompasses: developing and using novel gene discovery techniques, translating our discoveries into traits and evaluating each trait in a stepwise manner that reflects a modern production environment. Our aim is to provide step change advancement in overall crop productivity and deliver this new technology into the hands of growers.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  10. A comparative chemogenomics strategy to predict potential drug targets in the metazoan pathogen, Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Conor R Caffrey

    Full Text Available Schistosomiasis is a prevalent and chronic helmintic disease in tropical regions. Treatment and control relies on chemotherapy with just one drug, praziquantel and this reliance is of concern should clinically relevant drug resistance emerge and spread. Therefore, to identify potential target proteins for new avenues of drug discovery we have taken a comparative chemogenomics approach utilizing the putative proteome of Schistosoma mansoni compared to the proteomes of two model organisms, the nematode, Caenorhabditis elegans and the fruitfly, Drosophila melanogaster. Using the genome comparison software Genlight, two separate in silico workflows were implemented to derive a set of parasite proteins for which gene disruption of the orthologs in both the model organisms yielded deleterious phenotypes (e.g., lethal, impairment of motility, i.e., are essential genes/proteins. Of the 67 and 68 sequences generated for each workflow, 63 were identical in both sets, leading to a final set of 72 parasite proteins. All but one of these were expressed in the relevant developmental stages of the parasite infecting humans. Subsequent in depth manual curation of the combined workflow output revealed 57 candidate proteins. Scrutiny of these for 'druggable' protein homologs in the literature identified 35 S. mansoni sequences, 18 of which were homologous to proteins with 3D structures including co-crystallized ligands that will allow further structure-based drug design studies. The comparative chemogenomics strategy presented generates a tractable set of S. mansoni proteins for experimental validation as drug targets against this insidious human pathogen.

  11. Combined Cognitive Training vs. Memory Strategy Training in Healthy Older Adults

    OpenAIRE

    Li, Bing; Zhu, Xinyi; Hou, Jianhua; Chen, Tingji; Wang, Pengyun; Juan LI

    2016-01-01

    As mnemonic utilization deficit in older adults associates with age-related decline in executive function, we hypothesized that memory strategy training combined with executive function training might induce larger training effect in memory and broader training effects in non-memory outcomes than pure memory training. The present study compared the effects of combined cognitive training (executive function training plus memory strategy training) to pure memory strategy training. Forty healthy...

  12. Perspectives on the design of clinical trials combining transarterial chemoembolization and molecular targeted therapy.

    Science.gov (United States)

    Hsu, Chiun; Po-Ching-Liang; Morita, Satoshi; Hu, Fu-Chang; Cheng, Ann-Lii

    2012-11-01

    Transarterial chemoembolization (TACE) moderately prolongs the survival of patients with intermediate-stage hepatocellular carcinoma. Molecular targeted therapy (MTT) may improve the efficacy of TACE. However, the findings of clinical trials evaluating the efficacy of a combination of TACE and MTT are conflicting. We hypothesized that this disparity can be prevented using alternative study designs. In this review, we classify the pertinent issues of study designs into five domains: primary endpoints, patients, TACE procedures, timing of randomization, and drug administration. Furthermore, we discuss the methods for increasing the success rate by minimizing potentially confounding factors within these five domains. Transarterial chemoembolization (TACE) is the current standard therapy for patients with Barcelona Clinic Liver Cancer (BCLC) intermediate-stage hepatocellular carcinoma (HCC) [1, 2, 3]. The survival benefit of TACE is supported by the results of meta-analysis of clinical trials comparing TACE with other conservative treatments in patients with inoperable HCC [4]. The results showed that the median survival of patients improved from approximately 16 to 20 months following TACE [4, 5]. Although advances in TACE techniques and the use of new embolization agents may improve the efficacy of TACE [6, 7], other approaches are needed to further improve the outcome in HCC patients treated using TACE. Molecular targeted therapy (MTT) has improved the survival of patients with advanced-stage HCC [5, 8]. Therefore, combining MTT and TACE may additionally improve the survival in patients with intermediate-stage HCC. Many molecular targeted agents (MTA) are currently undergoing evaluation in randomized trials (table 1). However, the designs of these trials differ significantly. The results of two trials combining sorafenib and TACE were recently reported. Both trials failed to demonstrate a therapeutic benefit of the combination therapy for time to tumor progression

  13. Understanding L2 French Teaching Strategies in a Non-Target Language Classroom Context

    Science.gov (United States)

    Sun, Peijian; Yuan, Rui; Teng, Lin

    2015-01-01

    This research explored the congruence and disparity between teachers' and students' attitudes towards French as a second language (L2) teaching strategies in a non-target language classroom context in the USA. The findings suggest students' and teachers' attitudes towards the direct and indirect teaching strategies were generally consistent, but…

  14. Targeting estrogen receptor β as preventive therapeutic strategy for Leber's hereditary optic neuropathy.

    Science.gov (United States)

    Pisano, Annalinda; Preziuso, Carmela; Iommarini, Luisa; Perli, Elena; Grazioli, Paola; Campese, Antonio F; Maresca, Alessandra; Montopoli, Monica; Masuelli, Laura; Sadun, Alfredo A; d'Amati, Giulia; Carelli, Valerio; Ghelli, Anna; Giordano, Carla

    2015-12-15

    Leber's hereditary optic neuropathy (LHON) is a maternally inherited blinding disease characterized by degeneration of retinal ganglion cells (RGCs) and consequent optic nerve atrophy. Peculiar features of LHON are incomplete penetrance and gender bias, with a marked male prevalence. Based on the different hormonal metabolism between genders, we proposed that estrogens play a protective role in females and showed that these hormones ameliorate mitochondrial dysfunction in LHON through the estrogen receptors (ERs). We also showed that ERβ localize to the mitochondria of RGCs. Thus, targeting ERβ may become a therapeutic strategy for LHON specifically aimed at avoiding or delaying the onset of disease in mutation carriers. Here, we tested the effects of ERβ targeting on LHON mitochondrial defective metabolism by treating LHON cybrid cells carrying the m.11778G>A mutation with a combination of natural estrogen-like compounds that bind ERβ with high selectivity. We demonstrated that these molecules improve cell viability by reducing apoptosis, inducing mitochondrial biogenesis and strongly reducing the levels of reactive oxygen species in LHON cells. These effects were abolished in cells with ERβ knockdown by silencing receptor expression or by using specific receptor antagonists. Our observations support the hypothesis that estrogen-like molecules may be useful in LHON prophylactic therapy. This is particularly important for lifelong disease prevention in unaffected LHON mutation carriers. Current strategies attempting to combat degeneration of RGCs during the acute phase of LHON have not been very effective. Implementing a different and preemptive approach with a low risk profile may be very helpful. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Increased Anticancer Efficacy of Intravesical Mitomycin C Therapy when Combined with a PCNA Targeting Peptide

    Directory of Open Access Journals (Sweden)

    Odrun A. Gederaas

    2014-12-01

    Full Text Available Non–muscle-invasive bladder cancers (NMIBCs are tumors confined to the mucosa or the mucosa/submucosa. An important challenge in treatment of NMIBC is both high recurrence and high progression rates. Consequently, more efficacious intravesical treatment regimes are in demand. Inhibition of the cell’s DNA repair systems is a new promising strategy to improve cancer therapy, and proliferating cell nuclear antigen (PCNA is a new promising target. PCNA is an essential scaffold protein in multiple cellular processes including DNA replication and repair. More than 200 proteins, many involved in stress responses, interact with PCNA through the AlkB homologue 2 PCNA-interacting motif (APIM, including several proteins directly or indirectly involved in repair of DNA interstrand crosslinks (ICLs. In this study, we targeted PCNA with a novel peptide drug containing the APIM sequence, ATX-101, to inhibit repair of the DNA damage introduced by the chemotherapeutics. A bladder cancer cell panel and two different orthotopic models of bladder cancer in rats, the AY-27 implantation model and the dietary BBN induction model, were applied. ATX-101 increased the anticancer efficacy of the ICL-inducing drug mitomycin C (MMC, as well as bleomycin and gemcitabine in all bladder cancer cell lines tested. Furthermore, we found that ATX-101 given intravesically in combination with MMC penetrated the bladder wall and further reduced the tumor growth in both the slow growing endogenously induced and the rapidly growing transplanted tumors. These results suggest that ATX-101 has the potential to improve the efficacy of current MMC treatment in NMIBC.

  16. COMBINATION THERAPY OF HYPERTENSION — A RELIABLE WAY TO TARGET ACHIEVE

    Directory of Open Access Journals (Sweden)

    Yu. V. Lukina

    2010-01-01

    Full Text Available Data of evidence-based cardiology and clinical guidelines that define the position of combined therapy to achieve the targets of hypertension (HT treatment (achievement and maintenance of the target blood pressure (BP level, protection of the target organs, improvement of the quality of life in hypertensive patients are presented in the article. The advantages of rational combined therapies (potentiation of antihypertensive effect, reduction of a number of adverse events are considered. Studies of therapeutic efficacy and safety of combined antihypertensive therapy based on generics are important. The advantages of combined therapy in achievement of target BP levels are presented on example of comparative study of new generic and original amlodipine in patients with HT of 1-2 degrees. Target BP level was reached respectively in 90% and 97% of patients with HT in groups of generic and original amlodipine combined with generic lisinopril and hydrochlorothiazide. Safety profile was acceptable. This confirms the high efficacy of amlodipine + lisinopril + hydrochlorothiazide combination, including one on the basis of generics.

  17. Human Exportin-1 is a Target for Combined Therapy of HIV and AIDS Related Lymphoma

    Directory of Open Access Journals (Sweden)

    Eline Boons

    2015-09-01

    Full Text Available Infection with HIV ultimately leads to advanced immunodeficiency resulting in an increased incidence of cancer. For example primary effusion lymphoma (PEL is an aggressive non-Hodgkin lymphoma with very poor prognosis that typically affects HIV infected individuals in advanced stages of immunodeficiency. Here we report on the dual anti-HIV and anti-PEL effect of targeting a single process common in both diseases. Inhibition of the exportin-1 (XPO1 mediated nuclear transport by clinical stage orally bioavailable small molecule inhibitors (SINE prevented the nuclear export of the late intron-containing HIV RNA species and consequently potently suppressed viral replication. In contrast, in CRISPR-Cas9 genome edited cells expressing mutant C528S XPO1, viral replication was unaffected upon treatment, clearly demonstrating the anti-XPO1 mechanism of action. At the same time, SINE caused the nuclear accumulation of p53 tumor suppressor protein as well as inhibition of NF-κB activity in PEL cells resulting in cell cycle arrest and effective apoptosis induction. In vivo, oral administration arrested PEL tumor growth in engrafted mice. Our findings provide strong rationale for inhibiting XPO1 as an innovative strategy for the combined anti-retroviral and anti-neoplastic treatment of HIV and PEL and offer perspectives for the treatment of other AIDS-associated cancers and potentially other virus-related malignancies.

  18. Human Exportin-1 is a Target for Combined Therapy of HIV and AIDS Related Lymphoma.

    Science.gov (United States)

    Boons, Eline; Vanstreels, Els; Jacquemyn, Maarten; Nogueira, Tatiane C; Neggers, Jasper E; Vercruysse, Thomas; van den Oord, Joost; Tamir, Sharon; Shacham, Sharon; Landesman, Yosef; Snoeck, Robert; Pannecouque, Christophe; Andrei, Graciela; Daelemans, Dirk

    2015-09-01

    Infection with HIV ultimately leads to advanced immunodeficiency resulting in an increased incidence of cancer. For example primary effusion lymphoma (PEL) is an aggressive non-Hodgkin lymphoma with very poor prognosis that typically affects HIV infected individuals in advanced stages of immunodeficiency. Here we report on the dual anti-HIV and anti-PEL effect of targeting a single process common in both diseases. Inhibition of the exportin-1 (XPO1) mediated nuclear transport by clinical stage orally bioavailable small molecule inhibitors (SINE) prevented the nuclear export of the late intron-containing HIV RNA species and consequently potently suppressed viral replication. In contrast, in CRISPR-Cas9 genome edited cells expressing mutant C528S XPO1, viral replication was unaffected upon treatment, clearly demonstrating the anti-XPO1 mechanism of action. At the same time, SINE caused the nuclear accumulation of p53 tumor suppressor protein as well as inhibition of NF-κB activity in PEL cells resulting in cell cycle arrest and effective apoptosis induction. In vivo, oral administration arrested PEL tumor growth in engrafted mice. Our findings provide strong rationale for inhibiting XPO1 as an innovative strategy for the combined anti-retroviral and anti-neoplastic treatment of HIV and PEL and offer perspectives for the treatment of other AIDS-associated cancers and potentially other virus-related malignancies.

  19. Combination of arginine deprivation with TRAIL treatment as a targeted-therapy for mesothelioma.

    Science.gov (United States)

    Wangpaichitr, Medhi; Wu, Chunjing; Bigford, Gregory; Theodoropoulos, George; You, Min; Li, Ying Ying; Verona-Santos, Javier; Feun, Lynn G; Nguyen, Dao M; Savaraj, Niramol

    2014-12-01

    In the present study we present data to show that certain tumor cells including malignant pleural mesothelioma (MPM) cells do not express argininosuccinate synthetase (ASS), and thus are unable to synthesize arginine from citrulline. Exposure of these ASS-negative cells to the arginine degrading enzyme, arginine deiminase (ADI-PEG20), for 72 h results in significant increases in cleaved caspase-3. Importantly, this apoptotic signal is further strengthened by the addition of TNF-related apoptosis-inducing ligand (TRAIL). Using flow cytometry, we showed that the combination treatment (ADI-PEG20 at 50 ng/ml and TRAIL at 10 ng/ml) for 24 h resulted in profound cell death with 67% of cells positive for caspase-3 activity, while ADI-PEG20 alone or TRAIL alone resulted in only 10-15% cell death. This positive amplification loop is mediated through the cleavage of proapototic protein "BID". Our work represents a new strategy for treating patients with malignant pleural mesothelioma using targeted molecular therapeutics based on selected tumor markers, thus avoiding the use of potentially cytotoxic chemotherapy. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. On observational and modelling strategies targeted at regional carbon exchange over continents

    Directory of Open Access Journals (Sweden)

    C. Gerbig

    2009-10-01

    Full Text Available Estimating carbon exchange at regional scales is paramount to understanding feedbacks between climate and the carbon cycle, but also to verifying climate change mitigation such as emission reductions and strategies compensating for emissions such as carbon sequestration. This paper discusses evidence for a number of important shortcomings of current generation modelling frameworks designed to provide regional scale budgets from atmospheric observations. Current top-down and bottom-up approaches targeted at deriving consistent regional scale carbon exchange estimates for biospheric and anthropogenic sources and sinks are hampered by a number of issues: we show that top-down constraints using point measurements made from tall towers, although sensitive to larger spatial scales, are however influenced by local areas much more strongly than previously thought. On the other hand, classical bottom-up approaches using process information collected at the local scale, such as from eddy covariance data, need up-scaling and validation on larger scales. We therefore argue for a combination of both approaches, implicitly providing the important local scale information for the top-down constraint, and providing the atmospheric constraint for up-scaling of flux measurements. Combining these data streams necessitates quantifying their respective representation errors, which are discussed. The impact of these findings on future network design is highlighted, and some recommendations are given.

  1. Vascular Endothelial-Targeted Therapy Combined with Cytotoxic Chemotherapy Induces Inflammatory Intratumoral Infiltrates and Inhibits Tumor Relapses after Surgery

    Directory of Open Access Journals (Sweden)

    Brendan F. Judy

    2012-04-01

    Full Text Available Surgery is the most effective therapy for cancer in the United States, but disease still recurs in more than 40% of patients within 5 years after resection. Chemotherapy is given postoperatively to prevent relapses; however, this approach has had marginal success. After surgery, recurrent tumors depend on rapid neovascular proliferation to deliver nutrients and oxygen. Phosphatidylserine (PS is exposed on the vascular endothelial cells in the tumor microenvironment but is notably absent on blood vessels in normal tissues. Thus, PS is an attractive target for cancer therapy after surgery. Syngeneic mice bearing TC1 lung cancer tumors were treated with mch1N11 (a novel mouse chimeric monoclonal antibody that targets PS, cisplatin (cis, or combination after surgery. Tumor relapses and disease progression were decreased 90% by combination therapy compared with a 50% response rate for cis alone (P = .02. Mice receiving postoperative mch1N11 had no wound-related complications or added systemic toxicity in comparison to control animals. Mechanistic studies demonstrated that the effects of mch1N11 were associated with a dense infiltration of inflammatory cells, particularly granulocytes. This strategy was independent of the adaptive immune system. Together, these data suggest that vascular-targeted strategies directed against exposed PS may be a powerful adjunct to postoperative chemotherapy in preventing relapses after cancer surgery.

  2. [Resistances to targeted therapies and strategy for following therapeutic lines in metastatic NSCLC].

    Science.gov (United States)

    Brosseau, Solenn; Oulkhouir, Youssef; Naltet, Charles; Zalcman, Gérard

    2015-06-01

    EGFR, ALK, ROS1 Tyrosine Kinase Inhibitors (TKis) have changed natural history of 12 to 15% of patients with metastatic Non-Small Cell Lung Cancer (NSCLC) and molecular alterations (mutations or translocations) in these genes. Median Progression Free Survival (PFS) of these patients has increased from 12 months with a platinum-based chemotherapy associated with bevacizumab, to 18 months with TKIs, overall survival reaching several years in these patients. However, rare primary resistance have been described in less than 10% of patients with EGFR or ALK-mutated cancer, whereas secondary resistance occur systematically. New generations TKIs are currently in clinical development, which are active on tumor clones harboring a resistance mutation, and some of them diffuse perfectly well into brain, a classical sanctuary for metastasis. Strategies are developed to delay secondary resistance apparition, to prolong PFS, and then overall survival. These strategies use combinations, as soon as first linesetting, of TKIs with either an anti-angiogenic drug (bevacizumab), or with an immunological checkpoint inhibitors, or with Heat-Shock Protein (Hsp) inhibitors. In order to delay acquired resistance to EGFR TKIs, the French Intergroup (IFCT) has launched a combination trial of EGFR TKIs with an anti-estrogen (fulvestrant) in postmenopausal women, whereas other trials associate EGFR TKIs with EFGR monoclonal antibody cetuximab, or with a monoclonal antibody targeting c-met. Copyright © 2015 Société Françise du Cancer. Publié par Elsevier Masson SAS. Tous droits réservés. Published by Elsevier Masson SAS. All rights reserved.

  3. Multiple polysaccharide-drug complex-loaded liposomes: A unique strategy in drug loading and cancer targeting.

    Science.gov (United States)

    Ruttala, Hima Bindu; Ramasamy, Thiruganesh; Gupta, Biki; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-10-01

    In the present study, a unique strategy was developed to develop nanocarriers containing multiple therapeutics with controlled release characteristics. In this study, we demonstrated the synthesis of dextran sulfate-doxorubicin (DS-DOX) and alginate-cisplatin (AL-CIS) polymer-drug complexes to produce a transferrin ligand-conjugated liposome. The targeted nanoparticles (TL-DDAC) were nano-sized and spherical. The targeted liposome exhibited a specific receptor-mediated endocytic uptake in cancer cells. The enhanced cellular uptake of TL-DDAC resulted in a significantly better anticancer effect in resistant and sensitive breast cancer cells compared to that of the free drugs. Specifically, DOX and CIS at a molar ratio of 1:1 exhibited better therapeutic performance compared to that of other combinations. The combination of an anthracycline-based topoisomerase II inhibitor (DOX) and a platinum compound (CIS) resulted in significantly higher cell apoptosis (early and late) in both types of cancer cells. In conclusion, treatment with DS-DOX and AL-CIS based combination liposomes modified with transferrin (TL-DDAC) was an effective cancer treatment strategy. Further investigation in clinically relevant animal models is warranted to prove the therapeutic efficacy of this unique strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Simulation of targeted pollutant-mitigation-strategies to reduce nitrate and sediment hotspots in agricultural watershed.

    Science.gov (United States)

    Teshager, Awoke Dagnew; Gassman, Philip W; Secchi, Silvia; Schoof, Justin T

    2017-12-31

    About 50% of U.S. water pollution problems are caused by non-point source (NPS) pollution, primarily sediment and nutrients from agricultural areas, despite the widespread implementation of agricultural Best Management Practices (BMPs). However, the effectiveness of implementation strategies and type of BMPs at watershed scale are still not well understood. In this study, the Soil and Water Assessment Tool (SWAT) ecohydrological model was used to assess the effectiveness of pollutant mitigation strategies in the Raccoon River watershed (RRW) in west-central Iowa, USA. We analyzed fourteen management scenarios based on systematic combinations of five strategies: fertilizer/manure management, changing row-crop land to perennial grass, vegetative filter strips, cover crops and shallower tile drainage systems, specifically aimed at reducing nitrate and total suspended sediment yields from hotspot areas in the RRW. Moreover, we assessed implications of climate change on management practices, and the impacts of management practices on water availability, row crop yield, and total agricultural production. Our results indicate that sufficient reduction of nitrate load may require either implementation of multiple management practices (38.5% with current setup) or conversion of extensive areas into perennial grass (up to 49.7%) to meet and maintain the drinking water standard. However, climate change may undermine the effectiveness of management practices, especially late in the 21st century, cutting the reduction by up to 65% for nitrate and more for sediment loads. Further, though our approach is targeted, it resulted in a slight decrease (~5%) in watershed average crop yield and hence an overall reduction in total crop production, mainly due to the conversion of row-crop lands to perennial grass. Such yield reductions could be quite spatially heterogeneously distributed (0 to 40%). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A Framework to Simplify Combined Sampling Strategies in Rosetta.

    Directory of Open Access Journals (Sweden)

    Justin R Porter

    Full Text Available A core task in computational structural biology is the search of conformational space for low energy configurations of a biological macromolecule. Because conformational space has a very high dimensionality, the most successful search methods integrate some form of prior knowledge into a general sampling algorithm to reduce the effective dimensionality. However, integrating multiple types of constraints can be challenging. To streamline the incorporation of diverse constraints, we developed the Broker: an extension of the Rosetta macromolecular modeling suite that can express a wide range of protocols using constraints by combining small, independent modules, each of which implements a different set of constraints. We demonstrate expressiveness of the Broker through several code vignettes. The framework enables rapid protocol development in both biomolecular design and structural modeling tasks and thus is an important step towards exposing the rich functionality of Rosetta's core libraries to a growing community of users addressing a diverse set of tasks in computational biology.

  6. Evaluation of co-benefits from combined climate change and air pollution reduction strategies

    Science.gov (United States)

    Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa

    2014-05-01

    The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined

  7. Targeted Therapy Combined with Immune Modulation Using Gold Nanoparticles for Treating Metastatic Colorectal Cancer

    Science.gov (United States)

    2017-09-01

    stimulate the body’s immune system to target and attack cancer cells. Another part of our research includes coating these gold nanoparticles with...AWARD NUMBER: W81XWH-16-1-0427 TITLE: Targeted Therapy Combined with Immune Modulation Using Gold Nanoparticles for Treating Metastatic Colorectal... Nanoparticles for Treating Metastatic Colorectal Cancer 5b. GRANT NUMBER W81XWH-16-1-0427 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Branden Moriarity, Tim

  8. Prediction of Effective Drug Combinations by Chemical Interaction, Protein Interaction and Target Enrichment of KEGG Pathways

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2013-01-01

    Full Text Available Drug combinatorial therapy could be more effective in treating some complex diseases than single agents due to better efficacy and reduced side effects. Although some drug combinations are being used, their underlying molecular mechanisms are still poorly understood. Therefore, it is of great interest to deduce a novel drug combination by their molecular mechanisms in a robust and rigorous way. This paper attempts to predict effective drug combinations by a combined consideration of: (1 chemical interaction between drugs, (2 protein interactions between drugs’ targets, and (3 target enrichment of KEGG pathways. A benchmark dataset was constructed, consisting of 121 confirmed effective combinations and 605 random combinations. Each drug combination was represented by 465 features derived from the aforementioned three properties. Some feature selection techniques, including Minimum Redundancy Maximum Relevance and Incremental Feature Selection, were adopted to extract the key features. Random forest model was built with its performance evaluated by 5-fold cross-validation. As a result, 55 key features providing the best prediction result were selected. These important features may help to gain insights into the mechanisms of drug combinations, and the proposed prediction model could become a useful tool for screening possible drug combinations.

  9. Prediction of Effective Drug Combinations by Chemical Interaction, Protein Interaction and Target Enrichment of KEGG Pathways

    Science.gov (United States)

    Chen, Lei; Zheng, Ming-Yue; Zhang, Jian; Feng, Kai-Yan; Cai, Yu-Dong

    2013-01-01

    Drug combinatorial therapy could be more effective in treating some complex diseases than single agents due to better efficacy and reduced side effects. Although some drug combinations are being used, their underlying molecular mechanisms are still poorly understood. Therefore, it is of great interest to deduce a novel drug combination by their molecular mechanisms in a robust and rigorous way. This paper attempts to predict effective drug combinations by a combined consideration of: (1) chemical interaction between drugs, (2) protein interactions between drugs' targets, and (3) target enrichment of KEGG pathways. A benchmark dataset was constructed, consisting of 121 confirmed effective combinations and 605 random combinations. Each drug combination was represented by 465 features derived from the aforementioned three properties. Some feature selection techniques, including Minimum Redundancy Maximum Relevance and Incremental Feature Selection, were adopted to extract the key features. Random forest model was built with its performance evaluated by 5-fold cross-validation. As a result, 55 key features providing the best prediction result were selected. These important features may help to gain insights into the mechanisms of drug combinations, and the proposed prediction model could become a useful tool for screening possible drug combinations. PMID:24083237

  10. Combining household income and asset data to identify livelihood strategies and their dynamics

    DEFF Research Database (Denmark)

    Walelign, Solomon Zena; Pouliot, Mariéve; Larsen, Helle Overgaard

    2017-01-01

    choice variables, characterise livelihood strategy clusters, and analyse movements between strategies, and (ii) apply the approach using an environmentally-augmented three-wave household (n = 427) level panel dataset from Nepal. Combining income and asset data provides a better understanding...... of livelihood strategies and household movements between strategies over time than using only income or asset data. Most households changed livelihood strategy at least once over the two three-year periods. A common pathway out of poverty included an intermediate step during which households accumulate assets...

  11. UP Finder: A COBRA toolbox extension for identifying gene overexpression strategies for targeted overproduction

    Directory of Open Access Journals (Sweden)

    Xi Wang

    2017-12-01

    Full Text Available Overexpression of key genes is a basic strategy for overproducing target products via metabolic engineering. Traditionally, identifying those key genes/pathways largely relies on the knowledge of biochemistry and bioinformatics. In this study, a modeling tool named UP Finder was developed to facilitate the rapid identification of gene overexpression strategies. It was based on the COBRA toolbox under MATLAB environment. All the key gene/pathway targets are identified in one click after simply loading a Systems Biology Markup Language model and specifying a metabolite as the targeted product. The outputs are also quantitatively ranked to show the preference for determining overexpression strategies in pathway design. Analysis examples for overproducing lycopene precursor in Escherichia coli and fatty acyl-ACP in the cyanobacterium Synechocystis sp. PCC 6803 by the UP Finder showed high degree of agreement with the reported key genes in the literatures.

  12. UP Finder: A COBRA toolbox extension for identifying gene overexpression strategies for targeted overproduction.

    Science.gov (United States)

    Wang, Xi; Yu, Liang; Chen, Shulin

    2017-12-01

    Overexpression of key genes is a basic strategy for overproducing target products via metabolic engineering. Traditionally, identifying those key genes/pathways largely relies on the knowledge of biochemistry and bioinformatics. In this study, a modeling tool named UP Finder was developed to facilitate the rapid identification of gene overexpression strategies. It was based on the COBRA toolbox under MATLAB environment. All the key gene/pathway targets are identified in one click after simply loading a Systems Biology Markup Language model and specifying a metabolite as the targeted product. The outputs are also quantitatively ranked to show the preference for determining overexpression strategies in pathway design. Analysis examples for overproducing lycopene precursor in Escherichia coli and fatty acyl-ACP in the cyanobacterium Synechocystis sp. PCC 6803 by the UP Finder showed high degree of agreement with the reported key genes in the literatures.

  13. Network target for screening synergistic drug combinations with application to traditional Chinese medicine

    Directory of Open Access Journals (Sweden)

    Zhang Ningbo

    2011-06-01

    Full Text Available Abstract Background Multicomponent therapeutics offer bright prospects for the control of complex diseases in a synergistic manner. However, finding ways to screen the synergistic combinations from numerous pharmacological agents is still an ongoing challenge. Results In this work, we proposed for the first time a “network target”-based paradigm instead of the traditional "single target"-based paradigm for virtual screening and established an algorithm termed NIMS (Network target-based Identification of Multicomponent Synergy to prioritize synergistic agent combinations in a high throughput way. NIMS treats a disease-specific biological network as a therapeutic target and assumes that the relationship among agents can be transferred to network interactions among the molecular level entities (targets or responsive gene products of agents. Then, two parameters in NIMS, Topology Score and Agent Score, are created to evaluate the synergistic relationship between each given agent combinations. Taking the empirical multicomponent system traditional Chinese medicine (TCM as an illustrative case, we applied NIMS to prioritize synergistic agent pairs from 63 agents on a pathological process instanced by angiogenesis. The NIMS outputs can not only recover five known synergistic agent pairs, but also obtain experimental verification for synergistic candidates combined with, for example, a herbal ingredient Sinomenine, which outperforms the meet/min method. The robustness of NIMS was also showed regarding the background networks, agent genes and topological parameters, respectively. Finally, we characterized the potential mechanisms of multicomponent synergy from a network target perspective. Conclusions NIMS is a first-step computational approach towards identification of synergistic drug combinations at the molecular level. The network target-based approaches may adjust current virtual screen mode and provide a systematic paradigm for facilitating the

  14. Optimized nonclinical safety assessment strategies supporting clinical development of therapeutic monoclonal antibodies targeting inflammatory diseases.

    Science.gov (United States)

    Brennan, Frank R; Cauvin, Annick; Tibbitts, Jay; Wolfreys, Alison

    2014-05-01

    An increasing number of immunomodulatory monoclonal antibodies (mAbs) and IgG Fc fusion proteins are either approved or in early-to-late stage clinical trials for the treatment of chronic inflammatory conditions, autoimmune diseases and organ transplant rejection. The exquisite specificity of mAbs, in combination with their multi-functional properties, high potency, long half-life (permitting intermittent dosing and prolonged pharamcological effects), and general lack of off-target toxicity makes them ideal therapeutics. Dosing with mAbs for these severe and debilitating but often non life-threatening diseases is usually prolonged, for several months or years, and not only affects adults, including sensitive populations such as woman of child-bearing potential (WoCBP) and the elderly, but also children. Immunosuppression is usually a therapeutic goal of these mAbs and when administered to patients whose treatment program often involves other immunosuppressive therapies, there is an inherent risk for frank immunosuppression and reduced host defence which when prolonged increases the risk of infection and cancer. In addition when mAbs interact with the immune system they can induce other adverse immune-mediated drug reactions such as infusion reactions, cytokine release syndrome, anaphylaxis, immune-complex-mediated pathology and autoimmunity. An overview of the nonclinical safety assessment and risk mitigation strategies utilized to characterize these immunomodulatory mAbs and Fc fusion proteins to support first-in human (FIH) studies and futher clinical development in inflammatory disease indications is provided. Specific emphasis is placed on the design of studies to qualify animal species for toxicology studies, early studies to investigate safety and define PK/PD relationships, FIH-enabling and chronic toxicology studies, immunotoxicity, developmental, reproductive and juvenile toxicity studies and studies to determine the potential for immunosuppression and

  15. Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections.

    Science.gov (United States)

    Wares, Joanna R; Crivelli, Joseph J; Yun, Chae-Ok; Choi, Il-Kyu; Gevertz, Jana L; Kim, Peter S

    2015-12-01

    Oncolytic viruses (OVs) are used to treat cancer, as they selectively replicate inside of and lyse tumor cells. The efficacy of this process is limited and new OVs are being designed to mediate tumor cell release of cytokines and co-stimulatory molecules, which attract cytotoxic T cells to target tumor cells, thus increasing the tumor-killing effects of OVs. To further promote treatment efficacy, OVs can be combined with other treatments, such as was done by Huang et al., who showed that combining OV injections with dendritic cell (DC) injections was a more effective treatment than either treatment alone. To further investigate this combination, we built a mathematical model consisting of a system of ordinary differential equations and fit the model to the hierarchical data provided from Huang et al. We used the model to determine the effect of varying doses of OV and DC injections and to test alternative treatment strategies. We found that the DC dose given in Huang et al. was near a bifurcation point and that a slightly larger dose could cause complete eradication of the tumor. Further, the model results suggest that it is more effective to treat a tumor with immunostimulatory oncolytic viruses first and then follow-up with a sequence of DCs than to alternate OV and DC injections. This protocol, which was not considered in the experiments of Huang et al., allows the infection to initially thrive before the immune response is enhanced. Taken together, our work shows how the ordering, temporal spacing, and dosage of OV and DC can be chosen to maximize efficacy and to potentially eliminate tumors altogether.

  16. Comparison of current US risk strategy to screen for hepatitis C virus with a hypothetical targeted birth cohort strategy.

    Science.gov (United States)

    Tomaszewski, Kenneth J; Deniz, Baris; Tomanovich, Peter; Graham, Camilla S

    2012-11-01

    We compared the theoretical performance of a 1-time, birth cohort strategy with the currently recommended risk strategy for screening for hepatitis C virus (HCV) infection, which is undetected in an estimated 75% of 4 million affected people in the United States. We applied current American Association for the Study of Liver Disease risk screening guidelines and a targeted birth cohort strategy to National Health and Nutrition Examination Survey data from 2003 to 2006 to estimate their performance in identifying HCV cases. Risk guidelines would recommend testing 25% of the US population aged 20 years or older and, if fully implemented, identify 82% of the projected HCV-exposed population. A targeted birth cohort (1946-1964) strategy would test 45% of the same population and identify 76% of the projected HCV population. In this ideal-world simulation, birth year and risk screening had similar theoretical performances for predicting HCV infection. However, actual implementation of risk screening has not achieved its theoretical performance, and birth cohort screening might increase HCV testing rates.

  17. Discovering thiamine transporters as targets of chloroquine using a novel functional genomics strategy.

    Directory of Open Access Journals (Sweden)

    Zhiwei Huang

    Full Text Available Chloroquine (CQ and other quinoline-containing antimalarials are important drugs with many therapeutic benefits as well as adverse effects. However, the molecular targets underlying most such effects are largely unknown. By taking a novel functional genomics strategy, which employs a unique combination of genome-wide drug-gene synthetic lethality (DGSL, gene-gene synthetic lethality (GGSL, and dosage suppression (DS screens in the model organism Saccharomyces cerevisiae and is thus termed SL/DS for simplicity, we found that CQ inhibits the thiamine transporters Thi7, Nrt1, and Thi72 in yeast. We first discovered a thi3Δ mutant as hypersensitive to CQ using a genome-wide DGSL analysis. Using genome-wide GGSL and DS screens, we then found that a thi7Δ mutation confers severe growth defect in the thi3Δ mutant and that THI7 overexpression suppresses CQ-hypersensitivity of this mutant. We subsequently showed that CQ inhibits the functions of Thi7 and its homologues Nrt1 and Thi72. In particular, the transporter activity of wild-type Thi7 but not a CQ-resistant mutant (Thi7(T287N was completely inhibited by the drug. Similar effects were also observed with other quinoline-containing antimalarials. In addition, CQ completely inhibited a human thiamine transporter (SLC19A3 expressed in yeast and significantly inhibited thiamine uptake in cultured human cell lines. Therefore, inhibition of thiamine uptake is a conserved mechanism of action of CQ. This study also demonstrated SL/DS as a uniquely effective methodology for discovering drug targets.

  18. Nanomedicine strategies for sustained,controlled,and targeted treatment of cancer stem cells of the digestive system

    Institute of Scientific and Technical Information of China (English)

    Fang-Yuan; Xie; Wei-Heng; Xu; Chuan; Yin; Guo-Qing; Zhang; Yan-Qiang; Zhong; Jie; Gao

    2016-01-01

    Cancer stem cells(CSCs) constitute a small proportion of the cancer cells that have self-renewal capacity and tumor-initiating ability.They have been identified in a variety of tumors,including tumors of the digestive system.CSCs exhibit some unique characteristics,which are responsible for cancer metastasis and recurrence.Consequently,the development of effective therapeutic strategies against CSCs plays a key role in increasing the efficacy of cancer therapy.Several potential approaches to target CSCs of the digestive system have been explored,including targeting CSC surface markers and signaling pathways,inducing the differentiation of CSCs,altering the tumor microenvironment or niche,and inhibiting ATP-driven efflux transporters.However,conventional therapies may not successfully eradicate CSCs owing to various problems,including poor solubility,stability,rapid clearance,poor cellular uptake,and unacceptable cytotoxicity.Nanomedicine strategies,which include drug,gene,targeted,and combinational delivery,could solve these problems and significantly improve the therapeutic index.This review briefly summarizes the ongoing development of strategies and nanomedicine-based therapies against CSCs of the digestive system.

  19. Optimization of the Combined Proton Acceleration Regime with a Target Composition Scheme

    CERN Document Server

    Yao, W P; Zheng, C Y; Liu, Z J; Yan, X Q

    2015-01-01

    A target composition scheme to optimize the combined proton acceleration regime is presented and verified by two-dimensional particle-in-cell (2D PIC) simulations by using an ultra-intense circularly-polarized (CP) laser pulse irradiating an overdense hydrocarbon (CH) target, instead of a pure hydrogen (H) one. The combined acceleration regime is a two-stage proton acceleration scheme combining the radiation pressure dominated acceleration (RPDA) stage and the laser wakefield acceleration (LWFA) stage sequentially together. With an ultra-intense CP laser pulse irradiating an overdense CH target, followed by an underdense tritium plasma gas, protons with higher energies (from about $20$ GeV up to about $30$ GeV) and lower energy spreads (from about $18\\%$ down to about $5\\%$ in full-width at half-maximum, or FWHM) are generated, as compared to the use of a pure H target. It is because protons can be more stably pre-accelerated in the first RPDA stage when using CH targets. With the increase of the carbon-to-hy...

  20. International Test Comparisons: Reviewing Translation Error in Different Source Language-Target Language Combinations

    Science.gov (United States)

    Zhao, Xueyu; Solano-Flores, Guillermo; Qian, Ming

    2018-01-01

    This article addresses test translation review in international test comparisons. We investigated the applicability of the theory of test translation error--a theory of the multidimensionality and inevitability of test translation error--across source language-target language combinations in the translation of PISA (Programme of International…

  1. Can Australia eliminate TB? Modelling immigration strategies for reaching MDG targets in a low-transmission setting.

    Science.gov (United States)

    Denholm, Justin T; McBryde, Emma S

    2014-02-01

    The 2050 Millennium Development Goals (MDG) for tuberculosis (TB) aim for elimination of TB as a public health issue. We used a mathematical modelling approach to evaluate the feasibility of this target in a low-prevalence setting with immigration-related strategies directed at latent tuberculosis. We used a stochastic individual-based model to simulate tuberculosis disease among immigrants to Victoria, Australia; a representative low-transmission setting. A variety of screening and treatment approaches aimed at preventing reactivation of latent infection were applied to evaluate overall tuberculosis incidence reduction and rates of multidrug resistant disease. Without additional intervention, tuberculosis incidence was predicted to reach 34.5 cases/million by 2050. Strategies involving the introduction of an available screening/treatment combination reduced TB incidence to between 16.9-23.8 cases/million, and required screening of 136-427 new arrivals for each case of TB prevented. Limiting screening to higher incidence regions of origin was less effective but more efficient. Public health strategies targeting latent tuberculosis infection in immigrants may substantially reduce tuberculosis incidence in a low prevalence region. However, immigration-focused strategies cannot achieve the 2050 MDG and alternative or complementary approaches are required. © 2014 The Authors. ANZJPH © 2014 Public Health Association of Australia.

  2. A Bombesin-Shepherdin Radioconjugate Designed for Combined Extra- and Intracellular Targeting

    Directory of Open Access Journals (Sweden)

    Christiane A. Fischer

    2014-05-01

    Full Text Available Radiolabeled peptides which target tumor-specific membrane structures of cancer cells represent a promising class of targeted radiopharmaceuticals for the diagnosis and therapy of cancer. A potential drawback of a number of reported radiopeptides is the rapid washout of a substantial fraction of the initially delivered radioactivity from cancer cells and tumors. This renders the initial targeting effort in part futile and results in a lower imaging quality and efficacy of the radiotracer than achievable. We are investigating the combination of internalizing radiopeptides with molecular entities specific for an intracellular target. By enabling intracellular interactions of the radioconjugate, we aim at reducing/decelerating the externalization of radioactivity from cancer cells. Using the “click-to-chelate” approach, the 99mTc-tricarbonyl core as a reporter probe for single-photon emission computed tomography (SPECT was combined with the binding sequence of bombesin for extracellular targeting of the gastrin-releasing peptide receptor (GRP-r and peptidic inhibitors of the cytosolic heat shock 90 protein (Hsp90 for intracellular targeting. Receptor-specific uptake of the multifunctional radioconjugate could be confirmed, however, the cellular washout of radioactivity was not improved. We assume that either endosomal trapping or lysosomal degradation of the radioconjugate is accountable for these observations.

  3. ACCOUNTING FOR OPTIONS AND ANALYSIS OF USE OF OPTION COMBINATION STRATEGIES

    Directory of Open Access Journals (Sweden)

    I. Derun

    2016-08-01

    Full Text Available The article deals with problems of accounting for options in Ukraine, namely: value expression of initial cost of options, their revaluation, accounting of premiums, financial assets and financial liabilities and variation margin. The paper offers ways of solution of these problems which based on harmonization with IAS 32, IAS 39, IFRS 7 and IFRS 9. The study considers option combination strategies (straddle, strangle, strap, strip and approaches of identification of possible financial results for investors which use these strategies. Examples of possible financial results are provided for buyers and sellers of options which use option combination strategies.

  4. RGD peptide conjugation results in enhanced antitumor activity of PD0325901 against glioblastoma by both tumor-targeting delivery and combination therapy.

    Science.gov (United States)

    Hou, Jianjun; Diao, Yiping; Li, Wei; Yang, Zhenjun; Zhang, Lihe; Chen, Zili; Wu, Yun

    2016-05-30

    Glioblastoma (GBM) is the most aggressive tumor type in the central nervous system. Both tumor-targeting drug delivery and combination therapy of multiple therapeutic agents with distinct mechanisms are important for GBM treatment. We combined these two strategies and developed a new platform of peptide-drug conjugate (RGD-PEG-Suc-PD0325901, W22) for tumor-targeting delivery using a combination of PD0325901 (a MEK1/2 inhibitor) and RGD peptide. In the present study, the combination of PD0325901 and RGD peptide strongly inhibited U87MG model in vitro and in vivo. This inhibition contributed to synergistic suppression of cell proliferation by blocking ERK pathway activity and cell migration. Modified by conjugation strategy, their conjugate W22 enhanced PD0325901 delivery to GBM cells by receptor mediated cellular internalization. W22 showed great superiority in targeting to U87MG xenografted tumors and strong anti-tumor efficacy based on ERK pathway inhibition and tumor-targeted delivery in vitro and in vivo. Moreover, W22 was stable in serum and able to release PD0325901 in the enzymatic environment. These data indicated that the RGD-PEG-Suc-PD0325901 conjugate provided a strategy for effective delivery of PD0325901 and RGD peptide into the GBM cells and inhibition of tumor growth in a synergistic manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Combining Results from Distinct MicroRNA Target Prediction Tools Enhances the Performance of Analyses.

    Science.gov (United States)

    Oliveira, Arthur C; Bovolenta, Luiz A; Nachtigall, Pedro G; Herkenhoff, Marcos E; Lemke, Ney; Pinhal, Danillo

    2017-01-01

    Target prediction is generally the first step toward recognition of bona fide microRNA (miRNA)-target interactions in living cells. Several target prediction tools are now available, which use distinct criteria and stringency to provide the best set of candidate targets for a single miRNA or a subset of miRNAs. However, there are many false-negative predictions, and consensus about the optimum strategy to select and use the output information provided by the target prediction tools is lacking. We compared the performance of four tools cited in literature-TargetScan (TS), miRanda-mirSVR (MR), Pita, and RNA22 (R22), and we determined the most effective approach for analyzing target prediction data (individual, union, or intersection). For this purpose, we calculated the sensitivity, specificity, precision, and correlation of these approaches using 10 miRNAs (miR-1-3p, miR-17-5p, miR-21-5p, miR-24-3p, miR-29a-3p, miR-34a-5p, miR-124-3p, miR-125b-5p, miR-145-5p, and miR-155-5p) and 1,400 genes (700 validated and 700 non-validated) as targets of these miRNAs. The four tools provided a subset of high-quality predictions and returned few false-positive predictions; however, they could not identify several known true targets. We demonstrate that union of TS/MR and TS/MR/R22 enhanced the quality of in silico prediction analysis of miRNA targets. We conclude that the union rather than the intersection of the aforementioned tools is the best strategy for maximizing performance while minimizing the loss of time and resources in subsequent in vivo and in vitro experiments for functional validation of miRNA-target interactions.

  6. Combined targeting of EGFR-dependent and VEGF-dependent pathways: rationale, preclinical studies and clinical applications.

    Science.gov (United States)

    Tortora, Giampaolo; Ciardiello, Fortunato; Gasparini, Giampietro

    2008-09-01

    Cellular heterogeneity, redundancy of molecular pathways and effects of the microenvironment contribute to the survival, motility and metastasis of cells in solid tumors. It is unlikely that tumors are entirely dependent on only one abnormally activated signaling pathway; consequently, treatment with an agent that interferes with a single target may be insufficient. Combined blockade of functionally linked and relevant multiple targets has become an attractive therapeutic strategy. The EGFR and ERBB2 (HER2) pathways and VEGF-dependent angiogenesis have a pivotal role in cancer pathogenesis and progression. Robust experimental evidence has shown that these pathways are functionally linked and has demonstrated a suggested role for VEGF in the acquired resistance to anti-ERBB drugs when these receptors are pharmacologically blocked. Combined inhibition of ERBB and VEGF signaling interferes with a molecular feedback loop responsible for acquired resistance to anti-ERBB agents and promotes apoptosis while ablating tumor-induced angiogenesis. To this aim, either two agents highly selective against VEGF and ERBB respectively, or, alternatively, a single multitargeted agent, can be used. Preclinical studies have proven the efficacy of both these approaches and early clinical studies have provided encouraging results. This Review discusses the experimental rationale for, preclinical studies of and clinical trials on combined blockade of ERBB and VEGF signaling.

  7. Radar correlated imaging for extended target by the combination of negative exponential restraint and total variation

    Science.gov (United States)

    Qian, Tingting; Wang, Lianlian; Lu, Guanghua

    2017-07-01

    Radar correlated imaging (RCI) introduces the optical correlated imaging technology to traditional microwave imaging, which has raised widespread concern recently. Conventional RCI methods neglect the structural information of complex extended target, which makes the quality of recovery result not really perfect, thus a novel combination of negative exponential restraint and total variation (NER-TV) algorithm for extended target imaging is proposed in this paper. The sparsity is measured by a sequential order one negative exponential function, then the 2D total variation technique is introduced to design a novel optimization problem for extended target imaging. And the proven alternating direction method of multipliers is applied to solve the new problem. Experimental results show that the proposed algorithm could realize high resolution imaging efficiently for extended target.

  8. Non Pharmacological Strategies to Promote Spinal Cord Regeneration: A View on Some Individual or Combined Approaches.

    Science.gov (United States)

    Morales, Ivis-Ibrahim; Toscano-Tejeida, Diana; Ibarra, Antonio

    2016-01-01

    Spinal cord injury (SCI) is a complex condition that can result in functional impairment and paralysis, and occurs more frequently in young men. Several studies tested diverse treatments; however none achieved effective neuronal regeneration or improvement in neural function. Current research is being performed in areas such as cellular therapy (Schwann cells, embryonic stem cells, pluripotent stem cells, mesenchymal stem cells and olfactory cells), growth factors (BDNF), inhibitory molecules, fibroglial scar, gene therapies, etc. Some strategies have provided encouraging results by themselves, others have been tested as a combination, showing an improved outcome after SCI. Combined strategies could be more effective than individual therapies; for instance, cotransplantation of cells at the injury site to maximize their effect has been used, and it has demonstrated a greater efficacy in comparison to grafts of stem cells or of a particular cell type. The combination of neurotrophic factors such as BDNF and NT- 3 enhances axonal regeneration and myelination; other therapies include the use of biological matrices in combination with inhibitors of glial scar formation. Chondroitinase ABC (ChABC) has shown synergistic effects with other strategies, specifically to improve regeneration and functional recovery after SCI. Experimental evidence suggests that it is possible to obtain better results with a combination of strategies, which justifies further research for therapeutic approaches. This review intends to compile the most relevant information about available up-to-date therapeutic strategies that are administered alone or in combination with others, and have offered the best results in neural regeneration after spinal cord injury.

  9. Gene Delivery Particle Engineering Strategies for Shape-dependent Targeting of Cells and Tissues.

    Science.gov (United States)

    Kozielski, Kristen L; Sitti, Metin

    2017-01-01

    Successful gene delivery requires overcoming both systemic and intracellular obstacles before the nucleic acid cargo can successfully reach its tissue and subcellular target location. Materials & Methods: Non-viral mechanisms to enable targeting while avoiding off-target delivery have arisen via biological, chemical, and physical engineering strategies. Herein we will discuss the physical parameters in particle design that promote tissue- and cell-targeted delivery of genetic cargo. We will discuss systemic concerns, such as circulation, tissue localization, and clearance, as well as cell-scale obstacles, such as cellular uptake and nucleic acid packaging. In particular, we will focus on engineering particle shape and size in order to enhance delivery and promote precise targeting. We will also address methods to program or change particle shape in situ using environmentally triggered cues. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Molecular landscape of acquired resistance to targeted therapy combinations in BRAF mutant colorectal cancer

    Science.gov (United States)

    Oddo, Daniele; Sennott, Erin M.; Barault, Ludovic; Valtorta, Emanuele; Arena, Sabrina; Cassingena, Andrea; Filiciotto, Genny; Marzolla, Giulia; Elez, Elena; van Geel, Robin M.J.M.; Bartolini, Alice; Crisafulli, Giovanni; Boscaro, Valentina; Godfrey, Jason T.; Buscarino, Michela; Cancelliere, Carlotta; Linnebacher, Michael; Corti, Giorgio; Truini, Mauro; Siravegna, Giulia; Grasselli, Julieta; Gallicchio, Margherita; Bernards, René; Schellens, Jan H.M.; Tabernero, Josep; Engelman, Jeffrey A.; Sartore-Bianchi, Andrea; Bardelli, Alberto; Siena, Salvatore; Corcoran, Ryan B.; Di Nicolantonio, Federica

    2016-01-01

    Summary Although recent clinical trials of BRAF inhibitor combinations have demonstrated improved efficacy in BRAF mutant colorectal cancer, emergence of acquired resistance limits clinical benefit. Here, we undertook a comprehensive effort to define mechanisms underlying drug resistance with the goal of guiding development of therapeutic strategies to overcome this limitation. We generated a broad panel of BRAF mutant resistant cell line models across seven different clinically-relevant drug combinations. Combinatorial drug treatments were able to abrogate ERK1/2 phosphorylation in parental sensitive cells, but not in their resistant counterparts, indicating that resistant cells escaped drug treatments through one or more mechanisms leading to biochemical reactivation of the MAPK signaling pathway. Genotyping of resistant cells identified gene amplification of EGFR, KRAS and mutant BRAF, as well as acquired mutations in KRAS, EGFR, and MAP2K1. These mechanisms were clinically relevant, as we identified emergence of a KRAS G12C mutation and increase of mutant BRAF V600E allele frequency in the circulating tumor DNA of a patient at relapse from combined treatment with BRAF and MEK inhibitors. In order to identify therapeutic combinations capable of overcoming drug resistance, we performed a systematic assessment of candidate therapies across the panel of resistant cell lines. Independent of the molecular alteration acquired upon drug pressure, most resistant cells retained sensitivity to vertical MAPK pathway suppression when combinations of ERK, BRAF, and EGFR inhibitors were applied. These therapeutic combinations represent promising strategies for future clinical trials in BRAF mutant colorectal cancer. PMID:27312529

  11. 78 FR 14121 - Notice of Availability of Funds and Solicitation for Grant Applications for Strategies Targeting...

    Science.gov (United States)

    2013-03-04

    ... Applications for Strategies Targeting Characteristics Common to Female Ex-Offenders AGENCY: Employment and Training Administration, Labor. ACTION: Notice of Solicitation for Grant Applications (SGA). Funding Opportunity Number: SGA/DFA PY-12-04. SUMMARY: The U.S. Department of Labor (DOL), Employment and Training...

  12. The combination of novel targeted molecular agents and radiation in the treatment of pediatric gliomas

    Directory of Open Access Journals (Sweden)

    Tina eDasgupta

    2013-05-01

    Full Text Available Brain tumors are the most common solid pediatric malignancy. For high-grade, recurrent or refractory pediatric brain tumors, radiation therapy (XRT is an integral treatment modality. In the era of personalized cancer therapy, molecularly targeted agents have been designed to inhibit pathways critical to tumorigenesis. Our evolving knowledge of genetic aberrations in low-grade gliomas is being exploited with targeted inhibitors. These agents are also being combined with XRT to increase their efficacy. In this review, we discuss novel agents targeting three different pathways in low-grade gliomas, and their potential combination with XRT. B-Raf is a kinase in the Ras/Raf/MAPK kinase pathway, which is integral to cellular division, survival and metabolism. In low-grade pediatric gliomas, point mutations in BRAF (BRAF V600E or a BRAF fusion mutation (KIAA1549:BRAF causes overactivation of the MEK/MAPK pathway. Pre-clinical data shows cooperation between XRT and tagrgeted inhibitors of BRAF V600E, and MEK and mTOR inhibitors in the gliomas with the BRAF fusion. A second important signaling cascade in pediatric glioma pathogenesis is the PI3 kinase (PI3K/mTOR pathway. Dual PI3K/mTOR inhibitors are poised to enter studies of pediatric tumors. Finally, many brain tumors express potent stimulators of angiogenesis. Several inhibitors of immunomodulators are currently being evaluated in in clinical trials for the treatment of recurrent or refractory pediatric central nervous system (CNS tumors. In summary, combinations of these targeted inhibitors with radiation are currently under investigation in both translational bench research and early clinical trials. We summarize the molecular rationale for, and the pre-clinical data supporting the combinations of these targeted agents with other anti-cancer agents and XRT in pediatric gliomas. Parallels are drawn to adult gliomas, and the molecular mechanisms underlying the efficacy of these agents is discussed

  13. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    Science.gov (United States)

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.

  14. Combining Compact Representation and Incremental Generation in Large Games with Sequential Strategies

    DEFF Research Database (Denmark)

    Bosansky, Branislav; Xin Jiang, Albert; Tambe, Milind

    2015-01-01

    representation of sequential strategies and linear programming, or by incremental strategy generation of iterative double-oracle methods. In this paper, we present novel hybrid of these two approaches: compact-strategy double-oracle (CS-DO) algorithm that combines the advantages of the compact representation...... with incremental strategy generation. We experimentally compare CS-DO with the standard approaches and analyze the impact of the size of the support on the performance of the algorithms. Results show that CS-DO dramatically improves the convergence rate in games with non-trivial support......Many search and security games played on a graph can be modeled as normal-form zero-sum games with strategies consisting of sequences of actions. The size of the strategy space provides a computational challenge when solving these games. This complexity is tackled either by using the compact...

  15. Targeted and non-targeted effects from combinations of low doses of energetic protons and iron ions in human fibroblasts.

    Science.gov (United States)

    Yang, Hongying; Magpayo, Nicole; Held, Kathryn D

    2011-03-01

    In space, astronauts are exposed to mixed radiation fields consisting of energetic protons and high atomic number, high energy (HZE) particles at low dose rates. Therefore, it is critical to understand effects of combinations of low doses of different radiation types at the cellular level. AG01522 normal human skin fibroblasts and a transwell insert co-culture system were used. Irradiations used were 1 GeV/amu (gigaelectron volt/atomic mass unit) protons and 1 GeV/amu iron (Fe) ions. DNA damage was measured as micronucleus (MN) formation and p53 binding protein 1 (53BP1) foci induction. The same magnitude of DNA damage was induced in cells sequentially exposed to 1 cGy protons and 1 cGy Fe ions as in cells irradiated with either protons or Fe ions alone. The same magnitude of DNA damage was also observed in non-irradiated bystander cells sharing medium with cells irradiated with either 1 cGy protons or iron ions or protons plus iron ions. However, when the 'bystander' cells were exposed to 1 cGy protons up to 3 h before co-culture with Fe ion-irradiated cells, no DNA damage in the 'bystander' cells was observed. These data provide the first evidence of interactions between targeted and non-targeted DNA damage caused by dual exposure to low doses of energetic protons and iron ions.

  16. Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2004-07-14

    The structural genomics project is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy which is medically and biologically relevant, of good value, and tractable. As an option to consider, we present the Pfam5000 strategy, which involves selecting the 5000 most important families from the Pfam database as sources for targets. We compare the Pfam5000 strategy to several other proposed strategies that would require similar numbers of targets. These include including complete solution of several small to moderately sized bacterial proteomes, partial coverage of the human proteome, and random selection of approximately 5000 targets from sequenced genomes. We measure the impact that successful implementation of these strategies would have upon structural interpretation of the proteins in Swiss-Prot, TrEMBL, and 131 complete proteomes (including 10 of eukaryotes) from the Proteome Analysis database at EBI. Solving the structures of proteins from the 5000 largest Pfam families would allow accurate fold assignment for approximately 68 percent of all prokaryotic proteins (covering 59 percent of residues) and 61 percent of eukaryotic proteins (40 percent of residues). More fine-grained coverage which would allow accurate modeling of these proteins would require an order of magnitude more targets. The Pfam5000 strategy may be modified in several ways, for example to focus on larger families, bacterial sequences, or eukaryotic sequences; as long as secondary consideration is given to large families within Pfam, coverage results vary only slightly. In contrast, focusing structural genomics on a single tractable genome would have only a limited impact in structural knowledge of other proteomes: a significant fraction (about 30-40 percent of the proteins, and 40-60 percent of the residues) of each proteome is classified in small

  17. A new disaster victim identification management strategy targeting "near identification-threshold" cases: Experiences from the Boxing Day tsunami.

    Science.gov (United States)

    Wright, Kirsty; Mundorff, Amy; Chaseling, Janet; Forrest, Alexander; Maguire, Christopher; Crane, Denis I

    2015-05-01

    The international disaster victim identification (DVI) response to the Boxing Day tsunami, led by the Royal Thai Police in Phuket, Thailand, was one of the largest and most complex in DVI history. Referred to as the Thai Tsunami Victim Identification operation, the group comprised a multi-national, multi-agency, and multi-disciplinary team. The traditional DVI approach proved successful in identifying a large number of victims quickly. However, the team struggled to identify certain victims due to incomplete or poor quality ante-mortem and post-mortem data. In response to these challenges, a new 'near-threshold' DVI management strategy was implemented to target presumptive identifications and improve operational efficiency. The strategy was implemented by the DNA Team, therefore DNA kinship matches that just failed to reach the reporting threshold of 99.9% were prioritized, however the same approach could be taken by targeting, for example, cases with partial fingerprint matches. The presumptive DNA identifications were progressively filtered through the Investigation, Dental and Fingerprint Teams to add additional information necessary to either strengthen or conclusively exclude the identification. Over a five-month period 111 victims from ten countries were identified using this targeted approach. The new identifications comprised 87 adults, 24 children and included 97 Thai locals. New data from the Fingerprint Team established nearly 60% of the total near-threshold identifications and the combined DNA/Physical method was responsible for over 30%. Implementing the new strategy, targeting near-threshold cases, had positive management implications. The process initiated additional ante-mortem information collections, and established a much-needed, distinct "end-point" for unresolved cases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Combined anti-angiogenic therapy targeting PDGF and VEGF receptors lowers the interstitial fluid pressure in a murine experimental carcinoma.

    Directory of Open Access Journals (Sweden)

    Agnieszka Kłosowska-Wardega

    Full Text Available Elevation of the interstitial fluid pressure (IFP of carcinoma is an obstacle in treatment of tumors by chemotherapy and correlates with poor drug uptake. Previous studies have shown that treatment with inhibitors of platelet-derived growth factor (PDGF or vascular endothelial growth factor (VEGF signaling lowers the IFP of tumors and improve chemotherapy. In this study, we investigated whether the combination of PDGFR and VEGFR inhibitors could further reduce the IFP of KAT-4 human carcinoma tumors. The tumor IFP was measured using the wick-in-needle technique. The combination of STI571 and PTK/ZK gave an additive effect on the lowering of the IFP of KAT-4 tumors, but the timing of the treatment was crucial. The lowering of IFP following combination therapy was accompanied by vascular remodeling and decreased vascular leakiness. The effects of the inhibitors on the therapeutic efficiency of Taxol were investigated. Whereas the anti-PDGF and anti-VEGF treatment did not significantly inhibit tumor growth, the inhibitors enhanced the effect of chemotherapy. Despite having an additive effect in decreasing tumor IFP, the combination therapy did not further enhance the effect of chemotherapy. Simultaneous targeting of VEGFR and PDGFR kinase activity may be a useful strategy to decrease tumor IFP, but the timing of the inhibitors should be carefully determined.

  19. Assessment of soil sealing management responses, strategies, and targets toward ecologically sustainable urban land use management.

    Science.gov (United States)

    Artmann, Martina

    2014-05-01

    Soil sealing has negative impacts on ecosystem services since urban green and soil get lost. Although there is political commitment to stop further sealing, no reversal of this trend can be observed in Europe. This paper raises the questions (1) which strategies can be regarded as being efficient toward ecologically sustainable management of urban soil sealing and (2) who has competences and should take responsibility to steer soil sealing? The analyses are conducted in Germany. The assessment of strategies is carried out using indicators as part of a content analysis. Legal-planning, informal-planning, economic-fiscal, co-operative, and informational strategies are analyzed. Results show that there is a sufficient basis of strategies to secure urban ecosystem services by protecting urban green and reducing urban gray where microclimate regulation is a main target. However, soil sealing management lacks a spatial strategically overview as well as the consideration of services provided by fertile soils.

  20. Combination of Vessel-Targeting Agents and Fractionated Radiation Therapy: The Role of the SDF-1/CXCR4 Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fang-Hsin; Fu, Sheng-Yung [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan (China); Yang, Ying-Chieh [Department of Radiation Oncology, National Taiwan University Hospital Hsin-Chu Branch, Taiwan (China); Wang, Chun-Chieh [Department of Radiation Oncology, Chang Gung Memorial Hospital-LinKou, Taiwan (China); Department of Medical Imaging and Radiological Science, Chang Gung University, Taiwan (China); Chiang, Chi-Shiun, E-mail: cschiang@mx.nthu.edu.tw [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan (China); Hong, Ji-Hong, E-mail: jihong@adm.cgmh.org.tw [Department of Radiation Oncology, Chang Gung Memorial Hospital-LinKou, Taiwan (China); Department of Medical Imaging and Radiological Science, Chang Gung University, Taiwan (China)

    2013-07-15

    Purpose: To investigate vascular responses during fractionated radiation therapy (F-RT) and the effects of targeting pericytes or bone marrow-derived cells (BMDCs) on the efficacy of F-RT. Methods and Materials: Murine prostate TRAMP-C1 tumors were grown in control mice or mice transplanted with green fluorescent protein-tagged bone marrow (GFP-BM), and irradiated with 60 Gy in 15 fractions. Mice were also treated with gefitinib (an epidermal growth factor receptor inhibitor) or AMD3100 (a CXCR4 antagonist) to examine the effects of combination treatment. The responses of tumor vasculatures to these treatments and changes of tumor microenvironment were assessed. Results: After F-RT, the tumor microvascular density (MVD) was reduced; however, the surviving vessels were dilated, incorporated with GFP-positive cells, tightly adhered to pericytes, and well perfused with Hoechst 33342, suggesting a more mature structure formed primarily via vasculogenesis. Although the gefitinib+F-RT combination affected the vascular structure by dissociating pericytes from the vascular wall, it did not further delay tumor growth. These tumors had higher MVD and better vascular perfusion function, leading to less hypoxia and tumor necrosis. By contrast, the AMD3100+F-RT combination significantly enhanced tumor growth delay more than F-RT alone, and these tumors had lower MVD and poorer vascular perfusion function, resulting in increased hypoxia. These tumor vessels were rarely covered by pericytes and free of GFP-positive cells. Conclusions: Vasculogenesis is a major mechanism for tumor vessel survival during F-RT. Complex interactions occur between vessel-targeting agents and F-RT, and a synergistic effect may not always exist. To enhance F-RT, using CXCR4 inhibitor to block BM cell influx and the vasculogenesis process is a better strategy than targeting pericytes by epidermal growth factor receptor inhibitor.

  1. Recent Advances and Strategies in Tumor Vasculature Targeted Nano-Drug Delivery Systems.

    Science.gov (United States)

    Ying, Man; Chen, Guanyu; Lu, Weiyue

    2015-01-01

    In recent decades, targeted nano-drug delivery systems have attracted extensive attention in cancer therapy for their efficient drug delivery and tumor site specificity. Tumor vasculature, including angiogenesis and vasculogenic mimicry is associated tightly with tumor growth, progression and metastasis. Therefore, nano-drug delivery systems targeting tumor vasculature are becoming a promising approach for tumor treatment. As complicated mechanisms and various factors are involved in the tumor vasculature, different ligands modified on the surface of nanocarriers acquire active targeting through binding to the receptors over-expressed by cancer cells or angiogenic endothelial cells. In this review, the tumor vasculature characteristics are briefly described and the recent advances and potential strategies in tumor vasculature targeted nano-drug delivery systems are introduced.

  2. Impact Time Guidance Law Considering Autopilot Dynamics Based on Variable Coefficients Strategy for Maneuvering Target

    Directory of Open Access Journals (Sweden)

    Wei Shang

    2015-01-01

    Full Text Available This paper investigates the terminal guidance problem for the missile intercepting a maneuvering target with impact time constraint. An impact time guidance law based on finite time convergence control theory is developed regarding the target motion as an unknown disturbance. To further improve the performance of the guidance law, an autopilot dynamics which is considered as a first-order lag is taken into consideration. In the proposed method, the coefficients change with the relative distance between missile and target. This variable coefficient strategy ensures that the missile impacts the target at the desired time with little final miss distance. Then it is proved that states of the guidance system converge to sliding mode in finite time under the proposed guidance law. Numerical simulations are presented to demonstrate the effectiveness of the impact time guidance law with autopilot dynamics (ITGAD.

  3. A Combined Cooperative Braking Model with a Predictive Control Strategy in an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Hongqiang Guo

    2013-12-01

    Full Text Available Cooperative braking with regenerative braking and mechanical braking plays an important role in electric vehicles for energy-saving control. Based on the parallel and the series cooperative braking models, a combined model with a predictive control strategy to get a better cooperative braking performance is presented. The balance problem between the maximum regenerative energy recovery efficiency and the optimum braking stability is solved through an off-line process optimization stream with the collaborative optimization algorithm (CO. To carry out the process optimization stream, the optimal Latin hypercube design (Opt LHD is presented to discrete the continuous design space. To solve the poor real-time problem of the optimization, a high-precision predictive model based on the off-line optimization data of the combined model is built, and a predictive control strategy is proposed and verified through simulation. The simulation results demonstrate that the predictive control strategy and the combined model are reasonable and effective.

  4. Modelling the consequences of targeted selective treatment strategies on performance and emergence of anthelmintic resistance amongst grazing calves

    Directory of Open Access Journals (Sweden)

    Zoe Berk

    2016-12-01

    Full Text Available The development of anthelmintic resistance by helminths can be slowed by maintaining refugia on pasture or in untreated hosts. Targeted selective treatments (TST may achieve this through the treatment only of individuals that would benefit most from anthelmintic, according to certain criteria. However TST consequences on cattle are uncertain, mainly due to difficulties of comparison between alternative strategies. We developed a mathematical model to compare: 1 the most ‘beneficial’ indicator for treatment selection and 2 the method of selection of calves exposed to Ostertagia ostertagi, i.e. treating a fixed percentage of the population with the lowest (or highest indicator values versus treating individuals who exceed (or are below a given indicator threshold. The indicators evaluated were average daily gain (ADG, faecal egg counts (FEC, plasma pepsinogen, combined FEC and plasma pepsinogen, versus random selection of individuals. Treatment success was assessed in terms of benefit per R (BPR, the ratio of average benefit in weight gain to change in frequency of resistance alleles R (relative to an untreated population. The optimal indicator in terms of BPR for fixed percentages of calves treated was plasma pepsinogen and the worst ADG; in the latter case treatment was applied to some individuals who were not in need of treatment. The reverse was found when calves were treated according to threshold criteria, with ADG being the best target indicator for treatment. This was also the most beneficial strategy overall, with a significantly higher BPR value than any other strategy, but its degree of success depended on the chosen threshold of the indicator. The study shows strong support for TST, with all strategies showing improvements on calves treated selectively, compared with whole-herd treatment at 3, 8, 13 weeks post-turnout. The developed model appeared capable of assessing the consequences of other TST strategies on calf populations.

  5. Optimal strategies for controlling riverine tsetse flies using targets: a modelling study.

    Directory of Open Access Journals (Sweden)

    Glyn A Vale

    2015-03-01

    Full Text Available Tsetse flies occur in much of sub-Saharan Africa where they transmit the trypanosomes that cause the diseases of sleeping sickness in humans and nagana in livestock. One of the most economical and effective methods of tsetse control is the use of insecticide-treated screens, called targets, that simulate hosts. Targets have been ~1 m2, but recently it was shown that those tsetse that occupy riverine situations, and which are the main vectors of sleeping sickness, respond well to targets only ~0.06 m2. The cheapness of these tiny targets suggests the need to reconsider what intensity and duration of target deployments comprise the most cost-effective strategy in various riverine habitats.A deterministic model, written in Excel spreadsheets and managed by Visual Basic for Applications, simulated the births, deaths and movement of tsetse confined to a strip of riverine vegetation composed of segments of habitat in which the tsetse population was either self-sustaining, or not sustainable unless supplemented by immigrants. Results suggested that in many situations the use of tiny targets at high density for just a few months per year would be the most cost-effective strategy for rapidly reducing tsetse densities by the ~90% expected to have a great impact on the incidence of sleeping sickness. Local elimination of tsetse becomes feasible when targets are deployed in isolated situations, or where the only invasion occurs from populations that are not self-sustaining.Seasonal use of tiny targets deserves field trials. The ability to recognise habitat that contains tsetse populations which are not self-sustaining could improve the planning of all methods of tsetse control, against any species, in riverine, savannah or forest situations. Criteria to assist such recognition are suggested.

  6. Combined Training of One Cognitive and One Metacognitive Strategy Improves Academic Writing Skills

    Science.gov (United States)

    Wischgoll, Anke

    2016-01-01

    Academic writing is a challenging task. Expert writers apply various writing skills as they anticipate the reader’s view of their text while paying attention to structure and content. Research in the high school setting shows that the acquisition of writing skills can be supported by single-strategy training. However, research in higher education is scarce. We tested whether the development of academic writing skills can also be effectively supported by training single strategies or even combined strategies. As metacognition is an important skill for advanced and adult learners, we focused in this study on the benefit of combined cognitive strategies with and without a metacognitive strategy. An experiment including three conditions was conducted (N = 60 German-speaking psychology undergraduates, M = 22.8, SD = 4.4), which lasted for three hours. Each group received a modeling intervention of a basic cognitive strategy on the application of text structure knowledge. Two groups received an additional modeling intervention with either a cognitive strategy treatment on text summarization or a metacognitive strategy treatment on self-monitoring the writing process. One group received no further strategy treatment. Prior knowledge and learning outcomes were measured with a specially developed test on academic writing skills. In addition, all participants wrote an abstract of an empirical article. We found that learners who received the additional self-monitoring strategy intervention benefited significantly more in terms of acquisition of academic writing skills and the quality of their texts than learners who did not receive this intervention. Thus, the results underline the importance of self-monitoring strategies in academic writing. Implications and further research opportunities are discussed. PMID:26941671

  7. Combined training of one cognitive and one metacognitive strategy improves academic writing skills

    Directory of Open Access Journals (Sweden)

    Anke eWischgoll

    2016-02-01

    Full Text Available Academic writing is a challenging task. Expert writers apply various writing skills as they anticipate the reader’s view of their text while paying attention to structure and content. Research in the high school setting shows that the acquisition of writing skills can be supported by single-strategy training. However, research in higher education is scarce. We tested whether the development of academic writing skills can also be effectively supported by training single strategies or even combined strategies. As metacognition is an important skill for advanced and adult learners, we focused in this study on the benefit of combined cognitive strategies with and without a metacognitive strategy. An experiment including three conditions was conducted (N = 60 German-speaking psychology undergraduates, M=22.8, SD=4.4, which lasted for three hours. Each group received a modeling intervention of a basic cognitive strategy on the application of text structure knowledge. Two groups received an additional modeling intervention with either a cognitive strategy treatment on text summarization or a metacognitive strategy treatment on self-monitoring the writing process. One group received no further strategy treatment. Prior knowledge and learning outcomes were measured with a specially developed test on academic writing skills. In addition, all participants wrote an abstract of an empirical article. We found that learners who received the additional self-monitoring strategy intervention benefited significantly more in terms of acquisition of academic writing skills and the quality of their texts than learners who did not receive this intervention. Thus, the results underline the importance of self-monitoring strategies in academic writing. Implications and further research opportunities are discussed.

  8. Combined Training of One Cognitive and One Metacognitive Strategy Improves Academic Writing Skills.

    Science.gov (United States)

    Wischgoll, Anke

    2016-01-01

    Academic writing is a challenging task. Expert writers apply various writing skills as they anticipate the reader's view of their text while paying attention to structure and content. Research in the high school setting shows that the acquisition of writing skills can be supported by single-strategy training. However, research in higher education is scarce. We tested whether the development of academic writing skills can also be effectively supported by training single strategies or even combined strategies. As metacognition is an important skill for advanced and adult learners, we focused in this study on the benefit of combined cognitive strategies with and without a metacognitive strategy. An experiment including three conditions was conducted (N = 60 German-speaking psychology undergraduates, M = 22.8, SD = 4.4), which lasted for three hours. Each group received a modeling intervention of a basic cognitive strategy on the application of text structure knowledge. Two groups received an additional modeling intervention with either a cognitive strategy treatment on text summarization or a metacognitive strategy treatment on self-monitoring the writing process. One group received no further strategy treatment. Prior knowledge and learning outcomes were measured with a specially developed test on academic writing skills. In addition, all participants wrote an abstract of an empirical article. We found that learners who received the additional self-monitoring strategy intervention benefited significantly more in terms of acquisition of academic writing skills and the quality of their texts than learners who did not receive this intervention. Thus, the results underline the importance of self-monitoring strategies in academic writing. Implications and further research opportunities are discussed.

  9. An Integrated Strategy Framework (ISF) for Combining Porter's 5-Forces, Diamond, PESTEL, and SWOT Analysis

    OpenAIRE

    Anton, Roman

    2015-01-01

    INTRODUCTION Porter's Five-Forces, Porter's Diamond, PESTEL, the 6th-Forths, and Humphrey's SWOT analysis are among the most important and popular concepts taught in business schools around the world. A new integrated strategy framework (ISF) combines all major concepts. PURPOSE Porter's Five-Forces, Porter's Diamond, PESTEL, the 6th-Forths, and Humphrey's SWOT analysis are among the most important and popular concepts taught in business schools around the world. A new integrated strategy fr...

  10. Optimal combinations of control strategies and cost-effective analysis for visceral leishmaniasis disease transmission.

    Directory of Open Access Journals (Sweden)

    Santanu Biswas

    Full Text Available Visceral leishmaniasis (VL is a deadly neglected tropical disease that poses a serious problem in various countries all over the world. Implementation of various intervention strategies fail in controlling the spread of this disease due to issues of parasite drug resistance and resistance of sandfly vectors to insecticide sprays. Due to this, policy makers need to develop novel strategies or resort to a combination of multiple intervention strategies to control the spread of the disease. To address this issue, we propose an extensive SIR-type model for anthroponotic visceral leishmaniasis transmission with seasonal fluctuations modeled in the form of periodic sandfly biting rate. Fitting the model for real data reported in South Sudan, we estimate the model parameters and compare the model predictions with known VL cases. Using optimal control theory, we study the effects of popular control strategies namely, drug-based treatment of symptomatic and PKDL-infected individuals, insecticide treated bednets and spray of insecticides on the dynamics of infected human and vector populations. We propose that the strategies remain ineffective in curbing the disease individually, as opposed to the use of optimal combinations of the mentioned strategies. Testing the model for different optimal combinations while considering periodic seasonal fluctuations, we find that the optimal combination of treatment of individuals and insecticide sprays perform well in controlling the disease for the time period of intervention introduced. Performing a cost-effective analysis we identify that the same strategy also proves to be efficacious and cost-effective. Finally, we suggest that our model would be helpful for policy makers to predict the best intervention strategies for specific time periods and their appropriate implementation for elimination of visceral leishmaniasis.

  11. Energy management strategies for combined heat and electric power micro-grid

    Directory of Open Access Journals (Sweden)

    Barbarić Marina

    2016-01-01

    Full Text Available The increasing energy production from variable renewable energy sources such as wind and solar has resulted in several challenges related to the system reliability and efficiency. In order to ensure the supply-demand balance under the conditions of higher variability the micro-grid concept of active distribution networks arising as a promising one. However, to achieve all the potential benefits that micro-gird concept offer, it is important to determine optimal operating strategies for micro-grids. The present paper compares three energy management strategies, aimed at ensuring economical micro-grid operation, to find a compromise between the complexity of strategy and its efficiency. The first strategy combines optimization technique and an additional rule while the second strategy is based on the pure optimization approach. The third strategy uses model based predictive control scheme to take into account uncertainties in renewable generation and energy consumption. In order to compare the strategies with respect to cost effectiveness, a residential micro-grid comprising photovoltaic modules, thermal energy storage system, thermal loads, electrical loads as well as combined heat and power plant, is considered.

  12. Molecular Landscape of Acquired Resistance to Targeted Therapy Combinations in BRAF-Mutant Colorectal Cancer.

    Science.gov (United States)

    Oddo, Daniele; Sennott, Erin M; Barault, Ludovic; Valtorta, Emanuele; Arena, Sabrina; Cassingena, Andrea; Filiciotto, Genny; Marzolla, Giulia; Elez, Elena; van Geel, Robin M J M; Bartolini, Alice; Crisafulli, Giovanni; Boscaro, Valentina; Godfrey, Jason T; Buscarino, Michela; Cancelliere, Carlotta; Linnebacher, Michael; Corti, Giorgio; Truini, Mauro; Siravegna, Giulia; Grasselli, Julieta; Gallicchio, Margherita; Bernards, René; Schellens, Jan H M; Tabernero, Josep; Engelman, Jeffrey A; Sartore-Bianchi, Andrea; Bardelli, Alberto; Siena, Salvatore; Corcoran, Ryan B; Di Nicolantonio, Federica

    2016-08-01

    Although recent clinical trials of BRAF inhibitor combinations have demonstrated improved efficacy in BRAF-mutant colorectal cancer, emergence of acquired resistance limits clinical benefit. Here, we undertook a comprehensive effort to define mechanisms underlying drug resistance with the goal of guiding development of therapeutic strategies to overcome this limitation. We generated a broad panel of BRAF-mutant resistant cell line models across seven different clinically relevant drug combinations. Combinatorial drug treatments were able to abrogate ERK1/2 phosphorylation in parental-sensitive cells, but not in their resistant counterparts, indicating that resistant cells escaped drug treatments through one or more mechanisms leading to biochemical reactivation of the MAPK signaling pathway. Genotyping of resistant cells identified gene amplification of EGFR, KRAS, and mutant BRAF, as well as acquired mutations in KRAS, EGFR, and MAP2K1 These mechanisms were clinically relevant, as we identified emergence of a KRAS G12C mutation and increase of mutant BRAF V600E allele frequency in the circulating tumor DNA of a patient at relapse from combined treatment with BRAF and MEK inhibitors. To identify therapeutic combinations capable of overcoming drug resistance, we performed a systematic assessment of candidate therapies across the panel of resistant cell lines. Independent of the molecular alteration acquired upon drug pressure, most resistant cells retained sensitivity to vertical MAPK pathway suppression when combinations of ERK, BRAF, and EGFR inhibitors were applied. These therapeutic combinations represent promising strategies for future clinical trials in BRAF-mutant colorectal cancer. Cancer Res; 76(15); 4504-15. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia.

    Science.gov (United States)

    Larson, Nate; Gormley, Adam; Frazier, Nick; Ghandehari, Hamidreza

    2013-08-28

    In the field of nanomedicine, selective delivery to cancer cells is a common goal, where active targeting strategies are often employed to increase tumor accumulation. In this study, tumor hyperthermia was utilized as a means to increase the active delivery of heat shock protein (HSP) targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-drug conjugates. Following hyperthermia, induced expression of cell surface heat shock protein (HSP) glucose regulated protein 78 kDa (GRP78) was utilized for targeted drug therapy. Conjugates bearing the anticancer agents aminohexylgeldanamycin (AHGDM), docetaxel (DOC), or cisplatin and the GRP78 targeting peptide WDLAWMFRLPVG were synthesized and characterized. Binding to cell surface expressed heat shock protein GRP78 on the surface of human prostate cancer DU145 cells was evaluated. HSP targeted AHGDM and DOC conjugates demonstrated active binding comparable to native targeting peptide. They were then assessed in vitro for the ability to synergistically induce cytotoxicity in combination with moderate hyperthermia (43 °C, 30 min). HSP targeted DOC conjugates exhibited high potency against DU145 cells with an IC₅₀ of 2.4 nM. HSP targeted AHGDM and DOC conjugates demonstrated synergistic effects in combination with hyperthermia with combination index values of 0.65 and 0.45 respectively. Based on these results, HSP targeted DOC conjugates were selected for in vivo evaluation. In DU145 tumor bearing mice, a single treatment of tumor hyperthermia, induced via gold nanorod mediated plasmonic photothermal therapy, and intravenous administration of HSP targeted HPMA copolymer-docetaxel at 10mg/kg resulted in maintained tumor regression for a period of 30 days. These results demonstrate the potential for tumor hyperthermia to increase the delivery of HSP targeted macromolecular chemotherapeutics. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication.

    Science.gov (United States)

    Zhu, Xiaoli; Sun, Liya; Chen, Yangyang; Ye, Zonghuang; Shen, Zhongming; Li, Genxi

    2013-09-15

    Graphene, a single atom thick and two dimensional carbon nano-material, has been proven to possess many unique properties, one of which is the recent discovery that it can interact with single-stranded DNA through noncovalent π-π stacking. In this work, we demonstrate that a new strategy to fabricate many kinds of biosensors can be developed by combining this property with cascade chemical reactions. Taking the fabrication of glucose sensor as an example, while the detection target, glucose, may regulate the graphene-DNA interaction through three cascade chemical reactions, electrochemical techniques are employed to detect the target-regulated graphene-DNA interaction. Experimental results show that in a range from 5μM to 20mM, the glucose concentration is in a natural logarithm with the logarithm of the amperometric response, suggesting a best detection limit and detection range. The proposed biosensor also shows favorable selectivity, and it has the advantage of no need for labeling. What is more, by controlling the cascade chemical reactions, detection of a variety of other targets may be achieved, thus the strategy proposed in this work may have a wide application potential in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Future Perspectives: Therapeutic Targeting of Notch Signalling May Become a Strategy in Patients Receiving Stem Cell Transplantation for Hematologic Malignancies

    Directory of Open Access Journals (Sweden)

    Elisabeth Ersvaer

    2011-01-01

    Full Text Available The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii receptor-specific agonists or antagonists can be used for immunomodulation; (iii Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects.

  16. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies.

    Science.gov (United States)

    Mangraviti, Antonella; Gullotti, David; Tyler, Betty; Brem, Henry

    2016-10-28

    Despite recent technological advancements and promising preclinical experiments, brain tumor patients are still met with limited treatment options. Some of the barriers to clinical improvements include the systemic toxicity of cytotoxic compounds, the impedance of the blood brain barrier (BBB), and the lack of therapeutic agents that can selectively target the intracranial tumor environment. To overcome such barriers, a number of chemotherapeutic agents and nucleic acid-based therapies are rapidly being synthesized and tested as new brain tumor-targeted delivery strategies. Novel carriers include liposomal and polymeric nanoparticles, wafers, microchips, microparticle-based nanoplatforms and cells-based vectors. Strong preclinical results suggest that these nanotechnologies are set to transform the therapeutic paradigm for brain tumor treatment. In addition to new tumoricidal agents, parallel work is also being conducted on the BBB front. Preclinical testing of chemical and physical modulation strategies is yielding improved intracranial concentrations. New diagnostic and therapeutic imaging techniques, such as high-intensity focused ultrasound and MRI-guided focused ultrasound, are being used to modulate the BBB in a more precise and non-invasive manner. This review details some of the tremendous advances that are being explored in current brain tumor targeted therapies, including local implant development, nanobiotechnology-based delivery strategies, and techniques of BBB manipulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Molecular alterations in signal pathways of melanoma and new personalized treatment strategies: Targeting of Notch

    Directory of Open Access Journals (Sweden)

    Julija Mozūraitienė

    2015-01-01

    Full Text Available Despite modern achievements in therapy of malignant melanomas new treatment strategies are welcomed in clinics for survival of patients. Now it is supposed that personalized molecular therapies for each patient are needed concerning a specificity of molecular alterations in patient's tumors. In human melanoma, Notch signaling interacts with other pathways, including MAPK, PI3K-AKT, NF-kB, and p53. This article discusses mutated genes and leading aberrant signal pathways in human melanoma which are of interest concerning to their perspective for personalized treatment strategies in melanoma. We speculate that E3 ubiquitin ligases MDM2 and MDM4 can be attractive therapeutic target for p53 and Notch signaling pathways in malignant melanoma by using small molecule inhibitors. It is possible that restoration of p53-MDM2-NUMB complexes in melanoma can restore wild type p53 function and positively modulate Notch pathway. In this review we summarize recent data about novel US Food and Drug Administration approved target drugs for metastatic melanoma treatment, and suppose model for treatment strategy by targeting Notch.

  18. Tyrosine kinase receptor inhibitor-targeted combined chemotherapy for metastatic bladder cancer

    Directory of Open Access Journals (Sweden)

    Chia-Lun Wu

    2012-04-01

    increased subG1 in cell cycle was seen in the epirubicin and sunitinib combination treatment group. The activation of apoptosis pathway was confirmed by increased cleaved caspase-3 and cleaved PARP in MBT-2 cells. In tail vein tumor inoculation C3H mice model, epirubicin alone and sunitinib combination therapy decreased tumor growth in lungs with marginal effect. Sunitinib and epirubicin combination had shown a synergistic cytotoxic effect and inhibited cell migration ability in MBT-2 cells. The combination can induce cell cycle arrest at G2/M phase and increase subG1 cells. Metastatic animal study also showed that sunitinib combined with epirubicin has a marginal effect on inhibition of tumor growth of lungs. The tyrosine kinase receptor inhibitor-targeted combined chemotherapy regimen may provide as a new treatment modality for advanced bladder cancer in the future.

  19. Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies

    Directory of Open Access Journals (Sweden)

    Weijia Wang

    2017-12-01

    Full Text Available The cooling efficiency of natural draft dry cooling system (NDDCS are vulnerable to ambient winds, so the implementation of measures against the wind effects is of great importance. This work presents the combined air leading strategies to recover the flow and heat transfer performances of NDDCS. Following the energy balance among the exhaust steam, circulating water, and cooling air, numerical models of natural draft dry cooling systems with the combined air leading strategies are developed. The cooling air streamlines, volume effectiveness, thermal efficiency and outlet water temperature for each cooling delta of the large-scale heat exchanger are obtained. The overall volume effectiveness, average outlet water temperature of NDDCS and steam turbine back pressure are calculated. The results show that with the air leading strategies inside or outside the dry-cooling tower, the thermo-flow performances of natural draft dry cooling system are improved under all wind conditions. The combined inner and outer air leading strategies are superior to other single strategy in the performance recovery, thus can be recommended for NDDCS in power generating units.

  20. Research on Aerospace Cooperative Continuation Observation Strategy for Maritime Moving Target

    Directory of Open Access Journals (Sweden)

    Liang Xingxing

    2016-01-01

    Full Text Available Maritime moving targets continuation observation has important implications to maintain the safety of the navigation barrier. Existing methods either rely on satellite observations, or only rely on UAV observations. Even though the two cooperative observations, it confined to a simple task allocation. They did not solve the problem of maritime moving targets continuation observation. On the basis of difference between satellites observation and UAV observation, we constructed the aerospace collaborative continuation observation model for maritime moving target, and put forward aerospace collaborative continuation observation strategy (ACCOS to reduce the complexity of solving the model. According to the spatial and temporal characteristics of the task, ACCOS extracted five sub problems to solve the model: Satellite planning, UAV flight plan, UAV observation sequence, target potential area and distribution probability density prediction, UAV path planning. In order to realize the optimization goal of the model, the five sub problems are modelled and solved in turn. Finally, the simulation results show that the proposed method can greatly reduce the average observation period of the target, and effectively solve the problem of the continuous observation of maritime moving target.

  1. Carbon Emissions Trading and Combined Heat and Power Strategies: Unintended Consequences

    Science.gov (United States)

    Tysseling, John C.; Vosevich, Mary; Boersma, Benjamin R.; Zumwalt, Jefferey A.

    2009-01-01

    Facility professionals continuously search for projects that reduce energy consumption and operating costs so as to directly benefit their bottom line. Many institutions nationwide have contemplated or made investments in combined heat and power (CHP) projects as a life-cycle strategy to minimize operating costs. However, recent sustainability and…

  2. Nanomedicine strategies for sustained, controlled and targeted treatment of cancer stem cells.

    Science.gov (United States)

    Gao, Jie; Li, Wei; Guo, Yajun; Feng, Si-Shen

    2016-12-01

    Cancer stem cells (CSCs) are original cancer cells that are of characteristics associated with normal stem cells. CSCs are toughest against various treatments and thus responsible for cancer metastasis and recurrence. Therefore, development of specific and effective treatment of CSCs plays a key role in improving survival and life quality of cancer patients, especially those in the metastatic stage. Nanomedicine strategies, which include prodrugs, micelles, liposomes and nanoparticles of biodegradable polymers, could substantially improve the therapeutic index of conventional therapeutics due to its manner of sustained, controlled and targeted delivery of high transportation efficiency across the cell membrane and low elimination by intracellular autophagy, and thus provide a practical solution to solve the problem encountered in CSCs treatment. This review gives briefly the latest information to summarize the concept, strategies, mechanisms and current status as well as future promises of nanomedicine strategies for treatment of CSCs.

  3. System Reliability Evaluation Based on Convex Combination Considering Operation and Maintenance Strategy

    Directory of Open Access Journals (Sweden)

    Lijie Li

    2015-01-01

    Full Text Available The approaches to the system reliability evaluation with respect to the cases, where the components are independent or the components have interactive relationships within the system, were proposed in this paper. Starting from the higher requirements on system operational safety and economy, the reliability focused optimal models of multiobjective maintenance strategies were built. For safety-critical systems, the pessimistic maintenance strategies are usually taken, and, in these cases, the system reliability evaluation has also to be tackled pessimistically. For safety-uncritical systems, the optimistic maintenance strategies were usually taken, and, in these circumstances, the system reliability evaluation had also to be tackled optimistically, respectively. Besides, the reasonable maintenance strategies and their corresponding reliability evaluation can be obtained through the convex combination of the above two cases. With a high-speed train system as the example background, the proposed method is verified by combining the actual failure data with the maintenance data. Results demonstrate that the proposed study can provide a new system reliability calculation method and solution to select and optimize the multiobjective operational strategies with the considerations of system safety and economical requirements. The theoretical basis is also provided for scientifically estimating the reliability of a high-speed train system and formulating reasonable maintenance strategies.

  4. Combined therapy with disintegrin and melphalan as a new strategy in inhibition of endometrial cancer cell line (Ishikawa growth.

    Directory of Open Access Journals (Sweden)

    Wołczyński Sławomir

    2010-01-01

    Full Text Available Endometrial cancer is one of the most frequently diagnosed cancer in females with prevalence of 22 in 100,000 women. The etiology of the cancer remains unclear. Despite significant progress towards understanding the patho-mechanism of the disease, effective treatment is still lacking. The results of the study suggest that combined treatment of Ishikawa cells for 24 h with disintegrin and then for 24 h with melphalan severely inhibits important biological functions of the cells. We showed that such strategy have a potent cytotoxic effect. The mechanism of process undergoes probably through inhibition of integrin - dependent signaling. In this study we shown down regulation of Shc and FAK proteins in cells treated with echistatin and melphalan. It suggests that signaling pathways that involve Shc and FAK participation may represent target for antineoplastic strategy. The functional significance of the combined treatment of Ishikwa cells with echistatin and melphalan was found at the level of collagen biosynthesis. Decreased biosynthesis of collagen in extracellular matrix may suppress cell growth and induce apoptosis. The treatment with echistatin and melphalan also showed decreased expression of IGF receptor in comparison to the cells treated with both compounds separately. The data presented suggest that combined therapy with disintegrin - echistatin and alkyalting drug - mephalan may represent a new approach to more effective and safe cancer therapy.

  5. Mechanistic Insights into Molecular Targeting and Combined Modality Therapy for Aggressive, Localized Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Alan eDal Pra

    2016-02-01

    Full Text Available Radiation therapy (RT is one of the mainstay treatments for prostate cancer (PCa. The potentially curative approaches can provide satisfactory results for many patients with non-metastatic PCa; however, a considerable number of individuals may present disease recurrence and die from the disease. Exploiting the rich molecular biology of PCa will provide insights into how the most resistant tumor cells can be eradicated to improve treatment outcomes. Important for this biology-driven individualized treatment is a robust selection procedure. The development of predictive biomarkers for RT efficacy is therefore of utmost importance for a clinically exploitable strategy to achieve tumor-specific radiosensitization. This review highlights the current status and possible opportunities in the modulation of four key processes to enhance radiation response in PCa by targeting the: I. androgen signaling pathway; II. hypoxic tumor cells and regions; III. DNA damage response (DDR pathway; and IV. abnormal extra/intra-cell signaling pathways. In addition, we discuss how and which patients should be selected for biomarker-based clinical trials exploiting and validating these targeted treatment strategies with precision RT to improve cure rates in non-indolent, localized PCa.

  6. The n-by- T Target Discharge Strategy for Inpatient Units.

    Science.gov (United States)

    Parikh, Pratik J; Ballester, Nicholas; Ramsey, Kylie; Kong, Nan; Pook, Nancy

    2017-07-01

    Ineffective inpatient discharge planning often causes discharge delays and upstream boarding. While an optimal discharge strategy that works across all units at a hospital is likely difficult to identify and implement, a strategy that provides a reasonable target to the discharge team appears feasible. We used observational and retrospective data from an inpatient trauma unit at a Level 2 trauma center in the Midwest US. Our proposed novel n-by-T strategy-discharge n patients by the Tth hour-was evaluated using a validated simulation model. Outcome measures included 2 measures: time-based (mean discharge completion and upstream boarding times) and capacity-based (increase in annual inpatient and upstream bed hours). Data from the pilot implementation of a 2-by-12 strategy at the unit was obtained and analyzed. The model suggested that the 1-by-T and 2-by-T strategies could advance the mean completion times by over 1.38 and 2.72 h, respectively (for 10 AM ≤ T ≤ noon, occupancy rate = 85%); the corresponding mean boarding time reductions were nearly 11% and 15%. These strategies could increase the availability of annual inpatient and upstream bed hours by at least 2,469 and 500, respectively. At 100% occupancy rate, the hospital-favored 2-by-12 strategy reduced the mean boarding time by 26.1%. A pilot implementation of the 2-by-12 strategy at the unit corroborated with the model findings: a 1.98-h advancement in completion times (Pstrategies, such as the n-by-T, can help substantially reduce discharge lateness and upstream boarding, especially during high unit occupancy. To sustain implementation, necessary commitment from the unit staff and physicians is vital, and may require some training.

  7. Hyb-Seq: Combining Target Enrichment and Genome Skimming for Plant Phylogenomics

    Directory of Open Access Journals (Sweden)

    Kevin Weitemier

    2014-08-01

    Full Text Available Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. Methods and Results: Genome and transcriptome assemblies for milkweed (Asclepias syriaca were used to design enrichment probes for 3385 exons from 768 genes (>1.6 Mbp followed by Illumina sequencing of enriched libraries. Hyb-Seq of 12 individuals (10 Asclepias species and two related genera resulted in at least partial assembly of 92.6% of exons and 99.7% of genes and an average assembly length >2 Mbp. Importantly, complete plastomes and nuclear ribosomal DNA cistrons were assembled using off-target reads. Phylogenomic analyses demonstrated signal conflict between genomes. Conclusions: The Hyb-Seq approach enables targeted sequencing of thousands of low-copy nuclear exons and flanking regions, as well as genome skimming of high-copy repeats and organellar genomes, to efficiently produce genome-scale data sets for phylogenomics.

  8. Bioinspired Gold Nanorod Functionalization Strategies for MUC1-Targeted Imaging and Photothermal Therapy

    Science.gov (United States)

    Zelasko-Leon, Daria Cecylia

    The majority of cancers diagnosed in 2016 are epithelial in origin, constituting 85% of all new cases and predicted to account for 78% of all cancer deaths this year. Given these statistics, improving patient outcomes by providing personalized, multimodal, and minimally invasive medical interventions is critically needed. Mucin 1 (MUC1), a transmembrane glycoprotein, extends over 100 nm from cell membranes and is a key marker promoting epithelial carcinogenesis. Due to its antenna-like manifestation, MUC1 is a unique yet underexplored candidate for targeted cancer therapy, with overexpression in >64% of epithelial cancers. To overcome the limitations of existing treatment strategies for epithelial cancer, this dissertation describes a novel platform for nanomedicine, highlighting bioinspired modifications of gold nanorod (AuNR) surfaces for diagnostic cancer imaging and photothermal therapy. An ongoing challenge in the field of nanomedicine is the need for simple and effective strategies for simple surface modification of nanoparticles to facilitate targeting and enhance efficacy. Here, biofunctionalization of AuNRs was achieved with polydopamine (PD) and tannic acid (TA), polyphenolic compounds found in the marine mussel and throughout the plant kingdom that exhibit promiscuous interfacial binding properties. AuNR stabilization was achieved via PD or TA coatings followed by secondary modification with the serum protein, bovine serum albumin (BSA), or glycoprotein-mimetic polymers. The resultant constructs demonstrated good biocompatibility, enabled diagnostic imaging, and facilitated MUC1-specific photothermal treatment of breast and oral cancer cells. The in vivo performance of BSA and PD modified AuNRs was evaluated in two orthotopic animal models of breast cancer. Clinically relevant hyperthermia and high response rates with MUC1-targeted formulations were found, with significant enhancement of progression-free survival and several complete tumor regressions

  9. Optimal combined purchasing strategies for a risk-averse manufacturer under price uncertainty

    Directory of Open Access Journals (Sweden)

    Qiao Wu

    2015-09-01

    Full Text Available Purpose: The purpose of our paper is to analyze optimal purchasing strategies when a manufacturer can buy raw materials from a long-term contract supplier and a spot market under spot price uncertainty. Design/methodology/approach: This procurement model can be solved by using dynamic programming. First, we maximize the DM’s utility of the second period, obtaining the optimal contract quantity and spot quantity for the second period. Then, maximize the DM’s utility of both periods, obtaining the optimal purchasing strategy for the first period. We use a numerical method to compare the performance level of a pure spot sourcing strategy with that of a mixed strategy. Findings: Our results show that optimal purchasing strategies vary with the trend of contract prices. If the contract price falls, the total quantity purchased in period 1 will decrease in the degree of risk aversion. If the contract price increases, the total quantity purchased in period 1 will increase in the degree of risk aversion. The relationship between the optimal contract quantity and the degree of risk aversion depends on whether the expected spot price or the contract price is larger in period 2. Finally, we compare the performance levels between a combined strategy and a spot sourcing strategy. It shows that a combined strategy is optimal for a risk-averse buyer. Originality/value: It’s challenging to deal with a two-period procurement problem with risk consideration. We have obtained results of a two-period procurement problem with two sourcing options, namely contract procurement and spot purchases. Our model incorporates the buyer’s risk aversion factor and the change of contract prices, which are not addressed in early studies.

  10. Modern dose-finding designs for cancer phase I trials drug combinations and molecularly targeted agents

    CERN Document Server

    Hirakawa, Akihiro; Daimon, Takashi; Matsui, Shigeyuki

    2018-01-01

    This book deals with advanced methods for adaptive phase I dose-finding clinical trials for combination of two agents and molecularly targeted agents (MTAs) in oncology. It provides not only methodological aspects of the dose-finding methods, but also software implementations and practical considerations in applying these complex methods to real cancer clinical trials. Thus, the book aims to furnish researchers in biostatistics and statistical science with a good summary of recent developments of adaptive dose-finding methods as well as providing practitioners in biostatistics and clinical investigators with advanced materials for designing, conducting, monitoring, and analyzing adaptive dose-finding trials. The topics in the book are mainly related to cancer clinical trials, but many of those topics are potentially applicable or can be extended to trials for other diseases. The focus is mainly on model-based dose-finding methods for two kinds of phase I trials. One is clinical trials with combinations of tw...

  11. Visually augmented targeted combination light therapy for acne vulgaris: a case report.

    Science.gov (United States)

    Yazdi, Alireza; Lyons, Colin-William; Roberts, Niamh

    2017-10-31

    Acne vulgaris is a common skin disease. Pharmacological modalities for treatment are proven to be efficacious but have limitations. Light therapy for acne vulgaris has shown promise in previous studies. This case report and its accompanying images show how a novel approach of visually augmented high fluence light therapy has been used to good effect. A 26-year-old Caucasian woman with acne vulgaris resistant to treatment with topical therapy underwent three sessions of combination potassium titanyl phosphate laser (532 nm)/neodymium-doped: yttrium aluminum garnet laser (1064 nm) light therapy with visually augmented narrow spot size and high fluence. A 73% reduction in total inflammatory lesions was evident 6 months after the initial treatment. This case report illustrates that there may be utility in this novel approach of narrow spot size, magnification-assisted, high fluence targeted combination laser therapy for inflammatory acne.

  12. Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies

    DEFF Research Database (Denmark)

    Horsman, Michael Robert; Siemann, D.W.

    2006-01-01

    of vascular-targeting agent (VTA) have now emerged: those that prevent the angiogenic development of the neovasculature of the tumor and those that specifically damage the already established tumor vascular supply. When used alone neither approach readily leads to tumor control, and so, for VTAs to be most...... successful in the clinic they will need to be combined with more conventional therapies. However, by affecting the tumor vascular supply, these VTAs should induce pathophysiologic changes in variables, such as blood flow, pH, and oxygenation. Such changes could have negative or positive influences...... on the tumor response to more conventional therapies. This review aims to discuss the pathophysiologic changes induced by VTAs and the implications of these effects on the potential use of VTAs in combined modality therapy....

  13. Comparison of three targeted enrichment strategies on the SOLiD sequencing platform.

    Science.gov (United States)

    Hedges, Dale J; Guettouche, Toumy; Yang, Shan; Bademci, Guney; Diaz, Ashley; Andersen, Ashley; Hulme, William F; Linker, Sara; Mehta, Arpit; Edwards, Yvonne J K; Beecham, Gary W; Martin, Eden R; Pericak-Vance, Margaret A; Zuchner, Stephan; Vance, Jeffery M; Gilbert, John R

    2011-04-29

    Despite the ever-increasing throughput and steadily decreasing cost of next generation sequencing (NGS), whole genome sequencing of humans is still not a viable option for the majority of genetics laboratories. This is particularly true in the case of complex disease studies, where large sample sets are often required to achieve adequate statistical power. To fully leverage the potential of NGS technology on large sample sets, several methods have been developed to selectively enrich for regions of interest. Enrichment reduces both monetary and computational costs compared to whole genome sequencing, while allowing researchers to take advantage of NGS throughput. Several targeted enrichment approaches are currently available, including molecular inversion probe ligation sequencing (MIPS), oligonucleotide hybridization based approaches, and PCR-based strategies. To assess how these methods performed when used in conjunction with the ABI SOLID3+, we investigated three enrichment techniques: Nimblegen oligonucleotide hybridization array-based capture; Agilent SureSelect oligonucleotide hybridization solution-based capture; and Raindance Technologies' multiplexed PCR-based approach. Target regions were selected from exons and evolutionarily conserved areas throughout the human genome. Probe and primer pair design was carried out for all three methods using their respective informatics pipelines. In all, approximately 0.8 Mb of target space was identical for all 3 methods. SOLiD sequencing results were analyzed for several metrics, including consistency of coverage depth across samples, on-target versus off-target efficiency, allelic bias, and genotype concordance with array-based genotyping data. Agilent SureSelect exhibited superior on-target efficiency and correlation of read depths across samples. Nimblegen performance was similar at read depths at 20× and below. Both Raindance and Nimblegen SeqCap exhibited tighter distributions of read depth around the mean, but

  14. Update on the Pfam5000 Strategy for Selection of StructuralGenomics Targets

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2005-06-27

    Structural Genomics is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy that is medically and biologically relevant, of good financial value, and tractable. In 2003, we presented the ''Pfam5000'' strategy, which involves selecting the 5,000 most important families from the Pfam database as sources for targets. In this update, we show that although both the Pfam database and the number of sequenced genomes have increased in size, the expected benefits of the Pfam5000 strategy have not changed substantially. Solving the structures of proteins from the 5,000 largest Pfam families would allow accurate fold assignment for approximately 65 percent of all prokaryotic proteins (covering 54 percent of residues) and 63 percent of eukaryotic proteins (42 percent of residues). Fewer than 2,300 of the largest families on this list remain to be solved, making the project feasible in the next five years given the expected throughput to be achieved in the production phase of the Protein Structure Initiative.

  15. Combination of Chemical Genetics and Phosphoproteomics for Kinase Signaling Analysis Enables Confident Identification of Cellular Downstream Targets*

    Science.gov (United States)

    Oppermann, Felix S.; Grundner-Culemann, Kathrin; Kumar, Chanchal; Gruss, Oliver J.; Jallepalli, Prasad V.; Daub, Henrik

    2012-01-01

    Delineation of phosphorylation-based signaling networks requires reliable data about the underlying cellular kinase-substrate interactions. We report a chemical genetics and quantitative phosphoproteomics approach that encompasses cellular kinase activation in combination with comparative replicate mass spectrometry analyses of cells expressing either inhibitor-sensitive or resistant kinase variant. We applied this workflow to Plk1 (Polo-like kinase 1) in mitotic cells and induced cellular Plk1 activity by wash-out of the bulky kinase inhibitor 3-MB-PP1, which targets a mutant kinase version with an enlarged catalytic pocket while not interfering with wild-type Plk1. We quantified more than 20,000 distinct phosphorylation sites by SILAC, approximately half of which were measured in at least two independent experiments in cells expressing mutant and wild-type Plk1. Based on replicate phosphorylation site quantifications in both mutant and wild-type Plk1 cells, our chemical genetic proteomics concept enabled stringent comparative statistics by significance analysis of microarrays, which unveiled more than 350 cellular downstream targets of Plk1 validated by full concordance of both statistical and experimental data. Our data point to hitherto poorly characterized aspects in Plk1-controlled mitotic progression and provide a largely extended resource for functional studies. We anticipate the described strategies to be of general utility for systematic and confident identification of cellular protein kinase substrates. PMID:22199227

  16. Combination of chemical genetics and phosphoproteomics for kinase signaling analysis enables confident identification of cellular downstream targets.

    Science.gov (United States)

    Oppermann, Felix S; Grundner-Culemann, Kathrin; Kumar, Chanchal; Gruss, Oliver J; Jallepalli, Prasad V; Daub, Henrik

    2012-04-01

    Delineation of phosphorylation-based signaling networks requires reliable data about the underlying cellular kinase-substrate interactions. We report a chemical genetics and quantitative phosphoproteomics approach that encompasses cellular kinase activation in combination with comparative replicate mass spectrometry analyses of cells expressing either inhibitor-sensitive or resistant kinase variant. We applied this workflow to Plk1 (Polo-like kinase 1) in mitotic cells and induced cellular Plk1 activity by wash-out of the bulky kinase inhibitor 3-MB-PP1, which targets a mutant kinase version with an enlarged catalytic pocket while not interfering with wild-type Plk1. We quantified more than 20,000 distinct phosphorylation sites by SILAC, approximately half of which were measured in at least two independent experiments in cells expressing mutant and wild-type Plk1. Based on replicate phosphorylation site quantifications in both mutant and wild-type Plk1 cells, our chemical genetic proteomics concept enabled stringent comparative statistics by significance analysis of microarrays, which unveiled more than 350 cellular downstream targets of Plk1 validated by full concordance of both statistical and experimental data. Our data point to hitherto poorly characterized aspects in Plk1-controlled mitotic progression and provide a largely extended resource for functional studies. We anticipate the described strategies to be of general utility for systematic and confident identification of cellular protein kinase substrates.

  17. Macrophage Polarization: Anti-Cancer Strategies to Target Tumor-Associated Macrophage in Breast Cancer.

    Science.gov (United States)

    Tariq, Muhammad; Zhang, Jieqiong; Liang, Guikai; Ding, Ling; He, Qiaojun; Yang, Bo

    2017-09-01

    Tumor-associated macrophages (TAMs) are the most abundant inflammatory cells and orchestrate different stages of breast cancer development. TAMs participate in the tumor angiogenesis, matrix remodeling, invasion, immunosuppression, metastasis, and chemoresistance in breast cancer. Several clinical studies indicate the association between the high influx of TAMs in tumor with poor prognosis in hepatocellular, ovarian, cervical, and breast cancer. Previously developed hypotheses have proposed that TAMs participate in antitumor responses of the body, while recently many clinical and experimental studies have revealed that TAMs in tumor microenvironment predominantly resemble with M2-like polarized macrophages and produce a high amount of anti-inflammatory factors which are directly responsible for the development of tumor. Various studies have shown that TAMs in tumor either enhance or antagonize the anti-tumor efficacy of cytotoxic agents, antibodies-targeting cancer cells, and therapeutic agents depending on the nature of treatment. Thereby, multiple roles of TAMs suggests that it is very important to develop novel therapeutic strategies to target TAMs in breast tumor. In this review, we have discussed the functional role of TAMs in breast cancer and summarized available recent advances potential therapeutic strategies that effectively target to TAMs cells. J. Cell. Biochem. 118: 2484-2501, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Targeting Neuronal Networks with Combined Drug and Stimulation Paradigms Guided by Neuroimaging to Treat Brain Disorders.

    Science.gov (United States)

    Faingold, Carl L; Blumenfeld, Hal

    2015-10-01

    Improved therapy of brain disorders can be achieved by focusing on neuronal networks, utilizing combined pharmacological and stimulation paradigms guided by neuroimaging. Neuronal networks that mediate normal brain functions, such as hearing, interact with other networks, which is important but commonly neglected. Network interaction changes often underlie brain disorders, including epilepsy. "Conditional multireceptive" (CMR) brain areas (e.g., brainstem reticular formation and amygdala) are critical in mediating neuroplastic changes that facilitate network interactions. CMR neurons receive multiple inputs but exhibit extensive response variability due to milieu and behavioral state changes and are exquisitely sensitive to agents that increase or inhibit GABA-mediated inhibition. Enhanced CMR neuronal responsiveness leads to expression of emergent properties--nonlinear events--resulting from network self-organization. Determining brain disorder mechanisms requires animals that model behaviors and neuroanatomical substrates of human disorders identified by neuroimaging. However, not all sites activated during network operation are requisite for that operation. Other active sites are ancillary, because their blockade does not alter network function. Requisite network sites exhibit emergent properties that are critical targets for pharmacological and stimulation therapies. Improved treatment of brain disorders should involve combined pharmacological and stimulation therapies, guided by neuroimaging, to correct network malfunctions by targeting specific network neurons. © The Author(s) 2015.

  19. EFFICACY OF COMBINED ANTIHYPERTENSIVE THERAPY IN ACHIEVEMENT OF TARGET BLOOD PRESSURE IN DIABETIC PATIENTS

    Directory of Open Access Journals (Sweden)

    O. A. Koshel'skaya

    2015-12-01

    Full Text Available Aim. To evaluate the efficacy of long-term combined antihypertensive therapy (AHT based on renin-angiotensin-aldosterone system (RAAS blockers, indapamide and calcium channel blocker (CCB in hypertensive patients with diabetes mellitus (DM in accordance with target blood pressure (BP <130/80 mm Hg achievement rate, dynamics of 24-hour BP profile, metabolic indices, and local stiffness of the main arteries. Besides, to study the effects of the CCB addition to dual therapy on these parameters. Material and methods. Patients (16 men, 31 women, 57.2±6.6 years old with arterial hypertension degrees 1–3 and mild to moderate DM type 2 were included into the study. The patients were treated with perindopril (5–10 mg/day or valsartan (80–160 mg/day in combination with indapamide SR (1.5 mg/day and amlodipine (5–10 mg/day. Examination included office BP measurement and ambulatory BP monitoring (ABPM, common carotid arteries sonarography , evaluation of serum levels of potassium, creatinine, uric acid, glucose metabolism and lipid profile parameters, calculation of insulin resistance index (HOMA at baseline and after 30–32 weeks of treatment. Results. Target BP was achieved in 86.7% of patients. Evenly reduction of day and night BP without reflex tachycardia and hypotension episodes was observed. Office BP decreased from 149.5±12.0/90.0±8.3 to 125.0±7.6/76.8±4.9 mm Hg (p<0.05 and average daily BP (ABPM decreased to 120.1±10.0/71.7±6.9 mmHg. Three drugs were needed to achieve target BP in baseline systolic BP >150 mm Hg (office or >134 mmHg (ABPM. Marked beneficial effect on the morphological and functional characteristics of the vascular wall and its elastic properties, improvement of glycemic control, tissue insulin sensitivity and lipids profile were found. These effects were associated mainly with amlodipine inclusion into the therapy. Conclusion. The combined AHT based on RAAS blockers, indapamide SR and CCB provides achievement of

  20. EFFICACY OF COMBINED ANTIHYPERTENSIVE THERAPY IN ACHIEVEMENT OF TARGET BLOOD PRESSURE IN DIABETIC PATIENTS

    Directory of Open Access Journals (Sweden)

    O. A. Koshel'skaya

    2012-01-01

    Full Text Available Aim. To evaluate the efficacy of long-term combined antihypertensive therapy (AHT based on renin-angiotensin-aldosterone system (RAAS blockers, indapamide and calcium channel blocker (CCB in hypertensive patients with diabetes mellitus (DM in accordance with target blood pressure (BP <130/80 mm Hg achievement rate, dynamics of 24-hour BP profile, metabolic indices, and local stiffness of the main arteries. Besides, to study the effects of the CCB addition to dual therapy on these parameters. Material and methods. Patients (16 men, 31 women, 57.2±6.6 years old with arterial hypertension degrees 1–3 and mild to moderate DM type 2 were included into the study. The patients were treated with perindopril (5–10 mg/day or valsartan (80–160 mg/day in combination with indapamide SR (1.5 mg/day and amlodipine (5–10 mg/day. Examination included office BP measurement and ambulatory BP monitoring (ABPM, common carotid arteries sonarography , evaluation of serum levels of potassium, creatinine, uric acid, glucose metabolism and lipid profile parameters, calculation of insulin resistance index (HOMA at baseline and after 30–32 weeks of treatment. Results. Target BP was achieved in 86.7% of patients. Evenly reduction of day and night BP without reflex tachycardia and hypotension episodes was observed. Office BP decreased from 149.5±12.0/90.0±8.3 to 125.0±7.6/76.8±4.9 mm Hg (p<0.05 and average daily BP (ABPM decreased to 120.1±10.0/71.7±6.9 mmHg. Three drugs were needed to achieve target BP in baseline systolic BP >150 mm Hg (office or >134 mmHg (ABPM. Marked beneficial effect on the morphological and functional characteristics of the vascular wall and its elastic properties, improvement of glycemic control, tissue insulin sensitivity and lipids profile were found. These effects were associated mainly with amlodipine inclusion into the therapy. Conclusion. The combined AHT based on RAAS blockers, indapamide SR and CCB provides achievement of

  1. Multistrain models predict sequential multidrug treatment strategies to result in less antimicrobial resistance than combination treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo

    2016-01-01

    Background: Combination treatment is increasingly used to fight infections caused by bacteria resistant to two or more antimicrobials. While multiple studies have evaluated treatment strategies to minimize the emergence of resistant strains for single antimicrobial treatment, fewer studies have...... considered combination treatments. The current study modeled bacterial growth in the intestine of pigs after intramuscular combination treatment (i.e. using two antibiotics simultaneously) and sequential treatments (i.e. alternating between two antibiotics) in order to identify the factors that favor...... generated by a mathematical model of the competitive growth of multiple strains of Escherichia coli.Results: Simulation studies showed that sequential use of tetracycline and ampicillin reduced the level of double resistance, when compared to the combination treatment. The effect of the cycling frequency...

  2. [Palbociclib combinations as new therapeutic strategies in the treatment of HR+/HER2- advanced breast cancer].

    Science.gov (United States)

    Boér, Katalin

    2017-06-06

    Until recently, the only endocrine agents used to treat HR+/HER2- advanced breast cancers were tamoxifen, aromatase inhibitors and fulvestrant, although a substantial proportion of patients relapse on these standard therapies. Intensive research has been conducted to develop new strategies to overcome endocrine resistance and to enhance the efficacy of endocrine treatments by combining hormone therapy with other targeted treatment approaches. The development of selective CDK4/6 inhibitors and the introduction of palbociclib, the first molecule in this class in clinical practice, represent an important step in the treatment of HR+ advanced breast cancer. High level evidence supports the use of palbociclib plus letrozole in the treatment of endocrine sensitive breast cancers, or palbociclib plus fulvestrant in tumors that develop acquired resistance to endocrine therapy. These combinations are effective and well tolerated therapeutic modalities. The new combination regimens with palbociclib represent an important addition to the therapeutic armamentarium in locally advanced and metastatic ER+/HER2- breast cancer. The article reviews the current role of palbociclib in combination with endocrine therapy in the therapy of HR+/HER2- advanced breast cancer.

  3. Improving Performance and Operational Stability of Porcine Interferon-α Production by Pichia pastoris with Combinational Induction Strategy of Low Temperature and Methanol/Sorbitol Co-feeding.

    Science.gov (United States)

    Gao, Min-Jie; Zhan, Xiao-Bei; Gao, Peng; Zhang, Xu; Dong, Shi-Juan; Li, Zhen; Shi, Zhong-Ping; Lin, Chi-Chung

    2015-05-01

    Various induction strategies were investigated for effective porcine interferon-α (pIFN-α) production by Pichia pastoris in a 10 L fermenter. We found that pIFN-α concentration could be significantly improved with the strategies of low-temperature induction or methanol/sorbitol co-feeding. On this basis, a combinational strategy of induction at lower temperature (20 °C) with methanol/sorbitol co-feeding has been proposed for improvement of pIFN-α production. The results reveal that maximal pIFN-α concentration and antiviral activity reach the highest level of 2.7 g/L and 1.8 × 10(7) IU/mg with the proposed induction strategy, about 1.3-2.1 folds higher than those obtained with other sub-optimal induction strategies. Metabolic analysis and online multi-variable measurement results indicate that energy metabolic enrichment is responsible for the performance enhancement of pIFN-α production, as a large amount of ATP could be simultaneously produced from both formaldehyde oxidation pathway in methanol metabolism and tricarboxylic acid (TCA) cycle in sorbitol metabolism. In addition, the proposed combinational induction strategy enables P. pastoris to be resistant to high methanol concentration (42 g/L), which conceivably occur associating with the error-prone methanol over-feeding. As a result, the proposed combinational induction strategy simultaneously increased the targeted protein concentration and operational stability leading to significant improvement of pIFN-α production.

  4. Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty

    National Research Council Canada - National Science Library

    Li, Zhongwen; Zang, Chuanzhi; Zeng, Peng; Yu, Haibin

    2016-01-01

    .... In this paper, a combined stochastic programming and receding horizon control (SPRHC) strategy is proposed for microgrid energy management under uncertainty, which combines the advantages of two-stage stochastic programming (SP...

  5. Need for Optimisation of Immunisation Strategies Targeting Invasive Meningococcal Disease in the Netherlands

    Directory of Open Access Journals (Sweden)

    Josefien Cornelie Minthe Bousema

    2015-11-01

    Full Text Available Invasive meningococcal disease (IMD is a severe bacterial infectious disease with high mortality and morbidity rates worldwide. In recent years, industrialised countries have implemented vaccines targeting IMD in their National Immunisation Programmes (NIPs. In 2002, the Netherlands successfully implemented a single dose of meningococcal serogroup C conjugate vaccine at the age of 14 months and performed a single catch-up for children ≤18 years of age. Since then the disease disappeared in vaccinated individuals. Furthermore, herd protection was induced, leading to a significant IMD reduction in non-vaccinated individuals. However, previous studies revealed that the current programmatic immunisation strategy was insufficient to protect the population in the foreseeable future. In addition, vaccines that provide protection against additional serogroups are now available. This paper describes to what extent the current strategy to prevent IMD in the Netherlands is still sufficient, taking into account the burden of disease and the latest scientific knowledge related to IMD and its prevention. In particular, primary MenC immunisation seems not to provide long-term protection, indicating a risk for possible recurrence of the disease. This can be combatted by implementing a MenC or MenACWY adolescent booster vaccine. Additional health benefits can be achieved by replacing the primary MenC by a MenACWY vaccine. By implementation of a recently licensed MenB vaccine for infants in the NIP, the greatest burden of disease would be targeted. This paper shows that optimisation of the immunisation strategy targeting IMD in the Netherlands should be considered and contributes to create awareness concerning prevention optimisation in other countries.

  6. Need for Optimisation of Immunisation Strategies Targeting Invasive Meningococcal Disease in the Netherlands.

    Science.gov (United States)

    Bousema, Josefien Cornelie Minthe; Ruitenberg, Joost

    2015-09-13

    Invasive meningococcal disease (IMD) is a severe bacterial infectious disease with high mortality and morbidity rates worldwide. In recent years, industrialised countries have implemented vaccines targeting IMD in their National Immunisation Programmes (NIPs). In 2002, the Netherlands successfully implemented a single dose of meningococcal serogroup C conjugate vaccine at the age of 14 months and performed a single catch-up for children ≤18 years of age. Since then the disease disappeared in vaccinated individuals. Furthermore, herd protection was induced, leading to a significant IMD reduction in non-vaccinated individuals. However, previous studies revealed that the current programmatic immunisation strategy was insufficient to protect the population in the foreseeable future. In addition, vaccines that provide protection against additional serogroups are now available. This paper describes to what extent the current strategy to prevent IMD in the Netherlands is still sufficient, taking into account the burden of disease and the latest scientific knowledge related to IMD and its prevention. In particular, primary MenC immunisation seems not to provide long-term protection, indicating a risk for possible recurrence of the disease. This can be combatted by implementing a MenC or MenACWY adolescent booster vaccine. Additional health benefits can be achieved by replacing the primary MenC by a MenACWY vaccine. By implementation of a recently licensed MenB vaccine for infants in the NIP, the greatest burden of disease would be targeted. This paper shows that optimisation of the immunisation strategy targeting IMD in the Netherlands should be considered and contributes to create awareness concerning prevention optimisation in other countries. © 2015 by Kerman University of Medical Sciences.

  7. National Cases combining promotion scheme, ownership structure and operational strategy for Denmark, France and Portugal

    DEFF Research Database (Denmark)

    Costa, Ana; Kroff, Pablo; Morthorst, Poul Erik

    2011-01-01

    by means of energy systems analysis and studies on central cases for each of the participating project partners. This document comprises results from Work Package 6 – National Cases combining support schemes, ownership structures and operational strategies of the FC4Home research project. It integrates......The scope of the FC4Home project is to assess technical and economic aspects of the ongoing fuel cell based micro-combined heat and power demonstration projects by addressing the socio-economic and systems analyses perspectives of a large-scale promotion scheme of fuel cells. This was carried out...

  8. Evolution of resistance to targeted anti-cancer therapies during continuous and pulsed administration strategies.

    Directory of Open Access Journals (Sweden)

    Jasmine Foo

    2009-11-01

    Full Text Available The discovery of small molecules targeted to specific oncogenic pathways has revolutionized anti-cancer therapy. However, such therapy often fails due to the evolution of acquired resistance. One long-standing question in clinical cancer research is the identification of optimum therapeutic administration strategies so that the risk of resistance is minimized. In this paper, we investigate optimal drug dosing schedules to prevent, or at least delay, the emergence of resistance. We design and analyze a stochastic mathematical model describing the evolutionary dynamics of a tumor cell population during therapy. We consider drug resistance emerging due to a single (epigenetic alteration and calculate the probability of resistance arising during specific dosing strategies. We then optimize treatment protocols such that the risk of resistance is minimal while considering drug toxicity and side effects as constraints. Our methodology can be used to identify optimum drug administration schedules to avoid resistance conferred by one (epigenetic alteration for any cancer and treatment type.

  9. An Energy-Efficient Target-Tracking Strategy for Mobile Sensor Networks.

    Science.gov (United States)

    Mahboubi, Hamid; Masoudimansour, Walid; Aghdam, Amir G; Sayrafian-Pour, Kamran

    2017-02-01

    In this paper, an energy-efficient strategy is proposed for tracking a moving target in an environment with obstacles, using a network of mobile sensors. Typically, the most dominant sources of energy consumption in a mobile sensor network are sensing, communication, and movement. The proposed algorithm first divides the field into a grid of sufficiently small cells. The grid is then represented by a graph whose edges are properly weighted to reflect the energy consumption of sensors. The proposed technique searches for near-optimal locations for the sensors in different time instants to route information from the target to destination, using a shortest path algorithm. Simulations confirm the efficacy of the proposed algorithm.

  10. Strategies to Target Glucose Metabolism in Tumor Microenvironment on Cancer by Flavonoids.

    Science.gov (United States)

    Wang, Gang; Wang, Jun-Jie; Guan, Rui; Du, Li; Gao, Jing; Fu, Xing-Li

    2017-01-01

    The imbalance between glucose metabolism and cancer cell growth in tumor microenvironment (TME), which are closely related with the occurrence and progression of cancer. Accumulating evidence has demonstrated that flavonoids exert many biological properties, including antioxidant and anticarcinogenic activities. Recently, the roles and applications of flavonoids, particularly in relation to glucose metabolism in cancers, have been highlighted. Thus, the identification of flavonoids targeting alternative glucose metabolism pathways in TME may represent an attractive approach to the more effective therapeutic strategies for cancer. In this review, we will focus on the roles of flavonoids in regulating glucose metabolism and cancer cell growth in TME, such as proliferation advantage, cell mobility, and chemoresistance to cancer, as well as modifiers of thermal sensitivity. Not only have such large-scale endeavors been useful in providing fundamental insights into natural and synthesized flavonoids that can prevent and treat cancer, but also have led to the discovery of potential targets for cancer therapy.

  11. Advanced strategies for end-stage heart failure: combining regenerative approaches with LVAD, a new horizon?

    Directory of Open Access Journals (Sweden)

    Cheyenne eTseng

    2015-04-01

    Full Text Available Despite the improved treatment of cardiovascular diseases the population with end-stage heart failure is progressively growing. The scarcity of the gold standard therapy, heart transplantation, demands novel therapeutic approaches. For patients awaiting transplantation ventricular assist devices have been of great benefit on survival. To allow explantation of the assist device and obviate heart transplantation, sufficient and durable myocardial recovery is necessary. However, explant rates so far are low. Combining mechanical circulatory support with regenerative therapies such as cell(-based therapy and biomaterials might give rise to improved long-term results. Although synergistic effects are suggested with mechanical support and stem cell therapy, evidence in both preclinical and clinical setting is lacking. This review focuses on advanced and innovative strategies for the treatment of end-stage heart failure and furthermore appraises clinical experience with combined strategies.

  12. Preliminary Evidence on the Efficacy of Mindfulness Combined with Traditional Classroom Management Strategies.

    Science.gov (United States)

    Kasson, Erin M; Wilson, Alyssa N

    2017-09-01

    The current case study combined mindfulness-based strategies with a classroom behavior management treatment package, to assist teachers with managing 3rd grade student behaviors. Two teachers (Classroom teacher and Specials teacher) and six students within the same classroom were observed using a 5-min momentary time sampling procedure. A delayed multiple baseline across settings (e.g., Classroom teacher, Specials teacher) design was used to assess student behaviors across baseline (A), classroom behavior management treatment package (CBM) (B), CBM plus mindfulness (C), and CBM plus mindfulness and self-monitoring (D). Behavioral treatment alone increased on-task behaviors for four of six (66%) students compared to baseline; however, five of six (83%) students increased and sustained high rates of on-task behaviors when mindfulness exercises were added to the behavior analytic techniques. These preliminary results support the combination of mindfulness-based strategies with traditional behavior analytic interventions for increasing student on-task behaviors in classroom settings.

  13. Social targets improve body-based and environment-based strategies during spatial navigation.

    Science.gov (United States)

    Kuehn, Esther; Chen, Xiaoli; Geise, Pia; Oltmer, Jan; Wolbers, Thomas

    2018-01-11

    Encoding the position of another person in space is vital for everyday life. Nevertheless, little is known about the specific navigational strategies associated with encoding the position of another person in the wider spatial environment. We asked two groups of participants to learn the location of a target (person or object) during active navigation, while optic flow information, a landmark, or both optic flow information and a landmark were available in a virtual environment. Whereas optic flow information is used for body-based encoding, such as the simulation of motor movements, landmarks are used to form an abstract, disembodied representation of the environment. During testing, we passively moved participants through virtual space, and compared their abilities to correctly decide whether the non-visible target was before or behind them. Using psychometric functions and the Bayes Theorem, we show that both groups assigned similar weights to body-based and environment-based cues in the condition, where both cue types were available. However, the group who was provided with a person as target showed generally reduced position errors compared to the group who was provided with an object as target. We replicated this effect in a second study with novel participants. This indicates a social advantage in spatial encoding, with facilitated processing of both body-based and environment-based cues during spatial navigation when the position of a person is encoded. This may underlie our critical ability to make accurate distance judgments during social interactions, for example, during fight or flight responses.

  14. Combined targeting of MDM2 and CDK4 is synergistic in dedifferentiated liposarcomas.

    Science.gov (United States)

    Laroche-Clary, Audrey; Chaire, Vanessa; Algeo, Marie-Paule; Derieppe, Marie-Alix; Loarer, François L; Italiano, Antoine

    2017-06-19

    MDM2 and CDK4 are frequently co-amplified in well-differentiated/dedifferentiated liposarcoma (WDLPS/DDLPS). We aimed to determine whether combined MDM2/CDK4 targeting is associated with higher antitumour activity than a single agent in preclinical models of DDLPS. DDLPS cells were exposed to RG7388 (MDM2 antagonist) and palbociclib (CDK4 inhibitor), and apoptosis and signalling/survival pathway perturbations were monitored by flow cytometry and Western blotting. Xenograft mouse models were used to assess tumour growth and survival. Treatment efficacy was assessed by Western blotting, histopathology and tumour volume. RG7388 and palbociclib together exerted a greater antitumour effect than either drug alone, with significant differences in cell viability after a 72-h treatment with RG7388 and/or palbociclib. The combination treatment significantly increased apoptosis compared to the single agents. We then analysed the in vivo antitumour activity of RG7388 and palbociclib in a xenograft model of DDLPS. The combination regimen reduced the tumour growth rate compared with a single agent alone and significantly increased the median progression-free survival. Our results provide a strong rationale for evaluating the therapeutic potential of CDK4 inhibitors as potentiators of MDM2 antagonists in DDLPS and justify clinical trials in this setting.

  15. Combined targeting of MDM2 and CDK4 is synergistic in dedifferentiated liposarcomas

    Directory of Open Access Journals (Sweden)

    Audrey Laroche-Clary

    2017-06-01

    Full Text Available Abstract Purpose MDM2 and CDK4 are frequently co-amplified in well-differentiated/dedifferentiated liposarcoma (WDLPS/DDLPS. We aimed to determine whether combined MDM2/CDK4 targeting is associated with higher antitumour activity than a single agent in preclinical models of DDLPS. Experimental design DDLPS cells were exposed to RG7388 (MDM2 antagonist and palbociclib (CDK4 inhibitor, and apoptosis and signalling/survival pathway perturbations were monitored by flow cytometry and Western blotting. Xenograft mouse models were used to assess tumour growth and survival. Treatment efficacy was assessed by Western blotting, histopathology and tumour volume. Results RG7388 and palbociclib together exerted a greater antitumour effect than either drug alone, with significant differences in cell viability after a 72-h treatment with RG7388 and/or palbociclib. The combination treatment significantly increased apoptosis compared to the single agents. We then analysed the in vivo antitumour activity of RG7388 and palbociclib in a xenograft model of DDLPS. The combination regimen reduced the tumour growth rate compared with a single agent alone and significantly increased the median progression-free survival. Conclusions Our results provide a strong rationale for evaluating the therapeutic potential of CDK4 inhibitors as potentiators of MDM2 antagonists in DDLPS and justify clinical trials in this setting.

  16. Combining Prognostic and Predictive Enrichment Strategies to Identify Children With Septic Shock Responsive to Corticosteroids.

    Science.gov (United States)

    Wong, Hector R; Atkinson, Sarah J; Cvijanovich, Natalie Z; Anas, Nick; Allen, Geoffrey L; Thomas, Neal J; Bigham, Michael T; Weiss, Scott L; Fitzgerald, Julie C; Checchia, Paul A; Meyer, Keith; Quasney, Michael; Hall, Mark; Gedeit, Rainer; Freishtat, Robert J; Nowak, Jeffrey; Raj, Shekhar S; Gertz, Shira; Lindsell, Christopher J

    2016-10-01

    Prognostic and predictive enrichment strategies are fundamental tools of precision medicine. Identifying children with septic shock who may benefit from corticosteroids remains a challenge. We combined prognostic and predictive strategies to identify a pediatric septic shock subgroup responsive to corticosteroids. We conducted a secondary analysis of 288 previously published pediatric subjects with septic shock. For prognostic enrichment, each study subject was assigned a baseline mortality probability using the pediatric sepsis biomarker risk model. For predictive enrichment, each study subject was allocated to one of two septic shock endotypes, based on a 100-gene signature reflecting adaptive immunity and glucocorticoid receptor signaling. The primary study endpoint was complicated course, defined as the persistence of two or more organ failures at day 7 of septic shock or 28-day mortality. We used logistic regression to test for an association between corticosteroids and complicated course within endotype. Among endotype B subjects at intermediate to high pediatric sepsis biomarker risk model-based risk of mortality, corticosteroids were independently associated with more than a 10-fold reduction in the risk of a complicated course (relative risk, 0.09; 95% CI, 0.01-0.54; p = 0.007). A combination of prognostic and predictive strategies based on serum protein and messenger RNA biomarkers can identify a subgroup of children with septic shock who may be more likely to benefit from corticosteroids. Prospective validation of these strategies and the existence of this subgroup are warranted.

  17. Assessing the role of alternative response rates and reinforcer rates in resistance to extinction of target responding when combining stimuli.

    Science.gov (United States)

    Podlesnik, Christopher A; Bai, John Y H; Skinner, Katherine A

    2016-05-01

    Studies of behavioral momentum reveal that reinforcing an alternative response in the presence of a target response reduces the rate of target responding but increases its persistence, relative to training the target response on its own. Because of the parallels between these studies and differential-reinforcement techniques to reduce problem behavior in clinical settings, alternative techniques to reduce problem behavior without enhancing its persistence are being explored. One potential solution is to train an alternative response in a separate stimulus context from problem behavior before combining the alternative stimulus with the target stimulus. The present study assessed how differences in reinforcement contingencies and rate for alternative responding influenced resistance to extinction of target responding when combining alternative and target stimuli in pigeons. Across three experiments, alternative stimuli signaling a response-reinforcer dependency and greater reinforcer rates more effectively decreased the persistence of target responding when combining alternative and target stimuli within the same extinction tests, but not when compared across separate extinction tests. Overall, these findings reveal that differences in competition between alternative and target responding produced by contingencies of alternative reinforcement could influence the effectiveness of treating problem behavior through combining stimulus contexts. © 2016 Society for the Experimental Analysis of Behavior.

  18. Nanoparticle delivery of HIF1α siRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer

    OpenAIRE

    Chen, Wei-Hua; Lecaros, Rumwald Leo G.; Tseng, Yu-Cheng; Huang, Leaf; Hsu, Yih-Chih

    2015-01-01

    Combination therapy has become a major strategy in cancer treatment. We used anisamide-targeted lipid–calcium–phosphate (LCP) nanoparticles to efficiently deliver HIF1α siRNA to the cytoplasm of sigma receptor-expressing SCC4 and SAS cells that were also subjected to photodynamic therapy (PDT). HIF1α siRNA nanoparticles effectively reduced HIF1α expression, increased cell death, and significantly inhibited cell growth following photosan-mediated photodynamic therapy in cultured cells. Intrave...

  19. Does the Strategy of Risk Group Testing for Hepatitis C Hit the Target?

    Directory of Open Access Journals (Sweden)

    Mirjana R. Jovanovic

    2017-06-01

    Full Text Available In the European Union, it is estimated that there are 5.5 million individuals with chronic infection of hepatitis C. Intravenous drug abuse is undoubtedly the key source of the hepatitis C epidemic in Europe and the most efficient mode of transmission of HCV infections (primarily due to short incubation time, but also because the virus is introduced directly into the blood stream with the infected needle. Potentially high-risk and vulnerable populations in Europe (and the world include immigrants, prisoners, sex workers, men having sex with men, individuals infected with HIV, psychoactive substance users etc. Since there is a lack of direct evidence of clinical benefits of HCV testing, decisions related to testing are made based on indirect evidence. Clinical practice has shown that HCV antibody tests are mostly adequate for identification of HCV infection, but the problem is that this testing strategy does not hit the target. As a result of this health care system strategy, a large number of infected patients remain undetected or they are diagnosed late. There is only a vague link between screening and treatment outcomes since there is a lack of evidence on transmission risks, multiple causes, risk behavior, ways of reaching screening decisions, treatment efficiency, etc. According to results of limited number of studies it can be concluded that there is a need to develop targeted programmes for detection of HCV and other infections, but there also a need to decrease potential harms.

  20. Does the Strategy of Risk Group Testing for Hepatitis C Hit the Target?

    Science.gov (United States)

    Jovanovic, Mirjana R; Miljatovic, Aleksandar; Puskas, Laslo; Kapor, Slobodan; Puskas, Dijana L

    2017-01-01

    In the European Union, it is estimated that there are 5.5 million individuals with chronic infection of hepatitis C. Intravenous drug abuse is undoubtedly the key source of the hepatitis C epidemic in Europe and the most efficient mode of transmission of HCV infections (primarily due to short incubation time, but also because the virus is introduced directly into the blood stream with the infected needle). Potentially high-risk and vulnerable populations in Europe (and the world) include immigrants, prisoners, sex workers, men having sex with men, individuals infected with HIV, psychoactive substance users etc. Since there is a lack of direct evidence of clinical benefits of HCV testing, decisions related to testing are made based on indirect evidence. Clinical practice has shown that HCV antibody tests are mostly adequate for identification of HCV infection, but the problem is that this testing strategy does not hit the target. As a result of this health care system strategy, a large number of infected patients remain undetected or they are diagnosed late. There is only a vague link between screening and treatment outcomes since there is a lack of evidence on transmission risks, multiple causes, risk behavior, ways of reaching screening decisions, treatment efficiency, etc. According to results of limited number of studies it can be concluded that there is a need to develop targeted programmes for detection of HCV and other infections, but there also a need to decrease potential harms.

  1. Interpreting adjoint and ensemble sensitivity toward the development of optimal observation targeting strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ancell, B.C.; Hakim, G.J. [Univ. of Washington, Seattle, WA (United States)

    2007-12-15

    Two general methods, adjoint or singular vector methods, and ensemble-based methods, have been previously investigated to identify locations where observations would have a significant positive impact on a numerical weather model forecast. In this paper, we perform a basic comparison of targeting regions chosen to reduce the expected variance of a chosen forecast response function within an ensemble Kalman filter (EnKF) based on both an adjoint method and an ensemble method. Ensemble sensitivity is defined by linear regressions of a chosen forecast response function onto the model initial-time state variables, and is used to calculate variance reduction fields to provide targeting guidance for the ensemble-based method. Adjoint sensitivity is used to provide targeting guidance for the adjoint-based method. 90 ensemble forecasts are considered over a 24-hour forecast period, and the response function is chosen to represent the sea-level pressure at a single point in the Pacific Northwest United States. Targeting by ensemble guidance is shown to be a function of ensemble sensitivity and both the initial-time model state and observation variance. We find that large areas of variance reduction exist away from regions of large ensemble sensitivity, adjoint sensitivity, and the initial-time variance of the model state. For hypothetical aircraft observations, ensemble guidance is superior to adjoint guidance for 850 hPa temperature observations in a single case. This advantage increases as the number of flight tracks increases. In all cases, as more flight tracks are considered, diminishing returns on response function variance reduction are realized. Implications of these results for the development of targeting strategies are discussed. (orig.)

  2. Combined targeted treatment in early onset epilepsy associated with tuberous sclerosis

    Directory of Open Access Journals (Sweden)

    Romina Moavero

    2016-01-01

    Full Text Available Tuberous sclerosis is associated with epilepsy in up to 85% of cases, and in 2/3, the onset is within the first year of life. An early antiepileptic treatment is crucial to minimize the consequences of epilepsy on cognition and behavior. We present a case report of a child with tuberous sclerosis who presented with infantile spasms at the age of 6 months, immediately treated with vigabatrin. Because of the presence of a subependymal giant cell astrocytoma, he also received everolimus since 18 months of age. We might wonder if an earlier treatment could have produced a better outcome; in fact, despite a targeted combined treatment, he continues to suffer from sporadic focal motor seizures, and at the age of 40 months, he presents severe developmental delay with autism-like behavior.

  3. A New Strategy to Reduce Influenza Escape: Detecting Therapeutic Targets Constituted of Invariance Groups

    Directory of Open Access Journals (Sweden)

    Julie Lao

    2017-03-01

    Full Text Available The pathogenicity of the different flu species is a real public health problem worldwide. To combat this scourge, we established a method to detect drug targets, reducing the possibility of escape. Besides being able to attach a drug candidate, these targets should have the main characteristic of being part of an essential viral function. The invariance groups that are sets of residues bearing an essential function can be detected genetically. They consist of invariant and synthetic lethal residues (interdependent residues not varying or slightly varying when together. We analyzed an alignment of more than 10,000 hemagglutinin sequences of influenza to detect six invariance groups, close in space, and on the protein surface. In parallel we identified five potential pockets on the surface of hemagglutinin. By combining these results, three potential binding sites were determined that are composed of invariance groups located respectively in the vestigial esterase domain, in the bottom of the stem and in the fusion area. The latter target is constituted of residues involved in the spring-loaded mechanism, an essential step in the fusion process. We propose a model describing how this potential target could block the reorganization of the hemagglutinin HA2 secondary structure and prevent viral entry into the host cell.

  4. Pricing strategies for combination pediatric vaccines based on the lowest overall cost formulary.

    Science.gov (United States)

    Behzad, Banafsheh; Jacobson, Sheldon H; Sewell, Edward C

    2012-10-01

    This paper analyzes pricing strategies for US pediatric combination vaccines by comparing the lowest overall cost formularies (i.e., formularies that have the lowest overall cost). Three pharmaceutical companies compete pairwise over the sale of monovalent and combination vaccines. Particular emphasis is placed on examining the price of Sanofi Pasteur's DTaP-IPV/HIb under different conditions. The main contribution of the paper is to provide the lowest overall cost formularies for different prices of DTaP-IPV/HIb and other Sanofi Pasteur vaccines. The resulting analysis shows that DTaP-IPV/HIb could have been more competitively priced compared with the combination vaccine DTaP-HepB-IPV, for federal contract prices in 2009, 2010 and 2011. This study also proposes the lowest overall cost formularies when shortages of monovalent vaccines occur.

  5. Targeting MTA1/HIF-1α signaling by pterostilbene in combination with histone deacetylase inhibitor attenuates prostate cancer progression.

    Science.gov (United States)

    Butt, Nasir A; Kumar, Avinash; Dhar, Swati; Rimando, Agnes M; Akhtar, Israh; Hancock, John C; Lage, Janice M; Pound, Charles R; Lewin, Jack R; Gomez, Christian R; Levenson, Anait S

    2017-10-10

    The metastasis-associated protein 1(MTA1)/histone deacetylase (HDAC) unit is a cancer progression-related epigenetic regulator, which is overexpressed in hormone-refractory and metastatic prostate cancer (PCa). In our previous studies, we found a significantly increased MTA1 expression in a prostate-specific Pten-null mouse model. We also demonstrated that stilbenes, namely resveratrol and pterostilbene (Pter), affect MTA1/HDAC signaling, including deacetylation of tumor suppressors p53 and PTEN. In this study, we examined whether inhibition of MTA1/HDAC using combination of Pter and a clinically approved HDAC inhibitor, SAHA (suberoylanilide hydroxamic acid, vorinostat), which also downregulates MTA1, could block prostate tumor progression in vivo. We generated and utilized a luciferase reporter in a prostate-specific Pten-null mouse model (Pb-Cre(+) ; Pten(f/f) ; Rosa26(Luc/+) ) to evaluate the anticancer efficacy of Pter/SAHA combinatorial approach. Our data showed that Pter sensitized tumor cells to SAHA treatment resulting in inhibiting tumor growth and additional decline of tumor progression. These effects were dependent on the reduction of MTA1-associated proangiogenic factors HIF-1α, VEGF, and IL-1β leading to decreased angiogenesis. In addition, treatment of PCa cell lines in vitro with combined Pter and low dose SAHA resulted in more potent inhibition of MTA1/HIF-1α than by high dose SAHA alone. Our study provides preclinical evidence that Pter/SAHA combination treatment inhibits MTA1/HIF-1α tumor-promoting signaling in PCa. The beneficial outcome of combinatorial strategy using a natural agent and an approved drug for higher efficacy and less toxicity supports further development of MTA1-targeted therapies in PCa. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  6. Combination therapy targeting Raf-1 and MEK causes apoptosis of HCT116 colon cancer cells.

    Science.gov (United States)

    Subramanian, Romesh R; Yamakawa, Akio

    2012-11-01

    Members of the Ras protooncogene family are mutated in approximately 75% of colon cancers. The Raf kinases (Raf-1, b-Raf and a-Raf) directly interact with Ras and serve as mediators of mitogenic signals. Expression of the constitutively active alleles of Raf or Ras gene families results in oncogenesis in a number of model systems. Previous studies emphasized the importance of Raf-1 and b-Raf in preventing apoptosis in addition to their roles in cell growth. In the present study, we examined whether inhibition of the Raf-1 or b-Raf kinase decreases cell growth and increases apoptosis in colon cancer cells. c-Raf and b-Raf were depleted in colon cancer cell lines, such as HCT116, HT29 and Colo205, containing Ras or b-Raf mutations by RNA interference (RNAi). The results showed that colon cancer cells with activating Ras mutations undergo apoptosis following Raf-1 inhibition, as determined by cell cycle analysis and the release of cytochrome c. Moreover, in b-Raf mutant colon cancers, the inhibition of b-Raf as compared to Raf-1 is crucial for cancer cell death. There is increasing evidence for both MEK-independent Raf signaling and Raf-independent MEK signaling. Thus, we investigated whether targeting multiple points of the mitogen-activated protein kinase (MAPK) pathway with a MEK inhibitor and Raf RNAi increases cancer cell death. The results showed that combination therapy, inhibiting Raf and MEK kinases simultaneously, increased apoptosis in colon cancer cells. Taken together, our data demonstrate that combination therapy targeting the MAPK pathway at two distinct points, Raf kinase and MEK, has greater efficacy in increasing cancer cell death and is likely to improve therapeutic outcomes for patients.

  7. Enhancing Endocrine Therapy Combination Strategies for the Treatment of Postmenopausal HR+/HER2– Advanced Breast Cancer

    Science.gov (United States)

    Chia, Stephen K.; Simmons, Christine; McLeod, Deanna; Paterson, Alexander; Provencher, Louise; Rayson, Daniel

    2016-01-01

    Abstract Breast cancer (BC) is the most common malignancy in women worldwide, with approximately two‐thirds having hormone receptor‐positive (HR+) tumors. New endocrine therapy (ET) strategies include combining ET agents as well as adding inhibitors targeting growth factors, angiogenesis, the mechanistic target of rapamycin, phosphoinositide 3‐kinase (PI3K), or cyclin‐dependent kinase 4/6 to ET. Level 1 evidence supports use of fulvestrant plus anastrozole or palbociclib plus letrozole as first‐line therapy for HR+/HER− advanced BC with special consideration for the former in ET‐naïve patients, as well as everolimus plus exemestane or palbociclib plus fulvestrant as second‐line therapy with special consideration in select first‐line patients. Although the safety profiles of these combinations are generally predictable and manageable, both everolimus and palbociclib are associated with an increased risk of potentially serious or early‐onset toxicities requiring individualized a priori adverse event risk stratification, earlier and more rigorous agent‐specific monitoring, and patient education. Although each of these combinations improves progression‐free survival, none with the exception of anastrazole plus fulvestrant have demonstrated improved overall survival. PI3K catalytic‐α mutations assessed from circulating tumor DNA represent the first potentially viable serum biomarker for the selection of ET combinations, and new data demonstrate the feasibility of this minimally invasive technique as an alternative to traditional tissue analysis. Therapeutic ratios of select ET combinations support their use in first‐ and second‐line settings, but optimal sequencing has yet to be determined. Implications for Practice. Emerging data show that new endocrine therapy (ET) combinations can improve progression‐free and overall survival outcomes in patients with hormone receptor‐positive, HER2‐negative (HR+/HER−) advanced breast cancer

  8. Modeling Human Severe Combined Immunodeficiency and Correction by CRISPR/Cas9-Enhanced Gene Targeting

    Directory of Open Access Journals (Sweden)

    Chia-Wei Chang

    2015-09-01

    Full Text Available Mutations of the Janus family kinase JAK3 gene cause severe combined immunodeficiency (SCID. JAK3 deficiency in humans is characterized by the absence of circulating T cells and natural killer (NK cells with normal numbers of poorly functioning B cells (T–B+NK–. Using SCID patient-specific induced pluripotent stem cells (iPSCs and a T cell in vitro differentiation system, we demonstrate a complete block in early T cell development of JAK3-deficient cells. Correction of the JAK3 mutation by CRISPR/Cas9-enhanced gene targeting restores normal T cell development, including the production of mature T cell populations with a broad T cell receptor (TCR repertoire. Whole-genome sequencing of corrected cells demonstrates no CRISPR/Cas9 off-target modifications. These studies describe an approach for the study of human lymphopoiesis and provide a foundation for gene correction therapy in humans with immunodeficiencies.

  9. Pharmacokinetics and Drug Interactions Determine Optimum Combination Strategies in Computational Models of Cancer Evolution.

    Science.gov (United States)

    Chakrabarti, Shaon; Michor, Franziska

    2017-07-15

    The identification of optimal drug administration schedules to battle the emergence of resistance is a major challenge in cancer research. The existence of a multitude of resistance mechanisms necessitates administering drugs in combination, significantly complicating the endeavor of predicting the evolutionary dynamics of cancers and optimal intervention strategies. A thorough understanding of the important determinants of cancer evolution under combination therapies is therefore crucial for correctly predicting treatment outcomes. Here we developed the first computational strategy to explore pharmacokinetic and drug interaction effects in evolutionary models of cancer progression, a crucial step towards making clinically relevant predictions. We found that incorporating these phenomena into our multiscale stochastic modeling framework significantly changes the optimum drug administration schedules identified, often predicting nonintuitive strategies for combination therapies. We applied our approach to an ongoing phase Ib clinical trial (TATTON) administering AZD9291 and selumetinib to EGFR-mutant lung cancer patients. Our results suggest that the schedules used in the three trial arms have almost identical efficacies, but slight modifications in the dosing frequencies of the two drugs can significantly increase tumor cell eradication. Interestingly, we also predict that drug concentrations lower than the MTD are as efficacious, suggesting that lowering the total amount of drug administered could lower toxicities while not compromising on the effectiveness of the drugs. Our approach highlights the fact that quantitative knowledge of pharmacokinetic, drug interaction, and evolutionary processes is essential for identifying best intervention strategies. Our method is applicable to diverse cancer and treatment types and allows for a rational design of clinical trials. Cancer Res; 77(14); 3908-21. ©2017 AACR. ©2017 American Association for Cancer Research.

  10. Dual targeting of Bcl-2 and VEGF: a potential strategy to improve therapy for prostate cancer.

    Science.gov (United States)

    Anai, Satoshi; Sakamoto, Noboru; Sakai, Yoshihisa; Tanaka, Motoyoshi; Porvasnik, Stacy; Urbanek, Cydney; Cao, Wengang; Goodison, Steve; Rosser, Charles J

    2011-01-01

    We previously demonstrated that Bcl-2 overexpression stimulates angiogenesis in PC-3 human prostate cancer cells, thus giving these tumors a growth advantage. To further elucidate the relationship between Bcl-2 and vascular endothelial growth factor (VEGF) in PC-3-Bcl-2 cells, tumorigenicity and angiogenesis were evaluated in our in vitro and in vivo model treated with antisense Bcl-2 oligodeoxynucleotide (ASO) and bevacizumab. In vitro and in vivo angiogenesis assays, as well as a xenograft tumor model of the human prostate cancer cell line PC-3-Bcl-2, were subjected to ASO alone, bevacizumab alone, or the combination of ASO and bevacizumab. Protein-based assays (e.g., immunohistochemical staining and enzyme-linked immunosorbent assay [ELISA]) were utilized to detect molecular changes. Interestingly, targeting Bcl-2 with ASO resulted in the inhibition of in vitro tube formation and inhibition of angiogenesis in Matrigel plugs similar to treatment with bevacizumab. In our PC-3-Bcl-2 xenograft model, ASO alone resulted in 41% reduction in tumor size, bevacizumab alone resulted in a 50% reduction in tumor size, whereas the combination of ASO with bevacizumab was associated with >95% reduction in tumor volume. Reduction in tumor size in all groups was associated with reduction in Bcl-2 and VEGF expression, induction of apoptosis, and inhibition of angiogenesis and its associated chemokine production. These findings confirm that Bcl-2 is a pivotal target for cancer therapy and thus, further study of this novel combination of Bcl-2 reduction and angiogenic targeting in human tumors is warranted. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Inhibition of mesothelin as a novel strategy for targeting cancer cells.

    Directory of Open Access Journals (Sweden)

    Kun Wang

    Full Text Available Mesothelin, a differentiation antigen present in a series of malignancies such as mesothelioma, ovarian, lung and pancreatic cancer, has been studied as a marker for diagnosis and a target for immunotherapy. We, however, were interested in evaluating the effects of direct targeting of Mesothelin on the viability of cancer cells as the first step towards developing a novel therapeutic strategy. We report here that gene specific silencing for Mesothelin by distinct methods (siRNA and microRNA decreased viability of cancer cells from different origins such as mesothelioma (H2373, ovarian cancer (Skov3 and Ovcar-5 and pancreatic cancer (Miapaca2 and Panc-1. Additionally, the invasiveness of cancer cells was also significantly decreased upon such treatment. We then investigated pro-oncogenic signaling characteristics of cells upon mesothelin-silencing which revealed a significant decrease in phospho-ERK1 and PI3K/AKT activity. The molecular mechanism of reduced invasiveness was connected to the reduced expression of β-Catenin, an important marker of EMT (epithelial-mesenchymal transition. Ero1, a protein involved in clearing unfolded proteins and a member of the ER-Stress (endoplasmic reticulum-stress pathway was also markedly reduced. Furthermore, Mesothelin silencing caused a significant increase in fraction of cancer cells in S-phase. In next step, treatment of ovarian cancer cells (OVca429 with a lentivirus expressing anti-mesothelin microRNA resulted in significant loss of viability, invasiveness, and morphological alterations. Therefore, we propose the inhibition of Mesothelin as a potential novel strategy for targeting human malignancies.

  12. A plethora of virulence strategies hidden behind nuclear targeting of microbial effectors

    Directory of Open Access Journals (Sweden)

    Susana eRivas

    2011-12-01

    Full Text Available Plant immune responses depend on the ability to couple rapid recognition of the invading microbe to an efficient response. During evolution, plant pathogens have acquired the ability to deliver effector molecules inside host cells in order to manipulate cellular and molecular processes and establish pathogenicity. Following translocation into plant cells, microbial effectors may be addressed to different subcellular compartments. Intriguingly, a significant number of effector proteins from different pathogenic microorganisms, including viruses, oomycetes, fungi, nematodes and bacteria, is targeted to the nucleus of host cells. In agreement with this observation, increasing evidence highlights the crucial role played by nuclear dynamics and nucleocytoplasmic protein trafficking during a great variety of analyzed plant-pathogen interactions. Once in the nucleus, effector proteins are able to manipulate host transcription or directly subvert essential host components to promote virulence. Along these lines, it has been suggested that some effectors may affect histone packing and, thereby, chromatin configuration. In addition, microbial effectors may either directly activate transcription or target host transcription factors to alter their regular molecular functions. Alternatively, nuclear translocation of effectors may affect subcellular localization of their cognate resistance proteins in a process that is essential for resistance protein-mediated plant immunity. Here, we review recent progress in our field on the identification of microbial effectors that are targeted to the nucleus of host plant cells. In addition, we discuss different virulence strategies deployed by microbes, which have been uncovered through examination of the mechanisms that guide nuclear localization of effector proteins.

  13. Targeting GPCR-Gβγ-GRK2 signaling as a novel strategy for treating cardiorenal pathologies.

    Science.gov (United States)

    Rudomanova, Valeria; Blaxall, Burns C

    2017-08-01

    The pathologic crosstalk between the heart and kidney is known as cardiorenal syndrome (CRS). While the specific mechanisms underlying this crosstalk remain poorly understood, CRS is associated with exacerbated dysfunction of either or both organs and reduced survival. Maladaptive fibrotic remodeling is a key component of both heart and kidney failure pathogenesis and progression. G-protein coupled receptor (GPCR) signaling is a crucial regulator of cardiovascular and renal function. Chronic/pathologic GPCR signaling elicits the interaction of the G-protein Gβγ subunit with GPCR kinase 2 (GRK2), targeting the receptor for internalization, scaffolding to pathologic signals, and receptor degradation. Targeting this pathologic Gβγ-GRK2 interaction has been suggested as a possible strategy for the treatment of HF. In the current review, we discuss recent updates in understanding the role of GPCR-Gβγ-GRK2 signaling as a crucial mediator of maladaptive organ remodeling detected in HF and kidney dysfunction, with specific attention to small molecule-mediated inhibition of pathologic Gβγ-GRK2 interactions. Further, we explore the potential of GPCR-Gβγ-GRK2 signaling as a possible therapeutic target for cardiorenal pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes1

    Science.gov (United States)

    Stull, Gregory W.; Moore, Michael J.; Mandala, Venkata S.; Douglas, Norman A.; Kates, Heather-Rose; Qi, Xinshuai; Brockington, Samuel F.; Soltis, Pamela S.; Soltis, Douglas E.; Gitzendanner, Matthew A.

    2013-01-01

    • Premise of the study: We explored a targeted enrichment strategy to facilitate rapid and low-cost next-generation sequencing (NGS) of numerous complete plastid genomes from across the phylogenetic breadth of angiosperms. • Methods and Results: A custom RNA probe set including the complete sequences of 22 previously sequenced eudicot plastomes was designed to facilitate hybridization-based targeted enrichment of eudicot plastid genomes. Using this probe set and an Agilent SureSelect targeted enrichment kit, we conducted an enrichment experiment including 24 angiosperms (22 eudicots, two monocots), which were subsequently sequenced on a single lane of the Illumina GAIIx with single-end, 100-bp reads. This approach yielded nearly complete to complete plastid genomes with exceptionally high coverage (mean coverage: 717×), even for the two monocots. • Conclusions: Our enrichment experiment was highly successful even though many aspects of the capture process employed were suboptimal. Hence, significant improvements to this methodology are feasible. With this general approach and probe set, it should be possible to sequence more than 300 essentially complete plastid genomes in a single Illumina GAIIx lane (achieving ∼50× mean coverage). However, given the complications of pooling numerous samples for multiplex sequencing and the limited number of barcodes (e.g., 96) available in commercial kits, we recommend 96 samples as a current practical maximum for multiplex plastome sequencing. This high-throughput approach should facilitate large-scale plastid genome sequencing at any level of phylogenetic diversity in angiosperms. PMID:25202518

  15. Non-target time trend screening: a data reduction strategy for detecting emerging contaminants in biological samples.

    Science.gov (United States)

    Plassmann, Merle M; Tengstrand, Erik; Åberg, K Magnus; Benskin, Jonathan P

    2016-06-01

    Non-targeted mass spectrometry-based approaches for detecting novel xenobiotics in biological samples are hampered by the occurrence of naturally fluctuating endogenous substances, which are difficult to distinguish from environmental contaminants. Here, we investigate a data reduction strategy for datasets derived from a biological time series. The objective is to flag reoccurring peaks in the time series based on increasing peak intensities, thereby reducing peak lists to only those which may be associated with emerging bioaccumulative contaminants. As a result, compounds with increasing concentrations are flagged while compounds displaying random, decreasing, or steady-state time trends are removed. As an initial proof of concept, we created artificial time trends by fortifying human whole blood samples with isotopically labelled standards. Different scenarios were investigated: eight model compounds had a continuously increasing trend in the last two to nine time points, and four model compounds had a trend that reached steady state after an initial increase. Each time series was investigated at three fortification levels and one unfortified series. Following extraction, analysis by ultra performance liquid chromatography high-resolution mass spectrometry, and data processing, a total of 21,700 aligned peaks were obtained. Peaks displaying an increasing trend were filtered from randomly fluctuating peaks using time trend ratios and Spearman's rank correlation coefficients. The first approach was successful in flagging model compounds spiked at only two to three time points, while the latter approach resulted in all model compounds ranking in the top 11 % of the peak lists. Compared to initial peak lists, a combination of both approaches reduced the size of datasets by 80-85 %. Overall, non-target time trend screening represents a promising data reduction strategy for identifying emerging bioaccumulative contaminants in biological samples. Graphical abstract

  16. Final Technical Report: Targeting DOE-Relevant Ions with Supramolecular Strategies, DE-SC0010555

    Energy Technology Data Exchange (ETDEWEB)

    Bowman-James, Kristin [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemistry

    2017-04-13

    The effectiveness of three popular supramolecular strategies to selectively target negatively charged ions (anions) was evaluated. Ions of interest included oxo anions, particularly sulfate, that hamper nuclear waste remediation. Three objectives were pursued using a simple building block strategies and by strategically placing anion-binding sites at appropriate positions on organic host molecules. The goal of the first objective was to assess the influence of secondary, tertiary and quaternized amines on binding tetrahedral anions using mixed amide/amine macrocyclic and urea/amine hosts containing aromatic or heteroaromatic spacers. Objective 2 focused on the design of ion pair hosts, using mixed macrocyclic anion hosts joined through polyether linkages. Objective 3 was to explore the synthesis of new metal-linked extended macrocyclic frameworks to leverage anion binding. Key findings were that smaller 24-membered macrocycles provided the most complementary binding for sulfate ion and mixed urea/amine chelates showed enhanced binding over amide corollaries in addition to being highly selective for SO42- in the presence of small quantities of water. In addition to obtaining prototype metal-linked macrocyclic anion hosts, a new dipincer ligand was designed that can be used to link macrocyclic or other supramolecular hosts in extended frameworks. When the tetraamide-based pincers are bound to two metal ions, an interesting phenomenon occurs. Upon deprotonation of the amides, two new protons appear between adjacent carbonyl pairs on the ligand, which may modify the chemistry, and metal-metal interactions in the complexes. Gel formation occurred for some of these extended hosts, and the physical properties are currently under investigation. The new tetracarboxamide-based pincers can also provide basic frameworks for double macrocycles capable of binding ion pairs as well as for binding metal ions and exploring intermetallic interactions through

  17. Modelling HIV and MTB co-infection including combined treatment strategies.

    Directory of Open Access Journals (Sweden)

    Santosh Ramkissoon

    Full Text Available A new host-pathogen model is described that simulates HIV-MTB co-infection and treatment, with the objective of testing treatment strategies. The model includes CD4+ and CD8+ T cells, resting and activated macrophages, HIV and Mycobacterium tuberculosis (MTB. For TB presentation at various stages of HIV disease in a co-infected individual, combined treatment strategies were tested with different relative timings of treatment for each infection. The stages were early HIV disease, late HIV disease and AIDS. The main strategies were TB treatment followed by anti-retroviral therapy (ART after delays of 15 days, 2 months and 6 months. ART followed by TB treatment was an additional strategy that was tested. Treatment was simulated with and without drug interaction. Simulation results were that TB treatment first followed by ART after a stage-dependent delay has the best outcome. During early HIV disease a 6 month delay is acceptable. During late HIV disease, a 2 month delay is best. During AIDS it is better to start ART after 15 days. However, drug interaction works against the benefits of early ART. These results agree with expert reviews and clinical trials.

  18. Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses.

    Science.gov (United States)

    Lingner, Thomas; Kataya, Amr R; Antonicelli, Gerardo E; Benichou, Aline; Nilssen, Kjersti; Chen, Xiong-Yan; Siemsen, Tanja; Morgenstern, Burkhard; Meinicke, Peter; Reumann, Sigrun

    2011-04-01

    In the postgenomic era, accurate prediction tools are essential for identification of the proteomes of cell organelles. Prediction methods have been developed for peroxisome-targeted proteins in animals and fungi but are missing specifically for plants. For development of a predictor for plant proteins carrying peroxisome targeting signals type 1 (PTS1), we assembled more than 2500 homologous plant sequences, mainly from EST databases. We applied a discriminative machine learning approach to derive two different prediction methods, both of which showed high prediction accuracy and recognized specific targeting-enhancing patterns in the regions upstream of the PTS1 tripeptides. Upon application of these methods to the Arabidopsis thaliana genome, 392 gene models were predicted to be peroxisome targeted. These predictions were extensively tested in vivo, resulting in a high experimental verification rate of Arabidopsis proteins previously not known to be peroxisomal. The prediction methods were able to correctly infer novel PTS1 tripeptides, which even included novel residues. Twenty-three newly predicted PTS1 tripeptides were experimentally confirmed, and a high variability of the plant PTS1 motif was discovered. These prediction methods will be instrumental in identifying low-abundance and stress-inducible peroxisomal proteins and defining the entire peroxisomal proteome of Arabidopsis and agronomically important crop plants.

  19. A Study on Establishing National Technology Strategy of Fusion Energy Development: Combining PEST-SWOT Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Han Soo; Choi, Won Jae; Tho, Hyun Soo; Kang, Dong Yup; Kim, In Chung [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Nuclear fusion, the joining of light nuclei of hydrogen into heavier nuclei of helium, has potential environmental, safety and proliferation characteristics as an energy source. It can also, provide an adequate amount of fuel to power civilization for a long time compared to human history. It is, however, more challenging to convert to an energy source than nuclear fission. To overcome this, Korea enacted a law to promote the development of fusion as an energy source in 2007. In accordance with this law, the government will establish a promotion plan to develop fusion energy, including policy goals, a framework, strategies, infrastructure, funding, human resources, international cooperation and etc. This will be reviewed every five years. This paper is focused on the combining PEST (political, economic, social and technological) method with SWOT (strength, weakness, opportunity and threat) analysis, which is a prerequisite to form national fusion energy technology strategy

  20. An integrated strategy combining DNA walking and NGS to detect GMOs.

    Science.gov (United States)

    Fraiture, Marie-Alice; Herman, Philippe; Papazova, Nina; De Loose, Marc; Deforce, Dieter; Ruttink, Tom; Roosens, Nancy H

    2017-10-01

    Recently, we developed a DNA walking system for the detection and characterization of a broad spectrum of GMOs in routine analysis of food/feed matrices. Here, we present a new version with improved throughput and sensitivity by coupling the DNA walking system to Pacific Bioscience® Next-generation sequencing technology. The performance of the new strategy was thoroughly assessed through several assays. First, we tested its detection and identification capability on grains with high or low GMO content. Second, the potential impacts of food processing were investigated using rice noodle samples. Finally, GMO mixtures and a real-life sample were analyzed to illustrate the applicability of the proposed strategy in routine GMO analysis. In all tested samples, the presence of multiple GMOs was unambiguously proven by the characterization of transgene flanking regions and the combinations of elements that are typical for transgene constructs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Reliably Detecting Clinically Important Variants Requires Both Combined Variant Calls and Optimized Filtering Strategies.

    Directory of Open Access Journals (Sweden)

    Matthew A Field

    Full Text Available A diversity of tools is available for identification of variants from genome sequence data. Given the current complexity of incorporating external software into a genome analysis infrastructure, a tendency exists to rely on the results from a single tool alone. The quality of the output variant calls is highly variable however, depending on factors such as sequence library quality as well as the choice of short-read aligner, variant caller, and variant caller filtering strategy. Here we present a two-part study first using the high quality 'genome in a bottle' reference set to demonstrate the significant impact the choice of aligner, variant caller, and variant caller filtering strategy has on overall variant call quality and further how certain variant callers outperform others with increased sample contamination, an important consideration when analyzing sequenced cancer samples. This analysis confirms previous work showing that combining variant calls of multiple tools results in the best quality resultant variant set, for either specificity or sensitivity, depending on whether the intersection or union, of all variant calls is used respectively. Second, we analyze a melanoma cell line derived from a control lymphocyte sample to determine whether software choices affect the detection of clinically important melanoma risk-factor variants finding that only one of the three such variants is unanimously detected under all conditions. Finally, we describe a cogent strategy for implementing a clinical variant detection pipeline; a strategy that requires careful software selection, variant caller filtering optimizing, and combined variant calls in order to effectively minimize false negative variants. While implementing such features represents an increase in complexity and computation the results offer indisputable improvements in data quality.

  2. [Combined behavioural and neuroscientific insights can improve anti-tobacco strategies].

    Science.gov (United States)

    Soriano, Alice; Rieu, Dorothée; Oullier, Olivier

    2013-11-01

    In France, cognitive science (e.g., eye-tracking) and neuroscience (e.g., functional neuroimaging) are not used to develop and test anti-tobacco strategies. The newly found knowledge in behavioral and brain sciences could provide valuable insights in the understanding of attentional, emotional, memorization and decision-making processes at play when tobacco addicts are exposed to prevention messages. We argue that neuroscientific methods should be used in the fight against tobacco to better design and evaluate the impact of measures such as combined text and graphic (shock) warnings, neutral packets and support to people who want to stop smoking. © 2013 médecine/sciences – Inserm.

  3. Novel receptor tyrosine kinase targeted combination therapies for imatinib-resistant gastrointestinal stromal tumors (GIST).

    Science.gov (United States)

    Mahadevan, Daruka; Theiss, Noah; Morales, Carla; Stejskal, Amy E; Cooke, Laurence S; Zhu, Min; Kurtzman, Drew; Swart, Rachel; Ong, Evan; Qi, Wenqing

    2015-02-10

    c-Kit/α-PDGFR targeted therapies are effective for gastrointestinal stromal tumors (GIST), but, >50% develop drug resistance. RTK expression (c-Kit, c-Met, AXL, HER-1, HER-2, IGF-1R) in pre-/post-imatinib (IM) GIST patient samples (n=16) and 4 GIST cell lines were examined for RTK inhibitor activity. GIST-882 cells were cultured in IM every other day, cells collected (1 week to 6 months) and analyzed by qRT-PCR and Western blotting. Immunohistochemistry pre-/post-IM demonstrated continued expression of c-Kit and HER1, while a subset expressed IGF-1R, c-Met and AXL. In GIST cells (GIST-882, GIST430/654, GIST48) c-Kit, HER1 and c-Met are co-expressed. Acute IM over-express c-Kit while chronic IM, lose c-Kit and HER-1 in GIST882 cells. GIST882 and GIST430/654 cells have an IC50 0.077 and 0.59 µM to IM respectively. GIST48 have an IC50 0.66 µM to IM, 0.91 µM to amuvatinib [AMU] and 0.67 µM to erlotinib (Erl). Synergistic combinations: GIST882, AMU + Erl (CI 0.20); IM + AMU (CI 0.50), GIST430/654, IM + afatinib (CI 0.39); IM + AMU (CI 0.42), GIST48, IM + afatinib (CI 0.03); IM + AMU (CI 0.04); AMU + afatinib (CI 0.36); IM + Erl (CI 0.63). Targeting c-Kit plus HER1 or AXL/c-Met abrogates IM resistance in GIST.

  4. Use of Ultrasound Pulses Combined with Definity for Targeted Blood-Brain Barrier Disruption

    Science.gov (United States)

    McDannold, Nathan; Vykhodtseva, Natalia; Hynynen, Kullervo

    2007-05-01

    We have developed a method to combine an ultrasound contrast agent (USCA) with low-intensity focused ultrasound pulses combined to produce temporary blood-brain barrier disruption (BBBD), a potential non-invasive means for targeted drug delivery in the brain. All of our previous work used the USCA Optison. The purpose of this work was to test the feasibility of using the USCA Definity for BBBD. Thirty-six non-overlapping locations were sonicated through a craniotomy in experiments in the brains of nine rabbits (4 locations per rabbit; US frequency: 0.69MHz, burst: 10ms, PRF: 1Hz, duration: 20s; pressure amplitude: 0.2-1.5 MPa). Eleven locations were sonicated using Optison at 0.5 MPa. For both agents, the probability for BBBD was estimated to be 50% at 0.4 MPa using probit regression. In histology, small isolated areas of extravasated erythrocytes were observed in some locations. At 0.8 MPa and above, this extravasation was sometimes accompanied by tiny (dimensions of 100 μm or less) regions of damaged brain parenchyma. The magnitude of the BBBD was larger with Optison than with Definity at 0.5 MPa (P=0.04), and more areas with extravasated erythrocytes were observed (P=0.03). We conclude that BBBD is possible using Definity for the dosage of USCA and the acoustic parameters tested in this study. While the probability for BBBD as a function of pressure amplitude and the type of acute tissue effects was similar to findings with Optison, under these experimental conditions, Optison produced a larger effect.

  5. Development of an automated multiple-target mask CD disposition system to enable new sampling strategy

    Science.gov (United States)

    Ma, Jian; Farnsworth, Jeff; Bassist, Larry; Cui, Ying; Mammen, Bobby; Padmanaban, Ramaswamy; Nadamuni, Venkatesh; Kamath, Muralidhar; Buckmann, Ken; Neff, Julie; Freiberger, Phil

    2006-03-01

    Traditional mask critical dimension (CD) disposition systems with only one or two targets is being challenged by the new requirements from mask-users as the wafer process control becomes more complicated in the newer generation of technologies. Historically, the mask shop does not necessarily measure and disposition off the same kind of CD structures that wafer fabs do. Mask disposition specifications and structures come from the frame-design and the tapeout, while wafer-level CD dispositions are mainly based on the historical process window established per CD-skew experiments and EOL (end of line) yield. In the current high volume manufacturing environment, the mask CDs are mainly dispositioned off their mean-to-target (MTT) and uniformity (6sigma) on one or two types of pre-determined structures. The disposition specification is set to ensure the printed mask will meet the design requirements and to ensure minimum deviation from them. The CD data are also used to adjust the dose of the mask exposure tools to control CD MTT. As a result, the mask CD disposition automation system was built to allow only one or two kinds of targets at most. In contrast, wafer-fabs measure a fairly wide range of different structures to ensure their process is on target and in control. The number of such structures that are considered critical is increasing due the growing complexity of the technology. To fully comprehend the wafer-level requirements, it is highly desirable to align the mask CD sample site and disposition to be the same as that of the wafer-fabs, to measure the OPC (optical proximity correction) structures or equivalent whenever possible, and to establish the true correlation between mask CD measurements vs. wafer CD measurement. In this paper, the development of an automated multiple-target mask CD disposition system with the goal of enabling new sampling strategy is presented. The pros and cons of its implementation are discussed. The new system has been inserted in

  6. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity

    Directory of Open Access Journals (Sweden)

    Ulrich E. Schaible

    2017-12-01

    Full Text Available The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.

  7. Arterial stiffness and stroke: de-stiffening strategy, a therapeutic target for stroke

    Science.gov (United States)

    Chen, Yajing; Shen, Fanxia; Liu, Jianrong; Yang, Guo-Yuan

    2017-01-01

    Stroke is the second leading cause of mortality and morbidity worldwide. Early intervention is of great importance in reducing disease burden. Since the conventional risk factors cannot fully account for the pathogenesis of stroke, it is extremely important to detect useful biomarkers of the vascular disorder for appropriate intervention. Arterial stiffness, a newly recognised reliable feature of arterial structure and function, is demonstrated to be associated with stroke onset and serve as an independent predictor of stroke incidence and poststroke functional outcomes. In this review article, different measurements of arterial stiffness, especially pressure wave velocity, were discussed. We explained the association between arterial stiffness and stroke occurrence by discussing the secondary haemodynamic changes. We reviewed clinical data that support the prediction role of arterial stiffness on stroke. Despite the lack of long-term randomised double-blind controlled therapeutic trials, it is high potential to reduce stroke prevalence through a significant reduction of arterial stiffness (which is called de-stiffening therapy). Pharmacological interventions or lifestyle modification that can influence blood pressure, arterial function or structure in either the short or long term are promising de-stiffening therapies. Here, we summarised different de-stiffening strategies including antihypertension drugs, antihyperlipidaemic agents, chemicals that target arterial remodelling and exercise training. Large and well-designed clinical trials on de-stiffening strategy are needed to testify the prevention effect for stroke. Novel techniques such as modern microscopic imaging and reliable animal models would facilitate the mechanistic analyses in pathophysiology, pharmacology and therapeutics. PMID:28959494

  8. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer.

    Science.gov (United States)

    Liu, Qiuping; Luo, Qing; Halim, Alexander; Song, Guanbin

    2017-08-10

    One of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism. In addition, enhancing de novo fatty acid (FA) synthesis, increasing lipid uptake and lipolysis have also been considered as means of FA acquisition in cancer cells. FAs are involved in various aspects of tumourigenesis and tumour progression. Therefore, targeting lipid metabolism is a promising therapeutic strategy for human cancer. Recent studies have shown that reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid signals during cancer progression. Moreover, accumulation of lipid droplets in cancer cells acts as a pivotal adaptive response to harmful conditions. Here, we provide a brief review of the crucial roles of FA metabolism in cancer development, and place emphasis on FA origin, utilization and storage in cancer cells. Understanding the regulation of lipid metabolism in cancer cells has important implications for exploring a new therapeutic strategy for management and treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Final Report for Bio-Inspired Approaches to Moving-Target Defense Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Glenn A.; Oehmen, Christopher S.

    2012-09-01

    This report records the work and contributions of the NITRD-funded Bio-Inspired Approaches to Moving-Target Defense Strategies project performed by Pacific Northwest National Laboratory under the technical guidance of the National Security Agency’s R6 division. The project has incorporated a number of bio-inspired cyber defensive technologies within an elastic framework provided by the Digital Ants. This project has created the first scalable, real-world prototype of the Digital Ants Framework (DAF)[11] and integrated five technologies into this flexible, decentralized framework: (1) Ant-Based Cyber Defense (ABCD), (2) Behavioral Indicators, (3) Bioinformatic Clas- sification, (4) Moving-Target Reconfiguration, and (5) Ambient Collaboration. The DAF can be used operationally to decentralize many such data intensive applications that normally rely on collection of large amounts of data in a central repository. In this work, we have shown how these component applications may be decentralized and may perform analysis at the edge. Operationally, this will enable analytics to scale far beyond current limitations while not suffering from the bandwidth or computational limitations of centralized analysis. This effort has advanced the R6 Cyber Security research program to secure digital infrastructures by developing a dynamic means to adaptively defend complex cyber systems. We hope that this work will benefit both our client’s efforts in system behavior modeling and cyber security to the overall benefit of the nation.

  10. Key Triggers of Osteoclast-Related Diseases and Available Strategies for Targeted Therapies: A Review

    Directory of Open Access Journals (Sweden)

    Haidi Bi

    2017-12-01

    Full Text Available Osteoclasts, the only cells with bone resorption functions in vivo, maintain the balance of bone metabolism by cooperating with osteoblasts, which are responsible for bone formation. Excessive activity of osteoclasts causes many diseases such as osteoporosis, periprosthetic osteolysis, bone tumors, and Paget’s disease. In contrast, osteopetrosis results from osteoclast deficiency. Available strategies for combating over-activated osteoclasts and the subsequently induced diseases can be categorized into three approaches: facilitating osteoclast apoptosis, inhibiting osteoclastogenesis, and impairing bone resorption. Bisphosphonates are representative molecules that function by triggering osteoclast apoptosis. New drugs, such as tumor necrosis factor and receptor activator of nuclear factor kappa-B ligand (RANKL inhibitors (e.g., denosumab have been developed for targeting the receptor activator of nuclear factor kappa-B /RANKL/osteoprotegerin system or CSF-1/CSF-1R axis, which play critical roles in osteoclast formation. Furthermore, vacuolar (H+-ATPase inhibitors, cathepsin K inhibitors, and glucagon-like peptide 2 impair different stages of the bone resorption process. Recently, significant achievements have been made in this field. The aim of this review is to provide an updated summary of the current progress in research involving osteoclast-related diseases and of the development of targeted inhibitors of osteoclast formation.

  11. Molecular Mechanisms of Diabetic Retinopathy, General Preventive Strategies, and Novel Therapeutic Targets

    Science.gov (United States)

    Safi, Sher Zaman; Kumar, Selva; Ismail, Ikram Shah Bin

    2014-01-01

    The growing number of people with diabetes worldwide suggests that diabetic retinopathy (DR) and diabetic macular edema (DME) will continue to be sight threatening factors. The pathogenesis of diabetic retinopathy is a widespread cause of visual impairment in the world and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. Despite understanding the polyol pathway flux, activation of protein kinase C (KPC) isoforms, increased hexosamine pathway flux, and increased advanced glycation end-product (AGE) formation, pathogenic mechanisms underlying diabetes induced vision loss are not fully understood. The purpose of this paper is to review molecular mechanisms that regulate cell survival and apoptosis of retinal cells and discuss new and exciting therapeutic targets with comparison to the old and inefficient preventive strategies. This review highlights the recent advancements in understanding hyperglycemia-induced biochemical and molecular alterations, systemic metabolic factors, and aberrant activation of signaling cascades that ultimately lead to activation of a number of transcription factors causing functional and structural damage to retinal cells. It also reviews the established interventions and emerging molecular targets to avert diabetic retinopathy and its associated risk factors. PMID:25105142

  12. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Siegler

    2016-11-01

    Full Text Available Increasing attention has been given to the tumor microenvironment (TME, which includes cellular and structural components such as fibroblasts, immune cells, vasculature, and extracellular matrix (ECM that surround tumor sites. These components contribute to tumor growth and metastasis and are one reason why traditional chemotherapy often is insufficient to eradicate the tumor completely. Newer treatments that target aspects of the TME, such as antiangiogenic and immunostimulatory therapies, have seen limited clinical success despite promising preclinical results. This can be attributed to a number of reasons, including a lack of drug penetration deeper into the necrotic tumor core, nonspecific delivery, rapid clearance from serum, or toxic side effects at high doses. Nanoparticles offer a potential solution to all of these obstacles, and many recent studies have shown encouraging results using nanomedicine to target TME vasculature, ECM, and immune response. While few of these platforms have made it to clinical trials to date, these strategies are relatively new and may offer a way to improve the effects of anticancer therapies.

  13. Modern trends in radioimmunotherapy of cancer. Pre targeting strategies for the treatment of ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mcquarrie, S.A.; Xiao, Z.; Mercer, J. R.; Suresh, M. R. [Edmonton Univ. of Alberta, Edmonton, AL (Canada). Faculty of Pharmacy and Pharmaceutical Sciences; Miller, G. G. [University of Alberta, Noujaim Institute for Pharmaceutical Oncology Research, Edmonton, AL (Canada)

    2001-06-01

    A review of published data on some of the problems associated in treating cancer using radioimmunotherapy is presented. Potential improvements for this type of therapy using pretargeting strategies are discussed and preliminary results on a novel multistep regimen to treat human ovarian cancer are presented. A pretargeting strategy using ovarian cancer are presented. A pretargeting strategy using a biotinylated, anti-CA 125 monoclonal antibody (MAb) to attract biotinylated long-circulating liposomes to the surface of CA 125-expressing ovarian cancer cells, was employed. Confocal laser scanning microscopy and fluorescent labels were used to establish the biodistribution patterns in NIH:OVCAR-3 (CA-125 positive) and SK-OV-3 (CA-125 negative) human ovarian cancer cells. Shedding kinetics of the pretargeted stage were measured using {sup 125}I labeled MAbs. No significant internalization of the MAb used in the pretargeting step was observed by 4 hrs. The antibody was gradually internalized starting at 6 hrs, and most of the labelled MAb was detected in cytoplasm by 24 hrs. Shedding and exocytosis of the antigen-MAb complex was not significant for up to 6-hours following administration of the iodinated MAb. Biotinylated liposomes were shown to specifically target the biotinylated MAb/streptavidin complex on the cell surface. It has been demonstrated that by a three-step pretargeting approach, biotinylated liposomes can be specifically delivered to cells pretargeted with biotinylated MAb/SAv complex. The slow internalization and shedding properties of the two MAbs are ideal for multistep pretargeting methods. A successful multistep linkage was established with the biotinylated MAb B27.1, streptavidin and biotinylated liposomes to OVCAR-3 cells, but not to SK-OV-3 cells.

  14. Targeting AMPK, mTOR and β-Catenin by Combined Metformin and Aspirin Therapy in HCC: An Appraisal in Egyptian HCC Patients.

    Science.gov (United States)

    Abdelmonsif, Doaa Ali; Sultan, Ahmed S; El-Hadidy, Wessam F; Abdallah, Dina Mohamed

    2018-02-01

    Hepatocellular carcinoma (HCC) is an expanding health problem with a great impact on morbidity and mortality, both in Egypt and worldwide. Recently, metformin and aspirin showed a potential anticancer effect on HCC, although the mechanism of this effect is not fully elucidated. The current work aimed to investigate the possibility of targeting AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and β-catenin proteins through combined metformin/aspirin treatment in the HepG2 cell line, and to explore such molecular targets in Egyptian HCC patients. HepG2 cells were exposed to increasing concentrations of metformin, aspirin and combined treatment, and an MTT assay was performed to determine half maximal inhibitory concentration (IC50). Caspase-3 activity, cell cycle analysis, and protein expression of AMPK, phosphorylated AMPK (pAMPK) and mTOR proteins were assessed. Furthermore, the expression and localization of β-catenin protein was assessed by immunocytochemistry, and protein expression of pAMPK, mTOR and β-catenin was assessed in Egyptian HCC and cirrhotic tissue specimens. Metformin/aspirin combined treatment had a synergistic effect on cell cycle arrest at the G2/M phase and apoptosis induction in a caspase-dependent manner via downregulation of pAMPK and mTOR protein expression. Additionally, metformin/aspirin combined treatment enhanced cell-cell membrane localization of β-catenin expression in HepG2 cells, which might inhibit the metastatic potential of HepG2 cells. In Egyptian HCC specimens, pAMPK, mTOR and β-catenin proteins showed a significant increased expression compared with cirrhotic controls. Targeting AMPK, mTOR and β-catenin by combined metformin/aspirin treatment could be a promising therapeutic strategy for Egyptian HCC patients, and possibly other HCC patients.

  15. Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance.

    Science.gov (United States)

    Hegazy, Ahmed M; Yamada, Daisuke; Kobayashi, Masahiko; Kohno, Susumu; Ueno, Masaya; Ali, Mohamed A E; Ohta, Kumiko; Tadokoro, Yuko; Ino, Yasushi; Todo, Tomoki; Soga, Tomoyoshi; Takahashi, Chiaki; Hirao, Atsushi

    2016-10-07

    Although abnormal metabolic regulation is a critical determinant of cancer cell behavior, it is still unclear how an altered balance between ATP production and consumption contributes to malignancy. Here we show that disruption of this energy balance efficiently suppresses aggressive malignant gliomas driven by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation. In a mouse glioma model, mTORC1 hyperactivation induced by conditional Tsc1 deletion increased numbers of glioma-initiating cells (GICs) in vitro and in vivo Metabolic analysis revealed that mTORC1 hyperactivation enhanced mitochondrial biogenesis, as evidenced by elevations in oxygen consumption rate and ATP production. Inhibition of mitochondrial ATP synthetase was more effective in repressing sphere formation by Tsc1-deficient glioma cells than that by Tsc1-competent glioma cells, indicating a crucial function for mitochondrial bioenergetic capacity in GIC expansion. To translate this observation into the development of novel therapeutics targeting malignant gliomas, we screened drug libraries for small molecule compounds showing greater efficacy in inhibiting the proliferation/survival of Tsc1-deficient cells compared with controls. We identified several compounds able to preferentially inhibit mitochondrial activity, dramatically reducing ATP levels and blocking glioma sphere formation. In human patient-derived glioma cells, nigericin, which reportedly suppresses cancer stem cell properties, induced AMPK phosphorylation that was associated with mTORC1 inactivation and induction of autophagy and led to a marked decrease in sphere formation with loss of GIC marker expression. Furthermore, malignant characteristics of human glioma cells were markedly suppressed by nigericin treatment in vivo Thus, targeting mTORC1-driven processes, particularly those involved in maintaining a cancer cell's energy balance, may be an effective therapeutic strategy for glioma patients. © 2016 by The American

  16. Limited sampling strategy and target attainment analysis for levofloxacin in patients with tuberculosis.

    Science.gov (United States)

    Alsultan, Abdullah; An, Guohua; Peloquin, Charles A

    2015-07-01

    There is an urgent need to improve and shorten the treatment of tuberculosis (TB) and multidrug resistant tuberculosis (MDR-TB). Levofloxacin, a newer fluoroquinolone, has potent activity against TB both in vitro and in vivo. Levofloxacin dosing can be optimized to improve the treatment of both TB and MDR-TB. Levofloxacin efficacy is linked primarily to the ratio of the area under the concentration-time curve for the free fraction of drug (fAUC) to the MIC. Since obtaining a full-time concentration profile is not feasible in the clinic, we developed a limited sampling strategy (LSS) to estimate the AUC. We also utilized Monte Carlo simulations to evaluate the dosing of levofloxacin. Pharmacokinetic data were obtained from 10 Brazilian TB patients. The pharmacokinetic data were fitted with a one-compartment model. LSSs were developed using two methods: linear regression and Bayesian approaches. Several LSSs predicted levofloxacin AUC with good accuracy and precision. The most accurate were the method using two samples collected at 4 and 6 h (R(2) = 0.91 using linear regression and 0.97 using Bayesian approaches) and that using samples collected at 2 and 6 h (R(2) = 0.90 using linear regression and 0.96 using Bayesian approaches). The 2-and-6-h approach also provides a good estimate of the maximum concentration of the drug in serum (Cmax). Our target attainment analysis showed that higher doses (17 to 20 mg/kg of body weight) of levofloxacin might be needed to improve its activity. Doses in the range of 17 to 20 mg/kg showed good target attainment for MICs from 0.25 to 0.50. At an MIC of 2, poor target attainment was observed across all doses. This LSS for levofloxacin can be used for therapeutic drug monitoring and for future pharmacokinetic/pharmacodynamic studies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. ESMPE: A combined strategy for school tuberculosis prevention and control proposed by Dalian, China.

    Science.gov (United States)

    Wang, Xichen; Jiang, Hongbo; Wang, Xuemei; Liu, Hongyu; Zhou, Ling; Lu, Xiwei

    2017-01-01

    Although China has paid more attention on the prevention and control of tuberculosis (TB) in schools, several unsolved questions in this field still threaten the progress of TB control. Therefore, there is an urgent need to develop a systematic and practical strategy for Chinese school TB prevention and control system. In this study, we aimed to assess the feasibility of a combined strategy named ESMPE (examination, screening, monitoring, prevention and education) that adhere to the basic principles of Chinese schools TB control strategy. The ESMPE strategy included five sections, namely TB screening during physical examination for the school freshmen entrances, screening of close contacts, monitoring of high-risk schools, preventive treatment and TB education. The effectiveness of ESMPE strategy was evaluated from 2011 to 2016. The original data were provided by the Dalian Tuberculosis Hospital. Descriptive analysis and nonparametric tests were used for comparing statistical differences of results between different years. The detection rate of active pulmonary TB in school freshmen was decreased from 2011 to 2016 (χ2 = 41.941, P = 6.0551E-8). 97.22% (17,043/17,530) of close contacts experienced close contacts screening, and the secondary attack rate (SAR) of TB in schools fell by 146.35/105 from 2011 to 2012, and finally reduced to 85.57/105 in 2016. There was a significant correlation between SAR of student TB and the rate of screened close contacts (r = -0.924, P = 0.009). TB incidence of five monitored schools had a substantial decline after receiving monitoring, and this declining trend continued in 2016. Due to the TB education and advanced screening methods, the mean of diagnostic delay time in students with TB was shortened (15.71 days), while still fewer latent TB infection students received preventive treatment (30.38%). The ESMPE strategy has shown a favorable effect on TB prevention and control in Dalian schools. More systematic evidence is needed on

  18. Theranostic Nanoparticles Loaded with Imaging Probes and Rubrocurcumin for Combined Cancer Therapy by Folate Receptor Targeting.

    Science.gov (United States)

    Alberti, Diego; Protti, Nicoletta; Franck, Morgane; Stefania, Rachele; Bortolussi, Silva; Altieri, Saverio; Deagostino, Annamaria; Aime, Silvio; Geninatti Crich, Simonetta

    2017-04-06

    The combination of different therapeutic modalities is a promising option to combat the recurrence of tumors. In this study, polylactic and polyglycolic acid nanoparticles were used for the simultaneous delivery of a boron-curcumin complex (RbCur) and an amphiphilic gadolinium complex into tumor cells with the aim of performing boron and gadolinium neutron capture therapy (NCT) in conjunction with the additional antiproliferative effects of curcumin. Furthermore, the use of Gd complexes allows magnetic resonance imaging (MRI) assessment of the amount of B and Gd internalized by tumor cells. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were targeted to ovarian cancer (IGROV-1) cells through folate receptors, by including in the formulation a PEGylated phospholipid functionalized with the folate moiety. NCT was performed on IGROV-1 cells internalizing 6.4 and 78.6 μg g-1 of 10 B and 157 Gd, respectively. The synergic action of neutron treatment and curcumin cytotoxicity was shown to result in a significant therapeutic improvement. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. TIPS Placement via Combined Transjugular and Transhepatic Approach for Cavernous Portal Vein Occlusion: Targeted Approach.

    Science.gov (United States)

    Jourabchi, Natanel; McWilliams, Justin Pryce; Lee, Edward Wolfgang; Sauk, Steven; Kee, Stephen Thomas

    2013-01-01

    Purpose. We report a novel technique which aided recanalization of an occluded portal vein for transjugular intrahepatic portosystemic shunt (TIPS) creation in a patient with symptomatic portal vein thrombosis with cavernous transformation. Some have previously considered cavernous transformation a contraindication to TIPS. Case Presentation. 62-year-old man with chronic pancreatitis, portal vein thrombosis, portal hypertension and recurrent variceal bleeding presents with melena and hematemesis. The patient was severely anemic, hemodynamically unstable, and required emergent portal decompression. Attempts to recanalize the main portal vein using traditional transjugular access were unsuccessful. After percutaneous transhepatic right portal vein access and navigation of a wire through the occluded main portal vein, an angioplasty balloon was inflated at the desired site of shunt takeoff. The balloon was targeted and punctured from the transjugular approach, and a wire was passed into the portal system. TIPS placement then proceeded routinely. Conclusion. Although occlusion of the portal vein increases difficulty of performing TIPS, it should not be considered an absolute contraindication. We have described a method for recanalizing an occluded portal vein using a combined transhepatic and transjugular approach for TIPS. This approach may be useful to relieve portal hypertension in patients who fail endoscopic and/or surgical therapies.

  20. Combining Targeted Metabolomic Data with a Model of Glucose Metabolism: Toward Progress in Chondrocyte Mechanotransduction.

    Science.gov (United States)

    Salinas, Daniel; Minor, Cody A; Carlson, Ross P; McCutchen, Carley N; Mumey, Brendan M; June, Ronald K

    2017-01-01

    Osteoarthritis is a debilitating disease likely involving altered metabolism of the chondrocytes in articular cartilage. Chondrocytes can respond metabolically to mechanical loads via cellular mechanotransduction, and metabolic changes are significant because they produce the precursors to the tissue matrix necessary for cartilage health. However, a comprehensive understanding of how energy metabolism changes with loading remains elusive. To improve our understanding of chondrocyte mechanotransduction, we developed a computational model to calculate the rate of reactions (i.e. flux) across multiple components of central energy metabolism based on experimental data. We calculated average reaction flux profiles of central metabolism for SW1353 human chondrocytes subjected to dynamic compression for 30 minutes. The profiles were obtained solving a bounded variable linear least squares problem, representing the stoichiometry of human central energy metabolism. Compression synchronized chondrocyte energy metabolism. These data are consistent with dynamic compression inducing early time changes in central energy metabolism geared towards more active protein synthesis. Furthermore, this analysis demonstrates the utility of combining targeted metabolomic data with a computational model to enable rapid analysis of cellular energy utilization.

  1. DNA Diagnostics of Hereditary Hearing Loss: A Targeted Resequencing Approach Combined with a Mutation Classification System.

    Science.gov (United States)

    Sommen, Manou; Schrauwen, Isabelle; Vandeweyer, Geert; Boeckx, Nele; Corneveaux, Jason J; van den Ende, Jenneke; Boudewyns, An; De Leenheer, Els; Janssens, Sandra; Claes, Kathleen; Verstreken, Margriet; Strenzke, Nicola; Predöhl, Friederike; Wuyts, Wim; Mortier, Geert; Bitner-Glindzicz, Maria; Moser, Tobias; Coucke, Paul; Huentelman, Matthew J; Van Camp, Guy

    2016-08-01

    Although there are nearly 100 different causative genes identified for nonsyndromic hearing loss (NSHL), Sanger sequencing-based DNA diagnostics usually only analyses three, namely, GJB2, SLC26A4, and OTOF. As this is seen as inadequate, there is a need for high-throughput diagnostic methods to detect disease-causing variations, including single-nucleotide variations (SNVs), insertions/deletions (Indels), and copy-number variations (CNVs). In this study, a targeted resequencing panel for hearing loss was developed including 79 genes for NSHL and selected forms of syndromic hearing loss. One-hundred thirty one presumed autosomal-recessive NSHL (arNSHL) patients of Western-European ethnicity were analyzed for SNVs, Indels, and CNVs. In addition, we established a straightforward variant classification system to deal with the large number of variants encountered. We estimate that combining prescreening of GJB2 with our panel leads to a diagnosis in 25%-30% of patients. Our data show that after GJB2, the most commonly mutated genes in a Western-European population are TMC1, MYO15A, and MYO7A (3.1%). CNV analysis resulted in the identification of causative variants in two patients in OTOA and STRC. One of the major challenges for diagnostic gene panels is assigning pathogenicity for variants. A collaborative database collecting all identified variants from multiple centers could be a valuable resource for hearing loss diagnostics. © 2016 WILEY PERIODICALS, INC.

  2. TIPS Placement via Combined Transjugular and Transhepatic Approach for Cavernous Portal Vein Occlusion: Targeted Approach

    Directory of Open Access Journals (Sweden)

    Natanel Jourabchi

    2013-01-01

    Full Text Available Purpose. We report a novel technique which aided recanalization of an occluded portal vein for transjugular intrahepatic portosystemic shunt (TIPS creation in a patient with symptomatic portal vein thrombosis with cavernous transformation. Some have previously considered cavernous transformation a contraindication to TIPS. Case Presentation. 62-year-old man with chronic pancreatitis, portal vein thrombosis, portal hypertension and recurrent variceal bleeding presents with melena and hematemesis. The patient was severely anemic, hemodynamically unstable, and required emergent portal decompression. Attempts to recanalize the main portal vein using traditional transjugular access were unsuccessful. After percutaneous transhepatic right portal vein access and navigation of a wire through the occluded main portal vein, an angioplasty balloon was inflated at the desired site of shunt takeoff. The balloon was targeted and punctured from the transjugular approach, and a wire was passed into the portal system. TIPS placement then proceeded routinely. Conclusion. Although occlusion of the portal vein increases difficulty of performing TIPS, it should not be considered an absolute contraindication. We have described a method for recanalizing an occluded portal vein using a combined transhepatic and transjugular approach for TIPS. This approach may be useful to relieve portal hypertension in patients who fail endoscopic and/or surgical therapies.

  3. Dynamic modeling and evaluation of solid oxide fuel cell - combined heat and power system operating strategies

    Science.gov (United States)

    Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott

    Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.

  4. Explorations of combinational therapy in cancer : targeting the tumor and its microenvironment by combining chemotherapy with chemopreventive approaches

    NARCIS (Netherlands)

    Wijngaarden, Johannes Willem van

    2011-01-01

    One of the most effective anticancer therapy still remains chemotherapy, however, both used as single agent as in combinational regimens, chemotherapy still encounters the problem of therapeutic resistance. Limitations of chemotherapy have led to the exploration of alternative anti-cancer approaches

  5. Tracing the transition path between optimal strategies combinations within a competitive market of innovative industrial products

    Science.gov (United States)

    Batzias, Dimitris F.; Pollalis, Yannis A.

    2012-12-01

    In several cases, a competitive market can be simulated by a game, where each company/opponent is referred to as a player. In order to accommodate the fact that each player (alone or with alliances) is working against some others' interest, the rather conservative maximin criterion is frequently used for selecting the strategy or the combination of strategies that yield the best of the worst possible outcomes for each one of the players. Under this criterion, an optimal solution is obtained when neither player finds it beneficial to alter his strategy, which means that an equilibrium has been achieved, giving also the value of the game. If conditions change as regards a player, e.g., because of either achieving an unexpected successful result in developing an innovative industrial product or obtaining higher liquidity permitting him to increase advertisement in order to acquire a larger market share, then a new equilibrium is reached. The identification of the path between the old and the new equilibrium points may prove to be valuable for investigating the robustness of the solution by means of sensitivity analysis, since uncertainty plays a critical role in this situation, where evaluation of the payoff matrix is usually based on experts' estimates. In this work, the development of a standard methodology (including 16 activity stages and 7 decision nodes) for tracing this path is presented while a numerical implementation follows to prove its functionality.

  6. New strategies to direct therapeutic targeting of PML to treat cancers

    Directory of Open Access Journals (Sweden)

    Kamil eWolyniec

    2013-05-01

    Full Text Available The tumor suppressor function of the promyelocytic leukemia (PML protein was first identified as a result of its dysregulation in acute promyelocytic leukemia (APL, however, its importance is now emerging far beyond hematological neoplasms, to an extensive range of malignancies, including solid tumours. In response to stress signals, PML coordinates the regulation of numerous proteins, which activate fundamental cellular processes that suppress tumorigenesis. Importantly, PML itself is the subject of specific post-translational modifications, including ubiquitination, phosphorylation, acetylation and SUMOylation, which in turn control PML activity and stability and ultimately dictate cellular fate. Improved understanding of the regulation of this key tumor suppressor is uncovering potential opportunities for therapeutic intervention. Targeting the key negative regulators of PML in cancer cells such as CK2, BMK1 and E6AP, with specific inhibitors that are becoming available, provides unique and exciting avenues for restoring tumor suppression through the induction of apoptosis and senescence. These approaches could be combined with DNA damaging drugs and cytokines that are known to activate PML. Depending on the cellular context, reactivation or enhancement of tumor suppressive PML functions, or targeted elimination of aberrantly functioning PML, may provide clinical benefit.

  7. Preclinical studies identify novel targeted pharmacological strategies for treatment of human malignant pleural mesothelioma

    Science.gov (United States)

    Favoni, Roberto E; Daga, Antonio; Malatesta, Paolo; Florio, Tullio

    2012-01-01

    The incidence of human malignant pleural mesothelioma (hMPM) is still increasing worldwide. hMPM prognosis is poor even if the median survival time has been slightly improved after the introduction of the up-to-date chemotherapy. Nevertheless, large phase II/III trials support the combination of platinum derivatives and pemetrexed or raltitrexed, as preferred first-line schedule. Better understanding of the molecular machinery of hMPM will lead to the design and synthesis of novel compounds targeted against pathways identified as crucial for hMPM cell proliferation and spreading. Among them, several receptors tyrosine kinase show altered activity in subsets of hMPM. This observation suggests that these kinases might represent novel therapeutic targets in this chemotherapy-resistant disease. Over these foundations, several promising studies are ongoing at preclinical level and novel molecules are currently under evaluation as well. Yet, established tumour cell lines, used for decades to investigate the efficacy of anticancer agents, although still the main source of drug efficacy studies, after long-term cultures tend to biologically diverge from the original tumour, limiting the predictive potential of in vivo efficacy. Cancer stem cells (CSCs), a subpopulation of malignant cells capable of self-renewal and multilineage differentiation, are believed to play an essential role in cancer initiation, growth, metastasization and relapse, being responsible of chemo- and radiotherapy refractoriness. According to the current carcinogenesis theory, CSCs represent the tumour-initiating cell (TIC) fraction, the only clonogenic subpopulation able to originate a tumour mass. Consequently, the recently described isolation of TICs from hMPM, the proposed main pharmacological target for novel antitumoural drugs, may contribute to better dissect the biology and multidrug resistance pathways controlling hMPM growth. PMID:22289125

  8. Combining AI Methods for Learning Bots in a Real-Time Strategy Game

    Directory of Open Access Journals (Sweden)

    Robin Baumgarten

    2009-01-01

    Full Text Available We describe an approach for simulating human game-play in strategy games using a variety of AI techniques, including simulated annealing, decision tree learning, and case-based reasoning. We have implemented an AI-bot that uses these techniques to form a novel approach for planning fleet movements and attacks in DEFCON, a nuclear war simulation strategy game released in 2006 by Introversion Software Ltd. The AI-bot retrieves plans from a case-base of recorded games, then uses these to generate a new plan using a method based on decision tree learning. In addition, we have implemented more sophisticated control over low-level actions that enable the AI-bot to synchronize bombing runs, and used a simulated annealing approach for assigning bombing targets to planes and opponent cities to missiles. We describe how our AI-bot operates, and the experimentation we have performed in order to determine an optimal configuration for it. With this configuration, our AI-bot beats Introversion's finite state machine automated player in 76.7% of 150 matches played. We briefly introduce the notion of ability versus enjoyability and discuss initial results of a survey we conducted with human players.

  9. Experimental and Clinical Advances in Immunotherapy Strategies for Spinal Cord Injury Target on MAIs and Their Receptors.

    Science.gov (United States)

    Lu, Xiu-Min; Wei, Jing-Xiang; Xiao, Lan; Shu, Ya-Hai; Wang, Yong-Tang

    2016-01-01

    In the injured adult mammalian central nervous system (CNS), the failure of axonal regeneration is thought to be attributed, at least in part, to various myelin-associated inhibitors (MAIs), such as Nogo, myelinassociated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp) around the damaged site. Interestingly, these three structurally different inhibitors share two common receptors, Nogo-66 receptor (NgR) and paired immunoglobulin-like receptor B (PirB), and transduce the inhibitory signal into neurons via their complex combinant and co-receptors, such as p75 neurotrophin receptor (p75NTR), Nogo receptor-interacting protein 1 (LINGO-1), and TROY. Accordingly, targeting of the whole myelin or just portions by immunization has been proved to be neuroprotective and is able to promote regeneration in the injured spinal cords. In the past few years, vaccine approaches were initially achieved and could induce the production of antibodies against inhibitors in myelin to block the inhibitory effects and promote functional recovery in spinal cord injury (SCI) models by immunizing with MAIs, such as purified myelin, spinal cord homogenates, or their receptors with the concept of protective autoimmunity formulated. However, for safety consideration, further work is necessary before the immunotherapy strategies can be adopted to treat human injured spinal cords.

  10. A field trial of alternative targeted screening strategies for Chagas disease in Arequipa, Peru.

    Directory of Open Access Journals (Sweden)

    Gabrielle C Hunter

    2012-01-01

    Full Text Available Chagas disease is endemic in the rural areas of southern Peru and a growing urban problem in the regional capital of Arequipa, population ∼860,000. It is unclear how to implement cost-effective screening programs across a large urban and periurban environment.We compared four alternative screening strategies in 18 periurban communities, testing individuals in houses with 1 infected vectors; 2 high vector densities; 3 low vector densities; and 4 no vectors. Vector data were obtained from routine Ministry of Health insecticide application campaigns. We performed ring case detection (radius of 15 m around seropositive individuals, and collected data on costs of implementation for each strategy.Infection was detected in 21 of 923 (2.28% participants. Cases had lived more time on average in rural places than non-cases (7.20 years versus 3.31 years, respectively. Significant risk factors on univariate logistic regression for infection were age (OR 1.02; p = 0.041, time lived in a rural location (OR 1.04; p = 0.022, and time lived in an infested area (OR 1.04; p = 0.008. No multivariate model with these variables fit the data better than a simple model including only the time lived in an area with triatomine bugs. There was no significant difference in prevalence across the screening strategies; however a self-assessment of disease risk may have biased participation, inflating prevalence among residents of houses where no infestation was detected. Testing houses with infected-vectors was least expensive. Ring case detection yielded four secondary cases in only one community, possibly due to vector-borne transmission in this community, apparently absent in the others.Targeted screening for urban Chagas disease is promising in areas with ongoing vector-borne transmission; however, these pockets of epidemic transmission remain difficult to detect a priori. The flexibility to adapt to the epidemiology that emerges during screening is key to

  11. A Field Trial of Alternative Targeted Screening Strategies for Chagas Disease in Arequipa, Peru

    Science.gov (United States)

    Hunter, Gabrielle C.; Borrini-Mayorí, Katty; Ancca Juárez, Jenny; Castillo Neyra, Ricardo; Verastegui, Manuela R.; Malaga Chavez, Fernando S.; Cornejo del Carpio, Juan Geny; Córdova Benzaquen, Eleazar; Náquira, César; Gilman, Robert H.; Bern, Caryn; Levy, Michael Z.

    2012-01-01

    Background Chagas disease is endemic in the rural areas of southern Peru and a growing urban problem in the regional capital of Arequipa, population ∼860,000. It is unclear how to implement cost-effective screening programs across a large urban and periurban environment. Methods We compared four alternative screening strategies in 18 periurban communities, testing individuals in houses with 1) infected vectors; 2) high vector densities; 3) low vector densities; and 4) no vectors. Vector data were obtained from routine Ministry of Health insecticide application campaigns. We performed ring case detection (radius of 15 m) around seropositive individuals, and collected data on costs of implementation for each strategy. Results Infection was detected in 21 of 923 (2.28%) participants. Cases had lived more time on average in rural places than non-cases (7.20 years versus 3.31 years, respectively). Significant risk factors on univariate logistic regression for infection were age (OR 1.02; p = 0.041), time lived in a rural location (OR 1.04; p = 0.022), and time lived in an infested area (OR 1.04; p = 0.008). No multivariate model with these variables fit the data better than a simple model including only the time lived in an area with triatomine bugs. There was no significant difference in prevalence across the screening strategies; however a self-assessment of disease risk may have biased participation, inflating prevalence among residents of houses where no infestation was detected. Testing houses with infected-vectors was least expensive. Ring case detection yielded four secondary cases in only one community, possibly due to vector-borne transmission in this community, apparently absent in the others. Conclusions Targeted screening for urban Chagas disease is promising in areas with ongoing vector-borne transmission; however, these pockets of epidemic transmission remain difficult to detect a priori. The flexibility to adapt to the epidemiology that

  12. New Strategies for the Next Generation of Matrix-Metalloproteinase Inhibitors: Selectively Targeting Membrane-Anchored MMPs with Therapeutic Antibodies

    Directory of Open Access Journals (Sweden)

    Laetitia Devy

    2011-01-01

    Full Text Available MMP intervention strategies have met with limited clinical success due to severe toxicities. In particular, treatment with broad-spectrum MMP-inhibitors (MMPIs caused musculoskeletal pain and inflammation. Selectivity may be essential for realizing the clinical potential of MMPIs. Here we review discoveries pinpointing membrane-bound MMPs as mediators of mechanisms underlying cancer and inflammation and as possible therapeutic targets for prevention/treatment of these diseases. We discuss strategies to target these therapeutic proteases using highly selective inhibitory agents (i.e., human blocking antibodies against individual membrane-bound MMPs.

  13. Structural Characterization of the Low-Molecular-Weight Heparin Dalteparin by Combining Different Analytical Strategies

    Directory of Open Access Journals (Sweden)

    Antonella Bisio

    2017-06-01

    Full Text Available A number of low molecular weight heparin (LMWH products are available for clinical use and although all share a similar mechanism of action, they are classified as distinct drugs because of the different depolymerisation processes of the native heparin resulting in substantial pharmacokinetic and pharmacodynamics differences. While enoxaparin has been extensively investigated, little information is available regarding the LMWH dalteparin. The present study is focused on the detailed structural characterization of Fragmin® by LC-MS and NMR applied both to the whole drug and to its enzymatic products. For a more in-depth approach, size homogeneous octasaccharide and decasaccharide components together with their fractions endowed with high or no affinity toward antithrombin were also isolated and their structural profiles characterized. The combination of different analytical strategies here described represents a useful tool for the assessment of batch-to-batch structural variability and for comparative evaluation of structural features of biosimilar products.

  14. Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment.

    Directory of Open Access Journals (Sweden)

    Adam A Friedman

    Full Text Available A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1 transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR and platelet derived growth factor receptor (PDGFR family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs, demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.

  15. Improving skills in pediatric rheumatology in Colombia: a combined educational strategy supported by ILAR.

    Science.gov (United States)

    Pino, Sally; Mora, Claudia; Diaz, Adriana; Guarnizo, Pilar; Jaimes, Diego

    2017-07-01

    Colombia is a densely populated country with a small number of pediatric rheumatology specialists, including 14 specialists for a population of 1,927,000 children in 2014. The objective of the study was to improve the skills required for early identification, timely referral, and management of musculoskeletal diseases, especially juvenile idiopathic arthritis (JIA), in a group of pediatricians and pediatric residents in a remote region of Colombia. Supported by grant programs developed by the International League of Associations for Rheumatology (ILAR), a combined educational strategy (blended learning) was implemented based on two classroom educational activities and four online modules. The students' acquired knowledge and perception of the strategy were evaluated. Scores were reported as median values and interquartile ranges (IQR), and the differences between scores were estimated using the Wilcoxon test for equal medians. Forty-one students were enrolled, 37 completed the online modules, and 33 attended the final in-person session. The results of the written tests demonstrated an improved ability to solve clinical problems compared with the results of the tests before the course (the median initial vs. final test scores 3 (IQR = 1) vs. 5 (IQR = 0), p = 0.000). The students reported high levels of satisfaction related to compliance with the proposed objectives, the relevance of the contents and activities performed, and the impact on everyday practice. These types of strategies are useful as tools for continuing medical education. However, the results pertain only to short-term learning. It is necessary to evaluate their impact on "lifelong learning."

  16. Breeding for cuticle-associated traits in crop species: traits, targets, and strategies.

    Science.gov (United States)

    Petit, Johann; Bres, Cécile; Mauxion, Jean-Philippe; Bakan, Bénédicte; Rothan, Christophe

    2017-11-09

    Improving crop productivity and quality while promoting sustainable agriculture have become major goals in plant breeding. The cuticle is a natural film covering the aerial organs of plants and consists of lipid polyesters covered and embedded with wax. The cuticle protects plants against water loss and pathogens and affects traits with strong impacts on crop quality such as, for horticultural crops, fruit brightness, cracking, russeting, netting, and shelf life. Here we provide an overview of the most important cuticle-associated traits that can be targeted for crop improvement. To date, most studies on cuticle-associated traits aimed at crop breeding have been done on fleshy fruits. Less information is available for staple crops such as rice, wheat or maize. Here we present new insights into cuticle formation and properties resulting from the study of genetic resources available for the various crop species. Our review also covers the current strategies and tools aimed at exploiting available natural and artificially induced genetic diversity and the technologies used to transfer the beneficial alleles affecting cuticle-associated traits to commercial varieties. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Michal Mielcarek

    2013-11-01

    Full Text Available Histone deacetylase (HDAC 4 is a transcriptional repressor that contains a glutamine-rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntington's disease (HD, a protein-folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion in the huntingtin protein. We found that HDAC4 associates with huntingtin in a polyglutamine-length-dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels, and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor coordination, neurological phenotypes, and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for the cytoplasmic aggregation process in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation, which may be amenable to small-molecule therapeutics.

  18. Targeting Oxidative Stress Using Nanoparticles as a Theranostic Strategy for Cardiovascular Diseases.

    Science.gov (United States)

    Kim, Kye S; Song, Chul Gyu; Kang, Peter M

    2017-12-11

    Nanomedicine is an application of nanotechnology that provides solutions to unmet medical challenges. The unique features of nanoparticles, such as their small size, modifiable components and diverse functionality, make them attractive and suitable materials for novel diagnostic, therapeutic or theranostic applications. Cardiovascular diseases (CVDs) are the major cause of non-communicable illness in both developing and developed countries. Nanomedicine offers novel theranostic options for the treatment of CVDs. Recent Advances. Many innovative nanoparticles to target reactive oxygen species (ROS) have been developed. In this article, we review the characteristics of nanoparticles that are responsive to ROS, their limitations, and their potential clinical uses. Significant advances made in diagnosis of atherosclerosis and treatment of acute coronary syndrome using nanoparticles are discussed. Although there is a tremendous potential for the nanoparticle applications in medicine, their safety should be considered while using in humans. We discuss the challenges that may be encountered with some of the innovative nanoparticles used in CVDs. The unique properties of nanoparticles offer novel diagnostic tool and potential therapeutic strategies. However, nanomedicine is still in its infancy, and further in-depth studies are needed before wide clinical application is achieved.

  19. NF-κB pathway activators as potential ageing biomarkers: targets for new therapeutic strategies.

    Science.gov (United States)

    Balistreri, Carmela R; Candore, Giuseppina; Accardi, Giulia; Colonna-Romano, Giuseppina; Lio, Domenico

    2013-06-20

    Chronic inflammation is a major biological mechanism underpinning biological ageing process and age-related diseases. Inflammation is also the key response of host defense against pathogens and tissue injury. Current opinion sustains that during evolution the host defense and ageing process have become linked together. Thus, the large array of defense factors and mechanisms linked to the NF-κB system seem to be involved in ageing process. This concept leads us in proposing inductors of NF-κB signaling pathway as potential ageing biomarkers. On the other hand, ageing biomarkers, represented by biological indicators and selected through apposite criteria, should help to characterize biological age and, since age is a major risk factor in many degenerative diseases, could be subsequently used to identify individuals at high risk of developing age-associated diseases or disabilities. In this report, some inflammatory biomarkers will be discussed for a better understanding of the concept of biological ageing, providing ideas on eventual working hypothesis about potential targets for the development of new therapeutic strategies and improving, as consequence, the quality of life of elderly population.

  20. Constrained binary classification using ensemble learning: an application to cost-efficient targeted PrEP strategies.

    Science.gov (United States)

    Zheng, Wenjing; Balzer, Laura; van der Laan, Mark; Petersen, Maya

    2017-04-06

    Binary classification problems are ubiquitous in health and social sciences. In many cases, one wishes to balance two competing optimality considerations for a binary classifier. For instance, in resource-limited settings, an human immunodeficiency virus prevention program based on offering pre-exposure prophylaxis (PrEP) to select high-risk individuals must balance the sensitivity of the binary classifier in detecting future seroconverters (and hence offering them PrEP regimens) with the total number of PrEP regimens that is financially and logistically feasible for the program. In this article, we consider a general class of constrained binary classification problems wherein the objective function and the constraint are both monotonic with respect to a threshold. These include the minimization of the rate of positive predictions subject to a minimum sensitivity, the maximization of sensitivity subject to a maximum rate of positive predictions, and the Neyman-Pearson paradigm, which minimizes the type II error subject to an upper bound on the type I error. We propose an ensemble approach to these binary classification problems based on the Super Learner methodology. This approach linearly combines a user-supplied library of scoring algorithms, with combination weights and a discriminating threshold chosen to minimize the constrained optimality criterion. We then illustrate the application of the proposed classifier to develop an individualized PrEP targeting strategy in a resource-limited setting, with the goal of minimizing the number of PrEP offerings while achieving a minimum required sensitivity. This proof of concept data analysis uses baseline data from the ongoing Sustainable East Africa Research in Community Health study. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Mitochondria-targeted Antioxidants as a Prospective Therapeutic Strategy for Multiple Sclerosis.

    Science.gov (United States)

    Fetisova, Elena; Chernyak, Boris; Korshunova, Galina; Muntyan, Maria; Skulachev, Vladimir

    2017-01-01

    Multiple sclerosis (MS) is one of the most widespread chronic neurological diseases that manifests itself by progressive demyelination in the central nervous system. The study of MS pathogenesis begins with the onset of the relapsing-remitting phase of the disease, which becomes apparent due to microglia activation, neuroinflammation and demyelination/ remyelination in the white matter. The following progressive phase is accompanied by severe neurological symptoms when demyelination and neurodegeneration are spread to both gray and white matter. In this review, we discuss a possible role of mitochondrial reactive oxygen species (mtROS) in MS pathogenesis, mechanisms of mtROS generation and effects of some mitochondria-targeted antioxidants as potential components of MS therapy. In the early phase of MS, mtROS stimulate NLRP3 inflammasomes, which is critical for the formation of local inflammatory lesions. Later, mtROS contribute to blood-brain barrier disruption induced by mediators of inflammation, followed by infiltration of leukocytes. ROS generated by leukocytes and activated microglia promote mitochondrial dysfunction and oligodendrocyte cell death. In the progressive phase, neurodegeneration also depends on excessive mtROS generation. Currently, only a few immunomodulatory drugs are approved for treatment of MS. These drugs mainly reduce the number of relapses but do not stop MS progression. Certain dietary and synthetic antioxidants have demonstrated encouraging results in animal models of MS but were ineffective in the completed clinical trials. Novel mitochondria-targeted antioxidants could be promising components of combined programs for MS therapy considering that they can be applied at extremely low doses and concurrently demonstrate anti-inflammatory and neuroprotective activities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Operative links: the importance of combining perspectives in municipal strategies aimed at children's and adolescents' health.

    Science.gov (United States)

    Wistoft, Karen; Højlund, Holger

    2012-06-01

    The subject of investigation is the ways in which the Danish municipalities organize prevention and health-promotion efforts for children and adolescents. The aim is to examine how health managerial ideas have been combined with health professional ideals concerning different health educational approaches. Mixed qualitative design: survey based on telephone interviews with health managers (n=72), personal and focus group interviews with health professionals (n=84) and pupils (n=108) from 18 school classes, and comparative case studies in five selected municipalities of various size and geographical location. The theoretical framework has three positions combining a public management perspective with a pedagogical perspective on health promotion. The municipalities give high priority to prevention and health promotion directed toward children and adolescents and face a number of challenges at the management, collaboration, and knowledge levels. Missing links is one of the main points. Health managers and health professionals are preoccupied with some educational consequences of the health interventions, but they do not focus to the same extent on explicit health educational goals, learning content, or value clarification. Health pedagogy is often a matter of retrospective rationalization rather than the starting point of planning. Health and risk behaviour approaches override health educational approaches. Operational links between health education, health professionalism, and management strategies pose the foremost challenge. Operational links indicates cooperative levels that facilitate a creative and innovative effort across traditional professional boundaries. It is proposed that such links are supported by network structures, shared semantics, and situated pedagogical means of intervention.

  3. Combined effects of pre-pulsing and target geometry on efficient EUV production from laser produced plasma experiments and modeling

    Science.gov (United States)

    Hassanein, A.; Sizyuk, T.; Sizyuk, V.; Harilal, S. S.

    2011-04-01

    Laser produced plasmas (LPP) is currently a promising source of an efficient extreme ultraviolet (EUV) photon source production for advanced lithography. Optimum laser pulse parameters with adjusted wavelength, energy, and duration for simple planar or spherical tin target can provide 2-3% conversion efficiency (CE) in laboratory experiments. These values are also in good agreement with modeling results. Additional effects such as targets with complex geometry and tin-doped targets using pre-pulsing of laser beams can significantly increase CE. Recent studies showed that such improvements in LPP system are due to reduction in laser energy losses by decreasing photons transmission (higher harmonic of Nd:YAG laser) or photons reflection (for CO2 laser). Optimization of target heating using pre-pulses or ablating low-density and nanoporous tin oxide can further improve LLP sources by creating more efficient plasma plumes and as a result increasing CE, the most important parameter for EUV sources. The second important challenge in developing LPP devices is to decrease fast ions and target debris to protect the optical collection system and increase its lifetime. We investigated the combined effects of pre-pulsing with various parameters and different target geometries on EUV conversion efficiency and on energetic ions production. The much higher reflectivity of CO2 laser from a tin target leads to two possible ways for system improvement using pre-pulses with shorter laser wavelengths or using more complex targets geometries with special grooves as developed previously by the authors.

  4. Combination of Paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment.

    Science.gov (United States)

    Bourgeois-Daigneault, Marie-Claude; St-Germain, Lauren Elizabeth; Roy, Dominic Guy; Pelin, Adrian; Aitken, Amelia Sadie; Arulanandam, Rozanne; Falls, Theresa; Garcia, Vanessa; Diallo, Jean-Simon; Bell, John Cameron

    2016-08-08

    Breast cancer is the most common malignant disease amongst Western women. The lack of treatment options for patients with chemotherapy-resistant or recurrent cancers is pushing the field toward the rapid development of novel therapies. The use of oncolytic viruses is a promising approach for the treatment of disseminated diseases like breast cancer, with the first candidate recently approved by the Food and Drug Administration for use in patients. In this report, we demonstrate the compatibility of oncolytic virotherapy and chemotherapy using various murine breast cancer models. This one-two punch has been explored in the past by several groups with different viruses and drugs and was shown to be a successful approach. Our strategy is to combine Paclitaxel, one of the most common drugs used to treat patients with breast cancer, and the oncolytic Rhabdovirus Maraba-MG1, a clinical trial candidate in a study currently recruiting patients with late-stage metastatic cancer. We used the EMT6, 4 T1 and E0771 murine breast cancer models to evaluate in vitro and in vivo the effects of co-treatment with MG1 and Paclitaxel. Treatment-induced cytotoxicity was assessed and plaque assays, flow cytometry, microscopy and immunocytochemistry analysis were performed to quantify virus production and transgene expression. Orthotopically implanted tumors were measured during and after treatment to evaluate efficacy and Kaplan-Meier survival curves were generated. Our data demonstrate not only the compatibility of the treatments, but also their synergistic cytopathic activity. With Paclitaxel, EMT6 and 4 T1 tumors demonstrated increased virus production both in vitro and in vivo. Our results also show that Paclitaxel does not impair the safety profile of the virus treatment. Importantly, when combined, MG1 and the drug controlled tumor growth and prolonged survival. The combination of MG1 and Paclitaxel improved efficacy in all of the breast cancer models we tested and thus is a

  5. Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance.

    Directory of Open Access Journals (Sweden)

    Keng Boon Wee

    2016-01-01

    Full Text Available The multiple circulating human influenza A virus subtypes coupled with the perpetual genomic mutations and segment reassortment events challenge the development of effective therapeutics. The capacity to drug most RNAs motivates the investigation on viral RNA targets. 123,060 segment sequences from 35,938 strains of the most prevalent subtypes also infecting humans-H1N1, 2009 pandemic H1N1, H3N2, H5N1 and H7N9, were used to identify 1,183 conserved RNA target sequences (≥15-mer in the internal segments. 100% theoretical coverage in simultaneous heterosubtypic targeting is achieved by pairing specific sequences from the same segment ("Duals" or from two segments ("Doubles"; 1,662 Duals and 28,463 Doubles identified. By combining specific Duals and/or Doubles to form a target graph wherein an edge connecting two vertices (target sequences represents a Dual or Double, it is possible to hedge against antiviral resistance besides maintaining 100% heterosubtypic coverage. To evaluate the hedging potential, we define the hedge-factor as the minimum number of resistant target sequences that will render the graph to become resistant i.e. eliminate all the edges therein; a target sequence or a graph is considered resistant when it cannot achieve 100% heterosubtypic coverage. In an n-vertices graph (n ≥ 3, the hedge-factor is maximal (= n- 1 when it is a complete graph i.e. every distinct pair in a graph is either a Dual or Double. Computational analyses uncover an extensive number of complete graphs of different sizes. Monte Carlo simulations show that the mutation counts and time elapsed for a target graph to become resistant increase with the hedge-factor. Incidentally, target sequences which were reported to reduce virus titre in experiments are included in our target graphs. The identity of target sequence pairs for heterosubtypic targeting and their combinations for hedging antiviral resistance are useful toolkits to construct target graphs for

  6. Quantification of target analytes in various biofluids using a postcolumn infused-internal standard method combined with matrix normalization factors in liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Liao, Hsiao-Wei; Tsai, I-Lin; Chen, Guan-Yuan; Lu, Yen-Shen; Lin, Ching-Hung; Kuo, Ching-Hua

    2014-09-05

    Liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) has become one of the most widely used methods in pharmaceutical laboratories. Although LC-ESI-MS provides high sensitivity and high specificity for quantifying target analytes in complicated biofluids, the associated severe matrix effects (MEs) generally result in large quantification errors. Here, we propose a novel strategy for correcting MEs in various biofluids using a postcolumn infused-internal standard (PCI-IS) method in combination with matrix normalization factors (MNFs). We used the MNFs to normalize the encountered MEs in various biofluids to the MEs encountered in standard solutions. The use of a postcolumn infused-internal standard also corrects the MEs for individual samples. When using the PCI-IS method in combination with MNFs, the calibration curve generated from standard solutions can be applied to quantify the target analytes in various biofluids. We applied this new approach to quantify etoposide and etoposide catechol in plasma and CSF. The accuracy of the test results showed that over 93% of the data have quantification errors less than 20% and that 99% of the data have quantification errors less than 30%. The successful application of this method to evaluate real clinical samples revealed that our proposed MNFs in combination with the PCI-IS method largely simplifies the entire method development and validation processes, saves a great deal of time and cost without sacrificing quantification accuracy, and provides a simple means of quantifying target analytes in various biofluids. This method will be particularly useful in fields in which the same target analytes need to be quantified in various types of matrices, including bioanalysis, forensic toxicology, environmental studies, and food safety control. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment.

    Science.gov (United States)

    Yoshida, Go J

    2017-03-09

    attention because the safety profiles of these medicines are well known. Antimalarial agents such as artemisinin and disease-modifying antirheumatic drug (DMARD) are the typical examples of drug re-positioning which affect the autophagy regulation for the therapeutic use. This review article focuses on recent advances in some of the novel therapeutic strategies that target autophagy with a view to treating/preventing malignant neoplasms.

  8. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment

    Directory of Open Access Journals (Sweden)

    Go J. Yoshida

    2017-03-01

    strategy has attracted increasing attention because the safety profiles of these medicines are well known. Antimalarial agents such as artemisinin and disease-modifying antirheumatic drug (DMARD are the typical examples of drug re-positioning which affect the autophagy regulation for the therapeutic use. This review article focuses on recent advances in some of the novel therapeutic strategies that target autophagy with a view to treating/preventing malignant neoplasms.

  9. Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing.

    Science.gov (United States)

    Redin, Claire; Gérard, Bénédicte; Lauer, Julia; Herenger, Yvan; Muller, Jean; Quartier, Angélique; Masurel-Paulet, Alice; Willems, Marjolaine; Lesca, Gaétan; El-Chehadeh, Salima; Le Gras, Stéphanie; Vicaire, Serge; Philipps, Muriel; Dumas, Michaël; Geoffroy, Véronique; Feger, Claire; Haumesser, Nicolas; Alembik, Yves; Barth, Magalie; Bonneau, Dominique; Colin, Estelle; Dollfus, Hélène; Doray, Bérénice; Delrue, Marie-Ange; Drouin-Garraud, Valérie; Flori, Elisabeth; Fradin, Mélanie; Francannet, Christine; Goldenberg, Alice; Lumbroso, Serge; Mathieu-Dramard, Michèle; Martin-Coignard, Dominique; Lacombe, Didier; Morin, Gilles; Polge, Anne; Sukno, Sylvie; Thauvin-Robinet, Christel; Thevenon, Julien; Doco-Fenzy, Martine; Genevieve, David; Sarda, Pierre; Edery, Patrick; Isidor, Bertrand; Jost, Bernard; Olivier-Faivre, Laurence; Mandel, Jean-Louis; Piton, Amélie

    2014-11-01

    Intellectual disability (ID) is characterised by an extreme genetic heterogeneity. Several hundred genes have been associated to monogenic forms of ID, considerably complicating molecular diagnostics. Trio-exome sequencing was recently proposed as a diagnostic approach, yet remains costly for a general implementation. We report the alternative strategy of targeted high-throughput sequencing of 217 genes in which mutations had been reported in patients with ID or autism as the major clinical concern. We analysed 106 patients with ID of unknown aetiology following array-CGH analysis and other genetic investigations. Ninety per cent of these patients were males, and 75% sporadic cases. We identified 26 causative mutations: 16 in X-linked genes (ATRX, CUL4B, DMD, FMR1, HCFC1, IL1RAPL1, IQSEC2, KDM5C, MAOA, MECP2, SLC9A6, SLC16A2, PHF8) and 10 de novo in autosomal-dominant genes (DYRK1A, GRIN1, MED13L, TCF4, RAI1, SHANK3, SLC2A1, SYNGAP1). We also detected four possibly causative mutations (eg, in NLGN3) requiring further investigations. We present detailed reasoning for assigning causality for each mutation, and associated patients' clinical information. Some genes were hit more than once in our cohort, suggesting they correspond to more frequent ID-associated conditions (KDM5C, MECP2, DYRK1A, TCF4). We highlight some unexpected genotype to phenotype correlations, with causative mutations being identified in genes associated to defined syndromes in patients deviating from the classic phenotype (DMD, TCF4, MECP2). We also bring additional supportive (HCFC1, MED13L) or unsupportive (SHROOM4, SRPX2) evidences for the implication of previous candidate genes or mutations in cognitive disorders. With a diagnostic yield of 25% targeted sequencing appears relevant as a first intention test for the diagnosis of ID, but importantly will also contribute to a better understanding regarding the specific contribution of the many genes implicated in ID and autism. Published by the

  10. Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae

    National Research Council Canada - National Science Library

    Mitchell, Sara N; Rigden, Daniel J; Dowd, Andrew J; Lu, Fang; Wilding, Craig S; Weetman, David; Dadzie, Samuel; Jenkins, Adam M; Regna, Kimberly; Boko, Pelagie; Djogbenou, Luc; Muskavitch, Marc A T; Ranson, Hilary; Paine, Mark J I; Mayans, Olga; Donnelly, Martin J

    2014-01-01

    .... In this study we demonstrate how resistance to DDT in the major African malaria vector Anopheles gambiae is a result of both target-site resistance mechanisms that have introgressed between incipient species...

  11. Combination therapy approaches to target insulin-like growth factor receptor signaling in breast cancer.

    Science.gov (United States)

    Ochnik, Aleksandra M; Baxter, Robert C

    2016-11-01

    Insulin-like growth factor receptor (IGF1R) signaling as a therapeutic target has been widely studied and clinically tested. Despite the vast amount of literature supporting the biological role of IGF1R in breast cancer, effective clinical translation in targeting its activity as a cancer therapy has not been successful. The intrinsic complexity of cancer cell signaling mediated by many tyrosine kinase growth factor receptors that work together to modulate each other and intracellular downstream mediators in the cell highlights that studying IGF1R expression and activity as a prognostic factor and therapeutic target in isolation is certainly associated with problems. This review discusses the current literature and clinical trials associated with IGF-1 signaling and attempts to look at new ways of designing novel IGF1R-directed breast cancer therapy approaches to target its activity 
and/or intracellular downstream signaling pathways in IGF1R-expressing breast cancers. © 2016 Society for Endocrinology.

  12. Combining ultrasound-based elasticity estimation and FE models to predict 3D target displacement

    NARCIS (Netherlands)

    Assaad, W.; Misra, Sarthak

    During minimally invasive surgical procedures (e.g., needle insertion during interventional radiological procedures), needle–tissue interactions and physiological processes cause tissue deformation. Target displacement is caused by soft-tissue deformation, which results in misplacement of the

  13. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.

    Science.gov (United States)

    Shanechi, Maryam M; Williams, Ziv M; Wornell, Gregory W; Hu, Rollin C; Powers, Marissa; Brown, Emery N

    2013-01-01

    Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system.

  14. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.

    Directory of Open Access Journals (Sweden)

    Maryam M Shanechi

    Full Text Available Real-time brain-machine interfaces (BMI have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system.

  15. UP Finder: A COBRA toolbox extension for identifying gene overexpression strategies for targeted overproduction

    National Research Council Canada - National Science Library

    Wang, Xi; Yu, Liang; Chen, Shulin

    2017-01-01

    .... It was based on the COBRA toolbox under MATLAB environment. All the key gene/pathway targets are identified in one click after simply loading a Systems Biology Markup Language model and specifying a metabolite as the targeted product...

  16. Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors.

    Science.gov (United States)

    Eyckmans, Jeroen; Roberts, Scott J; Bolander, Johanna; Schrooten, Jan; Chen, Christopher S; Luyten, Frank P

    2013-06-01

    Although calcium phosphate-containing biomaterials are promising scaffolds for bone regenerative strategies, the osteoinductive capacity of such materials is poorly understood. In this study, we investigated whether endogenous mechanisms of in vivo calcium phosphate-driven, ectopic bone formation could be identified and used to induce enhanced differentiation in vitro of the same progenitor population. To accomplish this, human periosteum derived cells (hPDCs) were seeded on hydroxyapatite/collagen scaffolds (calcium phosphate rich matrix or CPRM), or on decalcified scaffolds (calcium phosphate depleted matrix or CPDM), followed by subcutaneous implantation in nude mice to trigger ectopic bone formation. In this system, osteoblast differentiation occurred in CPRM scaffolds, but not in CPDM scaffolds. Gene expression was assessed by human full-genome microarray at 20 h after seeding, and 2, 8 and 18 days after implantation. In both matrices, implantation of the cell constructs triggered a similar gene expression cascade, however, gene expression dynamics progressed faster in CPRM scaffolds than in CPDM scaffolds. The difference in gene expression dynamics was associated with differential activation of hub genes and molecular signaling pathways related to calcium signaling (CREB), inflammation (TNFα, NFkB, and IL6) and bone development (TGFβ, β-catenin, BMP, EGF, and ERK signaling). Starting from this set of pathways, a growth factor cocktail was developed that robustly enhanced osteogenesis in vitro and in vivo. Taken together, our data demonstrate that through the identification and subsequent stimulation of genes, proteins and signaling pathways associated with calcium phosphate mediated osteoinduction, a focused approach to develop targeted differentiation protocols in adult progenitor cells can be achieved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. [Novel Anticancer Strategy Targeting Switch Mechanisms in Two Types of Cell Death: Necrosis and Apoptosis].

    Science.gov (United States)

    Sato, Akira

    2017-01-01

     Two types of cell death, necrosis and apoptosis, are defined in terms of cell death morphological features. We have been studying the mechanisms by which cell death processes are switched during the treatment of mouse tumor FM3A with anticancer, 5-fluoro-2'-deoxyuridine (FUdR): it induces original clone F28-7 to necrosis, but its sub-clone F28-7-A to apoptosis. We identified several such switch regulators of cell death: heat shock protein 90 (HSP90), lamin-B1, cytokeratin-19, and activating transcription factor 3 (ATF3), by using transcriptomic, proteomic analyses and siRNA screening. For example, the inhibition of HSP90 by its inhibitor geldanamycin in F28-7 caused a shift from necrosis to apoptosis. We also observed that the knockdown of lamin-B1, cytokeratin-19, or ATF3 expression in F28-7 resulted in a shift from necrosis to apoptosis. Recently, we used microRNA (miRNA, miR) microarray analyses to investigate the miRNA expression profiles in these sister cells. The miR-351 and miR-743a were expressed at higher levels in F28-7-A than in F28-7. Higher expression of miR-351 or miR-743a in F28-7, induced by transfecting the miR mimics, resulted in a switch of cell death mode: necrosis to apoptosis. Furthermore, transfection of an miR-351 inhibitor into F28-7-A resulted in morphological changes, and mode of cell death from apoptosis to necrosis. These findings suggest that the identified cell death regulators may have key roles in switching cell death mode. Possible mechanisms involving cell death regulators in the switch of necrosis or apoptosis are discussed. We propose a novel anticancer strategy targeting the switch regulators of necrosis or apoptosis.

  18. Combined targeting of STAT3 and STAT5: a novel approach to overcome drug resistance in chronic myeloid leukemia

    Science.gov (United States)

    Gleixner, Karoline V.; Schneeweiss, Mathias; Eisenwort, Gregor; Berger, Daniela; Herrmann, Harald; Blatt, Katharina; Greiner, Georg; Byrgazov, Konstantin; Hoermann, Gregor; Konopleva, Marina; Waliul, Islam; Cumaraswamy, Abbarna A.; Gunning, Patrick T.; Maeda, Hiroshi; Moriggl, Richard; Deininger, Michael; Lion, Thomas; Andreeff, Michael; Valent, Peter

    2017-01-01

    In chronic myeloid leukemia, resistance against BCR-ABL1 tyrosine kinase inhibitors can develop because of BCR-ABL1 mutations, activation of additional pro-oncogenic pathways, and stem cell resistance. Drug combinations covering a broad range of targets may overcome resistance. CDDO-Me (bardoxolone methyl) is a drug that inhibits the survival of leukemic cells by targeting different pro-survival molecules, including STAT3. We found that CDDO-Me inhibits proliferation and survival of tyrosine kinase inhibitor-resistant BCR-ABL1+ cell lines and primary leukemic cells, including cells harboring BCR-ABL1T315I or T315I+ compound mutations. Furthermore, CDDO-Me was found to block growth and survival of CD34+/CD38− leukemic stem cells (LSC). Moreover, CDDO-Me was found to produce synergistic growth-inhibitory effects when combined with BCR-ABL1 tyrosine kinase inhibitors. These drug-combinations were found to block multiple signaling cascades and molecules, including STAT3 and STAT5. Furthermore, combined targeting of STAT3 and STAT5 by shRNA and STAT5-targeting drugs also resulted in synergistic growth-inhibition, pointing to a new efficient concept of combinatorial STAT3 and STAT5 inhibition. However, CDDO-Me was also found to increase the expression of heme-oxygenase-1, a heat-shock-protein that triggers drug resistance and cell survival. We therefore combined CDDO-Me with the heme-oxygenase-1 inhibitor SMA-ZnPP, which also resulted in synergistic growth-inhibitory effects. Moreover, SMA-ZnPP was found to sensitize BCR-ABL1+ cells against the combination ‘CDDO-Me+ tyrosine kinase inhibitor’. Together, combined targeting of STAT3, STAT5, and heme-oxygenase-1 overcomes resistance in BCR-ABL1+ cells, including stem cells and highly resistant sub-clones expressing BCR-ABL1T315I or T315I-compound mutations. Whether such drug-combinations are effective in tyrosine kinase inhibitor-resistant patients with chronic myeloid leukemia remains to be elucidated. PMID:28596283

  19. Novel strategy involving surfactant-polymer combinations for enhanced stability of aqueous teflon dispersions.

    Science.gov (United States)

    Sharma, Mukesh; Bharatiya, Bhavesh; Mehta, Krupali; Shukla, Atindra; Shah, Dinesh O

    2014-06-24

    Among various polymers, the Teflon surface possesses extreme hydrophobicity (low surface energy), which is of great interest to both industry and academia. In this report, we discuss the stability of aqueous Teflon dispersions (particle size range of 100-3000 nm) formulated by a novel strategy that involves distinct combinations of surfactant and polymer mixtures for dispersion stabilization. As a first step, the hydrophobic Teflon particles were wetted using a range of surfactants (ionic, Triton, Brij, Tween, and Pluronic series) bearing different hydrophobic-lipophilic balance (HLB) and further characterized by contact angle and liquid penetration in packed powder measurements. The interaction between hydrophobic chains of surfactants and the Teflon particle surface is the driving force resulting in wetting of the Teflon particle surface. Further, these wetted particles in aqueous solutions were mixed with various polymers, for example, poly(vinyl alcohol) (PVA), polyvinylpyrrolidone (PVP), hydroxyethyl cellulose (HEC), and hydroxypropyl methyl cellulose (HPMC). The rate of sedimentation for the final dispersions was measured using a pan suspended into the dispersion from a transducer recording the increase in weight with time. A significant stability was noticed for Teflon particles suspended in surfactant + polymer mixtures, which was linearly proportional to the concentration of added polymer. The observed phenomenon can be possibly explained by molecular interactions between the hydrophobic chains of surfactant molecules and polar groups in the polymer architecture. Brij-O10 + HEC mixture was found to be the best surfactant-polymer combination for decreasing the sedimentation of the Teflon particles in the final dispersion. As measured by dynamic light scattering (DLS), the hydrodynamic volume of the Teflon particles increases up to ∼55% in the final formulation. These dispersions could be further explored for various technological applications such as

  20. The Target of 5-Lipoxygenase is a Novel Strategy over Human Urological Tumors than the Target of Cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Masahide Matsuyama

    2008-01-01

    Full Text Available The metabolism of arachidonic acid by either the cyclooxygenase (COX or lipoxygenase (LOX pathway generates eicosanoids, which have been implicated in the pathogenesis of a variety of human diseases, including cancer. It is now considered that they play important roles in tumor promotion, progression, and metastasis, also, the involvement of COX and LOX expression and function in tumor growth and metastasis has been reported in human tumor cell lines. In this study, we examined the expression of COX and LOX in human urological tumors (renal cell carcinoma, bladder tumor, prostate cancer, testicular cancer by immunohistochemistry and RT-PCR, and we also examined the effects of COX and LOX (5- and 12-LOX inhibitors in those cells by MTT assay, hoechest staining, and flow cytometry. COX-2, 5-LOX and 12-LOX expressions were significantly more extensive and intense in malignant tissues than in normal tissues. Furthermore, 5-LOX inhibitor induced the reduction of malignant cell viability through early apoptosis. These results demonstrated COX-2 and LOX were induced in urological tumors, and 5-LOX inhibitor may mediate potent antiproliferative effects against urological tumors cells. Thus, 5-LOX may become a new target in the treatment of urological tumors.

  1. The Target of 5-Lipoxygenase is a Novel Strategy over Human Urological Tumors than the Target of Cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Masahide Matsuyama

    2008-06-01

    Full Text Available The metabolism of arachidonic acid by either the cyclooxygenase (COX or lipoxygenase (LOX pathway generates eicosanoids, which have been implicated in the pathogenesis of a variety of human diseases, including cancer. It is now considered that they play important roles in tumor promotion, progression, and metastasis, also, the involvement of COX and LOX expression and function in tumor growth and metastasis has been reported in human tumor cell lines. In this study, we examined the expression of COX and LOX in human urological tumors (renal cell carcinoma, bladder tumor, prostate cancer, testicular cancer by immunohistochemistry and RT-PCR, and we also examined the effects of COX and LOX (5- and 12-LOX inhibitors in those cells by MTT assay, hoechest staining, and flow cytometry. COX-2, 5-LOX and 12-LOX expressions were significantly more extensive and intense in malignant tissues than in normal tissues. Furthermore, 5-LOX inhibitor induced the reduction of malignant cell viability through early apoptosis. These results demonstrated COX-2 and LOX were induced in urological tumors, and 5-LOX inhibitor may mediate potent antiproliferative effects against urological tumors cells. Thus, 5-LOX may become a new target in the treatment of urological tumors.

  2. How are learning strategies reflected in the eyes? Combining results from self-reports and eye-tracking.

    Science.gov (United States)

    Catrysse, Leen; Gijbels, David; Donche, Vincent; De Maeyer, Sven; Lesterhuis, Marije; Van den Bossche, Piet

    2017-08-29

    Up until now, empirical studies in the Student Approaches to Learning field have mainly been focused on the use of self-report instruments, such as interviews and questionnaires, to uncover differences in students' general preferences towards learning strategies, but have focused less on the use of task-specific and online measures. This study aimed at extending current research on students' learning strategies by combining general and task-specific measurements of students' learning strategies using both offline and online measures. We want to clarify how students process learning contents and to what extent this is related to their self-report of learning strategies. Twenty students with different generic learning profiles (according to self-report questionnaires) read an expository text, while their eye movements were registered to answer questions on the content afterwards. Eye-tracking data were analysed with generalized linear mixed-effects models. The results indicate that students with an all-high profile, combining both deep and surface learning strategies, spend more time on rereading the text than students with an all-low profile, scoring low on both learning strategies. This study showed that we can use eye-tracking to distinguish very strategic students, characterized using cognitive processing and regulation strategies, from low strategic students, characterized by a lack of cognitive and regulation strategies. These students processed the expository text according to how they self-reported. © 2017 The British Psychological Society.

  3. A targeted door-to-door strategy for sleeping sickness detection in low-prevalence settings in Côte d’Ivoire

    Directory of Open Access Journals (Sweden)

    Koffi Mathurin

    2016-01-01

    Full Text Available Significant efforts to control human African trypanosomiasis (HAT over the three past decades have resulted in drastic reductions of disease prevalence in Côte d’Ivoire. In this context, the costly and labor-intensive active mass screening strategy is no longer efficient. In addition to a more cost-effective passive surveillance system being implemented in this low-prevalence context, our aim was to develop an alternative targeted active screening strategy. In 2012, we carried out a targeted door-to-door (TDD survey focused on the immediate vicinities of former HAT patients detected in the HAT focus of Bonon and compared the results to those obtained during classical active mass screening (AMS surveys conducted from 2000 to 2012 in the same area. The TDD that provides a friendlier environment, inviting inhabitants to participate and gain awareness of the disease, detected significantly more HAT cases than the AMS. These results suggest that the TDD is an efficient and useful strategy in low-prevalence settings where very localized transmission cycles may persist and, in combination with passive surveillance, could help in eliminating HAT.

  4. Analysis of a combined heating and cooling system model under different operating strategies

    Science.gov (United States)

    Dzierzgowski, Mieczysław; Zwierzchowski, Ryszard

    2017-11-01

    The paper presents an analysis of a combined heating and cooling system model under different operating strategies. Cooling demand for air conditioning purposes has grown steadily in Poland since the early 1990s. The main clients are large office buildings and shopping malls in downtown locations. Increased demand for heat in the summer would mitigate a number of problems regarding District Heating System (DHS) operation at minimum power, affecting the average annual price of heat (in summertime the share of costs related to transport losses is a strong cost factor). In the paper, computer simulations were performed for different supply network water temperature, assuming as input, real changes in the parameters of the DHS (heat demand, flow rates, etc.). On the basis of calculations and taking into account investment costs of the Absorption Refrigeration System (ARS) and the Thermal Energy Storage (TES) system, an optimal capacity of the TES system was proposed to ensure smooth and efficient operation of the District Heating Plant (DHP). Application of ARS with the TES system in the DHS in question increases net profit by 19.4%, reducing the cooling price for consumers by 40%.

  5. Gene-modified stem cells combined with rapid prototyping techniques: a novel strategy for periodontal regeneration.

    Science.gov (United States)

    He, Huixia; Cao, Junkai; Wang, Dongsheng; Gu, Bing; Guo, Hong; Liu, Hongchen

    2010-03-01

    Periodontal disease, a worldwide prevalent chronic disease in adults, is characterized by the destruction of the periodontal supporting tissue including the cementum, periodontal ligament and alveolar bone. The regeneration of damaged periodontal tissue is the main goal of periodontal treatment. Because conventional periodontal treatments remain insufficient to attain complete and reliable periodontal regeneration, periodontal tissue engineering has emerged as a prospective alternative method for improving the regenerative capacity of periodontal tissue. However, the potential of periodontal regeneration seems to be limited by the understanding of the cellular and molecular events in the formation of periodontal tissue and by the insufficient collaboration of multi-disciplinary research that periodontal tissue engineering involves. In this paper, we first reviewed the recent advancements in stem cells, signaling factors, and scaffolds that relate to periodontal regeneration. Then we speculate that specific genes would improve regenerative capacity of these stem cells, which could differentiate into cementoblasts, osteoblasts and fibroblasts. In addition, the 3D scaffolds that mimic the different structure and physiologic functions of natural fibro-osseous tissue could be fabricated by rapid prototyping (RP) techniques. It was therefore hypothesized that gene-modified stem cells combined with rapid prototyping techniques would be a new strategy to promote more effective and efficient periodontal regeneration.

  6. Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement.

    Science.gov (United States)

    Zhang, Xiaodong; Zeng, Zhen; Liu, Xianlei; Fang, Fengzhou

    2015-09-21

    Freeform surface is promising to be the next generation optics, however it needs high form accuracy for excellent performance. The closed-loop of fabrication-measurement-compensation is necessary for the improvement of the form accuracy. It is difficult to do an off-machine measurement during the freeform machining because the remounting inaccuracy can result in significant form deviations. On the other side, on-machine measurement may hides the systematic errors of the machine because the measuring device is placed in situ on the machine. This study proposes a new compensation strategy based on the combination of on-machine and off-machine measurement. The freeform surface is measured in off-machine mode with nanometric accuracy, and the on-machine probe achieves accurate relative position between the workpiece and machine after remounting. The compensation cutting path is generated according to the calculated relative position and shape errors to avoid employing extra manual adjustment or highly accurate reference-feature fixture. Experimental results verified the effectiveness of the proposed method.

  7. Systems Analysis of Drug-Induced Receptor Tyrosine Kinase Reprogramming Following Targeted Mono- and Combination Anti-Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Alexey Goltsov

    2014-06-01

    Full Text Available The receptor tyrosine kinases (RTKs are key drivers of cancer progression and targets for drug therapy. A major challenge in anti-RTK treatment is the dependence of drug effectiveness on co-expression of multiple RTKs which defines resistance to single drug therapy. Reprogramming of the RTK network leading to alteration in RTK co-expression in response to drug intervention is a dynamic mechanism of acquired resistance to single drug therapy in many cancers. One route to overcome this resistance is combination therapy. We describe the results of a joint in silico, in vitro, and in vivo investigations on the efficacy of trastuzumab, pertuzumab and their combination to target the HER2 receptors. Computational modelling revealed that these two drugs alone and in combination differentially suppressed RTK network activation depending on RTK co-expression. Analyses of mRNA expression in SKOV3 ovarian tumour xenograft showed up-regulation of HER3 following treatment. Considering this in a computational model revealed that HER3 up-regulation reprograms RTK kinetics from HER2 homodimerisation to HER3/HER2 heterodimerisation. The results showed synergy of the trastuzumab and pertuzumab combination treatment of the HER2 overexpressing tumour can be due to an independence of the combination effect on HER3/HER2 composition when it changes due to drug-induced RTK reprogramming.

  8. Combination therapy Eve and Pac to induce apoptosis in cervical cancer cells by targeting PI3K/AKT/mTOR pathways.

    Science.gov (United States)

    Dong, Pingping; Hao, Fengmei; Dai, Shufeng; Tian, Lin

    2018-02-01

    This study aimed to investigate the anti-cervical cancer effects of everolimus (Eve) and paclitaxel (Pac) when used alone or in combination. Human cervical cancer cells HeLa and SiHa were divided into four group: Blank control group (control), everolimus group (Eve), paclitaxel group (Pac) and combined therapy group (Eve + Pac). The cell viability was detected by CCK-8 assay and the cell cloning ability was detected by clonegenic assay. Flow cytometry was used to detect cell apoptosis. Meanwhile, the expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR) and their phosphorylated proteins were studied by western blot. The HeLa and SiHa cells proliferation and cloning ability were significantly inhibited in drug treatment groups compared with control group (p Pac combinatorial therapy showed the better results than single treatment with Eve or Pac. Combination of Eve and Pac has synergistic effect on the induction of apoptosis in cervical cancer cells. In addition, the protein ratios in HeLa and SiHa cell treated with the Eve + Pac combination were significantly lower than that of cervical cancer cells treated with either Eve or Pac cell alone. Our study suggested that Eve + Pac provide a novel therapeutic strategy for cervical cancer.

  9. Technology strategy for enhanced recovery; Technology Target Areas; TTA3 - enhanced recovery

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The Norwegian Continental Shelf (NCS) is facing new challenges in reserve replacement and improved recovery in order to maintain the overall oil production rate from the area. A new target for an increase in oil reserves of 800 million Sm3 of oil (5 billion barrels) by year 2015 has been set by NPD. This is an ambitious goal considering several of the large fields are on a steep decline, and most of the recent discoveries are relatively small. A significant part of these increased reserves will have to come from fields currently on production, from reservoir areas that have been partly or fully swept, and it is therefore evident that Enhanced Oil Recovery (EOR) methods have to play a key role in achieving this target. EOR methods can be divided into gas based EOR methods and water based EOR methods. Thermal methods are not considered applicable on the NCS due to the relatively light oils present, and the depth of the reservoirs. Gas Based EOR; Water Based EOR; CO{sub 2} injection; Surfactants; Air injection; Polymer; Nitrogen injection; Alkaline; Flue gas injection; Polymer gels; WAG; MEOR; FAWAG. The former OG21 strategy document gave high priority to Water Alternating Gas (WAG) methods and CO{sub 2} injection for enhanced recovery. A lot of research and development and evaluation projects on CO{sub 2} injection were launched and are on-going, most of these are being CO{sub 2} WAG studies. The main challenge now in order to realize CO{sub 2} injection on the NCS is on CO{sub 2} availability and transport. It is also believed that increasing gas prices will limit the availability of hydrocarbon gas for injection purposes in the future. There is, however, a clear need for developing alternative cost efficient EOR methods that can improve the sweep efficiency significantly. Since a majority of the fields on the NCS are being produced under water flooding (or WAG), methods that can improve the water flooding efficiency by chemical additives are of special interest and

  10. Superiority of aromatase inhibitor and cyclooxygenase-2 inhibitor combined delivery: Hyaluronate-targeted versus PEGylated protamine nanocapsules for breast cancer therapy.

    Science.gov (United States)

    Elzoghby, Ahmed O; Mostafa, Shaimaa K; Helmy, Maged W; ElDemellawy, Maha A; Sheweita, Salah A

    2017-08-30

    Despite several reports have revealed the beneficial effect of co-administration of COX-2 inhibitors with aromatase inhibitors in managing postmenopausal breast cancer; no nanocarriers for such combined delivery have been developed till now. Therefore, protamine nanocapsules (PMN-NCs) have been developed to co-deliver letrozole (LTZ) that inhibits aromatase-mediated estrogen biosynthesis and celecoxib (CXB) that synergistically inhibits aromatase expression. Inspired by the CD44-mediated tumor targeting ability of hyaluronate (HA), we developed HA-coated PMN-NCs (HA-NCs) via electrostatic layer-by-layer assembly. Moreover, multi-compartmental PEGylated phospholipid-CXB complex bilayer enveloping PMN-NCs (PEG-NCs) were designed for conferring biphasic CXB release from the phospholipid corona and oily core as well as enabling passive-targeting. The NCs demonstrated excellent stability, prolonged circulation and could be scaled up with the aid of spray-drying technology. Hemolysis, serum stability and cytotoxicity studies confirmed the superiority of combined LTZ-CXB nano-delivery. Mechanistically, the NCs especially HA-NCs and PEG-NCs demonstrated precious anti-tumor effects in vivo revealed as reduction in the tumor volume and aromatase level, increased apoptosis, as well as inhibition of VEGF, NF-κB and TNF-α augmented by histopathological and immunohistochemical studies. Overall, our approach provided for the first time a potential strategy for targeted LTZ-CXB combined therapy of hormone-dependent breast cancer via singular nanocapsule delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Progress of clinical research on targeted therapy combined with thoracic radiotherapy for non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhuang HQ

    2014-05-01

    Full Text Available Hongqing Zhuang,1,* Xianzhi Zhao,1,* Lujun Zhao,1 Joe Y Chang,2 Ping Wang1 1Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin Lung Cancer Center, Tianjin, People's Republic of China; 2Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA *These authors contributed equally to this paper Abstract: The combination of radiotherapy and targeted therapy is an important approach in the application of targeted therapy in clinical practice, and represents an important opportunity for the development of radiotherapy itself. Numerous agents, including epidermal growth factor receptor, monoclonal antibodies, tyrosine kinase inhibitors, and antiangiogenic therapies, have been used for targeted therapy. A number of studies of radiotherapy combined with targeted therapy in non-small-cell lung carcinoma have been completed or are ongoing. This paper briefly summarizes the drugs involved and the important related clinical research, and indicates that considerable progress has been made with the joint efforts of the two disciplines. Many issues, including drug selection, identification of populations most likely to benefit, timing of administration of medication, and side effects of treatment require further investigation. However, further fundamental research and accumulation of clinical data will provide a more comprehensive understanding of these therapies. Targeted therapy in combination with radiotherapy has a bright future. Keywords: non-small-cell lung carcinoma, radiotherapy, epidermal growth factor receptor, monoclonal antibody, tyrosine kinase inhibitors, antiangiogenic therapies

  12. JAK2/IDH-mutant–driven myeloproliferative neoplasm is sensitive to combined targeted inhibition

    Science.gov (United States)

    McKenney, Anna Sophia; Somasundara, Amritha Varshini Hanasoge; Spitzer, Barbara; Intlekofer, Andrew M.; Ahn, Jihae; Shank, Kaitlyn; Rapaport, Franck T.; Patel, Minal A.; Papalexi, Efthymia; Shih, Alan H.; Chiu, April; Freinkman, Elizaveta; Akbay, Esra A.; Steadman, Mya; Nagaraja, Raj; Yen, Katharine; Teruya-Feldstein, Julie; Wong, Kwok-Kin; Rampal, Raajit; Thompson, Craig B.

    2018-01-01

    Patients with myeloproliferative neoplasms (MPNs) frequently progress to bone marrow failure or acute myeloid leukemia (AML), and mutations in epigenetic regulators such as the metabolic enzyme isocitrate dehydrogenase (IDH) are associated with poor outcomes. Here, we showed that combined expression of Jak2V617F and mutant IDH1R132H or Idh2R140Q induces MPN progression, alters stem/progenitor cell function, and impairs differentiation in mice. Jak2V617F Idh2R140Q–mutant MPNs were sensitive to small-molecule inhibition of IDH. Combined inhibition of JAK2 and IDH2 normalized the stem and progenitor cell compartments in the murine model and reduced disease burden to a greater extent than was seen with JAK inhibition alone. In addition, combined JAK2 and IDH2 inhibitor treatment also reversed aberrant gene expression in MPN stem cells and reversed the metabolite perturbations induced by concurrent JAK2 and IDH2 mutations. Combined JAK2 and IDH2 inhibitor therapy also showed cooperative efficacy in cells from MPN patients with both JAK2mut and IDH2mut mutations. Taken together, these data suggest that combined JAK and IDH inhibition may offer a therapeutic advantage in this high-risk MPN subtype. PMID:29355841

  13. Study on the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles

    DEFF Research Database (Denmark)

    Pinto, Cláudio; Barreras, Jorge V.; de Castro, Ricardo

    2017-01-01

    This paper presents a study of the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles. In particular, the aim is to find the number of battery (and supercapacitor) cells to propel a light vehicle to run two different standard driving cycles....... Despite the same tendency, when a hybrid vehicle is taken into account, the influence of the battery models is dependent on the sizing strategy. In this work, two sizing strategies are evaluated: dynamic programming and filter-based. For the latter, the complexity of the battery model has a clear...

  14. Drug-Induced Self-Assembly of Modified Albumins as Nano-theranostics for Tumor-Targeted Combination Therapy.

    Science.gov (United States)

    Chen, Qian; Wang, Xin; Wang, Chao; Feng, Liangzhu; Li, Yonggang; Liu, Zhuang

    2015-05-26

    Paclitaxel (PTX) can bind to human serum albumin (HSA) via hydrophobic interaction, forming Abraxane, which is a U.S. Food and Drug Administration (FDA) approved effective antitumor nanomedicine drug. Herein, the effective antitumor drug PTX is used to induce the self-assembly of HSA modified with either a photosensitizer chlorin e6 (Ce6), which at the same time serves as a chelating agent for Mn(2+) to enable magnetic resonance imaging, or acyclic Arg-Gly-Asp (cRGDyK) peptide that targets αvβ3-integrin overexpressed on tumor angiogenic endothelium. Two types of tumor-targeting theranostic nanoparticles are constructed, either by coassembly of both HSA-Ce6 and HSA-RGD simultaneously or by forming an HSA-Ce6@HSA-RGD core-shell structure, with the assistance of PTX-induced albumin aggregation. Such albumin-based nanoparticles on one hand could targetαvβ3-integrin, as evidenced by both in vitro and in vivo experiments, and on the other hand enable combined photodynamic/chemotherapy, which offers remarkably improved therapeutic efficacy to kill cancer in comparison to the respective monotherapies. Our work presents a new type of tumor-targeted multifunctional albumin-based nanoparticles by drug-induced self-assembly, which is a rather simple method without any sophisticated chemistry or materials engineering and is promising for multimodel imaging-guided combination therapy of cancer.

  15. Theranostic tumor targeted nanoparticles combining drug delivery with dual near infrared and 19F magnetic resonance imaging modalities.

    Science.gov (United States)

    Vu-Quang, Hieu; Vinding, Mads Sloth; Nielsen, Thomas; Ullisch, Marcus Görge; Nielsen, Niels Chr; Kjems, Jørgen

    2016-10-01

    Combining imaging and drug delivery of "theranostic" nanoparticles has enabled concurrent diagnosis and therapy of diseases. Here, we describe a novel theranostic system that combines two imaging tracers, perfluorooctyl bromide (PFOB) for 19F magnetic resonance imaging (MRI) and indocyanine green (ICG) for near infrared (NIR) imaging, with the chemotherapeutic agent doxorubicin (Dox) into poly (lactic-co-glycolic acid)- poly (ethylene-glycol)-folate (PLGA-PEG-folate) nanoparticles. Cell culture studies using flow cytometry, confocal laser scanning microscope imaging, and 19F MRI showed enhanced uptake of nanoparticles via folate receptors expressed on human nasopharyngeal epidermal carcinoma (KB) cells. In vivo, higher MRI and fluorescence signals were obtained from tumors with 19F MRI and NIR, respectively, using folate-receptor-targeted nanoparticles compared with non-targeted equivalents. An in vitro cytotoxicity assay showed that folate-targeted nanoparticles were able to kill cancer cells more efficiently than non-folate conjugated particles. Our results suggest a potential use of PLGA-PEG-folate PFOB/ICG/Dox nanoparticles as a targeted chemotherapy agent traceable by either 19F MRI or NIR imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Impact of chemotherapy with S-1 and oxaliplatin (SOX) in combination with molecular-targeting agents on colorectal liver metastases.

    Science.gov (United States)

    Watanabe, Kazuhiro; Kawahara, Hidejiro; Enomoto, Hiroya; Toyama, Yoichi; Akiba, Tadashi; Yanaga, Katsuhiko

    2013-09-01

    The aim of this study was to evaluate the impact of chemotherapy with molecular-targeting agents on liver metastases from colorectal cancer. Six patients with synchronous colorectal liver metastases who underwent hepatectomy after chemotherapy with S-1 and oxaliplatin (SOX) between January 2010 and December 2011 at the Department of Surgery, Kashiwa Hospital, the Jikei University School of Medicine were enrolled. Two patients received only SOX as chemotherapy, while the others received SOX in combination with one of the three molecular-targeting agents, bevacizumab, cetuximab, and panitumumab. In the two patients who received SOX alone, liver metastases completely disappeared at more than six months after starting chemotherapy as shown by computed tomographic (CT) scan. However, malignant cells were diffusely detected by pathological examination at the site of liver metastases, as detected by CT scan before chemotherapy. In the other four patients who received SOX in combination with molecular targets, the size of liver metastases appeared unchanged at three months after limited chemotherapy by CT scan. Pathologically, few malignant cells were detected, only at the borderline of the tumor, while most tumor cells inside the tumor were necrotized and been replaced by fibroconnective tissue. Molecular-targeting agents may induce tumor necrosis rapidly from inside the tumor, which might not be detected by CT scan before surgery.

  17. Using tyrosinase as a monophenol monooxygenase: A combined strategy for effective inhibition of melanin formation.

    Science.gov (United States)

    Lee, Sang-Hyuk; Baek, Kiheon; Lee, Ju-Eun; Kim, Byung-Gee

    2016-04-01

    Tyrosinase is a binuclear copper-containing metalloprotein that leads the fast and regio-selective o-hydroxylation of monophenols to o-diphenols. However, the subsequent second oxidation to produce o-quinones, i.e., melanin precursors, from the o-diphenols has restricted its use to the production of functional o-diphenol derivatives. Herein, we present a combined strategy for the effective inhibition of melanin formation in tyrosinase reaction, which allows the use of tyrosinase as a monophenol monooxygenase. The o-diphenolic products were protected from being oxidized in the tyrosinase reaction by borate ions and L-ascorbic acid (LAA). Borate-o-diphenol complexes were favorable formed at high pH and consequentially protected the o-diphenolic products from the catecholase activity of tyrosinase. LAA not only directly reduced the byproduct, o-quinones, into o-diphenols but also assisted the completion of the tyrosinase reaction cycle by removing a hydroxyl group attached to the copper metal cluster at the active site of the met-form tyrosinase. The regio-selective o-hydroxylation of 7,4'-dihydroxyisoflavone (daidzein) to produce 7,3',4'-trihydroxyisoflavone (3'-ODI) was successfully carried out by whole E. coli cell biotransformation with heterologously expressed tyrosinase from Bacillus megaterium. The yield of this o-hydroxylation of 5 mM daidzein in one-pot 400 mL reaction was ca. 100% in 90 min and the productivity was 16.3 mg 3'-ODI · L(-1)  ·  h(-1)  ·  DCW mg(-1), which is considerably higher than that of other monooxygenases. The method effectively abolished melanin synthesis, so that the o-diphenolic product remained stable without enzyme inactivation. Other monophenolic phytochemicals such as resveratrol and genistein could be subjected to the same strategy. After 1 h, 1 mM of genistein and resveratrol were both converted to orobol and piceatannol, respectively, with ca. 95% conversion yield. These results support the strong

  18. Targeting Immunological Restrainers: Understanding the Immunology Behind Combination Chemoimmunotherapy to Improve the Treatment of Malignant Mesothelioma

    Science.gov (United States)

    2014-12-01

    malignant mesothelioma. 1S. SUBJECT TERMS Mesothelioma, immunotherapy, chemotherapy. Combination therapy . 16. SECURITY CLASSIFICATION OF: 17...aggressive, incurable asbestos‐induced cancer  that is increasing in incidence globally. Treatment for mesothelioma is predominantly  palliative , with...in the original proposal and highlights key research discoveries.  KEYWORDS:  Mesothelioma,  immunotherapy,  chemotherapy,  combination  therapy

  19. Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy.

    Science.gov (United States)

    Albarakati, Nada; Abdel-Fatah, Tarek M A; Doherty, Rachel; Russell, Roslin; Agarwal, Devika; Moseley, Paul; Perry, Christina; Arora, Arvind; Alsubhi, Nouf; Seedhouse, Claire; Rakha, Emad A; Green, Andrew; Ball, Graham; Chan, Stephen; Caldas, Carlos; Ellis, Ian O; Madhusudan, Srinivasan

    2015-01-01

    BRCA1, a key factor in homologous recombination (HR) repair may also regulate base excision repair (BER). Targeting BRCA1-BER deficient cells by blockade of ATM and DNA-PKcs could be a promising strategy in breast cancer. We investigated BRCA1, XRCC1 and pol β protein expression in two cohorts (n = 1602 sporadic and n = 50 germ-line BRCA1 mutated) and mRNA expression in two cohorts (n = 1952 and n = 249). Artificial neural network analysis for BRCA1-DNA repair interacting genes was conducted in 249 tumours. Pre-clinically, BRCA1 proficient and deficient cells were DNA repair expression profiled and evaluated for synthetic lethality using ATM and DNA-PKcs inhibitors either alone or in combination with cisplatin. In human tumours, BRCA1 negativity was strongly associated with low XRCC1, and low pol β at mRNA and protein levels (p BER deficient cells were sensitive to ATM and DNA-PKcs inhibitor treatment either alone or in combination with cisplatin and synthetic lethality was evidenced by DNA double strand breaks accumulation, cell cycle arrest and apoptosis. We conclude that XRCC1 and pol β expression status in BRCA1 negative tumours may have prognostic significance. BRCA1-BER deficient cells could be targeted by ATM or DNA-PKcs inhibitors for personalized therapy. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Metabolic and Target-Site Mechanisms Combine to Confer Strong DDT Resistance in Anopheles gambiae

    OpenAIRE

    Mitchell, SN; Rigden, DJ; Dowd, AJ; Lu, F.; Wilding, CS; Weetman, D.; Dadzie, S.; Jenkins, AM; Regna, K; Boko, P.; Djogbenou, L.; Muskavitch, MAT.; Ranson, H; Paine, MJI; Mayans, O

    2014-01-01

    The development of resistance to insecticides has become a classic exemplar of evolution occurring within human time scales. In this study we demonstrate how resistance to DDT in the major African malaria vector Anopheles gambiae is a result of both target-site resistance mechanisms that have introgressed between incipient species (the M- and S-molecular forms) and allelic variants in a DDT-detoxifying enzyme. Sequencing of the detoxification enzyme, Gste2, from DDT resistant and susceptible ...

  1. Combination of propofol and remifentanil target-controlled infusion for laryngeal mask airway insertion in children.

    Science.gov (United States)

    Kim, H S; Park, H J; Kim, C S; Lee, J R

    2011-07-01

    The addition of remifentanil to propofol administration can improve the conditions for insertion of laryngeal mask airways (LMAs). However, the extent to which remifentanil reduces propofol requirements when both drugs are administered concomitantly via target-controlled infusion (TCI) in pediatric patients has not been adequately demonstrated. The purpose of this study was to determine the target concentration of propofol that is required for LMA insertion at three different remifentanil target concentrations (0, 2.5, and 5 ng kg(-1) min(-1)) during TCI in children. A total of 67 children, aged 2 to 12 years, were included, and anesthesia was conducted with TCI of propofol and remifentanil using the STELPUMP program. The children were assigned to three groups in a randomized, double-blind manner: propofol with saline (control group), propofol with 2.5 ng mL(-1) of remifentanil (low-remifentanil group), and propofol with 5.0 ng ml(-1) of remifentanil (high-remifentanil group). The EC(50) of propofol for LMA insertion at each target-concentration of remifentanil was determined using Dixon's up-and-down method, and the EC(50) of propofol in each group was compared using the Kruskal-Wallis ANOVA by rank test. The EC(50) for propofol was 5.18 mcg mL(-1) in the control group, 4.81 mcg ml(-1) in the low-remifentanil group, and 4.36 mcg mL(-1) in the high-remifentanil group, which was significantly different between the control group and the high-remifentanil group only (Pinsertion during TCI of both drugs in children, but low concentrations of remifentanil failed to reduce the propofol requirement.

  2. Targeting solid tumors : advances in treatment strategies for glioma and colorectal cancer

    NARCIS (Netherlands)

    van Houdt, W.J.

    2011-01-01

    Curative treatment of most solid tumors includes surgical interference. However, the incidence of local recurrence or distant micrometastases is significantly lower when patients are treated with systemic or locally administered chemo- or targeted therapy. In the last decade, many novel targeting

  3. More than Just Finding Color: Strategy in Global Visual Search Is Shaped by Learned Target Probabilities

    Science.gov (United States)

    Williams, Carrick C.; Pollatsek, Alexander; Cave, Kyle R.; Stroud, Michael J.

    2009-01-01

    In 2 experiments, eye movements were examined during searches in which elements were grouped into four 9-item clusters. The target (a red or blue "T") was known in advance, and each cluster contained different numbers of target-color elements. Rather than color composition of a cluster invariantly guiding the order of search though…

  4. The Interaction Between Statins and Exercise: Mechanisms and Strategies to Counter the Musculoskeletal Side Effects of This Combination Therapy

    Science.gov (United States)

    Deichmann, Richard E.; Lavie, Carl J.; Asher, Timothy; DiNicolantonio, James J.; O'Keefe, James H.; Thompson, Paul D.

    2015-01-01

    Background Broad indications for the use of statin medications are resulting in more patients using these therapies. Simultaneously, healthcare professionals are strongly advocating recommendations to increase exercise training (ET) as a means of decreasing cardiovascular disease (CVD) risk and improving other parameters of fitness. Methods We review the literature to explore mechanisms that may increase the risk of statin/ET interactions, examine the benefits and risks of combining ET and statin use, and offer strategies to minimize the hazards of this combination therapy. Results The combined use of statins and ET can result in health gains and decreased CVD risk; however, multiple factors may increase the risk of adverse events. Some of the events that have been reported with the combination of statins and ET include decreased athletic performance, muscle injury, myalgia, joint problems, decreased muscle strength, and fatigue. The type of statin, the dose, drug interactions, genetic variants, coenzyme Q10 deficiency, vitamin D deficiency, and underlying muscle diseases are among the factors that may predispose patients to intolerance of this combined therapy. Conclusion Effective strategies exist to help patients who may be intolerant of combined statin therapy and ET so they may benefit from this proven therapy. Careful attention to identifying high-risk groups and strategies to prevent or treat side effects that may occur should be employed. PMID:26730228

  5. Enhanced Anti-Tumor Efficacy through a Combination of Integrin αvβ6-Targeted Photodynamic Therapy and Immune Checkpoint Inhibition.

    Science.gov (United States)

    Gao, Liquan; Zhang, Chenran; Gao, Duo; Liu, Hao; Yu, Xinhe; Lai, Jianhao; Wang, Fan; Lin, Jian; Liu, Zhaofei

    2016-01-01

    "Training" the host immune system to recognize and systemically eliminate residual tumor lesions and micrometastases is a promising strategy for cancer therapy. In this study, we investigated whether integrin αvβ6-targeted photodynamic therapy (PDT) of tumors using a phthalocyanine dye-labeled probe (termed DSAB-HK) could trigger the host immune response, and whether PDT in combination with anti-PD-1 immune checkpoint inhibition could be used for the effective therapy of primary tumors and metastases. By near-infrared fluorescence imaging, DSAB-HK was demonstrated to specifically target either subcutaneous tumors in a 4T1 mouse breast cancer model or firefly luciferase stably transfected 4T1 (4T1-fLuc) lung metastatic tumors. Upon light irradiation, PDT by DSAB-HK significantly inhibited the growth of subcutaneous 4T1 tumors, and in addition promoted the maturation of dendritic cells and their production of cytokines, which subsequently stimulated the tumor recruitment of CD8(+) cytotoxic T lymphocytes. Furthermore, DSAB-HK PDT of the first tumor followed by PD-1 blockade markedly suppressed the growth of a second subcutaneous tumor, and also slowed the growth of 4T1-fLuc lung metastasis as demonstrated by serial bioluminescence imaging. Together, our results demonstrated the synergistic effect of tumor-targeted PDT and immune checkpoint inhibition for improving anti-tumor immunity and suppressing tumor growth/metastasis.

  6. Pull-down combined with proteomic strategy reveals functional diversity of synaptotagmin I.

    Science.gov (United States)

    Guo, Tianyao; Duan, Zhigui; Chen, Jia; Xie, Chunliang; Wang, Ying; Chen, Ping; Wang, Xianchun

    2017-01-01

    Synaptotagmin I (Syt I) is most abundant in the brain and is involved in multiple cellular processes. Its two C2 domains, C2A and C2B, are the main functional regions. Our present study employed a pull-down combined with proteomic strategy to identify the C2 domain-interacting proteins to comprehensively understand the biological roles of the C2 domains and thus the functional diversity of Syt I. A total of 135 non-redundant proteins interacting with the C2 domains of Syt I were identified. Out of them, 32 and 64 proteins only bound to C2A or C2B domains, respectively, and 39 proteins bound to both of them. Compared with C2A, C2B could bind to many more proteins particularly those involved in synaptic transmission and metabolic regulation. Functional analysis indicated that Syt I may exert impacts by interacting with other proteins on multiple cellular processes, including vesicular membrane trafficking, synaptic transmission, metabolic regulation, catalysis, transmembrane transport and structure formation, etc. These results demonstrate that the functional diversity of Syt I is higher than previously expected, that its two domains may mediate the same and different cellular processes cooperatively or independently, and that C2B domain may play even more important roles than C2A in the functioning of Syt I. This work not only further deepened our understanding of the functional diversity of Syt I and the functional differences between its two C2 domains, but also provided important clues for the further related researches.

  7. Antimicrobial Activity of Plectasin NZ2114 in Combination with Cell Wall Targeting Antibiotics Against VanA-Type Enterococcus faecalis.

    Science.gov (United States)

    Breidenstein, Elena B M; Courvalin, Patrice; Meziane-Cherif, Djalal

    2015-08-01

    Antimicrobial peptide plectasin targeting bacterial cell wall precursor Lipid II has been reported to be active against benzylpenicillin-resistant Streptococcus pneumoniae but less potent against vancomycin-resistant enterococci than their susceptible counterparts. The aim of this work was to test plectasin NZ2114 in combination with cell wall targeting antibiotics on vancomycin-resistant Enterococcus faecalis. The activity of antibiotic combinations was evaluated against VanA-type vancomycin-resistant E. faecalis strain BM4110/pIP816-1 by disk agar-induction, double-disk assay, determination of fractional inhibitory concentration (FIC) index, and time-kill curve. The results indicated that plectasin NZ2114 was synergistic in combination with teicoplanin, moenomycin, and dalbavancin but not with vancomycin, telavancin, penicillin G, bacitracin, ramoplanin, daptomycin, and fosfomycin. To gain an insight into the synergism, we tested other cell wall antibiotic combinations. Interestingly, synergy was observed between teicoplanin or moenomycin and the majority of the antibiotics tested; however, vancomycin was only synergistic with penicillin G. Other cell wall active antibiotics such as ramoplanin, bacitracin, and fosfomycin did not synergize. It appeared that most of the synergies observed involved inhibition of the transglycosylation step in peptidoglycan synthesis. These results suggest that teicoplanin, dalbavancin, vancomycin, and telavancin, although they all bind to the C-terminal D-Ala-D-Ala of Lipid II, might act on different stages of cell wall synthesis.

  8. Small-Nucleic-Acid-Based Therapeutic Strategy Targeting the Transcription Factors Regulating the Vascular Inflammation, Remodeling and Fibrosis in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sung Won Youn

    2015-05-01

    Full Text Available Atherosclerosis arises when injury to the arterial wall induces an inflammatory cascade that is sustained by a complex network of cytokines, together with accumulation of lipids and fibrous material. Inflammatory cascades involve leukocyte adherence and chemotaxis, which are coordinated by the local secretion of adhesion molecules, chemotactic factors, and cytokines. Transcription factors are critical to the integration of the various steps of the cascade response to mediators of vascular injury, and are induced in a stimulus-dependent and cell-type-specific manner. Several small-nucleic-acid-based therapeutic strategies have recently been developed to target transcription factors: antisense oligodeoxynucleotides, RNA interference, microRNA, and decoy oligodeoxynucleotides. The aim of this review was to provide an overview of these particular targeted therapeutic strategies, toward regulation of the vascular inflammation, remodeling and fibrosis associated with atherosclerosis.

  9. Combined mnemonic strategy training and high-definition transcranial direct current stimulation for memory deficits in mild cognitive impairment.

    Science.gov (United States)

    Hampstead, Benjamin M; Sathian, Krishnankutty; Bikson, Marom; Stringer, Anthony Y

    2017-09-01

    Memory deficits characterize Alzheimer's dementia and the clinical precursor stage known as mild cognitive impairment. Nonpharmacologic interventions hold promise for enhancing functioning in these patients, potentially delaying functional impairment that denotes transition to dementia. Previous findings revealed that mnemonic strategy training (MST) enhances long-term retention of trained stimuli and is accompanied by increased blood oxygen level-dependent signal in the lateral frontal and parietal cortices as well as in the hippocampus. The present study was designed to enhance MST generalization, and the range of patients who benefit, via concurrent delivery of transcranial direct current stimulation (tDCS). This protocol describes a prospective, randomized controlled, four-arm, double-blind study targeting memory deficits in those with mild cognitive impairment. Once randomized, participants complete five consecutive daily sessions in which they receive either active or sham high definition tDCS over the left lateral prefrontal cortex, a region known to be important for successful memory encoding and that has been engaged by MST. High definition tDCS (active or sham) will be combined with either MST or autobiographical memory recall (comparable to reminiscence therapy). Participants undergo memory testing using ecologically relevant measures and functional magnetic resonance imaging before and after these treatment sessions as well as at a 3-month follow-up. Primary outcome measures include face-name and object-location association tasks. Secondary outcome measures include self-report of memory abilities as well as a spatial navigation task (near transfer) and prose memory (medication instructions; far transfer). Changes in functional magnetic resonance imaging will be evaluated during both task performance and the resting-state using activation and connectivity analyses. The results will provide important information about the efficacy of cognitive and

  10. Obstacles to the implementation of the treat-to-target strategy for rheumatoid arthritis in clinical practice in Japan.

    Science.gov (United States)

    Kaneko, Yuko; Koike, Takao; Oda, Hiromi; Yamamoto, Kazuhiko; Miyasaka, Nobuyuki; Harigai, Masayoshi; Yamanaka, Hisashi; Ishiguro, Naoki; Tanaka, Yoshiya; Takeuchi, Tsutomu

    2015-01-01

    To clarify the obstacles preventing the implementation of the treat-to-target (T2T) strategy for rheumatoid arthritis (RA) in clinical practice. A total of 301 rheumatologists in Japan completed a questionnaire. In the first section, participants were indirectly questioned on the implementation of basic components of T2T, and in the second section, participants were directly questioned on their level of agreement and application. Although nearly all participants set treatment targets for the majority of RA patients with moderate to high disease activity, the proportion who set clinical remission as their target was 59%, with only 45% of these using composite measures. The proportion of participants who monitored X-rays and Health Assessment Questionnaires for all their patients was 44% and 14%, respectively. The proportion of participants who did not discuss treatment strategies was 44%, with approximately half of these reasoning that this was due to a proportion of patients having a lack of understanding of the treatment strategy or inability to make decisions. When participants were directly questioned, there was a high level of agreement with the T2T recommendations. Although there was a high level of agreement with the T2T recommendations, major obstacles preventing its full implementation still remain.

  11. Teaching a Combined Course on Grief and Bereavement for BSW and MSW Students: Strategies, Content, and Evaluation

    Science.gov (United States)

    Bethel, Joyous C.

    2005-01-01

    This paper will address the development and offering of two combined (BSW and MSW) courses in Grief and Bereavement. This is a description of the purposes, educational units, and assignments for both courses. In addition, there is discussion of the learning environment to include educational strategies to promote both didactic and experiential…

  12. Improving Social Competence in Children with Autism Spectrum Disorders through a Combined-Strategy Group Intervention: A Pilot Study

    Science.gov (United States)

    Sotelo, Marlene

    2009-01-01

    This applied dissertation investigated whether a combined-strategy group intervention improved social competence among children with autism spectrum disorders. Individuals with autism spectrum disorders exhibit deficits in social behaviors that may negatively impact all aspects of their lives. Social competence for individuals with autism spectrum…

  13. Translation Strategies from Target Culture Perspective: An Analysis of English and Chinese Brands Names

    National Research Council Canada - National Science Library

    Hong Shi

    2017-01-01

    .... It is a special text with a strong function and a clear persuasive purpose. This paper aims to explore the translation strategy and methods of English brand names from the perspective of culture...

  14. Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae.

    Science.gov (United States)

    Mitchell, Sara N; Rigden, Daniel J; Dowd, Andrew J; Lu, Fang; Wilding, Craig S; Weetman, David; Dadzie, Samuel; Jenkins, Adam M; Regna, Kimberly; Boko, Pelagie; Djogbenou, Luc; Muskavitch, Marc A T; Ranson, Hilary; Paine, Mark J I; Mayans, Olga; Donnelly, Martin J

    2014-01-01

    The development of resistance to insecticides has become a classic exemplar of evolution occurring within human time scales. In this study we demonstrate how resistance to DDT in the major African malaria vector Anopheles gambiae is a result of both target-site resistance mechanisms that have introgressed between incipient species (the M- and S-molecular forms) and allelic variants in a DDT-detoxifying enzyme. Sequencing of the detoxification enzyme, Gste2, from DDT resistant and susceptible strains of An. gambiae, revealed a non-synonymous polymorphism (I114T), proximal to the DDT binding domain, which segregated with strain phenotype. Recombinant protein expression and DDT metabolism analysis revealed that the proteins from the susceptible strain lost activity at higher DDT concentrations, characteristic of substrate inhibition. The effect of I114T on GSTE2 protein structure was explored through X-ray crystallography. The amino acid exchange in the DDT-resistant strain introduced a hydroxyl group nearby the hydrophobic DDT-binding region. The exchange does not result in structural alterations but is predicted to facilitate local dynamics and enzyme activity. Expression of both wild-type and 114T alleles the allele in Drosophila conferred an increase in DDT tolerance. The 114T mutation was significantly associated with DDT resistance in wild caught M-form populations and acts in concert with target-site mutations in the voltage gated sodium channel (Vgsc-1575Y and Vgsc-1014F) to confer extreme levels of DDT resistance in wild caught An. gambiae.

  15. Metabolomics by Gas Chromatography-Mass Spectrometry: the combination of targeted and untargeted profiling

    Science.gov (United States)

    Fiehn, Oliver

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS)-based metabolomics is ideal for identifying and quantitating small molecular metabolites (metabolomics easily allows integrating targeted assays for absolute quantification of specific metabolites with untargeted metabolomics to discover novel compounds. Complemented by database annotations using large spectral libraries and validated, standardized standard operating procedures, GC-MS can identify and semi-quantify over 200 compounds per study in human body fluids (e.g., plasma, urine or stool) samples. Deconvolution software enables detection of more than 300 additional unidentified signals that can be annotated through accurate mass instruments with appropriate data processing workflows, similar to liquid chromatography-MS untargeted profiling (LC-MS). Hence, GC-MS is a mature technology that not only uses classic detectors (‘quadrupole’) but also target mass spectrometers (‘triple quadrupole’) and accurate mass instruments (‘quadrupole-time of flight’). This unit covers the following aspects of GC-MS-based metabolomics: (i) sample preparation from mammalian samples, (ii) acquisition of data, (iii) quality control, and (iv) data processing. PMID:27038389

  16. Targeted gene delivery in tumor xenografts by the combination of ultrasound-targeted microbubble destruction and polyethylenimine to inhibit survivin gene expression and induce apoptosis

    Directory of Open Access Journals (Sweden)

    Qiu Ri-Xiang

    2010-11-01

    Full Text Available Abstract Background Noninvasive and tissue-specific technologies of gene transfection would be valuable in clinical gene therapy. This present study was designed to determine whether it could enhance gene transfection in vivo by the combination of ultrasound-targeted microbubble destruction (UTMD with polyethylenimine (PEI in tumor xenografts, and illuminate the effects of gene silencing and apoptosis induction with short hairpin RNA (shRNA interference therapy targeting human survivin by this novel technique. Methods Two different expression vectors (pCMV-LUC and pSIREN were incubated with PEI to prepare cationic complexes (PEI/DNA and confirmed by the gel retardation assay. Human cervical carcinoma (Hela tumors were planted subcutaneously in both flanks of nude mice. Tumor-bearing mice were administered by tail vein with PBS, plasmid, plasmid and SonoVue microbubble, PEI/DNA and SonoVue microbubble. One tumor was exposed to ultrasound irradiation, while the other served as control. The feasibility of targeted delivery and tissue specificity facilitated by UTMD and PEI were investigated. Moreover, immunohistochemistry analyses about gene silencing and apoptosis induction were detected. Results Electrophoresis experiment revealed that PEI could condense DNA efficiently. The application of UTMD significantly increases the tissue transfection. Both expression vectors showed that gene expressions were present in all sections of tumors that received ultrasound exposure but not in control tumors. More importantly, the increases in transgene expression were related to UTMD with the presence of PEI significantly. Silencing of the survivin gene could induce apoptosis effectively by downregulating survivin and bcl-2 expression, also cause up-regulation of bax and caspase-3 expression. Conclusions This noninvasive, novel combination of UTMD with PEI could enhance targeted gene delivery and gene expression in tumor xenografts at intravenous administration

  17. A UAV-Friendly Strategy for Moving Targets Processing Using SAR

    National Research Council Canada - National Science Library

    Marques, Paulo A; Dias, Jose M

    2005-01-01

    .... The basic reasoning is that, although the returned echoes may be aliased in the azimuth direction, their phase and amplitude are informative with respect to the moving target trajectory parameters...

  18. [Current strategies in the treatment of renal-cell cancer: targeted therapies].

    Science.gov (United States)

    Trigo, José Manuel; Bellmunt, Joaquim

    2008-03-22

    Renal-cell carcinoma represents 95% of all renal tumours. The Von Hippel-Lindau (VHL) tumor-suppressor gene is mutated or silenced in most clear cell renal carcinomas. pVHL loss results in the stabilization of the heterodimeric transcription factor hypoxia-inducible factor (HIF) and enhanced transactivation of HIF target genes. HIF itself has been difficult to inhibit with drug-like molecules although a number of agents that indirectly inhibit HIF, including mTOR (mammalian target of rapamycin) inhibitors, have been identified. Moreover, a number of drugs have been developed that target HIF-responsive gene products, such as vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), implicated in tumor angiogenesis. Many of these targeted therapies, especially sunitinib, have demonstrated significant activity in kidney cancer clinical trials and represent a substantive advance in the treatment of this disease.

  19. Optimal intermittence in search strategies under speed-selective target detection.

    Science.gov (United States)

    Campos, Daniel; Méndez, Vicenç; Bartumeus, Frederic

    2012-01-13

    Random search theory has been previously explored for both continuous and intermittent scanning modes with full target detection capacity. Here we present a new class of random search problems in which a single searcher performs flights of random velocities, the detection probability when it passes over a target location being conditioned to the searcher speed. As a result, target detection involves an N-passage process for which the mean search time is here analytically obtained through a renewal approximation. We apply the idea of speed-selective detection to random animal foraging since a fast movement is known to significantly degrade perception abilities in many animals. We show that speed-selective detection naturally introduces an optimal level of behavioral intermittence in order to solve the compromise between fast relocations and target detection capability.

  20. Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective

    Directory of Open Access Journals (Sweden)

    Zhenjie Wang

    2017-11-01

    Full Text Available Mitochondria are a novel and promising therapeutic target for diagnosis, treatment and prevention of a lot of human diseases such as cancer, metabolic diseases and neurodegenerative disease. Owing to the mitochondrial special bilayer structure and highly negative potential nature, therapeutic molecules have multiple difficulties in reaching mitochondria. To overcome multiple barriers for targeting mitochondria, the researchers developed various pharmaceutical preparations such as liposomes, polymeric nanoparticles and inorganic nanoparticles modified by mitochondriotropic moieties like dequalinium (DQA, triphenylphosphonium (TPP, mitochondrial penetrating peptides (MPPs and mitochondrial protein import machinery that allow specific targeting. The targeted formulations exhibited enhanced pharmacological effect and better therapeutic effect than their untargeted counterpart both in vitro and in vivo. Nanocarriers may be used for bio-therapeutic delivery into specific mitochondria that possess a great potential treatment of mitochondria related diseases.

  1. Land-Based Mitigation Strategies under the Mid-Term Carbon Reduction Targets in Indonesia

    Directory of Open Access Journals (Sweden)

    Tomoko Hasegawa

    2016-12-01

    Full Text Available We investigated the key mitigation options for achieving the mid-term target for carbon emission reduction in Indonesia. A computable general equilibrium model coupled with a land-based mitigation technology model was used to evaluate specific mitigation options within the whole economic framework. The results revealed three primary findings: (1 If no climate policy were implemented, Indonesia’s total greenhouse gas emissions would reach 3.0 GtCO2eq by 2030; (2 To reduce carbon emissions to meet the latest Intended Nationally-Determined Contributions (INDC target, ~58% of total reductions should come from the agriculture, forestry and other land use sectors by implementing forest protection, afforestation and plantation efforts; (3 A higher carbon price in 2020 suggests that meeting the 2020 target would be economically challenging, whereas the INDC target for 2030 would be more economically realistic in Indonesia.

  2. New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease.

    Science.gov (United States)

    Kim, Young-Cho; Alberico, Stephanie L; Emmons, Eric; Narayanan, Nandakumar S

    2015-06-01

    The neurotransmitter dopamine acts via two major classes of receptors, D1-type and D2-type. D1 receptors are highly expressed in the striatum and can also be found in the cerebral cortex. Here we review the role of D1 dopamine signaling in two major domains: L-DOPA-induced dyskinesias in Parkinson's disease and cognition in neuropsychiatric disorders. While there are many drugs targeting D2-type receptors, there are no drugs that specifically target D1 receptors. It has been difficult to use selective D1-receptor agonists for clinical applications due to issues with bioavailability, binding affinity, pharmacological kinetics, and side effects. We propose potential therapies that selectively modulate D1 dopamine signaling by targeting second messengers downstream of D1 receptors, allosteric modulators, or by making targeted modifications to D1-receptor machinery. The development of therapies specific to D1-receptor signaling could be a new frontier in the treatment of neurological and psychiatric disorders.

  3. Combination of atomic force microscopy and mass spectrometry for the detection of target protein in the serum samples of children with autism spectrum disorders

    Science.gov (United States)

    Kaysheva, A. L.; Pleshakova, T. O.; Kopylov, A. T.; Shumov, I. D.; Iourov, I. Y.; Vorsanova, S. G.; Yurov, Y. B.; Ziborov, V. S.; Archakov, A. I.; Ivanov, Y. D.

    2017-10-01

    Possibility of detection of target proteins associated with development of autistic disorders in children with use of combined atomic force microscopy and mass spectrometry (AFM/MS) method is demonstrated. The proposed method is based on the combination of affine enrichment of proteins from biological samples and visualization of these proteins by AFM and MS analysis with quantitative detection of target proteins.

  4. Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy.

    Science.gov (United States)

    Zheng, Shaohui; Han, Jiwon; Jin, Zhen; Kim, Chang-Sei; Park, Sukho; Kim, Kyu-Pyo; Park, Jong-Oh; Choi, Eunpyo

    2018-02-05

    Multifunctional polymeric micelles were developed as a promising dual tumor-targeted drug delivery platform for magnetic resonance (MR) imaging and combined photothermal-chemotherapy. HA-C 16 copolymers were synthesized via peptide formation process with subsequent co-encapsulation of therapeutic agent docetaxel (DTX) and superparamagnetic iron oxide nanoparticles (SPIONs) to form the multifunctional micelles. The micelles exhibited uniform nanosize and remarkable colloidal stability in aqueous solution. The sustained drug release behavior from HA micelles was observed over the test period. Moreover, the specific targeting capability based on CD44 recptor-mediated endocytosis and the enhanced targeting efficacy by in presence of external magnetic field were investigated. The clustered SPIONs within micelles exerted excellent contrast effect with high r 2 relaxivity in MR phantom test. Furthermore, the multifunctional micelles could readily convert light to heat to hyperthermia temperature upon near infrared light irradition and induce photothermal ablation to breast cancer cells. The combined photothermal therapy with DTX-mediated chemotherapy of the developed multifunctional polymeric micells could generate a synergistic therapeutic effect. Based on these findings, the resulting multifunctional micelles may provide high potential for multimodality theragnosis of cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. An agent strategy for automated stock market trading combining price and order book information

    NARCIS (Netherlands)

    G. Silaghi; V. Robu (Valentin)

    2005-01-01

    htmlabstractThis paper proposes a novel automated agent strategy for stock market trading, developed in the context of the Penn-Lehman automated trading (PLAT) simulation platform by Kearns, M., and Ortiz, L., (2003). We provide a comprehensive experimental validation of our strategy using historic

  6. Music Learning through All the Channels: Combining Aural, Visual, and Kinesthetic Strategies to Develop Musical Understanding

    Science.gov (United States)

    Gault, Brent

    2005-01-01

    The article discusses music learning through aural, visual and kinesthetic strategies. Most general music teachers are aware of the contributions made to the profession by proponents of the Dalcroze, Kodaly, and Orff approaches to music instruction. It was claimed that students used one of the said strategies as their most efficient way to process…

  7. Recycling antibiotics into GUMBOS: A new combination strategy to combat multi-drug resistant bacteria

    Science.gov (United States)

    The emergence of multi-drug resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded ß-lactam antibiotics (amp...

  8. Identification of a novel DMD duplication identified by a combination of MLPA and targeted exome sequencing.

    Science.gov (United States)

    Wu, Beibei; Wang, Liying; Dong, Ting; Jin, Jiahui; Lu, Yili; Wu, Huiping; Luo, Yue; Shan, Xiaoou

    2017-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive muscle-wasting disease caused by a mutation in the DMD gene. The aim of this study was to identify a de novo mutation of the DMD gene in the family of a 9-month-old Chinese male patient, as well as to describe the phenotypic characteristics of this patient. The patient was suspected to suffer from DMD according to physical examination, biochemical analyses, and electromyogram. We identified a duplication of exons 4-42 in DMD gene with targeted exome sequencing and multiplex ligation-dependent probe amplification (MLPA). In addition, the patient's mother was a carrier of the same mutation. We identified a de novo duplication of exons 4-42 in a patient with early stage DMD. The discovery of this mutation may provide insights into future investigations.

  9. Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Sara N Mitchell

    Full Text Available The development of resistance to insecticides has become a classic exemplar of evolution occurring within human time scales. In this study we demonstrate how resistance to DDT in the major African malaria vector Anopheles gambiae is a result of both target-site resistance mechanisms that have introgressed between incipient species (the M- and S-molecular forms and allelic variants in a DDT-detoxifying enzyme. Sequencing of the detoxification enzyme, Gste2, from DDT resistant and susceptible strains of An. gambiae, revealed a non-synonymous polymorphism (I114T, proximal to the DDT binding domain, which segregated with strain phenotype. Recombinant protein expression and DDT metabolism analysis revealed that the proteins from the susceptible strain lost activity at higher DDT concentrations, characteristic of substrate inhibition. The effect of I114T on GSTE2 protein structure was explored through X-ray crystallography. The amino acid exchange in the DDT-resistant strain introduced a hydroxyl group nearby the hydrophobic DDT-binding region. The exchange does not result in structural alterations but is predicted to facilitate local dynamics and enzyme activity. Expression of both wild-type and 114T alleles the allele in Drosophila conferred an increase in DDT tolerance. The 114T mutation was significantly associated with DDT resistance in wild caught M-form populations and acts in concert with target-site mutations in the voltage gated sodium channel (Vgsc-1575Y and Vgsc-1014F to confer extreme levels of DDT resistance in wild caught An. gambiae.

  10. Metabolic and Target-Site Mechanisms Combine to Confer Strong DDT Resistance in Anopheles gambiae

    Science.gov (United States)

    Mitchell, Sara N.; Rigden, Daniel J.; Dowd, Andrew J.; Lu, Fang; Wilding, Craig S.; Weetman, David; Dadzie, Samuel; Jenkins, Adam M.; Regna, Kimberly; Boko, Pelagie; Djogbenou, Luc; Muskavitch, Marc A. T.; Ranson, Hilary; Paine, Mark J. I.; Mayans, Olga; Donnelly, Martin J.

    2014-01-01

    The development of resistance to insecticides has become a classic exemplar of evolution occurring within human time scales. In this study we demonstrate how resistance to DDT in the major African malaria vector Anopheles gambiae is a result of both target-site resistance mechanisms that have introgressed between incipient species (the M- and S-molecular forms) and allelic variants in a DDT-detoxifying enzyme. Sequencing of the detoxification enzyme, Gste2, from DDT resistant and susceptible strains of An. gambiae, revealed a non-synonymous polymorphism (I114T), proximal to the DDT binding domain, which segregated with strain phenotype. Recombinant protein expression and DDT metabolism analysis revealed that the proteins from the susceptible strain lost activity at higher DDT concentrations, characteristic of substrate inhibition. The effect of I114T on GSTE2 protein structure was explored through X-ray crystallography. The amino acid exchange in the DDT-resistant strain introduced a hydroxyl group nearby the hydrophobic DDT-binding region. The exchange does not result in structural alterations but is predicted to facilitate local dynamics and enzyme activity. Expression of both wild-type and 114T alleles the allele in Drosophila conferred an increase in DDT tolerance. The 114T mutation was significantly associated with DDT resistance in wild caught M-form populations and acts in concert with target-site mutations in the voltage gated sodium channel (Vgsc-1575Y and Vgsc-1014F) to confer extreme levels of DDT resistance in wild caught An. gambiae. PMID:24675797

  11. Trypanothione reductase: a target protein for a combined in vitro and in silico screening approach.

    Science.gov (United States)

    Beig, Mathias; Oellien, Frank; Garoff, Linnéa; Noack, Sandra; Krauth-Siegel, R Luise; Selzer, Paul M

    2015-01-01

    With the goal to identify novel trypanothione reductase (TR) inhibitors, we performed a combination of in vitro and in silico screening approaches. Starting from a highly diverse compound set of 2,816 compounds, 21 novel TR inhibiting compounds could be identified in the initial in vitro screening campaign against T. cruzi TR. All 21 in vitro hits were used in a subsequent similarity search-based in silico screening on a database containing 200,000 physically available compounds. The similarity search resulted in a data set containing 1,204 potential TR inhibitors, which was subjected to a second in vitro screening campaign leading to 61 additional active compounds. This corresponds to an approximately 10-fold enrichment compared to the initial pure in vitro screening. In total, 82 novel TR inhibitors with activities down to the nM range could be identified proving the validity of our combined in vitro/in silico approach. Moreover, the four most active compounds, showing IC50 values of <1 μM, were selected for determining the inhibitor constant. In first on parasites assays, three compounds inhibited the proliferation of bloodstream T. brucei cell line 449 with EC50 values down to 2 μM.

  12. Anti-CD20 as the B cells targeting agent in the combined therapy to modulate anti-factor VIII immune responses in hemophilia A inhibitor mice

    Directory of Open Access Journals (Sweden)

    Chao Lien eLiu

    2014-01-01

    Full Text Available Neutralizing antibody formation against transgene products can represent a major complication following gene therapy with treatment of genetic diseases, such as hemophilia A. Although successful approaches have been developed to prevent the formation of anti-factor VIII (FVIII antibodies, innovative strategies to overcome pre-existing anti-FVIII immune responses in FVIII-primed subjects are still lacking. Anti-FVIII neutralizing antibodies circulate for long periods in part due to persistence of memory B cells. Anti-CD20 targets a variety of B cells (pre-B cells to mature/memory cells; therefore, we investigated the impact of B cell depletion on anti-FVIII immune responses in hemophilia A mice using anti-CD20 combined with regulatory T (Treg cell expansion using IL-2/IL-2mAb complexes plus rapamycin. We found that anti-CD20 alone can partially modulate anti-FVIII immune responses in both unprimed and FVIII-primed hemophilia A mice. Moreover, in mice treated with anti-CD20 + IL-2/IL-2mAb complexes + rapamycin + FVIII, anti-FVIII antibody titers were significantly reduced in comparison to mice treated with regimens targeting only B or T cells. In addition, titers remained low after a second challenge with FVIII plasmid . Treg cells and activation markers were transiently and significantly increased in the groups treated with IL-2/IL-2mAb complexes ; however,significant B cell depletion was obtained in anti-CD20-treated groups. Importantly, both FVIII-specific antibody-secreting cells and memory B cells were significantly reduced in mice treated with combination therapy. This study demonstrates that a combination regimen is highly promising as a treatment option for modulating anti-FVIII antibodies and facilitating induction of long-term tolerance to FVIII in hemophilia A mice.

  13. Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling

    Science.gov (United States)

    Bhakat, Soumendranath; Åberg, Emil; Söderhjelm, Pär

    2017-10-01

    Advanced molecular docking methods often aim at capturing the flexibility of the protein upon binding to the ligand. In this study, we investigate whether instead a simple rigid docking method can be applied, if combined with multiple target structures to model the backbone flexibility and molecular dynamics simulations to model the sidechain and ligand flexibility. The methods are tested for the binding of 35 ligands to FXR as part of the first stage of the Drug Design Data Resource (D3R) Grand Challenge 2 blind challenge. The results show that the multiple-target docking protocol performs surprisingly well, with correct poses found for 21 of the ligands. MD simulations started on the docked structures are remarkably stable, but show almost no tendency of refining the structure closer to the experimentally found binding pose. Reconnaissance metadynamics enhances the exploration of new binding poses, but additional collective variables involving the protein are needed to exploit the full potential of the method.

  14. Structure-Based DNA-Targeting Strategies with Small Molecule Ligands for Drug Discovery

    Science.gov (United States)

    Sheng, Jia; Gan, Jianhua; Huang, Zhen

    2014-01-01

    Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics. PMID:23633219

  15. Antimicrobial compounds targeting Gram-negative bacteria in food: Their mode of action and combinational effects

    DEFF Research Database (Denmark)

    Hyldgaard, Morten

    2015-01-01

    Gram-negative bacteria are a major cause of food spoilage and foodborne illnesses. However, finding effective solutions against Gram-negative bacteria are complicated because of increasing consumer demands for more natural, minimally processed, and fresh high quality food products without...... they interact with bacterial cells to exert their mechanism of inhibition or killing. Furthermore, natural antimicrobials are often not potent enough as single compounds, and may cause unwanted sensory side-effects, which limit the quantities that can be applied to food. These problems might be circumvented...... by combining antimicrobials to decrease the concentrations needed without compromising their antimicrobial activity. The work described in this dissertation presents two projects concerning the mechanism of action of selected natural antimicrobial compounds primarily against Gram-negative bacteria, and two...

  16. Using intervention mapping for the development of a targeted secure web-based outreach strategy named SafeFriend, for Chlamydia trachomatis testing in young people at risk.

    Science.gov (United States)

    Theunissen, Kevin A T M; Hoebe, Christian J P A; Crutzen, Rik; Kara-Zaïtri, Chakib; de Vries, Nanne K; van Bergen, Jan E A M; van der Sande, Marianne A B; Dukers-Muijrers, Nicole H T M

    2013-10-22

    to develop an intervention for targeted Ct testing among young people. We believe this to be the first web-based outreach screening strategy which combines chain referral sampling with the delivery of targeted Ct testing to high risk young people within their sexual and social networks.

  17. Developing a Novel Therapeutic Strategy Targeting Kallikrein-4 to Inhibit Prostate Cancer Growth and Metastasis

    Science.gov (United States)

    2015-08-01

    targeting conjugates o Task 1: Determine effects of KLK4-inhibition on PCa cell behaviour and EMT (50% complete) 5 o Task 2: Study effects of KLK4-blockade... determine which of these polymers ie HBP- peptide, HPB-J591, HBP-GlutUrea, or HBP-control (no ligand) has the best PSMA-targeting efficiency, and be...binding and internalisation assays further confirmed that endocytosis of HBP-peptide is PSMA-mediated (see manuscript). This was demonstrated using five

  18. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect.

    Science.gov (United States)

    Nehoff, Hayley; Parayath, Neha N; Domanovitch, Laura; Taurin, Sebastien; Greish, Khaled

    2014-01-01

    The growing research interest in nanomedicine for the treatment of cancer and inflammatory-related pathologies is yielding encouraging results. Unfortunately, enthusiasm is tempered by the limited specificity of the enhanced permeability and retention effect. Factors such as lack of cellular specificity, low vascular density, and early release of active agents prior to reaching their target contribute to the limitations of the enhanced permeability and retention effect. However, improved nanomedicine designs are creating opportunities to overcome these problems. In this review, we present examples of the advances made in this field and endeavor to highlight the potential of these emerging technologies to improve targeting of nanomedicine to specific pathological cells and tissues.

  19. Combined strategy of endothelial cells coating, Sertoli cells coculture and infusion improves vascularization and rejection protection of islet graft.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Improving islet graft revascularization and inhibiting rejection become crucial tasks for prolonging islet graft survival. Endothelial cells (ECs are the basis of islet vascularization and Sertoli cells (SCs have the talent to provide nutritional support and exert immunosuppressive effects. We construct a combined strategy of ECs coating in the presence of nutritious and immune factors supplied by SCs in a co-culture system to investigate the effect of vascularization and rejection inhibition for islet graft. In vivo, the combined strategy improved the survival and vascularization as well as inhibited lymphocytes and inflammatory cytokines. In vitro, we found the combinatorial strategy improved the function of islets and the effect of ECs-coating on islets. Combined strategy treated islets revealed higher levels of anti-apoptotic signal molecules (Bcl-2 and HSP-32, survival and function related molecules (PDX-1, Ki-67, ERK1/2 and Akt and demonstrated increased vascular endothelial growth factor receptor 2 (KDR and angiogenesis signal molecules (FAk and PLC-γ. SCs effectively inhibited the activation of lymphocyte stimulated by islets and ECs. Predominantly immunosuppressive cytokines could be detected in culture supernatants of the SCs coculture group. These results suggest that ECs-coating and Sertoli cells co-culture or infusion synergistically enhance islet survival and function after transplantation.

  20. The Use of a Hybrid Strategy Combining Problem-based Learning and Magisterial Lectures to Enhance Learning

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Acosta-Nassar

    2014-09-01

    Full Text Available This paper addresses the problem of capturing the attention of intermediate level students in the Thermodynamics 1 course from the Mechanical and Agricultural Engineering Program, with the purpose of helping students improve their learning process. A hybrid teaching strategy was proposed based on Problem-based Learning (PBL principles combined with magisterial lectures. Digital and traditional didactic resources were also used in order to find the best mean to minimize the lack of attention in learners. The strategy was developed by sensitizing students to get involved in their formation process. PowerPoint presentations, video clips, the traditional white board and an ultra slim digital tablet board were used to develop the theoretical issues and present the solutions to the problems chosen for the PBL strategy. Finally, the strategy was evaluated and results were analyzed, indicating that using a hybrid strategy combining PBL and traditional magisterial lectures is an optimal resource to improve the learning process of students taking Thermodynamics 1. In addition, it was also concluded that the ultra slim digital tablet board is the optimal didactic resource.

  1. Low-density lipoprotein-lowering strategies: target versus maximalist versus population percentile.

    NARCIS (Netherlands)

    Sniderman, A.D.; Graaf, J. de; Couture, P.

    2012-01-01

    PURPOSE OF REVIEW: Maximalist low-density lipoprotein (LDL)-lowering strategies such as lowering LDL as much as possible or, alternatively, using the most potent LDL-lowering regimens have become increasingly popular. Almost all attention has focused on the potential advantages of these approaches

  2. The enzyme DXS as an anti-infective target : Exploiting multiple hit-identification strategies

    NARCIS (Netherlands)

    Masini, Tiziana

    2015-01-01

    We exploited multiple hit-identification strategies toward the development of inhibitors for the enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS). DXS belongs to the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl diphosphate (IDP) and dimethylallyl

  3. System Reliability Evaluation Based on Convex Combination Considering Operation and Maintenance Strategy

    OpenAIRE

    Lijie Li; Limin Jia; Yanhui Wang

    2015-01-01

    The approaches to the system reliability evaluation with respect to the cases, where the components are independent or the components have interactive relationships within the system, were proposed in this paper. Starting from the higher requirements on system operational safety and economy, the reliability focused optimal models of multiobjective maintenance strategies were built. For safety-critical systems, the pessimistic maintenance strategies are usually taken, and, in these cases, the ...

  4. The Relationship between Retailers' Targeting and E-Commerce Strategies: An Empirical Analysis.

    Science.gov (United States)

    Doherty, Neil F.; Ellis-Chadwick, Fiona E.

    2003-01-01

    This survey of senior marketing executives in the United Kingdom's largest retail organizations investigated the extent to which the adoption of e-commerce is influenced by the socio-demographic characteristics of their target customers. Results demonstrate that organizations are most likely to adopt the Internet if their typical customer is male,…

  5. Develop a novel target-basis of anti-virulence strategy for controlling HLB

    Science.gov (United States)

    The goal of this CRB-funded research project is to develop target-based anti-virulence therapeutics for Huanglongbing (HLB). Since the first report of citrus HLB in Florida in 2005, the disease is now looming large in Texas and California. In Florida, citrus growers are encountering severe decline o...

  6. Targeting cell adhesion and homing as strategy to cure Waldenström's macroglobulinemia

    NARCIS (Netherlands)

    Pals, Steven T.; Kersten, Marie José; Spaargaren, Marcel

    2016-01-01

    Most B-cell malignancies strictly depend on signals from the microenvironment for their survival and proliferation. This niche-dependency can be regarded as their Achilles' heel and provides an excellent target for therapy. Waldenström's macroglobulinemia (WM) is characterized by the accumulation of

  7. Targeting organic anion transporter 3 with probenecid as a novel anti-influenza a virus strategy.

    Science.gov (United States)

    Perwitasari, Olivia; Yan, Xiuzhen; Johnson, Scott; White, Caleb; Brooks, Paula; Tompkins, S Mark; Tripp, Ralph A

    2013-01-01

    Influenza A virus infection is a major global health concern causing significant mortality, morbidity, and economic loss. Antiviral chemotherapeutics that target influenza A virus are available; however, rapid emergence of drug-resistant strains has been reported. Consequently, there is a burgeoning need to identify novel anti-influenza A drugs, particularly those that target host gene products required for virus replication, to reduce the likelihood of drug resistance. In this study, a small interfering RNA (siRNA) screen was performed to identify host druggable gene targets for anti-influenza A virus therapy. The host organic anion transporter-3 gene (OAT3), a member of the SLC22 family of transporters, was validated as being required to support influenza A virus replication. Probenecid, a prototypical uricosuric agent and chemical inhibitor of organic anion transporters known to target OAT3, was shown to be effective in limiting influenza A virus infection in vitro (50% inhibitory concentration [IC(50)] of 5.0 × 10(-5) to 5.0 × 10(-4) μM; P Probenecid is widely used for treatment of gout and related hyperuricemic disorders, has been extensively studied for pharmacokinetics and safety, and represents an excellent candidate for drug repositioning as a novel anti-influenza A chemotherapeutic.

  8. Combined Effects of Flow Diverting Strategies and Parent Artery Curvature on Aneurysmal Hemodynamics: A CFD Study.

    Science.gov (United States)

    Xu, Jinyu; Wu, Zhichen; Yu, Ying; Lv, Nan; Wang, Shengzhang; Karmonik, Christof; Liu, Jian-Min; Huang, Qinghai

    2015-01-01

    Flow diverters (FD) are increasingly being considered for treating large or giant wide-neck aneurysms. Clinical outcome is highly variable and depends on the type of aneurysm, the flow diverting device and treatment strategies. The objective of this study was to analyze the effect of different flow diverting strategies together with parent artery curvature variations on altering intra-aneurysmal hemodynamics. Four ideal intracranial aneurysm models with different parent artery curvature were constructed. Computational fluid dynamics (CFD) simulations of the hemodynamics before and after applying five types of flow diverting strategies (single FD, single FD with 5% and 10% packing density of coils, two FDs with 25% and 50% overlapping rate) were performed. Changes in pressure, wall shear stress (WSS), relative residence time (RRT), inflow velocity and inflow volume rate were calculated and compared. Each flow diverting strategy resulted in enhancement of RRT and reduction of normalized mean WSS, inflow volume rate and inflow velocity in various levels. Among them, 50% overlapped FD induced most effective hemodynamic changes in RRT and inflow volume rate. The mean pressure only slightly decreased after treatment. Regardless of the kind of implantation of FD, the mean pressure, inflow volume rate and inflow velocity increased and the RRT decreased as the curvature of the parent artery increased. Of all flow diverting strategies, overlapping FDs induced most favorable hemodynamic changes. Hemodynamics alterations post treatment were substantially influenced by parent artery curvature. Our results indicate the need of an individualized flow diverting strategy that is tailored for a specific aneurysm.

  9. Comparison of strategies for combining dynamic linear models with artificial neural networks for detecting diarrhea in slaughter pigs

    DEFF Research Database (Denmark)

    Jensen, Dan Børge; Kristensen, Anders Ringgaard

    2016-01-01

    , can provide early and automatic detection of diarrhea. To determine the best approach to achieve this goal, we compared 36 different strategies for combining a multivariate dynamic linear model (DLM) with an artificial neural network (ANN). We used data collected in 16 pens between November 2013...... (SP), and the sensitivity (SE). The best performance was seen when using a training window with a total of 42 hours for the numerical forecast errors, which produced an error rate=0.16, a specificity=0.88, and a sensitivity=0.80. For the other tested strategies, the ranges of error rates...

  10. A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages.

    Science.gov (United States)

    Aude-Garcia, Catherine; Dalzon, Bastien; Ravanat, Jean-Luc; Collin-Faure, Véronique; Diemer, Hélène; Strub, Jean Marc; Cianferani, Sarah; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2016-02-16

    The cellular responses of the J774 macrophage cell line to zinc oxide and zirconium oxide nanoparticles have been studied by a comparative quantitative, protein level based proteomic approach. The most prominent results have been validated by targeted approaches. These approaches have been carried out under culture conditions that stimulate mildly the aryl hydrocarbon receptor, thereby mimicking conditions that can be encountered in vivo in complex environments. The comparative approach with two nanoparticles allows to separate the common responses, which can be attributed to the phagocytosis event per se, from the response specific to each type of nanoparticles. The zinc-specific responses are the most prominent ones and include mitochondrial proteins too, but also signaling molecules such as MyD88, proteins associated with methylglyoxal detoxification (glyoxalase 2, aldose reductase) and deoxyribonucleotide hydrolases. The in cellulo inhibition of GAPDH by zinc was also documented, representing a possible source of methylglyoxal in the cells, leading to an increase in methylglyoxal-modified DNA bases. These observations may be mechanistically associated with the genotoxic effect of zinc and its selective effects on cancer cells. The responses of the murine J774 macrophage cell lines to two types of metallic oxide nanoparticles (zinc oxide and zirconium dioxide) were studied by a comparative 2D gel based approach. This allows sorting of shared responses from nanoparticle-specific responses. Zinc oxide nanoparticles induced specifically a strong decrease in the mitochondrial function, in phagocytosis and also an increase in the methylglyoxal-associated DNA damage, which may explain the well known genotoxicity of zinc. In conclusion, this study allows highlighting of pathways that may play an important role in the toxicity of the zinc oxide nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Differential response to targeted recruitment strategies to fitness promotion research by African-American women of varying body mass index.

    Science.gov (United States)

    Yancey, A K; Miles, O L; McCarthy, W J; Sandoval, G; Hill, J; Leslie, J J; Harrison, G G

    2001-01-01

    To assess patterns of recruitment into a community-based NCI-funded physical activity and dietary lifestyle change program targeting African-American women. Acquisition of a convenience sample to be screened for participation in a randomized, controlled prevention intervention. African-American-owned and -operated health club located in an area of Los Angeles in which African Americans are concentrated. 893 African-American women. RECRUITMENT STRATEGIES: Social networking/word-of-mouth, staff presentations, mass and targeted media, and physician referral. Completion of screening questionnaire indicating a desire to enroll in the study. Screening questionnaire domains included self-reported height and weight, recent participation in organized weight loss programs, ability to walk one mile unassisted, current medication use, smoking status, personal medical history of cancer, sociodemographic variables, and recruitment source. Sociodemographic and anthropometric characteristics distinguished between respondents obtained through different recruitment strategies. In particular, women with a higher body mass index (BMI) were more likely than those with lower BMIs (P = .014) to be recruited through more personalized methods (eg, social networking). Culturally tailored recruitment strategies are critical in securing the participation of members of "hard-to-reach" populations, who are both under-represented in health promotion research and at high risk for chronic diseases.

  12. A Combination of Radiosurgery and Soluble Tissue Factor Enhances Vascular Targeting for Experimental Glioblastoma

    Directory of Open Access Journals (Sweden)

    Jian Tu

    2013-01-01

    Full Text Available Radiosurgery for glioblastoma is limited to the development of resistance, allowing tumor cells to survive and initiate tumor recurrence. Based on our previous work that coadministration of tissue factor and lipopolysaccharide following radiosurgery selectively induced thrombosis in cerebral arteriovenous malformations, achieving thrombosis of 69% of the capillaries and 39% of medium sized vessels, we hypothesized that a rapid and selective shutdown of the capillaries in glioblastoma vasculature would decrease the delivery of oxygen and nutrients, reducing tumor growth, preventing intracranial hypertension, and improving life expectancy. Glioblastoma was formed by implantation of GL261 cells into C57Bl/6 mouse brain. Mice were intravenously injected tissue factor, lipopolysaccharide, a combination of both, or placebo 24 hours after radiosurgery. Control mice received both agents after sham irradiation. Coadministration of tissue factor and lipopolysaccharide led to the formation of thrombi in up to 87 ± 8% of the capillaries and 46 ± 4% of medium sized vessels within glioblastoma. The survival rate of mice in this group was 80% versus no survivor in placebo controls 30 days after irradiation. Animal body weight increased with time in this group (r=0.88, P=0.0001. Thus, radiosurgery enhanced treatment with tissue factor, and lipopolysaccharide selectively induces thrombosis in glioblastoma vasculature, improving life expectancy.

  13. Technology strategy for gas technologies; Technology Target Areas; TTA8 Gas Technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    TTA8 - Gas technologies points out the various routes Norway can follow to capitalise on the vast resources of natural gas that will be produced in the years to come by developing a strong technology and competence platform. A broad view is taken for the value creation having as basis the continued gas export from NCS to Europe, but also a strong focus on development of gas resources in other parts of the world. The latter can also be seen as part of international positioning for upstream resources and does also include involvements in projects, and export of technology and products. The TTA has structured the analysis into 3 main areas: Gas transport and processing (pipeline, LNG, other); Gas conversion to fuels, chemicals and materials; CO{sub 2} management. In this report, for each of these areas, scenarios based on a gap analysis are presented. One of the key goals has been to identify pacing and emerging technologies for the next 20 years. Based on this, technologies have been mapped according to importance for future competitiveness and technology ambitions. This also includes primary funding responsibilities (public and/or industry). The road map below reflects the key issues in the proposed strategy. The base level of the figure explains areas that will have to be pursued to maintain Norway's role as a key gas and gas technology provider. The second layer represents near term options and possibilities with a reasonable risk profile that could further enhance the Norwegian position given the resources and drive to further develop this industry. As the top layer we have selected some of our 'dreams', what we may achieve if a progressive approach is followed with a strongly innovation based policy. It is acknowledged by the TTA that Norway cannot be a leading technology player in all aspects of the gas value chain. For some technologies we should be an active player and developer, whilst for other technologies we should become a competent buyer

  14. Multi-Target Strategy and Experimental Studies of Traditional Chinese Medicine for Alzheimer's Disease Therapy.

    Science.gov (United States)

    Li, Lin; Zhang, Lan; Yang, Cui-cui

    2016-01-01

    Alzheimer's disease (AD) is a multifactorial complex disease. The pathogenesis of AD is very complicated, and involves the β-amyloid (Aβ) cascade, tau hyperphosphorylation, neuroinflammation, oxidative stress, mitochondrial dysfunction, reduced levels of neurotrophic factors, and damage and loss of synapses as well as cholinergic neurons. The multi-target characteristics of traditional Chinese medicine (TCM) may be advantageous over single-target drugs in the treatment of complex diseases. These drugs have therefore attracted more attention in the research and development of AD therapies. This review describes advances made in experimental studies of TCM for AD treatment. It discusses research, from our group and other laboratories, on TCM compound drugs (Shenwu capsule) and approximately 10 Chinese medicinal herb extracts (tetrahydroxystilbene glucoside, epimedium flavonoid, icariin, cornel iridoid glycoside, ginsenoside, puerarin, clausenamide, huperzine A, and timosaponins).

  15. Current diagnostics and treatment of fibrosarcoma –perspectives for future therapeutic targets and strategies

    Science.gov (United States)

    Augsburger, Daniela; Nelson, Peter J.; Kalinski, Thomas; Udelnow, Andrej; Knösel, Thomas; Hofstetter, Monika; Qin, Ji Wei; Wang, Yan; Gupta, Arvid Sen; Bonifatius, Susanne; Li, Minglun; Bruns, Christiane J.; Zhao, Yue

    2017-01-01

    Adult-type fibrosarcoma is a rare and highly aggressive subtype of soft tissue sarcomas. Due to the existence of other spindle-cell shaped sarcomas, its diagnosis is always one of exclusion. The likelihood of misdiagnoses between similar tumour entities is high, and often leads to inappropriate tumour treatment. We summarize here the main features of fibrosarcoma. When fibrosarcoma is appropriately diagnosed, the patient`s overall prognosis is generally quite poor. Fibrosarcoma is characterized by its low sensitivity towards radio- and chemotherapy as well as by its high rate of tumour recurrences. Thus it is important to identify new methods to improve treatment of this tumour entity. We discuss some promising new directions in fibrosarcoma research, specifically focusing on more effective targeting of the tumour microenvironment. Communication between tumour cells and their surrounding stromal tissue play a crucial role in cancer progression, invasion, metastasis and chemosensitivity. The therapeutic potential of targeting the tumour microenvironment is addressed. PMID:29262667

  16. Information sources - information targets: evaluative aspects of the scientists’ publication strategies

    Energy Technology Data Exchange (ETDEWEB)

    Glaenzel, W.; Chi, P.S.; Gumpenberger, C.; Gorraiz, J.

    2016-07-01

    Journal citation measures, if properly used, provide important information on the author’s publication strategy. In this explorative study, which is part of a larger project, we attempt to shed light on to what extent publication strategies are adequately reflected by the impact generated in the respective scientific community in the context of academic research assessment at micro level.In this paper we present three cases based on the research output of researchers active in three different fields: chemistry, medicine and economics. In each individual case, the lists of journals, in which the author in question has published along with the journals in the reference lists and those where the citing papers have been published, are analysed according to two aspects, the congruence of the three resulting lists and the overlap by journal quartiles based on field-normalised impact. Similarity measures are then introduced at both levels.The results reveal important aspects of the authors’ publication strategy and their position in the information flow enabling the identification of different scenarios, which are discussed in detail in order to be correctly applied for bibliometric individual assessment. (Author)

  17. Targeting Nuclear EGFR: Strategies for Improving Cetuximab Therapy in Lung Cancer

    Science.gov (United States)

    2015-12-01

    induced development of cutaneous squamous cell carcinomas in PKCε transgenic mice via inhibition of cell survival signals, Carcinogenesis, 2015. [Epub...4. 48. Toulany M, Kehlbach R, Florczak U, Sak A, Wang S, Chen J, et al. Targeting of AKT1 enhances radiation toxicity of human tumor cells by...the dimerization arm on domain II [4]. The Food and Drug Administration has approved cetuximab treatment for patients with metastatic colorectal cancer

  18. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells

    OpenAIRE

    Yuan, Zhi-xiang; Mo, Jingxin; Zhao, Guixian; Shu, Gang; Fu, Hua-Lin; Wei ZHAO

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rati...

  19. Robust, Responsive, and Targeted PLGA Anticancer Nanomedicines by Combination of Reductively Cleavable Surfactant and Covalent Hyaluronic Acid Coating.

    Science.gov (United States)

    Wu, Jintian; Zhang, Jian; Deng, Chao; Meng, Fenghua; Cheng, Ru; Zhong, Zhiyuan

    2017-02-01

    PLGA-based nanomedicines have enormous potential for targeted cancer therapy. To boost their stability, targetability, and intracellular drug release, here we developed novel multifunctional PLGA anticancer nanomedicines by combining a reductively cleavable surfactant (RCS), vitamin E-SS-oligo(methyl diglycol l-glutamate), with covalent hyaluronic acid (HA) coating. Reduction-sensitive HA-coated PLGA nanoparticles (rHPNPs) were obtained with small sizes of 55-61 nm and ζ potentials of -26.7 to -28.8 mV at 18.4-40.3 wt % RSC. rHPNPs were stable against dilution and 10% FBS while destabilized under reductive condition. The release studies revealed significantly accelerated docetaxel (DTX) release in the presence of 10 mM glutathione. DTX-rHPNPs exhibited potent and specific antitumor effect to CD44 + A549 lung cancer cells (IC50 = 0.52 μg DTX equiv/mL). The in vivo studies demonstrated that DTX-rHPNPs had an extended circulation time and greatly enhanced tolerance in mice. Strikingly, DTX-rHPNPs completely inhibited growth of orthotopic human A549-Luc lung tumor in mice, leading to a significantly improved survival rate and reduced adverse effect as compared to free DTX. This study highlights that advanced nanomedicines can be rationally designed by combining functional surfactants and surface coating.

  20. Targeted therapeutics in SLE: emerging strategies to modulate the interferon pathway

    Science.gov (United States)

    Oon, Shereen; Wilson, Nicholas J; Wicks, Ian

    2016-01-01

    Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by impaired immune tolerance, resulting in the generation of pathogenic autoantibodies and immune complexes. Although autoreactive B lymphocytes have been the first targets for biologic therapies in SLE, the importance of the innate immune system, and in particular, pathways involved in interferon (IFN) signaling, has emerged. There are now data supporting a central role for a plasmacytoid dendritic cell-derived type I IFN pathway in SLE, with a number of biologic therapeutics and small-molecule inhibitors undergoing clinical trials. Monoclonal antibodies targeting IFN-α have completed phase II clinical trials, and an antibody against the type I IFN receptor is entering a phase III trial. However, other IFNs, such as IFN gamma, and the more recently discovered type III IFNs, are also emerging as targets in SLE; and blockade of upstream components of the IFN signaling pathway may enable inhibition of more than one IFN subtype. In this review, we discuss the current understanding of IFNs in SLE, focusing on emerging therapies. PMID:27350879

  1. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    Science.gov (United States)

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  2. Customizable de novo design strategies for DOCK: Application to HIVgp41 and other therapeutic targets.

    Science.gov (United States)

    Allen, William J; Fochtman, Brian C; Balius, Trent E; Rizzo, Robert C

    2017-11-15

    De novo design can be used to explore vast areas of chemical space in computational lead discovery. As a complement to virtual screening, from-scratch construction of molecules is not limited to compounds in pre-existing vendor catalogs. Here, we present an iterative fragment growth method, integrated into the program DOCK, in which new molecules are built using rules for allowable connections based on known molecules. The method leverages DOCK's advanced scoring and pruning approaches and users can define very specific criteria in terms of properties or features to customize growth toward a particular region of chemical space. The code was validated using three increasingly difficult classes of calculations: (1) Rebuilding known X-ray ligands taken from 663 complexes using only their component parts (focused libraries), (2) construction of new ligands in 57 drug target sites using a library derived from ∼13M drug-like compounds (generic libraries), and (3) application to a challenging protein-protein interface on the viral drug target HIVgp41. The computational testing confirms that the de novo DOCK routines are robust and working as envisioned, and the compelling results highlight the potential utility for designing new molecules against a wide variety of important protein targets. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Communication Strategies Must Be Tailored to a Medication's Targeted Population: Lessons from the Case of BiDil.

    Science.gov (United States)

    Hawkins-Taylor, Chamika; Carlson, Angeline M

    2013-09-01

    . They reported that practicing, mainly primary care physicians considered the development of a branded medication that combined 2 older drugs to be superfluous, because the same effect could be achieved by administering each agent individually at the same time. Obtaining a patent for BiDil, therefore, was seen simply as a desire for commercial gain. During the approval hearings, representatives of the sponsored company attributed these concerns to "misinformed physicians" and "uninformed patients." The case of BiDil demonstrates that a marketing strategy for a population with unique health issues requires an understanding of underlying cultural, social, and economic underpinnings. Ignorance of these dynamics within the African-American community was blatantly reflected at the launch of the drug. Although BiDil remains a treatment option, there is no marketing effort to promote its use. The failure to capture the targeted market for the drug has important implications for the future of commercial considerations in the development of race-based medications.

  4. Integrin-targeting thermally cross-linked superparamagnetic iron oxide nanoparticles for combined cancer imaging and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong [School of Life Sciences, Gwangju Institute of Science and Technology, 261 Chemdangwagi-ro, Gwangju 500-712 (Korea, Republic of); Jeong, Yong Yeon [Department of Diagnostic Radiology, Jeonnam National University Hwasun Hospital, 160 Ilsim-ri, Hwasun-eup, Jeonnam 519-809 (Korea, Republic of); Moon, Woo Kyung, E-mail: syjon@gist.ac.kr [Diagnostic Radiology, Seoul National University Hospital and the Institute of Radiation Medicine, Medical Research Center Seoul National University, Seoul 110-744 (Korea, Republic of)

    2010-10-15

    We report multifunctional nanoparticles that are capable of cancer targeting and simultaneous cancer imaging and therapy. The nanoparticles are composed of cyclic arginine-glycine-aspartic acid (cRGD) peptide ligand bioconjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) that enable loading of the anticancer drug doxorubicin (Dox). The cyclic RGD-conjugated TCL-SPION (cRGD{sub T}CL-SPION) had a mean hydrodynamic size of 34 {+-} 8 nm with approximately 0.39 wt% of cyclic RGD attached to the surface of the nanoparticles. The cRGD{sub T}CL-SPION exhibited preferential binding towards target cancer cells (U87MG, integrin {alpha}{sub v{beta}3} +) when analyzed by T{sub 2}-weighted magnetic resonance (MR) imaging. When Dox was loaded onto the polymeric coating layers of cRGD{sub T}CL-SPION via ionic interaction, the resulting Dox-loaded cRGD{sub T}CL-SPION (Dox-cRGD{sub T}CL-SPION) showed much higher cytotoxicity in U87MG cells than Dox-TCL-SPION lacking cRGD (IC{sub 50} value of 0.02 {mu}M versus 0.12 {mu}M). These results suggest that Dox-cRGD{sub T}CL-SPION has potential for use as an integrin-targeted, combined imaging and therapeutic agent.

  5. The Combined Effects of Classroom Teaching and Learning Strategy Use on Students' Chemistry Self-Efficacy

    Science.gov (United States)

    Cheung, Derek

    2015-02-01

    For students to be successful in school chemistry, a strong sense of self-efficacy is essential. Chemistry self-efficacy can be defined as students' beliefs about the extent to which they are capable of performing specific chemistry tasks. According to Bandura (Psychol. Rev. 84:191-215, 1977), students acquire information about their level of self-efficacy from four sources: performance accomplishments, vicarious experiences, verbal persuasion, and physiological states. No published studies have investigated how instructional strategies in chemistry lessons can provide students with positive experiences with these four sources of self-efficacy information and how the instructional strategies promote students' chemistry self-efficacy. In this study, questionnaire items were constructed to measure student perceptions about instructional strategies, termed efficacy-enhancing teaching, which can provide positive experiences with the four sources of self-efficacy information. Structural equation modeling was then applied to test a hypothesized mediation model, positing that efficacy-enhancing teaching positively affects students' chemistry self-efficacy through their use of deep learning strategies such as metacognitive control strategies. A total of 590 chemistry students at nine secondary schools in Hong Kong participated in the survey. The mediation model provided a good fit to the student data. Efficacy-enhancing teaching had a direct effect on students' chemistry self-efficacy. Efficacy-enhancing teaching also directly affected students' use of deep learning strategies, which in turn affected students' chemistry self-efficacy. The implications of these findings for developing secondary school students' chemistry self-efficacy are discussed.

  6. Combined Effects of Flow Diverting Strategies and Parent Artery Curvature on Aneurysmal Hemodynamics: A CFD Study.

    Directory of Open Access Journals (Sweden)

    Jinyu Xu

    Full Text Available Flow diverters (FD are increasingly being considered for treating large or giant wide-neck aneurysms. Clinical outcome is highly variable and depends on the type of aneurysm, the flow diverting device and treatment strategies. The objective of this study was to analyze the effect of different flow diverting strategies together with parent artery curvature variations on altering intra-aneurysmal hemodynamics.Four ideal intracranial aneurysm models with different parent artery curvature were constructed. Computational fluid dynamics (CFD simulations of the hemodynamics before and after applying five types of flow diverting strategies (single FD, single FD with 5% and 10% packing density of coils, two FDs with 25% and 50% overlapping rate were performed. Changes in pressure, wall shear stress (WSS, relative residence time (RRT, inflow velocity and inflow volume rate were calculated and compared.Each flow diverting strategy resulted in enhancement of RRT and reduction of normalized mean WSS, inflow volume rate and inflow velocity in various levels. Among them, 50% overlapped FD induced most effective hemodynamic changes in RRT and inflow volume rate. The mean pressure only slightly decreased after treatment. Regardless of the kind of implantation of FD, the mean pressure, inflow volume rate and inflow velocity increased and the RRT decreased as the curvature of the parent artery increased.Of all flow diverting strategies, overlapping FDs induced most favorable hemodynamic changes. Hemodynamics alterations post treatment were substantially influenced by parent artery curvature. Our results indicate the need of an individualized flow diverting strategy that is tailored for a specific aneurysm.

  7. The effect of myoelectric prosthesis control strategies and feedback level on adaptation rate for a target acquisition task.

    Science.gov (United States)

    Shehata, Ahmed W; Scheme, Erik J; Sensinger, Jonathon W

    2017-07-01

    The long-term performance of myoelectric prostheses is related not only to the short-term performance of the controller, but also to the user's ability to learn and adapt to the system. Different control architectures may have inherent tradeoffs between their short-term performance and the amount of relevant feedback that informs this adaptation. In this study we focused on the ability of two common types of myoelectric control interfaces: raw control with raw feedback, such as a regression, and filtered control with filtered feedback, such as a classifier, to affect user adaptation. We evaluated trial-by-trial adaptation to self-generated errors during a multi degree-of-freedom target acquisition task by fitting a linear regression model to data collected from 24 able-bodied subjects. Subjects showed significantly higher adaptation behavior to self-generated errors when using raw control with a raw feedback strategy than when using filtered control with a filtered feedback strategy, which suggests that control strategies with more feedback allow for higher adaptation. These results support our hypothesis that feedback-rich control strategies allow users to better understand the myoelectric control system, which may enable better long-term performance.

  8. On 'polypharmacy' and multi-target agents, complementary strategies for improving the treatment of depression: a comparative appraisal.

    Science.gov (United States)

    Millan, Mark J

    2014-07-01

    Major depression is a heterogeneous disorder, both in terms of symptoms, ranging from anhedonia to cognitive impairment, and in terms of pathogenesis, with many interacting genetic, epigenetic, developmental and environmental causes. Accordingly, it seems unlikely that depressive states could be fully controlled by a drug possessing one discrete mechanism of action and, in the wake of disappointing results with several classes of highly selective agent, multi-modal treatment concepts are attracting attention. As concerns pharmacotherapy, there are essentially two core strategies. First, multi-target antidepressants that act via two or more complementary mechanisms and, second, polypharmacy, which refers to co-administration of two distinct drugs, usually in separate pills. Both multi-target agents and polypharmacy ideally couple a therapeutically unexploited action to a clinically established mechanism in order to enhance efficacy, moderate side-effects, accelerate onset of action and treat a broader range of symptoms. The melatonin MT1/MT2 agonist and 5-HT(2C) antagonist, agomelatine, which is effective in the short- and long-term treatment of depression, exemplifies the former approach, while evidence-based polypharmacy is illustrated by the adjunctive use of second-generation antipsychotics with serotonin reuptake inhibitors for treatment of resistant depression. Histone acetylation and methylation, ghrelin signalling, inflammatory modulators, metabotropic glutamate-7 receptors and trace amine-associated-1 receptors comprise attractive substrates for new multi-target and polypharmaceutical strategies. The present article outlines the rationale underpinning multi-modal approaches for treating depression, and critically compares and contrasts the pros and cons of established and potentially novel multi-target vs. polypharmaceutical treatments. On balance, the former appear the most promising for the elaboration, development and clinical implementation of

  9. Does Fostering Reasoning Strategies for Relatively Difficult Basic Combinations Promote Transfer by K-3 Students?

    Science.gov (United States)

    Baroody, Arthur J.; Purpura, David J.; Eiland, Michael D.; Reid, Erin E.; Paliwal, Veena

    2016-01-01

    How best to promote fluency with basic sums and differences is still not entirely clear. Some advocate a direct approach--using drill to foster memorization of basic facts by rote. Others recommend an indirect approach that first involves learning reasoning strategies. The purpose of the present study was to evaluate the efficacy of 2…

  10. Multi-Drug Resistance Transporters and a Mechanism-Based Strategy for Assessing Risks of Pesticide Combinations to Honey Bees.

    Directory of Open Access Journals (Sweden)

    Alex J Guseman

    Full Text Available Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species.

  11. Mature Epitope Density - A strategy for target selection based on immunoinformatics and exported prokaryotic proteins

    DEFF Research Database (Denmark)

    Santos, Anderson R; Pereira, Vanessa Bastos; Barbosa, Eudes

    2013-01-01

    organisms. We evaluated our computational approach by using the Mycobacterium tuberculosis (Mtb) H37Rv exoproteome as a gold standard model. A literature search was carried out on 60 out of 553 Mtb's predicted exoproteins, looking for previous experimental evidence concerning their possible antigenicity...... proteins were confirmed as related. There was no experimental evidence of antigenic or pathogenic contributions for three of the highest MED-scored Mtb proteins. Hence, these three proteins could represent novel putative vaccine and drug targets for Mtb. A web version of MED is publicly available online...

  12. Combining phenotypic and proteomic approaches to identify membrane targets in a 'triple negative' breast cancer cell type.

    Science.gov (United States)

    Rust, Steven; Guillard, Sandrine; Sachsenmeier, Kris; Hay, Carl; Davidson, Max; Karlsson, Anders; Karlsson, Roger; Brand, Erin; Lowne, David; Elvin, John; Flynn, Matt; Kurosawa, Gene; Hollingsworth, Robert; Jermutus, Lutz; Minter, Ralph

    2013-02-13

    The continued discovery of therapeutic antibodies, which address unmet medical needs, requires the continued discovery of tractable antibody targets. Multiple protein-level target discovery approaches are available and these can be used in combination to extensively survey relevant cell membranomes. In this study, the MDA-MB-231 cell line was selected for membranome survey as it is a 'triple negative' breast cancer cell line, which represents a cancer subtype that is aggressive and has few treatment options. The MDA-MB-231 breast carcinoma cell line was used to explore three membranome target discovery approaches, which were used in parallel to cross-validate the significance of identified antigens. A proteomic approach, which used membrane protein enrichment followed by protein identification by mass spectrometry, was used alongside two phenotypic antibody screening approaches. The first phenotypic screening approach was based on hybridoma technology and the second was based on phage display technology. Antibodies isolated by the phenotypic approaches were tested for cell specificity as well as internalisation and the targets identified were compared to each other as well as those identified by the proteomic approach. An anti-CD73 antibody derived from the phage display-based phenotypic approach was tested for binding to other 'triple negative' breast cancer cell lines and tested for tumour growth inhibitory activity in a MDA-MB-231 xenograft model. All of the approaches identified multiple cell surface markers, including integrins, CD44, EGFR, CD71, galectin-3, CD73 and BCAM, some of which had been previously confirmed as being tractable to antibody therapy. In total, 40 cell surface markers were identified for further study. In addition to cell surface marker identification, the phenotypic antibody screening approaches provided reagent antibodies for target validation studies. This is illustrated using the anti-CD73 antibody, which bound other 'triple negative

  13. Combining phenotypic and proteomic approaches to identify membrane targets in a ‘triple negative’ breast cancer cell type

    Directory of Open Access Journals (Sweden)

    Rust Steven

    2013-02-01

    Full Text Available Abstract Background The continued discovery of therapeutic antibodies, which address unmet medical needs, requires the continued discovery of tractable antibody targets. Multiple protein-level target discovery approaches are available and these can be used in combination to extensively survey relevant cell membranomes. In this study, the MDA-MB-231 cell line was selected for membranome survey as it is a ‘triple negative’ breast cancer cell line, which represents a cancer subtype that is aggressive and has few treatment options. Methods The MDA-MB-231 breast carcinoma cell line was used to explore three membranome target discovery approaches, which were used in parallel to cross-validate the significance of identified antigens. A proteomic approach, which used membrane protein enrichment followed by protein identification by mass spectrometry, was used alongside two phenotypic antibody screening approaches. The first phenotypic screening approach was based on hybridoma technology and the second was based on phage display technology. Antibodies isolated by the phenotypic approaches were tested for cell specificity as well as internalisation and the targets identified were compared to each other as well as those identified by the proteomic approach. An anti-CD73 antibody derived from the phage display-based phenotypic approach was tested for binding to other ‘triple negative’ breast cancer cell lines and tested for tumour growth inhibitory activity in a MDA-MB-231 xenograft model. Results All of the approaches identified multiple cell surface markers, including integrins, CD44, EGFR, CD71, galectin-3, CD73 and BCAM, some of which had been previously confirmed as being tractable to antibody therapy. In total, 40 cell surface markers were identified for further study. In addition to cell surface marker identification, the phenotypic antibody screening approaches provided reagent antibodies for target validation studies. This is illustrated

  14. Targeting Nicotinamide Phosphoribosyltransferase as a Potential Therapeutic Strategy to Restore Adult Neurogenesis.

    Science.gov (United States)

    Wang, Shu-Na; Xu, Tian-Ying; Li, Wen-Lin; Miao, Chao-Yu

    2016-06-01

    Adult neurogenesis is the process of generating new neurons throughout life in the olfactory bulb and hippocampus of most mammalian species, which is closely related to aging and disease. Nicotinamide phosphoribosyltransferase (NAMPT), also an adipokine known as visfatin, is the rate-limiting enzyme for mammalian nicotinamide adenine dinucleotide (NAD) salvage synthesis by generating nicotinamide mononucleotide (NMN) from nicotinamide. Recent findings from our laboratory and other laboratories have provided much evidence that NAMPT might serve as a therapeutic target to restore adult neurogenesis. NAMPT-mediated NAD biosynthesis in neural stem/progenitor cells is important for their proliferation, self-renewal, and formation of oligodendrocytes in vivo and in vitro. Therapeutic interventions by the administration of NMN, NAD, or recombinant NAMPT are effective for restoring adult neurogenesis in several neurological diseases. We summarize adult neurogenesis in aging, ischemic stroke, traumatic brain injury, and neurodegenerative disease and review the advances of targeting NAMPT in restoring neurogenesis. Specifically, we provide emphasis on the P7C3 family, a class of proneurogenic compounds that are potential NAMPT activators, which might shed light on future drug development in neurogenesis restoration. © 2016 John Wiley & Sons Ltd.

  15. A Combination of Quantitative and Qualitative Strategies in Educational Research: Reflections on Three Studies

    Directory of Open Access Journals (Sweden)

    Silvia Schmelkes del Valle

    2000-11-01

    Full Text Available This paper reviews three experiences of empirical research done by the author herself. In these an attempt is made to combine quantitative and qualitative methodologies of investigation. The first study focuses on the relationship between education and rural productivity. This work was carried out in four corn-producing areas of Mexico, and combines a survey with life stories. The second investigation is the study of projects that pursue combined aims of post-literacy and job training in thirteen Latin American countries. This work employed a questionnaire directed toward the managers of a large number of projects, plus case studies from a reduced number of the. The third study considered here analyzes the factors which affect the quality of elementary education in Mexico, and combines several instruments with a quantitative multivariate analysis and ethnographic observation in the classroom, school and community. The author extracts the lessons learned from these three experiences, and concludes that it is irrational to consider that each of the quantitative and qualitative methodologies belongs to the paradigms of social interpretation encountered. The combination of methodological approaches, in the three cases, permitted findings that would have been impossible through the isolated use of either of the two methodological approaches.

  16. Estimation of Inflationary Expectations and the Effectiveness of Inflation Targeting Strategy

    Directory of Open Access Journals (Sweden)

    Amalia CRISTESCU

    2011-02-01

    Full Text Available The credibility and accountability of a central bank, acting in an inflation targeting regime, are essential because they allow a sustainable anchoring of the inflationary anticipation of economic agents. Their decisions and behavior will increasingly be grounded on information provided by the central bank, especially if it shows transparency in the process of communicating with the public. Thus, inflationary anticipations are one of the most important channels through which the monetary policy affects the economic activity. They are crucial in the formation of the consumer prices among producers and traders, especially since it is relatively expensive for the economic agents to adjust their prices at short intervals. That is why many central banks use response functions containing inflationary anticipations, in their inflation targeting models. The most frequently problem in relation to these anticipations is that they are based on the assumption of optimal forecasts of future inflation, which are, implicitly, rational anticipations. In fact, the economic agents’ inflationary anticipations are most often adaptive or even irrational. Thus, rational anticipations cannot be used to estimate equations for the Romanian economy because the agents who form their expectations do not have sufficient information and an inflationary environment stable enough to fully anticipate the inflation evolution. The inflation evolution in the Romanian economy helps to calculate adaptive forecasts for which the weight of the "forward looking" component has to be rather important. The economic agents form their inflation expectations for periods of time that, usually, coincide with a production cycle (one year and consider the official and unofficial inflation forecasts present on the market in order to make strategic decisions. Thus, in recent research on inflation modeling, actual inflationary anticipations of economic agents which are revealed based on national

  17. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies.

    Science.gov (United States)

    Deng, Changchun; Lipstein, Mark R; Scotto, Luigi; Jirau Serrano, Xavier O; Mangone, Michael A; Li, Shirong; Vendome, Jeremie; Hao, Yun; Xu, Xiaoming; Deng, Shi-Xian; Realubit, Ronald B; Tatonetti, Nicholas P; Karan, Charles; Lentzsch, Suzanne; Fruman, David A; Honig, Barry; Landry, Donald W; O'Connor, Owen A

    2017-01-05

    Phosphoinositide 3-kinase (PI3K) and the proteasome pathway are both involved in activating the mechanistic target of rapamycin (mTOR). Because mTOR signaling is required for initiation of messenger RNA translation, we hypothesized that cotargeting the PI3K and proteasome pathways might synergistically inhibit translation of c-Myc. We found that a novel PI3K δ isoform inhibitor TGR-1202, but not the approved PI3Kδ inhibitor idelalisib, was highly synergistic with the proteasome inhibitor carfilzomib in lymphoma, leukemia, and myeloma cell lines and primary lymphoma and leukemia cells. TGR-1202 and carfilzomib (TC) synergistically inhibited phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), leading to suppression of c-Myc translation and silencing of c-Myc-dependent transcription. The synergistic cytotoxicity of TC was rescued by overexpression of eIF4E or c-Myc. TGR-1202, but not other PI3Kδ inhibitors, inhibited casein kinase-1 ε (CK1ε). Targeting CK1ε using a selective chemical inhibitor or short hairpin RNA complements the effects of idelalisib, as a single agent or in combination with carfilzomib, in repressing phosphorylation of 4E-BP1 and the protein level of c-Myc. These results suggest that TGR-1202 is a dual PI3Kδ/CK1ε inhibitor, which may in part explain the clinical activity of TGR-1202 in aggressive lymphoma not found with idelalisib. Targeting CK1ε should become an integral part of therapeutic strategies targeting translation of oncogenes such as c-Myc. © 2017 by The American Society of Hematology.

  18. Direct flow separation strategy, to isolate no-carrier-added {sup 90}Nb from irradiated Mo or Zr targets

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, Valery; Roesch, Frank [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Filosofov, Dmitry V.; Dadakhanov, Jakhongir [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Karaivanov, Dimitar V. [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. for Nuclear Research and Nuclear Energy; Marinova, Atanaska [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Sofia Univ. (Bulgaria). Faculty of Chemistry and Pharmacy; Baimukhanova, Ayagoz [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty (Kazakhstan)

    2016-11-01

    {sup 90}Nb has an intermediate half-life of 14.6 h, a high positron branching of 53% and optimal β{sup +} emission energy of only E{sub mean} 0.35 MeV per decay. These favorable characteristics suggest it may be a potential candidate for application in immuno-PET. Our recent aim was to conduct studies on distribution coefficients for Zr{sup IV} and Nb{sup V} in mixtures of HCl/H{sub 2}O{sub 2} and HCl/oxalic acid for anion exchange resin (AG 1 x 8) and UTEVA resin to develop a ''direct flow'' separation strategy for {sup 90}Nb. The direct flow concept refers to a separation accomplished using a single eluent on multiple columns, effectively streamlining the separation process and increasing the time efficiency. Finally, we also demonstrated that this separation strategy is applicable to the production of the positron emitter {sup 90}Nb via the irradiation of molybdenum targets and isolation of {sup 90}Nb from the irradiated molybdenum target.

  19. Prospects of Nanocarriers for Oral Delivery of Bioactives Using Targeting Strategies.

    Science.gov (United States)

    Parayath, Neha N; Nehoff, Hayley; Taurin, Sebastien; Greish, Khaled

    The oral route is the preferred mode of administration, however the poor intestinal absorption of many bioactive compounds limit their efficacy. Several strategies have been developed to overcome the low oral bioavailability of bioactive compounds. Nanocarriers present a unique opportunity to overcome this limitation due to their diverse bioactive carriage potential, surface functionality and design flexibility. Despite these favorable characteristics, the oral delivery of nanocarriers faces several challenges which are discussed in this review. The review addresses the different mechanisms of transport across the intestinal epithelium. In addition, we will comment on the various methods and models for evaluating the intestinal permeability, with a critical discussion of the uniformity of these models in investigating the oral bioavailability of nanocarrier systems. Finally, we will discuss some of the recently developed nanocarriers for oral delivery of bioactives that show promising results.

  20. Targeting TRIM5α in HIV Cure Strategies for the CRISPR-Cas9 Era

    Directory of Open Access Journals (Sweden)

    Daryl Anne Victoria Weatherley

    2017-11-01

    Full Text Available In the past decade, studies of innate immune activity against HIV-1 and other retroviruses have revealed a powerful array of host factors that can attack the virus at various stages of its life cycle in human and primate cells, raising the prospect that these antiviral factors could be manipulated in immunotherapeutic strategies for HIV infection. This has not proved straightforward: while HIV accessory genes encode proteins that subvert or destroy many of these restriction factors, others, such as human TRIM5α show limited potency against HIV-1. However, HIV-1 is much more susceptible to simian versions of TRIM5α: could this information be translated into the development of an effective gene therapy for HIV infection? Reigniting research into the restriction factor TRIM5α in the era of superior gene editing technology such as CRISPR-Cas9 presents an exciting opportunity to revisit this prospect.

  1. Fungal Biofilms: Targets for the Development of Novel Strategies in Plant Disease Management.

    Science.gov (United States)

    Villa, Federica; Cappitelli, Francesca; Cortesi, Paolo; Kunova, Andrea

    2017-01-01

    The global food supply has been facing increasing challenges during the first decades of the 21 st century. Disease in plants is an important constraint to worldwide crop production, accounting for 20-40% of its annual harvest loss. Although the use of resistant varieties, good water management and agronomic practices are valid management tools in counteracting plant diseases, there are still many pathosystems where fungicides are widely used for disease management. However, restrictive regulations and increasing concern regarding the risk to human health and the environment, along with the incidence of fungicide resistance, have discouraged their use and have prompted for a search for new efficient, ecologically friendly and sustainable disease management strategies. The recent evidence of biofilm formation by fungal phytopathogens provides the scientific framework for designing and adapting methods and concepts developed by biofilm research that could be integrated in IPM practices. In this perspective paper, we provide evidence to support the view that the biofilm lifestyle plays a critical role in the pathogenesis of plant diseases. We describe the main factors limiting the durability of single-site fungicides, and we assemble the current knowledge on pesticide resistance in the specific context of the biofilm lifestyle. Finally, we illustrate the potential of antibiofilm compounds at sub-lethal concentrations for the development of an innovative, eco-sustainable strategy to counteract phytopathogenic fungi. Such fungicide-free solutions will be instrumental in reducing disease severity, and will permit more prudent use of fungicides decreasing thus the selection of resistant forms and safeguarding the environment.

  2. Potential Targets' Analysis Reveals Dual PI3K/mTOR Pathway Inhibition as a Promising Therapeutic Strategy for Uterine Leiomyosarcomas-an ENITEC Group Initiative

    NARCIS (Netherlands)

    Cuppens, T.; Annibali, D.; Coosemans, A.; Trovik, J.; Haar, N. Ter; Colas, E.; Garcia-Jimenez, A.; Vijver, K. van der; Kruitwagen, R.P.; Brinkhuis, M.; Zikan, M.; Dundr, P.; Huvila, J.; Carpen, O.; Haybaeck, J.; Moinfar, F.; Salvesen, H.B.; Stukan, M.; Mestdagh, C.; Zweemer, R.P.; Massuger, L.F.A.G.; Mallmann, M.R.; Wardelmann, E.; Mints, M.; Verbist, G.; Thomas, D; Gomme, E.; Hermans, E; Moerman, P.; Bosse, T.; Amant, F.

    2017-01-01

    Purpose: Uterine sarcomas are rare and heterogeneous tumors characterized by an aggressive clinical behavior. Their high rates of recurrence and mortality point to the urgent need for novel targeted therapies and alternative treatment strategies. However, no molecular prognostic or predictive

  3. Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy.

    Science.gov (United States)

    Jacobsen, Jonathan Henry W; Hutchinson, Mark R; Mustafa, Sanam

    2016-02-01

    Drug addiction and dependence have proven to be difficult psychiatric disorders to treat. The limited efficacy of neuronally acting medications, such as acamprosate and naltrexone, highlights the need to identify novel targets. Recent research has underscored the importance of the neuroimmune system in many behavioural manifestations of drug addiction. In this review, we propose that our appreciation for complex phenotypes such as drug addiction and dependence will come with a greater understanding that these disorders are the result of intricate, interconnected signalling pathways that are, if only partially, determined at the receptor level. The idea of receptor heteromerisation and receptor mosaics will be introduced to explain cross talk between the receptors and signalling molecules implicated in neuroimmune signalling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. EZH2: an emerging role in melanoma biology and strategies for targeted therapy.

    Science.gov (United States)

    Tiffen, Jessamy; Gallagher, Stuart J; Hersey, Peter

    2015-01-01

    Histone modifications are increasingly being recognized as important epigenetic mechanisms that govern chromatin structure and gene expression. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2), responsible for tri-methylation of lysine 27 on histone 3 (H3K27me3) that leads to gene silencing. This highly conserved histone methyltransferase is found to be overexpressed in many different types of cancers including melanoma, where it is postulated to abnormally repress tumor suppressor genes. Somatic mutations have been identified in approximately 3% of melanomas, and activating mutations described within the catalytic SET domain of EZH2 confer its oncogenic activity. In the following review, we discuss the evidence that EZH2 is an important driver of melanoma progression and we summarize the progress of EZH2 inhibitors against this promising therapeutic target. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Operational Testing of a Combined Hardware-Software Strategy for Triage of Radiologically-Contaminated Persons.

    Science.gov (United States)

    Waller, Edward J

    2015-08-01

    After a radiological dispersal device (RDD) event, it is possible for radionuclides to enter the human body through inhalation, ingestion, and skin and wound absorption. The dominant pathway will be through inhalation. From a health physics perspective, it is important to know the magnitude of the intake to perform dosimetric assessments. From a medical perspective, removal of radionuclides leading to dose (hence risk) aversion is of high importance. The efficacy of medical decorporation strategies is extremely dependent upon the time of treatment delivery after intake. The "golden hour," or more realistically 3-4 h, is imperative when attempting to increase removal of radionuclides from extracellular fluids prior to cellular incorporation. To assist medical first response personnel in making timely decisions regarding appropriate treatment delivery modes, a software tool has been developed which compiles existing radionuclide decorporation therapy data and allows a user to perform simple triage leading to potential appropriate decorporation treatment strategies. Three triage algorithms were included: (1) multi-parameter model (MPM), (2) clinical decision guidance (CDG) model, and (3) annual limit on intake (ALI) model. A radiation triage mask (RTM) has simultaneously been developed to provide a simple and rapid hardware solution for first responders to triage internally exposed personnel in the field. The hardware/software strategy was field tested with a military medical unit and was found by end-users to be relatively simple to learn and use.

  6. Correction: An integrated anti-arrhythmic target network of compound Chinese medicine Wenxin Keli revealed by combined machine learning and molecular pathway analysis.

    Science.gov (United States)

    Wang, Taiyi; Lu, Ming; Du, Qunqun; Yao, Xi; Zhang, Peng; Chen, Xiaonan; Xie, Weiwei; Li, Zheng; Ma, Yuling; Zhu, Yan

    2017-09-26

    Correction for 'An integrated anti-arrhythmic target network of a Chinese medicine compound, Wenxin Keli, revealed by combined machine learning and molecular pathway analysis' by Taiyi Wang et al., Mol. BioSyst., 2017, 13, 1018-1030.

  7. Combination treatment with flavonoid morin and telomerase inhibitor MST-312 reduces cancer stem cell traits by targeting STAT3 and telomerase

    National Research Council Canada - National Science Library

    Chung, Seyung S; Oliva, Bryant; Dwabe, Sami; Vadgama, Jaydutt V

    2016-01-01

    .... However, to date, efficient targeted-therapy for metastatic CRC is ill-defined. We tested the hypothesis that combined treatment of flavonoid morin and telomerase inhibitor MST-312 may reduce the cancer stem cell (CSC) traits...

  8. Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy

    Science.gov (United States)

    Kim, Kyoung Sub; Kim, Jiyoung; Lee, Joo Young; Matsuda, Shofu; Hideshima, Sho; Mori, Yasurou; Osaka, Tetsuya; Na, Kun

    2016-06-01

    Despite magnetic nanoparticles having shown great potential in cancer treatment, tremendous challenges related to diagnostic sensitivity and treatment efficacy for clinical application remain. Herein, we designed optimized multifunctional magnetite nanoparticles (AHP@MNPs), composed of Fe3O4 nanoparticles and photosensitizer conjugated hyaluronic acid (AHP), to achieve enhanced tumor diagnosis and therapy. Fe3O4 nanoparticles (MNPs) were synthesized by a facile hydrolysis method. MNPs have higher biocompatibility, controllable particle sizes, and desirable magnetic properties. The fabricated AHP@MNPs have enhanced water solubility (average size: 108.13 +/- 1.08 nm), heat generation properties, and singlet oxygen generation properties upon magnetic and laser irradiation. The AHP@MNPs can target tumors via CD44 receptor-mediated endocytosis, which have enhanced tumor therapeutic effects through photodynamic/hyperthermia-combined treatment without any drugs. We successfully detected tumors implanted in mice via magnetic resonance imaging and optical imaging. Furthermore, we demonstrated the photodynamic/hyperthermia-combined therapeutic efficacy of AHP@MNPs with synergistically enhanced efficacy against cancer.Despite magnetic nanoparticles having shown great potential in cancer treatment, tremendous challenges related to diagnostic sensitivity and treatment efficacy for clinical application remain. Herein, we designed optimized multifunctional magnetite nanoparticles (AHP@MNPs), composed of Fe3O4 nanoparticles and photosensitizer conjugated hyaluronic acid (AHP), to achieve enhanced tumor diagnosis and therapy. Fe3O4 nanoparticles (MNPs) were synthesized by a facile hydrolysis method. MNPs have higher biocompatibility, controllable particle sizes, and desirable magnetic properties. The fabricated AHP@MNPs have enhanced water solubility (average size: 108.13 +/- 1.08 nm), heat generation properties, and singlet oxygen generation properties upon magnetic and laser

  9. Combined strategies for improving production of a thermo-alkali stable laccase in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Jiayi Wang

    2017-07-01

    Conclusions: The productivity of the thermo-alkali stable laccase from B. licheniformis expressed in P. pastoris was significantly improved through the combination of site-directed mutagenesis and optimization of the cultivation process. The mutant enzyme retains good stability under high temperature and alkaline conditions, and is a good candidate for industrial application in dye decolorization.

  10. Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: a model-based analysis.

    Science.gov (United States)

    Knerer, Gerhart; Currie, Christine S M; Brailsford, Sally C

    2015-06-01

    Dengue fever is a vector-borne disease prevalent in tropical and subtropical regions. It is an important public health problem with a considerable and often under-valued disease burden in terms of frequency, cost and quality-of-life. Recent literature reviews have documented the development of mathematical models of dengue fever both to identify important characteristics for future model development as well as to assess the impact of dengue control interventions. Such reviews highlight the importance of short-term cross-protection; antibody-dependent enhancement; and seasonality (in terms of both favourable and unfavourable conditions for mosquitoes). The compartmental model extends work by Bartley (2002) and combines the following factors: seasonality, age-structure, consecutive infection by all four serotypes, cross-protection and immune enhancement, as well as combined vector-host transmission. The model is used to represent dengue transmission dynamics using parameters appropriate for Thailand and to assess the potential impact of combined vector-control and vaccination strategies including routine and catch-up vaccination strategies on disease dynamics. When seasonality and temporary cross-protection between serotypes are included, the model is able to approximate the observed incidence of dengue fever in Thailand. We find vaccination to be the most effective single intervention, albeit with imperfect efficacy (30.2 %) and limited duration of protection. However, in combination, control interventions and vaccination exhibit a marked impact on dengue fever transmission. This study shows that an imperfect vaccine can be a useful weapon in reducing disease spread within the community, although it will be most effective when promoted as one of several strategies for combating dengue fever transmission.

  11. Combination of multifaceted strategies to maximize the therapeutic benefits of neural stem cell transplantation for spinal cord repair.

    Science.gov (United States)

    Hwang, Dong H; Kim, Hyuk M; Kang, Young M; Joo, In S; Cho, Chong-Su; Yoon, Byung-Woo; Kim, Seung U; Kim, Byung G

    2011-01-01

    Neural stem cells (NSCs) possess therapeutic potentials to reverse complex pathological processes following spinal cord injury (SCI), but many obstacles remain that could not be fully overcome by NSC transplantation alone. Combining complementary strategies might be required to advance NSC-based treatments to the clinical stage. The present study was undertaken to examine whether combination of NSCs, polymer scaffolds, neurotrophin-3 (NT3), and chondroitinase, which cleaves chondroitin sulfate proteoglycans at the interface between spinal cord and implanted scaffold, could provide additive therapeutic benefits. In a rat hemisection model, poly(ɛ-caprolactone) (PCL) was used as a bridging scaffold and as a vehicle for NSC delivery. The PCL scaffolds seeded with F3 NSCs or NT3 overexpressing F3 cells (F3.NT3) were implanted into hemisected cavities. F3.NT3 showed better survival and migration, and more frequently differentiated into neurons and oligodendrocytes than F3 cells. Animals with PCL scaffold containing F3.NT3 cells showed the best locomotor recovery, and motor evoked potentials (MEPs) following transcranial magnetic stimulation were recorded only in PCL-F3.NT3 group in contralateral, but not ipsilateral, hindlimbs. Implantation of PCL scaffold with F3.NT3 cells increased NT3 levels, promoted neuroplasticity, and enhanced remyelination of contralateral white matter. Combining chondroitinase treatment after PCL-F3.NT3 implantation further enhanced cell migration and promoted axonal remodeling, and this was accompanied by augmented locomotor recovery and restoration of MEPs in ipsilateral hindlimbs. We demonstrate that combining multifaceted strategies can maximize the therapeutic benefits of NSC transplantation for SCI. Our results may have important clinical implications for the design of future NSC-based strategies.

  12. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Lili Cao

    Full Text Available Small molecule inhibitors that can simultaneously inhibit multiple oncogenic proteins in essential pathways are promising therapeutic chemicals for hepatocellular carcinoma (HCC. To combine the anticancer effects of combretastatins, chalcones and isatins, we synthesized a novel hybrid molecule 3',4',5'-trimethoxy-5-chloro-isatinylchalcone (3MCIC. 3MCIC inhibited proliferation of cultured HepG2 cells, causing rounding-up of the cells and massive vacuole accumulation in the cytoplasm. Paxillin and focal adhesion plaques were downregulated by 3MCIC. Surprisingly, unlike the microtubule (MT-targeting agent CA-4 that inhibits tubulin polymerization, 3MCIC stabilized tubulin polymers both in living cells and in cell lysates. 3MCIC treatment reduced cyclin B1, CDK1, p-CDK1/2, and Rb, but increased p53 and p21. Moreover, 3MCIC caused GSK3β degradation by promoting GSK3β-Ser9 phosphorylation. Nevertheless, 3MCIC inhibited the Wnt/β-catenin pathway by downregulating β-catenin, c-Myc, cyclin D1 and E2F1. 3MCIC treatment not only activated the caspase-3-dependent apoptotic pathway, but also caused massive autophagy evidenced by rapid and drastic changes of LC3 and p62. 3MCIC also promoted cleavage and maturation of the lysosomal protease cathepsin D. Using ligand-affinity chromatography (LAC, target proteins captured onto the Sephacryl S1000-C12-3MCIC resins were isolated and analyzed by mass spectrometry (MS. Some of the LAC-MS identified targets, i.e., septin-2, vimentin, pan-cytokeratin, nucleolin, EF1α1/2, EBP1 (PA2G4, cyclin B1 and GSK3β, were further detected by Western blotting. Moreover, both septin-2 and HIF-1α decreased drastically in 3MCIC-treated HepG2 cells. Our data suggest that 3MCIC is a promising anticancer lead compound with novel targeting mechanisms, and also demonstrate the efficiency of LAC-MS based target identification in anticancer drug development.

  13. SU-E-T-500: Dose Escalation Strategy for Lung Cancer Patients Using a Biologically- Guided Target Definition

    Energy Technology Data Exchange (ETDEWEB)

    Shusharina, N; Khan, F; Choi, N; Sharp, G [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: Dose escalation strategy for lung cancer patients can lead to late symptoms such as pneumonitis and cardiac injury. We propose a strategy to increase radiation dose for improving local tumor control while simultaneously striving to minimize the injury of organs at risk (OAR). Our strategy is based on defining a small, biologically-guided target volume for receiving additional radiation dose. Methods: 106 patients with lung cancer treated with radiotherapy were selected for patients diagnosed with stage II and III disease. Previous research has shown that 50% of the maximum SUV threshold in FDG-PET imaging is appropriate for delineation of the most aggressive part of a tumor. After PET- and CT-derived targets were contoured, an IMRT treatment plan was designed to deliver 60 Gy to the GTV as delineated on a 4D CT (Plan 1). A second plan was designed with additional dose of 18 Gy to the PET-derived volume (Plan 2). A composite plan was generated by the addition of Plan 1 and Plan 2. Results: Plan 1 was compared to the composite plan and increases in OAR dose were assessed. For seven patients on average, lung V5 was increased by 1.4% and V20 by 4.2% for ipsilateral lung and by 13.5% and 7% for contralateral lung. For total lung, V5 and V20 were increased by 4.5% and 4.8% respectively. Mean lung dose was increased by 9.7% for the total lung. The maximum dose to the spinal cord increased by 16% on average. For the heart, V20 increased by 4.2% and V40 by 5.2%. Conclusion: It seems feasible that an additional 18 Gy of radiation dose can be delivered to FDG PET-derived subvolume of the CT-based GTV of the primary tumor without significant increase in total dose to the critical organs such as lungs, spinal cord and heart.

  14. Design of thermostable rhamnogalacturonan lyase mutants from Bacillus licheniformis by combination of targeted single point mutations

    DEFF Research Database (Denmark)

    da Silva, Ines Isabel Cardoso Rodrigues; Jers, Carsten; Otten, Harm

    2014-01-01

    Rhamnogalacturonan I lyases (RGI lyases) (EC 4.2.2.-) catalyze cleavage of α-1,4 bonds between rhamnose and galacturonic acid in the backbone of pectins by β-elimination. In the present study, targeted improvement of the thermostability of a PL family 11 RGI lyase from Bacillus licheniformis (DSM......-FIT). The second-generation mutants involved combinations of two to seven individually favorable single mutations. Thermal stability was examined as half-life at 60 °C and by recording of thermal transitions by circular dichroism. Surprisingly, the biggest increment in thermal stability was achieved by producing...... acids to hydrophobic ones in surface-exposed loops produced favorable thermal stability effects. © 2014 Springer-Verlag Berlin Heidelberg....

  15. Genetic and pharmacologic evidence that mTOR targeting outweighs mTORC1 inhibition as an antimyeloma strategy.

    Science.gov (United States)

    Chen, Xi; Díaz-Rodríguez, Elena; Ocio, Enrique M; Paiva, Bruno; Mortensen, Deborah S; Lopez-Girona, Antonia; Chopra, Rajesh; Miguel, Jesús San; Pandiella, Atanasio

    2014-02-01

    The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates cell growth, proliferation, metabolism, and cell survival, and plays those roles by forming two functionally distinct multiprotein complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Deregulation of the mTOR pathway has been found in different cancers, including multiple myeloma. Agents acting on mTORC1, such as rapamycin and derivatives, are being explored as antitumoral strategies. However, whether targeting mTOR would be a more effective antimyeloma strategy than exclusively acting on the mTORC1 branch remains to be established. In this report, we explored the activation status of mTOR routes in malignant plasma cells, and analyzed the contribution of mTOR and its two signaling branches to the proliferation of myeloma cells. Gene expression profiling demonstrated deregulation of mTOR pathway-related genes in myeloma plasma cells from patients. Activation of the mTOR pathway in myelomatous plasma cells was corroborated by flow cytometric analyses. RNA interference (RNAi) experiments indicated that mTORC1 predominated over mTORC2 in the control of myeloma cell proliferation. However, mTOR knockdown had a superior antiproliferative effect than acting only on mTORC1 or mTORC2. Pharmacologic studies corroborated that the neutralization of mTOR has a stronger antimyeloma effect than the individual inhibition of mTORC1 or mTORC2. Together, our data support the clinical development of agents that widely target mTOR, instead of agents, such as rapamycin or its derivatives, that solely act on mTORC1.

  16. Should I just listen to you or change your mind too? Target's perceived efficacy of agents' interpersonal affect improvement strategies.

    Science.gov (United States)

    López-Pérez, Belén

    2017-09-19

    People shape and influence others' emotions every day. If these attempts are perceived as successful, they may have a positive effect on people's relationships and well-being. Across two studies, targets' perceived efficacy of regulation strategies to improve their sadness and anxiety/stress has been investigated. In Study 1, participants (n = 120) were provided with two scenarios depicting sadness and anxiety/stress and asked to imagine themselves in these situations. Afterwards, they were provided with different regulation strategies and asked to rate their perceived efficacy to downregulate their sadness and anxiety. In Study 2, participants (n = 120) were asked to describe a situation where they felt sad and another one where they felt anxious. They were then provided with strategies aimed at reducing their sadness and anxiety. Results from both studies showed that whereas for sadness higher perceived efficacy was predicted by affective engagement, for anxiety/stress was predicted by cognitive engagement. © 2017 The British Psychological Society.

  17. Long-term outcomes of treat-to-target strategy in established rheumatoid arthritis: a daily practice prospective cohort study.

    Science.gov (United States)

    de Andrade, Nicole Pamplona Bueno; da Silva Chakr, Rafael Mendonça; Xavier, Ricardo Machado; Viecceli, Daniela; Correa, Ricardo Henrique Bilycz; de Oliveira Filho, Cilomar Martins; Brenol, Claiton Viegas

    2017-06-01

    To examine disease activity and physical function after implementation of treat-to-target (T2T) strategy in patients with established rheumatoid arthritis (RA) over a long-term period. Patients with RA were started on a T2T strategy in 2005 and followed through 2014. Patients were seen every 3-4 months until remission/low disease activity was achieved and every 6 months thereafter. Disease activity was measured by the DAS28 and CDAI, and physical function by the HAQ-DI. Results were presented as all observed data, without imputation for missing values. Changes in disease activity and physical function were evaluated by generalized estimating equations (GEE). Two hundred and twenty-nine patients were included, with a mean (SD) disease duration of 10.6 (7.4) years. Significant improvements were seen in both composite scores during the follow-up period, as demonstrated by DAS28 (β coefficient = 0.19; 95% CI = 0.16-0.21; p strategy, was associated with improvement in disease activity and physical function.

  18. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo.

    Science.gov (United States)

    Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung

    2017-12-01

    Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Nanomedicine: nanoparticles, molecular biosensors, and targeted gene/drug delivery for combined single-cell diagnostics and therapeutics

    Science.gov (United States)

    Prow, Tarl W.; Salazar, Jose H.; Rose, William A.; Smith, Jacob N.; Reece, Lisa; Fontenot, Andrea A.; Wang, Nan A.; Lloyd, R. Stephen; Leary, James F.

    2004-07-01

    Next generation nanomedicine technologies are being developed to provide for continuous and linked molecular diagnostics and therapeutics. Research is being performed to develop "sentinel nanoparticles" which will seek out diseased (e.g. cancerous) cells, enter those living cells, and either perform repairs or induce those cells to die through apoptosis. These nanoparticles are envisioned as multifunctional "smart drug delivery systems". The nanosystems are being developed as multilayered nanoparticles (nanocrystals, nanocapsules) containing cell targeting molecules, intracellular re-targeting molecules, molecular biosensor molecules, and drugs/enzymes/gene therapy. These "nanomedicine systems" are being constructed to be autonomous, much like present-day vaccines, but will have sophisticated targeting, sensing, and feedback control systems-much more sophisticated than conventional antibody-based therapies. The fundamental concept of nanomedicine is to not to just kill all aberrant cells by surgery, radiation therapy, or chemotherapy. Rather it is to fix cells, when appropriate, one cell-at-a-time, to preserve and re-build organ systems. When cells should not be fixed, such as in cases where an improperly repaired cell might give rise to cancer cells, the nanomedical therapy would be to induce apoptosis in those cells to eliminate them without the damagin bystander effects of the inflammatory immune response system reacting to necrotic cells or those which have died from trauma or injury. The ultimate aim of nanomedicine is to combine diagnostics and therapeutics into "real-time medicine", using where possible in-vivo cytometry techniques for diagnostics and therapeutics. A number of individual components of these multi-component nanoparticles are already working in in-vitro and ex-vivo cell and tissue systems. Work has begun on construction of integrated nanomedical systems.

  20. Discovery of safety biomarkers for atorvastatin in rat urine using mass spectrometry based metabolomics combined with global and targeted approach

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhowmik Salil [Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); University of Science and Technology, (305-333) 113 Gwahangno, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Young-Joo; Yi, Hong Jae [College of Pharmacy, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul 130-791 (Korea, Republic of); Chung, Bong Chul [Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Jung, Byung Hwa, E-mail: jbhluck@kist.re.kr [Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); University of Science and Technology, (305-333) 113 Gwahangno, Yuseong-gu, Daejeon (Korea, Republic of)

    2010-02-19

    In order to develop a safety biomarker for atorvastatin, this drug was orally administrated to hyperlipidemic rats, and a metabolomic study was performed. Atorvastatin was given in doses of either 70 mg kg{sup -1} day{sup -1} or 250 mg kg{sup -1} day{sup -1} for a period of 7 days (n = 4 for each group). To evaluate any abnormal effects of the drug, physiological and plasma biochemical parameters were measured and histopathological tests were carried out. Safety biomarkers were derived by comparing these parameters and using both global and targeted metabolic profiling. Global metabolic profiling was performed using liquid chromatography/time of flight/mass spectrometry (LC/TOF/MS) with multivariate data analysis. Several safety biomarker candidates that included various steroids and amino acids were discovered as a result of global metabolic profiling, and they were also confirmed by targeted metabolic profiling using gas chromatography/mass spectrometry (GC/MS) and capillary electrophoresis/mass spectrometry (CE/MS). Serum biochemical and histopathological tests were used to detect abnormal drug reactions in the liver after repeating oral administration of atorvastatin. The metabolic differences between control and the drug-treated groups were compared using PLS-DA score plots. These results were compared with the physiological and plasma biochemical parameters and the results of a histopathological test. Estrone, cortisone, proline, cystine, 3-ureidopropionic acid and histidine were proposed as potential safety biomarkers related with the liver toxicity of atorvastatin. These results indicate that the combined application of global and targeted metabolic profiling could be a useful tool for the discovery of drug safety biomarkers.

  1. Targeting the bacteria-host interface: strategies in anti-adhesion therapy.

    Science.gov (United States)

    Krachler, Anne Marie; Orth, Kim

    2013-05-15

    Bacterial infections are a major cause of morbidity and mortality worldwide and are increasingly problematic to treat due to the rise in antibiotic-resistant strains. It becomes more and more challenging to develop new antimicrobials that are able to withstand the ever-increasing repertoire of bacterial resistance mechanisms. This necessitates the development of alternative approaches to prevent and treat bacterial infections. One of the first steps during bacterial infection is adhesion of the pathogen to host cells. A pathogen's ability to colonize and invade host tissues strictly depends on this process. Thus, interference with adhesion (anti-adhesion therapy) is an efficient way to prevent or treat bacterial infections. As a basis to present different strategies to interfere with pathogen adhesion, this review briefly introduces general concepts of bacterial attachment to host cells. We further discuss advantages and disadvantages of anti-adhesion treatments and issues that are in need of improvement so as to make anti-adhesion compounds a more broadly applicable alternative to conventional antimicrobials.

  2. Targeting Leptin as a Therapeutic Strategy against Ovarian Cancer Peritoneal Metastasis.

    Science.gov (United States)

    Wei, Xiao; Liu, Yi; Gong, Cheng; Ji, Teng; Zhou, Xiaoshui; Zhang, Taoran; Wan, Dongyi; Xu, Sen; Jin, Ping; Yang, Xin; Li, Xiaoting; Ma, Ding; Yang, Zongyuan; Gao, Qinglei

    2017-01-01

    Epithelial ovarian cancer (OC) is the leading cause of death in patients with gynecologic malignancy. Malignant ascites, a shared symptom of advanced OC patients, plays an important role in the peritoneal metastasis cascade of OC. Since leptin existed in great amount in malignant ascites, we speculated that it might be involved in the modulation of tumor cells malignant behavior. Here, we demonstrated that blocking of leptin could significantly suppress ovarian malignant ascitesinduced metastatic aggravation of OC cells. Furthermore, our results suggested that leptin was highly expressed in OC and correlated with poor outcome of OC patients. Recombinant leptin notably promoted the migration, invasion and proliferation of OC cells. Mechanistically, we found that leptin induced epithelial-mesenchymal transition (EMT) program in OC cells through the activation of the PI3K/Akt/mTOR pathway. Pharmacological inhibition of the PI3K/Akt/mTOR pathway partly impaired leptin-induced malignant transformation of OC cells. More importantly, our in vivo xenograft experiment showed that blocking of leptin could dramatically inhibit OC cells peritoneal dissemination. Collectively, this study emphasized the importance of leptin in OC progression and illustrated a novel mechanism that the PI3K/Akt/mTOR pathway was involved in leptin-induced EMT. Our findings provide new insights into leptin exertion on OC metastasis and identify the potential of leptin neutralizing as a novel strategy against OC peritoneal dissemination. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Targeting Alcohol Misuse: A Promising Strategy for Reducing Military Sexual Assaults?

    Science.gov (United States)

    Farris, Coreen; Hepner, Kimberly A

    2015-03-20

    On the 2012 Workplace and Gender Relations Survey on Active Duty Service Members, 23 percent of female and 4 percent of male service members indicated that they had experienced a completed or attempted sexual assault during their military service. In addition, official numbers show no decline in sexual assaults, despite the implementation of sexual assault prevention programs across the U.S. Department of Defense (DoD). Alcohol misuse is also a problem in the military: One-third of active-duty service members reported binge drinking, a rate that compares unfavorably with that of their civilian counterparts. DoD has invested considerable resources in universal sexual assault prevention programs and social media campaigns, but evaluation results are not yet available, and the effectiveness of these programs is unclear. Research on civilian populations-particularly college students, who share some characteristics with junior enlisted personnel-could provide insights for DoD. For example, the research indicates a connection between alcohol and aggression, including sexual aggression. Alcohol can also have a range of effects on the risk of victimization-from a reduced awareness of risk indicators to incapacitation or unconsciousness. An extensive review of the existing research provides some guidance for how DoD can implement and evaluate efforts to reduce alcohol misuse as part of a larger strategy to reduce the incidence of sexual assault among members of the armed forces.

  4. Targeting Enhancer of Zeste Homolog 2 as a promising strategy for cancer treatment.

    Science.gov (United States)

    Marchesi, Irene; Bagella, Luigi

    2016-04-10

    Polycomb group proteins represent a global silencing system involved in development regulation. In specific, they regulate the transition from proliferation to differentiation, contributing to stem-cell maintenance and inhibiting an inappropriate activation of differentiation programs. Enhancer of Zeste Homolog 2 (EZH2) is the catalytic subunit of Polycomb repressive complex 2, which induces transcriptional inhibition through the tri-methylation of histone H3, an epigenetic change associated with gene silencing. EZH2 expression is high in precursor cells while its level decreases in differentiated cells. EZH2 is upregulated in various cancers with high levels associated with metastatic cancer and poor prognosis. Indeed, aberrant expression of EZH2 causes the inhibition of several tumor suppressors and differentiation genes, resulting in an uncontrolled proliferation and tumor formation. This editorial explores the role of Polycomb repressive complex 2 in cancer, focusing in particular on EZH2. The canonical function of EZH2 in gene silencing, the non-canonical activities as the methylation of other proteins and the role in gene transcriptional activation, were summarized. Moreover, mutations of EZH2, responsible for an increased methyltransferase activity in cancer, were recapitulated. Finally, various drugs able to inhibit EZH2 with different mechanism were described, specifically underscoring the effects in several cancers, in order to clarify the role of EZH2 and understand if EZH2 blockade could be a new strategy for developing specific therapies or a way to increase sensitivity of cancer cells to standard therapies.

  5. Using a combination of binning strategies and taxonomic approaches to unravel the anaerobic digestion microbiome

    DEFF Research Database (Denmark)

    Campanaro, Stefano; Treu, Laura; Kougias, Panagiotis

    of scaffolds comprehensive of thousands genome sequences, but the binning of these scaffolds into OTUs representative of microbial genomes is still challenging. In the attempt to obtain a deep characterization of the anaerobic digestion microbiome, different metagenomic binning approaches were integrated...... into a new tool. To facilitate the binning process, this tool integrates two strategies; the taxonomic assignment of scaffolds and the clustering based on coverage values. By applying this procedure, 373 high quality genomes involved in the anaerobic digestion process have been extracted and annotated using...

  6. Reservoir targeted vaccine against Borrelia burgdorferi: a new strategy to prevent Lyme disease transmission.

    Science.gov (United States)

    Richer, Luciana Meirelles; Brisson, Dustin; Melo, Rita; Ostfeld, Richard S; Zeidner, Nordin; Gomes-Solecki, Maria

    2014-06-15

    A high prevalence of infection with Borrelia burgdorferi in ixodid ticks is correlated with a high incidence of Lyme disease. The transmission of B. burgdorferi to humans can be disrupted by targeting 2 key elements in its enzootic cycle: the reservoir host and the tick vector. In a prospective 5-year field trial, we show that oral vaccination of wild white-footed mice resulted in outer surface protein A-specific seropositivity that led to reductions of 23% and 76% in the nymphal infection prevalence in a cumulative, time-dependent manner (2 and 5 years, respectively), whereas the proportion of infected ticks recovered from control plots varied randomly over time. Significant decreases in tick infection prevalence were observed within 3 years of vaccine deployment. Implementation of such a long-term public health measure could substantially reduce the risk of human exposure to Lyme disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Targeting Mast Cells Tryptase in Tumor Microenvironment: A Potential Antiangiogenetic Strategy

    Directory of Open Access Journals (Sweden)

    Michele Ammendola

    2014-01-01

    Full Text Available Angiogenesis is a complex process finely regulated by the balance between angiogenesis stimulators and inhibitors. As a result of proangiogenic factors overexpression, it plays a crucial role in cancer development. Although initially mast cells (MCs role has been defined in hypersensitivity reactions and in immunity, it has been discovered that MCs have a crucial interplay on the regulatory function between inflammatory and tumor cells through the release of classical proangiogenic factors (e.g., vascular endothelial growth factor and nonclassical proangiogenic mediators granule-associated (mainly tryptase. In fact, in several animal and human malignancies, MCs density is highly correlated with tumor angiogenesis. In particular, tryptase, an agonist of the proteinase-activated receptor-2 (PAR-2, represents one of the most powerful angiogenic mediators released by human MCs after c-Kit receptor activation. This protease, acting on PAR-2 by its proteolytic activity, has angiogenic activity stimulating both human vascular endothelial and tumor cell proliferation in paracrine manner, helping tumor cell invasion and metastasis. Based on literature data it is shown that tryptase may represent a promising target in cancer treatment due to its proangiogenic activity. Here we focused on molecular mechanisms of three tryptase inhibitors (gabexate mesylate, nafamostat mesylate, and tranilast in order to consider their prospective role in cancer therapy.

  8. Intercellular Interactomics of Human Brain Endothelial Cells and Th17 Lymphocytes: A Novel Strategy for Identifying Therapeutic Targets of CNS Inflammation

    Directory of Open Access Journals (Sweden)

    Arsalan S. Haqqani

    2011-01-01

    Full Text Available Leukocyte infiltration across an activated brain endothelium contributes to the neuroinflammation seen in many neurological disorders. Recent evidence shows that IL-17-producing T-lymphocytes (e.g., Th17 cells possess brain-homing capability and contribute to the pathogenesis of multiple sclerosis and cerebral ischemia. The leukocyte transmigration across the endothelium is a highly regulated, multistep process involving intercellular communications and interactions between the leukocytes and endothelial cells. The molecules involved in the process are attractive therapeutic targets for inhibiting leukocyte brain migration. We hypothesized and have been successful in demonstrating that molecules of potential therapeutic significance involved in Th17-brain endothelial cell (BEC communications and interactions can be discovered through the combination of advanced membrane/submembrane proteomic and interactomic methods. We describe elements of this strategy and preliminary results obtained in method and approach development. The Th17-BEC interaction network provides new insights into the complexity of the transmigration process mediated by well-organized, subcellularly localized molecular interactions. These molecules and interactions are potential diagnostic, therapeutic, or theranostic targets for treatment of neurological conditions accompanied or caused by leukocyte infiltration.

  9. A new combined strategy to implement a community occupational therapy intervention: designing a cluster randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Adang Eddy

    2011-03-01

    Full Text Available Abstract Background Even effective interventions for people with dementia and their caregivers require specific implementation efforts. A pilot study showed that the highly effective community occupational therapy in dementia (COTiD program was not implemented optimally due to various barriers. To decrease these barriers and make implementation of the program more effective a combined implementation (CI strategy was developed. In our study we will compare the effectiveness of this CI strategy with the usual educational (ED strategy. Methods In this cluster randomized, single-blinded, controlled trial, each cluster consists of at least two occupational therapists, a manager, and a physician working at Dutch healthcare organizations that deliver community occupational therapy. Forty-five clusters, stratified by healthcare setting (nursing home, hospital, mental health service, have been allocated randomly to either the intervention group (CI strategy or the control group (ED strategy. The study population consists of the professionals included in each cluster and community-dwelling people with dementia and their caregivers. The primary outcome measures are the use of community OT, the adherence of OTs to the COTiD program, and the cost effectiveness of implementing the COTiD program in outpatient care. Secondary outcome measures are patient and caregiver outcomes and knowledge of managers, physicians and OTs about the COTiD program. Discussion Implementation research is fairly new in the field of occupational therapy, making this a unique study. This study does not only evaluate the effects of the CI-strategy on professionals, but also the effects of professionals' degree of implementation on client and caregiver outcomes. Clinical trials registration NCT01117285

  10. Strategies for genetic association analyses combining unrelated case-control individuals and family trios.

    Science.gov (United States)

    Mirea, Lucia; Infante-Rivard, Claire; Sun, Lei; Bull, Shelley B

    2012-07-01

    In genetic association studies, analyses integrating data or estimates from unrelated case-control individuals and case trios (case offspring and their parents) can increase statistical power to identify disease susceptibility loci. Data on control trios may also be available, but how and when their use is advantageous is less familiar and is described here. In addition, the authors examine assumptions and properties of hybrid analyses combining association estimates from unrelated case-control individuals together with case and control family trios, focusing on low-prevalence disease. One such assumption is absence of population stratification bias (PSB), a potential source of confounding in case-control analyses. For detection of PSB, the authors discuss 4 possible tests that assess equality between individual-level and family-based estimates. Furthermore, a weighted framework is presented, in which estimates from analyses combining unrelated individuals and families (most powerful but subject to PSB) and family-based analyses (robust to PSB) are weighted according to the observed PSB test P value. In contrast to existing hybrid designs that combine individuals and families only if no significant PSB is detected, the weighted framework does not require specification of an arbitrary PSB testing level to establish significance. The statistical methods are evaluated using simulations and applied to a candidate gene study of childhood leukemia (Quebec Childhood Leukemia Study, 1980-2000).

  11. Improvement of hydrogen fermentation of galactose by combined inoculation strategy.

    Science.gov (United States)

    Sivagurunathan, Periyasamy; Anburajan, Parthiban; Kumar, Gopalakrishnan; Arivalagan, Pugazhendhi; Bakonyi, Péter; Kim, Sang-Hyoun

    2017-03-01

    This study evaluated the feasibility of anaerobic hydrogen fermentation of galactose, a red algal biomass sugar, using individual and combined mixed culture inocula. Heat-treated (90°C, 30 min) samples of granular sludge (GS) and suspended digester sludge (SDS) were used as inoculum sources. The type of mixed culture inoculum played an important role in hydrogen production from galactose. Between two inocula, granular sludge showed higher hydrogen production rate (HPR) and hydrogen yield (HY) of 2.2 L H2/L-d and 1.09 mol H2/mol galactoseadded, respectively. Combined inoculation (GS + SDS) led to an elevated HPR and HY of 3.1 L H2/L-d and 1.28 mol H2/mol galactoseadded, respectively. Acetic and butyric acids are the major organic acids during fermentation. Quantitative polymerase chain reaction (qPCR) revealed that the mixed culture generated using the combined inoculation contained a higher cluster I Clostridium abundance than the culture produced using the single inoculum. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Towards a sampling strategy for the assessment of forest condition at European level: combining country estimates.

    Science.gov (United States)

    Travaglini, Davide; Fattorini, Lorenzo; Barbati, Anna; Bottalico, Francesca; Corona, Piermaria; Ferretti, Marco; Chirici, Gherardo

    2013-04-01

    A correct characterization of the status and trend of forest condition is essential to support reporting processes at national and international level. An international forest condition monitoring has been implemented in Europe since 1987 under the auspices of the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). The monitoring is based on harmonized methodologies, with individual countries being responsible for its implementation. Due to inconsistencies and problems in sampling design, however, the ICP Forests network is not able to produce reliable quantitative estimates of forest condition at European and sometimes at country level. This paper proposes (1) a set of requirements for status and change assessment and (2) a harmonized sampling strategy able to provide unbiased and consistent estimators of forest condition parameters and of their changes at both country and European level. Under the assumption that a common definition of forest holds among European countries, monitoring objectives, parameters of concern and accuracy indexes are stated. On the basis of fixed-area plot sampling performed independently in each country, an unbiased and consistent estimator of forest defoliation indexes is obtained at both country and European level, together with conservative estimators of their sampling variance and power in the detection of changes. The strategy adopts a probabilistic sampling scheme based on fixed-area plots selected by means of systematic or stratified schemes. Operative guidelines for its application are provided.

  13. Inverse System Analysis and Modeling of Bearingless Induction Motor and Its Combined Control Strategy

    Directory of Open Access Journals (Sweden)

    Wen-shao Bu

    2014-01-01

    Full Text Available Bearingless induction motor is a multi-variable, nonlinear and strong coupling object, the existing inverse control method ignores the stator current dynamics of torque system. Aiming at its nonlinear and strong coupling problems, a novel combinatorial decoupling control strategy based on stator flux orientation and inverse system method is proposed. Taking the stator current dynamics of four-pole torque system into account, the reversibility and inverse system model of torque system are analyzed and established. Adopting the inverse system method, the dynamic decoupling between motor speed and stator flux-linkage is achieved; by online identification and calculation, the airgap flux-linkage of torque system is got. Based on above, feedback and compensation control of two radial displacement components of two-pole suspension system is realized. Simulation results have shown the higher decoupling control performance and stronger anti-interference ability of the decoupling control system; the proposed decoupling strategy not only owns the characteristics of be simple and convenient, but also is effective and feasible.

  14. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells.

    Science.gov (United States)

    Carter, Bing Z; Mak, Po Yee; Mu, Hong; Zhou, Hongsheng; Mak, Duncan H; Schober, Wendy; Leverson, Joel D; Zhang, Bin; Bhatia, Ravi; Huang, Xuelin; Cortes, Jorge; Kantarjian, Hagop; Konopleva, Marina; Andreeff, Michael

    2016-09-07

    BCR-ABL tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML), but they rarely eliminate CML stem cells. Disease relapse is common upon therapy cessation, even in patients with complete molecular responses. Furthermore, once CML progresses to blast crisis (BC), treatment outcomes are dismal. We hypothesized that concomitant targeting of BCL-2 and BCR-ABL tyrosine kinase could overcome these limitations. We demonstrate increased BCL-2 expression at the protein level in bone marrow cells, particularly in Lin(-)Sca-1(+)cKit(+) cells of inducible CML in mice, as determined by CyTOF mass cytometry. Further, selective inhibition of BCL-2, aided by TKI-mediated MCL-1 and BCL-XL inhibition, markedly decreased leukemic Lin(-)Sca-1(+)cKit(+) cell numbers and long-term stem cell frequency and prolonged survival in a murine CML model. Additionally, this combination effectively eradicated CD34(+)CD38(-), CD34(+)CD38(+), and quiescent stem/progenitor CD34(+) cells from BC CML patient samples. Our results suggest that BCL-2 is a key survival factor for CML stem/progenitor cells and that combined inhibition of BCL-2 and BCR-ABL tyrosine kinase has the potential to significantly improve depth of response and cure rates of chronic-phase and BC CML. Copyright © 2016, American Association for the Advancement of Science.

  15. Combined rTMS treatment targeting the Anterior Cingulate and the Temporal Cortex for the Treatment of Chronic Tinnitus

    Science.gov (United States)

    Kreuzer, Peter M.; Lehner, Astrid; Schlee, Winfried; Vielsmeier, Veronika; Schecklmann, Martin; Poeppl, Timm B.; Landgrebe, Michael; Rupprecht, Rainer; Langguth, Berthold

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a tinnitus treatment option. Promising results have been obtained by consecutive stimulation of lateral frontal and auditory brain regions. We investigated a combined stimulation paradigm targeting the anterior cingulate cortex (ACC) with double cone coil rTMS, followed by stimulation of the temporo-parietal junction area with a figure-of-eight coil. The study was conducted as a randomized, double-blind pilot trial in 40 patients suffering from chronic tinnitus. We compared mediofrontal stimulation with double-cone-coil, (2000 stimuli, 10 Hz) followed by left temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz) to left dorsolateral-prefrontal-cortex stimulation with figure-of-eight-coil (2000 stimuli, 10 Hz) followed by temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz). The stimulation was feasible with comparable dropout rates in both study arms; no severe adverse events were registered. Responder rates did not differ in both study arms. There was a significant main effect of time for the change in the TQ score, but no significant time x group interaction. This pilot study demonstrated the feasibility of combined mediofrontal/temporoparietal-rTMS-stimulation with double cone coil in tinnitus patients but failed to show better outcome compared to an actively rTMS treated control group. PMID:26667790

  16. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies.

    Science.gov (United States)

    Pierce, Simon; Brusa, Guido; Sartori, Matteo; Cerabolini, Bruno E L

    2012-04-01

    Hydrophytes generally exhibit highly acquisitive leaf economics. However, a range of growth forms is evident, from small, free-floating and rapidly growing Lemniden to large, broad-leaved Nymphaeiden, denoting variability in adaptive strategies. Traits used to classify adaptive strategies in terrestrial species, such as canopy height, are not applicable to hydrophytes. We hypothesize that hydrophyte leaf size traits and economics exhibit sufficient overlap with terrestrial species to allow a common classification of plant functional types, sensu Grime's CSR theory. Leaf morpho-functional traits were measured for 61 species from 47 water bodies in lowland continental, sub-alpine and alpine bioclimatic zones in southern Europe and compared against the full leaf economics spectrum and leaf size range of terrestrial herbs, and between hydrophyte growth forms. Hydrophytes differed in the ranges and mean values of traits compared with herbs, but principal components analysis (PCA) demonstrated that both groups shared axes of trait variability: PCA1 encompassed size variation (area and mass), and PCA2 ranged from relatively dense, carbon-rich leaves to nitrogen-rich leaves of high specific leaf area (SLA). Most growth forms exhibited trait syndromes directly equivalent to herbs classified as R adapted, although Nymphaeiden ranged between C and SR adaptation. Our findings support the hypothesis that hydrophyte adaptive strategy variation reflects fundamental trade-offs in economics and size that govern all plants, and that hydrophyte adaptive strategies can be directly compared with terrestrial species by combining leaf economics and size traits.

  17. A compound control strategy combining velocity compensation with ADRC of electro-hydraulic position servo control system.

    Science.gov (United States)

    Gao, Bingwei; Shao, Junpeng; Yang, Xiaodong

    2014-11-01

    In order to enhance the anti-jamming ability of electro-hydraulic position servo control system at the same time improve the control precision of the system, a compound control strategy that combines velocity compensation with Active Disturbance Rejection Controller (ADRC) is proposed, and the working principle of the compound control strategy is given. ADRC controller is designed, and the extended state observer is used for observing internal parameters uncertainties and external disturbances, so that the disturbances of the system are suppressed effectively. Velocity compensation controller is designed and the compensation model is derived to further improve the positioning accuracy of the system and to achieve the velocity compensation without disturbance. The compound control strategy is verified by the simulation and experiment respectively, and the simulation and experimental results show that the electro-hydraulic position servo control system with ADRC controller can effectively inhibit the external disturbances, the precise positioning control is realized after introducing the velocity compensation controller, and verify that the compound control strategy is effective. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Prey pursuit strategy of Japanese horseshoe bats during an in-flight target-selection task.

    Science.gov (United States)

    Kinoshita, Yuki; Ogata, Daiki; Watanabe, Yoshiaki; Riquimaroux, Hiroshi; Ohta, Tetsuo; Hiryu, Shizuko

    2014-09-01

    The prey pursuit behavior of Japanese horseshoe bats (Rhinolophus ferrumequinum nippon) was investigated by tasking bats during flight with choosing between two tethered fluttering moths. Echolocation pulses were recorded using a telemetry microphone mounted on the bat combined with a 17-channel horizontal microphone array to measure pulse directions. Flight paths of the bat and moths were monitored using two high-speed video cameras. Acoustical measurements of returning echoes from fluttering moths were first collected using an ultrasonic loudspeaker, turning the head direction of the moth relative to the loudspeaker from 0° (front) to 180° (back) in the horizontal plane. The amount of acoustical glints caused by moth fluttering varied with the sound direction, reaching a maximum at 70°-100° in the horizontal plane. In the flight experiment, moths chosen by the bat fluttered within or moved across these angles relative to the bat's pulse direction, which would cause maximum dynamic changes in the frequency and amplitude of acoustical glints during flight. These results suggest that echoes with acoustical glints containing the strongest frequency and amplitude modulations appear to attract bats for prey selection.

  19. Downregulation of GNA13-ERK network in prefrontal cortex of schizophrenia brain identified by combined focused and targeted quantitative proteomics.

    Science.gov (United States)

    Hirayama-Kurogi, Mio; Takizawa, Yohei; Kunii, Yasuto; Matsumoto, Junya; Wada, Akira; Hino, Mizuki; Akatsu, Hiroyasu; Hashizume, Yoshio; Yamamoto, Sakon; Kondo, Takeshi; Ito, Shingo; Tachikawa, Masanori; Niwa, Shin-Ichi; Yabe, Hirooki; Terasaki, Tetsuya; Setou, Mitsutoshi; Ohtsuki, Sumio

    2017-03-31

    Schizophrenia is a disabling mental illness associated with dysfunction of the prefrontal cortex, which affects cognition and emotion. The purpose of the present study was to identify altered molecular networks in the prefrontal cortex of schizophrenia patients by comparing protein expression levels in autopsied brains of patients and controls, using a combination of targeted and focused quantitative proteomics. We selected 125 molecules possibly related to schizophrenia for quantification by knowledge-based targeted proteomics. Among the quantified molecules, GRIK4 and MAO-B were significantly decreased in plasma membrane and cytosolic fractions, respectively, of prefrontal cortex. Focused quantitative proteomics identified 15 increased and 39 decreased proteins. Network analysis identified "GNA13-ERK1-eIF4G2 signaling" as a downregulated network, and proteins involved in this network were significantly decreased. Furthermore, searching downstream of eIF4G2 revealed that eIF4A1/2 and CYFIP1 were decreased, suggesting that downregulation of the network suppresses expression of CYFIP1, which regulates actin remodeling and is involved in axon outgrowth and spine formation. Downregulation of this signaling seems likely to impair axon formation and synapse plasticity of neuronal cells, and could be associated with development of cognitive impairment in the pathology of schizophrenia. The present study compared the proteome of the prefrontal cortex between schizophrenia patients and healthy controls by means of targeted proteomics and global quantitative proteomics. Targeted proteomics revealed that GRIK4 and MAOB were significantly decreased among 125 putatively schizophrenia-related proteins in prefrontal cortex of schizophrenia patients. Global quantitative proteomics identified 54 differentially expressed proteins in schizophrenia brains. The protein profile indicates attenuation of "GNA13-ERK signaling" in schizophrenia brain. In particular, EIF4G2 and CYFIP1

  20. [Pilot study of a strategy combining coronary angioplasty with valvular and/or coronary surgery on the same day].

    Science.gov (United States)

    Lecoq, G; Bedossa, M; Boulmier, D; Corbineau, H; Leguerrier, A; Mabo, P; Daubert, J C; Le Breton, H

    2006-06-01

    A strategy combining percutaneous coronary angioplasty followed by valvular and/or coronary surgery was recently proposed as an alternative to the classical surgical only approach. The aim of this study was to assess the feasibility and the results of such a combined strategy with the two procedures performed the same day. The population comprised 34 patients including 17 with valvular disease and revascularisable coronary lesions (15 symptomatic severe aortic stenoses and two acute mitral insufficiencies) plus 17 multitrunk coronary patients without valvular disease but with an indication for revascularisation. Angioplasty was performed several hours prior to surgery and a loading dose of 300mg clopidogrel was administered immediately postoperatively; all patients were on aspirin before the procedure. The average age was 67 +/- 11 years, NYHA class 2.3 +/- 0.7, angina 73%, LVEF 58 +/- 10%. Single coronary artery disease was present in 26%, two vessel disease in 35% and three vessel disease in 39%. The success rate for angioplasty plus stent was 98%. 60 stents were active. Bypasses were exclusively arterial (left or right internal mammary arteries). We observed 4 in-hospital deaths, one of which was due to an infarct and three due to extra-cardiac causes (1 non-cardiogenic acute respiratory distress syndrome, 1 respiratory tract infection and 1 pyelonephritis). Further surgery was necessary in 4 cases: for haemorrhage and one episode of digestive tract haemorrhage. There were no additional deaths, coronary events nor haemorrhage at the end of an average follow-up of 15 +/- 6 months. The results of this combined strategy are encouraging in this population and merit further evaluation in a prospective study.

  1. Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes.

    Science.gov (United States)

    Kang, Zhen; Zhang, Junli; Jin, Peng; Yang, Sen

    2015-01-01

    Owing to our limited understanding of the relationship between sequence and function and the interaction between intracellular pathways and regulatory systems, the rational design of enzyme-coding genes and de novo assembly of a brand-new artificial genome for a desired functionality or phenotype are difficult to achieve. As an alternative approach, directed evolution has been widely used to engineer genomes and enzyme-coding genes. In particular, significant developments toward DNA synthesis, DNA assembly (in vitro or in vivo), recombination-mediated genetic engineering, and high-throughput screening techniques in the field of synthetic biology have been matured and widely adopted, enabling rapid semi-rational genome engineering to generate variants with desired properties. In this commentary, these novel tools and their corresponding applications in the directed evolution of genomes and enzymes are discussed. Moreover, the strategies for genome engineering and rapid in vitro enzyme evolution are also proposed.

  2. Targeting MT1-MMP as an ImmunoPET-Based Strategy for Imaging Gliomas.

    Directory of Open Access Journals (Sweden)

    A G de Lucas

    -specific-contrast imaging of MT1-MMP positive GBM tumors and provided strong evidence for utility of MT1-MMP-targeted immunoPET as an alternate to nonspecific imaging of GBM.

  3. Spatiotemporal dynamics of HIV-1 transmission in France (1999-2014) and impact of targeted prevention strategies.

    Science.gov (United States)

    Chaillon, Antoine; Essat, Asma; Frange, Pierre; Smith, Davey M; Delaugerre, Constance; Barin, Francis; Ghosn, Jade; Pialoux, Gilles; Robineau, Olivier; Rouzioux, Christine; Goujard, Cécile; Meyer, Laurence; Chaix, Marie-Laure

    2017-02-21

    Characterizing HIV-1 transmission networks can be important in understanding the evolutionary patterns and geospatial spread of the epidemic. We reconstructed the broad molecular epidemiology of HIV from individuals with primary HIV-1 infection (PHI) enrolled in France in the ANRS PRIMO C06 cohort over 15 years. Sociodemographic, geographic, clinical, biological and pol sequence data from 1356 patients were collected between 1999 and 2014. Network analysis was performed to infer genetic relationships, i.e. clusters of transmission, between HIV-1 sequences. Bayesian coalescent-based methods were used to examine the temporal and spatial dynamics of identified clusters from different regions in France. We also evaluated the use of network information to target prevention efforts. Participants were mostly Caucasian (85.9%) and men (86.7%) who reported sex with men (MSM, 71.4%). Overall, 387 individuals (28.5%) were involved in clusters: 156 patients (11.5%) in 78 dyads and 231 participants (17%) in 42 larger clusters (median size: 4, range 3-41). Compared to individuals with single PHI (n = 969), those in clusters were more frequently men (95.9 vs 83%, p HIV-1 epidemic among MSM. Combined with a short turnaround time for sample processing, targeting prevention efforts based on phylogenetic monitoring may be an efficient way to deliver prevention interventions but would require near real time targeted interventions on the identified index cases and their partners.

  4. A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations.

    Science.gov (United States)

    Fujimura, Yoshinori; Kawano, Chihiro; Maeda-Murayama, Ayaka; Nakamura, Asako; Koike-Miki, Akiko; Yukihira, Daichi; Hayakawa, Eisuke; Ishii, Takanori; Tachibana, Hirofumi; Wariishi, Hiroyuki; Miura, Daisuke

    2017-05-23

    Although understanding their chemical composition is vital for accurately predicting the bioactivity of multicomponent drugs, nutraceuticals, and foods, no analytical approach exists to easily predict the bioactivity of multicomponent systems from complex behaviors of multiple coexisting factors. We herein represent a metabolic profiling (MP) strategy for evaluating bioactivity in systems containing various small molecules. Composition profiles of diverse bioactive herbal samples from 21 green tea extract (GTE) panels were obtained by a high-throughput, non-targeted analytical procedure. This employed the matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) technique, using 1,5-diaminonaphthalene (1,5-DAN) as the optical matrix for detecting GTE-derived components. Multivariate statistical analyses revealed differences among the GTEs in their antioxidant activity, oxygen radical absorbance capacity (ORAC). A reliable bioactivity-prediction model was constructed to predict the ORAC of diverse GTEs from their compositional balance. This chemometric procedure allowed the evaluation of GTE bioactivity by multicomponent rather than single-component information. The bioactivity could be easily evaluated by calculating the summed abundance of a few selected components that contributed most to constructing the prediction model. 1,5-DAN-MALDI-MS-MP, using diverse bioactive sample panels, represents a promising strategy for screening bioactivity-predictive multicomponent factors and selecting effective bioactivity-predictive chemical combinations for crude multicomponent systems.

  5. A structured strategy to combine education for advanced MIS training in surgical oncology training programs.

    Science.gov (United States)

    Brar, S S; Wright, F; Okrainec, A; Smith, A J

    2011-09-01

    Changing realities in surgery and surgical technique have heightened the need for agile adaptation in training programs. Current guidelines reflect the growing acceptance and adoption of the use of minimally invasive surgery (MIS) in oncology. North American general surgery residents are often not adequately skilled in advanced laparoscopic surgery skills at the completion of their residency. Presently, advanced laparoscopic surgery training during surgical oncology fellowship training occurs on an ad-hoc basis in many surgical oncology programs. We present a rational and template for a structured training in advanced minimally invasive surgical techniques during surgical oncology fellowship training. The structure of the program seeks to incorporate evidence-based strategies in MIS training from a comprehensive review of the literature, while maintaining essential elements of rigorous surgical oncology training. Fellows in this stream will train and certify in the Fundamentals of Laparoscopic Surgery (FLS) course. Fellows will participate in the didactic oncology seminar series continuously throughout the 27 months training period. Fellows will complete one full year of dedicated MIS training, followed by 15 months of surgical oncology training. Minimal standards for case volume will be expected for MIS cases and training will be tailored to meet the career goals of the fellows. We propose that a formalized MIS-Surgical Oncology Fellowship will allow trainees to benefit from an effective training curriculum and furthermore, that will allow for graduates to lead in a cancer surgery milieu increasingly focused on minimally invasive approaches. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Local Strategy Combined with a Wavelength Selection Method for Multivariate Calibration

    Directory of Open Access Journals (Sweden)

    Haitao Chang

    2016-06-01

    Full Text Available One of the essential factors influencing the prediction accuracy of multivariate calibration models is the quality of the calibration data. A local regression strategy, together with a wavelength selection approach, is proposed to build the multivariate calibration models based on partial least squares regression. The local algorithm is applied to create a calibration set of spectra similar to the spectrum of an unknown sample; the synthetic degree of grey relation coefficient is used to evaluate the similarity. A wavelength selection method based on simple-to-use interactive self-modeling mixture analysis minimizes the influence of noisy variables, and the most informative variables of the most similar samples are selected to build the multivariate calibration model based on partial least squares regression. To validate the performance of the proposed method, ultraviolet-visible absorbance spectra of mixed solutions of food coloring analytes in a concentration range of 20–200 µg/mL is measured. Experimental results show that the proposed method can not only enhance the prediction accuracy of the calibration model, but also greatly reduce its complexity.

  7. Trans-Splicing Improvement by the Combined Application of Antisense Strategies

    Directory of Open Access Journals (Sweden)

    Ulrich Koller

    2015-01-01

    Full Text Available Spliceosome-mediated RNA trans-splicing has become an emergent tool for the repair of mutated pre-mRNAs in the treatment of genetic diseases. RNA trans-splicing molecules (RTMs are designed to induce a specific trans-splicing reaction via a binding domain for a respective target pre-mRNA region. A previously established reporter-based screening system allows us to analyze the impact of various factors on the RTM trans-splicing efficiency in vitro. Using this system, we are further able to investigate the potential of antisense RNAs (AS RNAs, presuming to improve the trans-splicing efficiency of a selected RTM, specific for intron 102 of COL7A1. Mutations in the COL7A1 gene underlie the dystrophic subtype of the skin blistering disease epidermolysis bullosa (DEB. We have shown that co-transfections of the RTM and a selected AS RNA, interfering with competitive splicing elements on a COL7A1-minigene (COL7A1-MG, lead to a significant increase of the RNA trans-splicing efficiency. Thereby, accurate trans-splicing between the RTM and the COL7A1-MG is represented by the restoration of full-length green fluorescent protein GFP on mRNA and protein level. This mechanism can be crucial for the improvement of an RTM-mediated correction, especially in cases where a high trans-splicing efficiency is required.

  8. Combined Phosphoproteomics and Bioinformatics Strategy in Deciphering Drug Resistant Related Pathways in Triple Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Xinyu Deng

    2014-01-01

    Full Text Available Because of the absence of a clear therapeutic target for triple negative breast cancer (TNBC, conventional chemotherapy is the only available systemic treatment option for these patients. Despite chemotherapy treatment, TNBC patients still have worse prognosis when compared with other breast cancer patients. The study is to investigate unique phosphorylated proteins expressed in chemoresistant TNBC cell lines. In the current study, twelve TNBC cell lines were subjected to drug sensitivity assays against chemotherapy drugs docetaxel, doxorubicin, gemcitabine, and cisplatin. Based on their half maximal inhibitory concentrations, four resistant and two sensitive cell lines were selected for further analysis. The phosphopeptides from these cells were enriched with TiO2 beads and fractionated using strong cation exchange. 1,645 phosphoprotein groups and 9,585 unique phosphopeptides were identified by a high throughput LC-MS/MS system LTQ-Orbitrap. The phosphopeptides were further filtered with Ascore system and 1,340 phosphoprotein groups, 2,760 unique phosphopeptides, and 4,549 unique phosphosites were identified. Our study suggested that differentially phosphorylated Cdk5, PML, AP-1, and HSF-1 might work together to promote vimentin induced epithelial to mesenchymal transition (EMT in the drug resistant cells. EGFR and HGF were also shown to be involved in this process.

  9. Combining in vitro protein detection and in vivo antibody detection identifies potential vaccine targets against Staphylococcus aureus during osteomyelitis.

    Science.gov (United States)

    den Reijer, P Martijn; Sandker, Marjan; Snijders, Susan V; Tavakol, Mehri; Hendrickx, Antoni P A; van Wamel, Willem J B

    2017-02-01

    Currently, little is known about the in vivo human immune response against Staphylococcus aureus during a biofilm-associated infection, such as osteomyelitis, and how this relates to protein production in biofilms in vitro. Therefore, we characterized IgG responses in 10 patients with chronic osteomyelitis against 50 proteins of S. aureus, analyzed the presence of these proteins in biofilms of the infecting isolates on polystyrene (PS) and human bone in vitro, and explored the relation between in vivo and in vitro data. IgG levels against 15 different proteins were significantly increased in patients compared to healthy controls. Using a novel competitive Luminex-based assay, eight of these proteins [alpha toxin, Staphylococcus aureus formyl peptide receptor-like 1 inhibitor (FlipR), glucosaminidase, iron-responsive surface determinants A and H, the putative ABC transporter SACOL0688, staphylococcal complement inhibitor (SCIN), and serine-aspartate repeat-containing protein E (SdrE)] were also detected in a majority of the infecting isolates during biofilm formation in vitro. However, 4 other proteins were detected in only a minority of isolates in vitro while, vice versa, 7 proteins were detected in multiple isolates in vitro but not associated with significantly increased IgG levels in patients. Detection of proteins was largely confirmed using a transcriptomic approach. Our data provide further insights into potential therapeutic targets, such as for vaccination, to reduce S. aureus virulence and biofilm formation. At the same time, our data suggest that either in vitro or immunological in vivo data alone should be interpreted cautiously and that combined studies are necessary to identify potential targets.

  10. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China's Yangtze River Delta region.

    Science.gov (United States)

    Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wu, Xiaomeng; Shu, Jiawei; Hao, Jiming

    2017-01-01

    The Yangtze River Delta (YRD) region is one of the most prosperous and densely populated regions in China and is facing tremendous pressure to mitigate vehicle emissions and improve air quality. Our assessment has revealed that mitigating vehicle emissions of NOx would be more difficult than reducing the emissions of other major vehicular pollutants (e.g., CO, HC and PM2.5) in the YRD region. Even in Shanghai, where the emission control implemented are more stringent than in Jiangsu and Zhejiang, we observed little to no reduction in NOx emissions from 2000 to 2010. Emission-reduction targets for HC, NOx and PM2.5 are determined using a response surface modeling tool for better air quality. We design city-specific emission control strategies for three vehicle-populated cities in the YRD region: Shanghai and Nanjing and Wuxi in Jiangsu. Our results indicate that even if stringent emission control consisting of the Euro 6/VI standards, the limitation of vehicle population and usage, and the scrappage of older vehicles is applied, Nanjing and Wuxi will not be able to meet the NOx emissions target by 2020. Therefore, additional control measures are proposed for Nanjing and Wuxi to further mitigate NOx emissions from heavy-duty diesel vehicles. Copyright © 2016. Published by Elsevier B.V.

  11. Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities.

    Science.gov (United States)

    Luo, Kun; Zhang, Hong; Zavala, Fidel; Biragyn, Arya; Espinosa, Diego A; Markham, Richard B

    2014-01-01

    Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80-100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine.

  12. Romidepsin alone or in combination with anti-CD20 chimeric antigen receptor expanded natural killer cells targeting Burkitt lymphoma in vitro and in immunodeficient mice.

    Science.gov (United States)

    Chu, Yaya; Yahr, Ashlin; Huang, Brian; Ayello, Janet; Barth, Matthew; S Cairo, Mitchell

    2017-01-01

    Facilitating the development of alternative targeted therapeutic strategies is urgently required to improve outcome or circumvent chemotherapy resistance in children, adolescents, and adults with recurrent/refractory de novo mature B-cell (CD20) non-Hodgkin lymphoma, including Burkitt lymphoma (BL). Romidepsin, a histone deacetylase inhibitor (HDACi), has been used to treat cutaneous T-cell lymphoma. We have demonstrated the significant anti-tumor effect of anti-CD20 chimeric antigen receptor (CAR) modified expanded peripheral blood natural killer (exPBNK) against rituximab-sensitive and -resistant BL. This study examined the anti-tumor activity of romidepsin alone and in combination with anti-CD20 CAR exPBNKs against rituximab-sensitive and -resistant BL in vitro and in vivo. We found that romidepsin significantly inhibited both rituximab-sensitive and -resistant BL cell proliferation in vitro (P < 0.001) and induced cell death in rituximab-sensitive Raji (P < 0.001) and cell cycle arrest in rituximab-resistant Raji-2R and Raji-4RH (P < 0.001). Consistent with in vitro observations, we also found romidepsin significantly inhibited the growth of rituximab-sensitive and -resistant BL in BL xenografted NSG mice. We also demonstrated that romidpesin significantly induced the expression of Natural Killer Group 2, Member D (NKG2D) ligands MICA/B in both rituximab-sensitive and -resistant BL cells (P < 0.001) resulting in enhancement of exPBNK in vitro cytotoxicity through NKG2D. Finally, we observed the combination of romidepsin and anti-CD20 CAR exPBNK significantly induced cell death in BL cells in vitro, reduced tumor burden and enhanced survival in humanized BL xenografted NSG mice (p < 0.05). Our data suggests that romidepsin is an active HDAC inhibitor that also potentiates expanded NK and anti-CD20 CAR exPBNK activity against rituximab-sensitive and -resistant BL.

  13. Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome.

    Science.gov (United States)

    Chang, Alice Y; Lalia, Antigoni Z; Jenkins, Gregory D; Dutta, Tumpa; Carter, Rickey E; Singh, Ravinder J; Nair, K Sreekumaran

    2017-06-01

    Polycystic ovary syndrome (PCOS) is a condition of androgen excess and chronic anovulation frequently associated with insulin resistance. We combined a nontargeted and targeted metabolomics approach to identify pathways and metabolites that distinguished PCOS from metabolic syndrome (MetS). Twenty obese women with PCOS were compared with 18 obese women without PCOS. Both groups met criteria for MetS but could not have diabetes mellitus or take medications that treat PCOS or affect lipids or insulin sensitivity. Insulin sensitivity was derived from the frequently sampled intravenous glucose tolerance test. A nontargeted metabolomics approach was performed on fasting plasma samples to identify differentially expressed metabolites, which were further evaluated by principal component and pathway enrichment analysis. Quantitative targeted metabolomics was then applied on candidate metabolites. Measured metabolites were tested for associations with PCOS and clinical variables by logistic and linear regression analyses. This multiethnic, obese sample was matched by age (PCOS, 37±6; MetS, 40±6years) and body mass index (BMI) (PCOS, 34.6±5.1; MetS, 33.7±5.2kg/m 2 ). Principal component analysis of the nontargeted metabolomics data showed distinct group separation of PCOS from MetS controls. From the subset of 385 differentially expressed metabolites, 22% were identified by accurate mass, resulting in 19 canonical pathways significantly altered in PCOS, including amino acid, lipid, steroid, carbohydrate, and vitamin D metabolism. Targeted metabolomics identified many essential amino acids, including branched-chain amino acids (BCAA) that were elevated in PCOS compared with MetS. PCOS was most associated with BCAA (P=.02), essential amino acids (P=.03), the essential amino acid lysine (P=.02), and the lysine metabolite α-aminoadipic acid (P=.02) in models adjusted for surrogate variables representing technical variation in metabolites. No significant differences between

  14. Targeting of chromatin readers: a novel strategy used by the Shigella flexneri virulence effector OspF to reprogram transcription

    Directory of Open Access Journals (Sweden)

    Habiba Harouz

    2014-12-01

    Full Text Available Shigella flexneri, a gram-negative bacterium responsible of bacillary dysentery, uses multiple strategies to overcome host immune defense. We have decrypted how this bacterium manipulates host-cell chromatin binders to take control of immune gene expression. We found that OspF, an injected virulence factor previously identified as a repressor of immune gene expression, targets the chromatin reader HP1γ. Heterochromatin Protein 1 family members specifically recognize and bind histone H3 methylated at Lys 9. Although initially identified as chromatin-associated transcriptional silencers in heterochromatin, their location in euchromatin indicates an active role in gene expression. Notably, HP1γ phosphorylation at Serine 83 defines a subpopulation exclusively located to euchromatin, targeted to the site of transcriptional elongation. We showed that OspF directly interacts with HP1γ, and causes HP1 dephosphorylation, suggesting a model in which this virulence effector “uses” HP1 proteins as beacons to target and repress immune gene expression (Harouz, et al. EMBO J (2014. OspF alters HP1γ phosphorylation mainly by inactivating the Erk-activated kinase MSK1, spotlighting it as a new HP1 kinase. In vivo, infectious stresses trigger HP1γ phosphorylation in the colon, principally in the lamina propria and the intestinal crypts. Several lines of evidence suggest that HP1 proteins are modified as extensively as histones, and decrypting the impact of these HP1 post-translational modifications on their transcriptional activities in vivo will be the next challenges to be taken up.

  15. Targeting of chromatin readers: a novel strategy used by the Shigella flexneri virulence effector OspF to reprogram transcription.

    Science.gov (United States)

    Harouz, Habiba; Rachez, Christophe; Meijer, Benoit; Muchardt, Christian; Arbibe, Laurence

    2014-12-28

    Shigella flexneri, a gram-negative bacterium responsible of bacillary dysentery, uses multiple strategies to overcome host immune defense. We have decrypted how this bacterium manipulates host-cell chromatin binders to take control of immune gene expression. We found that OspF, an injected virulence factor previously identified as a repressor of immune gene expression, targets the chromatin reader HP1γ. Heterochromatin Protein 1 family members specifically recognize and bind histone H3 methylated at Lys 9. Although initially identified as chromatin-associated transcriptional silencers in heterochromatin, their location in euchromatin indicates an active role in gene expression. Notably, HP1γ phosphorylation at Serine 83 defines a subpopulation exclusively located to euchromatin, targeted to the site of transcriptional elongation. We showed that OspF directly interacts with HP1γ, and causes HP1 dephosphorylation, suggesting a model in which this virulence effector "uses" HP1 proteins as beacons to target and repress immune gene expression (Harouz, et al. EMBO J (2014)). OspF alters HP1γ phosphorylation mainly by inactivating the Erk-activated kinase MSK1, spotlighting it as a new HP1 kinase. In vivo, infectious stresses trigger HP1γ phosphorylation in the colon, principally in the lamina propria and the intestinal crypts. Several lines of evidence suggest that HP1 proteins are modified as extensively as histones, and decrypting the impact of these HP1 post-translational modifications on their transcriptional activities in vivo will be the next challenges to be taken up.

  16. An Aggressive Strategy for Maintenance of Sinus Rhythm Including a Combination of Catheter Ablation and Antiarrhythmic Drug Therapy Benefits Patients with Chronic Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Tetsuya Haruna, MD

    2009-01-01

    Full Text Available The effects of restoration and maintenance of sinus rhythm by a combination of catheter ablation and antiarrhythmic drugs (AADs on atrial function in patients with chronic atrial fibrillation (AF remain unknown. In 15 patients with chronic AF (>1 year, we attempted to restore and maintain sinus rhythm by ablation targeting complex fractionated atrial electrocardiograms (CFAEs combined with pulmonary vein isolation with or without AADs. Sinus rhythm was restored in all patients. At 17:7 ± 7:2 months after AF ablation, maintenance of sinus rhythm was achieved in 20% of patients without AADs and in 73.3% of patients with AADs. The left atrial diameter decreased significantly by 9:5 ± 8:1% (P < 0:05 during the 12-month followup. AADs did not have any adverse effects. The aggressive strategy for maintenance of sinus rhythm involving AF ablation and AADs potentially led to recovery of structural changes in the LA in patients with chronic AF.

  17. Innovative Strategies to Develop Chemical Categories Using a Combination of Structural and Toxicological Properties

    Directory of Open Access Journals (Sweden)

    Monika Batke

    2016-09-01

    Full Text Available 1.AbstractInterest is increasing in the development of non-animal methods for toxicological evaluations. These methods are however, particularly challenging for complex toxicological endpoints such as repeated dose toxicity. European Legislation, e.g. the European Union´s Cosmetic Directive and REACH, demands the use of alternative methods. Frameworks, such as the Read-across Assessment Framework or the Adverse Outcome Pathway Knowledge Base, support the development of these methods. The aim of the project presented in this publication was to develop substance categories for a read-across with complex endpoints of toxicity based on existing databases. The basic conceptual approach was to combine structural similarity with shared mechanisms of action. Substances with similar chemical structure and toxicological profile form candidate categories suitable for read-across. We combined two databases on repeated dose toxicity, RepDose database and ELINCS database to form a common database for the identification of categories. The resulting database contained physicochemical, structural and toxicological data, which were refined and curated for cluster analyses. We applied the Predictive Clustering Tree (PCT approach for clustering chemicals based on structural and on toxicological information to detect groups of chemicals with similar toxic profiles and pathways/mechanisms of toxicity. As many of the experimental toxicity values were not available, this data was imputed by predicting them with a multi-label classification method, prior to clustering. The clustering results were evaluated by assessing chemical and toxicological similarities with the aim of identifying clusters with a concordance between structural information and toxicity profiles/mechanisms. From these chosen clusters, seven were selected for a quantitative read-across, based on a small ratio of NOAEL of the members with the highest and the lowest NOAEL in the cluster (<5. We discuss

  18. GALILEO Precise Orbit and Clock Determinaiton using GPS and GALILEO Combined Processing Strategy

    Science.gov (United States)

    Cui, Hongzheng; Tang, Geshi; Song, Baiyan; Liu, Huicui; Han, Chao; Ge, Maorong

    2014-05-01

    The GALILEO system-still in its development phase-will be Europe's GNSS, and the in-orbit validation (IOV) phase has begun with launch of two IOV satellites, IOV-1 (E11) and IOV-2 (E12). High precise data processing is the precondition for upgrading navigation precision, monitoring and assessment of GNSS Open services, and expanding the application region for satellite navigation system. BACC is doing the work about operation and maintenance the iGMAS (international GNSS Monitoring and Assessment Service) Analysis Center (BAC), and producing the precision products to the users with equivalent accuracy to well-known institutes, such as IGS and CODE including precise satellite orbit and clock, tracking station coordinate and receiver clock, Zenith Total Delay (ZTD), Earth Orientation Parameter (EOP) parameters, global and statistical integrity and Ionospheric map, and this study just focuses on the combined orbit and clock. For GALILEO in the initial deployment phase, in order to take advantage of GPS observation and mature models to do joint orbit determination in a unified time and space frame to improve the orbit of other systems, and use the GPS orbit and clock from joint solution as the external check, we adopt combined orbit determination of GPS and GALILEO fixing firstly the coordinate of station, receiver clock and tropospheric parameters using GPS precise ephemeris and clock, and seting inter-system bias (ISB) between GPS and GALILEO as a parameter to be estimated. The observation data from a network of multi-GNSS capable receivers from the MGEX tracking network and a regional multi-GNSS network operated by China from day 321 to 334 in 2013, and the satellite force models and GFZ standard observation modeling except Yaw-control model are used in three day solution. For impact analysis, we compare the GPS orbit and clock to IGS final orbit and clock products to evaluate the accuracy, and the accuracy of GALILEO orbit and clock and can be validated by checking

  19. Pregabalin for painful diabetic peripheral neuropathy: strategies for dosing, monotherapy vs. combination therapy, treatment-refractory patients, and adverse events.

    Science.gov (United States)

    Juhn, Mark S; Parsons, Bruce; Varvara, Roxanna; Sadosky, Alesia

    2015-05-01

    Primary care physicians face significant challenges when treating painful diabetic peripheral neuropathy (pDPN). The physician must determine the best dosing