Measurement of the Strange Spectral Function in Hadronic $\\tau$ Decays
Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Menke, S.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija
2004-01-01
Tau Lepton decays with open strangeness in the final state are measured with the OPAL detector at LEP to determine the strange hadronic spectral function of the tau lepton. The decays tau- -> (Kpi)-nu tau, (Kpipi)-nu tau and (Kpipipi)-nu tau with final states consisting of neutral and charged kaons and pions have been studied. The invariant mass distributions of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including eta mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the tau lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(tau- -> K-pi0nu tau) = (0.471+-0.059stat+-0.023sys)% and B(tau- -> K-pi+pi-nu tau) = (0.415+-0.053stat+-0.040sys)% ha...
Energy Technology Data Exchange (ETDEWEB)
Mader, W.
2004-03-01
Tau lepton decays with open strangeness in the final state are measured with the Opal detector at LEP to determine the strange hadronic spectral function of the {tau} lepton and the mass of the strange quark. The decays {tau}{sup -} {yields} (K{pi}){sup -}{nu}{sub {tau}}, (K{pi}{pi}){sup -}{nu}{sub {tau}} and (K{pi}{pi}{pi}){sup -}{nu}{sub {tau}} with final states consisting of neutral and charged kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including {eta} mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the {tau} lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B({tau}{sup -} {yields} K{sup -}{pi}{sup 0}{nu}{sub {tau}}) = (0.471 {+-} 0.064{sub stat} {+-} 0.021{sub sys})%, B({tau}{sup -} {yields} K{sup -}{pi}{sup +}{pi}{sup -}{nu}{sub {tau}}) = (0.415 {+-} 0.059{sub stat} {+-} 0.031{sub sys})% have been measured. From the CKM weighted difference of strange and non-strange spectral moments, the mass of the strange quark at the {tau} mass scale has been determined: m{sub s}(m{sub {tau}}{sup 2}) = (84 {+-} 14{sub exp} {+-} 6{sub V{sub us}} {+-} 17{sub theo}) MeV. Evolving this result to customary scales yields m{sub s}(1 GeV{sup 2}) = (111{sub -35}{sup +26}) MeV, m{sub s}(4 GeV{sup 2}) = (82{sub -25}{sup +19}) MeV. (orig.)
Barate, R.; Ghez, Philippe; Goy, C.; Lees, J.P.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Alemany, R.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Park, I.C.; Riu, I.; Colaleo, A.; Creanza, D.; De Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Boix, G.; Cattaneo, M.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Tournefier, E.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Teixeira-Dias, P.; Thompson, A.S.; Buchmuller, O.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Goodsir, S.; Martin, E.B.; Marinelli, N.; Sedgbeer, J.K.; Spagnolo, P.; Thomson, Evelyn J.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A.P.; Bowdery, C.K.; Buck, P.G.; Colrain, P.; Crawford, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Williams, M.I.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; van Gemmeren, P.; Wachsmuth, H.; Zeitnitz, C.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Etienne, F.; Motsch, F.; Payre, P.; Talby, M.; Thulasidas, M.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Buescher, Volker; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Hocker, Andreas; Jacholkowska, A.; Kim, D.W.; Le Diberder, F.; Lefrancois, J.; Lutz, A.M.; Schune, M.H.; Veillet, J.J.; Videau, I.; Zerwas, D.; Bagliesi, Giuseppe; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Ferrante, I.; Foa, L.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Cowan, G.; Green, M.G.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Thompson, J.C.; Bloch-Devaux, Brigitte; Colas, P.; Emery, S.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S.N.; Dann, J.H.; Johnson, R.P.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Kelly, M.S.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Prange, G.; Giannini, G.; Gobbo, B.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Charles, E.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Greening, T.C.; Hayes, O.J.; Hu, H.; Jin, S.; McNamara, P.A., III; Nachtman, J.M.; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.
1999-01-01
All ALEPH measurements of branching ratios of tau decays involving kaons are summarized including a combination of results obtained with K^0_S and K^0_L detection. The decay dynamics are studied, leading to the determination of contributions from vector K^*(892) and K^{*}(1410), and axial-vector K_1(1270) and K_1(1400) resonances. Agreement with isospin symmetry is observed among the different final states. Under the hypothesis of the conserved vector current, the spectral function for the K\\bar{K}\\pi mode is compared with the corresponding cross section for low energy e^+e^- annihilation, yielding an axial-vector fraction of (94^{+6}_{-8})% for this mode. The branching ratio for tau decay into all strange final states is determined to be B(\\tau^-\\to X^-(S=-1)\
Strange functions in real analysis
Kharazishvili, AB
2005-01-01
Weierstrass and Blancmange nowhere differentiable functions, Lebesgue integrable functions with everywhere divergent Fourier series, and various nonintegrable Lebesgue measurable functions. While dubbed strange or "pathological," these functions are ubiquitous throughout mathematics and play an important role in analysis, not only as counterexamples of seemingly true and natural statements, but also to stimulate and inspire the further development of real analysis.Strange Functions in Real Analysis explores a number of important examples and constructions of pathological functions. After introducing the basic concepts, the author begins with Cantor and Peano-type functions, then moves to functions whose constructions require essentially noneffective methods. These include functions without the Baire property, functions associated with a Hamel basis of the real line, and Sierpinski-Zygmund functions that are discontinuous on each subset of the real line having the cardinality continuum. Finally, he considers e...
Jolliffe, Therese; Baron-Cohen, Simon
1999-01-01
Individuals with either high-functioning autism (N=17) or Asperger Syndrome (N=17) were tested with Happe's Strange Stories Test, which assesses the ability to interpret a nonliteral statement. Compared to normal controls, both groups had greater difficulty providing contextually appropriate mental state answers, with the autistic group having the…
Functional Analysis-Spectral Theoryl
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Functional Analysis - Spectral Theory1. Cherian Varughese. Book Review Volume 6 Issue 4 April 2001 pp 91-92 ... Author Affiliations. Cherian Varughese1. Indian Statistical Institute, 8th Mile, Mysore Road, Bangalore 560 059, India.
Strangeness content and structure function of the nucleon in a statistical quark model
Trevisan, L A; Tomio, L
1999-01-01
The strangeness content of the nucleon is determined from a statistical model using confined quark levels, and is shown to have a good agreement with the corresponding values extracted from experimental data. The quark levels are generated in a Dirac equation that uses a linear confining potential (scalar plus vector). With the requirement that the result for the Gottfried sum rule violation, given by the new muon collaboration (NMC), is well reproduced, we also obtain the difference between the structure functions of the proton and neutron, and the corresponding sea quark contributions. (27 refs).
Spectral fluctuations and zeta functions
International Nuclear Information System (INIS)
Balazs, N.L.; Schmit, C.; Voros, A.
1987-01-01
The study theoretically and numerically the role of the fluctuations of eigenvalue spectra {μ/sub n} in a particular analytical continuation process applied to the (generalized) zeta function Z(s) = Σ/sub n/μ/sub n//sup -s/ for s large and positive. A particularly interesting example is the spectrum of the Laplacian on a triangular domain which tessellates a compact surface of constant negative curvature (of genus two). The authors indeed find that the fluctuations restrict the abscissa of convergence, and also affect the rate of convergence. This then initiates a new approach to the exploration of spectral fluctuations through the convergence of analytical continuation processes
International Nuclear Information System (INIS)
Makke, N.
2011-10-01
Understanding the nucleon structure is currently one of the main challenges encountered in nuclear physics. The present work represents a contribution to the study of the nucleon structure and deals, in particular, with the study of the role of strange quarks in the nucleon. The latter can be investigated by determining the strange quark distribution in the nucleon as well as the contribution of the spins of strange quarks to the nucleon spin. This work first presents a measurement of the nucleon spin performed via Deeply Inelastic Scattering (DIS) of a muon beam off polarized proton and deuterium targets. The result is found to be strongly dependent on the quark fragmentation functions into hadrons (FFs), which define the probability that a quark of a given flavour fragments into a final state hadron. The FFs are poorly known, in particular, the FF of strange quark into kaons, which play an important role in the determination of the nucleon spin. In deep inelastic scattering process, the access to the FFs is provided by the hadron multiplicities which, in turn, define the average number of hadrons produced per DIS event. Pion and kaon multiplicities have been extracted versus different kinematic variables, using DIS data collected by deeply inelastic scattering of a 160 GeV/c muons off a deuterium target. A first Leading Order (LO) extraction of the fragmentation functions has then been performed using the measured pion and kaon multiplicities. (author)
International Nuclear Information System (INIS)
Chinowsky, W.
1989-01-01
Work done in the mid 1950s at Brookhaven National Laboratory on strange particles is described. Experiments were done on the Cosmotron. The author describes his own and others' work on neutral kaons, lambda and theta particles and points out the theoretical gap between predictions and experimental findings. By the end of the decade, the theory of strange particles was better understood. (UK)
Spectral functions in mathematics and physics
Kirsten, Klaus
2002-01-01
The literature on the spectral analysis of second order elliptic differential operators contains a great deal of information on the spectral functions for explicitly known spectra. The same is not true, however, for situations where the spectra are not explicitly known. Over the last several years, the author and his colleagues have developed new, innovative methods for the exact analysis of a variety of spectral functions occurring in spectral geometry and under external conditions in statistical mechanics and quantum field theory. Spectral Functions in Mathematics and Physics presents a detailed overview of these advances. The author develops and applies methods for analyzing determinants arising when the external conditions originate from the Casimir effect, dielectric media, scalar backgrounds, and magnetic backgrounds. The zeta function underlies all of these techniques, and the book begins by deriving its basic properties and relations to the spectral functions. The author then uses those relations to d...
Meson spectral functions at finite temperature
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.
2002-01-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature
Meson spectral functions at finite temperature
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.
2001-10-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)
Meson spectral functions at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S
2002-03-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature.
Meson spectral functions at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik
2001-10-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)
Directory of Open Access Journals (Sweden)
Kazuyuki Aihara
2011-04-01
Full Text Available The classical information-theoretic measures such as the entropy and the mutual information (MI are widely applicable to many areas in science and engineering. Csiszar generalized the entropy and the MI by using the convex functions. Recently, we proposed the grid occupancy (GO and the quasientropy (QE as measures of independence. The QE explicitly includes a convex function in its definition, while the expectation of GO is a subclass of QE. In this paper, we study the effect of different convex functions on GO, QE, and Csiszar’s generalized mutual information (GMI. A quality factor (QF is proposed to quantify the sharpness of their minima. Using the QF, it is shown that these measures can have sharper minima than the classical MI. Besides, a recursive algorithm for computing GMI, which is a generalization of Fraser and Swinney’s algorithm for computing MI, is proposed. Moreover, we apply GO, QE, and GMI to chaotic time series analysis. It is shown that these measures are good criteria for determining the optimum delay in strange attractor reconstruction.
Basic Functional Analysis Puzzles of Spectral Flow
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm
2011-01-01
We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....
Directory of Open Access Journals (Sweden)
David Robert Cole
2014-08-01
Full Text Available This paper contends that the power of Deleuze & Guattari’s (1988 notion of assemblage as theorised in 1000 Plateaus can be normalised and reductive with reference to its application to any social-cultural context where an open system of dynamic and fluid elements are located. Rather than determining the assemblage in this way, this paper argues for an alternative conception of ‘strange assemblage’ that must be deliberately and consciously created through rigorous and focused intellectual, creative and philosophical work around what makes assemblages singular. The paper will proceed with examples of ‘strange assemblage’ taken from a film by Peter Greenaway (A Zed and 2 Noughts; the film ‘Performance’; educational research with Sudanese families in Australia; the book, Bomb Culture by Jeff Nuttall (1970; and the band Hawkwind. Fittingly, these elements are themselves chosen to demonstrate the concept of ‘strange assemblage’, and how it can be presented. How exactly the elements of a ‘strange assemblage’ come together and work in the world is unknown until they are specifically elaborated and created ‘in the moment’. Such spontaneous methodology reminds us of the 1960s ‘Happenings’, the Situationist International and Dada/Surrealism. The difference that will be opened up by this paper is that all elements of this ‘strange assemblage’ cohere in terms of a rendering of ‘the unacceptable.'
Gao, Jun
2018-02-01
We present details on calculation of next-to-next-to-leading order QCD corrections to massive charged-current coefficient functions in deep-inelastic scattering. Especially we focus on the application to charm-quark production in neutrino scattering on fixed target that can be measured via the dimuon final state. We construct a fast interface to the calculation so for any parton distributions the cross sections can be evaluated within milliseconds by using the pre-generated interpolation grids. We discuss agreements of various theoretical predictions with the NuTeV and CCFR dimuon data and the impact of the results on determination of the strange-quark distributions.
Universal fermionic spectral functions from string theory.
Gauntlett, Jerome P; Sonner, Julian; Waldram, Daniel
2011-12-09
We carry out the first holographic calculation of a fermionic response function for a strongly coupled d=3 system with an explicit D=10 or D=11 supergravity dual. By considering the supersymmetry current, we obtain a universal result applicable to all d=3 N=2 SCFTs with such duals. Surprisingly, the spectral function does not exhibit a Fermi surface, despite the fact that the system is at finite charge density. We show that it has a phonino pole and at low frequencies there is a depletion of spectral weight with a power-law scaling which is governed by a locally quantum critical point.
Measurement of the spectral functions of vector current hadronic $\\tau$ decays
Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Miquel, R; Mir, L M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G
1997-01-01
A measurement of the spectral functions of non-strange tau vector current final states is presented, using 124,358 tau pairs recorded by the ALEPH detector at LEP during the years 1991 to 1994. The spectral functions of the dominant two- and four-pion tau decay channels are compared to published results of e+e- annihilation experiments via isospin rotation. A combined fit of the pion form factor from tau decays and e+e- data is performed using different parametrizations. The mass and the width of the charged and the neutral rho(770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M(rho^+/-(770)) - M(rho^0(770)) = (0.0 +/- 1.0) MeV/c^2 and Gamma(rho^+/-(770)) - Gamma(rho^0(770)) = (0.1 +/- 1.9) MeV/c^2.
Functional analysis, spectral theory, and applications
Einsiedler, Manfred
2017-01-01
This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.
Spectral theory and nonlinear functional analysis
Lopez-Gomez, Julian
2001-01-01
This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.
Spectral functions from anisotropic lattice QCD
Aarts, G.; Allton, C.; Amato, A.; Evans, W.; Giudice, P.; Harris, T.; Kelly, A.; Kim, S. Y.; Lombardo, M. P.; Praki, K.; Ryan, S. M.; Skullerud, J.-I.
2016-12-01
The FASTSUM collaboration has been carrying out lattice simulations of QCD for temperatures ranging from one third to twice the crossover temperature, investigating the transition region, as well as the properties of the Quark Gluon Plasma. In this contribution we concentrate on quarkonium correlators and spectral functions. We work in a fixed scale scheme and use anisotropic lattices which help achieving the desirable fine resolution in the temporal direction, thus facilitating the (ill posed) integral transform from imaginary time to frequency space. We contrast and compare results for the correlators obtained with different methods, and different temporal spacings. We observe robust features of the results, confirming the sequential dissociation scenario, but also quantitative differences indicating that the methods' systematic errors are not yet under full control. We briefly outline future steps towards accurate results for the spectral functions and their associated statistical and systematic errors.
Spectral functions and transport coefficients from the functional renormalization group
Energy Technology Data Exchange (ETDEWEB)
Tripolt, Ralf-Arno
2015-06-03
In this thesis we present a new method to obtain real-time quantities like spectral functions and transport coefficients at finite temperature and density using the Functional Renormalization Group approach. Our non-perturbative method is thermodynamically consistent, symmetry preserving and based on an analytic continuation from imaginary to real time on the level of the flow equations. We demonstrate the applicability of this method by calculating mesonic spectral functions as well as the shear viscosity for the quark-meson model. In particular, results are presented for the pion and sigma spectral function at finite temperature and chemical potential, with a focus on the regime near the critical endpoint in the phase diagram of the quark-meson model. Moreover, the different time-like and space-like processes, which give rise to a complex structure of the spectral functions, are discussed. Finally, based on the momentum dependence of the spectral functions, we calculate the shear viscosity and the shear viscosity to entropy density ratio using the corresponding Green-Kubo formula.
From strange stars to strange dwarfs
International Nuclear Information System (INIS)
Glendenning, N.K.; Kettner, C.; Weber, F.
1995-01-01
We determine all possible equilibrium sequences of compact strange-matter stars with nuclear crusts, which range from massive strange stars to strange white dwarf endash like objects (strange dwarfs). The properties of such stars are compared with those of their nonstrange counterparts emdash neutron stars and ordinary white dwarfs. The main emphasis of this paper is on strange dwarfs, which we divide into two distinct categories. The first one consists of a core of strange matter enveloped within ordinary white dwarf matter. Such stars are hydrostatically stable with or without the strange core and are therefore referred to as open-quote open-quote trivial close-quote close-quote strange dwarfs. This is different for the second category which forms an entirely new class of dwarf stars that contain nuclear material up to 4x10 4 times denser than in ordinary white dwarfs of average mass, M∼0.6 M circle-dot , and still about 400 times denser than in the densest white dwarfs. The entire family of such dwarfs, denoted dense strange dwarfs, owes its hydrostatic stability to the strange core. A striking features of strange dwarfs is that the entire sequence from the maximum-mass strange star to the maximum-mass strange dwarf is stable to radial oscillations. The minimum-mass star is only conditionally stable, and the sequences on both sides are stable. Such a stable, continuous connection does not exist between ordinary white dwarfs and neutron stars, which are known to be separated by a broad range of unstable stars. We find an expansive range of very low mass (planetary-like) strange-matter stars (masses even below 10 -4 M circle-dot are possible) that arise as natural dark-matter candidates, which if abundant enough in our Galaxy, should be seen in the gravitational microlensing searches that are presently being performed. copyright 1995 The American Astronomical Society
Wave function and strange correlator of short-range entangled states.
You, Yi-Zhuang; Bi, Zhen; Rasmussen, Alex; Slagle, Kevin; Xu, Cenke
2014-06-20
We demonstrate the following conclusion: If |Ψ⟩ is a one-dimensional (1D) or two-dimensional (2D) nontrivial short-range entangled state and |Ω⟩ is a trivial disordered state defined on the same Hilbert space, then the following quantity (so-called "strange correlator") C(r,r('))=⟨Ω|ϕ(r)ϕ(r('))|Ψ⟩/⟨Ω|Ψ⟩ either saturates to a constant or decays as a power law in the limit |r-r(')|→+∞, even though both |Ω⟩ and |Ψ⟩ are quantum disordered states with short-range correlation; ϕ(r) is some local operator in the Hilbert space. This result is obtained based on both field theory analysis and an explicit computation of C(r,r(')) for four different examples: 1D Haldane phase of spin-1 chain, 2D quantum spin Hall insulator with a strong Rashba spin-orbit coupling, 2D spin-2 Affleck-Kennedy-Lieb-Tasaki state on the square lattice, and the 2D bosonic symmetry-protected topological phase with Z(2) symmetry. This result can be used as a diagnosis for short-range entangled states in 1D and 2D.
Electro and photoproduction of strangeness
International Nuclear Information System (INIS)
Bertini, R.
1988-01-01
Strangeness-production studies and the characteristics of the electron accelerators applied in the experiments are discussed. The strangeness of the nucleon, the polarization in hyperon production, strange dybaryons, hypernuclei and baryons resonance and strangeness are the main topics. The importance of the electromagnetic probe as a tool in hyperon polarization measurements, in order to understand why hyperons become polarized at large momentum transfer, is underlined. High beam energies (30 GeV or so) and targets are needed for the study of the nucleon spin functions, as well as transverse and longitudinal polarization of the beam must be provided. In the following studies the needed energy range has been determinated: for the study of the strangeness content of the nucleon a beam energy higher than 3-4 GeV, in the search of H and D baryons, energies higher than 4 GeV, for the production of hypernuclei, the hyperon polarization and the baryon resonances study, beam energies ranging in the 3-4 GeV gap are enough. The relation meson-nucleon sigma terms to the strange quark content of the nucleon is discussed. In the measurement of the K-N sigma term, low energy Kaon beams and, possibly, polarized targets are needed
ALEPH Tau Spectral Functions and QCD
Davier, M; Zhang, Z; Davier, Michel; Hoecker, Andreas; Zhang, Zhiqing
2007-01-01
Hadronic $\\tau$ decays provide a clean laboratory for the precise study of quantum chromodynamics (QCD). Observables based on the spectral functions of hadronic $\\tau$ decays can be related to QCD quark-level calculations to determine fundamental quantities like the strong coupling constant, quark and gluon condensates. Using the ALEPH spectral functions and branching ratios, complemented by some other available measurements, and a revisited analysis of the theoretical framework, the value $\\asm = 0.345 \\pm 0.004_{\\rm exp} \\pm 0.009_{\\rm th}$ is obtained. Taken together with the determination of \\asZ from the global electroweak fit, this result leads to the most accurate test of asymptotic freedom: the value of the logarithmic slope of $\\alpha_s^{-1}(s)$ is found to agree with QCD at a precision of 4%. The value of \\asZ obtained from $\\tau$ decays is $\\asZ = 0.1215 \\pm 0.0004_{\\rm exp} \\pm 0.0010_{\\rm th} \\pm 0.0005_{\\rm evol} = 0.1215 \\pm 0.0012$.
International Nuclear Information System (INIS)
Dover, C.B.
1991-06-01
We survey the field of strange particle nuclear physics, starting with the spectroscopy of strangeness S = -1 Λ hypernuclei, proceeding to an interpretation of recent data on S = -2 ΛΛ hypernuclear production and decay, and finishing with some speculations on the production of multi-strange nuclear composites (hypernuclei or ''strangelets'') in relativistic heavy ion collisions. 41 refs., 5 figs
Strangeness Suppression and Color Deconfinement
Satz, Helmut
2018-02-01
The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.
Effective Spectral Function for Quasielastic Scattering on Nuclei
Bodek, A.; Christy, M. E.; Coopersmith, B.
2014-01-01
Spectral functions that are used in neutrino event generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the $\
Strangeness in hadronic interactions
Paul, S
2000-01-01
Strangeness has always been an important subject at all PANIC conferences as it probably constitutes the best link between particle and nuclear physics. I will thus use the theme of the conference by considering strangeness as a tourist through the world of strong interaction. During this talk we will accompany strangeness from production, to the royaume of mesons and baryons up to the complex world of nuclei.
Strange sea determination from collider data
Alekhin, S.; Blümlein, J.; Moch, S.
2018-02-01
We consider determinations of the strange sea in the nucleon based on QCD analyses of data collected at the LHC with focus on the recent high-statistics ATLAS measurement of the W±- and Z-boson production. We study the effect of different functional forms for parameterization of the parton distribution functions and the combination of various data sets in the analysis. We compare to earlier strange sea determinations and discuss ways to improve them in the future.
Ellis, Jonathan Richard
2005-01-01
There are several different experimental indications, such as the pion-nucleon sigma term and polarized deep-inelastic scattering, which suggest that the nucleon wave function contains a hidden s bar s component. This is expected in chiral soliton models, which also predicted the existence of new exotic baryons that may recently have been observed. Another hint of hidden strangeness in the nucleon is provided by copious phi production in various N bar N annihilation channels, which may be due to evasions of the Okubo-Zweig-Iizuka rule. One way to probe the possible polarization of hidden s bar s pairs in the nucleon may be via Lambda polarization in deep-inelastic scattering.
International Nuclear Information System (INIS)
Imai, Kenichi
1999-01-01
A simple review of strangeness nuclear physics is stated in the order of introduction, generation, structure and decay of hyper-nucleus and S=-2 nuclear physics. Strangeness nuclear physics investigate the structure and nuclear force of new created nucleus by introducing strangeness to the nuclear matter. The fundamental problems are hyperon-nucleon and hyperon-hyperon interaction. There are many methods to generate hyper nucleus. The stopped K - reaction is the best one. Λ and S hyper and S=-2 nucleus were generated by (K - , π) and (π + , K + ) reaction, (K - , π) reaction and (K - , K + ) reaction, respectively. The elementary decay process in the nucleus is Λ - > pπ (Q=38 MeV), nπ 0 and Λp - > np (Q=176 MeV), Λn- > nn. In emulsion, mass of light nucleus less than 160 were determined. Two measurement units are stated. One of them is a double focusing type K beam line in BNL to investigate H dibaryon by (K - , K + ) reaction. The other is KEK-SKS, which is superconducting kaon spectrometer to study hyper nucleus by (π + , K + ) reaction. The various kinds of binding energy of Λ single-particle states are displayed as a function of A -2/3 . These experimental data fit well with DWIA calculation using Woods-Saxon type one-body potential. A spectrum of 12C (π + , K + ) reaction showed small peak without main two peaks, which was a hyperfine structure between the exited state of 11 C core and couple of s 1/2 Λ. Although γ-ray was detected by three nucleuses such as 4 HΛ, 7 Li Λ and 9 Be Λ , γ-ray spectrometry of hyper nucleus remains unexplored. E hyper nucleus is detected by 4He(K-, t) and not by 4 He (K - , π + ). The binding energy of 4He Σ is 4.4 + 1 MeV and the width 7.0 + 0.7 MeV. Λ hyper nucleus decay is occurred by weak interaction. The elementary processes are a mesonic decay of Λ - > pπ - and Λ - > nπ 0 and a nonmesonic decay of Λn - > nn and Λp- > np. The lifetime of hyper nucleus is shorter than free Λ. Subject of S=-2 nuclear
Regge expansion of a casual spectral function in electroproduction
International Nuclear Information System (INIS)
Ahmed, M.A.; Taha, M.O.
1975-01-01
The conjecture that a term in the Regge espansion of the Deser-Gilbert-Sudarshan spectral function in electroproduction may identically vanish is investigated. It is shown that this conjecture does not appear to be in agreement with experiment
Function of snake mobbing in spectral tarsiers.
Gursky, Sharon
2006-04-01
Numerous species are known for their tendency to approach and confront their predators as a group. This behavior is known as mobbing. Snakes seem to be one of the more consistent recipients of this type of predator-directed behavior. This paper explores individual differences (sex and age) in the mobbing behavior of the spectral tarsier toward live and model snakes. This study was conducted at Tangkoko Nature Reserve (Sulawesi, Indonesia) during 2003-2004. During this research, 11 natural mobbing events and 31 artificially induced mobbing events were observed. The mean number of individuals at a mobbing was 5.7. The duration of mobbing events was strongly correlated with the number of assembled mobbers. Adults were more likely than other age classes to participate in mobbings. Males were more likely than females to participate in mobbings. Mobbing groups often contained more than one adult male, despite the fact that no spectral tarsier group contains more than one adult male. No difference in body size between extragroup males and resident males was observed, refuting the "attract the mightier" hypothesis. The number of mobbers did not affect whether the tarsier or the snake retreated first, countering the "move-on" hypothesis. The "perception advertisement" hypothesis was tentatively supported, in that live snakes were rarely seen in the area following mobbing calls, in comparison to when tarsiers either ignored the snake or alarm call. Copyright 2006 Wiley-Liss, Inc.
Bulk spectral functions in single and multiscalar gravity duals
Springer, Todd; Gale, Charles; Jeon, Sangyong
2010-12-01
We examine two-point correlation functions involving the trace of the energy-momentum tensor in five-dimensional dual gravity theories supported by one or more scalar fields. A prescription for determining bulk channel spectral functions is developed. This prescription generalizes previous work which centered on one scalar field. As an application of these techniques, we investigate the bulk spectral function and corresponding sum rule in the Chamblin-Reall background. We show that, when expressed in terms of the beta function, the sum rule for the Chamblin-Reall background can be written in a form similar to the sum rule in Yang-Mills theory.
Theoretical perspective on strangeness production
Directory of Open Access Journals (Sweden)
Ko Che Ming
2018-01-01
Full Text Available A brief review of some highlights and puzzles on strangeness production in heavy ion collisions is given. These include strangeness production and the nuclear equation of state; deeply subthreshold strangeness production; mean-field potentials on strange hadrons; phi meson in dense matter; anomalous strange hadron to pion ratios; density fluctuations on particle production; A hyperon polarization and the vorticity field, and exotic hadrons.
Effective spectral function for quasielastic scattering on nuclei
Energy Technology Data Exchange (ETDEWEB)
Bodek, A.; Coopersmith, B. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Christy, M.E. [Hampton University, Hampton, VA (United States)
2014-10-15
Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν dependence of predictions of these spectral functions for the QE differential cross sections (d{sup 2}σ/dQ{sup 2}dν) are in disagreement with the prediction of the ψ' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ' superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data. (orig.)
Effective spectral function for quasielastic scattering on nuclei
International Nuclear Information System (INIS)
Bodek, A.; Coopersmith, B.; Christy, M.E.
2014-01-01
Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν dependence of predictions of these spectral functions for the QE differential cross sections (d 2 σ/dQ 2 dν) are in disagreement with the prediction of the ψ' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ' superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data. (orig.)
Composite spectral functions for solving Volterra's population model
International Nuclear Information System (INIS)
Ramezani, M.; Razzaghi, M.; Dehghan, M.
2007-01-01
An approximate method for solving Volterra's population model for population growth of a species in a closed system is proposed. Volterra's model is a nonlinear integro-differential equation, where the integral term represents the effect of toxin. The approach is based upon composite spectral functions approximations. The properties of composite spectral functions consisting of few terms of orthogonal functions are presented and are utilized to reduce the solution of the Volterra's model to the solution of a system of algebraic equations. The method is easy to implement and yields very accurate result
Topological vertex, string amplitudes and spectral functions of hyperbolic geometry
Energy Technology Data Exchange (ETDEWEB)
Guimaraes, M.E.X.; Rosa, T.O. [Universidade Federal Fluminense, Instituto de Fisica, Av. Gal. Milton Tavares de Souza, s/n, CEP 24210-346, Niteroi, RJ (Brazil); Luna, R.M. [Universidade Estadual de Londrina, Departamento de Fisica, Caixa Postal 6001, Londrina, Parana (Brazil)
2014-05-15
We discuss the homological aspects of the connection between quantum string generating function and the formal power series associated to the dimensions of chains and homologies of suitable Lie algebras. Our analysis can be considered as a new straightforward application of the machinery of modular forms and spectral functions (with values in the congruence subgroup of SL(2,Z)) to the partition functions of Lagrangian branes, refined vertex and open string partition functions, represented by means of formal power series that encode Lie algebra properties. The common feature in our examples lies in the modular properties of the characters of certain representations of the pertinent affine Lie algebras and in the role of Selberg-type spectral functions of a hyperbolic three-geometry associated with q-series in the computation of the string amplitudes. (orig.)
Strangeness and charm production in high energy heavy ion collisions
International Nuclear Information System (INIS)
Xu, Nu
2001-01-01
We discuss the dynamical effects of strangeness and charm production in high energy nuclear collisions. In order to understand the early stage dynamical evolution, it is necessary to study the transverse momentum distributions of multi-strange hadrons like Ξ and Ω and charm mesons like J/Ψ as a function of collision centrality
Studying Strangeness Production with HADES
Schuldes, Heidi
2018-02-01
The High-Acceptance DiElectron Spectrometer (HADES) operates in the 1 - 2A GeV energy regime in fixed target experiments to explore baryon-rich strongly interacting matter in heavy-ion collisions at moderate temperatures with rare and penetrating probes. We present results on the production of strange hadrons below their respective NN threshold energy in Au+Au collisions at 1.23A GeV ( = 2.4 GeV). Special emphasis is put on the enhanced feed-down contribution of ϕ mesons to the inclusive yield of K- and its implication on the measured spectral shape of K-. Furthermore, we investigate global properties of the system, confronting the measured hadron yields and transverse mass spectra with a Statistical Hadronization Model (SHM) and a blastwave parameterization, respectively. These supplement the world data of the chemical and kinetic freeze-out temperatures.
Energy Technology Data Exchange (ETDEWEB)
Koch, Volker
2005-09-28
In this contribution the authors discuss the physics of strange hadrons in low energy ({approx_equal} 1-2 AGeV) heavy ion collision. In this energy range the relevant strange particle are the kaons and anti-kaons. The most interesting aspect concerning these particles are so called in-medium modifications. They will attempt to review the current status of understanding of these in medium modifications. In addition they briefly discuss other issues related with kaon production, such as the nuclear equation of state and chemical equilibrium.
Observational Effects of Strange Stars
Lu, T.
1998-01-01
In this talk, after briefly reviewing some historical remarks concerning strange stars, the achievements in physics and dynamical behavior of strange stars are discussed. Especially, various observational effects in distinguishing strange stars from neutron stars such as mechanical effects, cooling effects, phase transition and related interesting phenomena are stressed.
Spectral inequalities involving the sums and products of functions
Directory of Open Access Journals (Sweden)
Kong-Ming Chong
1982-01-01
Full Text Available In this paper, the notation ≺ and ≺≺ denote the Hardy-Littlewood-Pólya spectral order relations for measurable functions defined on a fnite measure space (X,Λ,μ with μ(X=a, and expressions of the form f≺g and f≺≺g are called spectral inequalities. If f,g∈L1(X,Λ,μ, it is proven that, for some b≥0, log[b+(δfιg+]≺≺log[b+(fg+]≺≺log[b+(δfδg+] whenever log+[b+(δfδg+]∈L1([0,a], here δ and ι respectively denote decreasing and increasing rearrangement. With the particular case b=0 of this result, the Hardy-Littlewood-Pólya-Luxemburg spectral inequality fg≺≺δfδg for 0≤f, g∈L1(X,Λ,μ is shown to be a consequence of the well-known but seemingly unrelated spectral inequality f+g≺δf+δg (where f,g∈L1(X,Λ,μ, thus giving new proof for the former spectral inequality. Moreover, the Hardy-Littlewood-Pólya-Luxemburg spectral inequality is also tended to give (δfιg+≺≺(fg+≺≺(δfδg+ and (δfδg−≺≺(fg−≺≺(δfιg− for not necessarily non-negative f,g∈L1(X,Λ,μ.
Stability criterion for superfluidity based on the density spectral function
Watabe, Shohei; Kato, Yusuke
2013-12-01
We study a stability criterion hypothesis for superfluids expressed in terms of the local density spectral function In(r,ω) that is applicable to both homogeneous and inhomogeneous systems. We evaluate the local density spectral function in the presence of a one-dimensional repulsive or attractive external potential within Bogoliubov theory, using solutions for the tunneling problem. We also evaluate the local density spectral function using an orthogonal basis, and calculate the autocorrelation function Cn(r,t). When superfluids in a d-dimensional system flow below a threshold, In(r,ω)∝ωd holds in the low-energy regime and Cn(r,t)∝1/td+1 holds in the long-time regime. However, when superfluids flow with the critical current, In(r,ω)∝ωβ holds in the low-energy regime and Cn(r,t)∝1/tβ+1 holds in the long-time regime with β
Charmonium correlators and spectral functions at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Ding,H.T.; Kaczmarek, O.; Karsch, F.; Satz, H.
2008-09-01
We present an operational approach to address the in-medium behavior of charmonium and analyze the reliability of maximum entropy method (MEM). We study the dependences of the ratio of correlators to the reconstructed one and the free one on the resonance's width and the continuum's threshold. Furthermore, we discuss the issue of the default model dependence of the spectral function obtained from MEM.
Pade approximants and the calculation of spectral functions of solids
International Nuclear Information System (INIS)
Grinstein, F.F.
1981-06-01
The computational approach of Chisholm, Genz and Pusterla for evaluating Feynman matrix elements in the physical region, is proposed for the calculation of spectral functions of solids. The method is based on the moment expansion of the functions, with a convenient choice of reference point, and its resummation with Pade approximants. The technique is tested in the calculation of the electron density of states for a one-dimensional system. In this case, the convergence of the method may be formally proved, while a numerical study shows its practical signification. (author)
International Nuclear Information System (INIS)
Scoccola, N.N.
1989-01-01
In this work it is shown how it is possible to study the physics of the baryons within the context of the soliton models based on the QCD behaviour at low energies. In particular, the existing models for strange baryons are studied pointing out the main problems they present. It is also shown how it is possible to obtain satisfactory results in the bound state approximation when the dynamics is appropriately treated. With this aim, a model that includes explicitly vector mesons is considered, and in which the eigenvalue problem for the kaons is treated exactly. The results obtained suggest the possibility of constructing a chiral bag model for strange baryons that will contribute to a better understanding of some conceptual aspects of the low energy hadronic physics. (Author) [es
International Nuclear Information System (INIS)
Dover, C.B.
1988-01-01
We review some of the motivations for the study of strange particle nuclear physics. A status report on recent progress in the spectroscopy of Λ and Σ hypernuclei is provided, as well as a discussion of future prospects for the study of S = /minus/1 and /minus/2 systems. The importance of the nuclear physics program at future high intensity hadron facilities is emphasized. 45 refs
International Nuclear Information System (INIS)
Bethe, H.A.; Brown, G.E.; Cooperstein, J.
1987-01-01
We investigate suggestions that quark matter with strangeness per baryon of order unity may be stable. We model this matter at nuclear matter densities as a gas of close packed Λ-particles. From the known mass of the Λ-particle we obtain an estimate of the energy and chemical potential of strange matter at nuclear densities. These are sufficiently high to preclude any phase transition from neutron matter to strange matter in the region near nucleon matter density. Including effects from gluon exchange phenomenologically, we investigate higher densities, consistently making approximations which underestimate the density of transition. In this way we find a transition density ρ tr > or approx.7ρ 0 , where ρ 0 is nuclear matter density. This is not far from the maximum density in the center of the most massive neutron stars that can be constructed. Since we have underestimated ρ tr and still find it to be ∝7ρ 0 , we do not believe that the transition from neutron to quark matter is likely in neutron stars. Moreover, measured masses of observed neutron stars are ≅1.4 M sun , where M sun is the solar mass. For such masses, the central (maximum) density is ρ c 0 . Transition to quark matter is certainly excluded for these densities. (orig.)
In-Flight Retrieval of SCIAMACHY Instrument Spectral Response Function
Directory of Open Access Journals (Sweden)
Mourad Hamidouche
2018-03-01
Full Text Available The instrument Spectral Response Function (ISRF has a strong impact on spectral calibration and the atmospheric trace gases retrievals. An accurate knowledge or a fine characterization of the ISRF shape and its FWHM (Full width at half maximum as well as its temporal behavior is therefore crucial. Designing a strategy for the characterization of the ISRF both on ground and in-flight is critical for future missions, such as the spectral imagers in the Copernicus program. We developed an algorithm to retrieve the instrument ISRF in-flight. Our method uses solar measurements taken in-flight by the instrument to fit a parameterized ISRF from on ground based calibration, and then retrieves the shape and FWHM of the actual in-flight ISRF. With such a strategy, one would be able to derive and monitor the ISRF during the commissioning and operation of spectrometer imager missions. We applied our method to retrieve the SCIAMACHY instrument ISRF in its different channels. We compared the retrieved ones with the on ground estimated ones. Besides some peculiarities found in SCIAMACHY channel 8, the ISRF results in other channels were relatively consistent and stable over time in most cases.
Strange matter at finite temperatures
International Nuclear Information System (INIS)
Reinhardt, H.; Dang, B.V.
1987-12-01
The properties of strange quark matter at finite temperatures and in equilibrium with respect to weak interaction are explored on the basis of the MIT bag model picture of QCD. Furthermore, to determine the stability of strange quark matter analogous investigations are also performed for nuclear matter within Walecka's model field theory. It is found that strange quark matter can be stable at zero external pressure only for temperatures below 20 MeV. (orig.)
Analyzing availability using transfer function models and cross spectral analysis
International Nuclear Information System (INIS)
Singpurwalla, N.D.
1980-01-01
The paper shows how the methods of multivariate time series analysis can be used in a novel way to investigate the interrelationships between a series of operating (running) times and a series of maintenance (down) times of a complex system. Specifically, the techniques of cross spectral analysis are used to help obtain a Box-Jenkins type transfer function model for the running times and the down times of a nuclear reactor. A knowledge of the interrelationships between the running times and the down times is useful for an evaluation of maintenance policies, for replacement policy decisions, and for evaluating the availability and the readiness of complex systems
Measurement of Spectral Functions of Ultracold Atoms in Disordered Potentials
Volchkov, Valentin V.; Pasek, Michael; Denechaud, Vincent; Mukhtar, Musawwadah; Aspect, Alain; Delande, Dominique; Josse, Vincent
2018-02-01
We report on the measurement of the spectral functions of noninteracting ultracold atoms in a three-dimensional disordered potential resulting from an optical speckle field. Varying the disorder strength by 2 orders of magnitude, we observe the crossover from the "quantum" perturbative regime of low disorder to the "classical" regime at higher disorder strength, and find an excellent agreement with numerical simulations. The method relies on the use of state-dependent disorder and the controlled transfer of atoms to create well-defined energy states. This opens new avenues for experimental investigations of three-dimensional Anderson localization.
Single-hole spectral function and spin-charge separation in the t-J model
Mishchenko, A. S.; Prokof'ev, N. V.; Svistunov, B. V.
2001-07-01
Worm algorithm Monte Carlo simulations of the hole Green function with subsequent spectral analysis were performed for 0.1hole spectral function in the thermodynamic limit. Spectral analysis reveals a δ-function-sharp quasiparticle peak at the lower edge of the spectrum that is incompatible with the power-law singularity and thus rules out the possibility of spin-charge separation in this parameter range. Spectral continuum features two peaks separated by a gap ~4÷5 t.
Moments of spectral functions: Monte Carlo evaluation and verification.
Predescu, Cristian
2005-11-01
The subject of the present study is the Monte Carlo path-integral evaluation of the moments of spectral functions. Such moments can be computed by formal differentiation of certain estimating functionals that are infinitely differentiable against time whenever the potential function is arbitrarily smooth. Here, I demonstrate that the numerical differentiation of the estimating functionals can be more successfully implemented by means of pseudospectral methods (e.g., exact differentiation of a Chebyshev polynomial interpolant), which utilize information from the entire interval . The algorithmic detail that leads to robust numerical approximations is the fact that the path-integral action and not the actual estimating functional are interpolated. Although the resulting approximation to the estimating functional is nonlinear, the derivatives can be computed from it in a fast and stable way by contour integration in the complex plane, with the help of the Cauchy integral formula (e.g., by Lyness' method). An interesting aspect of the present development is that Hamburger's conditions for a finite sequence of numbers to be a moment sequence provide the necessary and sufficient criteria for the computed data to be compatible with the existence of an inversion algorithm. Finally, the issue of appearance of the sign problem in the computation of moments, albeit in a milder form than for other quantities, is addressed.
DEFF Research Database (Denmark)
Leer, Jonatan; Kjær, Katrine Meldgaard
Strange Culinary Encounters: Stranger Fetishism in Cooking Shows In this paper, we will examine the ways in which the encountering of 'other' food cultures is played out in the two travelogue cooking shows Gordon's Great Escape and Jamie's Italian Escape, arguing that despite their ‘noble......’ intentions and ‘enlightened’ cosmopolitan approach to meeting the other (culinary culture), ultimately, Jamie and Gordon's respective culinary adventures work to create a social hierarchy in their own favor. Inspired by Sara Ahmed’s work on stranger fetishism, we will investigate how the two protagonist...
Chebyshev matrix product state approach for spectral functions
Holzner, Andreas; Weichselbaum, Andreas; McCulloch, Ian P.; Schollwöck, Ulrich; von Delft, Jan
2011-05-01
We show that recursively generated Chebyshev expansions offer numerically efficient representations for calculating zero-temperature spectral functions of one-dimensional lattice models using matrix product state (MPS) methods. The main features of this Chebyshev matrix product state (CheMPS) approach are as follows: (i) it achieves uniform resolution over the spectral function’s entire spectral width; (ii) it can exploit the fact that the latter can be much smaller than the model’s many-body bandwidth; (iii) it offers a well-controlled broadening scheme that allows finite-size effects to be either resolved or smeared out, as desired; (iv) it is based on using MPS tools to recursively calculate a succession of Chebyshev vectors |tn>, (v) the entanglement entropies of which were found to remain bounded with increasing recursion order n for all cases analyzed here; and (vi) it distributes the total entanglement entropy that accumulates with increasing n over the set of Chebyshev vectors |tn>, which need not be combined into a single vector. In this way, the growth in entanglement entropy that usually limits density matrix renormalization group (DMRG) approaches is packaged into conveniently manageable units. We present zero-temperature CheMPS results for the structure factor of spin-(1)/(2) antiferromagnetic Heisenberg chains and perform a detailed finite-size analysis. Making comparisons to three benchmark methods, we find that CheMPS (a) yields results comparable in quality to those of correction-vector DMRG, at dramatically reduced numerical cost; (b) agrees well with Bethe ansatz results for an infinite system, within the limitations expected for numerics on finite systems; and (c) can also be applied in the time domain, where it has potential to serve as a viable alternative to time-dependent DMRG (in particular, at finite temperatures). Finally, we present a detailed error analysis of CheMPS for the case of the noninteracting resonant level model.
The nucleon's strange form factors
International Nuclear Information System (INIS)
Pitt, Mark L.
2000-01-01
Knowledge of the nucleon's strange form factors will provide valuable insight into low energy hadron structure. Measurement of the vector strange form factor of the nucleon is accomplished through parity-violating electron scattering. This paper reviews the current status of this class of experiments
Many-Body Spectral Functions from Steady State Density Functional Theory.
Jacob, David; Kurth, Stefan
2018-03-14
We propose a scheme to extract the many-body spectral function of an interacting many-electron system from an equilibrium density functional theory (DFT) calculation. To this end we devise an ideal scanning tunneling microscope (STM) setup and employ the recently proposed steady-state DFT formalism (i-DFT) which allows one to calculate the steady current through a nanoscopic region coupled to two biased electrodes. In our setup, one of the electrodes serves as a probe ("STM tip"), which is weakly coupled to the system we want to measure. In the ideal STM limit of vanishing coupling to the tip, the system is restored to quasi-equilibrium and the normalized differential conductance yields the exact equilibrium many-body spectral function. Calculating this quantity from i-DFT, we derive an exact relation expressing the interacting spectral function in terms of the Kohn-Sham one. As illustrative examples, we apply our scheme to calculate the spectral functions of two nontrivial model systems, namely the single Anderson impurity model and the Constant Interaction Model.
Maas, F. E.; Paschke, K. D.
2017-07-01
A broad program measuring parity-violation in electron-nuclear scattering has now provided a large set of precision data on the weak-neutral-current form-factors of the proton. Under comparison with well-measured electromagnetic nucleon form-factors, these measurements reveal the role of the strange quark sea on the low-energy interactions of the proton through the strange-quark-flavor vector form-factors. This review will describe the experimental program and the implications of the global data for the strange-quark vector form-factors. We present here a new fit to the world data.
Strange Particle Production from SIS to LHC
Oeschler, H; Redlich, Krzysztof
2003-01-01
A review of meson emission in heavy ion collisions at incident energies from SIS up to collider energies is presented. A statistical model assuming chemical equilibrium and local strangeness conservation (i.e. strangeness conservation per collision) explains most of the observed features. Emphasis is put onto the study of $K^+$ and $K^-$ emission at low incident energies. In the framework of this statistical model it is shown that the experimentally observed equality of $K^+$ and $K^-$ rates at ``threshold-corrected'' energies $\\sqrt{s} - \\sqrt{s_{th}}$ is due to a crossing of two excitation functions. Furthermore, the independence of the $K^+$ to $K^-$ ratio on the number of participating nucleons observed between SIS and RHIC is consistent with this model. It is demonstrated that the $K^-$ production at SIS energies occurs predominantly via strangeness exchange and this channel is approaching chemical equilibrium. The observed maximum in the $K^+/\\pi^+$ excitation function is also seen in the ratio of stran...
Strange mesonic transition form factor
International Nuclear Information System (INIS)
Goity, J.L.; Musolf, M.J.
1996-01-01
The strange-quark vector current ρ-to-π meson transition form factor is computed at one-loop order using strange meson intermediate states. A comparison is made with a φ-meson dominance model estimate. We find that one-loop contributions are comparable in magnitude to those predicted by φ-meson dominance. It is possible that the one-loop contribution can make the matrix element as large as those of the electromagnetic current mediating vector meson radiative decays. However, due to the quadratic dependence of the one-loop results on the hadronic form factor cutoff mass, a large uncertainty in the estimate of the loops is unavoidable. These results indicate that non-nucleonic strange quarks could contribute appreciable in moderate-parallel Q 2 parallel parity-violating electron-nucleus scattering measurements aimed at probing the strange-quark content of the nucleon. copyright 1996 The American Physical Society
Generalized q-deformed correlation functions as spectral functions of hyperbolic geometry
Energy Technology Data Exchange (ETDEWEB)
Bonora, L. [International School for Advanced Studies (SISSA/ISAS), Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Bytsenko, A.A. [Universidade Estadual de Londrina, Departamento de Fisica, Caixa Postal 6001, Londrina, Parana (Brazil); Guimaraes, M.E.X. [Universidade Federal Fluminense, Instituto de Fisica, Niteroi-RJ CEP (Brazil)
2014-08-15
We analyze the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite-dimensional Lie algebras, MacMahon and Ruelle functions. By definition p-dimensional MacMahon function, with p ≤ 3, is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c = 1 CFT, and, as such, they can be generalized to p > 3. With some abuse of language we call the latter amplitudes generalized MacMahon functions. In this paper we show that generalized p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three-dimensional hyperbolic geometry. (orig.)
Strange matter in compact stars
Klähn, Thomas; Blaschke, David B.
2018-02-01
We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations) remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.
Asymmetries between strange and antistrange particle production inpion-proton interactions
Energy Technology Data Exchange (ETDEWEB)
Gutierrez, T.D.; Vogt, R.
2002-01-29
Recent measurements of the asymmetries between Feynman x-distributions of strange and antistrange hadrons in {pi}{sup -}A interactions show a strong effect as a function of x{sub F}. We calculate strange hadron production in the context of the intrinsic model and make predictions for particle/antiparticle asymmetries in these interactions.
A chiral theory of strange sea distributions in the nucleon
Energy Technology Data Exchange (ETDEWEB)
Wakamatsu, Masashi [Osaka Univ., Toyonaka (Japan). Dept. of Physics
2002-05-01
Theoretical predictions are given for the strange sea distributions in the nucleon on the basis of the flavor SU(3) chiral quark soliton model, with emphasis upon the asymmetry of quark and antiquark distributions. We find that the quark-antiquark asymmetry of the strange sea is much larger for longitudinally polarized distribution functions than for unpolarized ones. A preliminary comparison with the CCFR data for the unpolarized s-quark distribution and with the LSS fits of the longitudinally polarized distribution functions is encouraging. (author)
Strange matter and Big Bang helium synthesis
International Nuclear Information System (INIS)
Madsen, J.; Riisager, K.
1985-01-01
Stable strange quark matter produced in the QCD phase transition in the early universe will trap neutrons and repel protons, thus reducing primordial helium production, Ysub(p). For reasonable values of Ysub(p), the radius of strange droplets must exceed 10 -6 cm if strange matter shall solve the dark-matter problem without spoiling Big Bang helium synthesis. (orig.)
Rotational properties of strange-pulsar models
International Nuclear Information System (INIS)
Benvenuto, O.G.; Horvath, J.E.; Vucetich, H.
1991-01-01
We present a study of the rotational properties of strange pulsars: strange-matter stars capable of supporting glitches. It is shown that their differentiated internal structure implies a lower maximum rotational frequency than that of homogeneous strange stars. Nevertheless, they are able to fit the known pulsar properties
Autonomous strange nonchaotic oscillations in a system of mechanical rotators
Jalnine, Alexey Yu.; Kuznetsov, Sergey P.
2017-05-01
We investigate strange nonchaotic self-oscillations in a dissipative system consisting of three mechanical rotators driven by a constant torque applied to one of them. The external driving is nonoscillatory; the incommensurable frequency ratio in vibrational-rotational dynamics arises due to an irrational ratio of diameters of the rotating elements involved. It is shown that, when losing stable equilibrium, the system can demonstrate two- or three-frequency quasi-periodic, chaotic and strange nonchaotic self-oscillations. The conclusions of the work are confirmed by numerical calculations of Lyapunov exponents, fractal dimensions, spectral analysis, and by special methods of detection of a strange nonchaotic attractor (SNA): phase sensitivity and analysis using rational approximation for the frequency ratio. In particular, SNA possesses a zero value of the largest Lyapunov exponent (and negative values of the other exponents), a capacitive dimension close to 2 and a singular continuous power spectrum. In general, the results of this work shed a new light on the occurrence of strange nonchaotic dynamics.
Thermal spectral functions of strongly coupled N = 4 supersymmetric Yang-Mills theory.
Kovtun, Pavel; Starinets, Andrei
2006-04-07
We use the gauge-gravity duality conjecture to compute spectral functions of the stress-energy tensor in finite-temperature N = 4 supersymmetric Yang-Mills theory in the limit of large N(c) and large 't Hooft coupling. The spectral functions exhibit peaks characteristic of hydrodynamic modes at small frequency, and oscillations at intermediate frequency. The nonperturbative spectral functions differ qualitatively from those obtained in perturbation theory. The results may prove useful for lattice studies of transport processes in thermal gauge theories.
Gluon spectral functions and transport coefficients in Yang-Mills theory
Haas, Michael; Fister, Leonard; Pawlowski, Jan M.
2014-11-01
We compute nonperturbative gluon spectral functions at finite temperature in quenched QCD with the maximum entropy method. We also provide a closed loop equation for the spectral function of the energy-momentum tensor in terms of the gluon spectral function. This setup is then used for computing the shear viscosity over entropy ratio η /s in a temperature range from about 0.4 Tc to 4.5 Tc. The ratio η /s has a minimum at about 1.25 Tc with the value of about 0.115. We also discuss extensions of the present results to QCD.
Fermionic spectral functions in backreacting p-wave superconductors at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Giordano, G.L.; Grandi, N.E.; Lugo, A.R. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina)
2017-04-14
We investigate the spectral function of fermions in a p-wave superconducting state, at finite both temperature and gravitational coupling, using the AdS/CFT correspondence and extending previous research. We found that, for any coupling below a critical value, the system behaves as its zero temperature limit. By increasing the coupling, the “peak-dip-hump” structure that characterizes the spectral function at fixed momenta disappears. In the region where the normal/superconductor phase transition is first order, the presence of a non-zero order parameter is reflected in the absence of rotational symmetry in the fermionic spectral function at the critical temperature.
International Nuclear Information System (INIS)
Speltz, J.
2006-10-01
In this work, we characterize the production of the multi-strange baryons Xi and Omega in Au+Au collisions at RHIC, where the possible formation of a matter of deconfined quarks and gluons (QGP) is expected. We analyze with the STAR experiment, the collisions obtained at an energy of 62 GeV, intermediate between the one reached at the SPS (17 GeV) and the nominal energy of RHIC (200 GeV). Transverse momentum spectra, yields and elliptic flow are measured with different methods allowing for a relevant estimation of systematic errors. The results are compared to statistical and hydrodynamic models that we have adapted for their use at 62 GeV. The so obtained chemical and dynamic properties of the created medium indicate the formation of a thermalized, at least partially, medium and suggests the formation of a comparable matter at 62 GeV and at 200 GeV. (author)
Will strangeness win the prize?
Energy Technology Data Exchange (ETDEWEB)
Kapusta, Joseph I. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States). E-mail: kapusta at physics.spa.umn.edu
2001-03-01
Five groups have made predictions involving the production of strange hadrons and entered them in a competition set up by Barbara Jacak, Xin-Nian Wang and myself in the spring of 1998 for the purpose of comparing with first-year physics results from RHIC. These predictions are summarized and evaluated. (author)
Torsional oscillations of strange stars
Directory of Open Access Journals (Sweden)
Mannarelli Massimo
2014-01-01
Full Text Available Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.
Orbitally excited charm - strange mesons
Energy Technology Data Exchange (ETDEWEB)
Kasper, Penelope A. [Illinois Inst. of Technology, Chicago, IL (United States)
1996-05-01
This thesis describes an attempt to measure the properties of mesons containing a charm quark and a strange quark in a state of orbital angular momentum L > 0, and compare these with the predictions of theoretical models based on heavy quark effective theory.
International Nuclear Information System (INIS)
Chahine, C.; College de France, 75 - Paris. Lab. de Physique Corpusculaire)
1978-02-01
The concept of a real photon spectral weight function for any cross-section involving charged particles is introduced as a simple approximation taking into account the soft part of photon emission to all orders in perturbation theory. The spectral weight function replaces the energy-momentum conservation delta function in the elastic cross-section. The spectral weight function is computed in closed form in space-time and in the peaking approximation in momentum space. The spectral weight function description is applied to the imaginary part of vacuum polarization ImPI and to electron-proton scattering. A spectral representation for ImPI is derived and its content compared with the known fourth order result, showing in particular the identity of the soft and peaking approximations in lowest order. The virtual photon radiative corrections are discussed in part, with emphasis on the threshold behavior of the vertex functions. A relativistic generalization of the electric non-relativistic vertex function is given, whose asymptotic behavior is approppriate to use in conjuction with the spectral weight function
On the infrared behavior of the shear spectral function in hot Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Vuorinen, Aleksi [Department of Physics and Helsinki Institute of Physics,P.O.Box 64, FI-00014 University of Helsinki (Finland); Zhu, Yan [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela,E-15706 Santiago de Compostela, Galicia (Spain)
2015-03-25
We revisit the determination of the two-loop spectral function in the shear channel of hot Yang-Mills theory. Correcting a technical error in an earlier computation is seen to improve the infrared behavior of the quantity significantly, while a partial Hard Thermal Loop resummation is seen to have only a very minor numerical effect on the result. These facts make it possible to straightforwardly apply the spectral function to the corresponding imaginary time correlator and the shear sum rule.
Spectral functions in finite temperature SU(3) gauge theory and applications to transport phenomena
Energy Technology Data Exchange (ETDEWEB)
Haas, Michael
2014-12-10
In this thesis, gluon spectral functions in SU(3) gauge theory are calculated at finite temperature. The temperature range covers the confining regime below T{sub c} to the high temperature regime, where perturbation theory is applicable. The numerical tool is the Maximum Entropy Method (MEM) employing euclidean, non-perturbative, Landau gauge gluon propagators, obtained with the Functional Renormalisation Group and Lattice QCD, as input. The spectral function is related to the propagators by an integral equation. MEM is a complex multidimensional optimisation algorithm to invert such integral equations, corresponding to an analytic continuation of the numerical data. A continuation of a discreet set of data cannot be unambiguous. The occuring ambiguities are resolved by introducing a priori knowledge of the asymptotic shape of the spectral function, in the form of a model function. Thereby, MEM simultaneously optimizes the spectral function to the input propagators and the model, leading to a unique model-dependent solution. Standard-MEM assumes positive definite spectral functions, whereas gluons show a violation of positivity in the spectral function, due to confinement. Therefore, an extended-MEM algorithm is proposed. The main application of this thesis is the calculation of the shear viscosity in units of the entropy density. A Kubo relation connects shear viscosity to the low frequency limit of a certain energy-momentum tensor correlation function. For this correlation function a loop representation of finite order in terms of gluon spectral functions is derived. That allows to calculate (η)/(s) from first principles in SU(3) for the first time for arbitrary temperatures. Further, a mapping of the SU(3) results for (η)/(s) to QCD is proposed.
Strange metals and quantum phase transitions from gauge/gravity duality
Liu, Hong
2011-03-01
Metallic materials whose thermodynamic and transport properties differ significantly from those predicted by Fermi liquid theory, so-called non-Fermi liquids, include the strange metal phase of cuprate superconductors, and heavy fermion systems near a quantum phase transition. We use gauge/gravity duality to identify a class of non-Fermi liquids. Their low-energy behavior is governed by a nontrivial infrared fixed point which exhibits non-analytic scaling behavior only in the temporal direction. Some representatives of this class have single-particle spectral functions and transport behavior similar to those of the strange metals, with conductivity inversely proportional to the temperature. Such holographic systems may also exhibit novel ``magnetic instabilities'', where the quantum critical behavior near the transition involves a nontrivial interplay between local and bulk physics, with the local physics again described by a similar infrared fixed point. The resulting quantum phase transitions do not obey the standard Landau-Ginsburg-Wilson paradigm and resemble those of the heavy fermion quantum critical points.
Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth.
Buss, Emily; Grose, John
2018-01-01
The present study evaluated auditory sensitivity to spectral modulation by determining the modulation depth required to detect modulation phase reversal. This approach may be preferable to spectral modulation detection with a spectrally flat standard, since listeners appear unable to perform the task based on the detection of temporal modulation. While phase reversal thresholds are often evaluated by holding modulation depth constant and adjusting modulation rate, holding rate constant and adjusting modulation depth supports rate-specific assessment of modulation processing. Stimuli were pink noise samples, filtered into seven octave-wide bands (0.125-8 kHz) and spectrally modulated in dB. Experiment 1 measured performance as a function of modulation depth to determine appropriate units for adaptive threshold estimation. Experiment 2 compared thresholds in dB for modulation detection with a flat standard and modulation phase reversal; results supported the idea that temporal cues were available at high rates for the former but not the latter. Experiment 3 evaluated spectral modulation phase reversal thresholds for modulation that was restricted to either one or two neighboring bands. Flanking bands of unmodulated noise had a larger detrimental effect on one-band than two-band targets. Thresholds for high-rate modulation improved with increasing carrier frequency up to 2 kHz, whereas low-rate modulation appeared more consistent across frequency, particularly in the two-band condition. Experiment 4 measured spectral weights for spectral modulation phase reversal detection and found higher weights for bands in the spectral center of the stimulus than for the lowest (0.125 kHz) or highest (8 kHz) band. Experiment 5 compared performance for highly practiced and relatively naïve listeners, and found weak evidence of a larger practice effect at high than low spectral modulation rates. These results provide preliminary data for a task that may provide a better estimate of
Spectral transformation chains and some new biorthogonal rational functions
International Nuclear Information System (INIS)
Spiridonov, V.
2000-01-01
A discrete-time chain, associated with the generalized eigenvalue problem for two Jacobi matrices, is derived. Various discrete and continuous symmetries of this integrable equation are revealed. A class of its rational, elementary and elliptic function solutions, appearing from a similarity reduction, are constructed. The latter lead to large families of biorthogonal rational functions based upon the very-well-posed balanced hypergeometric series of three types: the standard hypergeometric series 9 F 8 , basic series 10 φ 9 and its elliptic analogue 10 E 9 . For an important subclass of the elliptic biorthogonal rational functions the weight function and normalization constants are determined explicitly. (orig.)
Multiscale finite element methods for high-contrast problems using local spectral basis functions
Efendiev, Yalchin
2011-02-01
In this paper we study multiscale finite element methods (MsFEMs) using spectral multiscale basis functions that are designed for high-contrast problems. Multiscale basis functions are constructed using eigenvectors of a carefully selected local spectral problem. This local spectral problem strongly depends on the choice of initial partition of unity functions. The resulting space enriches the initial multiscale space using eigenvectors of local spectral problem. The eigenvectors corresponding to small, asymptotically vanishing, eigenvalues detect important features of the solutions that are not captured by initial multiscale basis functions. Multiscale basis functions are constructed such that they span these eigenfunctions that correspond to small, asymptotically vanishing, eigenvalues. We present a convergence study that shows that the convergence rate (in energy norm) is proportional to (H/Λ*)1/2, where Λ* is proportional to the minimum of the eigenvalues that the corresponding eigenvectors are not included in the coarse space. Thus, we would like to reach to a larger eigenvalue with a smaller coarse space. This is accomplished with a careful choice of initial multiscale basis functions and the setup of the eigenvalue problems. Numerical results are presented to back-up our theoretical results and to show higher accuracy of MsFEMs with spectral multiscale basis functions. We also present a hierarchical construction of the eigenvectors that provides CPU savings. © 2010.
Spectral Analysis of Traffic Functions in Urban Areas
Directory of Open Access Journals (Sweden)
Florin Nemtanu
2015-12-01
Full Text Available The paper is focused on the Fourier transform application in urban traffic analysis and the use of said transform in traffic decomposition. The traffic function is defined as traffic flow generated by different categories of traffic participants. A Fourier analysis was elaborated in terms of identifying the main traffic function components, called traffic sub-functions. This paper presents the results of the method being applied in a real case situation, that is, an intersection in the city of Bucharest where the effect of a bus line was analysed. The analysis was done using different time scales, while three different traffic functions were defined to demonstrate the theoretical effect of the proposed method of analysis. An extension of the method is proposed to be applied in urban areas, especially in the areas covered by predictive traffic control.
Spectral Data Captures Important Variability Between and Among Species and Functional Types
Townsend, P. A.; Serbin, S. P.; Kingdon, C.; Singh, A.; Couture, J. J.; Gamon, J. A.
2013-12-01
Narrowband spectral data in the visible, near and shortwave infrared (400-2500 nm) are being used increasingly in plant ecology to characterize the biochemical, physiological and water status of vegetation, as well as community composition. In particular, spectroscopic data have recently received considerable attention for their capacity to discriminate plants according to functional properties or 'optical types.' Such measurements can be acquired from airborne/satellite remote sensing imagery or field spectrometers and are commonly used to directly estimate or infer properties important to photosynthesis, carbon and water fluxes, nutrient dynamics, phenology, and disturbance. Spectral data therefore represent proxies for measurements that are otherwise time consuming or expensive to make, and - more importantly - provide the opportunity to characterize the spatial and temporal variability of taxonomic or functional groups. We have found that spectral variation within species and functional types can in fact exceed the variation between types. As such, we recommend that the traditional quantification of characteristics defining species and/or functional types must be modified to include the range of variability in those properties. We provide four examples of the importance of spectral data for describing within-species/functional type variation. First, within temperate forests, the spectral properties of foliage vary considerably with canopy position. This variability is strongly related to differences in specific leaf area between shade- and sun-lit leaves, and the resulting differences among leaves in strategies for light harvesting, photosynthesis, and leaf longevity. These results point to the need to better characterize leaf optical properties throughout a canopy, rather than basing the characterization of ecosystem functioning on only the sunlit portion of the canopy crown. Second, we show considerable differences in optical properties of foliage from
Spectral Methods Using Rational Basis Functions on an Infinite Interval
Boyd, John P.
1987-03-01
By using the map y = L cot( t) where L is a constant, differential equations on the interval yɛ [- ∞, ∞] can be transformed into tɛ [0, π] and solved by an ordinary Fourier series. In this article, earlier work by Grosch and Orszag ( J. Comput. Phys.25, 273 (1977)), Cain, Ferziger, and Reynolds ( J. Comput. Phys.56, 272 (1984)), and Boyd ( J. Comput. Phys.25, 43 (1982); 57, 454 (1985); SIAM J. Numer. Anal. (1987)) is extended in several ways. First, the series of orthogonal rational functions converge on the exterior of bipolar coordinate surfaces in the complex y-plane. Second, Galerkin's method will convert differential equations with polynomial or rational coefficients into banded matrix problems. Third, with orthogonal rational functions it is possible to obtain exponential convergence even for u( y) that asymptote to a constant although this behavior would wreck alternatives such as Hermite or sinc expansions. Fourth, boundary conditions are usually "natural" rather than "essential" in the sense that the singularities of the differential equation will force the numerical solution to have the correct behavior at infinity even if no constraints are imposed on the basis functions. Fifth, mapping a finite interval to an infinite one and then applying the rational Chebyshev functions gives an exponentially convergent method for functions with bounded endpoint singularities. These concepts are illustrated by five numerical examples.
Spectral Methods for Numerical Relativity
Directory of Open Access Journals (Sweden)
Grandclément Philippe
2009-01-01
Full Text Available Equations arising in general relativity are usually too complicated to be solved analytically and one must rely on numerical methods to solve sets of coupled partial differential equations. Among the possible choices, this paper focuses on a class called spectral methods in which, typically, the various functions are expanded in sets of orthogonal polynomials or functions. First, a theoretical introduction of spectral expansion is given with a particular emphasis on the fast convergence of the spectral approximation. We then present different approaches to solving partial differential equations, first limiting ourselves to the one-dimensional case, with one or more domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. We then present results obtained by various groups in the field of general relativity by means of spectral methods. Work, which does not involve explicit time-evolutions, is discussed, going from rapidly-rotating strange stars to the computation of black-hole–binary initial data. Finally, the evolution of various systems of astrophysical interest are presented, from supernovae core collapse to black-hole–binary mergers.
Audibility of spectral differences in head-related transfer functions
DEFF Research Database (Denmark)
Hoffmann, Pablo F.F.; Møller, Henrik
2006-01-01
The spatial resolution at which head-related transfer functions (HRTFs) are available is an important aspect in the implementation of three-dimensional sound. Specifically, synthesis of moving sound requires that HRTFs are sufficiently close so the simulated sound is perceived as moving smoothly....
Audibility of spectral switching in head-related transfer functions
DEFF Research Database (Denmark)
Hoffmann, Pablo F.F.; Møller, Henrik
2005-01-01
Binaural synthesis of a time-varying sound field is performed by updating head-related transfer functions (HRTFs). The updating is done to reflect the changes in the sound transmission to the listener's ears that occur as a result of moving sound. Unless the differences in HRTFs are sufficiently ...
Audibility of spectral switching in head-related transfer functions
DEFF Research Database (Denmark)
Hoffmann, Pablo Faundez; Møller, Henrik
2005-01-01
Binaural synthesis of a time-varying sound field is performed by updating head-related transfer functions (HRTFs). The updating is done to reflect the changes in the sound transmission to the listener’s ears that occur as a result of moving sound. Unless the differences in HRTFs are sufficiently...
Time-dependence of the holographic spectral function: diverse routes to thermalisation
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Souvik [Van Swinderen Institute for Particle Physics and Gravity,University of Groningen, Nijenborgh 4, 9747 AG (Netherlands); Ishii, Takaaki [Department of Physics, University of Colorado, 390 UCB, Boulder, CO 80309 (United States); Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309 (United States); Joshi, Lata Kh [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India); Mukhopadhyay, Ayan [Institut für Theoretische Physik, Technische Universität Wien,Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria); Ramadevi, P. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India)
2016-08-08
We develop a new method for computing the holographic retarded propagator in generic (non-)equilibrium states using the state/geometry map. We check that our method reproduces the thermal spectral function given by the Son-Starinets prescription. The time-dependence of the spectral function of a relevant scalar operator is studied in a class of non-equilibrium states. The latter are represented by AdS-Vaidya geometries with an arbitrary parameter characterising the timescale for the dual state to transit from an initial thermal equilibrium to another due to a homogeneous quench. For long quench duration, the spectral function indeed follows the thermal form at the instantaneous effective temperature adiabatically, although with a slight initial time delay and a bit premature thermalisation. At shorter quench durations, several new non-adiabatic features appear: (i) time-dependence of the spectral function is seen much before than that in the effective temperature (advanced time-dependence), (ii) a big transfer of spectral weight to frequencies greater than the initial temperature occurs at an intermediate time (kink formation) and (iii) new peaks with decreasing amplitudes but in greater numbers appear even after the effective temperature has stabilised (persistent oscillations). We find four broad routes to thermalisation for lower values of spatial momenta. At higher values of spatial momenta, kink formations and persistent oscillations are suppressed, and thermalisation time decreases. The general thermalisation pattern is globally top-down, but a closer look reveals complexities.
Directory of Open Access Journals (Sweden)
Nageshwar Singh
2013-01-01
Full Text Available It is proposed that a macroscopic theory of propagation and scattering of light through random media can be functional for the dye liquid flowing media in the microscopic levels too, with modest approximations. Maxwell’s equation for a random refractive index medium is approximated and solved for the electric field. An analytical expression for the spectral intensity of the field scattered by the refractive index fluctuations inside a medium has been derived which was valid within the first Born approximation. Far field spectral intensity variation of the radiation propagating through the liquid medium is a consequence of variation in correlation function of the refractive index inhomogeneities. The strength of radiation scattered in a particular direction depends on the spatial correlation function of the refractive index fluctuations of the medium. An attempt is made to explain some of the experimentally observed spectral intensity variations, particularly dye emission propagation through liquid flowing medium, in the presence of thermal and flow field.
Direct measurement of the spectral transfer function of a laser based anemometer.
Angelou, Nikolas; Mann, Jakob; Sjöholm, Mikael; Courtney, Michael
2012-03-01
The effect of a continuous-wave (cw) laser based anemometer's probe volume on the measurement of wind turbulence is studied in this paper. Wind speed time series acquired by both a remote sensing cw laser anemometer, whose line-of-sight was aligned with the wind direction, and by a reference sensor (sonic anemometer) located in the same direction, were used. The spectral transfer function, which describes the attenuation of the power spectral density of the wind speed turbulence, was calculated and found to be in good agreement with the theoretical exponential function, which is based on the properties of the probe volume of a focused Gaussian laser beam. Parameters such as fluctuations of the wind direction, as well as the overestimation of the laser Doppler spectrum threshold, were found to affect the calculation of the spectral transfer function by introducing high frequency noise.
Correlation function and electronic spectral line broadening in relativistic plasmas
Directory of Open Access Journals (Sweden)
Douis S.
2013-01-01
Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.
Direct measurement of the spectral transfer function of a laser based anemometer
DEFF Research Database (Denmark)
Angelou, Nikolas; Mann, Jakob; Sjöholm, Mikael
2012-01-01
The effect of a continuous-wave (cw) laser based anemometer's probe volume on the measurement of wind turbulence is studied in this paper. Wind speed time series acquired by both a remote sensing cw laser anemometer, whose line-of-sight was aligned with the wind direction, and by a reference sensor...... (sonic anemometer) located in the same direction, were used. The spectral transfer function, which describes the attenuation of the power spectral density of the wind speed turbulence, was calculated and found to be in good agreement with the theoretical exponential function, which is based...
New strangeness results from HADES
Czech Academy of Sciences Publication Activity Database
Fabbietti, L.; Agakishiev, G.; Agodi, C.; Balanda, A.; Bellia, G.; Belver, D.; Belyaev, A.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Braun-Munzinger, P.; Cabanelas, P.; Castro, E.; Chernenko, S.; Christ, T.; Destefanis, M.; Díaz, J.; Dohrmann, F.; Dybczak, A.; Eberl, T.; Fateev, O.; Friese, J.; Frohlich, I.; Galatyuk, T.; Garzón, J.A.; Gernhäuser, R.; Gil, A.; Gilardi, C.; Golubeva, M.; Gonzalez-Diaz, D.; Grosse, E.; Guber, F.; Heilmann, M.; Hennino, T.; Holzman, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Kanaki, K.; Karavicheva, T.; Kirschner, D.; Koenig, I.; Koenig, W.; Kolb, B.W.; Kotte, R.; Kozuch, A.; Krása, Antonín; Křížek, Filip; Krücken, R.; Kühn, W.; Kugler, Andrej; Kurepin, A.; Lamas-Valverde, J.; Lang, S.; Lange, J.S.; Lapidus, K.; Lopes, L.; Maier, L.; Mangiarotti, A.; Marín, J.; Markert, J.; Metag, V.; Michalska, B.; Michel, J.; Mishra, D.; Moriniére, E.; Mousa, J.; Muntz, C.; Naumann, L.; Novotný, R.; Otwinowski, J.; Pachmayer, Y.C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Cavalcanti, T.P.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Roy-Stephan, M.; Rustamov, A.; Sadovsky, A.; Sailer, B.; Salabura, P.; Schmah, A.; Simon, R. S.; Sobolev, Yuri, G.; Spataro, S.; Spruck, B.; Strobele, H.; Stroth, J.; Sturm, C.; Sudol, M.; Tarantola, A.; Teilab, K.; Tlustý, Pavel; Traxler, M.; Trebacz, R.; Tsertos, H.; Veretenkin, I.; Wagner, Vladimír; Wen, H.; Wisniowski, M.; Wojcik, T.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.V.; Zhou, P.; Zumbruch, P.
2009-01-01
Roč. 36, č. 6 (2009), 064005/1-064005/12 ISSN 0954-3899. [12th International Conference on Strangeness in Quark Matter. Beijing, 05.10.2008-10.10.2008] R&D Projects: GA AV ČR IAA100480803; GA MŠk LC07050 Institutional research plan: CEZ:AV0Z10480505 Keywords : heavy-ion collisions * kaon production * sis energies Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.124, year: 2009
Spectral velocity estimation using autocorrelation functions for sparse data sets
DEFF Research Database (Denmark)
2006-01-01
-mode image for orientation, and data for this has to acquired interleaved with the flow data. The power spectrum can be calculated from the Fourier transform of the autocorrelation function Ry (k), where its span of lags k is given by the number of emission N in the data segment for velocity estimation......The distribution of velocities of blood or tissue is displayed using ultrasound scanners by finding the power spectrum of the received signal. This is currently done by making a Fourier transform of the received signal and then showing spectra in an M-mode display. It is desired to show a B....... The lag corresponds to the difference in pulse number, so that for lag k data from emission i is correlated with i + k. The autocorrelation for lag k can be averaged over N-k pairs of emissions. It is possible to calculate Ry (k) for a sparse set of emissions, as long as all combinations of emissions...
Ohlson Timoudas, Thomas
2017-12-01
Let Φ be a quasi-periodically forced quadratic map, where the rotation constant ω is a Diophantine irrational. A strange non-chaotic attractor (SNA) is an invariant (under Φ) attracting graph of a nowhere continuous measurable function ψ from the circle {T} to [0, 1] . This paper investigates how a smooth attractor degenerates into a strange one, as a parameter \
Strange particle production from SIS to LHC
Indian Academy of Sciences (India)
A review of meson emission in heavy-ion collisions at incident energies from SIS up to collider energies is presented. A statistical model assuming chemical equilibrium and local strangeness conservation (i.e. strangeness conservation per collision) explains most of the observed features, e.g. the different centrality ...
Strangeness production with protons and pions
International Nuclear Information System (INIS)
Dover, C.B.
1993-01-01
We discuss the spectrum of physics questions related to strangeness which could be addressed with intense beams of protons and pions in the few GeV region. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hypernuclei in proton and pion-nucleus collisions, and spin phenomena in hypernuclei
On partial sums of a spectral analogue of the Möbius function
Indian Academy of Sciences (India)
... Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 123; Issue 2. On Partial Sums of a Spectral Analogue of the Möbius Function. Kalyan Chakraborty Makoto Minamide. Volume 123 Issue 2 May 2013 pp 193-201 ...
Full momentum- and energy-resolved spectral function of a 2D electronic system
Jang, Joonho; Yoo, Heun Mo; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Ashoori, Raymond C.
2017-11-01
The single-particle spectral function measures the density of electronic states in a material as a function of both momentum and energy, providing central insights into strongly correlated electron phenomena. Here we demonstrate a high-resolution method for measuring the full momentum- and energy-resolved electronic spectral function of a two-dimensional (2D) electronic system embedded in a semiconductor. The technique remains operational in the presence of large externally applied magnetic fields and functions even for electronic systems with zero electrical conductivity or with zero electron density. Using the technique on a prototypical 2D system, a GaAs quantum well, we uncover signatures of many-body effects involving electron-phonon interactions, plasmons, polarons, and a phonon analog of the vacuum Rabi splitting in atomic systems.
Spectral Discrete Probability Density Function of Measured Wind Turbine Noise in the Far Field
Ashtiani, Payam; Denison, Adelaide
2015-01-01
Of interest is the spectral character of wind turbine noise at typical residential set-back distances. In this paper, a spectral statistical analysis has been applied to immission measurements conducted at three locations. This method provides discrete probability density functions for the Turbine ONLY component of the measured noise. This analysis is completed for one-third octave sound levels, at integer wind speeds, and is compared to existing metrics for measuring acoustic comfort as well as previous discussions on low-frequency noise sources. PMID:25905097
Kuchment, Peter
2012-06-21
Precise asymptotics known for the Green\\'s function of the Laplace operator have found their analogs for periodic elliptic operators of the second order at and below the bottom of the spectrum. Due to the band-gap structure of the spectra of such operators, the question arises whether similar results can be obtained near or at the edges of spectral gaps. As the result of this work shows, this is possible at a spectral edge when the dimension d ≥ 3. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On partial sums of a spectral analogue of the Möbius function
Indian Academy of Sciences (India)
Spectral analogue of the Möbius function. 195 where L denotes the L-function attached to a cusp form. We use the Perron formula due to Liu and Ye [6] to obtain Theorem 1.2. We also prove the following equivalence of the generalized Riemann hypothesis (GRH) for L f (s). Theorem 1.3. (1) GRH ⇐⇒. ∑∞ n=1 μ∗(n) ns.
Overview of the electromagnetic production of strange mesons at MAMI
Czech Academy of Sciences Publication Activity Database
Achenbach, P.; Rodriguez, M. G.; Tsukada, K.; Gayoso, C. A.; Böhm, R.; Borodina, O.; Bosnar, D.; Bozkurt, V.; Bydžovský, Petr; Debenjak, L.; Distler, M. O.; Esser, A.; Friscic, I.; Fujii, Y.; Gogami, T.; Hashimoto, O.; Hirose, S.; Kanda, H.; Kaneta, M.; Kim, E.; Margaryan, A.; Merkel, H.; Müller, U.; Nagao, S.; Nakamura, S. N.; Pochodzalla, J.; Rappold, C.; Reinhold, J.; Saito, T. R.; Lorente, A.S.; Majos, S. S.; Schlimme, B. S.; Schoth, M.; Schultz, F.; Sfienti, C.; Sirca, S.; Tang, L.; Thiel, M.
2013-01-01
Roč. 914, SEP (2013), s. 41-50 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GAP203/12/2126 Institutional support: RVO:61389005 Keywords : strangeness reactions * Kaon electro-production * missing mass spectroscopy * structure functions Subject RIV: BE - Theoretical Physics Impact factor: 2.499, year: 2013 http://www.sciencedirect.com/science/article/pii/S0375947413000304
Ultrarelativistic cascades and strangeness production
International Nuclear Information System (INIS)
Kahana, D.E.; Kahana, S.H.
1998-01-01
A two-phase cascade code, LUCIFER II, developed for the treatment of ultra high energy-ion-ion collisions is applied to the production of strangeness at SPS energies √(s)=17-20. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy-ion experiments at the CERN SPS. (orig.)
Ultrarelativistic cascades and strangeness production
Energy Technology Data Exchange (ETDEWEB)
Kahana, D.E. [State Univ. of New York, Stony Brook, NY (United States). Physics Dept.; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States). Physics Dept.
1998-02-01
A two phase cascade, LUCIFER II, developed for the treatment of ultra high energy Ion-Ion collisions is applied to the production of strangeness at SPS energies. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy ion experiments at the CERN SPS.
Ultrarelativistic cascades and strangeness production
International Nuclear Information System (INIS)
Kahana, D.E.; Kahana, S.H.
1998-02-01
A two phase cascade, LUCIFER II, developed for the treatment of ultra high energy Ion-Ion collisions is applied to the production of strangeness at SPS energies. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy ion experiments at the CERN SPS
Strange particle production and s-quark asymmetry
International Nuclear Information System (INIS)
Narita, S.
1996-08-01
Using hadronic Z 0 decays recorded by the SLD experiment at SLAC, we have studied the production of strange particles as a function of momentum. A high-purity sample of K ± was tagged using Cherenkov Ring Imaging Detector (CRID). The φ, Λ and K s were reconstructed in the K + K - , p-π and π + π - modes respectively, and CRID identification of K ± and p was used to obtain pure samples of φ and Λ. We have used the high electron-beam polarisation delivered by the SLC to measure the left-right forward-backward production asymmetries of these particles, and discuss the relationship of these quantities to the underlying strange quark asymmetry in Z 0 decays
Measurement of the lepton τ spectral functions and applications to quantum chromodynamic
International Nuclear Information System (INIS)
Hoecker, A.
1997-01-01
This thesis presents measurements of the τ vector (V) and axial-vector (A) hadronic spectral functions and phenomenological studies in the framework of quantum chromodynamics (QCD). Using the hypothesis of conserved vector currents (CVC), the dominant two- and four-pion vector spectral functions are compared to the corresponding cross sections from e + e - annihilation. A combined fit of the pion form factor from τ decays and e + e - data is performed using different parametrizations. The mass and the width of the ρ ± (770) and the ρ 0 (770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M ρ ± (770) - M ρ 0 (770) =(0.0±1.0) MeV/c 2 and Γ ρ ± (770) - Γ ρ 0 (770) =(0.1 ± 1.9) MeV/c 2 . Several QCD chiral sum rules involving the difference (V - A) of the spectral functions are compared to their measurements. The Borel-transformed Das-Mathur-Okubo sum rule is used to measure the pion polarizability to be α E =(2.68±0.91) x 10 -4 fm 3 . The τ vector and axial-vector hadronic widths and certain spectral moments are exploited to measure α s and non-perturbative contributions at the τ mass scale. The best, and experimentally and theoretically most robust, determination of α s (M τ ) is obtained from the inclusive (V + A) fit that yields α s (M τ )= 0.348±0.017 giving α s (M Z )=0.1211 ± 0.0021 after the evolution to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally by means of an evolution of the τ hadronic width to masses smaller that the τ mass. Using the difference (V - A) of the spectral functions allows one to directly measure the dominant non-perturbative OPE dimension to be D=6.9±0.5. The vector spectral functions are used to improve the precision of the experimental determination of the hadronic contribution to the anomalous magnetic moment of the muon a μ =(g - 2)/2 and to the running of the QED
Strange (and incompatible) bedfellows: The relationship between ...
African Journals Online (AJOL)
Strange (and incompatible) bedfellows: The relationship between the National Health Act and the regulations relating to artificial fertilisation of persons, and its impact on individuals engaged in assisted reproduction.
Associated strangeness production at intermediate energies
International Nuclear Information System (INIS)
Saghai, B.
1996-04-01
Elementary strangeness production reactions with hadronic and electromagnetic probes are briefly reviewed. Some recent theoretical and experimental findings are underlined and a few open questions are singled out. (author)
Strange Attractors in Drift Wave Turbulence
International Nuclear Information System (INIS)
Lewandowski, J.L.V.
2003-01-01
A multi-grid part-in-cell algorithm for a shearless slab drift wave model with kinetic electrons is presented. The algorithm, which is based on an exact separation of adiabatic and nonadiabatic electron responses, is used to investigate the presence of strange attractors in drift wave turbulence. Although the simulation model has a large number of degrees of freedom, it is found that the strange attractor is low-dimensional and that it is strongly affected by dissipative (collisional) effects
International Nuclear Information System (INIS)
Akemann, Gernot; Checinski, Tomasz; Kieburg, Mario
2016-01-01
We compute the spectral statistics of the sum H of two independent complex Wishart matrices, each of which is correlated with a different covariance matrix. Random matrix theory enjoys many applications including sums and products of random matrices. Typically ensembles with correlations among the matrix elements are much more difficult to solve. Using a combination of supersymmetry, superbosonisation and bi-orthogonal functions we are able to determine all spectral k -point density correlation functions of H for arbitrary matrix size N . In the half-degenerate case, when one of the covariance matrices is proportional to the identity, the recent results by Kumar for the joint eigenvalue distribution of H serve as our starting point. In this case the ensemble has a bi-orthogonal structure and we explicitly determine its kernel, providing its exact solution for finite N . The kernel follows from computing the expectation value of a single characteristic polynomial. In the general non-degenerate case the generating function for the k -point resolvent is determined from a supersymmetric evaluation of the expectation value of k ratios of characteristic polynomials. Numerical simulations illustrate our findings for the spectral density at finite N and we also give indications how to do the asymptotic large- N analysis. (paper)
International Nuclear Information System (INIS)
Boros, C.
1999-01-01
Recent measurement of the structure function F 2 υ in neutrino deep inelastic scattering allows us to compare structure functions measured in neutrino and charged lepton scattering for the first time with reasonable precision. The comparison between neutrino and muon structure functions made by the CCFR Collaboration indicates that there is a discrepancy between these structure functions at small Bjorken x values. In this talk I examine two effects which might account for this experimental discrepancy: nuclear shadowing corrections for neutrinos and contributions from strange and anti-strange quarks. Copyright (1999) World Scientific Publishing Co. Pte. Ltd
Yan, Rui; Moon, Seonah; Kenny, Samuel J; Xu, Ke
2018-03-20
As an elegant integration of the spatial and temporal dimensions of single-molecule fluorescence, single-molecule localization microscopy (SMLM) overcomes the diffraction-limited resolution barrier of optical microscopy by localizing single molecules that stochastically switch between fluorescent and dark states over time. While this type of super-resolution microscopy (SRM) technique readily achieves remarkable spatial resolutions of ∼10 nm, it typically provides no spectral information. Meanwhile, current scanning-based single-location approaches for mapping the positions and spectra of single molecules are limited by low throughput and are difficult to apply to densely labeled (bio)samples. In this Account, we summarize the rationale, design, and results of our recent efforts toward the integration of the spectral dimension of single-molecule fluorescence with SMLM to achieve spectrally resolved SMLM (SR-SMLM) and functional SRM ( f-SRM). By developing a wide-field scheme for spectral measurement and implementing single-molecule fluorescence on-off switching typical of SMLM, we first showed that in densely labeled (bio)samples it is possible to record the fluorescence spectra and positions of millions of single molecules synchronously within minutes, giving rise to ultrahigh-throughput single-molecule spectroscopy and SR-SMLM. This allowed us to first show statistically that for many dyes, single molecules of the same species exhibit near identical emission in fixed cells. This narrow distribution of emission wavelengths, which contrasts markedly with previous results at solid surfaces, allowed us to unambiguously identify single molecules of spectrally similar dyes. Crosstalk-free, multiplexed SRM was thus achieved for four dyes that were merely 10 nm apart in emission spectrum, with the three-dimensional SRM images of all four dyes being automatically aligned within one image channel. The ability to incorporate single-molecule fluorescence measurement with
Theoretical perspectives on strange physics
International Nuclear Information System (INIS)
Ellis, J.
1983-04-01
Kaons are heavy enough to have an interesting range of decay modes available to them, and light enough to be produced in sufficient numbers to explore rare modes with satisfying statistics. Kaons and their decays have provided at least two major breakthroughs in our knowledge of fundamental physics. They have revealed to us CP violation, and their lack of flavor-changing neutral interactions warned us to expect charm. In addition, K 0 -anti K 0 mixing has provided us with one of our most elegant and sensitive laboratories for testing quantum mechanics. There is every reason to expect that future generations of kaon experiments with intense sources would add further to our knowledge of fundamental physics. This talk attempts to set future kaon experiments in a general theoretical context, and indicate how they may bear upon fundamental theoretical issues. A survey of different experiments which would be done with an Intense Medium Energy Source of Strangeness, including rare K decays, probes of the nature of CP isolation, μ decays, hyperon decays and neutrino physics is given
Evolution of Hall resistivity and spectral function with doping in the SU(2) theory of cuprates
Morice, C.; Montiel, X.; Pépin, C.
2017-10-01
Recent transport experiments in the cuprate superconductors linked the opening of the pseudogap to a change in electronic dispersion [S. Badoux et al., Nature (London) 531, 210 (2015), 10.1038/nature16983]. Transport measurements showed that the carrier density sharply changes from x to 1 +x at the pseudogap critical doping, in accordance with the change from Fermi arcs at low doping to a large hole Fermi surface at high doping. The SU(2) theory of cuprates shows that short-range antiferromagnetic correlations cause the arising of both charge and superconducting orders, which are related by an SU(2) symmetry. The fluctuations associated with this symmetry form a pseudogap phase. Here we derive the renormalized electronic propagator under the SU(2) dome, and calculate the spectral functions and transport quantities of the renormalized bands. We show that their evolution with doping matches both spectral and transport measurements.
Saloma, Caesar; Tarun, Alvarado; Bailon, Michelle; Soriano, Maricor
2005-12-01
We demonstrate the rapid and nondestructive detection of subsurface nanometer-size defects in 90 nm technology live microprocessors with a new technique called functional infrared emission spectral microscopy. Broken, leaky, and good transistors with similar photoemission images are identified from each other by their different emission spectra that are calculated as linear combinations of weighted basis spectra. The basis spectra are derived from a spectral library by principal component analysis. Leaky transistors do not exhibit apparent morphological damage and are undetectable by optical or scanning probe microscopy alone. The emission signals from two or more transistors combined incoherently, and defect detection is primarily limited by the signal-to-noise ratio of the detected spectrum and not by the separation distance of neighboring transistors.
Directory of Open Access Journals (Sweden)
Aleksandra Wolanin
2016-10-01
Full Text Available Studying phytoplankton functional types (PFTs from space is possible due to recent advances in remote sensing. Though a variety of products are available, the limited number of wavelengths available compared to the number of model parameters needed to be retrieved is still a major problem in using ocean-color data for PFT retrievals. Here, we investigated which band placement could improve retrievals of three particular PFTs (diatoms, coccolithophores and cyanobacteria. In addition to analyzing dominant spectral features in the absorption spectra of the target PFTs, two previously-developed methods using measured spectra were applied to simulated data. Such a synthetic dataset allowed for significantly increasing the number of scenarios and enabled a full control over parameters causing spectral changes. We evaluated the chosen band placement by applying an adapted ocean reflectance inversion, as utilized in the generalized inherent optical properties (GIOP retrieval. Results show that the optimal band settings depend on the method applied to determine the bands placement, as well as on the internal variability of the dataset investigated. Therefore, continuous hyperspectral instruments would be most beneficial for discriminating multiple PFTs, though a small improvement in spectral sampling and resolution does not significantly modify the results. Bands, which could be added to future instruments (e.g., Ocean and Land Colour Instrument (OLCI instrument on the upcoming Sentinel-3B,-3C,-3D, etc., and further satellites in order to enhance PFT retrieval capabilities, were also determined.
Melting spectral functions of the scalar and vector mesons in a holographic QCD model
International Nuclear Information System (INIS)
Fujita, Mitsutoshi; Kikuchi, Toru; Fukushima, Kenji; Misumi, Tatsuhiro; Murata, Masaki
2010-01-01
We investigate the finite-temperature spectral functions of heavy quarkonia by using the soft-wall anti-de Sitter/QCD model. We discuss the scalar, the pseudoscalar, the vector, and the axial-vector mesons and compare their qualitative features of the melting temperature and growing width. We find that the axial-vector meson melts earlier than the vector meson, while there appears only a slight difference between the scalar and pseudoscalar mesons, which also melt earlier than the vector meson.
Special function solutions of a spectral problem for a nonlinear quantum oscillator
International Nuclear Information System (INIS)
Schulze-Halberg, A; Morris, J R
2012-01-01
We construct exact solutions of a spectral problem involving the Schrödinger equation for a nonlinear, one-parameter oscillator potential. In contrast to a previous analysis of the problem (Carinena et al 2007 Ann. Phys. 322 434–59), where solutions were given through a Rodrigues-type formula, our approach leads to closed-form representations of the solutions in terms of special functions, not containing any derivative operators. We show normalizability and orthogonality of our solutions, as well as correct reduction of the problem to the harmonic oscillator model, if the parameter in the potential gets close to zero. (paper)
Geometric Scattering on Compact Riemannian Manifolds and Spectral Theory of Automorphic Functions
Brüning, J
2005-01-01
We show that the spectral properties of the Laplace--Beltrami operator on a compact Riemannian manifold with $n$ semi-lines attached to it are similar to those for a finite-volume hyperbolic manifold with $n$ cusps. Our results are further justification of the Gromov--Novikov thesis concerning relations between Hyperbolic Geometry on infinity and One-Dimensional Geometry. As an application of the corresponding results we obtain a relation between the scattering matrix on a compact Riemann surface of constant negative curvature and the Selberg zeta function for this surface.
Study of stellar objects with strange quark matter crust
International Nuclear Information System (INIS)
Hothi, N.; Bisht, S.
2012-01-01
The absolute stability of strange quark matter is a viable possibility and immensely effects physics at the astrophysical scale. Relativistic heavy-ion reactions offer a stage to produce this exotic state of matter and the enhanced production of strange particles during these reactions can be studied within the framework of quark-gluon plasma (QGP). We have tried to investigate the role of strangeness under the compact star phenomenology. Emphasis is laid upon the possibility of existence of a third family of strange quark stars and its study help in revealing a number of unexplored features of the cosmos. Bag model parameters have been used to determine some integral parameters for a sequence of strange stars with crust and strange dwarfs constructed out of strange quark matter crust. A comparative analysis is performed between the strange and neutron stars and the strange and white dwarfs based upon these intrinsic parameters and paramount differences are observed. The intimacy between astrophysics and strange quarks depends strongly upon the strange quark matter hypothesis. It states that for a collection of more than a few hundred u, d and s quarks, the energy per baryon E/A of strange quark matter (SQM) can be well below the energy per baryon of the most stable atomic nuclei
Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G
2015-11-05
Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively.
Hedayatrasa, Saeid; Bui, Tinh Quoc; Zhang, Chuanzeng; Lim, Chee Wah
2014-02-01
Numerical modeling of the Lamb wave propagation in functionally graded materials (FGMs) by a two-dimensional time-domain spectral finite element method (SpFEM) is presented. The high-order Chebyshev polynomials as approximation functions are used in the present formulation, which provides the capability to take into account the through thickness variation of the material properties. The efficiency and accuracy of the present model with one and two layers of 5th order spectral elements in modeling wave propagation in FGM plates are analyzed. Different excitation frequencies in a wide range of 28-350 kHz are investigated, and the dispersion properties obtained by the present model are verified by reference results. The through thickness wave structure of two principal Lamb modes are extracted and analyzed by the symmetry and relative amplitude of the vertical and horizontal oscillations. The differences with respect to Lamb modes generated in homogeneous plates are explained. Zero-crossing and wavelet signal processing-spectrum decomposition procedures are implemented to obtain phase and group velocities and their dispersion properties. So it is attested how this approach can be practically employed for simulation, calibration and optimization of Lamb wave based nondestructive evaluation techniques for the FGMs. The capability of modeling stress wave propagation through the thickness of an FGM specimen subjected to impact load is also investigated, which shows that the present method is highly accurate as compared with other existing reference data.
Electron spectral functions in a quantum dimer model for topological metals
Huber, Sebastian; Feldmeier, Johannes; Punk, Matthias
2018-02-01
We study single-electron spectral functions in a quantum dimer model introduced by Punk, Allais, and Sachdev in Ref. [M. Punk, A. Allais, and S. Sachdev, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015), 10.1073/pnas.1512206112]. The Hilbert space of this model is spanned by hard-core coverings of the square lattice with two types of dimers: ordinary bosonic spin singlets, as well as fermionic dimers carrying charge +e and spin 1/2, which can be viewed as bound states of spinons and holons in a doped resonating valence bond (RVB) liquid. This model realizes a metallic phase with topological order and captures several properties of the pseudogap phase in hole-doped cuprates, such as a reconstructed Fermi surface with small hole pockets and a highly anisotropic quasiparticle residue in the absence of any broken symmetries. Using a combination of exact diagonalization and analytical methods, we compute electron spectral functions and show that this model indeed exhibits a sizable antinodal pseudogap, with a momentum dependence deviating from a simple d -wave form, in accordance with experiments on underdoped cuprates.
A spectral scheme for Kohn–Sham density functional theory of clusters
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Amartya S., E-mail: baner041@umn.edu; Elliott, Ryan S., E-mail: relliott@umn.edu; James, Richard D., E-mail: james@umn.edu
2015-04-15
Starting from the observation that one of the most successful methods for solving the Kohn–Sham equations for periodic systems – the plane-wave method – is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn–Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn–Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.
A spectral scheme for Kohn-Sham density functional theory of clusters
Banerjee, Amartya S.; Elliott, Ryan S.; James, Richard D.
2015-04-01
Starting from the observation that one of the most successful methods for solving the Kohn-Sham equations for periodic systems - the plane-wave method - is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn-Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn-Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.
A spectral scheme for Kohn–Sham density functional theory of clusters
International Nuclear Information System (INIS)
Banerjee, Amartya S.; Elliott, Ryan S.; James, Richard D.
2015-01-01
Starting from the observation that one of the most successful methods for solving the Kohn–Sham equations for periodic systems – the plane-wave method – is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn–Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn–Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed
Self-consistent spectral function for non-degenerate Coulomb systems and analytic scaling behaviour
International Nuclear Information System (INIS)
Fortmann, Carsten
2008-01-01
Novel results for the self-consistent single-particle spectral function and self-energy are presented for non-degenerate one-component Coulomb systems at various densities and temperatures. The GW (0) -method for the dynamical self-energy is used to include many-particle correlations beyond the quasi-particle approximation. The self-energy is analysed over a broad range of densities and temperatures (n = 10 17 cm -3 -10 27 cm -3 , T = 10 2 eV/k B -10 4 eV/k B ). The spectral function shows a systematic behaviour, which is determined by collective plasma modes at small wavenumbers and converges towards a quasi-particle resonance at higher wavenumbers. In the low density limit, the numerical results comply with an analytic scaling law that is presented for the first time. It predicts a power-law behaviour of the imaginary part of the self-energy, ImΣ ∼ -n 1/4 . This resolves a long time problem of the quasi-particle approximation which yields a finite self-energy at vanishing density
International Nuclear Information System (INIS)
Moriuchi, Shigeru
1991-01-01
JAERI has developed a dose evaluation method using a NaI (Tl) scintillation detector and a spectral weighting function for low-level gamma rays in the environment. This method has the following advantages : (a) the detection efficiency is high ; (b) information on energy spectra can be used ; (c) the method is easily applied to the estimation of effective dose equivalent ; and (d) small and highly efficient instruments using this method can be produced because of recent development of IC technique. In this paper, the principle of the method, derivation of the weighting function, and the practical application of this method to the environmental measuring instruments are described. Further, the characteristics of dose rates in the urban environments examined with a portable dose rate meter using this method are briefly explained. (author)
International Nuclear Information System (INIS)
Kowalski, K.; Bhaskaran-Nair, K.; Shelton, W. A.
2014-01-01
In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Green's function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N − 1 and N + 1 electron Hilbert spaces. Simple criteria are derived for the states in N − 1 and N + 1 electron spaces that are then corrected in the spectral resolution of the corresponding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Green's function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Green's function methodology provides a direct path for not only calculating properties whose underlying origins come from coupled many-body interactions but also provides a straightforward path for calculating electron transport, response, and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Green's function defined by the CC with singles and doubles representation of the ground-state wave function
Inversion of GPS Data Using Spectral Decomposition of a Green Function
Jin, H.; Kato, T.; Miyazaki, S.; Hori, M.
2002-12-01
The Japanese Islands are located at the boundaries among Eurasia, Pacific, North America and Philippine Sea plates. Collision and subduction of these plates cause overall crustal deformation in the islands. Recent studies of geodetic inversion of dense GPS array data have shown that the distribution of inter-plate coupling is not homogeneous along the subducting plate boundaries. It is important to elucidate the distribution of rates of coupling along the boundaries for understanding subduction process and nature of slow slip episodes as well as for earthquake prediction studies. In the conventional inversion scheme, all physical processes involved (surface measurements due to fault dislocation, in this case) are represented by Green_fs function. Therefore, the nature of Green_fs function determined the ill-posedness of inverse problem. In order to solve this problem, Hori (2001) introduced a new approach of inversion, in which inversion operator (Green function as an operator) is determined without considering the method of measurement by introducing the spectral decomposition of Green function. The operator can be computed if Green_fs function and domains are given, no matter how actual measurements are conducted. Since inverse operator is obtained through numerical spectral decomposition of Green_fs function, it clarifies the mathematical reason of the ill-posedness of the inverse problem. Deformation function at surface can be estimated from measured data using least square method and then the deformation function is used for solving the inverse problem to predict slip function at the plate boundary using inverse operator. We have applied this new inversion method to the Japanese GPS data and estimated the distribution of back-slip (or coupling) on a subducting Philippine Sea plate. Before applying the method, we considered that the vertical component of GPS data is important in estimating distribution of coupling along the plate boundary. For this purpose
Liquid-gas phase transition in strange hadronic matter with relativistic models
Torres, James R.; Gulminelli, F.; Menezes, Débora P.
2016-02-01
Background: The advent of new dedicated experimental programs on hyperon physics is rapidly boosting the field, and the possibility of synthesizing multiple strange hypernuclei requires the addition of the strangeness degree of freedom to the models dedicated to nuclear structure and nuclear matter studies at low energy. Purpose: We want to settle the influence of strangeness on the nuclear liquid-gas phase transition. Because of the large uncertainties concerning the hyperon sector, we do not aim at a quantitative estimation of the phase diagram but rather at a qualitative description of the phenomenology, as model independent as possible. Method: We analyze the phase diagram of low-density matter composed of neutrons, protons, and Λ hyperons using a relativistic mean field (RMF) model. We largely explore the parameter space to pin down generic features of the phase transition, and compare the results to ab initio quantum Monte Carlo calculations. Results: We show that the liquid-gas phase transition is only slightly quenched by the addition of hyperons. Strangeness is seen to be an order parameter of the phase transition, meaning that dilute strange matter is expected to be unstable with respect to the formation of hyperclusters. Conclusions: More quantitative results within the RMF model need improved functionals at low density, possibly fitted to ab initio calculations of nuclear and Λ matter.
Aptel, Florent; Sayous, Romain; Fortoul, Vincent; Beccat, Sylvain; Denis, Philippe
2010-12-01
To evaluate and compare the regional relationships between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness as measured by spectral-domain optical coherence tomography (OCT) and scanning laser polarimetry. Prospective cross-sectional study. One hundred and twenty eyes of 120 patients (40 with healthy eyes, 40 with suspected glaucoma, and 40 with glaucoma) were tested on Cirrus-OCT, GDx VCC, and standard automated perimetry. Raw data on RNFL thickness were extracted for 256 peripapillary sectors of 1.40625 degrees each for the OCT measurement ellipse and 64 peripapillary sectors of 5.625 degrees each for the GDx VCC measurement ellipse. Correlations between peripapillary RNFL thickness in 6 sectors and visual field sensitivity in the 6 corresponding areas were evaluated using linear and logarithmic regression analysis. Receiver operating curve areas were calculated for each instrument. With spectral-domain OCT, the correlations (r(2)) between RNFL thickness and visual field sensitivity ranged from 0.082 (nasal RNFL and corresponding visual field area, linear regression) to 0.726 (supratemporal RNFL and corresponding visual field area, logarithmic regression). By comparison, with GDx-VCC, the correlations ranged from 0.062 (temporal RNFL and corresponding visual field area, linear regression) to 0.362 (supratemporal RNFL and corresponding visual field area, logarithmic regression). In pairwise comparisons, these structure-function correlations were generally stronger with spectral-domain OCT than with GDx VCC and with logarithmic regression than with linear regression. The largest areas under the receiver operating curve were seen for OCT superior thickness (0.963 ± 0.022; P polarimetry, and was better expressed logarithmically than linearly. Measurements with these 2 instruments should not be considered to be interchangeable. Copyright © 2010 Elsevier Inc. All rights reserved.
Strange Bedfellows; Physical and Biological Oceanographers
Wooster, W. S.
2002-12-01
When I started graduate study at Scripps in 1947, both the text, "The Oceans", and the curriculum - all students took the introductory courses in physics, chemistry, biology, and geology - conspired to create awareness of the interactions among these fields. In their preface, the authors spoke of the book as "an aid to the beginner and specialist alike in the coordination of the various fields of oceanography." Harald Sverdrup, perhaps the best known physical oceanographer of his day, introduced us to the interdisciplinary organization, ICES, wrote an important paper (1953) on "the vernal blooming of phytoplankton", and together with fishery biologist O.E.Sette, launched the world renowned CalCOFI program. Another noted physical oceanographer, Henry Stommel, 1949, teamed up with biologist Gordon Riley in a major study of the quantitative ecology of plankton. At the time, physical and biological oceanographers often seemed to be engaged in the same mission. The curriculum format, with its four basic courses, spread to most other graduate programs in oceanography, but the forces of specialization also spread. While the biological oceanographers have always seen the need to understand the milieu within which their creatures function, the physicists often seemed to chafe against wasting their time on squishy subjects like biology when there were so many more important and fascinating things to study. Interactions were further complicated by the confusion between "biological oceanography" and "marine biology", and by the status of "fishery biology" which was often disdained by oceanographers of all stripes. I propose to discuss the evolution of the relationship among these fields during the 60 years since "The Oceans" was first published, concluding with the present marriage of convenience, or at least amicable co-habitation, forced by the widespread concern over the threat of global warming and the need to understand its consequences. It has become clear that
'Strange money': risk, finance and socialized debt.
Dodd, Nigel
2011-03-01
This paper explores an essential but neglected aspect of recent discussions of the banking and financial system, namely money itself. Specifically, I take up a distinction drawn by Susan Strange which has never been fully elaborated: between a financial system that is global, and an international monetary system that remains largely territorial. I propose a sociological elaboration of this distinction by examining each category, 'finance' and 'money', in terms of its distinctive orientation to risk and debt. Money is distinguished by its high degree of liquidity and low degree of risk, corresponding to expectations that derive from its status as a 'claim upon society'- a form of socialized debt. But as Strange argued, these features of money are being undermined by the proliferation of sophisticated instruments of financial risk management -'strange money'- that, as monetary substitutes, both weaken states' capacity to manage money, and more broadly, contribute to 'overbanking'. The ultimate danger, according to Strange, is the 'death of money'. The paper concludes by exploring the implications of the distinction for sociological arguments about the changing nature of money. © London School of Economics and Political Science 2011.
Echolocation The Strange Ways of Bats
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Echolocation The Strange Ways of Bats. G Marimuthu. General Article Volume 1 Issue 5 May 1996 pp 40-48. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/05/0040-0048. Author Affiliations.
Echolocation The Strange Ways of Bats
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Echolocation The Strange Ways of Bats. G Marimuthu. General Article Volume 1 Issue 5 May 1996 pp 40-48. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/05/0040-0048. Author Affiliations.
CP asymmetries in Strange Baryon Decays
Bigi, I. I.; Kang, Xian-Wei; Li, Hai-Bo
2018-01-01
While indirect and direct CP violation (CPV) has been established in the decays of strange and beauty mesons, no CPV has yet been found for baryons. There are different paths to finding CP asymmetry in the decays of strange baryons; they are all highly non-trivial. The HyperCP Collaboration has probed CPV in the decays of single Ξ and Λ [1]. We discuss future lessons from {{{e}}}+{{{e}}}- collisions at BESIII/BEPCII: probing decays of pairs of strange baryons, namely Λ, Σ and Ξ. Realistic goals are to learn about non-perturbative QCD. One can hope to find CPV in the decays of strange baryons; one can also dream of finding the impact of New Dynamics. We point out that an important new era will start with the BESIII/BEPCII data accumulated by the end of 2018. This also supports new ideas to trigger {{J}}/{{\\psi }}\\to \\bar{{{Λ }}}{{Λ }} at the LHCb collaboration. Supported by National Science Foundation (PHY-1520966), National Natural Science Foundation of China (11335009, 11125525), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257), the National Key Basic Research Program of China (2015CB856700), Key Research Program of Frontier Sciences, CAS, (QYZDJ-SSW-SLH003), XWK’s work is also supported by MOST (Taiwan) (104-2112-M-001-022)
A plethora of strange nonchaotic attractors
Indian Academy of Sciences (India)
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India. MS received 9 ... which have strange nonchaotic attractors (SNAs): the dynamics is asymptotically on fractal attrac- tors and the ... In ـ2, we extend the general arguments which establish the existence of SNAs in eqs (1) and (3) so as to.
Seismic Search for Strange Quark Matter
Teplitz, Vigdor
2004-01-01
Two decades ago, Witten suggested that the ground state of matter might be material of nuclear density made from up, down and strange quarks. Since then, much effort has gone into exploring astrophysical and other implications of this possibility. For example, neutron stars would almost certainly be strange quark stars; dark matter might be strange quark matter. Searches for stable strange quark matter have been made in various mass ranges, with negative, but not conclusive results. Recently, we [D. Anderson, E. Herrin, V. Teplitz, and I. Tibuleac, Bull. Seis. Soc. of Am. 93, 2363 (2003)] reported a positive result for passage through the Earth of a multi-ton "nugget" of nuclear density in a search of about a million seismic reports, to the U.S. Geological Survey for the years 1990-93, not associated with known Earthquakes. I will present the evidence (timing of first signals to the 9 stations involved, first signal directions, and unique waveform characteristics) for our conclusion and discuss potential improvements that could be obtained from exploiting the seismologically quieter environments of the moon and Mars.
Strange baryon production in Z hadronic decays
Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Anykeyev, V B; Apel, W D; Arnoud, Y; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barate, R; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brunet, J M; Brückman, P; Bugge, L; Buran, T; Buys, A; Bärring, O; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Cassio, V; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chikilev, O G; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Da Silva, W; Dahl-Jensen, Erik; Dahm, J; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; De Angelis, A; De Boeck, H; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; Di Ciaccio, Lucia; Dijkstra, H; Djama, F; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Dönszelmann, M; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Föth, H; Fürstenau, H; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gillespie, D; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Gracco, Valerio; Grard, F; Graziani, E; Grosdidier, G; Gunnarsson, P; Guy, J; Guz, Yu; Górski, M; Günther, M; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Haider, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Joram, Christian; Juillot, P; Jönsson, L B; Jönsson, P E; Kaiser, M; Kalmus, George Ernest; Kapusta, F; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Królikowski, J; Kubinec, P; Kucewicz, W; Kurvinen, K L; Kuznetsov, O; Köhne, J H; Köne, B; La Vaissière, C de; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lokajícek, M; Loken, J G; Loukas, D; Lutz, P; Lyons, L; López, J M; López-Aguera, M A; López-Fernandez, A; Lörstad, B; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martí i García, S; Martínez-Rivero, C; Martínez-Vidal, F; Maréchal, B; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Monge, M R; Morettini, P; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Mönig, K; Møller, R; Müller, H; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Némécek, S; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parodi, F; Passeri, A; Pegoraro, M; Pennanen, J; Peralta, L; Pernegger, H; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rídky, J; Rückstuhl, W; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Stäck, H; Szczekowski, M; Szeptycka, M; Sánchez, J; Tabarelli de Fatis, T; Tavernet, J P; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tuuva, T; Tyapkin, I A; Tyndel, M; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van Doninck, W K; Van Eldik, J; Van der Velde, C; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Voutilainen, M; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Wehr, A; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wormser, G; Woschnagg, K; Yip, K; Yu, L; Yushchenko, O P; Zach, F; Zacharatou-Jarlskog, C; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zhigunov, V P; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; de Boer, Wim; van Apeldoorn, G W; van Dam, P; Åsman, B; Österberg, K; Überschär, B; Überschär, S
1995-01-01
A study of the production of strange octet and decuplet baryons in hadronic decays of the Z recorded by the DELPHI detector at LEP is presented. This includes the first measurement of the \\Sigma^\\pm average multiplicity. The total and differential cross sections, the event topology and the baryon-antibaryon correlations are compared with current hadronization models.
On relativistic models of strange stars
Indian Academy of Sciences (India)
astrophysical parameters in this respect. Recent observation of LXMB 2S 0921-. 30 contains massive compact object of mass 2.9M⊙ [20]. This object could be either low-mass black hole or strange star. Because a neutron star having a radius of about 10–12 km and interior matter with nuclear density cannot accomodate.
Ratios of strange hadrons to pions in collisions of large and small nuclei
Energy Technology Data Exchange (ETDEWEB)
Oeschler, H. [Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Cleymans, J. [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa); Hippolyte, B. [Universite de Strasbourg, CNRS-IN2P3, Institut Pluridisciplinaire Hubert Curien (IPHC), Strasbourg (France); Redlich, K. [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); ExtreMe Matter Institute EMMI, GSI, Darmstadt (Germany); Sharma, N. [Panjab University, Department of Physics, Chandigarh (India)
2017-09-15
The dependence of particle production on the size of the colliding nuclei is analyzed in terms of the thermal model using the canonical ensemble. The concept of strangeness correlation in clusters of sub-volume V{sub c} is used to account for the suppression of strangeness. A systematic analysis is presented of the predictions of the thermal model for particle production in collisions of small nuclei. The pattern of the maxima of strange-particles-to-pion ratios as a function of beam energy is quite special, as they do not occur at the same beam energy and are sensitive to the system size. In particular, the Λ/π{sup +} ratio shows a clear maximum even for small systems while the maximum in the K{sup +}/π{sup +} ratio is less pronounced in small systems. (orig.)
Vislavicius, Vytautas
2016-01-01
We present an analysis of data on light flavour hadron production as function of event multiplicity at LHC energies measured by the ALICE collaboration. The strangeness-canonical approach within the framework of the THERMUS statistical hadronisation model is used for a simultaneous description of pp, p-Pb, and Pb-Pb collisions. The rapidity window dependence of the strangeness correlation volume is addressed and a value of $\\Delta y = 1.43 \\pm 0.13$ is found. With the exception of the $\\phi$-meson, an excellent description of the experimental data is found.
[A Detection Technique for Gas Concentration Based on the Spectral Line Shape Function].
Zhou, Mo; Yang, Bing-chu; Tao, Shao-hua
2015-04-01
The methods that can rapidly and precisely measure concentrations of various gases have extensive applications in the fields such as air quality analysis, environmental pollution detection, and so on. The gas detection method based on the tunable laser absorption spectroscopy is considered a promising technique. For the infrared spectrum detection techniques, the line shape function of an absorption spectrum of a gas is an important parameter in qualitative and quantitative analysis of a gas. Specifically, how to obtain the line shape function of an absorption spectrum of a gas quickly and accurately is a key problem in the gas detection fields. In this paper we analyzed several existing line shape functions and proposed a method to calculate precisely the line shape function of a gas, and investigated the relation between the gas concentration and the peak value of a line shape function. Then we experimentally measured the absorption spectra of an acetylene gas in the wavelength range of 1,515-1,545 nm with a tunable laser source and a built-in spectrometer. With Lambert-Beer law we calculated the peak values of the line shape function of the gas at the given frequencies, and obtained a fitting curve for the line shape function in the whole waveband by using a computer program. Comparing the measured results with the calculated results of the Voigt function, we found that there was a deviation-between the experimental results and the calculated results. And we found that the measured concentration of the acetylene gas by using the fitting curve of the line shape function was more accurate and compatible with the actual situation. Hence, the empirical formula for the line shape function obtained from the experimental results would be more suitable for the concentration measurement of a gas. As the fitting curve for the line shape function of the acetylene gas has been deduced from the experiment, the corresponding peak values of the spectral lines can be
Strangeness chemical equilibration in a quark-gluon plasma
International Nuclear Information System (INIS)
Letessier, Jean; Rafelski, Johann
2007-01-01
We study, in the dynamically evolving quark-gluon plasma (QGP) fireball formed in relativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC), the growth of strangeness yield toward and beyond the chemical equilibrium. We account for the contribution of the direct strangeness production and evaluate the thermal-QCD strangeness production mechanisms. The specific yield of strangeness per entropy, s/S, is the primary target variable. We explore the effect of collision impact parameter, i.e., fireball size, on kinetic strangeness chemical equilibration in QGP. Insights gained in studying the RHIC data with regard to the dynamics of the fireball are applied to the study of strangeness production at the LHC. We use these results and consider the strange hadron relative particle yields at RHIC and LHC in a systematic fashion. We consider both the dependence on s/S and the direct dependence on the participant number
International Nuclear Information System (INIS)
Turkheimer, Federico E; Hinz, Rainer; Gunn, Roger N; Aston, John A D; Gunn, Steve R; Cunningham, Vincent J
2003-01-01
Compartmental models are widely used for the mathematical modelling of dynamic studies acquired with positron emission tomography (PET). The numerical problem involves the estimation of a sum of decaying real exponentials convolved with an input function. In exponential spectral analysis (SA), the nonlinear estimation of the exponential functions is replaced by the linear estimation of the coefficients of a predefined set of exponential basis functions. This set-up guarantees fast estimation and attainment of the global optimum. SA, however, is hampered by high sensitivity to noise and, because of the positivity constraints implemented in the algorithm, cannot be extended to reference region modelling. In this paper, SA limitations are addressed by a new rank-shaping (RS) estimator that defines an appropriate regularization over an unconstrained least-squares solution obtained through singular value decomposition of the exponential base. Shrinkage parameters are conditioned on the expected signal-to-noise ratio. Through application to simulated and real datasets, it is shown that RS ameliorates and extends SA properties in the case of the production of functional parametric maps from PET studies
Enhanced spectral domain optical coherence tomography for pathological and functional studies
Yuan, Zhijia
Optical coherence tomography (OCT) is a novel technique that enables noninvasive or minimally invasive, cross-sectional imaging of biological tissue at sub-10mum spatial resolution and up to 2-3mm imaging depth. Numerous technological advances have emerged in recent years that have shown great potential to develop OCT into a powerful imaging and diagnostic tools. In particular, the implementation of Fourier-domain OCT (FDOCT) is a major step forward that leads to greatly improved imaging rate and image fidelity of OCT. This dissertation summarizes the work that focuses on enhancing the performances and functionalities of spectral radar based FDOCT (SDOCT) for pathological and functional applications. More specifically, chapters 1-4 emphasize on the development of SDOCT and its utility in pathological studies, including cancer diagnosis. The principle of SDOCT is first briefly outlined, followed by the design of our bench-top SDOCT systems with emphasis on spectral linear interpolation, calibration and system dispersion compensation. For ultrahigh-resolution SDOCT, time-lapse image registration and frame averaging is introduced to effectively reduce speckle noise and uncover subcellular details, showing great promise for enhancing the diagnosis of carcinoma in situ. To overcome the image depth limitation of OCT, a dual-modal imaging method combing SDOCT with high-frequency ultrasound is proposed and examined in animal cancer models to enhance the sensitivity and staging capabilities for bladder cancer diagnosis. Chapters 5-7 summarize the work on developing Doppler SDOCT for functional studies. Digital-frequency-ramping OCT (DFR-OCT) is developed in the study, which has demonstrated the ability to significantly improve the signal-to-noise ratio and thus sensitivity for retrieving subsurface blood flow imaging. New DFR algorithms and imaging processing methods are discussed to further enhance cortical CBF imaging. Applications of DFR-OCT for brain functional studies
Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung
2015-04-14
Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.
Energy Technology Data Exchange (ETDEWEB)
Hoecker, A. [Paris-11 Univ., 91 - Orsay (France). Lab. de l' Accelerateur Lineaire]|[Universite de Paris Sud, 91 - Orsay (France)
1997-04-18
This thesis presents measurements of the {tau} vector (V) and axial-vector (A) hadronic spectral functions and phenomenological studies in the framework of quantum chromodynamics (QCD). Using the hypothesis of conserved vector currents (CVC), the dominant two- and four-pion vector spectral functions are compared to the corresponding cross sections from e{sup +}e{sup -} annihilation. A combined fit of the pion form factor from {tau} decays and e{sup +}e{sup -} data is performed using different parametrizations. The mass and the width of the {rho}{sup {+-}}(770) and the {rho}{sup 0}(770) are separately determined in order to extract possible isospin violating effects. The mass and width differences are measured to be M{sub {rho}{sup {+-}}{sub (770)} - M{sub {rho}{sup 0}}{sub (770)}=(0.0{+-}1.0) MeV/c{sup 2} and {gamma}{sub {rho}{sup {+-}}{sub (770)} - {gamma}{sub {rho}{sup 0}}{sub (770)}=(0.1 {+-} 1.9) MeV/c{sup 2}. Several QCD chiral sum rules involving the difference (V - A) of the spectral functions are compared to their measurements. The Borel-transformed Das-Mathur-Okubo sum rule is used to measure the pion polarizability to be {alpha}{sub E}=(2.68{+-}0.91) x 10{sup -4} fm{sup 3}. The {tau} vector and axial-vector hadronic widths and certain spectral moments are exploited to measure {alpha}{sub s} and non-perturbative contributions at the {tau} mass scale. The best, and experimentally and theoretically most robust, determination of {alpha}{sub s}(M{sub {tau}}) is obtained from the inclusive (V + A) fit that yields {alpha}{sub s}(M{sub {tau}})= 0.348{+-}0.017 giving {alpha}{sub s}(M{sub Z})=0.1211 {+-} 0.0021 after the evolution to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally by means of an evolution of the {tau} hadronic width to masses smaller that the {tau} mass. Using the difference (V - A) of the spectral functions allows one to directly measure the dominant non-perturbative OPE dimension to be D=6
Flipped neutrino emissivity from strange matter
International Nuclear Information System (INIS)
Goyal, A.; Dutta, S.
1994-01-01
Energy loss due to wrong helicity sterile neutrinos through spin flip processes leads to rapid cooling of nascent neutron stars. The observed cooling of neutron stars associated with SN 1987A seems to preclude the existence of Dirac neutrinos with a mass in excess of 20 keV. Assuming that nuclear matter in the core of the neutron star undergoes a phase transition to quark matter leading to a strange star or a neutron star with a strange matter core, we examine the emission of flipped Dirac neutrinos for two dominant processes: quark-neutrino scattering [q+ν - (bar ν + )→q+ν + (bar ν - )] and the quark neutrino pair bremsstrahlung process [q+q→q+q+ν - bar ν - (ν+bar ν + )]. We determine the composition of quark matter just after core bounce and examine the effect of neutrino degeneracy on the emission rate and mean free path of the wrong helicity neutrinos
Total ozone retrieval from GOME UV spectral data using the weighting function DOAS approach
Directory of Open Access Journals (Sweden)
M. Coldewey-Egbers
2005-01-01
Full Text Available A new algorithm approach called Weighting Function Differential Optical Absorption Spectroscopy (WFDOAS is presented which has been developed to retrieve total ozone columns from nadir observations of the Global Ozone Monitoring Experiment. By fitting the vertically integrated ozone weighting function rather than ozone cross-section to the sun-normalized radiances, a direct retrieval of vertical column amounts is possible. The new WFDOAS approach takes into account the slant path wavelength modulation that is usually neglected in the standard DOAS approach using single airmass factors. This paper focuses on the algorithm description and error analysis, while in a companion paper by Weber et al. (2004 a detailed validation with groundbased measurements is presented. For the first time several auxiliary quantities directly derived from the GOME spectral range such as cloud-top-height and cloud fraction (O2-A band and effective albedo using the Lambertian Equivalent Reflectivity (LER near 377nm are used in combination as input to the ozone retrieval. In addition the varying ozone dependent contribution to the Raman correction in scattered light known as Ring effect has been included. The molecular ozone filling-in that is accounted for in the new algorithm has the largest contribution to the improved total ozone results from WFDOAS compared to the operational product. The precision of the total ozone retrieval is estimated to be better than 3% for solar zenith angles below 80°.
Thermal structure of accreting neutron stars and strange stars
International Nuclear Information System (INIS)
Miralda-Escude, J.; Paczynski, B.; Haensel, P.
1990-01-01
Steady-state models of accreting neutron stars and strange stars are presented, and their properties as a function of accretion rate are analyzed. The models have steady-state envelopes, with stationary hydrogen burning taken into account, the helium shell flashes artificially suppressed, and the crust with a large number of secondary heat sources. The deep interiors are almost isothermal and are close to thermal equilibrium. A large number of models were calculated for many values of the accretion rates, with ordinary, pion-condensed, and strange cores, with and without secondary heat sources in the crust, and with the heavy element content of the accreting matter in the range Z = 0.0002-0.02. All models show a similar pattern of changes as the accretion rate is varied. For low accretion rates, the hydrogen burning shell is unstable; for intermediate rates, the hydrogen burning shell is stable, but helium burning is not; for high rates, the two shell sources burn together and are unstable. 60 refs
International Nuclear Information System (INIS)
Wissel, S.
2006-10-01
In this thesis we investigate thermal in-medium modifications of various mesonic correlation functions by lattice simulations of Quantum Chromodynamics for light valence quark masses and vanishing chemical potential. Mesonic properties are typically extracted from spatial correlation functions. The results presented are based on quenched gauge field configurations generated with the standard Wilson plaquette gauge action. Concerning the fermionic part of the action, we use the non-perturbative O(a) improved Sheikholeslami-Wohlert as well as the truncated hypercube perfect action. Furthermore we utilize the maximum entropy method in order to determine physically relevant pole masses and to investigate thermal modifications of physical states and possible lattice artefacts in the interacting case. The analyses of pole and screening masses, dispersion relations, wave functions, decay constants and spectral functions essentially yield no significant modifications of the zero-temperature behavior up to 0.55 T c . Close to the phase transition in-medium effects seem to appear, which lead inter alia to significant differences between pole and screening masses. The decay constants are in good agreement with the experimental values. We have simulated above T c at nearly zero quark masses. At 1.24 T c , the occurrence of topological effects, a sign for the presence of a still broken U(1) A symmetry, prevent a more thorough analyses close to the phase transition. A complete continuum and infinite volume extrapolation of screening masses, guided by free lattice effective masses is done. It shows that the presence of collective phenomena at 1.5 and 3 T c cannot be explained by pure lattice artefacts. Unlike the vector meson the pion is far from being considered an unbound state. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wissel, S.
2006-10-15
In this thesis we investigate thermal in-medium modifications of various mesonic correlation functions by lattice simulations of Quantum Chromodynamics for light valence quark masses and vanishing chemical potential. Mesonic properties are typically extracted from spatial correlation functions. The results presented are based on quenched gauge field configurations generated with the standard Wilson plaquette gauge action. Concerning the fermionic part of the action, we use the non-perturbative O(a) improved Sheikholeslami-Wohlert as well as the truncated hypercube perfect action. Furthermore we utilize the maximum entropy method in order to determine physically relevant pole masses and to investigate thermal modifications of physical states and possible lattice artefacts in the interacting case. The analyses of pole and screening masses, dispersion relations, wave functions, decay constants and spectral functions essentially yield no significant modifications of the zero-temperature behavior up to 0.55 T{sub c}. Close to the phase transition in-medium effects seem to appear, which lead inter alia to significant differences between pole and screening masses. The decay constants are in good agreement with the experimental values. We have simulated above T{sub c} at nearly zero quark masses. At 1.24 T{sub c}, the occurrence of topological effects, a sign for the presence of a still broken U(1){sub A} symmetry, prevent a more thorough analyses close to the phase transition. A complete continuum and infinite volume extrapolation of screening masses, guided by free lattice effective masses is done. It shows that the presence of collective phenomena at 1.5 and 3 T{sub c} cannot be explained by pure lattice artefacts. Unlike the vector meson the pion is far from being considered an unbound state. (orig.)
Kaon condensation and multi-strange matter
Czech Academy of Sciences Publication Activity Database
Gazda, Daniel; Friedman, E.; Gal, A.; Mareš, Jiří
2010-01-01
Roč. 835, 1-4 (2010), s. 287-294 ISSN 0375-9474. [10th International Conference on Hypernuclear and Strange Particle Physics. Tokai, 14.09.2009-18.09.2009] Institutional research plan: CEZ:AV0Z10480505 Keywords : K)over-bar deeply bound nuclear states * multi-(K)over-bar nuclei * kaon condensation Subject RIV: BE - Theoretical Physics Impact factor: 1.986, year: 2010
Relativistic model for anisotropic strange stars
Deb, Debabrata; Chowdhury, Sourav Roy; Ray, Saibal; Rahaman, Farook; Guha, B. K.
2017-12-01
In this article, we attempt to find a singularity free solution of Einstein's field equations for compact stellar objects, precisely strange (quark) stars, considering Schwarzschild metric as the exterior spacetime. To this end, we consider that the stellar object is spherically symmetric, static and anisotropic in nature and follows the density profile given by Mak and Harko (2002) , which satisfies all the physical conditions. To investigate different properties of the ultra-dense strange stars we have employed the MIT bag model for the quark matter. Our investigation displays an interesting feature that the anisotropy of compact stars increases with the radial coordinate and attains its maximum value at the surface which seems an inherent property for the singularity free anisotropic compact stellar objects. In this connection we also perform several tests for physical features of the proposed model and show that these are reasonably acceptable within certain range. Further, we find that the model is consistent with the energy conditions and the compact stellar structure is stable with the validity of the TOV equation and Herrera cracking concept. For the masses below the maximum mass point in mass vs radius curve the typical behavior achieved within the framework of general relativity. We have calculated the maximum mass and radius of the strange stars for the three finite values of bag constant Bg.
Kazakov, Vasily I.; Moskaletz, Oleg D.; Paraskun, Arthur S.; Zhdanov, Arseny Yu.
2017-08-01
Fiber-optic transmission system of analyzed signal is considered to allow signals transmission from optical sources with either impossible or undesirable contact. Diffraction grating spectral device is chosen as investigation system. It should be noted that diffraction grating operates with transmitted light but not reflected. Influence of optical fiber consists in the distortion of wave front incident on the spectral device. Front distortion leads to a broadening of the device spread function in all diffraction orders, and as a consequence, to a deterioration in the device resolution. In this case, the complex spread function is a reaction of the device to the homogeneous plane monochromatic wave which clearly links the input-output of spectral device. Fiber-optic system influence is determined by introducing a fictitious transparency located directly in front of the diffraction grating. Research of the effect the fiber-optic system has on the spread function of the diffraction grating spectral device is made in two ways. On one hand, mathematical model is proposed to describe the influence of a single-mode optical fiber to a spread function of the diffraction grating spectral device. We performed computer simulations of the analyzed signal transmission from the end of the optical fiber to the photodetector based on the proposed model. The calculations are performed for a single-mode optical fiber with a core diameter of 8 microns. On the other hand, experimental laboratory set up of the diffraction grating spectral device with a fiber optic transmission system is created. Theoretical calculations are compared with the experimental results.
International Nuclear Information System (INIS)
Antonov, A.N.; Stoitsov, M.V.; Gaidarov, M.K.; Dimitrova, S.S.; Hodgson, P.E.
1995-01-01
A method to calculate the hole spectral function in the discrete part of the spectrum is suggested within the natural orbital representation of the one-body density matrix of the A-nucleon system using its relationship with the overlap functions of the eigenstates in the (A-1)-nucleon system. (author)
Ciofi degli Atti, Claudio; Morita, Hiko
2017-12-01
Background: The nuclear spectral function is a fundamental quantity that describes the mean-field and short-range correlation dynamics of nucleons embedded in the nuclear medium; its knowledge is a prerequisite for the interpretation of various electroweak scattering processes off nuclear targets aimed at providing fundamental information on strong and weak interactions. Whereas in the case of the three-nucleon and, partly, the four-nucleon systems, the spectral function can be calculated ab initio within a nonrelativistic many-body Schroedinger approach, in the case of complex nuclei only models of the correlated, high-momentum part of the spectral function are available so far. Purpose: The purpose of this paper is to present a new approach such that the spectral function for a specific nucleus can be obtained from a reliable many-body calculation based upon realistic nucleon-nucleon interactions, thus avoiding approximations leading to adjustable parameters. Methods: The expectation value of the nuclear many-body Hamiltonian, containing realistic nucleon-nucleon interaction of the Argonne family, is evaluated variationally by a normalization-conserving linked-cluster expansion and the resulting many-body correlated wave functions are used to calculate the one-nucleon and the two-nucleon momentum distributions; by analyzing the high-momentum behavior of the latter, the spectral function can be expressed in terms of a transparent convolution formula involving the relative and center-of-mass (c.m.) momentum distributions in specific regions of removal energy E and momentum k . Results: It is found that as a consequence of the factorization of the many-body wave functions at short internucleon separations, the high-momentum behavior of the two-nucleon momentum distributions in A =3 ,4 ,12 ,16 ,40 nuclei factorizes, at proper values of the relative and c.m. momenta, into the c.m. and relative momentum distributions, with the latter exhibiting a universal A
Ma, L X; Wang, F Q; Wang, C A; Wang, C C; Tan, J Y
2015-11-20
Spectral properties of sea foam greatly affect ocean color remote sensing and aerosol optical thickness retrieval from satellite observation. This paper presents a combined Mie theory and Monte Carlo method to investigate visible and near-infrared spectral reflectance and bidirectional reflectance distribution function (BRDF) of sea foam layers. A three-layer model of the sea foam is developed in which each layer is composed of large air bubbles coated with pure water. A pseudo-continuous model and Mie theory for coated spheres is used to determine the effective radiative properties of sea foam. The one-dimensional Cox-Munk surface roughness model is used to calculate the slope density functions of the wind-blown ocean surface. A Monte Carlo method is used to solve the radiative transfer equation. Effects of foam layer thickness, bubble size, wind speed, solar zenith angle, and wavelength on the spectral reflectance and BRDF are investigated. Comparisons between previous theoretical results and experimental data demonstrate the feasibility of our proposed method. Sea foam can significantly increase the spectral reflectance and BRDF of the sea surface. The absorption coefficient of seawater near the surface is not the only parameter that influences the spectral reflectance. Meanwhile, the effects of bubble size, foam layer thickness, and solar zenith angle also cannot be obviously neglected.
Alvarez-Añorve, Mariana Y; Quesada, Mauricio; Sánchez-Azofeifa, G Arturo; Avila-Cabadilla, Luis Daniel; Gamon, John A
2012-05-01
The function of most ecosystems has been altered by human activities. To asses the recovery of plant communities, we must evaluate the recovery of plant functional traits. The seasonally dry tropical forest (SDTF), a highly threatened ecosystem, is assumed to recover relatively quickly from disturbance, but an integrated evaluation of recovery in floristic, structural, and functional terms has not been performed. In this study we aimed to (a) compare SDTF plant functional, floristic, and structural change along succession; (b) identify tree functional groups; and (c) explore the spectral properties of different successional stages. Across a SDTF successional gradient, we evaluated the change of species composition, vegetation structure, and leaf spectral reflectance and functional traits (related to water use, light acquisition, nutrient conservation, and CO(2) acquisition) of 25 abundant tree species. A complete recovery of SDTF takes longer than the time period inferred from floristic or structural data. Plant functional traits changed along succession from those that maximize photoprotection and heat dissipation in early succession, where temperature is an environmental constraint, to those that enhance light acquisition in late succession, where light may be limiting. A spectral indicator of plant photosynthetic performance (photochemical reflectance index) discriminated between early and late succession. This constitutes a foundation for further exploration of remote sensing technologies for studying tropical succession. A functional approach should be incorporated as a regular descriptor of forest succession because it provides a richer understanding of vegetation dynamics than is offered by either the floristic or structural approach alone.
Sum rules for strangeness exchange reactions with nuclei
International Nuclear Information System (INIS)
Fiebig, H.R.
1983-01-01
Within the framework of a constituent quark model we derive energy-weighted sum rules for strangeness exchange (analog) and spin-strangeness exchange (generalized Gamow-Teller) reactions in the limit of small momentum transfer. The target nucleus is treated as a system of non-communicating 3-quark clusters. We also calculate the branching between the SU(3) octet and decouplet channels and we consider double strangeness exchange reactions. (orig.)
Baskent, Deniz
2006-01-01
Speech recognition by normal-hearing listeners improves as a function of the number of spectral channels when tested with a noiseband vocoder simulating cochlear implant signal processing. Speech recognition by the best cochlear implant users, however, saturates around eight channels and does not
Strange quark content in the nucleon and the strange quark vector current form factors
International Nuclear Information System (INIS)
Dubnicka, S.; Dubnickova, A.Z.
1996-12-01
A behaviour of the form factors of the nucleon matrix element of the strange quark vector current in the momentum range of the planned measurements in MIT/Bates and CEBAF is predicted theoretically without using any of the experimental information on the nucleon electromagnetic structure. The corresponding leading nonvanishing moments of the nucleon vector strangeness distribution are comparable with the values obtained by other authors in the framework of the method based on the vector meson pole fit of the isoscalar electromagnetic form factors of the nucleon. (author). 16 refs, 2 figs
Usha, C.; Santhakumari, R.; Meenakshi, R.; Jayasree, R.; Bhuvaneswari, M.
2017-12-01
Single crystal of L-2-aminobutyric acid (ABA) was grown from water by slow evaporation at room temperature. The crystalline nature of the grown crystal was confirmed using powder X-ray diffraction studies. The grown crystal was subjected to FT-IR, FT-Raman, 1H NMR and 13C NMR spectral analyses to confirm the presence of functional group and molecular structure respectively. Thermal properties were investigated by thermogravimetric and differential thermal analyses. The range and percentage of optical transmission was ascertained by recording UV-vis-NIR spectrum. The electronic charge distribution and reactivity of the molecules within the crystal were studied by HOMO and LUMO analysis and the molecular electrostatic potential (MEP) of the grown crystal was performed using the B3LYP method. The anti-bacterial activities of the crystal were performed by disk diffusion method against the standard bacteria E. coli. The crystal exhibits good anti-bacterial activity. Second harmonic generation efficiency of the powdered ABA crystal was tested using Nd:YAG laser and it is found to be ∼3.3 times that of potassium dihydrogen orthophosphate.
Strange and Multi-strange Particle Production in pPb and PbPb with CMS
Ni, Hong
2017-01-01
Identified particle spectra provide an important tool for understanding the particle production mechanism and the dynamical evolution of the medium created in relativistic heavy ion collisions. Studies involving strange and multi-strange hadrons, such as $K^0_S$, $\\Lambda$, and $\\Xi^-$, carry additional information since there is no net strangeness content in the initial colliding system. Strangeness enhancement in AA collisions with respect to pp and pA collisions has long been considered as one of the signatures for quark-gluon plasma (QGP) formation. Recent observations of collective effects in high-multiplicity pp and pA collisions raise the question of whether QGP can also be formed in the smaller systems. Systematic studies of strange particle abundance, particle ratios, and nuclear modification factors can shed light on this issue. The CMS experiment has excellent strange-particle reconstruction capabilities over a broad kinematic range, and dedicated high-multiplicity triggers in pp and pPb collision...
Hwang, Jong-Uk; Sohn, Joonhong; Moon, Byung Gil; Joe, Soo Geun; Lee, Joo Yong; Kim, June-Gone; Yoon, Young Hee
2012-06-14
To evaluate the functional changes in various morphologic types of idiopathic epiretinal membrane (ERM) by multifocal electroretinography (mfERG) and spectral-domain optical coherence tomography (SD-OCT). All patients (n = 71) with unilateral idiopathic ERM underwent complete ophthalmologic examination, including measurements of best-corrected visual acuity (BCVA), SD-OCT, and mfERG for both eyes. To classify idiopathic ERM by subtype, the morphologic characteristics of the foveal area on representative scanned images were assessed. The five subtypes by foveal SD-OCT morphology included fovea-attached ERM with outer retinal thickening and minimal inner retinal change (Group 1A), outer retinal inward projection and inner retinal thickening (Group 1B), and prominent thickening of inner retinal layer (Group 1C) and foveal sparing ERM with formation of macular pseudohole (Group 2A) and with schisislike, intraretinal splitting (Group 2B). On mfERG, P1 amplitude density in the central ring (R1) and inter-eye (affected eye/fellow eye) response ratio of P1 amplitude density in R1 differed significantly among five groups (P = 0.032 and P = 0.022, respectively). In Group 1 patients, central subfield thickness (CST) and inner retinal layer thickness (IRT) on SD-OCT were strongly correlated with BCVA and P1 amplitude density in R1. A receiver operating characteristic (ROC) curve analysis showed that IRT had high predictive accuracy in distinguishing Groups 1A and 1B (area under the ROC curve [AUROC] = 0.966) and Groups 1B and 1C (AUROC = 1.000). Multifocal electroretinography can be used to investigate the pathophysiology of ERM and to evaluate the degree of functional demise in the fovea on SD-OCT.
1999-02-01
) in the same cluster. The comparatively strong absorption line at the centre, at wavelength 6708 Å (671 nm), is caused by Lithium atoms (Li I) in the upper layers of the star's atmosphere. Lines from Iron (Fe I) and Calcium (Ca I) atoms are also present in this spectral region. While they are of about equal strength in the two stars, the Lithium line is not seen in the comparison spectrum of S156 . Stellar evolution theories do not predict the presence of Lithium in a giant star like S50 . Technical information: FEROS obtained two spectra (each of 90 min exposure) of S50 , both showing this strong Lithium line and thus proving that it cannot have been caused by an instrumental effect. These spectra also illustrate the great amount of information that may be obtained in each exposure with FEROS - the shown spectral interval is just 1/280 of the total range recorded. The (visual) magnitude of S50 is 15.6, i.e., about 7,000 times fainter than what can be seen with the unaided eye. During the first tests of FEROS at the 1.52-m telescope, spectra were obtained of many different stars. Some of these observational data could be used for scientific purposes and, in one case, led to the discovery of unusual properties of a giant star in a stellar cluster. Its spectrum shows an unexplained large amount of the cosmologically important, light element Lithium, cf. PR Photo 03b/99 . The star is thus an obvious object for further, even more detailed studies with ESO's Very Large Telescope (VLT). This giant star, designated as S50 , is a member of the open-type stellar cluster Be21 (less dense than globular clusters). This cluster is of special interest, since its stars contain few elements heavier than hydrogen and helium. It is located in the direction opposite to the Galactic Center and the distance has been measured as approximately 16,000 light-years. All of its stars were formed at the same time, about 2,000 - 2,500 million years ago; this corresponds to half of the age of the
Arrachea, Liliana
2007-01-01
We present an efficient method and a fast algorithm to exactly calculate spectral functions and one-body observables of open quantum systems described by lattice Hamiltonians with harmonically time-dependent terms and without many-body interactions. The theoretical treatment is based in Keldysh nonequilibrium Green’s function formalism. We illustrate the implementation of the technique in a paradigmatic model of a quantum pump driven by local fields oscillating in time with one and two harmonic components.
Measurement of the strange quark contribution to the proton spin using neutral kaons at HERMES
International Nuclear Information System (INIS)
Lu, Shaojun
2007-03-01
This thesis reports a new ''isoscalar'' measurement of Δs + Δ anti s. Because strange quarks carry no isospin, the strange seas in the proton and neutron are identical. In the deuteron, an isoscalar target, the fragmentation process in DIS can be described without any assumptions regarding isospin dependent fragmentation. In the isoscalar extraction of Δs + Δ anti s only the spin asymmetry for K 0 s A K 0 s 1,d (x,Q 2 , z) and the inclusive asymmetry A 1,d (x,Q 2 ) are used. An accurate measurement of the total non-strange quark polarisation ΔQ = Δu + Δ anti u + Δd + Δ anti d comes directly from A 1,d (x,Q 2 ). The fragmentation functions needed for a leading order (LO) extraction of ΔS = Δs + Δ anti s are measured directly at HERMES kinematics using the same data. As a result of this analysis, the helicity densities for the strange quarks are consistent with zero with the experimental uncertainty over the measured x kinematic range. (orig.)
Measurement of the strange quark contribution to the proton spin using neutral kaons at HERMES
Energy Technology Data Exchange (ETDEWEB)
Lu, Shaojun
2007-03-15
This thesis reports a new ''isoscalar'' measurement of {delta}s + {delta} anti s. Because strange quarks carry no isospin, the strange seas in the proton and neutron are identical. In the deuteron, an isoscalar target, the fragmentation process in DIS can be described without any assumptions regarding isospin dependent fragmentation. In the isoscalar extraction of {delta}s + {delta} anti s only the spin asymmetry for K{sup 0}{sub s} A{sup K{sup 0}{sub s1,d}} (x,Q{sup 2}, z) and the inclusive asymmetry A{sub 1,d}(x,Q{sup 2}) are used. An accurate measurement of the total non-strange quark polarisation {delta}Q = {delta}u + {delta} anti u + {delta}d + {delta} anti d comes directly from A{sub 1,d}(x,Q{sup 2}). The fragmentation functions needed for a leading order (LO) extraction of {delta}S = {delta}s + {delta} anti s are measured directly at HERMES kinematics using the same data. As a result of this analysis, the helicity densities for the strange quarks are consistent with zero with the experimental uncertainty over the measured x kinematic range. (orig.)
Strangeness production in Pb-Pb collisions at LHC energies with ALICE
Šefčík, Michal
2018-02-01
The results on the production of strange and multi-strange hadrons (K0S, Λ, Ξ and Ω) measured with ALICE in Pb-Pb collisions at the top LHC energy of = 5.02 TeV are reported. Thanks to its excellent tracking and particle identification capabilities, ALICE is able to measure weakly decaying particles through the topological reconstruction of the identified hadronic decay products. Results are presented as a function of centrality and include transverse momentum spectra measured at central rapidity, pT-dependent Λ/K0S ratios and integrated yields. A systematic study of strangeness production is of fundamental importance for determining the thermal properties of the system created in ultrarelativistic heavy ion collisions. In order to study strangeness enhancement, the yields of studied particles are normalised to the corresponding measurement of pion production in the various centrality classes. The results are compared to measurements performed at lower energies, as well as to different systems and to predictions from statistical hadronization models.
Directory of Open Access Journals (Sweden)
Neda Rohani
2017-09-01
Full Text Available Strange animals and creatures have always existed in every mythological culture. In Iran's pre-Islamic and post-Islamic miniatures and reliefs, there are many strange animals and creatures such as dragons and phoenix which were associated with the Iranian culture and civilization. Because of presence of these strange creatures, particularly human life, these creatures are first used in mythological life and then symbolically to express human ideas. However, these animals were present in both mythology and epics and, later in the Islamic era, in the mystical stories, educational stories and admonishing anecdotes like Sanai, Attar, and Rumi. This study tends to investigate genealogy of strange animals and creatures in ancient Iranian reliefs and their continued presence in miniatures of Islamic era as well as presence of these creatures in miniatures which are based on Attar’s Conference of the Birds. In fact, this study reviews elements and symbolic concepts of animals, allowing a deeper understanding of function of elements and symbolism in works of Iranian miniaturists. Contemplation of miniatures, icons and the relationship between literature and miniatures will lead to many results in recognition of mystical intellectual foundations. Therefore, this study tends to investigate mysterious and unknown aspects of Iranian miniatures and find their relationship with culture and stories.
Calculation of baryon chemical potential and strangeness chemical potential in resonance matter
International Nuclear Information System (INIS)
Fu Yuanyong; Hu Shouyang; Lu Zhongdao
2006-01-01
Based on the high energy heavy-ion collisions statistical model, the baryon chemical potential and strangeness chemical potential are calculated for resonance matter with net baryon density and net strangeness density under given temperature. Furthermore, the relationship between net baryon density, net strangeness density and baryon chemical potential, strangeness chemical potential are analyzed. The results show that baryon chemical potential and strangeness chemical potential increase with net baryon density and net strangeness density increasing, the change of net baryon density affects baryon chemical potential and strangeness chemical potential more strongly than the change of net strangeness density. (authors)
Energy dependence of strangeness production and event-byevent fluctuations
Directory of Open Access Journals (Sweden)
Rustamov Anar
2018-01-01
Full Text Available We review the energy dependence of strangeness production in nucleus-nucleus collisions and contrast it with the experimental observations in pp and p-A collisions at LHC energies as a function of the charged particle multiplicities. For the high multiplicity final states the results from pp and p-Pb reactions systematically approach the values obtained from Pb-Pb collisions. In statistical models this implies an approach to the thermodynamic limit, where differences of mean multiplicities between various formalisms, such as Canonical and Grand Canonical Ensembles, vanish. Furthermore, we report on event-by-event net-proton fluctuations as measured by STAR at RHIC/BNL and by ALICE at LHC/CERN and discuss various non-dynamical contributions to these measurements, which should be properly subtracted before comparison to theoretical calculations on dynamical net-baryon fluctuations.
Strange Nuclear Physics - a Brief Status Report
Hungerford, Ed V.; Furić, Miroslav
This paper briefly reviews the present status of strange nuclearphysics. Recently, significant progress has been made. Oneexample to be discussed is a new, electroproduction experimentwhich offers the possibility of obtaining hypernuclearspectra with at least a factor of 3 better resolution thanpreviously. However, many different experiments impact a spectrumof problems from weak interactions to astrophysics. Although inthis short paper it is not possible to cover many topics in depth,sufficient information is provided so that the interested readercan obtain all of the most relevant material.
Strange bedfellows: Cervantes and Mary Wollstonecraft Shelley
Directory of Open Access Journals (Sweden)
Alfredo Moro
2017-11-01
Full Text Available Miguel de Cervantes and Mary Shelley do seem, at first sight, two strange bedfellows. Notwithstanding the evident differences between the narrative of both authors, the English novelist showed a notable interest for the life and works of Miguel de Cervantes throughout her literary career. This article intends to offer a precise portrait of the Cervantean interests of the author of Frankenstein, tracing these through her personal correspondence, her narrative production, and finally, through her contribution to the realm of Cervantean studies: Shelley’s Life of Cervantes (1837, published in Dyonisius Lardner’s Cabinet Cyclopaedia.
Stability of charged strange quark stars
Energy Technology Data Exchange (ETDEWEB)
Arbañil, José D. V.; Malheiro, Manuel [Departamento de Física, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, 12228-900 São José dos Campos, SP (Brazil)
2015-12-17
We investigate the hydrostatic equilibrium and the stability of charged stars made of a charged perfect fluid. The matter contained in the star follows the MIT bag model equation of state and the charge distribution to a power-law of the radial coordinate. The hydrostatic equilibrium and the stability of charged strange stars are analyzed using the Tolman-Oppenheimer-Volkoff equation and the Chandrasekhar’s equation pulsation, respectively. These two equation are modified from their original form to the inclusion of the electric charge. We found that the stability of the star decreases with the increment of the central energy density and with the increment of the amount of charge.
STRANGE BARYONIC MATTER AND KAON CONDENSATION
Czech Academy of Sciences Publication Activity Database
Gazda, Daniel; Friedman, E.; Gal, A.; Mareš, Jiří
2011-01-01
Roč. 26, 3-4 (2011), s. 567-569 ISSN 0217-751X. [11th International Workshop on Meson Production , Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : (K)over-bar-nuclear bound states * strange baryonic matter * kaon condensation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011
Strange Quark Matter Status and Prospects
Sandweiss, J.
2004-01-01
The existence of quark states with more than three quarks is allowed in QCD. The stability of such quark matter states has been studied with lattice QCD and phenomenological bag models, but is not well constrained by theory. The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty. There is additional stability from reduced Coulomb repulsion. SQM is expected to have a low Z/A. Stable or metastable massive multiquark states contain u, d, and s quarks.
Strangeness condensation and ''clearing'' of the vacuum
International Nuclear Information System (INIS)
Brown, G.E.; Kubodera, Kuniharu; Rho, M.; State Univ. of New York, Stony Brook
1987-01-01
We show that a substantial amount of strange quark-antiquark pair condensates in the nucleon required by the πN sigma term implies that kaons could condense in nuclear matter at a density about three times that of normal nuclear matter. This phenomenon can be understood as the ''cleansing'' of qanti q condensates from the QCD vacuum by a dense nuclear matter, resulting in a (partial) restoration of the chiral symmetry explicitly broken in the vacuum. It is suggested that the condensation signals a new phase distinct from that of quark plasma and that of ordinary dense hadronic matter. (orig.)
Seismic search for strange quark nuggets
International Nuclear Information System (INIS)
Herrin, Eugene T.; Rosenbaum, Doris C.; Teplitz, Vigdor L.
2006-01-01
Bounds on masses and abundances of Strange Quark Nuggets (SQNs) are inferred from a seismic search on Earth. Potential SQN bounds from a possible seismic search on the Moon are reviewed and compared with Earth capabilities. Bounds are derived from the data taken by seismometers implanted on the Moon by the Apollo astronauts. We show that the Apollo data implies that the abundance of SQNs in the region of 10 kg to 1 ton must be at least an order of magnitude less than would saturate the dark matter in the solar neighborhood
Strangeness and quark gluon plasma: Aspects of theory and experiment
International Nuclear Information System (INIS)
Eggers, H.C.; Rafelski, J.
1990-07-01
A survey of our current understanding of the strange particle signature of quark gluon plasma is presented. Emphasis is placed on the theory of strangeness production in the plasma and recent pertinent experimental results. Useful results on spectra of thermal particles are given. (orig.)
Anomalies, symmetries and strangeness content of the proton
Indian Academy of Sciences (India)
If we neglect the t-dependence of sigma, then combining eq. (7) with eq. (9) we find a rather large value for y «0.57 which more over would suggest that most of the nucleon's mass is contributed by the strange quark, a rather strange conclusion. By now it is understood that there are important corrections to Cheng's ...
Mini-Proceedings of ECT Workshop Strangeness in Nuclei
Zmeskal, J
2011-01-01
This workshop brought together international experts in the research area of strangeness in nuclei physics, working on theory as well as on experiments, to discuss the present status, to develop new methods of analysis and to have the opportunity for brainstorming towards future studies, going towards a deeper understanding of the hot topics in the low-energy QCD in the strangeness sector.
The extent of strangeness equilibration in quark gluon plasma
Indian Academy of Sciences (India)
ton cascade model; chemical equilibrium; relativistic heavy-ion collisions. PACS No. 12.38.M. 1. Introduction. Strangeness enhancement is one of the robust signatures of quark–hadron phase transition during the ultra relativistic heavy-ion collisions [1,2]. In heavy-ion collisions strangeness is produced abundantly through ...
Results from CERN experiment NA36 on strangeness production
International Nuclear Information System (INIS)
1991-12-01
Measurements of the production of strange particles in the reactions S + Pb and S + S at beam momentum 200GeV/c per nucleon are presented. A short description of CERN experiment NA36 and the methods of raw data analysis, is followed by physics results concentrating on the dependence of strange particle production on multiplicity. Transverse momentum distributions are also presented
Strange stars in f(R,Script T) gravity
Deb, Debabrata; Rahaman, Farook; Ray, Saibal; Guha, B. K.
2018-03-01
In this article we try to present spherically symmetric isotropic strange star model under the framework of f(R,Script T) theory of gravity. To this end, we consider that the Lagrangian density is a linear function of the Ricci scalar R and the trace of the energy momentum tensor Script T given as f(R,Script T)=R+2χ Script T. We also assume that the quark matter distribution is governed by the simplest form of the MIT bag model equation of state (EOS) as p=1/3(ρ‑4B), where B is the bag constant. We have obtained an exact solution of the modified form of the Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of f(R,Script T) gravity theory and have studied the dependence of different physical properties, viz., the total mass, radius, energy density and pressure for the chosen values of χ. Further, to examine physical acceptability of the proposed stellar model, we have conducted different tests in detail, viz., the energy conditions, modified TOV equation, mass-radius relation, causality condition etc. We have precisely explained the effects arising due to the coupling of the matter and geometry on the compact stellar system. For a chosen value of the bag constant, we have predicted numerical values of the different physical parameters in tabular form for the different strange star candidates. It is found that as the factor χ decreases the strange star candidates become gradually massive and larger in size with less dense stellar configuration. However, when χ increases the stars shrink gradually and become less massive to turn into a more compact stellar system. Hence for χ>0 our proposed model is suitable to explain the ultra-dense compact stars well within the observational limits and for χ<0 case allows to represent the recent massive pulsars and super-Chandrasekhar stars. For χ=0 we retrieve as usual the standard results of the general relativity (GR).
Rapidity dependence of strangeness enhancement factor at FAIR energies
International Nuclear Information System (INIS)
Dey, Kalyan; Bhattacharjee, B.
2014-01-01
Strange particles are produced only at the time of collisions and thus expected to carry important information of collision dynamics. Strangeness enhancement is considered to be one of the traditional signatures of formation of Quark Gluon Plasma (QGP). Due to the limitation of the detector acceptance, the past and ongoing heavy ion experiments could measure the strangeness enhancement at midrapidity only. But the future heavy ion experiment CBM at FAIR will have the access to the entire forward rapidity hemisphere and thus the experimental determination of rapidity dependent strangeness enhancement is a possibility. In this work, an attempt has therefore been made to study the rapidity dependent strangeness enhancement at FAIR energies with the help of a string based hadronic model (UrQMD). A sum of 93 million minimum biased UrQMD events have been used for the present analysis
Spectral theory of operator pencils, Hermite-Biehler functions, and their applications
Möller, Manfred
2015-01-01
The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A-λI for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main f...
Halo structure of strange particles in nuclei
International Nuclear Information System (INIS)
Akaishi, Yoshinori; Yamazaki, Toshimitsu.
1997-01-01
Some characteristic behaviors of hyperons in nuclei which have recently been revealed experimentally and theoretically are discussed with the emphasis on the repulsive part of the hyperon-nucleus interaction. The observed Σ 4 He nucleus is a bound state with J π = 0 + and T ≅ 1/2. Its nucleus-Σ potential derived from a realistic ΣN interaction is characterized by inner repulsion and a strong Lane term, which play important roles in forming the Σ-hypernuclear bound state. In 208 Pb a typical Coulomb-assisted bound state is expected, where Σ is trapped in the surface region by the nucleus-Σ potential with the aid of Coulomb and centrifugal interactions. In the double-strangeness (S=-2) sector, there is a possibility that the lightest double-Λ hypernucleus ΛΛ 4 H is abundantly populated by stopping Ξ - on 4 He. Its formation branching amounts to about 15%. A stopped Ξ - on 9 Be will also produce efficiently a variety of double-Λ hyperfragments. Discrete spectra of weak-decay pions from the fragments will provide a means of mass spectroscopy of double-Λ hypernuclei. In the S=-2 five-body system an excited state Ξ 5 H is predicted to appear with 'strangeness halo' and the ground state ΛΛ 5 H with almost pure ΛΛ component. (author)
Strange Particles and Heavy Ion Physics
Energy Technology Data Exchange (ETDEWEB)
Bassalleck, Bernd [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Fields, Douglas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy
2016-04-28
This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for this award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.
Phenomenology of the three-flavor PNJL model and thermal strange quark production
Tsai, Hung-Ming; Müller, Berndt
2009-07-01
We study the temperature dependence of the adjoint Polyakov loop and its implication for the momentum spectrum of gluons in the mean-field approximation. This allows us to calculate the contribution of the thermal (transverse) gluons to the thermodynamic pressure. As an application, we evaluate the rates for the strange quark pair-production processes q\\barq \\tos\\bars and gg \\tos\\bars as functions of temperature including thermal effects on quark deconfinement and chiral symmetry breaking.
Quark mass density- and temperature- dependent model for bulk strange quark matter
al, Yun Zhang et.
2002-01-01
It is shown that the quark mass density-dependent model can not be used to explain the process of the quark deconfinement phase transition because the quark confinement is permanent in this model. A quark mass density- and temperature-dependent model in which the quark confinement is impermanent has been suggested. We argue that the vacuum energy density B is a function of temperature. The dynamical and thermodynamical properties of bulk strange quark matter for quark mass density- and temper...
Strange-face illusions during inter-subjective gazing.
Caputo, Giovanni B
2013-03-01
In normal observers, gazing at one's own face in the mirror for a few minutes, at a low illumination level, triggers the perception of strange faces, a new visual illusion that has been named 'strange-face in the mirror'. Individuals see huge distortions of their own faces, but they often see monstrous beings, archetypal faces, faces of relatives and deceased, and animals. In the experiment described here, strange-face illusions were perceived when two individuals, in a dimly lit room, gazed at each other in the face. Inter-subjective gazing compared to mirror-gazing produced a higher number of different strange-faces. Inter-subjective strange-face illusions were always dissociative of the subject's self and supported moderate feeling of their reality, indicating a temporary lost of self-agency. Unconscious synchronization of event-related responses to illusions was found between members in some pairs. Synchrony of illusions may indicate that unconscious response-coordination is caused by the illusion-conjunction of crossed dissociative strange-faces, which are perceived as projections into each other's visual face of reciprocal embodied representations within the pair. Inter-subjective strange-face illusions may be explained by the subject's embodied representations (somaesthetic, kinaesthetic and motor facial pattern) and the other's visual face binding. Unconscious facial mimicry may promote inter-subjective illusion-conjunction, then unconscious joint-action and response-coordination. Copyright © 2012 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Onkar B. Sawant
2017-10-01
Full Text Available Circadian clocks regulate various aspects of photoreceptor physiology, but their contribution to photoreceptor development and function is unclear. Cone photoreceptors are critical for color vision. Here, we define the molecular function of circadian activity within cone photoreceptors and reveal a role for the clock genes Bmal1 and Per2 in regulating cone spectral identity. ChIP analysis revealed that BMAL1 binds to the promoter region of the thyroid hormone (TH-activating enzyme type 2 iodothyronine deiodinase (Dio2 and thus regulates the expression of Dio2. TH treatment resulted in a partial rescue of the phenotype caused by the loss of Bmal1, thus revealing a functional relationship between Bmal1 and Dio2 in establishing cone photoreceptor identity. Furthermore, Bmal1 and Dio2 are required to maintain cone photoreceptor functional integrity. Overall, our results suggest a mechanism by which circadian proteins can locally regulate the availability of TH and influence tissue development and function.
A Loudness Function for Maintaining Spectral Balance at Changing Sound Pressure Levels
DEFF Research Database (Denmark)
Nielsen, Sofus Birkedal
. In this case the spectral balance will not be maintained. If the volume is turned up our perception for especially the low frequency will increase. If the level is increased 10dB from 90dB to 100 dB a 100 Hz tone will be perceived as +13 dB higher and 50 Hz as +14 dB higher, so an increasing bass boost. (+3 d...... of by the sound engineer by listening to the individual sound sources and adjust and equalize them to the wanted spectral balance including the whole chain of audio equipment and surroundings. At a live venue the sound pressure level will normally change during a concert, and typically increase over time...
International Nuclear Information System (INIS)
Dominguez, D. S.; Barros, R. C.
2007-01-01
A new spectral nodal method is developed for the solution of one-speed discrete ordinates (SN) problems with isotropic scattering in X, Y-geometry. In this method, the spectral Green's function (SGF) scheme, originally developed for solving SN problems in slab geometry with no spatial truncation error, is generalized to solve the one-dimensional transverse-integrated SN nodal equations wherein we consider linear polynomial approximation for the transverse leakage terms. To solve the resulting SGF-linear nodal (SGF-LN) equations we implement the full-node inversion (FNI) iterative scheme, which uses the best available estimates for the node-entering quantities to evaluate the node angular quantities in all the exiting directions as the equations are swept across the system. We give numerical results that illustrate the accuracy of the SGF-LN method for coarse-mesh calculations. (authors)
Strange pathways for black hole formation
International Nuclear Information System (INIS)
Prakash, M.
2000-01-01
Immediately after they are born, neutron stars are characterized by an entropy per baryon of order unity and by the presence of trapped neutrinos. If the only hadrons in the star are nucleons, these effects slightly reduce the maximum mass relative to cold, catalyzed matter. However, if strangeness-bearing hyperons, a kaon condensate, or quarks are also present, these effects result in an increase in the maximum mass of up to ∼ 0.3M [odot] compared to that of a cold, neutrino-free star. This makes a sufficiently massive proto-neutron star metastable, so that after a delay of 10-100 seconds, the PNS collapses into a black hole. Such an event might be straightforward to observe as an abrupt cessation of neutrinos when the instability is triggered
Frontier of physics with strange particles
International Nuclear Information System (INIS)
Yamazaki, T.
1985-01-01
I deliver my own perspectives on possible domains of physics underlying between particle physics and nuclear physics, which can be studied by using strange particles produced abundantly by the KEK 12 GeV proton synchrotron. My guiding principle on the scientific program at KEK (National Laboratory for High Energy Physics) is to promote experiments of brand new type and thus to create something new. Unfortunately, particle physics and nuclear physics seem to have been separated too much, but in such a playground as the KEK PS, these two aspects of physics can well be coupled to each other. Namely, particle physics provides new type of probes to nuclear physics, while nuclei provide abnormal external conditions to particles. Contents are the following: search for exotic particles in K + decay, right-handed sector, new aspects in nuclear physics, new type of hypernuclear spectroscopy, promising future at KEK. (Mori, K.)
Status and prospects for strange physics at LHCb
CERN. Geneva
2016-01-01
Rare decays are fundamental probes of physics beyond the Standard Model. We present the current status of rare decays studies at the LHCb experiment and discuss a possible picture emerging from these measurements. The expanding LHCb program of strange physics, in particular of their rare decays, provides a unique and complementary probe to test the SM with respect to the beauty and charm. We present recent results on rare strange hadrons decays exploiting the LHCb Run I data. We then present prospects for strange physics with the LHCb Run II data and after the improvements in the trigger for the LHCb Upgrade.
On the Stability of Strange Dwarf Hybrid Stars
Energy Technology Data Exchange (ETDEWEB)
Alford, Mark G.; Harris, Steven P. [Physics Department, Washington University, St. Louis, MO 63130 (United States); Sachdeva, Pratik S., E-mail: harrissp@wustl.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)
2017-10-01
We investigate the stability of “strange dwarfs”: white-dwarf-sized stars with a density discontinuity between a small dense core of quark matter and a thick low-density mantle of degenerate electrons. Previous work on strange dwarfs suggested that such a discontinuity could stabilize stars that would have been classified as unstable by the conventional criteria based on extrema in the mass–radius relation. We investigate the stability of such stars by numerically solving the Sturm–Liouville equations for the lowest-energy modes of the star. We find that the conventional criteria are correct, and strange dwarfs are not stable.
SoRelle, Elliott D.; Liba, Orly; Sen, Debasish; de la Zerda, Adam
2017-03-01
Optical Coherence Tomography (OCT) is well-suited to study in vivo dynamics of blood circulation and lymphatic flow because of the technique's combination of rapid image acquisition, micron spatial resolution, and penetration depth in turbid tissues. However, OCT has been historically constrained by a dearth of contrast agents that are readily distinguished from the strong scattering intrinsic to biological tissues. In this study, we demonstrate large gold nanorods (LGNRs) as optimized contrast agents for OCT. LGNRs produce 32-fold greater backscattering than GNRs previously tested for contrast-enhanced OCT. Furthermore, LGNRs exhibit 110-fold stronger spectral signal than conventional GNRs when coupled with custom spectral detection algorithms. This signal enhancement enables picomolar OCT detection sensitivity in vivo and single-particle detection against optically-clear backgrounds. Moreover, the ability to synthesize LGNRs with tunable spectral peaks provides a viable platform for multiplexed imaging studies. To explore the advantages of LGNRs as OCT contrast agents, we implemented them for noninvasive 3D imaging of tumor blood supply and active lymphatic drainage in mice. Spectral detection of LGNRs enabled 100% improvement in imaging depth for detecting microvasculature (vessels 20 μm in diameter) in U87MG glioblastoma xenografts in mice pinnae. We also demonstrated our approach's ability to map the spatial dependence of lymph drainage and flow directionality within lymphatic capillaries. Using LGNRs with distinct spectra, we further identified the functional states of individual lymphatic valves in vivo. Thus, this approach provides a powerful new platform for functional imaging that may be extended for future molecular imaging studies with OCT.
Quantitative functional optical imaging of the human skin using multi-spectral imaging
International Nuclear Information System (INIS)
Kainerstorfer, J. M.
2010-01-01
Light tissue interactions can be described by the physical principles of absorption and scattering. Based on those parameters, different tissue types and analytes can be distinguished. Extracting blood volume and oxygenation is of particular interest in clinical routines for tumor diagnostics and treatment follow up, since they are parameters of angiogenic processes. The quantification of those analytes in tissue can be done by physical modeling of light tissue interaction. The physical model used here is the random walk theory. However, for quantification and clinical usefulness, one has to account for multiple challenges. First, one must consider the effect of topology of the sample on measured physical parameters. Second, diffusion of light inside the tissue is dependent on the structure of the sample imaged. Thus, the structural conformation has to be taken into account. Third, clinical translation of imaging modalities is often hindered due to the complicated post-processing of data, not providing results in real-time. In this thesis, two imaging modalities are being utilized, where the first one, diffuse multi-spectral imaging, is based on absorption contrast and spectral characteristics and the second one, Optical Coherence Tomography (OCT), is based on scattering changes within the tissue. Multi-spectral imaging can provide spatial distributions of blood volume and blood oxygenation and OCT yields 3D structural images with micrometer resolution. In order to address the challenges mentioned above, a curvature correction algorithm for taking the topology into account was developed. Without taking curvature of the object into account, reconstruction of optical properties is not accurate. The method developed removes this artifact and recovers the underlying data, without the necessity of measuring the object's shape. The next step was to recover blood volume and oxygenation values in real time. Principal Component Analysis (PCA) on multi spectral images is
PREFACE: Strangeness in Quark Matter (SQM2009) Strangeness in Quark Matter (SQM2009)
Fraga, Eduardo; Kodama, Takeshi; Padula, Sandra; Takahashi, Jun
2010-09-01
The 14th International Conference on Strangeness in Quark Matter (SQM2009) was held in Brazil from 27 September to 2 October 2009 at Hotel Atlântico, Búzios, Rio de Janeiro. The conference was jointly organized by Universidade Federal do Rio de Janeiro, Universidade Estadual de Campinas, Centro Brasileiro de Pesquisas Físicas, Universidade de São Paulo, Universidade Estadual Paulista and Universidade Federal do Rio Grande do Sul. Over 120 scientists from Argentina, Brazil, China, France, Germany, Hungary, Italy, Japan, Mexico, The Netherlands, Norway, Poland, Russia, Slovakia, South Africa, Switzerland, the UK and the USA gathered at the meeting to discuss the physics of hot and dense matter through the signals of strangeness and also the behavior of heavy quarks. Group photograph The topics covered were strange and heavy quark production in nuclear collisions, strange and heavy quark production in elementary processes, bulk matter phenomena associated with strange and heavy quarks, and strangeness in astrophysics. In view of the LHC era and many other upcoming new machines, together with recent theoretical developments, sessions focused on `New developments and new facilities' and 'Open questions' were also included. A stimulating round-table discussion on 'Physics opportunities in the next decade in the view of strangeness and heavy flavor in matter' was chaired in a relaxed atmosphere by Grazyna Odyniec and conducted by P Braun-Munzinger, W Florkowski, K Redlich, K Šafařík and H Stöcker, We thank these colleagues for pointing out to young participants new physics directions to be pursued. We also thank J Dunlop and K Redlich for excellent introductory lectures given on the Sunday evening pre-conference session. In spite of the not-so-helpful weather, the beauty and charm of the town of Búzios helped to make the meeting successful. Nevertheless, the most important contributions were the excellent talks, whose contents are part of these proceedings, given
Das, Aritra; Bandyopadhyay, Aritra; Roy, Pradip K.; Mustafa, Munshi G.
2018-02-01
We have systematically constructed the general structure of the fermion self-energy and the effective quark propagator in the presence of a nontrivial background such as a hot magnetized medium. This is applicable to both QED and QCD. The hard thermal loop approximation has been used for the heat bath. We have also examined transformation properties of the effective fermion propagator under some of the discrete symmetries of the system. Using the effective fermion propagator we have analyzed the fermion dispersion spectra in a hot magnetized medium along with the spinor for each fermion mode obtained by solving the modified Dirac equation. The fermion spectra is found to reflect the discrete symmetries of the two-point functions. We note that for a chirally symmetric theory the degenerate left- and right-handed chiral modes in vacuum or in a heat bath get separated and become asymmetric in the presence of a magnetic field without disturbing the chiral invariance. The obtained general structure of the two-point functions is verified by computing the three-point function, which agrees with the existing results in one-loop order. Finally, we have computed explicitly the spectral representation of the two-point functions which would be very important to study the spectral properties of the hot magnetized medium corresponding to QED and QCD with background magnetic field.
Enhancement of strangeness in relativistic heavy ion collisions
International Nuclear Information System (INIS)
Grassi, F.; Heiselberg, H.
1990-01-01
The theoretical and experimental conditions to obtain strange particle production in heavy ion collisions at high energies are discussed, by analysis of results obtained from Super Proton Synchrotron - CERN and Alternating Gradient Synchrotron in United States. (M.C.K.)
Prospects for Strangeness Production in pp Collisions at LHC
Kraus, I.; Oeschler, H.; Redlich, K.
2010-01-01
Prospects for strangeness production in pp collisions at the Large Hadron Collider (LHC) are discussed within the statistical model. Firstly, the system size and the energy dependence of the model parameters are extracted from existing data and extrapolated to LHC energy. Particular attention is paid to demonstrate that the chemical decoupling temperature is independent of the system size. In the energy regime investigated so far, strangeness production in pp interactions is strongly influenced by the canonical suppression effects. At LHC energies, this influence might be reduced. Particle ratios with particular sensitivity to canonical effects are indicated. Secondly, the relation between the strangeness production and the charged-particle multiplicity in pp interactions is investigated. In this context the multiplicity dependence studied at Tevatron is of particular interest. There, the trend in relative strangeness production known from centrality dependent heavy-ion collisions is not seen in multiplicity ...
Mass-radius relation for magnetized strange quark stars
Martinez, A Perez; Paret, D Manreza
2010-01-01
We review the stability of magnetized strange quark matter (MSQM) within the phenomenological MIT bag model, taking into account the variation of the relevant input parameters, namely, the strange quark mass, baryon density, magnetic field and bag parameter. A comparison with magnetized asymmetric quark matter in $\\beta$-equilibrium as well as with strange quark matter (SQM) is presented. We obtain that the energy per baryon for MSQM decreases as the magnetic field increases, and its minimum value at vanishing pressure is lower than the value found for SQM, which implies that MSQM is more stable than non-magnetized SQM. The mass-radius relation for magnetized strange quark stars is also obtained in this framework.
Theoretical study of nuclear physics with strangeness at Nankai University
International Nuclear Information System (INIS)
Ning Pingzhi
2007-01-01
Theoretical study of nuclear physics with strangeness from the nuclear physics group at Nankai university is briefly introduced. Theoretical calculations on hyperon mean free paths in nuclear medium have been done. The other 4 topics in the area of strangeness nuclear physics are the effect of different baryon impurities in nucleus, the heavy flavored baryon hypernuclei, the eta-mesons in nuclear matter and the properties of kaonic nuclei. (authors)
Higher dimensional strange quark matter solutions in self creation cosmology
Energy Technology Data Exchange (ETDEWEB)
Şen, R., E-mail: ramazansen-1991@hotmail.com [Institute for Natural and Applied Sciences, Çanakkale Onsekiz Mart University, 17020, Çanakkale (Turkey); Aygün, S., E-mail: saygun@comu.edu.tr [Department of Physics, Art and Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale 17020 (Turkey)
2016-03-25
In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.
'The Strange Case of Angelica': affinity between Fantastic and Documental
Directory of Open Access Journals (Sweden)
Rita Benis
2017-01-01
Full Text Available In 2010, Manoel de Oliveira films The Strange Case of Angélica, a project from the early fifties of the past century. In it, the confrontation between the documentary side of the film (the sequences where the protagonist, Isaac, photographs the workers in the vineyards and the fantastic sequences (the episodes with the ghost of Angelica seems to indicate an affinity. That "shadow of resemblance" Petrarch spoke about to his close friend Giovanni Boccaccio: "... he who imitates must proceed in such a way that what he does is similar but not equal, and that the likeness is not that which exists between the original and the copy, that the more similar the more it is praiseworthy, but instead a likeness which one finds in the similarities between a father and a son, among which, though much difference is made in the aspect, there is, however, as a shadow of resemblance, which the painters call 'aire' (... "(apud Rodrigues 2003: 5. A "family air" as a living correlation that comes to our encounter and which is felt as an immediate understanding (and not as definable evidence. In the film, the shiver that assaults us through the apparition of Angelica seems to announce something that goes beyond this same vision: the eminence of the disappearance of the vineyard workers and their gestures, a loss of connection between Man and Nature. The present affinity - Angelica / diggers - is mirrored in Isaac's immense melancholy, the only person apparently capable of perceiving the landscape, the "air" that this relationship evokes. The whole film is crossed by the glimpse of this indefinable kinship, by the porosity between the sensitive world and the spectral world, the permanent interweaving of visibilities / invisibilities that allow us access to this other cinematographic space-time, more percept than visible, in which, according to Manoel de Oliveira, the phantom of physical reality reveals itself "more real, however, than reality itself" (Baecque and
Niu, Jun; Ren, Yi; Liu, Qing Huo
2017-10-02
In this work, we propose a numerical solver combining the spectral element - boundary integral (SEBI) method with the periodic layered medium dyadic Green's function. The periodic layered medium dyadic Green's function is formulated under matrix representation. The surface integral equations (SIEs) are then implemented as the radiation boundary condition to truncate the top and bottom computation domain. After describing the interior computation domain with the vector wave equations, and treating the lateral boundaries with Bloch periodic boundary conditions, the whole computation domains are discretized with mixed-order Gauss- Lobatto-Legendre basis functions in the SEBI method. This method avoids the discretization of the top and bottom layered media, so it can be much more efficient than conventional methods. Numerical results validate the proposed solver with fast convergence throughout the whole computation domain and good performance for typical multiscale nano-optical applications.
['How strange is the patient to me?'
Karger, André; Lindtner-Rudolph, Heide; Mroczynski, Robert; Ziem, Alexander; Joksimovic, Ljiljana
2017-09-01
'How strange is the patient to me?' Physicians' attitudes and expectations toward treating patients with a migration background Objectives: Undergraduate and postgraduate training in cultural competence remains a challenging issue. It might be useful to integrate culturally sensitive learning objectives in existing curricula. As part of a needs assessment, this qualitative study examined the prototypical experiences in clinical routines with patients with a migration background. Twenty physicians took part in half-structured narrative interviews, which were then analyzed by linguistic-ethnographic conversation analysis. The main reasons for difficulties in patient-physician relation proved to be language barriers. Assignments of professional interpreters were rated critically. Physicians attributed the responsibility for successful communication mainly to the patient. The physicians saw little need for training in cultural competence. The integration of learning objectives related to cultural sensibility in existing curricula would seem to be useful, especially because the physicians interviewed reported little need for additional training on their own. The importance of implied negative attitudes and stereotypes in creating a culturally sensitive approach should be taken into account.
New results on mesons containing strange quarks
Energy Technology Data Exchange (ETDEWEB)
Aston, D.; Awaji, N.; Bienz, T.; Bird, F.; D' Amore, J.; Dunwoodie, W.; Endorf, R.; Fujii, K.; Hayashii, H.; Iwata, S.
1987-01-01
Recent results of strange and strangeonium mesons are presented. The data come from a high sensitivity study (4.1 ev/nb) of K/sup -/p interactions at 11 GeV/c using the LASS spectrometer at SLAC. The complete leading orbitally-excited K* series up through J/sup P/ = 5/sup -/ and a substantial number of the expected underlying states are observed decaying into K/sup -/..pi../sup +/, anti K/sub 3//sup 0/..pi../sup +/..pi../sup -/, and K eta final states, and new measurements are made of their masses, widths, and branching ratios. Production of strangeonium states via hypercharge exchange is observed into K/sub 3//sup 0/K/sub 3//sup 0/, K/sup -/K/sup +/, and K/sub 3//sup 0/K/sup + -/..pi../sup - +/ final states. The leading orbitally-excited phi series through J/sup P/ = 3/sup -/ is clearly seen and evidence is presented for additional high spin structure in the 2.2 GeV/c/sup 2/ region. No f/sub 2/(1720) is observed. The K/sub 3//sup 0/K/sup + -/..pi../sup - +/ spectrum is dominated by 1/sup +/(K* anti K + anti K* K) production in the region below 1.6 GeV/c/sup 2/. These results are compared with data on the same systems produced by different production mechanisms. 12 refs., 28 figs.
Three-body hadron systems with strangeness
Energy Technology Data Exchange (ETDEWEB)
Martínez Torres, A., E-mail: amartine@if.usp.br [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05314-970 São Paulo, SP (Brazil); Khemchandani, K.P. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05314-970 São Paulo, SP (Brazil); Jido, D. [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Kanada-En' yo, Y. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Oset, E. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia (Spain)
2013-09-20
Recently, many efforts are being put in studying three-hadron systems made of mesons and baryons and interesting results are being found. In this talk, we summarize the main features of the formalism used to study such three hadron systems with strangeness S=−1,0 within a framework built on the basis of unitary chiral theories and solution of the Faddeev equations. In particular, we present the results obtained for the πK{sup ¯}N, KK{sup ¯}N and KKK{sup ¯} systems and their respective coupled channels. In the first case, we find four Σ's and two Λ's with spin-parity J{sup P}=1/2{sup +}, in the 1500–1800 MeV region, as two meson-one baryon s-wave resonances. In the second case, a 1/2{sup +}N{sup ⁎} around 1900 MeV is found. For the last one a kaon close to 1420 MeV is formed, which can be identified with K(1460)
Khodel, V A
2001-01-01
Spectral functions of strongly correlated two-dimensional electron systems in solids are studied on the assumption that these systems undergo as phase transition, called fermion condensation, whose characteristic feature is flattening of the electron spectrum epsilon (p). Unlike the previous models in the present study, the decay of single-particle states is properly taken into account. Results of calculations are shown to be in qualitative agreement with ARPES data. The universal behavior of the ration Im EPSILON(p, epsilon, T)/T as a function of x = epsilon/T are found to be reproduced reasonably well. However, in the present model this behavior is destroyed in vicinities of the van Hove points where the fermion condensate resides
Boelman, Natalie T; Magney, Troy S; Logan, Barry A; Griffin, Kevin L; Eitel, Jan U H; Greaves, Heather; Prager, Case M; Vierling, Lee A
2016-09-01
As the Arctic warms, tundra vegetation is becoming taller and more structurally complex, as tall deciduous shrubs become increasingly dominant. Emerging studies reveal that shrubs exhibit photosynthetic resource partitioning, akin to forests, that may need accounting for in the "big leaf" net ecosystem exchange models. We conducted a lab experiment on sun and shade leaves from S. pulchra shrubs to determine the influence of both constitutive (slowly changing bulk carotenoid and chlorophyll pools) and facultative (rapidly changing xanthophyll cycle) pigment pools on a suite of spectral vegetation indices, to devise a rapid means of estimating within canopy resource partitioning. We found that: (1) the PRI of dark-adapted shade leaves (PRIo) was double that of sun leaves, and that PRIo was sensitive to variation among sun and shade leaves in both xanthophyll cycle pool size (V + A + Z) (r (2) = 0.59) and Chla/b (r (2) = 0.64); (2) A corrected PRI (difference between dark and illuminated leaves, ΔPRI) was more sensitive to variation among sun and shade leaves in changes to the epoxidation state of their xanthophyll cycle pigments (dEPS) (r (2) = 0.78, RMSE = 0.007) compared to the uncorrected PRI of illuminated leaves (PRI) (r (2) = 0.34, RMSE = 0.02); and (3) the SR680 index was correlated with each of (V + A + Z), lutein, bulk carotenoids, (V + A + Z)/(Chla + b), and Chla/b (r (2) range = 0.52-0.69). We suggest that ΔPRI be employed as a proxy for facultative pigment dynamics, and the SR680 for the estimation of constitutive pigment pools. We contribute the first Arctic-specific information on disentangling PRI-pigment relationships, and offer insight into how spectral indices can assess resource partitioning within shrub tundra canopies.
Yeh, Hsiang J.; Guindani, Michele; Vannucci, Marina; Haneef, Zulfi; Stern, John M.
2018-01-01
Estimation of functional connectivity (FC) has become an increasingly powerful tool for investigating healthy and abnormal brain function. Static connectivity, in particular, has played a large part in guiding conclusions from the majority of resting-state functional MRI studies. However, accumulating evidence points to the presence of temporal fluctuations in FC, leading to increasing interest in estimating FC as a dynamic quantity. One central issue that has arisen in this new view of connectivity is the dramatic increase in complexity caused by dynamic functional connectivity (dFC) estimation. To computationally handle this increased complexity, a limited set of dFC properties, primarily the mean and variance, have generally been considered. Additionally, it remains unclear how to integrate the increased information from dFC into pattern recognition techniques for subject-level prediction. In this study, we propose an approach to address these two issues based on a large number of previously unexplored temporal and spectral features of dynamic functional connectivity. A Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is used to estimate time-varying patterns of functional connectivity between resting-state networks. Time-frequency analysis is then performed on dFC estimates, and a large number of previously unexplored temporal and spectral features drawn from signal processing literature are extracted for dFC estimates. We apply the investigated features to two neurologic populations of interest, healthy controls and patients with temporal lobe epilepsy, and show that the proposed approach leads to substantial increases in predictive performance compared to both traditional estimates of static connectivity as well as current approaches to dFC. Variable importance is assessed and shows that there are several quantities that can be extracted from dFC signal which are more informative than the traditional mean or variance of dFC. This work
Spectral analysis of non-self-adjoint Jacobi operator associated with Jacobian elliptic functions
Czech Academy of Sciences Publication Activity Database
Siegl, Petr; Štampach, F.
2017-01-01
Roč. 11, č. 4 (2017), s. 901-928 ISSN 1846-3886 Grant - others:GA ČR(CZ) GA13-11058S Institutional support: RVO:61389005 Keywords : Non-self-adjoint Jacobi operator * Weyl m-function * Jacobian elliptic functions Subject RIV: BE - Theoretical Physics OBOR OECD: Pure mathematics Impact factor: 0.440, year: 2016
Production of multi-strange hyperons and strange resonances in the NA49 experiment
Barton, R A; Anticic, T; Bächler, J; Barna, D; Barnby, L S; Bartke, Jerzy; Betev, L; Bialkowska, H; Billmeier, A; Blume, C; Blyth, C O; Boimska, B; Botje, M; Bracinik, J; Brady, F P; Bramm, R; Brun, R; Buncic, P; Carr, L; Cebra, D; Cooper, G E; Cramer, J G; Csató, P; Eckhardt, F; Ferenc, D; Filip, P; Fischer, H G; Fodor, Z; Foka, P Y; Freund, P; Friese, V; Ftácnik, J; Gál, J; Gazdzicki, M; Georgopoulos, G; Gladysz-Dziadus, E; Hegyi, S; Hlinka, V; Höhne, C; Igo, G; Ivanov, M; Jacobs, P; Janik, R; Jones, P G; Kadija, K; Kolesnikov, V I; Kollegger, T; Kowalski, M; Van Leeuwen, M; Lévai, Peter; Malakhov, A I; Margetis, S; Markert, C; Mayes, B W; Melkumov, G L; Mischke, A; Molnár, J; Nelson, J M; Odyniec, Grazyna Janina; Pálla, G; Panagiotou, A D; Petridis, A; Pikna, M; Pinsky, L; Poskanzer, A M; Prindle, D J; Pühlhofer, F; Reid, J G; Renfordt, R E; Retyk, W; Ritter, H G; Röhrich, D; Roland, C; Roland, G; Rybicki, A; Sammer, T; Sandoval, A; Sann, H; Schäfer, E; Schmitz, N; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Snellings, R; Squier, G T A; Stock, Reinhard; Strmen, P; Ströbele, H; Susa, T; Szarka, I; Szentpétery, I; Sziklai, J; Toy, M; Trainor, T A; Trentalange, S; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Voloshin, S A; Vranic, D; Wang, F; Weerasundara, D D; Wenig, S; Wetzler, A; Whitten, C; Xu, N; Yates, T A; Yoo, I K; Zimányi, J
2001-01-01
The NA49 large-acceptance hadron spectrometer has measured strange and multi-strange hadrons from Pb+Pb and p+p collisions at the CERN SPS. Preliminary results for the transverse mass and rapidity distributions for X and Xi /sup +/ from central Pb+Pb collisions at 158 GeV c/sup -1//nudeon are presented. Fully integrated yields per event of 4.42+or-0.31 and 0.74+0.04 are found for Xi /sup -/ and Xi /sup +/, respectively, leading to a 4 pi Xi /sup +// Xi /sup -/ ratio of 0.17+or-0.02. The ratio Xi /sup +// Xi /sup -/ at mid-rapidity is found to be 0.22+or-0.04, agreeing with previously published values. In addition, preliminary data on the Lambda (1520) and phi (1020) resonances are presented. The Lambda (1520) multiplicity for p+p collisions is found to be 0.012+or-0.003. No signal is observed for Pb+Pb collisions and a production upper limit of 1.36 Lambda (1520) per event indicates an apparent suppression when comparing with scaled p+p data. Integrated phi (1020) yields per event are found to be 7.6+or-1.1 f...
Discovery Mondays - “Relativity Theory... strange! Did you say strange?”
2005-01-01
We all know that famous equation E=mc2, but do you know its true significance? Relativity theory: what is the meaning of this strange concept which plunged the physics world into turmoil 100 years ago? What effects can be observed today? Did you know that the GPS system would not work if relativity was not taken into account? The next Discovery Monday will take you on a journey into a strange world. You will be able to witness for yourselves the consequences of Einstein's theories. How, for example, can relativity theory be tested by eclipses? What consequences does it have for the accelerators at CERN? How can it be used to measure the mass of enormous black holes? And finally, how is it linked to the puzzle surrounding the missing mass of the Universe? As part of the World Year of Physics, the next Discovery Monday will be dedicated to one of the theories that Einstein published in 1905, his “annus mirabilis”. Join us at the Microcosm (Reception Building 33, Meyrin site), on Monday 5th September ...
Discovery Mondays - “Relativity Theory... strange! Did you say strange?”
2005-01-01
We all know that famous equation E=mc2, but do you know its true significance? Relativity theory: what is the meaning of this strange concept which plunged the physics world into turmoil 100 years ago? What effects can be observed today? Did you know that the GPS system would not work if relativity was not taken into account? The next Discovery Monday will take you on a journey into a strange world. You will be able to witness for yourselves the consequences of Einstein's theories. How, for example, can relativity theory be tested by eclipses? What consequences does it have for the accelerators at CERN? How can it be used to measure the mass of enormous black holes? And finally, how is it linked to the puzzle surrounding the missing mass of the Universe? As part of the World Year of Physics, the next Discovery Monday will be dedicated to one of the theories that Einstein published in 1905, his “annus mirabilis”. Join us at the Microcosm (Reception Building 33, Meyrin site), on Monday 5th Septemb...
Unlocking color and flavor in superconducting strange quark matter
International Nuclear Information System (INIS)
Alford, Mark; Berges, Juergen; Rajagopal, Krishna
1999-01-01
We explore the phase diagram of strongly interacting matter with massless u and d quarks as a function of the strange quark mass m s and the chemical potential μ for baryon number. Neglecting electromagnetism, we describe the different baryonic and quark matter phases at zero temperature. For quark matter, we support our model-independent arguments with a quantitative analysis of a model which uses a four-fermion interaction abstracted from single-gluon exchange. For any finite m s , at sufficiently large μ we find quark matter in a color-flavor-locked state which leaves a global vector-like SU(2) color+L+R symmetry unbroken. As a consequence, chiral symmetry is always broken in sufficiently dense quark matter. As the density is reduced, for sufficiently large m s we observe a first-order transition from the color-flavor-locked phase to color superconducting phase analogous to that in two-flavor QCD. At this unlocking transition chiral symmetry is restored. For realistic values of m s our analysis indicates that chiral symmetry breaking may be present for all densities down to those characteristic of baryonic matter. This supports the idea that quark matter and baryonic matter may be continuously connected in nature. We map the gaps at the quark Fermi surfaces in the high density color-flavor-locked phase onto gaps at the baryon Fermi surfaces at low densities
CERN. Geneva
2015-01-01
The production of strange hadrons has long been studied in heavy-ion collisions to investigate the formation of a deconfined medium. The interpretation of these data depends critically on the understanding of strange-particle production in smaller ‘baseline’ collision systems such as proton-proton and proton-ion. The ALICE experiment is well-suited to the measurement of identified charged hadrons and weakly-decaying strange and multi-strange baryons and has collected large samples of minimum-bias pp and p-Pb collisions. Characterising the collisions according to their final-state multiplicities reveals an enhancement in the production of strange and multi-strange particles, relative to light flavoured hadrons. This detailed information is valuable in understanding the mechanisms that control the production of strange particles.
International Nuclear Information System (INIS)
Poquerusse, A.; Alexiou, S.
1999-01-01
In this work we review the status of the standard line broadening theory for plasmas and fill in the existing gap, i.e., the partially overlapping case for ions lines, by deriving expressions as well as fast and accurate numerical approximations for the relevant functions, namely the modified Bessel function of imaginary order and its derivative with respect to argument. These functions also arise in the context of the theory of Coulomb excitation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Neutral strange particle production in π-p interactions at 16 GeV/c
International Nuclear Information System (INIS)
Balea, E.; Berceanu, S.; Coca, C.; Sararu, A.; Karnaukhov, M.V.; Moroz, I.V.; Kellner, G.; Mihul, A.
1979-06-01
The production of Ksub(s)sup(0), Λ and anti Λ in π - p interactions at 16 GeV/c is investigated. Cross sections for single strange particle are determined, both inclusively and as functions of the charged multiplicity. Some characteristics of the multiplicity distributions are also discussed. Inclusive distributions are studied as function of longitudinal and transverse variables of Vsup(0) and missing mass squared. The average charged multiplicities of the systems recoiling against the Λ and Ksub(s)sup(0) are presented. (author)
Searching for Strange Quark Matter Objects in Exoplanets
Energy Technology Data Exchange (ETDEWEB)
Huang, Y. F.; Yu, Y. B., E-mail: hyf@nju.edu.cn [Department of Astronomy, School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)
2017-10-20
The true ground state of hadronic matter may be strange quark matter (SQM). Consequently, observed pulsars may actually be strange quark stars, but not neutron stars. However, proving or disproving the SQM hypothesis still remains a difficult problem to solve due to the similarity between the macroscopical characteristics of strange quark stars and neutron stars. Here, we propose a hopeful method to probe the existence of SQM. In the framework of the SQM hypothesis, strange quark dwarfs and even strange quark planets can also stably exist. Noting that SQM planets will not be tidally disrupted even when they get very close to their host stars due to their extreme compactness, we argue that we could identify SQM planets by searching for very close-in planets among extrasolar planetary systems. Especially, we should keep our eyes on possible pulsar planets with orbital radius less than ∼5.6 × 10{sup 10} cm and period less than ∼6100 s. A thorough search in the currently detected ∼2950 exoplanets around normal main-sequence stars has failed to identify any stable close-in objects that meet the SQM criteria, i.e., lying in the tidal disruption region for normal matter planets. However, the pulsar planet PSR J1719-1438B, with an orbital radius of ∼6 × 10{sup 10} cm and orbital period of 7837 s, is, encouragingly, found to be a good candidate.
Anisotropic strange stars under simplest minimal matter-geometry coupling in the f (R ,T ) gravity
Deb, Debabrata; Guha, B. K.; Rahaman, Farook; Ray, Saibal
2018-04-01
We study strange stars in the framework of f (R ,T ) theory of gravity. To provide exact solutions of the field equations it is considered that the gravitational Lagrangian can be expressed as the linear function of the Ricci scalar R and the trace of the stress-energy tensor T , i.e. f (R ,T )=R +2 χ T , where χ is a constant. We also consider that the strange quark matter (SQM) distribution inside the stellar system is governed by the phenomenological MIT bag model equation of state (EOS), given as pr=1/3 (ρ -4 B ) , where B is the bag constant. Further, for a specific value of B and observed values of mass of the strange star candidates we obtain the exact solution of the modified Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of f (R ,T ) gravity and have studied in detail the dependence of the different physical parameters, like the metric potentials, energy density, radial and tangential pressures and anisotropy etc., due to the chosen different values of χ . Likewise in GR, as have been shown in our previous work [Deb et al., Ann. Phys. (Amsterdam) 387, 239 (2017), 10.1016/j.aop.2017.10.010] in the present work also we find maximum anisotropy at the surface which seems an inherent property of the strange stars in modified f (R ,T ) theory of gravity. To check the physical acceptability and stability of the stellar system based on the obtained solutions we have performed different physical tests, viz., the energy conditions, Herrera cracking concept, adiabatic index etc. In this work, we also have explained the effects, those are arising due to the interaction between the matter and the curvature terms in f (R ,T ) gravity, on the anisotropic compact stellar system. It is interesting to note that as the values of χ increase the strange stars become more massive and their radius increase gradually so that eventually they gradually turn into less dense compact objects. The present study reveals that the modified f (R ,T ) gravity is a suitable
Infinite-component conformal field-spectral representations of the two-point function
International Nuclear Information System (INIS)
Zaikov, R.P.; Cholakov, V.D.
1976-01-01
Fields in Minkowsky space are considered, transforming under the class 2 representations of the conformal group (non-fundamental fields). In this case the generators of the stability subgroup acting on the spin variables are represented in a nontrivial way and, respectively, the representations of this subgroup are infinite-dimensional. To specify the irreducible representations of the conformal group SO(4,2) the Casimir operators are used. The conformal invariant two-point function of field with arbitrary integer spin is obtained. This function turns out to be positively definite in all cases of unitary representations of SO(4,2), but is local only for fundamental fields. In the case of one fundamental field and the other non-fundamental, the two-point function is an intertwining operator. (S.P.)
Energy Technology Data Exchange (ETDEWEB)
Verreck, Devin, E-mail: devin.verreck@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium); Verhulst, Anne S.; Mocuta, Anda; Collaert, Nadine; Thean, Aaron [imec, Kapeldreef 75, 3001 Leuven (Belgium); Van de Put, Maarten; Magnus, Wim [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Sorée, Bart [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium)
2015-10-07
Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In{sub 0.53}Ga{sub 0.47}As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET.
Non-Equilibrium Heavy Flavored Hadron Yields from Chemical Equilibrium Strangeness-Rich QGP
Kuznetsova, Inga; Rafelski, Johann
2008-01-01
The yields of heavy flavored hadrons emitted from strangeness-rich QGP are evaluated within chemical non-equilibrium statistical hadronization model, conserving strangeness, charm, and entropy yields at hadronization.
Energy Technology Data Exchange (ETDEWEB)
Kaptari, Leonya P. [University of Perugia (Italy); INFN-Perugia (Italy); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Joint Inst. for Nuclear Research, Dubna (Russia); Del Dotto, Alessio [University of Rome, Rome (Italy); INFN-Roma (Italy); Pace, Emanuele [University of Rome (Italy); INFN-Tor Vergata (Italy); Salme, Giovanni [INFN-Roma (Italy); Scopetta, Sergio [University of Perugia (Italy); INFN-Perugia (Italy)
2014-03-01
The spin dependent spectral function, relevant to describe polarized electron scattering off polarized {sup 3}He, is studied, within the Plane Wave Impulse Approximation and taking into account final state interaction effects (FSI). In particular, the case of semi-inclusive deep inelastic scattering (SiDIS) is considered, evaluating the FSI of the hadronizing quark with the nuclear remnants. It is shown that particular kinematical regions can be selected to minimize the latter effects, so that parton distributions in the neutron can be accessed. On the other side, in the regions where FSI dominates, the considered reactions can elucidate the mechanism of hadronization of quarks during the propagation in the nuclear medium. It is shown that the obtained spin dependent spectral function can be directly applied to investigate the SiDIS reaction e-vector + {sup 3}He-vector to h+X, where the hadron h originates from the current fragmentation. Experiments of this type are being performed at JLab to extract neutron transverse momentum dependent parton distributions. As a case study, a different SiDIS process, with detection of slow (A-1) systems in the final state, is considered in more details, in order to establish when nuclear structure effects and FSI can be distinguished from elementary reactions on quasi-free nucleons. It is argued that, by a proper choice of kinematics, the origin of nuclear effects in polarized DIS phenomena and the details of the interaction between the hadronizing quark and the nuclear medium can be investigated at a level which is not reachable in inclusive deep inelastic scattering.
The strange flight behaviour of slowly spinning soccer balls
Mizota, Taketo; Kurogi, Kouhei; Ohya, Yuji; Okajima, Atsushi; Naruo, Takeshi; Kawamura, Yoshiyuki
2013-05-01
The strange three-dimensional flight behaviour of slowly spinning soccer balls is one of the most interesting and unknown phenomenon associated with the trajectories of sports balls. Many spectators have experienced numerous exciting and emotional instances while observing the curious flight behaviour of these balls. We examine the aerodynamic mechanisms of erratic ball behaviours through real flight observations, unsteady force measurements and flow pattern visualisations. The strange behaviour is elucidated by the relationship between the unsteady forces on the ball and the wake flow. The irregular changes in position for twin longitudinal vortices have already been discovered in the supercritical Reynolds number region of a sphere with a smooth surface. This finding is applicable to the strange behaviour of the flight of soccer balls with this supercritical flow. The players, spectators, and television viewers will gain greater insight into the effects of soccer ball flights.
AINSWORTH'S STRANGE SITUATION PROCEDURE: THE ORIGIN OF AN INSTRUMENT.
Van Rosmalen, Lenny; Van der Veer, René; Van der Horst, Frank
2015-01-01
The American-Canadian psychologist Mary Ainsworth (1913-1999) developed the Strange Situation Procedure (SSP) to measure mother-child attachment and attachment theorists have used it ever since. When Ainsworth published the first results of the SSP in 1969, it seemed a completely novel and unique instrument. However, in this paper we will show that the SSP had many precursors and that the road to such an instrument was long and winding. Our analysis of hitherto little-known studies on children in strange situations allowed us to compare these earlier attempts with the SSP. We argue that it was the combination of Ainsworth's working experience with William Blatz and John Bowlby, her own research in Uganda and Baltimore, and the strong connection of the SSP with attachment theory, that made the SSP differ enough from the other strange situation studies to become one of the most widely used instruments in developmental psychology today. © 2015 Wiley Periodicals, Inc.
RX J1856.5-3754: A Strange Star with Solid Quark Surface?
Zhang, Xiaoling; Xu, Renxin; Zhang, Shuangnan
2003-01-01
The featureless spectra of isolated 'neutron stars' may indicate that they are actually bare strange stars but a definitive conclusion on the nature of the compact objects cannot be reached until accurate and theoretically calculated spectra of the bare quark surface are known. However due to the complex nonlinearity of quantum chromodynamics it is almost impossible to present a definitive and accurate calculation of the density-dominated quark-gluon plasma from the first principles. Nevertheless it was suggested that cold quark matter with extremely high baryon density could be in a solid state. Within the realms of this possibility we have fitted the 500ks Chandra LETG/HRC data for the brightest isolated neutron star RX 51856.5-3754 with a phenomenological spectral model and found that electric conductivity of quark matter on the stellar surface is about 1.5 x 10(exp 16)/s.
Strangeness production in Si + Au interactions at 14.6 GeV/c per nucleon
International Nuclear Information System (INIS)
Hansen, O.
1989-01-01
Production of strange particles in proton-proton interactions is systematically suppressed relative to the production of non-strange particles. A first order goal of experiments on strangeness production in nucleus-nucleus collisions is to find out if strangeness is suppressed in a way similar to the p-p interactions or whether the nuclear environment changes the behaviour. This paper investigates this possibility. 13 refs., 1 tab
Baryon number and strangeness: signals of a deconfinedantecedent
Energy Technology Data Exchange (ETDEWEB)
Majumder, A.; Koch, V.; Randrup, J.
2005-06-29
The correlation between baryon number and strangeness is used to discern the nature of the deconfined matter produced at vanishing chemical potential in high-energy nuclear collisions at the BNL RHIC. Comparisons of results of various phenomenological models with correlations extracted from lattice QCD calculations suggest that a quasi-particle picture applies. At finite baryon densities, such as those encountered at the CERN SPS, it is demonstrated that the presence of a first-order phase transition and the accompanying development of spinodal decomposition would significantly enhance the number of strangeness carriers and the associated fluctuations.
Using the Moon as a Strange Quark Nugget Detector
Energy Technology Data Exchange (ETDEWEB)
Herrin, Eugene T. [Geology Department, Southern Methodist University, Dallas, TX 75275 (United States); Rosenbaum, Doris C. [Physics Department, Southern Methodist University, Dallas, TX 75275 (United States); Teplitz, Vigdor L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2007-11-15
We review the romance and mystery of strange quark matter (SQM), including: its basics, our recent work on bounds on the abundance of ton-range strange quark nuggets (SQNs) from Earth seismology, potential SQN bounds from a possible seismic search on the Moon, and our recent bounds on SQNs in the 10 kilogram to ton range from the data of Apollo-implanted seismometers. Finally, we speculate a bit on using the sun or the solar system to detect passage of SQNs of much greater mass than the aforementioned.
A strange horn between Paolo Mantegazza and Charles Darwin.
Garbarino, Carla; Mazzarello, Paolo
2013-09-01
During the preparation of an exhibition in Pavia dedicated to the centennial anniversary of the death of the Italian Pathologist Paolo Mantegazza, a strange cheratinic horn was found at the Museum for the History of the University of Pavia labelled as 'spur of a cock transplanted into an ear of a cow.' After some historical investigation, we found this strange object was at the centre of a scientific correspondence between Mantegazza and Charles Darwin, who made reference to it in his book The Variation of Animals and Plants under Domestication. Copyright © 2013 Elsevier Ltd. All rights reserved.
Quark core stars, quark stars and strange stars
International Nuclear Information System (INIS)
Grassi, F.
1988-01-01
A recent one flavor quark matter equation of state is generalized to several flavors. It is shown that quarks undergo a first order phase transition. In addition, this equation of state depends on just one parameter in the two flavor case, two parameters in the three flavor case, and these parameters are constrained by phenomenology. This equation of state is then applied to the hadron-quark transition in neutron stars and the determination of quark star stability, the investigation of strange matter stability and possible strange star existence. 43 refs., 6 figs
Single-particle spectral function of a generalized Hubbard model: Metal-insulator transition
Gagliano, E. R.; Aligia, A. A.; Arrachea, Liliana; Avignon, Michel
1995-05-01
A generalized Hubbard model with correlated hoppings is studied at half filling using exact diagonalization methods. For certain values of the hopping parameters our results for several static properties, the Drude weight and the single-particle spectra function, suggest the occurrence of a metal-insulator transition (MIT) at a finite value of the local Coulomb interaction Uc. We identify the regions of the hopping parameters where the MIT is of the Mott type. In these regions, for large U
Medium modification of strange hadronic resonances at SIS, RHIC and LHC energies
Tolos, Laura
2018-02-01
The properties of strange pseudoscalar and vectors mesons as well as strange baryon resonances in dense matter are reviewed. Some open questions on the properties of strange hadrons in medium are addressed, such as the experimental signatures of inmedium effects coming from the hadronic phase on the final observables in heavy-ion collisions for the experimental conditions at SIS, RHIC and LHC energies.
Extremals of Dirac operator spectral determinants and zeta functions, and Branson's conjecture
DEFF Research Database (Denmark)
Møller, Niels Martin
2007-01-01
Let (M,g) be a closed n-dimensional Riemannian spin manifold and let D be its Atiyah-Singer-Dirac operator. We study the variation of Riemannian metrics for the determinant and zeta function of D^2, and obtain results on finite index and local extremality at critical metrics. This involves the non......-trivial problem of a general, i.e. not only conformal, change of metrics of the spin geometry and Dirac operator, to compute the leading symbol of the pseudodifferential Hessian operator. There is a marked difference between even and odd n. For even n the determinant's Hessian has a log-polyhomogeneous symbol......, and we prove results on semi-boundedness of spectrum in this class. We study the Hessian by factoring out the pseudodifferential orthogonal projections onto invariant directions and find the pattern of extremal types. There is a modulo 4 periodic dependency (max, max, min, min) in the dimension of M...
Spectral Velocity Estimation using the Autocorrelation Function and Sparse data Sequences
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
2005-01-01
the sparse sequence and averaged over a pulse length. The 1:2 sequence using 2 flow emission for one b-Mode emissions showed a nearly indistinguishable spectrum compared to a Fourier spectrum calculated on the full data. The sparser sequences give a higher noise in the spectrum proportional to the sparseness......Ultrasound scanners can be used for displaying the distribution of velocities in blood vessels by finding the power spectrum of the received signal. It is desired to show a B-mode image for orientation and data for this has to be acquired interleaved with the flow data. Techniques for maintaining...... both the B-mode frame rate, and at the same time have the highest possible $f_{prf}$ only limited by the depth of investigation, are, thus, of great interest. The power spectrum can be calculated from the Fourier transform of the autocorrelation function $R_r(k)$. The lag $k$ corresponds...
Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps
Keller, Gerhard; Nowicki, Tomasz
1992-09-01
We study unimodal interval maps T with negative Schwarzian derivative satisfying the Collet-Eckmann condition | DT n ( Tc)|≧ Kλ {c/n} for some constants K>0 and λc>1 ( c is the critical point of T). We prove exponential mixing properties of the unique invariant probability density of T, describe the long term behaviour of typical (in the sense of Lebesgue measure) trajectories by Central Limit and Large Deviations Theorems for partial sum processes of the formS_n = Σ _{i = 0}^{n - 1} f(T^i x), and study the distribution of “typical” periodic orbits, also in the sense of a Central Limit Theorem and a Large Deviations Theorem. This is achieved by proving quasicompactness of the Perron Frobenius operator and of similar transfer operators for the Markov extension of T and relating the isolated eigenvalues of these operators to the poles of the corresponding Ruelle zeta functions.
isospin mixing in the 4He bound state and the nucleon strange form factor
Energy Technology Data Exchange (ETDEWEB)
Rocco Schiavilla
2006-10-11
The contribution of isospin admixtures in the ground state of the {sup 4}He nucleus is studied using wave functions derived from the most modern nuclear interactions, including isospin symmetry breaking terms. The present calculations show that this contribution is larger than previous estimates had indicated. Its effect on parity violating elastic scattering of polarized electrons from {sup 4}He is investigated. In particular, a simple analysis of the recently measured left-right asymmetry at low Q{sup 2} shows that the contribution of these isospin admixtures is of comparable magnitude to that associated with strangeness components in the nucleon electric form factor.
Assessment of the biological effects of 'strange' radiation
International Nuclear Information System (INIS)
Pryakhin, E.A.; Tryapitsina, G.A.; Urutskoyev, L.I.; Akleyev, A.V.
2006-01-01
The results from studies of the effects produced by electrical explosions of foils made from super pure materials in water point to the emergence of new chemical elements. An additional finding was the discharge of 'strange' radiation accompanying the transformation of chemical elements. However, currently, the mechanism involved in the interaction between 'strange' radiation and a substance or a biological entity remains obscure. Therefore, the aim of the present research is to investigate the biological effects of the 'strange' radiation. Pilot studies were performed at the RECOM RRC 'Kurchatov Institute' in April-May of 2004. The animals used in the experiment were female mice of C57Bl/6 line aged 80 days with body weight 16-18 g. The animals were exposed to radiation discharged during explosions of Ti foils in water and aqueous solutions. The cages with animals were placed at 1 m from the epicenter of the explosion. Explosions were carried out on the 19. (3 explosions), 20. (4 explosions) and 22. (3 explosions) of April, 2004 (explosions No1373 - No1382, respectively). The animals were assigned to 4 experimental groups comprised of 17-20 mice per group. The animals received experimental exposure within 1, 2 and 3 days of the experiment. In total, the experimental groups were exposed to 3, 7 and 10 explosions, respectively. In order to identify the biological reactions, the following parameters were estimated: number of nucleated cells in the bone marrow, number of CFU in the spleen after additional gamma-irradiation (6 Gy), cell composition of the bone marrow, the rate of erythrocytes with the different level of maturation in the bone marrow, the rate of erythrocytes with the micronuclei in the bone marrow, the reaction of bone marrow cells to additional gamma-irradiation (2 Gy), number of leucocytes in the peripheral blood, and cell composition of the peripheral blood. The following conclusions were drawn from these studies: 1. 'strange' radiation resulting
International Nuclear Information System (INIS)
Davy Kirkpatrick, J.; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Cushing, Michael C.; Mace, Gregory N.; Wright, Edward L.; McLean, Ian S.; Skrutskie, Michael F.; Eisenhardt, Peter R.; Mainzer, Amanda K.; Burgasser, Adam J.; Tinney, C. G.; Parker, Stephen; Salter, Graeme
2012-01-01
We present the discovery of another seven Y dwarfs from the Wide-field Infrared Survey Explorer (WISE). Using these objects, as well as the first six WISE Y dwarf discoveries from Cushing et al., we further explore the transition between spectral types T and Y. We find that the T/Y boundary roughly coincides with the spot where the J – H colors of brown dwarfs, as predicted by models, turn back to the red. Moreover, we use preliminary trigonometric parallax measurements to show that the T/Y boundary may also correspond to the point at which the absolute H (1.6 μm) and W2 (4.6 μm) magnitudes plummet. We use these discoveries and their preliminary distances to place them in the larger context of the solar neighborhood. We present a table that updates the entire stellar and substellar constituency within 8 pc of the Sun, and we show that the current census has hydrogen-burning stars outnumbering brown dwarfs by roughly a factor of six. This factor will decrease with time as more brown dwarfs are identified within this volume, but unless there is a vast reservoir of cold brown dwarfs invisible to WISE, the final space density of brown dwarfs is still expected to fall well below that of stars. We also use these new Y dwarf discoveries, along with newly discovered T dwarfs from WISE, to investigate the field substellar mass function. We find that the overall space density of late-T and early-Y dwarfs matches that from simulations describing the mass function as a power law with slope –0.5 < α < 0.0; however, a power law may provide a poor fit to the observed object counts as a function of spectral type because there are tantalizing hints that the number of brown dwarfs continues to rise from late-T to early-Y. More detailed monitoring and characterization of these Y dwarfs, along with dedicated searches aimed at identifying more examples, are certainly required.
Energy Technology Data Exchange (ETDEWEB)
Speed, Ann Elizabeth; Spahn, Olga Blum; Hsu, Alan Yuan-Chun
2009-09-01
Functional brain imaging is of great interest for understanding correlations between specific cognitive processes and underlying neural activity. This understanding can provide the foundation for developing enhanced human-machine interfaces, decision aides, and enhanced cognition at the physiological level. The functional near infrared spectroscopy (fNIRS) based event-related optical signal (EROS) technique can provide direct, high-fidelity measures of temporal and spatial characteristics of neural networks underlying cognitive behavior. However, current EROS systems are hampered by poor signal-to-noise-ratio (SNR) and depth of measure, limiting areas of the brain and associated cognitive processes that can be investigated. We propose to investigate a flexible, tunable, multi-spectral fNIRS EROS system which will provide up to 10x greater SNR as well as improved spatial and temporal resolution through significant improvements in electronics, optoelectronics and optics, as well as contribute to the physiological foundation of higher-order cognitive processes and provide the technical foundation for miniaturized portable neuroimaging systems.
Cui, Qi N; Fudemberg, Scott J; Resende, Arthur F; Vu, Thuy-Anh; Zhou, Chen; Rahmatnejad, Kamran; Hark, Lisa A; Myers, Jonathan S; Katz, L Jay; Waisbourd, Michael
2018-02-02
To compare the diagnostic assessment of glaucoma specialists with an automated structure-function correlation report combining visual field (VF) and spectral-domain optical coherence tomography (SD-OCT) imagining in subjects with glaucoma. This prospective, cross-sectional study was conducted at Wills Eye Hospital, Philadelphia, PA, USA. Subjects with glaucoma received ophthalmic examination, VF testing, and SD-OCT imaging. An automated report was generated describing structure-function correlations between the two structural elements [retinal nerve fiber layer (RNFL) and Bruch's membrane opening-minimum rim width (MRW)] and VF sectors. Three glaucoma specialists masked to the automated report and to each other identified clinically significant structure-function correlations between the VF and SD-OCT reports. Raw agreement and chance-corrected agreement (kappa statistics) between the automated report and the clinical assessments were compared. A total of 53 eyes from 45 subjects with glaucoma were included in this study. The overall agreement between the automated report and clinical assessment comparing MRW and VF was good at 74.8% with a kappa of 0.62 (95% CI 0.55-0.69). Agreements for the six different MRW sections were moderate to good with kappa values ranging from 0.54 to 0.69. For mean RNFL thickness and VF comparisons, agreement between the automated report and clinical assessment was 75.4% with a kappa of 0.62 (95% CI 0.54-0.70). For different RNFL sectors, kappa values ranged from 0.47 (moderate agreement) to 0.80 (good agreement). This study suggests that the automated structure-function report combining results from the SD-OCT and the HEP may assist in the evaluation and management of glaucoma.
Three-dimensional free boundary calculations using a spectral Green's function method
International Nuclear Information System (INIS)
Hirshman, S.P.; van Rij, W.I.; Merkel, P.
1986-01-01
The plasma energy W/sub p/ = integral Ω/sub p/(1/2B 2 + p)dV is minimized over a toroidal domain Ω/sub p/ using an inverse representation for the cylindrical coordinates R = ΣR/sub mn/(s)cos(mθ - n zeta) and Z = ΣZ/sub mn/(s)sin(mθ - n zeta), where (s,θ,zeta) are radial, poloidal, and toroidal flux coordinates, respectively. The radial resolution of the MHD equations is significantly improved by separating R and Z into contributions from even and odd poloidal harmonics which are individually analytic near the magnetic axis. A free boundary equilibrium results when Ω/sub p/ is varied to make the total pressure 1/2B 2 + p continuous at the plasma surface Σ/sub p/ and when the vacuum magnetic field B/sub ν/ satisfies the Neumann condition B/sub ν/ x dΣ/sub p/ = 0. The vacuum field is decomposed as B/sub ν/ = B 0 + del Phi, where B 0 is the field arising from plasma currents and external coils and Phi is a single-valued potential necessary to satisfy B/sub ν/ x dΣ/sub p/ = 0 when p not equal to 0. A Green's function method is used to obtain an integral equation over Σ/sub p/ for the scalar magnetic potential Phi = ΣPhi/sub mn/sin(mθ - n zeta). A linear matrix equation is solved for Phi/sub mn/ to determine 1/2 B/sub ν/ 2 on the boundary. Real experimental conditions are simulated by keeping the external and net plasma currents constant during the iteration. Applications to l = 2 stellarator equilibria are presented
Generalized isothermal models with strange equation of state
Indian Academy of Sciences (India)
Sri Lanka. *Corresponding author. E-mail: maharaj@ukzn.ac.za. MS received 30 October 2008; revised 5 December 2008; accepted 16 December 2008. Abstract. We consider the linear equation of state for matter distributions that may be applied to strange stars with quark matter. In our general approach the compact.
Bulk viscosity of strange quark matter in density dependent quark ...
Indian Academy of Sciences (India)
Abstract. We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where u, d masses were neglected and first order interactions were taken into account. We find that at low temperatures and ...
Strangeness production in proton–proton and proton–nucleus ...
Indian Academy of Sciences (India)
Strangeness production; proton–proton collisions; proton–nucleus collisions; role of baryonic resonances. PACS Nos 13.60.Le; 13.75.Cs; 11.80.-m; 12.40.Vv. 1. Introduction. In the low-energy domain, quantum chromodynamics (QCD) is not amenable to the perturbation theory techniques. A compelling description of the ...
A class of exact strange quark star model
Indian Academy of Sciences (India)
It is shown that the generated solutions are useful to model strange quark stars. Keywords. Einstein's field ... quadratic equation of state relating the radial pressure to the energy density. However, as densities ..... the quark star, which in the particular model is shown to be around three solar masses. Pramana – J. Phys., Vol.
Strange Nucleon Form Factors from ep and vp Elastic Scattering
Energy Technology Data Exchange (ETDEWEB)
Pate, S.F. [Physics Department, New Mexico State University, Las Cruces NM 88003 (United States)]. e-mail: pate@nmsu.edu
2007-12-15
The recent parity-violating ep forward-scattering elastic asymmetry data from Jefferson Lab (HAPPEx and G0), when combined with the vp elastic cross section data from Brookhaven (E734), permit an extraction of the strangeness contribution to the vector and axial nucleon form factors for momentum transfers in the range 0.45 < Q{sup 2} < 1.0 GeV{sup 2}. These results, combined with the recent determination of the strange vector form factors at Q{sup 2} = 0.1 GeV{sup 2} (SAMPLE, HAPPEx, PVA4, G0) have been interpreted in terms of uudss{sup -} configurations very different from the kaon-loop configurations usually associated with strangeness in the nucleon. New experiments are being proposed to improve the state of our knowledge of the vp elastic cross section -- these new experiments will push the range of Q{sup 2} to much lower values, and greatly increase the precision of the vp elastic data. One outcome of this can be a measurement of the strangeness contribution to the nucleon spin, {delta}s. Nuclear targets (e.g. C or Ar) are to be used in these neutrino experiments, and so a deep understanding of the nuclear physics, particularly in regard to final state effects, is needed before the potential of these precision experiments can be fully realized. (Author)
Familiar-Strange: Teaching the Scripture as John Would Teach
Ha, Tung-Chiew
2014-01-01
The Gospel of John teaches through telling the story of Jesus in light of the familiar Hebrew faith stories. It is an interpretive task that presents Jesus to his audience and teaches them adequate faith. John the Teacher skillfully uses narrative skills to create the familiar-strange effect in his storytelling. Each story is followed by a…
Strangeness production in proton–proton and proton–nucleus ...
Indian Academy of Sciences (India)
Therefore, the strangeness production is expected to provide information about the resonances lying at higher excitation energies. For beam energies very close to the kaon production threshold the hyperon–proton final state interaction effects are quite important. Thus, these studies provide a check on the models of ...
The masquerade of death macabre in the North: strange ...
African Journals Online (AJOL)
The masquerade of death macabre in the North: strange revolutionary aesthetics in Nigeria. ... Against the backdrop of the current “global awakening,” this paper, through some critical works and Nigerian fictional artefacts, takes a careful examination of one particular aspect of this “harvest,” particularly the disillusionment ...
Strange particle production in neutrino-neon charged current interactions
International Nuclear Information System (INIS)
Plano, R.; Baker, N.J.; Connolly, P.L.
1986-01-01
Neutral strange particle production in charged-current muon-neutrino interactions have been studied in the Fermilab 15-foot neon bubble chamber. Associated production is expected to be the major source of strange particles in charged-current neutrino interactions. σ-neutral and ξ-minus production by neutrinos was observed. The dependence on various leptonic and hadronic variables is investigated. A fit to single and associated production of s, s/anti-s, and c quarks is described based on the number of single and double strange particle production events. Inclusive neutral strange particle decays (V 0 ) production rates as a fraction of all charged-current events are measured and are tabulated. The λ/K ratio is found to be 0.39 +- 0.04 and the fraction of λ coming from σ-neutral is (16 +- 5)%. The single- and double V 0 production was used to determine the associated s anti-s production rate and single s-quark production rate. 13 refs., 7 figs., 3 tabs
Radial oscillations of magnetized proto strange stars in temperature ...
Indian Academy of Sciences (India)
We report on the study of the mass–radius (–) relation and the radial oscillations of magnetized proto strange stars. For the quark matter we have employed the very recent modiﬁcation, the temperature- and density-dependent quark mass model of the well-known density-dependent quark mass model. We ﬁnd that the ...
Plane Symmetric Cosmological Model with Quark and Strange ...
Indian Academy of Sciences (India)
after the Big Bang (Bhattacharyya et al. 2003). In 1984,. Witten (1984) demonstrated that at a critical tempera- ture Tc ≡ 100−200 MeV such transition could have led to the formation of quark nuggets made up of u, d and s quarks at larger density than normal nuclear matter density. Strange quark matter is developed with.
Strange hadronic physics in electroproduction experiments at the Mainz Microtron
Czech Academy of Sciences Publication Activity Database
Achenbach, P.; Esser, A.; Gayoso, C. A.; Böhm, R.; Borodina, O.; Bosnar, D.; Bozkurt, V.; Bydžovský, Petr; Debenjak, L.; Distler, M. O.; Friscic, I.; Fujii, Y.; Gogami, T.; Gomez, M.R.; Hashimoto, O.; Hirose, S.; Kim, E.; Margaryan, A.; Merkel, H.; Müller, U.; Nagao, S.; Nakamura, S. N.; Pochodzalla, J.; Rappold, C.; Reinhold, J.; Saito, T.; Lorente, A.S.; Majos, S. S.; Schlimme, B. S.; Schoth, M.; Schulz, F.; Sfienti, C.; Sirca, S.; Tang, L.; Thiel, M.; Tsukada, K.
2012-01-01
Roč. 881, 5/6 (2012), s. 187-198 ISSN 0375-9474 R&D Projects: GA MŠk(CZ) LG11005 Institutional support: RVO:61389005 Keywords : strangeness reactions * Kaon electroproduction * missing mass spectroscopy * hypernuclei * decay-pion spectroscopy Subject RIV: BE - Theoretical Physics Impact factor: 1.525, year: 2012
How children remember the Strange Situation: The role of attachment.
Chae, Yoojin; Goodman, Miranda; Goodman, Gail S; Troxel, Natalie; McWilliams, Kelly; Thompson, Ross A; Shaver, Phillip R; Widaman, Keith F
2018-02-01
This study tested predictions from Bowlby's attachment theory about children's memory and suggestibility. Young children (3-5years old, N=88; 76% Caucasians) and their parents took part in the Strange Situation Procedure, a moderately distressing event and "gold standard" for assessing children's attachment quality. The children were then interviewed about what occurred during the event. Children's age and attachment security scores positively predicted correct information in free recall and accuracy in answering specific questions. For children with higher (vs. lower) attachment security scores, greater distress observed during the Strange Situation Procedure predicted increased resistance to misleading suggestions. In addition, for children who displayed relatively low distress during the Strange Situation Procedure, significant age differences in memory and suggestibility emerged as expected. However, for children who displayed greater distress during the Strange Situation Procedure, younger and older children's memory performances were equivalent. Findings suggest that attachment theory provides an important framework for understanding facets of memory development with respect to attachment-related information and that distress may alter assumed age patterns in memory development. Copyright © 2017 Elsevier Inc. All rights reserved.
Algebraic models of hadron structure II. Strange baryons
International Nuclear Information System (INIS)
Bijker, R.; Iachello, F.; Leviatan, A.
2000-01-01
The algebraic treatment of baryons is extended to strange resonances. Within this framework we study a collective string-like model in which the radial excitations are interpreted as rotations and vibrations of the strings. We derive a mass formula and closed expressions for strong and electromagnetic decay widths and use these to analyze the available experimental data
Plane Symmetric Cosmological Model with Quark and Strange ...
Indian Academy of Sciences (India)
parameter. We also discussed the physical behavior of the solutions by using some physical parameters. Keywords. f(R,T) theory of gravity—plane symmetric space-time—quark and strange quark matter—constant deceleration parameter. 1. Introduction. Modern astrophysical observations point out that present expansion ...
Plane Symmetric Cosmological Model with Quark and Strange ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Astrophysics and Astronomy; Volume 38; Issue 1. Plane Symmetric Cosmological Model with Quark and Strange Quark Matter in f ( R , T ) Theory of Gravity. P. K. AGRAWAL D. D. PAWAR. Research Article Volume 38 Issue 1 March 2017 Article ID 2 ...
International Nuclear Information System (INIS)
Panagiotou, Apostolos D; Katsas, Panayiotis G
2003-01-01
We consider the change of the strange-quark chemical potential in the phase diagram of nuclear matter, employing the Wilson loop and scalar quark condensate order parameters, mass-scaled partition functions and enforcing flavour conservation. Assuming the region beyond the hadronic phase to be described by massive, correlated and interacting quarks, in the spirit of lattice and effective QCD calculations, we find the strange-quark chemical potential to change sign: from positive in the hadronic phase, to zero upon deconfinement, to negative in the partonic domain. We propose this change in the sign of the strange-quark chemical potential to be an experimentally accessible order parameter and a unique, concise and well-defined indication of the quark-deconfinement phase transition in nuclear matter
International Nuclear Information System (INIS)
Khuntia, Arvind; Tripathy, Sushanta; Sahoo, Raghunath; Cleymans, Jean
2017-01-01
The transverse momentum (p T ) spectra in proton-proton collisions at √(s) = 7 TeV, measured by the ALICE experiment at the LHC are analyzed with a thermodynamically consistent Tsallis distribution. The information about the freeze-out surface in terms of freeze-out volume, temperature and the non-extensivity parameter, q, for K 0 S , Λ + anti Λ, Ξ - + anti Ξ + and Ω - + anti Ω + are extracted by fitting the p T spectra with the Tsallis distribution function. The freeze-out parameters of these particles are studied as a function of the charged particle multiplicity density (dN ch /dη). In addition, we also study these parameters as a function of the particle mass to see any possible mass ordering. The strange and multi-strange particles show mass ordering in volume, temperature, non-extensive parameter and also a strong dependence on multiplicity classes. It is observed that with increase in particle multiplicity, the non-extensivity parameter, q decreases, which indicates the tendency of the produced system towards thermodynamic equilibration. The increase in strange particle multiplicity is observed to be due to the increase of temperature and may not be due to the size of the freeze-out volume. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Khuntia, Arvind; Tripathy, Sushanta; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Indore (India); Cleymans, Jean [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa)
2017-05-15
The transverse momentum (p{sub T}) spectra in proton-proton collisions at √(s) = 7 TeV, measured by the ALICE experiment at the LHC are analyzed with a thermodynamically consistent Tsallis distribution. The information about the freeze-out surface in terms of freeze-out volume, temperature and the non-extensivity parameter, q, for K{sup 0}{sub S}, Λ + anti Λ, Ξ{sup -} + anti Ξ{sup +} and Ω{sup -} + anti Ω{sup +} are extracted by fitting the p{sub T} spectra with the Tsallis distribution function. The freeze-out parameters of these particles are studied as a function of the charged particle multiplicity density (dN{sub ch}/dη). In addition, we also study these parameters as a function of the particle mass to see any possible mass ordering. The strange and multi-strange particles show mass ordering in volume, temperature, non-extensive parameter and also a strong dependence on multiplicity classes. It is observed that with increase in particle multiplicity, the non-extensivity parameter, q decreases, which indicates the tendency of the produced system towards thermodynamic equilibration. The increase in strange particle multiplicity is observed to be due to the increase of temperature and may not be due to the size of the freeze-out volume. (orig.)
Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions
Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; An, Mangmang; Andrei, Cristian; Andrews, Harry Arthur; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crkovska, Jana; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Isakov, Vladimir; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Mishra, Tribeni; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Martin; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yalcin, Serpil; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym
2017-01-01
At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark–gluon plasma (QGP). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton–proton (pp) collisions, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton–proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The me...
Martins, Cyril; Lenz, Benjamin; Perfetti, Luca; Brouet, Veronique; Bertran, François; Biermann, Silke
2018-03-01
We address the role of nonlocal Coulomb correlations and short-range magnetic fluctuations in the high-temperature phase of Sr2IrO4 within state-of-the-art spectroscopic and first-principles theoretical methods. Introducing an "oriented-cluster dynamical mean-field scheme", we compute momentum-resolved spectral functions, which we find to be in excellent agreement with angle-resolved photoemission spectra. We show that while short-range antiferromagnetic fluctuations are crucial to accounting for the electronic properties of Sr2IrO4 even in the high-temperature paramagnetic phase, long-range magnetic order is not a necessary ingredient of the insulating state. Upon doping, an exotic metallic state is generated, exhibiting cuprate-like pseudo-gap spectral properties, for which we propose a surprisingly simple theoretical mechanism.
Hwang, Se Kwang; Charnley, Helen
2010-01-01
Based on the findings of a small-scale study using visual ethnographic techniques with nine South Korean children, this article explores the role of culture in understanding autism. While autism is embedded within the "strange" and "unfamiliar", linked to exclusion and discrimination in Korean society, the children focussed on…
Nguyen, Van Minh
In this paper we present a new approach to the spectral theory of non-uniformly continuous functions and a new framework for the Loomis-Arendt-Batty-Vu theory. Our approach is direct and free of C-semigroups, so the obtained results, that extend previous ones, can be applied to large classes of evolution equations and their solutions.
Barka, André; Picard, Clément
2008-03-01
In this paper, we discuss several improvements of a substructuring Domain Decomposition Method (DDM) devoted to Electromagnetic computations, based on the Boundary Element Method (BEM) and the Finite Element Method (FEM). This computation procedure is applied to the analysis of antenna performance on board vehicles as well as Radar Cross Section (RCS). The benefits of the subdomain Computational Electromagnetic Method are mainly the ability to deal with collaborative studies involving several companies, and the reduction of the computation costs by one or more orders of magnitude, especially in the context of parametric studies. Furthermore, this paper proposes a Spectral Basis Function (SBF) defined on fictitious surfaces surrounding equipment, to deal with both the computation of antenna far field patterns and RCS in a multi-domain mode. By masking the complexity of the equipment (wires, thin surfaces, materials, supply network, weapons) the external domain of the vehicle can be closed so that the Combined Field Integral Equation (CFIE) can be used, which is better conditioned than the Electric Field Integral Equation (EFIE). This calculation procedure leads to a faster convergence when using iterative Multi Level Fast Multiple Algorithms (MLFMA). The accuracy and efficiency of this technique is assessed by performing the computation of the diffraction and radiation of several test-objects in a multi-domain way cross compared with reference integral equation results.
International Nuclear Information System (INIS)
Laurent, Philippe; Titarchuk, Lev
2011-01-01
We present herein a theoretical study of correlations between spectral indexes of X-ray emergent spectra and mass accretion rate ( m-dot ) in black hole (BH) sources, which provide a definitive signature for BHs. It has been firmly established, using the Rossi X-ray Timing Explorer (RXTE) in numerous BH observations during hard-soft state spectral evolution, that the photon index of X-ray spectra increases when m-dot increases and, moreover, the index saturates at high values of m-dot . In this paper, we present theoretical arguments that the observationally established index saturation effect versus mass accretion rate is a signature of the bulk (converging) flow onto the BH. Also, we demonstrate that the index saturation value depends on the plasma temperature of converging flow. We self-consistently calculate the Compton cloud (CC) plasma temperature as a function of mass accretion rate using the energy balance between energy dissipation and Compton cooling. We explain the observable phenomenon, index- m-dot correlations using a Monte Carlo simulation of radiative processes in the innermost part (CC) of a BH source and we account for the Comptonization processes in the presence of thermal and bulk motions, as basic types of plasma motion. We show that, when m-dot increases, BH sources evolve to high and very soft states (HSS and VSS, respectively), in which the strong blackbody(BB)-like and steep power-law components are formed in the resulting X-ray spectrum. The simultaneous detections of these two components strongly depends on sensitivity of high-energy instruments, given that the relative contribution of the hard power-law tail in the resulting VSS spectrum can be very low, which is why, to date RXTE observations of the VSS X-ray spectrum have been characterized by the presence of the strong BB-like component only. We also predict specific patterns for high-energy e-fold (cutoff) energy (E fold ) evolution with m-dot for thermal and dynamical (bulk
Production of multi-strange baryons in 7 TeV proton-proton collisions with ALICE
Maire, Antonin
2012-01-01
In the perspective of comparisons between proton-proton and heavy-ion physics, understanding the production mechanisms (soft and hard) in pp that lead to strange particles is of importance. Measurements of charged multi-strange (anti-)baryons (Omega and Xi) are presented for pp collisions at sqrt(s) = 7 TeV. This report is based on results obtained by ALICE (A Large Ion Collider Experiment) from the 2010 data-taking. Taking advantage of the characteristic cascade-decay topology, the identification of Xi-, anti-Xi+, Omega- and anti-Omega+ can be performed, over a wide range of momenta (e.g. from 0.6 to 8.5 GeV/c for Xi-, with the present statistics analysed). The production at central rapidity (|y| < 0.5) as a function of transverse momentum, dN/dptdy, is presented. These results are compared to PYTHIA Perugia 2011 predictions.
Adeva, B; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Bradamante, Franco; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Frois, Bernard; Garzón, J A; Gaussiran, T; Giorgi, M A; von Goeler, E; Gómez, A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Ketel, T; Kessler, H J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kyynäräinen, J; Lamanna, M; Layda, T; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; López-Ponte, S; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Van Middelkoop, G; Miller, D; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Penzo, Aldo L; Pérez, C; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Pussieux, T; Pyrlik, J; Reyhancan, I; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Dabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schüler, K P; Segel, R E; Seitz, R; Semertzidis, Y K; Sergeev, S; Sever, F; Shanahan, P; Sichtermann, E P; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Zanetti, A M; Zhao, J; Torre, S Dalla
1996-01-01
We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.003
The strangeness contribution to the proton spin from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bali, Gunnar S.; Collins, Sara; Goeckeler, Meinulf [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2011-12-15
We compute the strangeness and light-quark contributions {delta}s, {delta}u and {delta}d to the proton spin in n{sub f}=2 lattice QCD at a pion mass of about 285 MeV and at a lattice spacing{approx}0.073 fm, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson action. We carry out the renormalization of these matrix elements which involves mixing between contributions from different quark flavours. Our main result is the small negative value {delta}s{sup MS}({radical}(7.4)GeV) =-0.020(10)(4) of the strangeness contribution to the nucleon spin. (orig.)
Fast pulsars, strange stars: An opportunity in radio astronomy
International Nuclear Information System (INIS)
Glendenning, N.K.
1990-01-01
The world's data on radio pulsars is not expected to represent the underlying pulsar population because of a search bias against detection of short periods, especially below 1 ms. Yet pulsars in increasing numbers with periods right down to this limit have been discovered suggesting that there may be even shorter ones. If pulsars with periods below 1/2 ms were found, the conclusion that the confined hadronic phase of nucleons and nuclei is only metastable would be almost inescapable. The plausible ground state in that event is the deconfined phase of (3-flavor) strange-quark-matter. From the QCD energy scale this is as likely a ground state as the confined phase. We show that strange matter as the ground state is not ruled out by any known fact, and most especially not by the fact that the universe is in the confined phase. 136 refs
Dark matter admixed strange quark stars in the Starobinsky model
Lopes, Ilídio; Panotopoulos, Grigoris
2018-01-01
We compute the mass-to-radius profiles for dark matter admixed strange quark stars in the Starobinsky model of modified gravity. For quark matter, we assume the MIT bag model, while self-interacting dark matter inside the star is modeled as a Bose-Einstein condensate with a polytropic equation of state. We numerically integrate the structure equations in the Einstein frame, adopting the two-fluid formalism, and we treat the curvature correction term nonperturbatively. The effects on the properties of the stars of the amount of dark matter as well as the higher curvature term are investigated. We find that strange quark stars (in agreement with current observational constraints) with the highest masses are equally affected by dark matter and modified gravity.
Conductivity of weakly disordered strange metals: From conformal to hyperscaling-violating regimes
Directory of Open Access Journals (Sweden)
Andrew Lucas
2015-03-01
Full Text Available We present a semi-analytic method for constructing holographic black holes that interpolate from anti-de Sitter space to hyperscaling-violating geometries. These are holographic duals of conformal field theories in the presence of an applied chemical potential, μ, at a non-zero temperature, T, and allow us to describe the crossover from ‘strange metal’ physics at T≪μ, to conformal physics at T≫μ. Our holographic technique adds an extra gauge field and exploits structure of the Einstein–Maxwell system to manifestly find 1-parameter families of solutions of the Einstein-matter system in terms of a small family of functions, obeying a nested set of differential equations. Using these interpolating geometries, we re-consider holographically some recent questions of interest about hyperscaling-violating field theories. Our focus is a more detailed holographic computation of the conductivity of strange metals, weakly perturbed by disorder coupled to scalar operators, including both the average conductivity as well as sample-to-sample fluctuations. Our findings are consistent with previous scaling arguments, though we point out logarithmic corrections in some special (holographic cases. We also discuss the nature of superconducting instabilities in hyperscaling-violating geometries with appropriate choices of scalar couplings.
Nuclear modification of light flavour and strangeness at LHC energies with ALICE
Lea, Ramona; ALICE Collaboration
2017-07-01
Thanks to its unique particle identification capabilities the ALICE detector is able to identify light-flavour, strange and multi-strange hadrons, including π, K, p, {{K}}{{S}}0, Λ, Ξ and Ω, over a wide range of transverse momentum, from pp and p-Pb interactions up to central Pb-Pb collisions. The latest results on the nuclear modification factor, R AA, as a function of the Pb-Pb collision centrality, is shown for various particle specie at \\sqrt{{s}{{N}{{N}}}}=2.76 {TeV} centre-of-mass energy. For each particle specie, the R AA is compared with the nuclear modification factors R pA in p-Pb collisions to asses the presence of hot nuclear matter effects affecting the high-p Τ particle production in Pb-Pb collisions. The results on the R AA of charged hadrons at \\sqrt{{s}{{N}{{N}}}}=5.02 {TeV}, the highest energy ever reached in the laboratory for heavy-ion collisions, is also shown.
Bekenstein-Hawking Entropy and Strange Metals
Directory of Open Access Journals (Sweden)
Subir Sachdev
2015-11-01
Full Text Available We examine models of fermions with infinite-range interactions that realize non-Fermi liquids with a continuously variable U(1 charge density Q and a nonzero entropy density S at vanishing temperature. Real-time correlators of operators carrying U(1 charge q at a low temperature T are characterized by a Q-dependent frequency ω_{S}=(qT/ℏ(∂S/∂Q, which determines a spectral asymmetry. We show that the correlators match precisely with those of the two-dimensional anti–de Sitter (AdS_{2} horizons of extremal charged black holes. On the black hole side, the matching employs S as the Bekenstein-Hawking entropy density and the laws of black hole thermodynamics that relate (∂S/∂Q/(2π to the electric field strength in AdS_{2}. The fermion model entropy is computed using the microscopic degrees of freedom of a UV complete theory without supersymmetry.
Baryon-strangeness correlations: a diagnostic of stronglyinteracting matter
Energy Technology Data Exchange (ETDEWEB)
Koch, Volker; Majumder, Abhijit; Randrup, Jorgen
2005-10-07
The correlation between baryon number and strangeness elucidates the nature of strongly interacting matter. This diagnostic can be extracted theoretically from lattice QCD calculations and experimentally from event-by-event fluctuations. The analysis of present lattice results above the critical temperature severely limits the presence of q{bar q} bound states, thus supporting a picture of independent (quasi)quarks. Details may be found in [1].
Baryon-strangeness correlations: a diagnostic of stronglyinteracting matter
Energy Technology Data Exchange (ETDEWEB)
Koch, Volker; Majumder, Abhijit; Randrup, Jorgen
2005-09-29
The correlation between baryon number and strangeness elucidates the nature of strongly interacting matter, such as that formed transiently in high-energy nuclear collisions. This diagnostic can be extracted theoretically from lattice QCD calculations and experimentally from event-by-event fluctuations. The analysis of present lattice results above the critical temperature severely limits the presence of q-qbarbound states, thus supporting a picture of independent (quasi)quarks.
Strangeness production at 200 GeV/Nucleon
Energy Technology Data Exchange (ETDEWEB)
Jacak, B.V.
1991-01-01
Results from the HELIOS External Spectrometer on kaon production in 200 GeV/A S+W and p+W collisions are presented. The K/{pi} ratios are compared with measurements at lower bombarding energies and are found to agree remarkably well. Evidence for secondary production of K{sup +} by meson-baryon rescattering is reviewed. The target rapidity results are compared with neutral strange particle results at midrapidity. 15 refs., 4 figs., 2 tabs.
Anomalies, symmetries and strangeness content of the proton
Indian Academy of Sciences (India)
The matrix elements of the operators of strange quark ﬁelds s ¯ s where is 1 or 5 between a proton state is calculated. The sigma term is found to be ≈ 41 MeV and the (3) singlet axial matrix element is found to be ≈ 0.22, both in agreement with experiment. The sigma term is found using the trace anomaly, ...
A strange familiarity? Place perceptions among the globally mobile
DEFF Research Database (Denmark)
Pristed Nielsen, Helene; Faber, Stine Thidemann
2014-01-01
How do globally mobile people perceive and make sense of a new place in which they have to create an everyday life for themselves? And how may their place perception be communicated through photographs? These are the questions around which this article revolves. The visual material discussed...... of strangeness and familiarity occur along unexpected lines of difference and similarity depending on the embodied positionality of the involved participants....
Recent results on strangeness production from NA49
Mitrovski, Michael
2010-01-01
We present a summary of measurements of strange particles performed by the experiment NA49 in inelastic p+p interactions, as well as semi-central C+C and Si+Si, central Pb+Pb, and minimum bias Pb+Pb collisions in the energy range $\\sqrt{s_{NN}}$ = 6.3 - 17.3 GeV. New results on $\\pi^{-}$, $K^{+}$ and $K^{-}$ production in minimum bias Pb+Pb collisions at $\\sqrt{s_{NN}}$ = 8.7 and 17.3 are shown. Furthermore the strangeness enhancement factor at $\\sqrt{s_{NN}}$ = 17.3 GeV is presented and compared to the results from NA57 and STAR. Energy dependence of strange particle yields normalized to pion yields is presented. New data on $$ production are shown at $\\sqrt{s_{NN}}$ = 17.3 GeV. Furthermore we present the energy dependence of $K/\\pi$ and $K/p$ fluctuations. The data are compared with model predictions.
Nuclear matter burning induced by strange matter into protoneutron star
Energy Technology Data Exchange (ETDEWEB)
Almeida, Luis Gustavo de [Universidade Federal do Acre (UFAC), AC (Brazil). Campus Floresta; Duarte, Sergio Barbosa [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Goncalves, Hilario A. Rodrigues [Centro Federal de Educacao Tecnologica (CEFET-RJ), Rio de Janeiro, RJ (Brazil)
2011-07-01
Full text: In this work we present a schematic description of the dynamical evolution of a protoneutron star which begins to burn neutron matter into strange matter inside the core. We have used a simple two-shell model where the inner shell medium is initially composed of a small lump of strange quark matter surrounded by an outer shell composed of free neutron matter. In a first attempt, we have utilized a polytropic equation of state (EOS) for the outer hadronic medium description and the MIT bag model EOS describing for the strange quark matter. We investigate, as was suggested by Lugones et al (1994), if the combustion mode can actually become a detonation process. The main purpose of the work is to study the formation and propagation of the shock front generated by the detonation process. An effective description for the thermodynamic global evolution of the burning shell is developed and we also investigate the possibility of matter ejection as a consequence of the process of detonation, which could produce a pure quark star as a remnant or even a hybrid neutron star. The mass and radii values obtained for the final equilibrium configurations are compared with the observational data of compact stars. (author)
DEFF Research Database (Denmark)
Hassager, Henrik Gert; Gran, Fredrik; Dau, Torsten
2016-01-01
. For various filter bandwidths, the modified BRIRs were convolved with broadband noise and listeners judged the perceived position of the noise when virtualized over headphones. Only reductions in spectral details of the direct part obtained with filter bandwidths broader than one equivalent rectangular...... bandwidth affected externalization. Reductions in spectral details of the reverberant part had only little influence on externalization. In both conditions, externalization was not as pronounced at 0° as at 50°. To characterize the auditory processes that may be involved in the perception of externalization...
Kir'yanov, P A; Kaganov, A Sh
The objective of the present work was the search for the theoretical foundations and the approaches to the assessment of the methodological basis for the application of the spectral analysis to the investigation of the functional-dynamic complexes (FDC) of oral speech skills for the medical criminalistic identification of the speaker. The study included the analysis of the relevant literature publications, methodological proposals of the authors of the present article, and the results of their medical criminalistics investigations and laboratory experiments. The results of the study give evidence that the spectral analysis provides an acceptable tool for distinguishing the stable identification signs of a given acoustic group that characterize the functional-dynamic complexes of oral speech skills skills for the medical criminalistic identification of the speaker.
Strange quark matter and quark stars with the Dyson-Schwinger quark model
Energy Technology Data Exchange (ETDEWEB)
Chen, H.; Wei, J.B. [China University of Geosciences, School of Mathematics and Physics, Wuhan (China); Schulze, H.J. [Universita di Catania, Dipartimento di Fisica, Catania (Italy); INFN, Sezione di Catania (Italy)
2016-09-15
We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11 km. We obtain an energy release as large as 3.6 x 10{sup 53} erg from conversion of neutron stars into strange quark stars. (orig.)
Strangeness photoproduction on the deuterium target
Shende, Sugat Vyankatesh
2007-01-01
More information on the nucleon excitation function can be gained by studying the photoproduction experiments. In these experiments, the nucleon inside the nucleous is excited by shooting a high energy photon beam. The excited spectrum of the nucleon is then studied by measuring the energy and
Discriminating strange star mergers from neutron star mergers by gravitational-wave measurements
International Nuclear Information System (INIS)
Bauswein, A.; Oechslin, R.; Janka, H.-T.
2010-01-01
We perform three-dimensional relativistic hydrodynamical simulations of the coalescence of strange stars and explore the possibility to decide on the strange matter hypothesis by means of gravitational-wave measurements. Self-binding of strange quark matter and the generally more compact stars yield features that clearly distinguish strange star from neutron star mergers, e.g. hampering tidal disruption during the plunge of quark stars. Furthermore, instead of forming dilute halo structures around the remnant as in the case of neutron star mergers, the coalescence of strange stars results in a differentially rotating hypermassive object with a sharp surface layer surrounded by a geometrically thin, clumpy high-density strange quark matter disk. We also investigate the importance of including nonzero temperature equations of state in neutron star and strange star merger simulations. In both cases we find a crucial sensitivity of the dynamics and outcome of the coalescence to thermal effects, e.g. the outer remnant structure and the delay time of the dense remnant core to black hole collapse depend on the inclusion of nonzero temperature effects. For comparing and classifying the gravitational-wave signals, we use a number of characteristic quantities like the maximum frequency during inspiral or the dominant frequency of oscillations of the postmerger remnant. In general, these frequencies are higher for strange star mergers. Only for particular choices of the equation of state the frequencies of neutron star and strange star mergers are similar. In such cases additional features of the gravitational-wave luminosity spectrum like the ratio of energy emitted during the inspiral phase to the energy radiated away in the postmerger stage may help to discriminate coalescence events of the different types. If such characteristic quantities could be extracted from gravitational-wave signals, for instance with the upcoming gravitational-wave detectors, a decision on the
Anisotropic Flow of Strange Particles at SPS
Stefanek, Grzegorz; Anticic, T.; Baatar, B.; Barna, D.; Bartke, J.; Betev, L.; Białkowska, H.; Blume, C.; Boimska, B.; Botje, M.; Bracinik, J.; Bramm, R.; Bunčic, P.; Cerny, V.; Christakoglou, P.; Chung, P.; Chvala, O.; Cramer, J.G.; Csató, P.; Dinkelaker, P.; Eckardt, V.; Flierl, D.; Fodor, Z.; Foka, P.; Friese, V.; Gál, J.; Gazdzicki, M.; Genchev, V.; Georgopoulos, G.; Gładysz, E.; Grebieszkow, K.; Hegyi, S.; Höhne, C.; Kadija, K.; Karev, A.; Kikola, D.; Kliemant, M.; Kniege, S.; Kolesnikov, V.I.; Kornas, E.; Korus, R.; Kowalski, M.; Kraus, I.; Kreps, M.; Laszlo, A.; Lacey, R.; van Leeuwen, M.; Lévai, P.; Litov, L.; Lungwitz, B.; Makariev, M.; Malakhov, A.I.; Mateev, M.; Melkumov, G.L.; Mischke, A.; Mitrovski, M.; Molnár, J.; Mrówczynski, St.; Nicolic, V.; Pálla, G.; Panagiotou, A.D.; Panayotov, D.; Petridis, A.; Peryt, W.; Pikna, M.; Pluta, J.; Prindle, D.; Pühlhofer, F.; Renfordt, R.; Roland, C.; Roland, G.; Rybczynski, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Schuster, T.; Seyboth, P.; Siklér, F.; Sitar, B.; Skrzypczak, E.; Slodkowski, M.; Stefanek, G.; Stock, R.; Strabel, C.; Ströbele, H.; Susa, T.; Szentpétery, I.; Sziklai, J.; Szuba, M.; Szymanski, P.; Trubnikov, V.; Varga, D.; Vassiliou, M.; Veres, G.I.; Vesztergombi, G.; Vranic, D.; Wetzler, A.; Włodarczyk, Z.; Wojtaszek, A.; Yoo, I.K.; Zimányi, J.; Stefanek, Grzegorz
2006-01-01
The elliptic flow for Lambda hyperons and K0s mesons was measured by the NA49 experiment in semicentral Pb+Pb collisions at 158A GeV. The standard method of correlating particles with an event plane has been used. Measurements of v2 near mid-rapidity are reported as a function of centrality, rapidity and transverse momentum. Elliptic flow of Lambda and K0s particles increases both with the impact parameter and with the transverse momentum. It is compared with v2 for pions and protons as well as with various model predictions. The NA49 results are compared with data from NA45/CERES and STAR experiments.
Qin, Tao; Hofstetter, Walter
2017-08-01
We present a systematic study of the spectral functions of a time-periodically driven Falicov-Kimball Hamiltonian. In the high-frequency limit, this system can be effectively described as a Harper-Hofstadter-Falicov-Kimball model. Using real-space Floquet dynamical mean-field theory (DMFT), we take into account the interaction effects and contributions from higher Floquet bands in a nonperturbative way. Our calculations show a high degree of similarity between the interacting driven system and its effective static counterpart with respect to spectral properties. However, as also illustrated by our results, one should bear in mind that Floquet DMFT describes a nonequilibrium steady state, while an effective static Hamiltonian describes an equilibrium state. We further demonstrate the possibility of using real-space Floquet DMFT to study edge states on a cylinder geometry.
International Nuclear Information System (INIS)
Dominguez, Dany S.; Barros, Ricardo C.
2007-01-01
A new spectral nodal method is developed for the solution of one-speed discrete ordinates (S N ) problems with isotropic scattering in X, Y geometry. In this method, the spectral Green's function (SGF) scheme, originally developed for solving S N problems in slab-geometry with no spatial truncation error, is generalized to solve the one-dimensional transverse-integrated S N linear-nodal equations with linear polynomial approximation for the transverse leakage terms. The resulting SGF-linear-nodal (SGF-LN) equations are solved with the full-node inversion (FNI) iterative scheme, which uses the best available estimates for the node-entering quantities to evaluate the node angular quantities in all the exiting directions as the equations are swept across the system. We give numerical results that illustrate the accuracy of the SGF-LN method for coarse-mesh calculations
Spectral analysis by correlation
International Nuclear Information System (INIS)
Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.
1969-01-01
The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr
Precise Determination of the Strangeness Magnetic Moment of the Nucleon
Energy Technology Data Exchange (ETDEWEB)
Leinweber, D B; Boinepalli, S; Cloet, I C; Thomas, A W; Williams, A G; Young, R D; Zanotti, J M; Zhang, J B
2005-06-01
By combining the constraints of charge symmetry with new chiral extrapolation techniques and recent low mass lattice QCD simulations of the individual quark contributions to the magnetic moments of the nucleon octet, we obtain a precise determination of the strange magnetic moment of the proton. The result, namely G{sub M}{sup s} = -0.051 +/- 0.021 mu{sub N}, is consistent with the latest experimental measurements but an order of magnitude more precise. This poses a tremendous challenge for future experiments.
Speech neglect: A strange educational blind spot
Harris, Katherine Safford
2005-09-01
Speaking is universally acknowledged as an important human talent, yet as a topic of educated common knowledge, it is peculiarly neglected. Partly, this is a consequence of the relatively recent growth of research on speech perception, production, and development, but also a function of the way that information is sliced up by undergraduate colleges. Although the basic acoustic mechanism of vowel production was known to Helmholtz, the ability to view speech production as a physiological event is evolving even now with such techniques as fMRI. Intensive research on speech perception emerged only in the early 1930s as Fletcher and the engineers at Bell Telephone Laboratories developed the transmission of speech over telephone lines. The study of speech development was revolutionized by the papers of Eimas and his colleagues on speech perception in infants in the 1970s. Dissemination of knowledge in these fields is the responsibility of no single academic discipline. It forms a center for two departments, Linguistics, and Speech and Hearing, but in the former, there is a heavy emphasis on other aspects of language than speech and, in the latter, a focus on clinical practice. For psychologists, it is a rather minor component of a very diverse assembly of topics. I will focus on these three fields in proposing possible remedies.
Aspects of strangeness production with 15 -- 30 GeV proton beams
International Nuclear Information System (INIS)
Dover, C.B.
1992-04-01
We discuss the spectrum of physics questions related to strangeness which could be addressed with a 15--30 GeV proton storage ring. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hyper-fragments in p-nucleus collisions, and hyperon spin observables in inclusive production
Relativistic simulations of compact object mergers for nucleonic matter and strange quark matter
International Nuclear Information System (INIS)
Bauswein, Andreas Ottmar
2010-01-01
Under the assumption that the energy of the ground state of 3-flavor quark matter is lower than the one of nucleonic matter, the compact stellar remnants of supernova explosions are composed of this quark matter. Because of the appearance of strange quarks, such objects are called strange stars. Considering their observational features, strange stars are very similar to neutron stars made of nucleonic matter, and therefore observations cannot exclude the existence of strange stars. This thesis introduces a new method for simulating mergers of compact stars and black holes within a general relativistic framework. The main goal of the present work is the investigation of the question, whether the coalescence of two strange stars in a binary system yields observational signatures that allow one to distinguish them from colliding neutron stars. In this context the gravitational-wave signals are analyzed. It is found that in general the characteristic frequencies in the gravitational-wave spectra are higher for strange stars. Moreover, the amount of matter that becomes gravitationally unbound during the merging is determined. The detection of ejecta of strange star mergers as potential component of cosmic ray flux could serve as a proof of the existence of strange quark matter. (orig.)
Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions
Adam, J.; Adamová, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Molina, R. Alfaro; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Prado, C. Alves Garcia; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Camejo, A. Batista; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Martinez, H. Bello; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Diaz, L. Calero; Caliva, A.; Villar, E. Calvo; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castellanos, J. Castillo; Castro, A. J.; Casula, E. A. R.; Sanchez, C. Ceballos; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Barroso, V. Chibante; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Balbastre, G. Conesa; Del Valle, Z. Conesa; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Morales, Y. Corrales; Maldonado, I. Cortés; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovska, J.; Crochet, P.; Albino, R. Cruz; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Corchero, M. A. Diaz; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Gimenez, D. Domenicis; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Téllez, A. Fernández; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Girard, M. Fusco; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Coral, D. M. Goméz; Ramirez, A. Gomez; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Corral, G. Herrera; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Bustamante, R. T. Jimenez; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, M. Mohisin; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Meethaleveedu, G. Koyithatta; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; de Guevara, P. Ladron; Fernandes, C. Lagana; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Monzón, I. León; Vargas, H. León; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; Torres, E. López; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Cervantes, I. Maldonado; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; García, G. Martínez; Pedreira, M. Martinez; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Pérez, J. Mercado; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Zetina, L. Montaño; Montes, E.; de Godoy, D. A. Moreira; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; da Luz, H. Natal; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; de Oliveira, R. A. Negrao; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Oleniacz, J.; da Silva, A. C. Oliveira; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Velasquez, A. Ortiz; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; da Costa, H. Pereira; Peresunko, D.; Lezama, E. Perez; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ravasenga, I.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Cahuantzi, M. Rodríguez; Manso, A. Rodriguez; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Montero, A. J. Rubio; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Muñoz, G. Tejeda; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Palomo, L. Valencia; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vyvre, P. Vande; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Doce, O. Vázquez; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Limón, S. Vergara; Vernet, R.; Vickovic, L.; Viinikainen, J.; Vilakazi, Z.; Baillie, O. Villalobos; Tello, A. Villatoro; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.
2017-06-01
At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results, indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.
Relativistic simulations of compact object mergers for nucleonic matter and strange quark matter
Energy Technology Data Exchange (ETDEWEB)
Bauswein, Andreas Ottmar
2010-01-29
Under the assumption that the energy of the ground state of 3-flavor quark matter is lower than the one of nucleonic matter, the compact stellar remnants of supernova explosions are composed of this quark matter. Because of the appearance of strange quarks, such objects are called strange stars. Considering their observational features, strange stars are very similar to neutron stars made of nucleonic matter, and therefore observations cannot exclude the existence of strange stars. This thesis introduces a new method for simulating mergers of compact stars and black holes within a general relativistic framework. The main goal of the present work is the investigation of the question, whether the coalescence of two strange stars in a binary system yields observational signatures that allow one to distinguish them from colliding neutron stars. In this context the gravitational-wave signals are analyzed. It is found that in general the characteristic frequencies in the gravitational-wave spectra are higher for strange stars. Moreover, the amount of matter that becomes gravitationally unbound during the merging is determined. The detection of ejecta of strange star mergers as potential component of cosmic ray flux could serve as a proof of the existence of strange quark matter. (orig.)
International Nuclear Information System (INIS)
Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Madsen, L. B.
2007-01-01
We present a method for spectral (bound and continuum) and partial-wave analysis of a three-dimensional time-dependent wave function, defined on a grid, without projecting onto the field-free eigenstates of the system. The method consists of propagating the time-dependent Schroedinger equation to obtain its autocorrelation function C(t)= after the end of the interaction, at time T, of the system with an external time-dependent field. The Fourier spectrum of this correlation function is directly related to the expansion coefficients of the wave function on the field-free bound and continuum energy eigenstates of the system. By expanding on a spherical harmonics basis we show how to calculate the contribution of the various partial waves to the total photoelectron energy spectrum
Strange Particle Production in $p+p$ Collisions at $\\sqrt{s}$= 200GeV
Energy Technology Data Exchange (ETDEWEB)
Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta,N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.
2006-07-31
We present strange particle spectra and yields measured atmid-rapidity in sqrt text s=200 GeV proton-proton (p+p) collisions atRHIC. We find that the previously observed universal transverse mass(mathrm mT \\equiv\\sqrt mathrm p_T 2+\\mathrm m2) scaling of hadronproduction in p+p collisions seems to break down at higher \\mt and thatthere is a difference in the shape of the \\mt spectrum between baryonsand mesons. We observe mid-rapidity anti-baryon to baryon ratios nearunity for Lambda and Xi baryons and no dependence of the ratio ontransverse momentum, indicating that our data do not yet reach thequark-jet dominated region. We show the dependence of the mean transversemomentum (\\mpt) on measured charged particle multiplicity and on particlemass and infer that these trends are consistent with gluon-jet dominatedparticle production. The data are compared to previous measurements fromCERN-SPS, ISR and FNAL experiments and to Leading Order (LO) and Next toLeading order (NLO) string fragmentation model predictions. We infer fromthese comparisons that the spectral shapes and particle yields from $p+p$collisions at RHIC energies have large contributions from gluon jetsrather than quark jets.
Energy Technology Data Exchange (ETDEWEB)
Holme, A.K.
1995-11-01
The author has studied production of strange and multistrange baryons and antibaryons in central sulphur-tungsten, sulphur-sulphur, and lead-lead interactions at relativistic energies. The spectra of strange baryons and antibaryons provide information about the dynamics of hadronic matter under the extreme conditions realised in these collisions. The particle ratios allow the degree and the nature of the flavour equilibrium to be studied, while the transverse mass distributions provide independent information of the temperatures achieved. 143 refs.
International Nuclear Information System (INIS)
Holme, A.K.
1995-11-01
The author has studied production of strange and multistrange baryons and antibaryons in central sulphur-tungsten, sulphur-sulphur, and lead-lead interactions at relativistic energies. The spectra of strange baryons and antibaryons provide information about the dynamics of hadronic matter under the extreme conditions realised in these collisions. The particle ratios allow the degree and the nature of the flavour equilibrium to be studied, while the transverse mass distributions provide independent information of the temperatures achieved. 143 refs
Study of Strange and Multistrange Particles in Ultrarelativistic Nucleus-Nucleus Collisions
Vande vyvre, P; Feofilov, G; Snoeys, W; Hetland, K F; Campbell, M; Klempt, W
2002-01-01
% NA57\\\\ \\\\ The goal of the experiment is to study the production of strange and multi-strange particles in nucleus-nucleus collisions. This study was initiated at the OMEGA spectrometer, where three ion experiments have been performed: WA85 (S-W and p-W collisions at 200 A GeV/c), WA94 (S-S and p-S collisions at 200 A GeV/c) and WA97 (Pb-Pb, p-Pb and p-Be collisions at 160 A GeV/c).\\\\ \\\\ The experiment aims at extending the scope of WA97 by:\\\\ \\\\ - investigating the beam energy dependence of the enhancements of multi-strange particle production reported by the previous experiments, and by\\\\ \\\\\\\\ \\\\- measuring the yields of strange and multi-strange particles over an extended centrality range compared with the previous experiments.\\\\ \\\\ The apparatus consists mainly of silicon pixel detector planes.
Using the Moon As A Low-Noise Seismic Detector For Strange Quark Nuggets
Banerdt, W. Bruce; Chui, Talso; Griggs, Cornelius E.; Herrin, Eugene T.; Nakamura, Yosio; Paik, Ho Jung; Penanen, Konstantin; Rosenbaum, Doris; Teplitz, Vigdor L.; Young, Joseph
2006-01-01
Strange quark matter made of up, down and strange quarks has been postulated by Witten [1]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10(exp 14) gm/cu cm). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [2], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.
Energy Technology Data Exchange (ETDEWEB)
Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-graduacao em Modelagem Computacional; Garcia, Carlos R., E-mail: cgh@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)
2017-07-01
Presented here is the application of the adjoint technique for solving source-detector discrete ordinates (S{sub N}) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF{sup †}) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non-zero prescribed boundary conditions for the forward S{sub N} transport problems. The SGF{sup †} method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF{sup †} equations, we use the partial adjoint one-node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)
Paul, Nigel D; Jacobson, Rob J; Taylor, Anna; Wargent, Jason J; Moore, Jason P
2005-01-01
Plant responses to light spectral quality can be exploited to deliver a range of agronomically desirable end points in protected crops. This can be achieved using plastics with specific spectral properties as crop covers. We have studied the responses of a range of crops to plastics that have either (a) increased transmission of UV compared with standard horticultural covers, (b) decreased transmission of UV or (c) increased the ratio of red (R) : far-red (FR) radiation. Both the UV-transparent and R : FR increasing films reduced leaf area and biomass, offering potential alternatives to chemical growth regulators. The UV-opaque film increased growth, but while this may be useful in some crops, there were trade-offs with elements of quality, such as pigmentation and taste. UV manipulation may also influence disease control. Increasing UV inhibited not only the pathogenic fungus Botrytis cinerea but also the disease biocontrol agent Trichoderma harzianum. Unlike B. cinerea, T. harzianum was highly sensitive to UV-A radiation. These fungal responses and those for plant growth in the growth room and the field under different plastics are analyzed in terms of alternative biological spectral weighting functions (BSWF). The role of BSWF in assessing general patterns of response to UV modification in horticulture is also discussed.
International Nuclear Information System (INIS)
Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C.
2017-01-01
Presented here is the application of the adjoint technique for solving source{detector discrete ordinates (S N ) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF † ) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non{zero prescribed boundary conditions for the forward S N transport problems. The SGF † method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF † equations, we use the partial adjoint one{node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)
Mäyrä, A.; Hietala, E.; Kutila, M.; Pyykönen, P.; Tiihonen, M.; Jokela, T.
2017-09-01
The ECSEL joint undertaking RobustSENSE1 focuses on technologies and solutions for automated driving in adverse weather conditions. One of the main technology challenges is to improve laser scanner performance in fog where the existing 905 nm lidar reliability degrades below tolerances. This report briefly summarizes the results of experimental fog absorbance measurements, which were conducted in VTT icing wind tunnel located in VTT's premises. The content of the presentation will focus on spectral absorbance measurements in artificial fog in near infrared band.
International Nuclear Information System (INIS)
Macia, R.; Correig, A.M.
1987-01-01
Seismic wave propagation is described by a second order differential equation for medium displacement. By Fourier transforming with respect to time and space, wave equation transforms into a system of first order linear differential equations for the Fourier transform of displacement and stress. This system of differential equations is solved by means of Matrix Propagator and applied to the propagation of body waves in stratified media. The matrix propagators corresponding to P-SV and SH waves in homogeneous medium are found as an intermediate step to obtain the spectral response of body waves propagating through a stratified medium with homogeneous layers. (author) 14 refs
The hydrogen bubble chamber and the strange resonances
International Nuclear Information System (INIS)
Alvarez, L.W.
1989-01-01
Work on observing strange particle resonances, already predicted by theory, was done at Berkeley by the author Luis Alvarez starting in 1953, thanks to the development of a bubble chamber filled with liquid hydrogen, which made the discovery on new particles and their mode of production easier. The first experiment, stopping K - mesons in hydrogen lead to copious production of the strangeness equal to minus one hyperons, the lambda, and sigma minus, plus and neutral, as well as enabling the first observation of muon-catalyzed fusion reactions. In 1955, funding was obtained for a seventy-two-inch bubble chamber, by far the largest ever constructed. Later computer analysis permitted calculation of track co-ordinates in real space. A neutral cascade particle, the xi, predicted by theory, had its mass measured first on the fifteen-inch chamber. The author closes with a description of the explosion in discoveries of resonance particles in the late fifties and speculates about future discoveries. (UK)
Neutral strangeness production with the ZEUS detector at HERA
Energy Technology Data Exchange (ETDEWEB)
Liu Chuanlei
2007-12-15
The inclusive production of the neutral strange particles, {lambda}, anti {lambda} and K{sup 0}{sub S} has been studied with the ZEUS detector at HERA. The measurement provides a way to understand the fragmentation process in ep collisions and to check the universality of this process. The strangeness cross sections have been measured and compared with Monte Carlo (MC) predictions. Over the kinematic regions of interest, no {lambda} to anti {lambda} asymmetry was observed. The relative yield of {lambda} and K{sup 0}{sub S} was determined and the result was compared with MC calculations and results from other experiments. A good agreement was found except for the enhancement in the photoproduction process. Clear rapidity correlation was observed for particle pairs where either quark flavor or baryon number compensation occurs. The K{sup 0}{sub S}K{sup 0}{sub S} Bose-Einstein correlation measurement gives a result consistent with those from LEP measurements. The {lambda} polarizations were measured to be consistent with zero for HERA I data. (orig.)
Multi-strange baryon production in pp collisions at $\\sqrt{s}$ = 7 TeV with ALICE
Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Francesco; Blanco, F; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caballero Orduna, Diego; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carlin Filho, Nelson; Carminati, Federico; Carrillo Montoya, Camilo Andres; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Castillo Hernandez, Juan Francisco; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Kushal; Das, Indranil; Dash, Sadhana; Dash, Ajay Kumar; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; Delagrange, Hugues; Del Castillo Sanchez, Eduardo; Deloff, Andrzej; Demanov, Vyacheslav; De Marco, Nora; Denes, Ervin; De Pasquale, Salvatore; Deppman, Airton; D'Erasmo, Ginevra; de Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Di Bari, Domenico; Dietel, Thomas; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Roberta; Ferretti, Alessandro; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Costin; Grigoras, Alina Gabriela; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Han, Byounghee; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Pier Giorgio; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Vladimir; Ivanov, Marian; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jancurova, Lucia; Jang, Haeng Jin; Jangal, Swensy Gwladys; Janik, Rudolf; Janik, Malgorzata Anna; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kaidalov, Alexei; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalisky, Matus; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kanaki, Kalliopi; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Palash; Khan, Shuaib Ahmad; Khan, Mohisin Mohammed; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Taesoo; Kim, Beomkyu; Kim, Dong Jo; Kim, Se Yong; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Mimae; Kim, Minwoo; Kim, Seon Hee; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Vasily; Kushpil, Svetlana; Kvaerno, Henning; Kweon, Min Jung; Kwon, Youngil; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; La Pointe, Sarah Louise; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; La Rocca, Paola; Lazzeroni, Cristina; Lea, Ramona; Le Bornec, Yves; Lechman, Mateusz; Lee, Sung Chul; Lee, Ki Sang; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon, Hermes; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Ma, Ke; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Mohanty, Ajit Kumar; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Vladimir; Nikulin, Sergey; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Pal, S; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Pastircak, Blahoslav; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujol Teixido, Jordi; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Sudhir; Raniwala, Rashmi; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Pradip Kumar; Roy, Christelle Sophie; Rubio Montero, Antonio Juan; Rui, Rinaldo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca; Scott, Patrick Aaron; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Satish; Sharma, Natasha; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Myunggeun; Song, Jihye; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stan, Ionel; Stefanek, Grzegorz; Steinbeck, Timm Morten; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; Vande Vyvre, Pierre; van Leeuwen, Marco; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Leonid; Vinogradov, Yury; Vinogradov, Alexander; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Vladimir; Wagner, Boris; Wan, Renzhuo; Wang, Dong; Wang, Yifei; Wang, Yaping; Wang, Mengliang; Watanabe, Kengo; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilk, Alexander; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yang, Shiming; Yang, Hongyan; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Xiaoming; Zhang, Haitao; Zhou, You; Zhou, Daicui; Zhou, Fengchu; Zhu, Jianhui; Zhu, Xiangrong; Zhu, Jianlin; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo
2013-07-16
A measurement of the multi-strange Xi- and Omega- baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for proton-proton collisions at centre of mass energy of 7 TeV. The transverse momentum (pt) distributions were studied at mid-rapidity (|y| 6.0 GeV/c. We also illustrate the difference between the experimental data and model by comparing the corresponding ratios of (Omega-+Omega+)/(Xi-+Xi+) as a function of transverse mass.
Strange Particle Production in pp Collisions at sqrt(s) = 0.9 and 7 TeV
Energy Technology Data Exchange (ETDEWEB)
Khachatryan, Vardan [Yerevan Physics Inst. (Armenia); et al.
2011-05-01
The spectra of strange hadrons are measured in proton-proton collisions, recorded by the CMS experiment at the CERN LHC, at centre-of-mass energies of 0.9 and 7 TeV. The K0_s, Lambda, and Xi^- particles and their antiparticles are reconstructed from their decay topologies and the production rates are measured as functions of rapidity and transverse momentum. The results are compared to other experiments and to predictions of the PYTHIA Monte Carlo program. The transverse momentum distributions are found to differ substantially from the PYTHIA results and the production rates exceed the predictions by up to a factor of three.
Strange Particle Production in pp collisions at $\\sqrt{s}$ = 0.9 and 7 TeV
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hartl, Christian; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kasieczka, Gregor; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Benucci, Leonardo; Cerny, Karel; De Wolf, Eddi A; Janssen, Xavier; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Beauceron, Stephanie; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Joris; Maes, Michael; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Adler, Volker; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; De Favereau De Jeneret, Jerome; Delaere, Christophe; Demin, Pavel; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Carvalho, Wagner; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Torres Da Silva De Araujo, Felipe; De Almeida Dias, Flavia; Ferreira Dias, Marco Andre; Tomei, Thiago; De Moraes Gregores, Eduardo; Da Cunha Marinho, Franciole; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vankov, Ivan; Dyulendarova, Milena; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Marinova, Evelina; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xu, Ming; Yang, Min; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhang, Linlin; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Mahmoud, Mohammed; Hektor, Andi; Kadastik, Mario; Kannike, Kristjan; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Klem, Jukka; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Beaudette, Florian; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Wyslouch, Bolek; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Besson, Auguste; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Falkiewicz, Anna; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Xiao, Hong; Megrelidze, Luka; Roinishvili, Vladimir; Lomidze, David; Anagnostou, Georgios; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Ata, Metin; Bender, Walter; Erdmann, Martin; Frangenheim, Jens; Hebbeker, Thomas; Hinzmann, Andreas; Hoepfner, Kerstin; Hof, Carsten; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Magass, Carsten; Masetti, Gianni; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Thomas, Maarten; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katkov, Igor; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Parenti, Andrea; Raspereza, Alexei; Raval, Amita; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Stein, Matthias; Tomaszewska, Justyna; Volyanskyy, Dmytro; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Kaschube, Kolja; Kaussen, Gordon; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schröder, Matthias; Schum, Torben; Schwandt, Joern; Srivastava, Ajay Kumar; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Wolf, Roger; Barth, Christian; Bauer, Julia; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heindl, Stefan Michael; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Piparo, Danilo; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Renz, Manuel; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Debreczeni, Gergely; Hajdu, Csaba; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Laszlo, Andras; Sikler, Ferenc; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jas Bir; Singh, Supreet Pal; Ahuja, Sudha; Bhattacharya, Satyaki; Choudhary, Brajesh C; Gupta, Pooja; Jain, Sandhya; Jain, Shilpi; Kumar, Ashok; Shivpuri, Ram Krishen; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kataria, Sushil Kumar; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Dimitrov, Anton; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Grandi, Claudio; Marcellini, Stefano; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Ghezzi, Alessio; Malberti, Martina; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Tancini, Valentina; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cimmino, Anna; De Cosa, Annapaola; De Gruttola, Michele; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Noli, Pasquale; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Conti, Enrico; De Mattia, Marco; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Giubilato, Piero; Gresele, Ambra; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Berzano, Umberto; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Santocchia, Attilio; Servoli, Leonello; Taroni, Silvia; Valdata, Marisa; Volpe, Roberta; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Sarkar, Subir; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Nourbakhsh, Shervin; Organtini, Giovanni; Palma, Alessandro; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Trocino, Daniele; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Son, Dohhee; Son, Dong-Chul; Kim, Jaeho; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Rhee, Han-Bum; Seo, Eunsung; Shin, Seungsu; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Lopez-Fernandez, Ricardo; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Allfrey, Philip; Krofcheck, David; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Sá Martins, Pedro; Musella, Pasquale; Nayak, Aruna; Ribeiro, Pedro Quinaz; Seixas, Joao; Silva, Pedro; Varela, Joao; Wöhri, Hermine Katharina; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Bondar, Nikolai; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Slabospitsky, Sergey; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chamizo Llatas, Maria; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Breuker, Horst; Brona, Grzegorz; Bunkowski, Karol; Camporesi, Tiziano; Cano, Eric; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Duarte Ramos, Fernando; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Gennai, Simone; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Henderson, Conor; Hesketh, Gavin; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lourenco, Carlos; Macpherson, Alick; Maki, Tuula; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Polese, Giovanni; Racz, Attila; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stöckli, Fabian; Stoye, Markus; Tropea, Paola; Tsirou, Andromachi; Tsyganov, Andrey; Veres, Gabor Istvan; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Starodumov, Andrei; Bortignon, Pierluigi; Caminada, Lea; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hervé, Alain; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Meridiani, Paolo; Milenovic, Predrag; Moortgat, Filip; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Stieger, Benjamin; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguiló, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Regenfus, Christian; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Chen, Wan-Ting; Dutta, Suchandra; Go, Apollo; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Ming-Hsiung; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Demir, Zahide; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Kayis Topaksu, Aysel; Nart, Alisah; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Halu, Arda; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bell, Peter; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Hansen, Maria; Hartley, Dominic; Heath, Greg P; Heath, Helen F; Huckvale, Benedickt; Jackson, James; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Ward, Simon; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Fulcher, Jonathan; Futyan, David; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Speer, Thomas; Tsang, Ka Vang; Borgia, Maria Assunta; Breedon, Richard; Calderon De La Barca Sanchez, Manuel; Cebra, Daniel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Salur, Sevil; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Luthra, Arun; Nguyen, Harold; Shen, Benjamin C; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Dusinberre, Elizabeth; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Muelmenstaedt, Johannes; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tu, Yanjun; Vartak, Adish; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Gataullin, Marat; Kcira, Dorian; Litvine, Vladimir; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Terentyev, Nikolay; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Das, Souvik; Eggert, Nicholas; Fields, Laura Johanna; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Kuznetsov, Valentin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Riley, Daniel; Ryd, Anders; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Demarteau, Marcel; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gunthoti, Kranti; Gutsche, Oliver; Hahn, Alan; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; James, Eric; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Khatiwada, Rakshya; Kilminster, Benjamin; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; McCauley, Thomas; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Popescu, Sorina; Pordes, Ruth; Prokofyev, Oleg; Saoulidou, Niki; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Goldberg, Sean; Kim, Bockjoo; Klimenko, Sergey; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Pakhotin, Yuriy; Prescott, Craig; Remington, Ronald; Schmitt, Michael Houston; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Ceron, Cristobal; Gaultney, Vanessa; Kramer, Laird; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bandurin, Dmitry; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Quertenmont, Loic; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Ralich, Robert; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Garcia-Solis, Edmundo Javier; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Cankocak, Kerem; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Murray, Michael; Noonan, Daniel; Radicci, Valeria; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Sumorok, Konstanty; Sung, Kevin; Wenger, Edward Allen; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cole, Perrie; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Dudero, Phillip Russell; Franzoni, Giovanni; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Lundstedt, Carl; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Warchol, Jadwiga; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jones, John; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; Everett, Adam; Garfinkel, Arthur F; Gecse, Zoltan; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Jindal, Pratima; Parashar, Neeti; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Liu, Jinghua H; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Yan, Ming; Atramentov, Oleksiy; Barker, Anthony; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Asaadi, Jonathan; Eusebi, Ricardo; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Nguyen, Chi Nhan; Osipenkov, Ilya; Pivarski, James; Safonov, Alexei; Sengupta, Sinjini; Tatarinov, Aysen; Toback, David; Weinberger, Michael; Akchurin, Nural; Damgov, Jordan; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Buehler, Marc; Conetti, Sergio; Cox, Bradley; Francis, Brian; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Efron, Jonathan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc
2011-01-01
The spectra of strange hadrons are measured in proton-proton collisions, recorded by the CMS experiment at the CERN LHC, at centre-of-mass energies of 0.9 and 7 TeV. The K0_s, Lambda, and Xi^- particles and their antiparticles are reconstructed from their decay topologies and the production rates are measured as functions of rapidity and transverse momentum. The results are compared to other experiments and to predictions of the PYTHIA Monte Carlo program. The transverse momentum distributions are found to differ substantially from the PYTHIA results and the production rates exceed the predictions by up to a factor of three.
Devine, Rory T; Hughes, Claire
2016-09-01
Recent years have seen a growth of research on the development of children's ability to reason about others' mental states (or "theory of mind") beyond the narrow confines of the preschool period. The overall aim of this study was to investigate the psychometric properties of a task battery composed of items from Happé's Strange Stories task and Devine and Hughes' Silent Film task. A sample of 460 ethnically and socially diverse children (211 boys) between 7 and 13years of age completed the task battery at two time points separated by 1month. The Strange Stories and Silent Film tasks were strongly correlated even when verbal ability and narrative comprehension were taken into account, and all items loaded onto a single theory-of-mind latent factor. The theory-of-mind latent factor provided reliable estimates of performance across a wide range of theory-of-mind ability and showed no evidence of differential item functioning across gender, ethnicity, or socioeconomic status. The theory-of-mind latent factor also exhibited strong 1-month test-retest reliability, and this stability did not vary as a function of child characteristics. Taken together, these findings provide evidence for the validity and reliability of the Strange Stories and Silent Film task battery as a measure of individual differences in theory of mind suitable for use across middle childhood. We consider the methodological and conceptual implications of these findings for research on theory of mind beyond the preschool years. Copyright © 2015 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Speltz, J
2006-10-15
In this work, we characterize the production of the multi-strange baryons Xi and Omega in Au+Au collisions at RHIC, where the possible formation of a matter of deconfined quarks and gluons (QGP) is expected. We analyze with the STAR experiment, the collisions obtained at an energy of 62 GeV, intermediate between the one reached at the SPS (17 GeV) and the nominal energy of RHIC (200 GeV). Transverse momentum spectra, yields and elliptic flow are measured with different methods allowing for a relevant estimation of systematic errors. The results are compared to statistical and hydrodynamic models that we have adapted for their use at 62 GeV. The so obtained chemical and dynamic properties of the created medium indicate the formation of a thermalized, at least partially, medium and suggests the formation of a comparable matter at 62 GeV and at 200 GeV. (author)
Strange metal from Gutzwiller correlations in infinite dimensions
Ding, Wenxin; Žitko, Rok; Mai, Peizhi; Perepelitsky, Edward; Shastry, B. Sriram
2017-08-01
Recent progress in extremely correlated Fermi liquid theory (ECFL) and the dynamical mean field theory (DMFT) enables us to accurately compute in the d →∞ limit the resistivity of the t -J model after setting J →0 . This is also the U =∞ Hubbard model. Since J is set to zero, our study isolates the dynamical effects of the single occupation constraint enforced by the projection operator originally introduced by Gutzwiller. We study three densities n =.75 ,.8 ,.85 that correspond to a range between the overdoped and optimally doped Mott insulating state. We delineate four distinct regimes separated by three crossovers, which are characterized by different behaviors of the resistivity ρ . We find at the lowest temperature T a Gutzwiller correlated Fermi liquid regime with ρ ∝T2 extending up to an effective Fermi temperature that is dramatically suppressed from the noninteracting value by the proximity to half filling, n ˜1 . This is followed by a Gutzwiller correlated strange metal regime with ρ ∝(T -T0) , i.e., a linear resistivity extrapolating back to ρ =0 at a positive T0. At a higher temperature scale this crosses over into the bad metal regime with ρ ∝(T +T1) , i.e., a linear resistivity extrapolating back to a finite resistivity at T =0 and passing through the Ioffe-Regel-Mott value where the mean free path is a few lattice constants. This regime finally gives way to the high T metal regime, where we find ρ ∝T , i.e., a linear resistivity extrapolating back to zero at T =0 . The present work emphasizes the first two, i.e., the two lowest temperature regimes, where the availability of an analytical ECFL theory is of help in identifying the changes in related variables entering the resistivity formula that accompanies the onset of linear resistivity, and the numerically exact DMFT helps to validate the results. We also examine thermodynamical variables such as the magnetic susceptibility, compressibility, heat capacity, and entropy and
Energy Technology Data Exchange (ETDEWEB)
Curbelo, Jesus P.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: jperez@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-Graduacao em Modelagem Computacional; Hernandez, Carlos R.G., E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)
2015-07-01
The spectral Green's function (SGF) method is a numerical method that is free of spatial truncation errors for slab-geometry fixed-source discrete ordinates (S{sub N}) adjoint problems. The method is based on the standard spatially discretized adjoint S{sub N} balance equations and a nonstandard adjoint auxiliary equation expressing the node-average adjoint angular flux, in each discretization node, as a weighted combination of the node-edge outgoing adjoint fluxes. The auxiliary equation contains parameters which act as Green's functions for the cell-average adjoint angular flux. These parameters are determined by means of a spectral analysis which yields the local general solution of the S{sub N} equations within each node of the discretization grid. In this work a number of advances in the SGF adjoint method are presented: the method is extended to adjoint S{sub N} problems considering linearly anisotropic scattering and non-zero prescribed boundary conditions for the forward source-detector problem. Numerical results to typical model problems are considered to illustrate the efficiency and accuracy of the o offered method. (author)
Leaney, John; Healey, Paul R; Lee, Martin; Graham, Stuart L
2012-11-01
To compare the structure/function relationship in glaucoma cases at different levels of severity, and with different disc sizes, between the Heidelberg Retinal Tomography and Spectralis spectral domain optical coherence tomography. Retrospective study of glaucoma patients attending a Sydney-based private practice. 169 eyes of 169 patients with a clinical diagnosis of glaucoma. Patients were divided on visual field criteria into early (mean deviation > -4 dB), moderate (-4 dB fibre layer thickness sectoral measurement were calculated. Correlation, as measured by Spearman's rho, between retinal nerve fibre layer measurements and mean threshold scores. Comparison of correlation strengths between the two scanning modalities with analysis of the effect of disease severity and disc size. Both imaging techniques showed only moderate correlations at best. Spectral domain optical coherence tomography (global retinal nerve fibre layer Spearman's rho = 0.670, P fibre layer (Spearman's rho = 0.421, P optical coherence tomography retinal nerve fibre layer measurements demonstrated closer correlations to visual field threshold reductions using a structure/function model in varying stages of glaucoma. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.
Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Merle, E; Minard, M N; Nief, J Y; Pietrzyk, B; Alemany, R; Boix, G; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Becker, U; Bright-Thomas, P G; Casper, David William; Cattaneo, M; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Cerutti, F; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Halley, A W; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Williams, M I; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Etienne, F; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Kroha, H; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Zobernig, G
1998-01-01
An analysis based on 124000 selected tau pairs recorded by the ALEPH detector at LEP provides the vector (V) and axial-vector (A) spectral functions of hadronic tau decays together with their total widths. This allows the evaluation of finite energy chiral sum rules that are weighted integrals over the (V-A) spectral functions. In addition, a precise measurement of alpha_s along with a determination of nonperturbative contributions at the tau mass scale is performed. The experimentally and theoretically most robust determination of alpha_s(M_tau^2) is obtained from the (V+A) fit that yields alpha_s(M_tau^2) = 0.334 +/- 0.022 giving alpha_s(M_Z^2) = 0.1202 +/- 0.0027 after the extrapolation to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally studying the evolution of the tau hadronic widths to masses smaller than the tau mass.
Strange metals at finite 't Hooft coupling
Energy Technology Data Exchange (ETDEWEB)
Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department, P.O. Box 3619995161, Shahrood (Iran, Islamic Republic of)
2013-01-15
In this paper, we consider the AdS-Schwarzschild black hole in light-cone coordinates which exhibits non-relativistic z=2 Schrodinger symmetry. Then, we use the AdS/CFT correspondence to investigate the effect of finite-coupling corrections to two important properties of the strange metals which are the Ohmic resistivity and the inverse Hall angle. It is shown that the Ohmic resistivity and inverse Hall angle are linearly and quadratically temperature dependent in the case of R{sup 4} corrections, respectively, while in the case of Gauss-Bonnet gravity, we find that the inverse Hall angle is quadratically temperature dependent and the Ohmic conductivity can never be linearly temperature dependent. (orig.)
Strange b baryon production and lifetime in Z decays
Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
In a data sample of approximately four million hadronic Z decays recorded with the ALEPH detector from 1990 to 1995, a search for the strange b baryon Xi_b is performed with a study of Xi-lepton correlations. Forty-four events with same sign Xi- l- combinations are found whereas 8.4 are expected based on on the rate of opposite sign Xi- l+ combinations. This significant excess is interpreted as evidence for Xi_b semileptonic decays. The measured product branching ratio is: Br( b -> Xi_b) Br( Xi_b -> Xc X l- nu) Br( Xc -> Xi- X') = (5.4 +/- 1.1(stat) +/- 0.8(syst) ) 10**-4 per lepton species, averaged over electrons and muons, with Xc a charmed baryo\\ n. The Xi_b lifetime is measured to be : tau = 1.35 (+0.37 -0.28 (stat)) (+0.15 -0.17 (syst)) ps.
Production of strange baryons and antibaryons in relativistic ion collisions
2002-01-01
A new state of matter - the quark-gluon plasma - may be produced in $^{32}$S interactions with heavy nuclei A (Ag, Cu, Pb and S targets) at beam momenta up to 200 GeV/c per nucleon. A possible signature of this state is a strongly enhanced yield of strange quark pairs. The aim of the experiment is therefore a measurement of differential cross sections for production of neutral kaons, $\\Lambda, \\Xi, \\Omega$ and their antiparticles with high statistics. Furthermore charged particle trajectories will be reconstructed and the total energy flow and its fluctuations will be determined in the forward c.m.s. hemisphere. \\\\\\\\The experiment is performed with a modified EHS configuration; its characteristic features are:\\\\\\\\ - Tracking chambers.\\\\ - A Cerenkov counter.\\\\ - A TPC for 3-dimensional unambiguous space point tracking.\\\\ - A magnet to sweep most of the produced particles from the tracking devices.\\\\ - Hadronic and electromagnetic calorimeters covering hermetically the forward c.m.s. hemisphere.\\\\ - ...
Influence of rescattering on the strange particle spectrum
International Nuclear Information System (INIS)
David, C.; Hartnack, C; Aichelin, J.
1997-01-01
Applying a new method of rescattering which is based on the neural network technique we study the influence of rescattering on the spectra of strange particles produced in heavy ion reactions. In contradistinction to formal approaches the rescattering is done explicitly and not in a perturbative fashion. We present a comparison of our calculations for the system Ni (1.93 A.GeV) + Ni with recent data of the FOPI collaboration. We find that even for this small system rescattering changes the observables considerably but does not invalidate the role of the kaons as a messenger from the high density zone. We cannot confirm the conjecture that the kaon flow can be of use for the determination of the optical potential of the kaon. The experimental results agree with the computations showing a minimal change of the K + particles in the nuclear matter. Probably, the situation is very different for the K - particles
Strangeness from SPS to FAIR: Searching for the onset of deconfinement
Friese, Volker
2017-12-01
Since the early days of heavy-ion physics, strangeness has been considered a sensitive probe of the state of matter created in nuclear collisions. This assessment still holds today, where we are witnessing renewed interest in collisions at moderate energies, manifested in the running or projected experimental programmes at RHIC, SPS, FAIR, and NICA. In this article, we will review the current understanding of strangeness production at lower energies and discuss how far future measurement of strange particles can contribute to understanding the properties of dense QCD matter and to the search for the onset of deconfinement.
Treu, Curt; de Souza, Maria das Graças Coelho; Lupi, Omar; Sicuro, Fernando Lencastre; Maranhão, Priscila Alves; Kraemer-Aguiar, Luiz Guilherme; Bouskela, Eliete
2017-01-01
Leprosy is a chronic granulomatous infection of skin and peripheral nerves caused by Mycobacterium leprae and is considered the main infectious cause of disability worldwide. Despite the several studies regarding leprosy, little is known about its effects on microvascular structure and function in vivo. Thus, we have aimed to compare skin capillary structure and functional density, cutaneous vasomotion (spontaneous oscillations of arteriolar diameter), which ensures optimal blood flow distribution to skin capillaries) and cutaneous microvascular blood flow and reactivity between ten men with lepromatous leprosy (without any other comorbidity) and ten age- and gender-matched healthy controls. Orthogonal polarization spectral imaging was used to evaluate skin capillary morphology and functional density and laser Doppler flowmetry to evaluate blood flow, vasomotion and spectral analysis of flowmotion (oscillations of blood flow generated by vasomotion) and microvascular reactivity, in response to iontophoresis of acetylcholine and sodium nitroprusside. The contribution of different frequency components of flowmotion (endothelial, neurogenic, myogenic, respiratory and cardiac) was not statistically different between groups. However, endothelial-dependent and -independent vasodilatations elicited by acetylcholine and sodium nitroprusside iontophoresis, respectively, were significantly reduced in lepromatous leprosy patients compared to controls, characterizing the existence of microvascular dysfunction. These patients also presented a significant increase in the number of capillaries with morphological abnormalities and in the diameters of the dermal papilla and capillary bulk when compared to controls. Our results suggest that lepromatous leprosy causes severe microvascular dysfunction and significant alterations in capillary structure. These structural and functional changes are probably induced by exposure of the microvascular bed to chronic inflammation evoked by
Davies, E B; Plum, M
2003-01-01
We discuss the problems arising when computing eigenvalues of self-adjoint operators which lie in a gap between two parts of the essential spectrum. Spectral pollution, i.e. the apparent existence of eigenvalues in numerical computations, when no such eigenvalues actually exist, is commonplace in problems arising in applied mathematics. We describe a geometrically inspired method which avoids this difficulty, and show that it yields the same results as an algorithm of Zimmermann and Mertins.
Abundance estimation of spectrally similar minerals
CSIR Research Space (South Africa)
Debba, Pravesh
2009-07-01
Full Text Available This paper evaluates a spectral unmixing method for estimating the partial abundance of spectrally similar minerals in complex mixtures. The method requires formulation of a linear function of individual spectra of individual minerals. The first...
Czech Academy of Sciences Publication Activity Database
Abbas, G.; Ananthanarayan, B.; Caprini, I.; Fischer, Jan
2013-01-01
Roč. 88, č. 3 (2013), "034026-1"-"034026-16" ISSN 1550-7998 Institutional support: RVO:68378271 Keywords : Borel transformation * asymptotic series * Adler function Subject RIV: BE - Theoretical Physics Impact factor: 4.864, year: 2013
International Nuclear Information System (INIS)
Vaeth, W.
1979-04-01
The correlation of signal components at different frequencies like higher harmonics cannot be detected by a normal power spectral density measurement, since this technique correlates only components at the same frequency. This paper describes a special method for measuring the correlation of two signal components at different frequencies: the CRISS power spectral density. From this new function in frequency analysis, the correlation of two components can be determined quantitatively either they stem from one signal or from two diverse signals. The principle of the method, suitable for the higher harmonics of a signal as well as for any other frequency combinations is shown for the digital frequency analysis technique. Two examples of CRISS power spectral densities demonstrates the operation of the new method. (orig.) [de
International Nuclear Information System (INIS)
Menezes, Welton A.; Filho, Hermes Alves; Barros, Ricardo C.
2014-01-01
Highlights: • Fixed-source S N transport problems. • Energy multigroup model. • Anisotropic scattering. • Slab-geometry spectral nodal method. - Abstract: A generalization of the spectral Green’s function (SGF) method is developed for multigroup, fixed-source, slab-geometry discrete ordinates (S N ) problems with anisotropic scattering. The offered SGF method with the one-node block inversion (NBI) iterative scheme converges numerical solutions that are completely free from spatial truncation errors for multigroup, slab-geometry S N problems with scattering anisotropy of order L, provided L < N. As a coarse-mesh numerical method, the SGF method generates numerical solutions that generally do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. Therefore, we describe in this paper a technique for the spatial reconstruction of the coarse-mesh solution generated by the multigroup SGF method. Numerical results are given to illustrate the method’s accuracy
Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing
2013-11-26
Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed
Strangeness and the quark-gluon plasma: An experimenter`s perspective
Energy Technology Data Exchange (ETDEWEB)
Odyniec, G.
1994-02-01
Current status of experimental results on strange particle production in relativistic nucleus-nucleus collisions is reviewed. Emphasis is placed on the relevance to the hypothetical quark-gluon plasma formation and the origin of the Universe.
Marmodoro, Alberto; Ernst, Arthur; Ostanin, Sergei; Sandratskii, Leonid; Trevisanutto, Paolo E.; Lathiotakis, Nektarios N.; Staunton, Julie B.
2016-12-01
The nonlocal coherent-potential approximation provides a systematic technique for the study of short-range ordering effects in a variety of disordered systems. In its original formulation the technique, however, shows an unwanted dependence on details in the coarse-grained effective medium construction. This is particularly evident in the study of k ⃗-resolved quantities, such as the Bloch spectral function and other non-site-diagonal observables. We remove the issue and recover fully physical results in first principles studies of real materials, by means of a resampling procedure first proposed for model tight-binding Hamiltonians. The prescription is further generalized to the case of complex unit cell compounds, with more than a single sublattice, and illustrated through examples from metallic alloys and disordered local moment simulations of paramagnetism in the prototype iron-based superconductor FeSe.
Intersection numbers of spectral curves
Eynard, B
2011-01-01
We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the topological vertex formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV formula, and Mumford formula.
Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena
Wiktorowicz, G.; Drago, A.; Pagliara, G.; Popov, S. B.
2017-09-01
Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. According to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.
Strange Quark Magnetic Moment of the Nucleon at the Physical Point.
Sufian, Raza Sabbir; Yang, Yi-Bo; Alexandru, Andrei; Draper, Terrence; Liang, Jian; Liu, Keh-Fei
2017-01-27
We report a lattice QCD calculation of the strange quark contribution to the nucleon's magnetic moment and charge radius. This analysis presents the first direct determination of strange electromagnetic form factors including at the physical pion mass. We perform a model-independent extraction of the strange magnetic moment and the strange charge radius from the electromagnetic form factors in the momentum transfer range of 0.051 GeV^{2}≲Q^{2}≲1.31 GeV^{2}. The finite lattice spacing and finite volume corrections are included in a global fit with 24 valence quark masses on four lattices with different lattice spacings, different volumes, and four sea quark masses including one at the physical pion mass. We obtain the strange magnetic moment G_{M}^{s}(0)=-0.064(14)(09)μ_{N}. The four-sigma precision in statistics is achieved partly due to low-mode averaging of the quark loop and low-mode substitution to improve the statistics of the nucleon propagator. We also obtain the strange charge radius ⟨r_{s}^{2}⟩_{E}=-0.0043(16)(14) fm^{2}.
Sahoo, P. K.; Sahoo, Parbati; Bishi, Binaya K.; Aygün, Sezgin
2018-04-01
In this paper, we have studied homogeneous and anisotropic locally rotationally symmetric (LRS) Bianchi type-I model with magnetized strange quark matter (MSQM) distribution and cosmological constant Λ in f(R, T) gravity where R is the Ricci scalar and T the trace of matter source. The exact solutions of the field equations are obtained under bilinear and special form of time varying deceleration parameter (DP). Firstly, we have considered two specific forms of bilinear DP with a single parameter of the form: q = α(1-t)/1+t and q = -αt/1+t, which leads to the constant or linear nature of the function based on the constant α. Second one is the special form of the DP as q = - 1 + β/1+aβ. From the results obtained here, one can observe that in the early universe magnetic flux has more effects and it reduces gradually in the later stage. For t → ∞, we get p → -Bc and ρ → Bc. The behaviour of strange quark matter along with magnetic epoch gives an idea of accelerated expansion of the universe as per the observations of the type Ia Supernovae.
International Nuclear Information System (INIS)
Gardet, G.
1995-01-01
A systematic study of small lithium clusters (with size less than 19), within the Density Functional Theory (DFT) formalism is presented. We examine structural properties of the so called local level of approximation. For clusters with size smaller than 8, the conformations are well known from ab initio calculations and are found here at much lower computational cost, with only small differences. For bigger clusters, two growth pattern have been used, based upon the increase of the number of pentagonal subunits in the clusters by absorption of one or two Li atoms. Several new stable structures are proposed. Then DFT gradient-corrected functionals have been used for relative stability determination of these clusters. Ionisation potentials and binding energies are also investigated in regard to clusters size and geometry. Calculations of excited states of lithium clusters (with size less than 9) have been performed within two different approaches. Using a set of Kohn-Sham orbitals to construct wave functions, oscillator strengths calculation of the electric dipole transitions is performed. Transition energies, oscillator strengths and optical absorption presented here are generally in reasonable agreement with the experimental data and the Configuration Interaction calculations. (author)
Low-lying charmed and charmed-strange baryon states
Energy Technology Data Exchange (ETDEWEB)
Chen, Bing [Anyang Normal University, Department of Physics, Anyang (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China); Wei, Ke-Wei [Anyang Normal University, Department of Physics, Anyang (China); Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China); Matsuki, Takayuki [Tokyo Kasei University, Tokyo (Japan); Nishina Center, RIKEN, Theoretical Research Division, Saitama (Japan)
2017-03-15
In this work, we systematically study the mass spectra and strong decays of 1P and 2S charmed and charmed-strange baryons in the framework of non-relativistic constituent quark models. With the light quark cluster-heavy quark picture, the masses are simply calculated by a potential model. The strong decays are studied by the Eichten-Hill-Quigg decay formula. Masses and decay properties of the well-established 1S and 1P states can be reproduced by our method. Σ{sub c}(2800){sup 0,+,++} can be assigned as a Σ{sub c2}(3/2{sup -}) or Σ{sub c2}(5/2{sup -}) state. We prefer to interpret the signal Σ{sub c}(2850){sup 0} as a 2S(1/2{sup +}) state although at present we cannot thoroughly exclude the possibility that this is the same state as Σ{sub c}(2800){sup 0}. Λ{sub c}(2765){sup +} or Σ{sub c}(2765){sup +} could be explained as the Λ{sub c}{sup +}(2S) state or Σ{sup +}{sub c1}(1/2{sup -}) state, respectively. We propose to measure the branching ratio of B(Σ{sub c}(2455)π)/B(Σ{sub c}(2520)π) in the future, which may disentangle the puzzle of this state. Our results support Ξ{sub c}(2980){sup 0,+} as the first radial excited state of Ξ{sub c}(2470){sup 0,+} with J{sup P} = 1/2{sup +}. The assignment of Ξ{sub c}(2930){sup 0} is analogous to Σ{sub c}(2800){sup 0,+,++}, i.e., a Ξ{sup '}{sub c2}(3/2{sup -}) or Ξ{sup '}{sub c2}(5/2{sup -}) state. In addition, we predict some typical ratios among partial decay widths, which are valuable for experimental search for these missing charmed and charmed-strange baryons. (orig.)
PREFACE: SQM2007 International Conference on Strangeness in Quark Matter
Šafařík, Karel; Šándor, Ladislav; Tomášik, Boris
2008-04-01
The International Conference on `Strangeness in Quark Matter' (SQM) was held from 24-29 June 2007 at the Congress Hall of the city cultural centre in the charming mediaeval town of Levoča in north-eastern Slovakia. The Institute of Experimental Physics of the Slovak Academy of Science and the Faculty of Science of the P J Šafárik University in Košice shared the duties of main organizers of the conference. SQM2007 was attended by more than 100 participants from about 20 countries. The natural beauty and the rich cultural and historical monuments of the surrounding Spiš (Scepusium) region created an inspiring setting for the scientific, social and cultural framework of the conference. Continuing the trend started at the SQM2006 conference, heavy flavour physics in heavy-ion collisions was a topic given equal importance in the SQM2007 programme alongside strange quark physics. The Symposium for Students, from Students, organized by Christian Klein-Boesing and Boris Tomášik on the basis of the contributed abstracts, was again an integral and successful part of the conference. The jury, drawn from the organizers, awarded William A Horowitz (Columbia University) the title of best student contribution. The good news is that many students and younger researchers attended the conference. This could not have happened without generous support from our sponsors whom we would like to thank for valuable financial support: CERN, Journal of Physics G, the Prešov self-governing region authorities and the Slovak Physical Society. The kind assistance of the mayor of the town of Levoča is also warmly acknowledged. We would like to extend our gratitude to our colleagues and students from the organizing institutions for their diligent work prior to and during the conference, which ensured that everything worked smoothly. Our special thanks go to our secretaries, Adri Chomičová and Mery Šemš'aková, as well as to the management of the SATEL Hotel in Levoča for their highly
Koulen, Peter; Gallimore, Gary; Vincent, Ryan D.; Sabates, Nelson R.; Sabates, Felix N.
2011-06-01
Conventional perimeters are used routinely in various eye disease states to evaluate the central visual field and to quantitatively map sensitivity. However, standard automated perimetry proves difficult for retina and specifically macular disease due to the need for central and steady fixation. Advances in instrumentation have led to microperimetry, which incorporates eye tracking for placement of macular sensitivity values onto an image of the macular fundus thus enabling a precise functional and anatomical mapping of the central visual field. Functional sensitivity of the retina can be compared with the observed structural parameters that are acquired with high-resolution spectral domain optical coherence tomography and by integration of scanning laser ophthalmoscope-driven imaging. Findings of the present study generate a basis for age-matched comparison of sensitivity values in patients with macular pathology. Microperimetry registered with detailed structural data performed before and after intervention treatments provides valuable information about macular function, disease progression and treatment success. This approach also allows for the detection of disease or treatment related changes in retinal sensitivity when visual acuity is not affected and can drive the decision making process in choosing different treatment regimens and guiding visual rehabilitation. This has immediate relevance for applications in central retinal vein occlusion, central serous choroidopathy, age-related macular degeneration, familial macular dystrophy and several other forms of retina related visual disability.
Ito, Fumiyuki
2010-12-07
The supermolecule approach has been used to model molecules embedded in solid argon matrix, wherein interaction between the guest and the host atoms in the first solvation shell is evaluated with the use of density functional calculations. Structural stability and simulated spectra have been obtained for formic acid dimer (FAD)-Ar(n) (n = 21-26) clusters. The calculations at the B971∕6-31++G(3df,3pd) level have shown that the tetrasubstitutional site on Ar(111) plane is likely to incorporate FAD most stably, in view of consistency with the matrix shifts available experimentally.
Suresh, M; Syed Ali Padusha, M; Govindarasu, K; Kavitha, E
2015-03-05
The organic compound 1-(pyrazin-2-yl) piperidin-2-ol (abbreviated as PPOL) has been synthesized and characterized by IR, Raman, (1)H NMR and UV-Vis spectroscopy. The Fourier-transform Raman (3500-50cm(-1)) and infrared spectra (4000-400cm(-1)) were recorded in the solid state and interpreted by comparison with theoretical spectra derived from density functional theory (DFT) calculations. The optimized geometry, frequency and intensity of the vibrational bands of the compound was obtained by the density functional theory using 6-31G(d,p) basis set. In the optimized geometry results shows that geometry parameters are good agreement with XRD values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. In calculation of electronic absorption spectra, TD-DFT calculations were carried out in the both gas and solution phases. (1)H NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. (1)H NMR analysis is evident for O-H⋯O intermolecular interaction of the title molecule. The thermodynamic properties of the title compound have been calculated at different temperatures and the results reveal that the standard heat capacities (Cp,m), standard entropies (Sm) and standard enthalpy changes (Hm) increase with rise in temperature. In addition, HOMO and LUMO energies and the first-order hyperpolarizability have been computed. Published by Elsevier B.V.
Sato, João Ricardo; Balardin, Joana; Vidal, Maciel Calebe; Fujita, André
2016-03-01
Several neuroimaging studies support the model of abnormal development of brain connectivity in patients with autism-spectrum disorders (ASD). In this study, we aimed to test the hypothesis of reduced functional network segregation in autistic patients compared with controls. Functional MRI data from children acquired under a resting-state protocol (Autism Brain Imaging Data Exchange [ABIDE]) were submitted to both fuzzy spectral clustering (FSC) with entropy analysis and graph modularity analysis. We included data from 814 children in our analysis. We identified 5 regions of interest comprising the motor, temporal and occipitotemporal cortices with increased entropy (p clustering structure (i.e., more segregation in the controls). Moreover, we noticed a statistically reduced modularity (p < 0.001) in the autistic patients compared with the controls. Significantly reduced eigenvector centrality values (p < 0.05) in the patients were observed in the same regions that were identified in the FSC analysis. There is considerable heterogeneity in the fMRI acquisition protocols among the sites that contributed to the ABIDE data set (e.g., scanner type, pulse sequence, duration of scan and resting-state protocol). Moreover, the sites differed in many variables related to sample characterization (e.g., age, IQ and ASD diagnostic criteria). Therefore, we cannot rule out the possibility that additional differences in functional network organization would be found in a more homogeneous data sample of individuals with ASD. Our results suggest that the organization of the whole-brain functional network in patients with ASD is different from that observed in controls, which implies a reduced modularity of the brain functional networks involved in sensorimotor, social, affective and cognitive processing.
The Strange Case of Billy Biswas: Two conflicting realities
Directory of Open Access Journals (Sweden)
Bikki Anupama
2017-09-01
Full Text Available Arun Joshi presents socio-cultural conflicts between two different societies. One society is material driven and backed by the modern state apparatus like police, courts, etc. while the other is subsistence driven and is at the bottom in the hierarchy of the modern state. Indian tribal societies have been exploited right from the colonial period into the post-independence times. These two societies differ as follows: the tribal society lives on subsistence looks at Nature as a space for socio-economic, political, cultural and community, while the urban materialistic world perceives Nature as a resource to be exploited. This primordial difference has manifested as a socio-cultural conflict between these two societies. This may be due to the mutually exclusive and incorrigible nature of their social constructs which trigger perceptual obfuscation of symbiotic living. What appears to be an objective reality for one appears as subjective to the other and vice versa. This paper studies the strangeness of Billy Biswas, the protagonist of the novel in the socio-cultural milieu of conflicting realities.
Search for the Charmed Strange Baryon A$^{o}$
2002-01-01
The aim of the experiment is to search for inclusive production of the charmed strange baryon A|0 using @S|- with a momentum of 135 GeV/c on a Be-target. A|0 with lab-momenta between 70-120 GeV/c will be accepted, corresponding to X(A|0) $>$ 0.5. \\\\ \\\\ The apparatus is a modified version of the one used for WA42. The incoming @S|- are identified by a DISC Cerenkov counter. The A|0 detection is restricted to decay channels which contains only charged particles in the final state (e.g. A|0 @A @L K|-@p|+). \\\\ \\\\ The decay products are analysed in a magnetic spectrometer equipped with multiwire proportional chambers (B,C,D,E) and drift chambers (DC). Two multicell gas Cerenkov counters (C1,C2) allow the separation of K's and p's from @p's. A second magnet (SM2) reduces the geometrical overlap of @p's and heavier particles in the Cerenkov counters due to their different momentum spectra. The scintillator hodoscopes H^4 and H^5 and the chambers E and F behind SM2 allow a geometrical correlation of tracks with the C...
Strange b baryon production and lifetime in Z decays
Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1996-02-01
In a data sample of approximately four million hadronic Z decays recorded with the ALEPH detector from 1990 to 1995, a search for the strange b baryon Ξb is performed with a study of Ξ-lepton correlations. Forty-four events with same sign Ξ-ℓ - combinations are found whereas 8.4 are expected based on the rate of opposite sign Ξ-ℓ + combinations. This significant excess is interpreted as evidence for Ξb semileptonic decays. The measured product branching ratio is Br(b → Ξ b) × Br(Ξ b → X cXℓ -overlineν ℓ) × Br(X c → Ξ -X‧) = (5.4±1.1(stat) ± 0.8(syst)) × 10 -4 per lepton species, averaged over electrons and muons, with X c a charmed baryon. The Ξb lifetime is measured to be τΞb = 1.35 -0.28+0.37(stat) -0.17+0.15(syst) ps.
Role of the strange quark in the rho(770) meson
Energy Technology Data Exchange (ETDEWEB)
Molina Peralta, Raquel [George Washington Univ., Washington, DC (United States); Guo, Dehua [George Washington Univ., Washington, DC (United States); Hu, B. [George Washington Univ., Washington, DC (United States); Alexandru, Andrei; Doering, Michael [George Washington Univ., Washington, DC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-03-01
Recently, the GWU lattice group has evaluated high-precision phase-shift data for $\\pi\\pi$ scattering in the $I = 1$, $J = 1$ channel. Unitary Chiral Perturbation Theory describes these data well around the resonance region and for different pion masses. Moreover, it allows to extrapolate to the physical point and estimate the effect of the missing $K\\bar{K}$ channel in the two-flavor lattice calculation. The absence of the strange quark in the lattice data leads to a lower $\\rho$ mass, and the analysis with U$\\chi$PT shows that the $K \\bar{K}$ channel indeed pushes the $\\pi\\pi$-scattering phase shift upward, having a surprisingly large effect on the $\\rho$-mass. The inelasticity is shown to be compatible with the experimental data. The analysis is then extended to all available two-flavor lattice simulations and similar mass shifts are observed. Chiral extrapolations of $N_f = 2 + 1$ lattice simulations for the $\\rho(770)$ are also reported.
Physics near the strange and charm production thresholds
International Nuclear Information System (INIS)
Nagamiya, S.; Bland, L.C.
1995-01-01
LISS is a Light-Ion Spin Synchrotron and storage ring that is being considered as an upgrade of the Indiana University Cyclotron Facility. Current plans call for a racetrack design for the ring that will provide variable energy polarized proton and deuteron beams up to a momentum of 16 GeV/c and unpolarized light ions with 3 ≤A ≤ 40 accelerated to comparable rigidities. Experiments would be conducted using both polarized and unpolarized internal targets. The racetrack design for the ring will provide for two ∼100-m long, zero-dispersion straight sections that allow for the installation of sophisticated experimental equipment. The ring design will incorporate the recently developed technologies of Siberian snakes allowing for relatively straightforward acceleration and use of polarized beams for high-precision experiments, electron cooling for shrinking the emittance of the stored beams, and carrier-free polarized internal targets. This talk will focus on that part of the physics Program of the LISS facility associated with the production of strange and charmed quarks. Examples will include the study of the spin-dependence of the A-nucleon scattering length; second-generation associated hyperon production experiments emphasizing polarization transfer and exclusive identification of the produced hyperons (ΛΣ, etc.) with the goal of understanding the dynamical origin of hyperon polarization; and studies of the total charm production cross section in p-p collisions near threshold
The Art of Reflection: Turning the Strange into the Familiar.
Weingarten, Kaethe
2016-06-01
There are a great many useful articles on the dynamics and pragmatics of reflecting teams but few articles address what constitutes a good or inept reflection and why. I provide a conceptual model for thinking about what a good reflection does, distinguishing it from a nice reflection. With some further refinements in place, I then illustrate how reflections can be part of any relationship, not just clinical ones. We have opportunities to make them and to recognize when others make them to us. By using examples from my personal life-as a grandmother, daughter, radio listener, cancer survivor, and client-I attempt to ease the personal/professional binary, a project of mine for the last 35 years. In the second part of the article, I address how writing can serve reflection. Although best offered at the moment one is called for, it is never too late for a reflection. Writing allows people to offer reflections after the fact to those who have shared their stories. Sometimes, it is to ourselves we offer those reflections, when the reflector has long since dropped the thread of obligation or interest. I provide an example of working with iconic imagery to unpack meaning so that reflection can eventually take place, allowing integration to proceed, facilitating the strange becoming the familiar. © 2015 Family Process Institute.
Directory of Open Access Journals (Sweden)
Omar Bin Shawkataly
Full Text Available A series of complexes of the type LAuCl where L = tris(p-tolylarsane, tris(m-tolylarsane, bis(diphenylarsanoethane, and tris(naphthylarsane have been synthesized. All of the new complexes, 1-4, have been fully characterized by means of ¹H NMR and ¹³C NMR spectroscopy and single crystal X-ray crystallography. The structures of complexes 1-4 have been determined from X-ray diffraction data. The linear molecules have an average bond distance between gold-arsenic and gold-chlorine of 2.3390Å and 2.2846Å, respectively. Aurophilic interaction was prominent in complex 1 and 3, whereas complex 2 and 4 do not show any such interaction. The intermolecular gold interaction bond length was affected by the electronegativity of the molecule. The computed values calculated at DFT level using B3LYP function are in good agreement with the experimental results.
Liu, Feng; Xiao, Zhigang; Zhuang, Pengfei
2009-06-01
The International Conference on `Strangeness in Quark Matter' (SQM2008) was held from 5-10 October 2008 at the Tsinghua University campus, Beijing, China. The Department of Physics, Tsinghua University and the School of Physics, Central China Normal University (CCNU) shared the organizational duties of this conference. SQM2008 was attended by more than 200 participants from approximately 20 countries. The SQM2008 scientific programme comprised 49 plenary talks in 14 sessions and 36 parallel talks in 4 sessions. Continuing the tradition of the previous conferences, the talks were mainly dedicated to the most recent progress in strangeness, heavy flavour, collective phenomena and particle productions in relativistic nuclear collisions. In addition, the recent status of various projects on SPS, LHC, FAIR and HIRFL-CSR was also reported. Particularly, with their enjoyable presentations, many young students and junior physicists shared their research with the audience. Thirty posts were presented during the five day conference. We would like to express our gratitude to the sponsors for their generous financial support, which allowed many young researchers to attend the conference: Journal of Physics G: Nuclear and Particle Physics, STAR Collaboration, Natural Science Foundation of China (NSFC), CCNU, Institute of Modern Physics (IMP), Institute of High Energy Physics (IHEP), China Center of Advanced Science and Technology (CCAST), Shanghai Institute of Applied Physics (SINAP), Sandong University (SDU), University of Science and Technology of China (USTC), The Theoretical Physics Center for Science Facilities, the Chinese Academy of Sciences (TPCSF-CAS). The support from Tsinghua University was especially appreciated. We would also like to extend our gratitude to our colleagues and students from the organizing institutions for their diligent work prior to and during the conference that made everything run smoothly. We thank all the speakers for their inspiring
Spectral properties of generalized eigenparameter dependent ...
African Journals Online (AJOL)
Jost function, spectrum, the spectral singularities, and the properties of the principal vectors corresponding to the spectral singularities of L, if. ∞Σn=1 n(∣1 - an∣ + ∣bnl) < ∞. Mathematics Subject Classication (2010): 34L05, 34L40, 39A70, 47A10, 47A75. Key words: Discrete equations, eigenparameter, spectral analysis, ...
The proton spectral function of 40Ca and 48Ca studied with the (e,e'p) reaction
International Nuclear Information System (INIS)
Kramer, G.J.
1990-01-01
This thesis presents the results of an experimental study into the occupation of the orbitals around the Fermi level for 40 Ca and 48 Ca with quasi-elastic proton knock-out (e,e'p). Experiments have been carried out with the 500 MeV electron beam of the linear accelerator MEA at NIKHEF, Amsterdam. For 40 Ca the mechanism of the (e,e'p) reaction has been studied by comparing the measured momentum distributions of some strong transitions to discrete states in 39K , with various theoretical calculations. From this it has been concluded that uncertainties caused by deviations of the impulse approximation can be minimized if the measurements are carried out under parallel kinematical conditions. The spectroscopic strengths of the shell-model orbitals in states just below the Fermi level, for 40 Ca the 1d 3/2 , 1d 5/2 and 2s 1/2 orbitals, turned out to amount 50 to 70% of the IPSM limit. A small part of the missing strength has been found in the 1f 7/2 and 2p 3/2 orbitals which are just above the Fermi level (resp. 11 and 2% of the 2j+1 limit), which is an indication for ground state correlations. The spectroscopic strengths for the 1d 3/2 , 2s 1/2 and 1d 3/2 orbitals of 48 Ca turned out to be the same as for 40C a within the actual measuring accuracy. Above the Fermi level only strength in the 1f 7/2 orbital has been found (1% of the 2j+1 limit). The spectroscopic strengths determined with (e,e'p) experiments are about a factor two smaller than those obtained from (d, 3 He) experiments. This discrepancy has been studied by reviewing the model dependency of the DWBA analysis for the (d, 3 He) reaction with special emphasis on the sensitivities of the spectroscopic factors to the various approximations made in this theory. It is also investigated which part of the bound state wave function is probed by the (e,e'p) and the (d, 3 He) reactions in order to understand the model sensitivities arising from the exact shape of the bound state wave function. (H.W.).97 refs.; 48
Strange-face Illusions During Interpersonal-Gazing and Personality Differences of Spirituality.
Caputo, Giovanni B
Strange-face illusions are produced when two individuals gaze at each other in the eyes in low illumination for more than a few minutes. Usually, the members of the dyad perceive numinous apparitions, like the other's face deformations and perception of a stranger or a monster in place of the other, and feel a short lasting dissociation. In the present experiment, the influence of the spirituality personality trait on strength and number of strange-face illusions was investigated. Thirty participants were preliminarily tested for superstition (Paranormal Belief Scale, PBS) and spirituality (Spiritual Transcendence Scale, STS); then, they were randomly assigned to 15 dyads. Dyads performed the intersubjective gazing task for 10 minutes and, finally, strange-face illusions (measured through the Strange-Face Questionnaire, SFQ) were evaluated. The first finding was that SFQ was independent of PBS; hence, strange-face illusions during intersubjective gazing are authentically perceptual, hallucination-like phenomena, and not due to superstition. The second finding was that SFQ depended on the spiritual-universality scale of STS (a belief in the unitive nature of life; e.g., "there is a higher plane of consciousness or spirituality that binds all people") and the two variables were negatively correlated. Thus, strange-face illusions, in particular monstrous apparitions, could potentially disrupt binding among human beings. Strange-face illusions can be considered as 'projections' of the subject's unconscious into the other's face. In conclusion, intersubjective gazing at low illumination can be a tool for conscious integration of unconscious 'shadows of the Self' in order to reach completeness of the Self. Copyright © 2017 Elsevier Inc. All rights reserved.
Islam, Nasarul; Niaz, Saba; Manzoor, Taniya; Pandith, Altaf Hussain
2014-10-01
The density functional theoretical (DFT) computations were performed at the B3LYP/6-311G++(d, p) level to calculate the equilibrium geometry, vibrational wave numbers, intensities, and various other molecular properties of brucine and strychnine, which were found in satisfactory agreement with the experimental data. The out-of-phase stretching modes of aromatic rings and carbonyl stretching modes in combination with CH stretching modes at stereogenic centers generate VCD signals, which are remarkably efficient configuration markers for these chiral molecular systems. NBOs analysis reveals that the large values of second order perturbation energy (47.24 kcal/mol for brucine and 46.93 kcal/mol for strychnine) confirms strong hyperconjugative interaction between the orbital containing the lone pair of electron of nitrogen and the neighboring Cdbnd O antibonding orbital. The molecular electrostatic potential map of strychnine molecule, with no polar groups other than the lone keto group, shows less polarization, which accounts for its lower susceptibility towards electrophilic attack as compared to brucine.
Jone Pradeepa, S; Sundaraganesan, N
2014-05-05
In this present investigation, the collective experimental and theoretical study on molecular structure, vibrational analysis and NBO analysis has been reported for 2-aminofluorene. FT-IR spectrum was recorded in the range 4000-400 cm(-1). FT-Raman spectrum was recorded in the range 4000-50 cm(-1). The molecular geometry, vibrational spectra, and natural bond orbital analysis (NBO) were calculated for 2-aminofluorene using Density Functional Theory (DFT) based on B3LYP/6-31G(d,p) model chemistry. (13)C and (1)H NMR chemical shifts of 2-aminofluorene were calculated using GIAO method. The computed vibrational and NMR spectra were compared with the experimental results. The total energy distribution (TED) was derived to deepen the understanding of different modes of vibrations contributed by respective wavenumber. The experimental UV-Vis spectra was recorded in the region of 400-200 nm and correlated with simulated spectra by suitably solvated B3LYP/6-31G(d,p) model. The HOMO-LUMO energies were measured with time dependent DFT approach. The nonlinearity of the title compound was confirmed by hyperpolarizabilty examination. Using theoretical calculation Molecular Electrostatic Potential (MEP) was investigated. Copyright © 2014 Elsevier B.V. All rights reserved.
Moy, Austin; Kim, Jae G.; Lee, Eva Y. H. P.; Choi, Bernard
2010-02-01
A common strategy to study breast cancer is the use of the preclinical model. These models provide a physiologically relevant and controlled environment in which to study both response to novel treatments and the biology of the cancer. Preclinical models, including the spontaneous tumor model and mammary window chamber model, are very amenable to optical imaging and to this end, we have developed a wide-field functional imaging (WiFI) instrument that is perfectly suited to studying tumor metabolism in preclinical models. WiFI combines two optical imaging modalities, spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI). Our current WiFI imaging protocol consists of multispectral imaging in the near infrared (650-980 nm) spectrum, over a wide (7 cm x 5 cm) field of view. Using SFDI, the spatially-resolved reflectance of sinusoidal patterns projected onto the tissue is assessed, and optical properties of the tissue are determined, which are then used to extract tissue chromophore concentrations in the form of oxy-, deoxy-, and total hemoglobin concentrations, and percentage of lipid and water. In the current study, we employ Monte Carlo simulations of SFDI light propagation in order to characterize the penetration depth of light in both the spontaneous tumor model and mammary window chamber model. Preliminary results suggest that different spatial frequency and wavelength combinations have different penetration depths, suggesting the potential depth sectioning capability of the SFDI component of WiFI.
Directory of Open Access Journals (Sweden)
Svetlana N. Losa
2017-07-01
Full Text Available We derive the chlorophyll a concentration (Chla for three main phytoplankton functional types (PFTs – diatoms, coccolithophores and cyanobacteria – by combining satellite multispectral-based information, being of a high spatial and temporal resolution, with retrievals based on high resolution of PFT absorption properties derived from hyperspectral satellite measurements. The multispectral-based PFT Chla retrievals are based on a revised version of the empirical OC-PFT algorithm applied to the Ocean Color Climate Change Initiative (OC-CCI total Chla product. The PhytoDOAS analytical algorithm is used with some modifications to derive PFT Chla from SCIAMACHY hyperspectral measurements. To combine synergistically these two PFT products (OC-PFT and PhytoDOAS, an optimal interpolation is performed for each PFT in every OC-PFT sub-pixel within a PhytoDOAS pixel, given its Chla and its a priori error statistics. The synergistic product (SynSenPFT is presented for the period of August 2002 March 2012 and evaluated against PFT Chla data obtained from in situ marker pigment data and the NASA Ocean Biogeochemical Model simulations and satellite information on phytoplankton size. The most challenging aspects of the SynSenPFT algorithm implementation are discussed. Perspectives on SynSenPFT product improvements and prolongation of the time series over the next decades by adaptation to Sentinel multi- and hyperspectral instruments are highlighted.
Gerendas, Bianca S; Kroisamer, Julia-Sophie; Buehl, Wolf; Rezar-Dreindl, Sandra M; Eibenberger, Katharina M; Pablik, Eleonore; Schmidt-Erfurth, Ursula; Sacu, Stefan
2018-01-16
The purpose of this study was to identify quantitatively measurable morphologic optical coherence tomography (OCT) characteristics in patients with an acute episode of central serous chorioretinopathy (CSC) and evaluate their correlation to functional and psychological variables for their use in daily clinical practice. Retinal thickness (RT), the height, area and volume of subretinal fluid (SRF)/pigment epithelium detachments were evaluated using the standardized procedures of the Vienna Reading Center. These morphologic characteristics were compared with functional variables [best-corrected visual acuity (BCVA), contrast sensitivity (CS), retinal sensitivity/microperimetry, fixation stability], and patients' subjective handicap from CSC using the National Eye Institute 25-item Visual Function Questionnaire (NEI VFQ-25). Data from 39 CSC patients were included in this analysis. Three different SRF height measures showed a high negative correlation (r = -0.7) to retinal sensitivity within the central 9°, which was also negatively correlated with SRF area and volume (r = -0.6). The CS score and fixation stability (fixation points within 2°) showed a moderate negative correlation (r = -0.4) with SRF height variables. Comparison of the subjective handicap with morphological characteristics in spectral-domain (SD)-OCT showed SRF height had the highest correlation (r = -0.4) with the subjective problems reported and overall NEI VFQ-25 score. In conclusion, SRF height measured in SD-OCT showed the best correlation with functional variables and patients' subjective handicap caused by the disease and therefore seems to be the best variable to look at in daily clinical routine. Even though area and volume also show a correlation, these cannot be so easily measured as height and are therefore not suggested for daily clinical routine. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
X. Zhang
2013-09-01
Full Text Available In the aquatic environment, particles can be broadly separated into phytoplankton (PHY, non-algal particle (NAP and dissolved (or very small particle, VSP fractions. Typically, absorption spectra are inverted to quantify these fractions, but volume scattering functions (VSFs can also be used. Both absorption spectra and VSFs were used to estimate particle fractions for an experiment in the Chesapeake Bay. A complete set of water inherent optical properties was measured using a suite of commercial instruments and a prototype Multispectral Volume Scattering Meter (MVSM; the chlorophyll concentration, [Chl] was determined using the HPLC method. The total scattering coefficient measured by an ac-s and the VSF at a few backward angles measured by a HydroScat-6 and an ECO-VSF agreed with the LISST and MVSM data within 5%, thus indicating inter-instrument consistency. The size distribution and scattering parameters for PHY, NAP and VSP were inverted from measured VSFs. For the absorption inversion, the "dissolved" absorption spectra were measured for filtrate passing through a 0.2 μm filter, whereas [Chl] and NAP absorption spectra were inverted from the particulate fraction. Even though the total scattering coefficient showed no correlation with [Chl], estimates of [Chl] from the VSF-inversion agreed well with the HPLC measurements (r = 0.68, mean relative errors = −20%. The scattering associated with NAP and VSP both correlated well with the NAP and "dissolved" absorption coefficients, respectively. While NAP dominated forward, and hence total, scattering, our results also suggest that the scattering by VSP was far from negligible and dominated backscattering. Since the sizes of VSP range from 0.02 to 0.2 μm, covering (a portion of the operationally defined "dissolved" matter, the typical assumption that colored dissolved organic matter (i.e., CDOM does not scatter may not hold, particularly in a coastal or estuarine environment.
Coincidences in analysis: Sigmund Freud and the strange case of Dr Forsyth and Herr von Vorsicht.
Pierri, Maria
2010-08-01
Freud's interest in thought transference opens the possibility for psychoanalytic research on the primary preverbal language and the maternal function, which the emphasis on verbal and paternal communication had hidden in the background of the setting. The author advances a new interpretation of coincidences in analysis and of the psychopathology of everyday life of the setting. Starting from a strange coincidence, new hypotheses are submitted following additional readings of the unpublished manuscript of the 'Forsyth case', recovered by the author, in regard to a significant moment of transformation, both in Freud and in psychoanalysis, at the end of the war. This phase corresponds first to a change of language, from German to English, as well as to the foundation of the International Journal of Psychoanalysis by Ernest Jones. In particular, the roots of the metapsychological turn of the 1920s are explored, together with the opening of private and productive thoughts in the area of 'telepathy' that joined Freud, Ferenczi, and Anna Freud in a true 'dialogue of unconsciouses'. The free association between A Child Is Being Beaten, Beyond the Pleasure Principle, and the clinical experience with 'Herr B.' is outlined in order to understand Freud's heroic self-analysis at the time when he was treating his daughter Anna and grieving the death of his beloved Sophie. Copyright © 2010 Institute of Psychoanalysis.
Investigation of azimuthal asymmetries in charged and strange particle distributions from CERES
Milosevic, Jovan
In this thesis anisotropic transverse flow v2 of charged and strange particle species measured by the CERES experiment is investigated. The Lambda, K^0_S, Pions and proton elliptic flow measurements from Pb-Au collisions at the highest SPS energy are presented. The data, collected by the CERES experiment which covers \\eta=2.05-2.70 with full 2\\pi azimuthal acceptance and pT sensitivity up tp 4 GeV/c, is used to test hydrodynamical models. The value of v2 as a function of centrality, rapidity, pseudorapidity and pT is presented for different particle species. The obtained measurements are compared with results from the NA49 experiment and with hydrodynamical calculations. Also teh results are compared with v2 values observed with STAR an RHIC. The mass ardening effect was observed:v2(Lambda)
Strangeness freeze-out: role of system size and missing resonances
Directory of Open Access Journals (Sweden)
Chatterjee Sandeep
2018-01-01
Full Text Available The conventional approach to treat strangeness freezeout has been to consider a unified freezeout scheme where strangeness freezes out along with the nonstrange hadrons (1CFO, with or without an additional parameter accounting for out-of-equilibrium strangeness production (γS. Several alternate scenarios have been formulated lately. Here, we will focus on flavor dependent freezeout with early freezeout of strangeness (2CFO in comparison to 1CFO and its variants with respect to the roles played by the system size and missing resonances predicted by different theoretical approaches but yet to be seen in experiments. In contrast to the performance of 1CFO with/without γS that is insensitive to system size, 2CFO exhibits a clear system size dependence-while for Pb+Pb the χ2/NDF is around 0-2, for smaller system size in p+Pb and p+p, the χ2/NDF> 5 and larger than 1CFO+γS. This clearly shows a system size dependence of the preference for the freezeout scheme, while 2CFO is preferred in Pb+Pb, 1CFO+γS is preferred in p+Pb and p+p. We have further investigated the role of the missing resonances on strangeness freezeout across SPS to LHC beam energies.
Wong, W P; Camfield, D A; Woods, W; Sarris, J; Pipingas, A
2015-10-01
Whilst a number of previous studies have been conducted in order to investigate functional brain changes associated with eyes-closed meditation techniques, there is a relative scarcity in the literature with regards to changes occurring during eyes-open meditation. The current project used magnetoencephalography (MEG) to investigate differences in spectral power and functional connectivity between 11 long-term mindfulness meditators (LTMMs) with >5 years of experience and 12 meditation-naïve control participants both during baseline eyes-open rest and eyes-open open-monitoring (OM) mindfulness meditation. During resting with eyes-open, prior to meditating, greater mean alpha power was observed for LTMMs in comparison to controls. However, during the course of OM meditation, a significantly greater increase in theta power was observed over a broad fronto-centro-parietal region for control participants in comparison to LTMMs. In contrast, whole-head mean connectivity was found to be significantly greater for long-term meditators in comparison to controls in the theta band both during rest as well as during meditation. Additionally, mean connectivity was significantly lower for long-term meditators in the low gamma band during rest and significantly lower in both low and high gamma bands during meditation; and the variance of low-gamma connectivity scores for long-term meditators was significantly decreased compared to the control group. The current study provides important new information as to the trait functional changes in brain activity associated with long-term mindfulness meditation, as well as the state changes specifically associated with eyes-open open monitoring meditation techniques. Copyright © 2015 Elsevier B.V. All rights reserved.
Strange history: the fall of Rome explained in Hereditas.
Bengtsson, Bengt O
2014-12-01
In 1921 Hereditas published an article on the fall of Rome written by the famous classical scholar Martin P:son Nilsson. Why was a paper on this unexpected topic printed in the newly founded journal? To Nilsson, the demise of the Roman Empire was explained by the "bastardization" occurring between "races" from different parts of the realm. Offspring from mixed couples were of a less stable "type" than their parents, due to the breaking up by recombination of the original hereditary dispositions, which led to a general loss of competence to rule and govern. Thus, the "hardness" of human genes, together with their recombination, was - according to Nilsson - the main cause of the fall of Rome. Nilsson's argument is not particularly convincingly presented. Human "races" are taken to have the same genetic structure as inbred crop strains, and Nilsson believes in a metaphysical unity between the individual and the race to which it belongs. However, in my view, Martin P:son Nilsson and his friend Herman Nilsson-Ehle had wider aims with the article than to explain a historical event. The article can be read as indicating strong support from the classical human sciences to the ambitious new science of genetics. Support is also transferred from genetics to the conservative worldview, where the immutability and inflexibility of the Mendelian genes are used to strengthen the wish for greater stability in politics and life. The strange article in Hereditas can, thus, be read as an early instance in the - still ongoing - tug-of-war between the conservative and the liberal ideological poles over how genetic results best are socially interpreted. © 2015 The Authors.
International Nuclear Information System (INIS)
Han, Deming; Zhang, Gang; Cai, Hongxing; Zhang, Xihe; Zhao, Lihui
2013-01-01
We report a quantum-chemistry study of electronic structures and spectral properties of four Ir(III) complexes Ir[2-(2,4-di-X-phenyl)pyridine] 2 (picolinate), where X=–CH 3 (1), –H (2), –CN (3), –NO 2 (4). The absorption and emission spectra were calculated based on the optimized ground state and excited state geometries, respectively, by means of the time-dependent density functional theory (TDDFT). The effect from the electron-withdrawing and electron-donating substituents on charge injection, transport, absorption, and phosphorescent properties has been investigated. The absorption and emission properties can be altered by the different electron-withdrawing and electron-donating groups. Besides, ionization potential (IP), electron affinities (EA) and reorganization energy (λ hole/electron ) were obtained to evaluate the charge transfer and balance properties between hole and electron. The calculated results show that the different substitute groups affect the charge transfer rate and balance. It can be anticipated that the complexes 3 and 4 have good charge transport rates and balance between the hole and electron. -- Highlights: ► Four Ir(III) complexes have been theoretically investigated. ► The different substituents affect the charge transfer rate and balance. ► We design two candidate materials for OLEDs
Angelopoulos, Angelos; Aslanides, Elie; Backenstoss, Gerhard; Bargassa, P; Behnke, O; Benelli, A; Bertin, V; Blanc, F; Bloch, P; Carlson, P J; Carroll, M; Cawley, E; Chertok, M B; Danielsson, M; Dejardin, M; Derré, J; Ealet, A; Eleftheriadis, C; Faravel, L; Fetscher, W; Fidecaro, Maria; Filipcic, A; Francis, D; Fry, J; Gabathuler, Erwin; Gamet, R; Gerber, H J; Go, A; Haselden, A; Hayman, P J; Henry-Coüannier, F; Hollander, R W; Jon-And, K; Kettle, P R; Kokkas, P; Kreuger, R; Le Gac, R; Leimgruber, F; Mandic, I; Manthos, N; Marel, Gérard; Mikuz, M; Miller, J; Montanet, François; Müller, A; Nakada, Tatsuya; Pagels, B; Papadopoulos, I M; Pavlopoulos, P; Polivka, G; Rickenbach, R; Roberts, B L; Ruf, T; Schäfer, M; Schaller, L A; Schietinger, T; Schopper, A; Tauscher, Ludwig; Thibault, C; Touchard, F; Touramanis, C; van Eijk, C W E; Vlachos, S; Weber, P; Wigger, O; Wolter, M; Zavrtanik, D; Zimmerman, D
1998-01-01
We have improved by two orders of magnitude the limit currently available for the CPT violation parameter \\red . To this purpose we have analyzed the full sample of neutral-kaon decays to \\semi\\ recorded in the CPLEAR experiment, where the strangeness of the neutral kaons was tagged at production and decay time. An appropriate function of the measured decay rates, including information from the analysis of \\pip\\pim\\ decay channel, gives directly \\red . The result $\\red = (3.0 \\pm 3.3_\\mathrm{{stat}} \\pm 0.6_\\mathrm{{syst}}) \\times 10^{-4}$ is compatible with zero. Values for the parameters $\\imd$, $\\rexm$ and $\\imxp$ were also obtained.
Energy Technology Data Exchange (ETDEWEB)
Andre, Frederic [Centre de Thermique de Lyon (CETHIL, CNRS-INSA Lyon-UCBL), Bat. Sadi Carnot, INSA-Lyon, Lyon F-69621 (France)], E-mail: frederic.andre@insa-lyon.fr; Vaillon, Rodolphe [Centre de Thermique de Lyon (CETHIL, CNRS-INSA Lyon-UCBL), Bat. Sadi Carnot, INSA-Lyon, Lyon F-69621 (France)
2008-09-15
The spectral-line moment-based (SLMB) modeling is proposed for the calculation of radiative properties of gases on any spectral width. The associated mathematical formulation is obtained by applying several concepts of the k-distribution methods such as the reordering of the wavenumber scale by monotonic variations of the absorption coefficient, together with the application of the k-moment method's principles. This approach gives both a general formula for the BTF and a simple and readily applicable approximation for the blackbody-weighted cumulated k-distribution function of the absorption coefficient. The model is applied for the computation of wide band BTFs and cumulative k-distributions for uniform columns of CO{sub 2} and H{sub 2}O in the temperature range (300-2400 K) at atmospheric pressure. Model parameters are deduced from line-by-line (LBL) spectra calculated using the HITEMP database. Comparisons with LBL reference data as well as with contemporary modeling approaches (SLW, FSK, SNB) are performed and discussed.
Low-lying 1/2‑ hidden strange pentaquark states in the constituent quark model
Li, Hui; Wu, Zong-Xiu; An, Chun-Sheng; Chen, Hong
2017-12-01
We investigate the spectrum of the low-lying 1/2‑ hidden strange pentaquark states, employing the constituent quark model, and looking at two ways within that model of mediating the hyperfine interaction between quarks ‑ Goldstone boson exchange and one gluon exchange. Numerical results show that the lowest 1/2‑ hidden strange pentaquark state in the Goldstone boson exchange model lies at ∼1570 MeV, so this pentaquark configuration may form a notable component in S 11(1535) if the Goldstone boson exchange model is applied. This is consistent with the prediction that S 11(1535) couples very strongly to strangeness channels. Supported by National Natural Science Foundation of China (11675131, 11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)
Directory of Open Access Journals (Sweden)
Long-Biao eCui
2015-11-01
Full Text Available Understanding the neural basis of schizophrenia (SZ is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC, dorsolateral prefrontal cortex (DLPFC, hippocampus, and medial prefrontal cortex (MPFC have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI. Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA in addition to classical inference (t-test. In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, sDCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions.
Kravchenko, Vladislav V.; Torba, Sergii M.
2017-12-01
A representation for a solution u(ω, x) of the equation -u″ + q(x)u = ω2u, satisfying the initial conditions u(ω, 0) = 1, u'(ω, 0) = iω, is derived in the form u (ω ,x ) = ei ω x(1 +u/1(x ) ω +u/2(x ) ω2 )+e/-iω xu3(x ) ω2 -1/ω2 ∑n=0 ∞inαn(x ) jn(ω x ) , where um(x), m = 1, 2, 3, are given in a closed form, jn stands for a spherical Bessel function of order n, and the coefficients αn are calculated by a recurrent integration procedure. The following estimate is proved |u (ω ,x ) -uN(ω ,x ) |≤1/|ω|2 ɛ N(x ) √{sinh(2/Imω x ) Imω } for any ω ∈C {0 } , where uN(ω, x) is an approximate solution given by truncating the series in the proposed representation for u(ω, x) and ɛN(x) is a non-negative function tending to zero for all x belonging to a finite interval of interest. In particular, for ω ∈R {0 } , the estimate has the form |u (ω ,x ) -uN(ω ,x ) |≤1/|ω|2 ɛ N(x ) . A numerical illustration of application of the new representation for computing the solution u(ω, x) on large sets of values of the spectral parameter ω with an accuracy nondeteriorating (and even improving) when ω → ±∞ is given.
Spectral Tensor-Train Decomposition
DEFF Research Database (Denmark)
Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.
2016-01-01
discretizations of the target function. We assess the performance of the method on a range of numerical examples: a modified set of Genz functions with dimension up to 100, and functions with mixed Fourier modes or with local features. We observe significant improvements in performance over an anisotropic......The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT.......e., the “cores”) comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting spectral tensor-train decomposition combines the favorable dimension-scaling of the TT...
Studies of the Strange Hadronic Tau Decay Tau- to K0(S) Pi- Nu-Tau Using the BaBar Detector
Energy Technology Data Exchange (ETDEWEB)
Lyon, Andrew J.; /Manchester U. /SLAC
2006-01-27
A study of the decay {tau}{sup -} {yields} K{sub S}{sup 0}{pi}{sup -} {nu}{sub {tau}} (K{sub S}{sup 0} {yields} {pi}{sup +}{pi}{sup -}) using the BABAR detector is presented. Using 124.4 fb{sup -1} of data we measure {Beta}({tau}{sup -} {yields} {bar K}{sup 0}{pi}{sup -}{nu}{sub {tau}}) = (0.830 {+-} 0.005(stat) {+-} 0.042(syst))%, which is the world's most precise measurement to date of this branching ratio, and is consistent with the current world average. This preliminary result, unlike most of the {Beta}({tau}{sup -} {yields} {bar K}{sup 0}{pi}{sup -}{nu}{sub {tau}}) measurements already published, is systematics dominated and so the biggest future improvement to this number should come from reducing the systematic uncertainties in the analysis. A study of the K{pi} mass spectrum, from which the strange (K{pi}) spectral function can be measured, reveals excess contributions above the K*(892) tail at higher K{pi} mass. While in the past this has been thought to be due to K*(892) - K*(1410) interference, we find that the K*(1410), whose branching ratio to K{pi} is approximately 7%, seems insufficient to explain the excess mass observed in the data. Instead, we perform a fit using a K*(892) - K*(1680) interference model and find better agreement. The discrepancy that remains could be due to an s-wave contribution to the interference that is not parameterized in the model used, and/or detector smearing that is not accounted for in our fit. We also attempt to find an s-wave contribution to the K{pi} mass spectrum by searching for an sp-interference effect. While we find a hint that such an effect exists, we have neither the confidence in the statistics nor systematics in the higher K{pi} mass region to announce an observation. We conclude that it would be a worthwhile study to pursue.
Spectral Decomposition Algorithm (SDA)
National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...
Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers
International Nuclear Information System (INIS)
Fowler, W.B.
1989-01-01
Proton beams, from the 1GeV Cosmotron accelerator at Brookhaven, were used in the 1950s to produce strange particles. One big leap forward technologically was the development of the diffusion cloud chamber which made detecting particle tracks more accurate and sensitive. A large co-operative team worked on its development. By the mid 1950s enough tracks had been observed to show the associated production of strange particles. It was the same Brookhaven workers who developed the eighty-inch hydrogen bubble chamber which took the first photograph of the long predicted omega minus particle at the end of the decade. (UK)
Strangeness enhancements at central rapidity in 40 A GeV/c Pb-Pb collisions
Antinori, F; Badalà, A; Barbera, R; Belogianni, A; Bloodworth, I J; Bombara, M; Bruno, G E; Bull, S A; Caliandro, R; Campbell, M; Carena, W; Carrer, N; Clarke, R F; Dainese, A; Di Bari, D; Di Liberto, S; Divia, R; Elia, D; Evans, D; Feofilov, G A; Fini, R A; Ganoti, P; Ghidini, B; Grella, G; Helstrup, H; Hetland, K F; Holme, A K; Jacholkowski, A; Jones, G T; Jovanovic, P; Jusko, A; Kamermans, R; Kinson, J B; Knudson, K; Kondratiev, V; Králik, I; Kravcáková, A; Kuijer, P; Lenti, V; Lietava, R; Løvhøiden, G; Manzari, V; Mazzoni, M A; Meddi, F; Michalon, A; Morando, M; Norman, P I; Palmeri, A; Pappalardo, G S; Platt, R J; Quercigh, E; Riggi, F; Röhrich, D; Romita, R; Safarík, K; Sándor, L; Schillings, E; Segato, G; Sené, M; Sené, R; Snoeys, W; Soramel, F; Spyropoulou-Stassinaki, M; Staroba, P; Turrisi, R; Tveter, T S; Urbán, J; van de Ven, P; Vande Vyvre, P; Vascotto, A; Vik, T; Villalobos Baillie, O; Vinogradov, L; Virgili, T; Votruba, M F; Vrláková, J; Závada, P
2010-01-01
Results are presented on neutral kaon, hyperon and antihyperon production in Pb-Pb and p-Be interactions at 40 GeV/c per nucleon. The enhancement pattern follows the same hierarchy as seen in the higher energy data - the enhancement increases with the strangeness content of the hyperons and with the centrality of collision. The centrality dependence of the Pb-Pb yields and enhancements is steeper at 40 than at 158 A GeV/c. The energy dependence of strangeness enhancements at mid-rapidity is discussed.
Dinh, Nikita N; Winn, Bradley C; Arthur, Kelly K; Gabrielson, John P
2014-11-01
Previously, different approaches of spectral comparison were evaluated, and the spectral difference (SD) method was shown to be valuable for its linearity with spectral changes and its independence on data spacing (Anal. Biochem. 434 (2013) 153-165). In this note, we present an enhancement of the SD calculation, referred to as the "weighted spectral difference" (WSD), by implementing a weighting function based on relative signal magnitude. While maintaining the advantages of the SD method, WSD improves the method sensitivity to spectral changes and tolerance for baseline inclusion. Furthermore, a generalized formula is presented to unify further development of approaches to quantify spectral difference. Copyright © 2014 Elsevier Inc. All rights reserved.
Multi-strange baryon production in pPb collisions at sNN=5.02 TeV
Directory of Open Access Journals (Sweden)
J. Adam
2016-07-01
Full Text Available The multi-strange baryon yields in PbPb collisions have been shown to exhibit an enhancement relative to pp reactions. In this work, Ξ and Ω production rates have been measured with the ALICE experiment as a function of transverse momentum, pT, in pPb collisions at a centre-of-mass energy of sNN=5.02 TeV. The results cover the kinematic ranges 0.6 GeV/c
Digital Repository Service at National Institute of Oceanography (India)
Chakraborty, B.; Saran, A.K.; Kuncolienker, D.S.; Sreepada, R.A.; Haris, K.; Fernandes, W.A
Do the sounds generated by different-sized fish of different sexes differ from each other in temporal, spectral or intensity patterns? Such differences would enable the development of passive acoustic techniques to locate seahorses in open water...
Spectral Imaging by Upconversion
DEFF Research Database (Denmark)
Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter
2011-01-01
We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard sili...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance.......We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...
Hybrid spectral CT reconstruction
Clark, Darin P.
2017-01-01
Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral
Hybrid spectral CT reconstruction.
Directory of Open Access Journals (Sweden)
Darin P Clark
Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with
Chinellato, D D
2011-01-01
The production of charged multi-strange particles is studied with the ALICE experiment at the CERN LHC. Measurements of the central rapidity yields of $\\Xi^-$ and $\\Omega^-$ baryons, as well as their antiparticles, are presented as a function of transverse momentum ($p_\\mathrm{t}$) for inelastic pp collisions at $\\sqrt{s}=7$ TeV and compared to existing measurements performed at the same and/or at lower energies. The results are also compared to predictions from two different tunes of the PYTHIA event generator. We find that data significantly exceed the production rates from those models. Finally, we present the status of the multi-strange particle production studies in Pb-Pb at $\\sqrt{s_{NN}}=2.76$ TeV performed as a function of collision centrality.
Dowker, Fay; Elizalde, Emilio; Kirsten, Klaus
2012-09-01
extension that impacts particles never entering that region. What is the gravitational analogue for that situation? The analogue concerns the impact a localized curvature has, and the cone is an excellent example to shed light on that question. Related to the method of images, Stuart has done an enormous amount of work on the influence of topology and curvature on quantum field theory. An example is [17], where the vacuum stress-energy tensor for Clifford-Klein forms of the flat or spherical type were computed. Another strand we would like to mention is Stuart's interest in higher spin equations. In [18], Steven Weinberg wrote down a set of higher spin equations that took his fancy. They involved angular momentum theory, which has always pleased Stuart, and the description was an alternative to Roger Penrose's use of two-spinors. Investigating the inconsistencies that arose on coupling to gauge theories, Stuart extended the classic results in [19], from electromagnetism to gravity in accordance with his general philosophy; see, e.g., [20, 21, 22]. Lately, Stuart is best known for his many applications in the context of zeta function regularization and its applications to quantum field theory under external conditions and spectral theory. He can be considered the world expert on particular case calculations with a knowledge of the literature, old and recent, that is not seen very often and which originated in the many hours spent at different (mostly British) libraries. His attitude towards explicit computations is nicely summarized by himself: 'I have always been interested in exact solutions, even if unphysical, so long as they are pretty. They seem to be working mechanisms that fit together, complete in themselves, like a watch.' The following issue in honour of Stuart's 75th birthday contains contributions that touch upon the various topics he has worked on. References [1] de Broglie L 1928 La mécanique ondulatoire (Paris: Gauthier-Villars) [2] Castillejo L, Dalitz R H
Are We Losing the Next Generation? A Strange Experience on a Poetry Course.
Holbrook, David
1981-01-01
Examining the attitudes and behaviors of his adolescent students in rural Yorkshire, the author finds in them a strange lack of respect for adults, which he attributes to disruptions of consciousness caused by the constant bombardment of pop music and television. Two other authors comment on pp128-30. (SJL)
Electromagnetic production of strangeness and η mesons on simple hadronic systems
International Nuclear Information System (INIS)
Fayard, C.; Lamot, G.H.; Rouvier, F.; Kerbicov, B.
1998-01-01
We investigate the photo- and electro-production of strangeness of the proton and deuteron, based upon effective hadronic Lagrangians. The so called off-shell effects inherent to the fermions with spin ≥3/2 is carefully studied. This formalism is now extended to the reaction γp → ηp. (authors)
Silent Films and Strange Stories: Theory of Mind, Gender, and Social Experiences in Middle Childhood
Devine, Rory T.; Hughes, Claire
2013-01-01
In this study of two hundred and thirty 8- to 13-year-olds, a new "Silent Films" task is introduced, designed to address the dearth of research on theory of mind in older children by providing a film-based analogue of F. G. E. Happe's (1994) Strange Stories task. Confirmatory factor analysis showed that all items from both tasks loaded…
The investigation of strangeness photoproduction in the threshold region at ELPH-Tohoku
Czech Academy of Sciences Publication Activity Database
Kaneta, M.; Beckford, B.; Bydžovský, Petr; Fujibayashi, T.; Fujii, T.; Fujii, Y.; Futatsukawa, K.; Gogami, T.; Han, Y. C.; Hashimoto, O.; Hirose, K.; Hosomi, K.; Honda, R.; Iguchi, A.; Ishikawa, T.; Kanda, H.; Kaneko, Y.; Kasai, Y.; Kawasaki, T.; Kimura, C.; Kiyokawa, S.; Koike, T.; Maeda, K.; Maruyama, N.; Matsubara, M.; Miwa, K.; Miyagi, Y.; Nagao, S.; Nakamura, S. N.; Okuyama, A.; Sotona, Miloslav; Tamae, T.; Tamura, H.; Tsukada, K.; Terada, N.; Wang, T.S.; Yamamoto, F.; Yamamoto, T.; Yamazaki, H.
2013-01-01
Roč. 914, SEP (2013), s. 69-73 ISSN 0375-9474 Institutional support: RVO:61389005 Keywords : strangeness * photoproduction * tagged photon beam * lambda detection Subject RIV: BE - Theoretical Physics Impact factor: 2.499, year: 2013 http://www.sciencedirect.com/science/article/pii/S0375947413005344
Learning the spelling of strange words in Dutch benefits from regularized reading
Bosman, A.M.T.; Hell, J.G. van; Verhoeven, L.T.W.
2006-01-01
In 2 experiments, the authors tested the effect of 2 types of reading on the spelling memory of strange or sound-spelling inconsistent words in Dutch students with and without learning disabilities: standard reading and regularized reading. Standard reading refers to reading the word the way it has
Search for doubly charmed baryons and study of charmed strange baryons at Belle
Energy Technology Data Exchange (ETDEWEB)
Kato, Y.; Iijima, T.; Adachi, I.; Aihara, H.; Asner, D. M.; Aushev, T.; Bakich, A. M.; Bala, A.; Ban, Y.; Bhardwaj, V.; Bhuyan, B.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Doležal, Z.; Drásal, Z.; Drutskoy, A.; Dutta, D.; Dutta, K.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Gaur, V.; Gabyshev, N.; Ganguly, S.; Garmash, A.; Gillard, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hayasaka, K.; Hayashii, H.; He, X. H.; Horii, Y.; Hoshi, Y.; Hou, W. -S.; Hsiung, Y. B.; Inami, K.; Ishikawa, A.; Iwasaki, Y.; Iwashita, T.; Jaegle, I.; Julius, T.; Kang, J. H.; Kato, E.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, J. H.; Kim, M. J.; Kim, Y. J.; Klucar, J.; Ko, B. R.; Kodyš, P.; Korpar, S.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y. -J.; Lee, S. -H.; Li, J.; Li, Y.; Li Gioi, L.; Libby, J.; Liu, Y.; Liventsev, D.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Moll, A.; Muramatsu, N.; Mussa, R.; Nagasaka, Y.; Nakano, E.; Nakao, M.; Nakazawa, H.; Nayak, M.; Nedelkovska, E.; Ng, C.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Nitoh, O.; Ogawa, S.; Okuno, S.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Pedlar, T. K.; Peng, T.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Ritter, M.; Röhrken, M.; Rostomyan, A.; Sahoo, H.; Saito, T.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Semmler, D.; Senyo, K.; Seon, O.; Shapkin, M.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Sibidanov, A.; Sohn, Y. -S.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Steder, M.; Sumihama, M.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Tatishvili, G.; Teramoto, Y.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Wagner, M. N.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamashita, Y.; Yashchenko, S.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.
2014-03-17
We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb^{-1} data sample collected with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider.
Production of excited charm and charm-strange mesons at HERA
Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.; Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Jungst, M.; Nuncio-Quiroz, A. E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.; Brook, N. H.; Heath, G. P.; Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.; Kim, J. Y.; Ibrahim, Z. A.; Kamaluddin, B.; Wan Abdullah, W. A. T.; Ning, Y.; Ren, Z.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Gil, M.; Olkiewicz, K.; Stopa, P.; Zawiejski, L.; Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.; Kotanski, A.; Slominski, W.; Behrens, U.; Blohm, C.; Bonato, A.; Borras, K.; Ciesielski, R.; Coppola, N.; Fourletova, J.; Geiser, A.; Gottlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huttmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Kotz, U.; Kowalski, H.; Lobodzinska, E.; Lohr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Rinaldi, L.; Roloff, P.; Rubinsky, I.; Santamarta, R.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Wolf, G.; Wrona, K.; Yagues Molina, A. G.; Youngman, C.; Zeuner, W.; Drugakov, V.; Lohmann, W.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P. G.; Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.; Bussey, P. J.; Doyle, A. T.; Dunne, W.; Forrest, M.; Rosin, M.; Saxon, D. H.; Skillicorn, I. O.; Gialas, I.; Papageorgiu, K.; Holm, U.; Klanner, R.; Lohrmann, E.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.; Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.; Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lisovyi, M.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.; Son, D.; de Favereau, J.; Piotrzkowski, K.; Barreiro, F.; Glasman, C.; Jimenez, M.; Labarga, L.; del Peso, J.; Ron, E.; Soares, M.; Terron, J.; Zambrana, M.; Corriveau, F.; Schwartz, J.; Walsh, R.; Tsurugai, T.; Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.; Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.; Grigorescu, G.; Keramidas, A.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Brummer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.; Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Korcsak-Gorzo, K.; Oliver, K.; Robertson, A.; Uribe-Estrada, C.; Walczak, R.; Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.; Oh, B. Y.; Raval, A.; Ukleja, J.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cole, J. E.; Hart, J. C.; Abramowicz, H.; Ingbir, R.; Kananov, S.; Stern, A.; Kuze, M.; Maeda, J.; Hori, R.; Kagawa, S.; Okazaki, N.; Tawara, T.; Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.; Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.; Arneodo, M.; Ruspa, M.; Fourletov, S.; Stewart, T. P.; Boutle, S. K.; Butterworth, J. M.; Gwenlan, C.; Jones, T. W.; Loizides, J. H.; Wing, M.; Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Ukleja, A.; Zarnecki, A. F.; Adamus, M.; Plucinski, P.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Brownson, E.; Danielson, T.; Everett, A.; Kcira, D.; Reeder, D. D.; Ryan, P.; Savin, A. A.; Smith, W. H.; Wolfe, H.; Bhadra, S.; Catterall, C. D.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.
The production of excited charm, D(1)(2420)(0) and D(2)*(2460)(0), and charm-strange, D(s1)(2536)(+/-), mesons in ep collisions was measured with the ZEUS detector at HERA using an integrated luminosity of 126 pb(-1). Masses, widths and helicity parameters were determined. The measured yields were
STRANGE DIBARYONS IN NEUTRON STARS AND IN HEAVY-ION COLLISONS
International Nuclear Information System (INIS)
SCHAFFNER-BIELICH, J.
2001-01-01
The formation of dibaryons with strangeness are discussed for the interior of neutron stars and for central relativistic heavy-ion collisions. We derive limits for the properties of H-dibaryons from pulsar data. Signals for the formation of possible bound states with hyperons at BNL's Relativistic Heavy-Ion Collider (RHIC) are investigated by studying their weak decay patterns and production rates
Despina Hatzifotiadou: ALICE Master Class 1 - Theory: strange particles, V0 decays, invariant mass
CERN. Geneva
2016-01-01
This is the 1st of 4 short online videos. It contains an introduction to the first part of the exercise : what are strange particles, V0 decays, invariant mass. More details and related links on this indico event page. In more detail: What is Physics Master Classes Students after morning lectures, run programmes in the afternoon to do measurements. These tutorials are about how to use the software required to do these measurements. Background info and examples Looking for strange particles with ALICE http://aliceinfo.cern.ch/Public/MasterCL/MasterClassWebpage.html Introduction to first part of the exercise : what are strange particles, V0 decays, invariant mass. Demonstration of the software for the 1st part of the exercise - visual identification of V0s Introduction to second part of the exercise : strangeness enhancement; centrality of lead-lead collisions; explanation of efficiency, yield, background etc Demonstration of the software for the 2nd part of the exercise - invariant mass spec...
Using the Moon and Mars as Giant Detectors for Strange Quark Nuggets
Chui, Talso; Penanen, Konstantin; Strayer, Don; Banerdt, Bruce; Tepliz, Vigdor; Herrin, Eugene
2004-01-01
On the Earth, the detectability of small seismic signals is limited by pervasive seismic background noise, caused primarily by interactions of the atmosphere and oceans with the solid surface. Mars, with a very thin atmosphere and no ocean is expected to have a noise level at least an order of magnitude lower than the Earth, and the airless Moon is even quieter still. These pristine low-vibration environments are ideal for searching for nuggets of "strange quark matter." Strange quark matter was postulated by Edward Witten [Phys. Rev. D30, 272, 1984] as the lowest possible energy state of matter. It would be made of up, down, and strange quarks, instead of protons and neutrons made only of up and down quarks. It would have nuclear densities, and hence be difficult to detect. Micron-sized nuggets would weigh in the ton range. As suggested by de Rujula and Glashow [Nature 312 (5996): 734, 1984], a massive strange quark nugget can generate a trail of seismic waves, as it traverses a celestial body. We discuss the mission concept for deploying a network of sensitive seismometers on Mars and on the Moon for such a search.
Multi-strange-quark states at ultra-relativistic heavy-ion collisions
Indian Academy of Sciences (India)
Abstract. We examine the possibility of producing and evidencing exotic strange matter. (strangelets and metastable multi-hypernuclear objects, MEMO's), including also pure hyperonic bound states (´ΛΛµb. , ´ΞΛµb. ), at RHIC and LHC. Simulations are presented to estimate the sensitivity of the STAR and ALICE ...
Strange and charm baryon masses with two flavors of dynamical twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-Based Science and Technology Research Center; Carbonell, J. [CEA-Saclay, Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Christaras, D.; Gravina, M. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Drach, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Papinutto, M. [UFJ/CNRS/IN2P3, Grenoble (France). Laboratoire de Physique Subatomique et Cosmologie; Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Universidad Autonoma de Madrid UAM/CSIC (Spain). Inst. de Fisica Teorica
2012-10-15
The masses of the low-lying strange and charm baryons are evaluated using two degenerate flavors of twisted mass sea quarks for pion masses in the range of about 260 MeV to 450 MeV. The strange and charm valence quark masses are tuned to reproduce the mass of the kaon and D-meson at the physical point. The tree-level Symanzik improved gauge action is employed. We use three values of the lattice spacing, corresponding to {beta}=3.9, {beta}=4.05 and {beta}=4.2 with r{sub 0}/a=5.22(2), r{sub 0}/a=6.61(3) and r{sub 0}/a=8.31(5) respectively. We examine the dependence of the strange and charm baryons on the lattice spacing and strange and charm quark masses. The pion mass dependence is studied and physical results are obtained using heavy baryon chiral perturbation theory to extrapolate to the physical point.
Sabates, Felix N; Vincent, Ryan D; Koulen, Peter; Sabates, Nelson R; Gallimore, Gary
2011-01-01
A normative database of functional and structural parameters of the macula from normal subjects was established to identify reference points for the diagnosis of patients with macular disease using microperimetry and scanning laser ophthalmoscope/spectral-domain optical coherence tomography (SD-OCT). This was a community-based, prospective, cross-sectional study of 169 eyes from subjects aged 21 years to 85 years with best-corrected visual acuity of 20/25 or better and without any ocular disease. Full-threshold macular microperimetry combined with the acquisition of structural parameters of the macula with scanning laser ophthalmoscope/SD-OCT was recorded (SD-OCT/scanning laser ophthalmoscope with add-on Microperimetry module; OPKO). Fixation, central, subfield, and mean retinal thickness were acquired together with macular sensitivity function. Thickness and sensitivity as primary outcome measures were mapped and superimposed correlating topographically differentiated macular thickness with sensitivity. Statistical evaluation was performed with age, gender, and ethnicity as covariates. Subfield and mean retinal thickness and sensitivity were measured with macular microperimetry combined with SD-OCT and differentiated by macular topography and subjects' age, gender, and ethnicity. Mean retinal sensitivity and thickness were calculated for 169 healthy eyes (mean age, 48 ± 17 years). A statistically significant decrease in sensitivity was found only in the age group of participants ≥ 70 years and in peripheral portions of the macula in individuals aged ≥60 years and was more pronounced in the area surrounding the fovea than in the center of the macula, while retinal thickness did not change with age. No statistically significant differences in the primary outcome measures or their correlations were found when using gender or ethnicity as a covariate. A database for normal macular thickness and sensitivity was generated with a combined microperimetry SD
Strangeness at high μB: Recent data from FOPI and HADES
Leifels, Yvonne
2018-02-01
Strangeness production in heavy-ion reactions at incident energies at or below the threshold in NN collisions gives access to the characteristics of bulk nuclear matter and the properties of strange particles inside the hot and dense nuclear medium, like potentials and interaction cross sections. At these energies strangeness is produced in multi-step processes potentially via excitation of intermediate heavy resonances. The amount of experimental data on strangeness production at these energies has increased substantially during the last years due to the FOPI and the HADES experiments at SIS18 at GSI. Experimental data on K+ and K0 production support the assumption that particles with an s quark feel a moderate repulsive potential in the nuclear medium. The situation is not that clear in the case of K-. Here, spectra and flow of K- mesons is influenced by the contribution of ø mesons which are decaying into K+K- pairs with a branching ratio of 48.9 %. Depending on incident energy upto 30 % of all K- mesons measured in heavyion collisions are originating from ø-decays. Strangeness production yields - except the yield of Ξ- are described by thermal hadronisation models. Experimental data not only measured for heavy-ion collisions but also in proton induced reactions are described with sets of temperature T and baryon chemical potential μb which are close to a universal freeze-out curve which is fitting also experimental data obtained at lower baryon chemical potential. Despite the good description of most particle production yields, the question how this is achieved is still not settled and should be the focus of further investigations.
Energy Technology Data Exchange (ETDEWEB)
McKee, David Wayne [New Mexico State Univ., Las Cruces, NM (United States)
2003-05-01
High statistics elastic and quasielastic scattering measurements were performed on hydrogen, deuterium, carbon, and iron at squared momentum transfers up to 8.1 GeV^{2}. Both the nuclear transparency and the single particle spectral functions were extracted by means of comparison with a Plane- Wave Impulse Approximation calculation. Our data provide no evidence of the onset of color transparency within our kinematic range.
Senthil kumar, J; Jeyavijayan, S; Arivazhagan, M
2015-02-05
The FT-IR and FT-Raman spectra of 3,5-dichlorobenzonitrile and m-bromobenzonitrile have been recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The optimized geometry, wave numbers and intensity of vibrational bonds of title molecules are obtained by ab initio and DFT level of theory with complete relaxation in the potential energy surface using 6-311++G(d, p) basis set. A complete vibrational assignments aided by the theoretical harmonic frequency, analysis have been proposed. The harmonic vibrational frequencies calculated have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The UV-Vis spectral analysis of the molecules has also been done which confirms the charge transfer of the molecules. Furthermore, the first hyperpolarizability and total dipole moment of the molecules have been calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
Ten Kate, O.M.; De Jong, M.; Hintzen, H.T.; Van der Kolk, E.
2013-01-01
Solar cells of which the efficiency is not limited by the Shockley-Queisser limit can be obtained by integrating a luminescent spectral conversion layer into the cell structure. We have calculated the maximum efficiency of state-of-the-art c-Si, pc-Si, a-Si, CdTe, GaAs, CIS, CIGS, CGS, GaSb, and Ge
Global and local aspects of spectral actions
Iochum, B.; Levy, C.; Vassilevich, D. V.
2012-09-01
The principal object in noncommutative geometry is the spectral triple consisting of an algebra {A}, a Hilbert space {H} and a Dirac operator {D}. Field theories are incorporated in this approach by the spectral action principle, which sets the field theory action to Tr\\,f( {D}^2/\\Lambda ^2), where f is a real function such that the trace exists and Λ is a cutoff scale. In the low-energy (weak-field) limit, the spectral action reproduces reasonably well the known physics including the standard model. However, not much is known about the spectral action beyond the low-energy approximation. In this paper, after an extensive introduction to spectral triples and spectral actions, we study various expansions of the spectral actions (exemplified by the heat kernel). We derive the convergence criteria. For a commutative spectral triple, we compute the heat kernel on the torus up to the second order in gauge connection and consider limiting cases. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.
Multi-strange baryon production in p-Pb collisions at $\\sqrt{s_\\mathbf{NN}}=5.02$ TeV
Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Benacek, Pavel; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Derradi De Souza, Rafael; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stefanek, Grzegorz; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasar, Cigdem; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym
2016-07-10
The multi-strange baryon yields in Pb--Pb collisions have been shown to exhibit an enhancement relative to pp reactions. In this work, $\\Xi$ and $\\Omega$ production rates have been measured with the ALICE experiment as a function of transverse momentum, ${p_{\\rm T}}$, in p-Pb collisions at a centre-of-mass energy of ${\\sqrt{s_{\\rm NN}}}$ = 5.02 TeV. The results cover the kinematic ranges 0.6 GeV/$c<{p_{\\rm T}} <$7.2 GeV/$c$ and 0.8 GeV/$c<{p_{\\rm T}}<$ 5 GeV/$c$, for $\\Xi$ and $\\Omega$ respectively, in the common rapidity interval -0.5 $<{y_{\\rm CMS}}<$ 0. Multi-strange baryons have been identified by reconstructing their weak decays into charged particles. The ${p_{\\rm T}}$ spectra are analysed as a function of event charged-particle multiplicity, which in p-Pb collisions ranges over one order of magnitude and lies between those observed in pp and Pb-Pb collisions. The measured ${p_{\\rm T}}$ distributions are compared to the expectations from a Blast-Wave model. The parameters which describ...
Strangeness Physics at CLAS in the 6 GeV Era
Energy Technology Data Exchange (ETDEWEB)
Schumacher, Reinhard A. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
A very brief overview is presented of varied strangeness-physics studies that have been conducted with the CLAS system in the era of 6 GeV beam at Jefferson Lab. A full bibliography of articles related to open strangeness production is given, together with some physics context for each work. One natural place where these studies could be continued, using a K L beam and the GlueX detector, is in the further investigation of the Λ(1405) baryon. The line shapes and cross sections of this state were found, using photoproduction at CLAS, to differ markedly in the three possible Σπ final states. The analogous strong-interaction reactions using a K L beam could further bring this phenomenon into focus. 1. The CLAS program ran from 1998 to 2012, during the time when the maximum Jefferson Lab beam energy was 6 GeV. An important thrust of this program was to investigate the spectrum of N * and Δ * (non-strange) baryon resonances using photo-and electro-production reactions. To this end, final states containing strange particles (K mesons and low-mass hyperons) played a significant role. The reason for this is partly due to favorable kinemat-ics. When the total invariant energy W (= √ s) of a baryonic system exceeds 1.6 GeV it becomes possible to create the lightest strangeness-containing final state, K ^{+} Λ. This is a two-body final state that is straightforward to reconstruct in the CLAS detector system [1], and theoretically it is easier to deal with two-body reaction amplitudes than with three-and higher-body reaction amplitudes. In the mass range W > 1.6 GeV the decay modes of excited nucleons tend to not to favor two-body π-nucleon final states but rather multi-pion states. As input to partial-wave decompositions and resonance-extraction models, therefore, the strangeness-containing final states of high-mass nucleon excitations have had importance. Excited baryons decay through all possible channels simultaneously, constrained by unitarity of course
Computer-assisted spectral design and synthesis
Vadakkumpadan, Fijoy; Wang, Qiqi; Sun, Yinlong
2005-01-01
In this paper, we propose a computer-assisted approach for spectral design and synthesis. This approach starts with some initial spectrum, modifies it interactively, evaluates the change, and decides the optimal spectrum. Given a requested change as function of wavelength, we model the change function using a Gaussian function. When there is the metameric constraint, from the Gaussian function of request change, we propose a method to generate the change function such that the result spectrum has the same color as the initial spectrum. We have tested the proposed method with different initial spectra and change functions, and implemented an interactive graphics environment for spectral design and synthesis. The proposed approach and graphics implementation for spectral design and synthesis can be helpful for a number of applications such as lighting of building interiors, textile coloration, and pigment development of automobile paints, and spectral computer graphics.
High-School Student Discovers Strange Astronomical Object
2009-09-01
A West Virginia high-school student analyzing data from a giant radio telescope has discovered a new astronomical object -- a strange type of neutron star called a rotating radio transient. Lucas Bolyard, a sophomore at South Harrison High School in Clarksburg, WV, made the discovery while participating in a project in which students are trained to scrutinize data from the National Science Foundation's giant Robert C. Byrd Green The project, called the Pulsar Search Collaboratory (PSC), is a joint project of the National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU), funded by a grant from the National Science Foundation. Bolyard made the discovery in March, after he already had studied more than 2,000 data plots from the GBT and found nothing. "I was home on a weekend and had nothing to do, so I decided to look at some more plots from the GBT," he said. "I saw a plot with a pulse, but there was a lot of radio interference, too. The pulse almost got dismissed as interference," he added. Nonetheless, he reported it, and it went on a list of candidates for West Virginia University astronomers Maura McLaughlin and Duncan Lorimer to re-examine, scheduling new observations of the region of sky from which the pulse came. Disappointingly, the follow-up observations showed nothing, indicating that the object was not a normal pulsar. However, the astronomers explained to Bolyard that his pulse still might have come from a rotating radio transient. Confirmation didn't come until July. Bolyard was at the NRAO's Green Bank Observatory with fellow PSC students. The night before, the group had been observing with the GBT in the wee hours, and all were very tired. Then Lorimer showed Bolyard a new plot of his pulse, reprocessed from raw data, indicating that it is real, not interference, and that Bolyard is likely the discoverer of one of only about 30 rotating radio transients known. Suddenly, Bolyard said, he wasn't tired anymore. "That news made me full
Intensity Conserving Spectral Fitting
Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.
2015-01-01
The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
We study countable sums of two dimensional modules for the continuous complex functions on a compact metric space and show that it is possible to construct a spectral triple which gives the original metric back. This spectral triple will be finitely summable for any positive parameter. We also co...
Chebyshev and Fourier spectral methods
Boyd, John P
2001-01-01
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
International Nuclear Information System (INIS)
Rochester, G.D.
1989-01-01
This paper looks at the discovery and investigation of strange particles in the 1950s and points to the importance of two factors in achieving this, namely, penetrating-shower selection and counter control in cloud chambers. Experiments at Pic-du-Mide are detailed as is the Bagneres de Bigorre conference and concludes with some of the work done on charged strange particles. (UK)
Flavour symmetry breaking and tuning the strange quark mass for 2+1 quark flavours
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, W. [Universidad Autonoma de Mexico (Mexico). Inst. de Ciencias Nucleares; Bornyakov, V. [Institute for High Energy Physics, Protovino (Russian Federation); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2010-12-15
QCD lattice simulations with 2+1 flavours typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass to its physical value and then the updown quark mass. An alternative method of tuning the quark masses is discussed here in which the singlet quark mass is kept fixed, which ensures that the kaon always has mass less than the physical kaon mass. Using group theory the possible quark mass polynomials for a Taylor expansion about the flavour symmetric line are found, which enables highly constrained fits to be used in the extrapolation of hadrons to the physical pion mass. Numerical results confirm the usefulness of this expansion and an extrapolation to the physical pion mass gives hadron mass values to within a few percent of their experimental values. (orig.)
Hawking-Unruh hadronization and strangeness production in high energy collisions
Directory of Open Access Journals (Sweden)
Castorina Paolo
2015-01-01
Full Text Available The interpretation of quark (q- antiquark (q̄ pairs production and the sequential string breaking as tunneling through the event horizon of colour confinement leads to a thermal hadronic spectrum with a universal Unruh temperature, T ≃ 165 Mev, related to the quark acceleration, a, by T = a/2π. The resulting temperature depends on the quark mass and then on the content of the produced hadrons, causing a deviation from full equilibrium and hence a suppression of strange particle production in elementary collisions. In nucleus-nucleus collisions, where the quark density is much bigger, one has to introduce an average temperature (acceleration which dilutes the quark mass effect and the strangeness suppression almost disappears.
Strangeness production in hadronic and nuclear collisions in the dual parton model
International Nuclear Information System (INIS)
Capella, A.; Tran Thanh Van, J.; Ranft, J.
1993-01-01
Λ, antiΛ and K s 0 production is studied in a Monte Carlo Dual Parton model for hadron-hadron, hadron-nucleus and nucleus-nucleus collisions with a SU(3) symmetric sea for chain formation (chain ends) but strangeness suppression in the chain fragmentation. Additionally, (qq)-(antiqantiq) production from the sea was introduced into the chain formation process with the same probability as for the q → qq branching within the chain decay process. This together with the popcorn mechanism of diquark fragmentation result in a new central component of hyperon production, which was not present in previous versions of the model. With these assumptions rapidity distributions and multiplicity ratios for strange particles in hadron-hadron, hadron-nucleus and nucleus-nucleus collisions are compared to a comprehensive collection of experimental data. 5 figs., 2 tabs., 15 refs
Strange scaling and relaxation of finite-size fluctuation in thermal equilibrium.
Yamaguchi, Yoshiyuki Y
2016-07-01
We numerically exhibit two strange phenomena of finite-size fluctuation in thermal equilibrium of a paradigmatic long-range interacting system having a second-order phase transition. One is a nonclassical finite-size scaling at the critical point, which differs from the prediction by statistical mechanics. With the aid of this strange scaling, the scaling theory for infinite-range models conjectures the nonclassical values of critical exponents for the correlation length. The other is relaxation of the fluctuation strength from one level to another in spite of being in thermal equilibrium. A scenario is proposed to explain these phenomena from the viewpoint of the Casimir invariants and their nonexactness in finite-size systems, where the Casimir invariants are conserved in the Vlasov dynamics describing the long-range interacting systems in the limit of large population. This scenario suggests appearance of the reported phenomena in a wide class of isolated long-range interacting systems.
Using low-energy neutrinos from pion decay at rest to probe the proton strangeness.
Pagliaroli, G; Lujan-Peschard, C; Mitra, M; Vissani, F
2013-07-12
The study of the neutral current elastic scattering of neutrinos on protons at lower energies can be used as a compelling probe to improve our knowledge of the strangeness of the proton. We consider a neutrino beam generated from pion decay at rest, as provided by a cyclotron or a spallation neutron source and a 1 kton scintillating detector with a potential similar to the Borexino detector. Despite several backgrounds from solar and radioactive sources, it is possible to estimate two optimal energy windows for the analysis, one between 0.65 and 1.1 MeV and another between 1.73 and 2.2 MeV. The expected number of neutral current events in these two regions, for an exposure of 1 yr, is enough to obtain an error on the strange axial charge 10 times smaller than available at present.
167th International School of Physics "Enrico Fermi" : Strangeness and Spin in Fundamental Physics
Bressani, T; Feliciello, A; Ratcliffe, Ph G
2008-01-01
Strangeness and Spin in Fundamental Physics is dedicated to the discussion of the role played by two subtle and somehow puzzling quantum numbers, the strangeness and the spin, in fundamental physics. They both relate to basic properties of the fundamental quantum field theories describing strong and electro-weak interactions and to their phenomenological applications. In some instances, like the partonic spin structure of the proton, they are deeply correlated. The many puzzling results recently obtained by measuring several spin asymmetries have stimulated gigantic progresses in the study of the spin structure of protons and neutrons. Intense theoretical activity has discovered new features of non-perturbative QCD, like strong correlations between the spin and the intrinsic motions of quarks inside the nucleons. The purpose of this publication is that of providing a complete, updated and critical account of the most recent and relevant discoveries in the above fields, both from the experimental and theoretic...
Isospin mixing in the nucleon and He-4 and the nucleon strange electric form-factor
Energy Technology Data Exchange (ETDEWEB)
M. Viviani; R. Schiavilla; B. Kubis; R. Lewis; L. Girlanda; A. Kievsky; L.E. Marcucci; S. Rosati
2007-09-01
In order to isolate the contribution of the nucleon strange electric form factor to the parity-violating asymmetry measured in 4He(\\vec e,e')4He experiments, it is crucial to have a reliable estimate of the magnitude of isospin-symmetry-breaking (ISB) corrections in both the nucleon and 4He. We examine this issue in the present letter. Isospin admixtures in the nucleon are determined in chiral perturbation theory, while those in 4He are derived from nuclear interactions, including explicit ISB terms. A careful analysis of the model dependence in the resulting predictions for the nucleon and nuclear ISB contributions to the asymmetry is carried out. We conclude that, at the low momentum transfers of interest in recent measurements reported by the HAPPEX collaboration at Jefferson Lab, these contributions are of comparable magnitude to those associated with strangeness components in the nucleon electric form factor.
High-precision calculation of the strange nucleon electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Green, Jeremy [Johannes Gutenberg Univ., Mainz (Germany); Meinel, Stefan [Univ. of Arizona, Tucson, AZ (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Engelhardt, Michael G. [New Mexico State Univ., Las Cruces, NM (United States); Krieg, Stefan [Bergische Univ., Wuppertal (Germany); Julich Supercomputing Centre, Julich (Germany); Laeuchli, Jesse [College of William and Mary, Williamsburg, VA (United States); Negele, John W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pochinsky, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Syritsyn, Sergey [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-08-26
We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors G^{s}_{E} and G^{s}_{M} in the kinematic range 0 ≤ Q^{2} ≤ 1.2GeV^{2}. For the first time, both G^{s}_{E} and G^{s}_{M} are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.
A birational mapping with a strange attractor: post-critical set and covariant curves
International Nuclear Information System (INIS)
Bouamra, M; Hassani, S; Maillard, J-M
2009-01-01
We consider some two-dimensional birational transformations. One of them is a birational deformation of the Henon map. For some of these birational mappings, the post-critical set (i.e. the iterates of the critical set) is infinite and we show that this gives straightforwardly the algebraic covariant curves of the transformation when they exist. These covariant curves are used to build the preserved meromorphic 2-form. One may also have an infinite post-critical set yielding a covariant curve which is not algebraic (transcendental). For two of the birational mappings considered, the post-critical set is finite and we claim that there is no algebraic covariant curve and no preserved meromorphic 2-form. For these two mappings with finite post-critical sets, attracting sets occur and we show that they pass the usual tests (Lyapunov exponents and the fractal dimension) for being strange attractors. The strange attractor of one of these two mappings is unbounded.
strange beta: An assistance system for indoor rock climbing route setting
Phillips, C.; Becker, L.; Bradley, E.
2012-03-01
This paper applies the mathematics of chaos to the task of designing indoor rock-climbing routes. Chaotic variation has been used to great advantage on music and dance, but the challenges here are quite different, beginning with the representation. We present a formalized system for transcribing rock climbing problems and then describe a variation generator that is designed to support human route-setters in designing new and interesting climbing problems. This variation generator, termed strange beta, uses chaos to introduce novelty. We validated this approach with a large blinded study in a commercial climbing gym, in cooperation with experienced climbers and expert route setters. The results show that strange beta can help a human setter produce routes that are at least as good as, and in some cases better than, those produced in the traditional manner.
A DMFT+CTQMC Investigation of Strange Metallicity in Local Quantum Critical Scenario
Acharya, Swagata; Laad, M. S.; Taraphder, A.
2016-10-01
“Strange” metallicity is now a pseudonym for a novel metallic state exhibiting anomalous infra-red (branch-cut) continuum features in one- and two-particle responses. Here, we employ dynamical mean-field theory (DMFT) using low-temperature continuous-time- quantum Monte-Carlo (CTQMC) solver for an extended periodic Anderson model (EPAM) model to investigate unusual magnetic fluctuations in the strange metal. We show how extinction of Landau quasiparticles in the orbital selective Mott phase (OSMP) leads to (i) qualitative explication of strange transport features and (ii) anomalous quantum critical magnetic fluctuations due to critical liquid-like features in dynamical spin fluctuations, in excellent accord with data in some f-electron systems.
Evaluation of the theory of mind in autism spectrum disorders with the Strange Stories test
Directory of Open Access Journals (Sweden)
Renata de Lima Velloso
2013-11-01
Full Text Available Objective To evaluate the theory of mind in autism spectrum disorders (ASD and control individuals by applying the Strange Stories test that was translated and adapted to the Portuguese language. Method Twenty-eight children with ASD and 56 controls who were all male and aged between 6 and 12 years participated in the study. Results There were significant differences between the median scores of the groups for each of the 12 stories of the test and for the sum total of all the median scores. The median scores for all stories were significantly greater in the control group than those in the experimental group (children with ASD. In addition, the protocol had excellent internal consistency. Conclusion The theory of mind skills assessed with the Strange Stories test indicated alterations in children with ASD compared with children in the control group.
Bocquet, G; Wang, H Q; Karimäki, V; Kinnunen, Ritva; Pimiä, M; Tuominiemi, Jorma; Albajar, C; Revol, Jean Pierre Charles; Sphicas, Paris; Sumorok, K; Tan, C H; Tether, S; Buschbeck, Brigitte; Dibon, Heinz; Lipa, P; Markytan, Manfred; Neumeister, N
1996-01-01
From a sample of 2.36 million minimum bias events produced in p{\\overline{p}} collisions at \\sqrt{s} = 630 GeV in the UA1 experiment and from other published data at the CERN Sp\\bar{p}S collider we have estimated the relative production of \\pi^\\pm, \\pi^0, K^\\pm K^0_s, \\Lambda, \\bar{\\Lambda}, p and \\bar{p}. We obtain a meson over baryon ratio M/B = 6.4\\pm1.1. From the K^0_s/\\pi^\\pm ratio we measure the strangeness suppression factor \\lambda=0.29\\pm0.02\\pm0.01 which, combining with other available data provides a new world average of 0.29 \\pm 0.015. Both the K^0_s/\\pi^\\pm ratio and the strangeness suppression factor \\lambda as a function of \\sqrt{s} are investigated, and an extrapolation to the LHC energy is performed.
Strangeness production in Au+Au collisions at the AGS: recent results from E917
International Nuclear Information System (INIS)
Chang, W.-C.; Back, B.B.; Betts, R.R.; Britt, H.C.; Chang, W.C.; Gillitzer, A.; Henning, W.F.; Hofman, D.J.; Holzman, B.; Nanal, V.; Wuosmaa, A.H.
1999-01-01
Strangeness production in Au+Au collisions has been measured via the yields of K + , K - at 6, 8 AGeV and of bar Λ at 10.8 AGeV beam kinetic energy in experiment E917. By varying the collision centrally and beam energy, a systematic search for indications of new phenomena and in-medium effects under high baryon density is undertaken
Charm-conserving strangeness-changing two body hadronic decays of charmed baryons
International Nuclear Information System (INIS)
Khanna, M.P.
1993-10-01
The charm-conserving strangeness-changing two body hadronic decays of charmed baryons are examined in the SU(4) symmetry scheme. In addition to the 20''-Hamiltonian, we consider a 15-piece of the weak Hamiltonian which may arise due to SU(4) breaking or due to some non-conventional dynamics. The numerical estimates for decay widths of some of the modes are presented. (author). 15 refs, 3 tabs
New indication on scaling properties of strangeness production in pp collisions at RHIC
Czech Academy of Sciences Publication Activity Database
Tokarev, M. V.; Zborovský, Imrich
2017-01-01
Roč. 32, č. 5 (2017), č. článku 1750029. ISSN 0217-751X R&D Projects: GA MŠk(CZ) LG15052; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : high energy * proton-proton collision s * strangeness * self-similarity * fractality Subject RIV: BE - Theoretical Physics OBOR OECD: Particles and field physics Impact factor: 1.597, year: 2016
Summary talk at the international symposium on strangeness in hadronic matter
International Nuclear Information System (INIS)
Garvey, G.T.
1987-01-01
A selected summary of the workshop is presented. Emphasis is placed on the future role of studying kaon rare decay and an apparent solution of the ΔI = 1/2 enhancement in strangeness-changing weak decays. Also discussed is a proposed kaon condensate of hadronic matter as well as recent and proposed experiments on S = -1, -2 dibaryons. The summary concludes with a brief discussion of the status of hypernucleus research. 12 refs., 4 figs., 1 tab
Detection of the strange bodies on the conveyor belt using gamma radiation technique
International Nuclear Information System (INIS)
Barna, A.; Ochiana, G.; Oncescu, M.
1990-01-01
The aim of this paper is to present a method for the computation of the activity of a gamma radiation source used in a radiometric assembly designed to detect the strange bodies (iron, stone or wood-made granules) within the textile material on the conveyor belt. The mathematical modelling method based on the Monte Carlo procedure has been used, with different values of the errors of types I and II; the investigation method is the transmission of gamma radiations. (Author)
Things made strange: on the concept of 'estrangement' in science fiction theory
Spiegel, Simon
2008-01-01
The concept of "estrangement" has been central to sf criticism ever since Darko Suvin defined the genre as creating the effect of "cognitive estrangement". By going back to the theories of Viktor Shklovsky and Bertolt Brecht, I will show how Suvin, in his approach, intermingles formal, fictional, generic, and receptive aspects of estrangement. Contrary to Suvin’s assessment, it is not sf’s primary formal operation to render familiar things strange, but to make the alien look ordinary, a proce...
Measurement of the strange quark contribution to the vector structure of the proton
Energy Technology Data Exchange (ETDEWEB)
Phillips, Sarah
2007-11-30
The goal of the G0 experiment is to determine the contribution of the strange quarks in the quark-antiquark sea to the structure of the nucleon. To this end, the experiment measured parityviolating asymmetries from elastic electron-proton scattering from 0.12 ≤ Q2 ≤ 1.0 (GeV/c)^{2} at Thomas Jefferson National Accelerator Facility. These asymmetries come from the interference of the electromagnetic and neutral weak interactions, and are sensitive to the strange quark contributions in the proton. The results from the forward-angle measurement, the linear combination of the strange electric and magnetic form factors GsE +ηGsM, suggest possible non-zero, Q^{2} dependent, strange quark contributions and provide new information to understand the magnitude of the contributions. This dissertation presents the analysis and results of the forward-angle measurement. In addition, the G0 experiment measured the beam-normal single-spin asymmetry in the elastic scattering of transversely polarized 3 GeV electrons from unpolarized protons at Q^{2} = 0.15, 0.25 (GeV/c)^{2 }as part of the forward-angle measurement. The transverse asymmetry provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments. The results of the measurement indicate that calculations using solely the elastic nucleon intermediate state are insufficient and generally agree with calculations that include significant inelastic hadronic intermediate state contributions. This dissertation presents the analysis and results of this measurement.
Frequency locking by external force from a dynamical system with strange nonchaotic attractor
International Nuclear Information System (INIS)
Guan Shuguang; Wang Xingang; Lai, C.-H.
2006-01-01
Usually, phase synchronization is studied in chaotic systems driven by either periodic force or chaotic force. In the present work, we consider frequency locking in chaotic Roessler oscillator by a special driving force from a dynamical system with a strange nonchaotic attractor. In this case, a transition from generalized marginal synchronization to frequency locking is observed. We investigate the bifurcation of the dynamical system and explain why generalized marginal synchronization can occur in this model
The strange quark mass and Lambda parameter of two flavor QCD
Fritzsch, Patrick; Leder, Björn; Marinkovic, Marina; Schaefer, Stefan; Sommer, Rainer; Virotta, Francesco
2012-01-01
We complete the non-perturbative calculations of the strange quark mass and the Lambda parameter in two flavor QCD by the ALPHA collaboration. The missing lattice scale is determined via the kaon decay constant, for whose chiral extrapolation complementary strategies are compared. We also give a value for the scale r_0 in physical units as well as an improved determination of the renormalization constant Z_A.
A study in dualism: The strange case of Dr. Jekyll and Mr. Hyde.
Singh, Shubh M; Chakrabarti, Subho
2008-07-01
R. L. Stevenson's novel, The Strange Case of Dr. Jekyll and Mr. Hyde is a prominent example of Victorian fiction. The names Jekyll and Hyde have become synonymous with multiple personality disorder. This article seeks to examine the novel from the view point of dualism as a system of philosophy and as a religious framework and also from the view point of Freud's structural theory of the mind.
Nonadiabatic analysis of strange-modes in hot massive stars with time-dependent convection
Directory of Open Access Journals (Sweden)
Sonoi Takafumi
2015-01-01
Full Text Available We carry out nonadiabatic analysis of strange-modes in hot massive stars with time-dependent convection (TDC. We find that the instability of the modes excited at the Fe bump is weaker with TDC than with frozen-in convection (FC. But the instability still remains with TDC, and could be a possible candidate for the trigger of luminous blue variable (LBV phenomena.
Strange Encounter: Depicting An “Other” Reality for Young Readers
Directory of Open Access Journals (Sweden)
YOU Chengcheng
2015-04-01
Full Text Available This article explores fantastic encounters between humans and non-humans inChinese and Japanese Children’s literature. Naoko Awa’s collection of short storiesThe Fox’s Window and Other Stories is closely read to elucidate narrative features ofwhat I call as “strange encounter”, the magic realistic human-animal encounter inChinese and Japanese cultural context. Chinese supernatural literature and culturaltradition of yaoguai, which have been assimilated into Japanese culture (Japaneseyōkai, are referred to throughout my discussion. Todorov’s approach to thefantastic, Judith Zeitlin’s study of Strange Tales of Liaozhai Studio, and RosemaryJackson’s study of fantasy are drawn upon to illuminate the meaning of encountersbetween men and animals. I argue that magic realism as a relatively new genrefor young readers, not only reflects the author’s individual creative experienceof the fantastic but also partakes in the sense of an “other” reality that resonatesthroughout a cultural community. Perjumpaan Ganjil: Gambaran suatu Realitas “Liyan” bagi Pembaca Muda.Artikel ini membahas perjumpaan fantastis antara ‘manusia’ dan ‘non-manusia’ didalam sastra anak Cina dan Jepang. Antologi cerita pendek karangan Naoko Awa TheFox’s Window and Other Stories akan dikupas untuk memaparkan fitur naratif yangdisebut sebagai ‘perjumpaan aneh’ (strange encounter, perjumpaan magis-realis antaramanusia dengan binatang dalam konteks kebudayaan Cina dan Jepang. Karya sastrasupernatural Cina dan keberadaan yaoguai yang telah diasimilasi dalam kebudayaanJepang (disebut youkai menjadi sebuah referensi penting dalam artikel ini. Pendekatanfantasi dari Todorov, studi Judith Zeitlin tentang Strange Tales of Liaozhai Studio,dan studi fantasi dari Rosemary Jackson digunakan untuk memperjelas arti dariperjumpaan antara manusia dan binatang. Magis-realis sebagai sesuatu yang baru bagi pembaca muda tidak hanya merefleksikan pengalaman
Strangeness production in p-Pb and Pb-Pb collisions with ALICE at LHC
Colella, Domenico
2017-01-01
The main goal of the ALICE experiment is to study the properties of the hot and dense medium created in ultra-relativistic heavy-ion collisions. The measurement of the (multi-)strange particles is an important tool to understand particle production mechanisms and the dynamics of the quark-gluon plasma (QGP). We report on the production of K$^{0}_{S}$, $\\Lambda$($\\overline{\\Lambda}$), $\\Xi^{-}$($\\overline{\\Xi}^{+}$) and $\\Omega^{-}$($\\overline{\\Omega}^{+}$) in proton-lead (p-Pb) collisions at $\\sqrt{s_{\\rm NN}}$ = 5.02 TeV and lead-lead (Pb-Pb) collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV measured by ALICE at the LHC. The comparison of the hyperon-to-pion ratios in the two colliding systems may provide insight into strangeness production mechanisms, while the comparison of the nuclear modification factors helps to determine the contribution of initial state effects and the suppression from strange quark energy loss in nuclear matter.
Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks
Energy Technology Data Exchange (ETDEWEB)
Baron, R. [CEA, Centre de Saclay, 91 - Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Boucaud, P. [CNRS et Paris-Sud 11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; Carbonell, J. [Lab. de Physique Subatomique et Cosmologie, 38 - Grenoble (FR)] (and others)
2010-04-15
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N{sub f}=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at two values of the lattice spacing a {approx} 0:078 fm and a {approx}0.086 fm with lattice sizes ranging from L{approx}1.9 fm to L{approx}2.8 fm. We measure with high statistical precision the light pseudoscalar mass m{sub PS} and decay constant f{sub PS} in a range 270
A new interpretation of the QCD phase transition and of strangeness as QGP signature
Kabana, S
2002-01-01
We address the question of how to identify the QCD phase transition using measured light (u, d, s-structured) hadrons, without invoking comparison to the QCD epsilon /sub c/ predictions, and extract epsilon /sub c/ from the data. We analyse several particle and nuclear collisions and extract their chemical freeze out temperature T at zero baryochemical potential ( mu /sub B/). We find at mu /sub B /=0 a universal rise and saturation of both the T and of the strangeness suppression factor lambda /sub s/(=2s/u+d) with increasing initial energy density ( epsilon /sub i/). The onset of saturation of both T and lambda /sub s/, is interpreted as due to the event of the QCD phase transition. The critical energy density is estimated to be epsilon /sub c/~1+0.3-0.5 GeV/fm/sup 3/, corresponding approximately to a square root s of ~8.8 GeV for central Pb+Pb collisions. Concerning the role of strangeness, we identify trivial and nontrivial sources of strangeness enhancement: The peak of lambda /sub s/ in Pb+Pb collisions...
Collectivity of (non-)strange hadrons in high-multiplicity pp with CMS
Stephans, George Stewart
2016-01-01
Observation of a long-range, near-side, two-particle correlation (known as the ``Ridge") in high-multiplicity pp and pPb collisions opened up new opportunities of exploring novel QCD dynamics in small collision systems. CMS has excellent capabilities of reconstructing weakly decay strange hadrons such as $K^0_s$, $\\Lambda$ and $\\Xi^-$. Studies of strange hadron production and correlations in small colliding systems provide crucial insights to the physical origin of novel collective phenomena. New results of pT spectra and long-range two-particle correlations for charged particles and identified strange hadrons in high-multiplicity pp and pPb collisions are presented. The data at various collision energies for pp and pPb collisions are compared to those obtained in large PbPb colliding systems. A measurement of multi-paricle cumulant in pp and pPb is also presented to explore the collective nature of the long-range correlations.
Production rates of strange vector mesons at the Z0 resonance
International Nuclear Information System (INIS)
Dima, M.O.
1997-05-01
This dissertation presents a study of strange vector meson production, open-quotes leading particleclose quotes effect and a first direct measurement of the strangeness suppression parameter in hadronic decays of the neutral electroweak boson, Z 0 . The measurements were performed in e + e - collisions at the Stanford Linear Accelerator Center (SLAC) with the SLC Large Detector (SLD) experiment. A new generation particle ID system, the SLD Cerenkov Ring Imaging Detector (CRID) is used to discriminate kaons from pions, enabling the reconstruction of the vector mesons over a wide momentum range. The inclusive production rates of φ and K* 0 and the differential rates versus momentum were measured and are compared with those of other experiments and theoretical predictions. The high longitudinal polarisation of the SLC electron beam is used in conjunction with the electroweak quark production asymmetries to separate quark jets from antiquark jets. K* 0 production is studied separately in these samples, and the results show evidence for the open-quotes leading particleclose quotes effect. The difference between K* 0 production rates at high momentum in quark and antiquark jets yields a first direct measurement of strangeness suppression in jet fragmentation
DEFF Research Database (Denmark)
Vestergaard, Martin David
2005-01-01
gaps, masking was measured repeatedly over 3 months post-fitting. GRM was characterized as the release from masking under the gap conditions. The cognitive skills of the participants were assessed with two tests for measuring working memory capacity and lexical vigilance. The results showed that while....... For the temporal-gap condition, they performed as normally hearing at both low and high frequencies. These results suggest that patients with precipitous hearing loss do not maintain normal spectral resolution through the low-frequency region, in which the hearing threshold levels are otherwise normal...
Adaptive Spectral Doppler Estimation
DEFF Research Database (Denmark)
Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt
2009-01-01
. The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...
Stability estimates for hp spectral element methods for general ...
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 113; Issue 4. Stability Estimates for ℎ- Spectral ... We establish basic stability estimates for a non-conforming ℎ- spectral element method which allows for simultaneous mesh refinement and variable polynomial degree. The spectral element functions are ...
Energy Technology Data Exchange (ETDEWEB)
Schaub, John [New Mexico State Univ., Las Cruces, NM (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2010-07-01
We studied the strange contributions to the elastic vector and axial form factors of the nucleon using all available elastic electroweak scattering data. Specifically, we combine elastic nu-p and nubar-p scattering cross-section data from the Brookhaven E734 experiment with elastic ep and quasi-elastic ed and e-^{4}He scattering parity-violating asymmetry data from the SAMPLE, HAPPEx, PVA4 and G0 experiments. We not only determined these form factors at individual values of momentum-transfer (Q^{2}), as other groups have done recently, but also fit the Q^{2}-dependence of these form factors using simple functional forms. I present an overview of the G^{0} backward-angle experiment as well as the results of these fits using existing data, along with some expectations of how we can improve our knowledge of these form factors if the MicroBooNE collaboration completes their experiment.
Flow of strange and charged particles in pPb and PbPb collisions at LHC energies
AUTHOR|(CDS)2083811
2016-01-01
Observation of a long-range near-side two-particle correlation (known as the``Ridge'') in high-multiplicity pPb and pp collisions opened up new opportunities of exploring novel QCD dynamics in small collision systems. Latest CMS results in pPb and PbPb collisions will be shown: (1) The multi-particle correlation in pPb collisions will be presented for the high multiplicity events, indicating the collective behavior in small collision systems. (2) Identified $p_T$ spectra of $\\pi^{+}/\\pi^{-}$, $K^{+}/K^{-}$, and $p/\\bar{p}$ in pPb collisions show a strong multiplicity dependence, which indicates radial flow at high multiplicity events. (3) The second-order anisotropy harmonics ($v_2$) of strange particle $K^{0}_{s}$ and $\\Lambda/\\bar{\\Lambda}$ are extracted from long-range correlations as a function of particle multiplicity and $p_T$. The mass ordering effect of $v_n$ at low $p_T$ as predicted by hydrodynamics also points to the strong collective nature of expanding medium in small collision systems. Finally, ...
Massive neutron star with strangeness in a relativistic mean-field model with a high-density cutoff
Zhang, Ying; Hu, Jinniu; Liu, Peng
2018-01-01
The properties of neutron stars with the strangeness degree of freedom are studied in the relativistic mean-field (RMF) model via including a logarithmic interaction as a function of the scalar meson field. This interaction, named the σ -cut potential, can largely reduce the attractive contributions of the scalar meson field at high density without any influence on the properties of nuclear structure around the normal saturation density. In this work, the TM1 parameter set is chosen as the RMF interaction, while the strengths of σ -cut potential are constrained by the properties of finite nuclei so that we can obtain a reasonable effective nucleon-nucleon interaction. The hyperons Λ ,Σ , and Ξ are considered in neutron stars within this framework, whose coupling constants with mesons are determined by the latest hyperon-nucleon and Λ -Λ potentials extracted from the available experimental data of hypernuclei. The maximum mass of neutron star can be larger than 2 M⊙ with these hyperons in the present framework. Furthermore, the nucleon mass at high density will be saturated due to this additional σ -cut potential, which is consistent with the conclusions obtained by other calculations such as Brueckner-Hartree-Fock theory and quark mean-field model.
Generalized isothermal models with strange equation of state
Indian Academy of Sciences (India)
intention to study the Einstein–Maxwell system with a linear equation of state with ... It is our intention to model the interior of a dense realistic star with a general ... The definition m(r) = 1. 2. ∫ r. 0 ω2ρ(ω)dω. (14) represents the mass contained within a radius r which is a useful physical quantity. The mass function (14) has ...
International Nuclear Information System (INIS)
Vaeth, W.
1976-01-01
This paper describes a real-time method which allows the measurement of auto and cross power spectral densities in a large frequency range with almost constant relative frequency resolution. Based on a normal digital frequency analysis the resolution at low frequencies can be increased to any extend without additional electronic equipment. The long time signals needed for the low frequencies are won from the high frequency data by a digital low pass filter. Due to this decimation of the time series only moderate storage region is needed allowing the use of a small digital computer for on-line application. The method is suitable to monitor the spectra in a wide frequency range without time delay. (orig.) [de
Measurement of the strange - antistrange asymmetry at NLO in QCD from NuTeV dimuon data
Energy Technology Data Exchange (ETDEWEB)
Mason, David Alexander [Univ. of Oregon, Eugene, OR (United States)
2006-03-01
A measurement of the asymmetry between the strange and antistrange quark distributions, from a next to leading order QCD analysis of dimuon events measured by the NuTeV experiment at Fermilab is presented. Neutrino charged current events with two muons in the final state provide a direct means for studying charm production and measuring the strange sea. NuTeV's sign selected beam allows independent measurement of the strange and antistrange seas. An improved measurement of the neutrino and antineutrino forward dimuon cross section tables, using the complete charged current event sample for normalization is performed. These tables are then analyzed at NLO to measure the strange and antistrange seas. Detector acceptance is modeled using an NLO charm cross section differential in all variables required. The strange quark distribution is found to have an integrated momentum weighted asymmetry of +0.00196 ± 0.00046(stat) ± 0.00045(syst) ± 0.00182(external). The charm mass is found to be 1.41 ± 0.10(stat) ± 0.08(syst) ± 0.12(external) GeV.
Strangeness production in minimum bias and jet data
Energy Technology Data Exchange (ETDEWEB)
Lancaster, Justin [Duke Univ., Durham, NC (United States)
2003-08-04
For the first time, the K_{S} production inside jets originating from 1.8 TeV Tevatron proton-antiproton collisions is researched utilizing the CDF data at Fermilab. Prior to the study of KS production inside jets, the KS production in the Minimum Bias events is examined. The properties of K_{S} production, such as the values of
, $\\left(\\frac{dN_{KS}}{dη}\\right)$, lifetime, and invariant cross-section, are found to be consistent with other Minimum Bias publications. After this, the number of K_{S} and tracks inside 0.7 jet cones are computed along with the trigger, background, and efficiency corrections for both the data and the HERWIG+QFL (event generator + detector simulator) Monte Carlo. Furthermore, the fragmentation functions are contrasted with those from the e^{+}e^{-} machines. In the data, the number of K_{S} per jet increases and then reaches a plateau as a function of the jet E_{T}. In particular, the number of K_{S} per jet within 1.5 < p_{T} < 10.0 GeV is determined to be 0.156 ± 0.007, 0.206 ± 0.011, and 0.199 ± 0.011 for the 20–50 GeV, 50–100 GeV, and 100–150 GeV jets. Conversely, the number of tracks per jet in the data strictly grows with the jet ET, and its values within 1.5 < p_{T} < 10.0 GeV are 2.816 ± 0.008, 5.107 ± 0.009, and 5.972 ± 0.008 for the 20–50 GeV, 50–100 GeV, and 100–150 GeV cases. These data results are then compared with those from the HERWIG+QFL Monte Carlo. The Herwig+QFL Monte Carlo results are in agreement to within 10% as to the number of tracks per jet. Moreover, the number of K_{S} per jet, the data and the Monte Carlo agree to within 5% for the 20–50 GeV case. However, the HERWIG+QFL Monte Carlo KS per jet values are increasingly above those of the data for K_{S} inside the 50–100 GeV jets (around 20% too high) and 100–150 GeV jets (approximately 35% too high). We conclude that the HERWIG
Strangeness production in Au(1.23A GeV)+Au collisions
Czech Academy of Sciences Publication Activity Database
Schuldes, H.; Chlad, Lukáš; Kugler, Andrej; Rodriguez Ramos, Pablo; Sobolev, Yuri, G.; Svoboda, Ondřej; Tlustý, Pavel; Wagner, Vladimír
2017-01-01
Roč. 967, č. 11 (2017), s. 804-807 ISSN 0375-9474. [26th International Conference on Ultrarelativistic Nucleus-Nucleus Collissions (Quark Matter). Chicago, 05.02.2017-11.02.2017] R&D Projects: GA ČR GA13-06759S; GA MŠk LM2015049; GA MŠk EF16_013/0001677 Institutional support: RVO:61389005 Keywords : strangeness * sub-treshold * centrality dependence Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.916, year: 2016
A Brief Analysis on The Mannerism of Strange Stories of A Chinese Studio by Pu Songling
Directory of Open Access Journals (Sweden)
Andyni Khosasih
2012-10-01
Full Text Available Strange Stories of a Chinese Studio, commonly known as 聊斋 (Liaozhai is a short novel written in classical Chinese from Qing dynasty. This novel was written in 1680, year 19 of Emperor Kangxi’s reign. The novel has 491 chapters. Article explored Pu Songling’s mannerism, such as the contents, material collection, innovation of artistic literary elements and images of women. It can be concluded that the novel reflects the broadness of humanistic world and thoroughly describes images of women. It broke through the restriction of thoughts in feudalism society.
Lattice calculation of the leading strange quark-connected contribution to the muon g−2
International Nuclear Information System (INIS)
Blum, T.; Boyle, P.A.; Debbio, L. Del; Hudspith, R.J.; Izubuchi, T.; Jüttner, A.; Lehner, C.; Lewis, R.; Maltman, K.; Marinković, M. Krstić; Portelli, A.; Spraggs, M.
2016-01-01
We present results for the leading hadronic contribution to the muon anomalous magnetic moment due to strange quark-connected vacuum polarisation effects. Simulations were performed using RBC-UKQCD’s N f =2+1 domain wall fermion ensembles with physical light sea quark masses at two lattice spacings. We consider a large number of analysis scenarios in order to obtain solid estimates for residual systematic effects. Our final result in the continuum limit is a μ (2) had, s =53.1(9)( −3 +1 )×10 −10 .
Weird comets and asteroids the strange little worlds of the sun's family
Seargent, David A J
2017-01-01
This book concentrates on some of the odd aspects of comets and asteroids. Strange behavior of comets, such as outbursts and schisms, and how asteroids can temporally act as comets are discussed, together with the possible threat of Centaurs-class objects like the Taurid complex. Recent years have seen the distinction between comets and asteroids become less prominent. Comets in "asteroid" orbits and vice versa have become almost commonplace and a clearer view of the role of small bodies in the formation of the Solar System and their effect on Earth has become apparent. Seargent covers this development in detail by including new data and information from space probes. .
A possible relation between the spin of hadrons and their isospin, strangeness and charm
International Nuclear Information System (INIS)
Tangherlini, F.R.
1980-01-01
A possible relation between the spin of hadrons and their isospin, strangeness and charm is given: J = I - 1 + n + 1/2 [S + C], where n is an integer. Tables are presented to show that the relation is perfectly obeyed by the hadrons (including the quarks) through the charmed particles, and with a trivial modification it can include the b and t states. The relation is put in an operator form whose projection on the 3-axis of isospace is shown to be consistent with the Gell-Mann and Nishijima relation generalized to include charm. (author)
Lunar Seismic Detector to Advance the Search for Strange Quark Matter
Galitzki, Nicholas B.
2005-01-01
Detection of small seismic signals on the Moon are needed to study lunar internal structure and to detect possible signals from Strange Quark m&er transit events. The immediate objective is to create a prototype seismic detector using a tunnel diode oscillator with a variable capacitor attached to a proof mass. The device is designed to operate effectively on the Moon, which requires a low power consumption to operate through lunar night, while preserving sensitivity. The goal is capacitance resolution of better than 1 part in 10' and power consumption of less than 1 watt.
[About international adoption: the double strangeness of the child from abroad].
Golse, B
2011-06-01
The foster child through an intercountry adoption is a "foreigner" in two ways: as a support for parental unconscious projections (as any child, including biological children) on the one hand, and because of the strangeness ethnic often involved in this framework in the other hand. After recalling the main parental representations concerning the unborn child, the author then proposes to think the approval procedure as a kind of imaginary and symbolic equivalent of the usual psychic pregnancy. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
On the possible existence of a long-lived strange dibaryon
International Nuclear Information System (INIS)
Kondratyuk, L.A.; Ral'chenko, Yu.V.; Vasilets, A.V.
1988-01-01
Using the QCD string model with spin-orbit coupling the masses of strange S=-1 dibaryons are calculated. Possible existence of a long-lived state DB S - (with the lifetime much larger than τ Σ ) with the mass 2.03 GeV ≤ M ≤ M Σ +M N and the isospin I=3/2 is predicted. The weak nonleptonic and semileptonic decay widths of DB S - and its production cross section in the reaction π - d → K + DB S - are calculated. The results are compared with the available experimental data
Strangeness production at low Q2 in deep-inelastic ep scattering at HERA
International Nuclear Information System (INIS)
Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Sheviakov, I.; Shtarkov, L.N.; Smirnov, P.; Soloviev, Y.; Vazdik, Y.; Antunovic, B.; Aplin, S.; Bacchetta, A.; Bartel, W.; Beckingham, M.; Brandt, G.; Brinkmann, M.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Roeck, A. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fleischer, M.; Gayler, J.; Glazov, A.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Klimkovich, T.; Knutsson, A.; Korbel, V.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; List, J.; Lucaci-Timoce, A.I.; Marti, Ll.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Peng, H.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Salvaire, F.; Schmidt, S.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Vinokurova, S.; Wessels, M.; Wissing, C.; Wuensch, E.; Zhu, Y.C.; Asmone, A.; Stella, B.; Astvatsatourov, A.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Ghazaryan, S.; Hovhannisyan, A.; Volchinski, V.; Yeganov, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Behnke, O.; Berger, N.; Del Degan, M.; Eichler, R.; Grab, C.; Leibenguth, G.; Sauter, M.; Zimmermann, T.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boenig, M.O.; South, D.; Wegener, D.; Boudry, V.; Gouzevitch, M.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Faulkner, P.J.W.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Olivier, B.; Raspiareza, A.; Shushkevich, S.; Tzamariudaki, E.; Bystritskaya, L.; Efremenko, V.; Essenov, S.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhelezov, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cassol-Brunner, F.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Trinh, T.N.; Vallee, C.; Cerny, K.; Pejchal, O.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Schoeffel, L.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Rahmat, A.J.; Daum, K.; Meyer, H.; Dodonov, V.; Lytkin, L.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Glushkov, I.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Piec, S.; Tsurin, I.; Goettlich, M.; Habib, S.; Jemanov, V.; Lipka, K.; List, B.; Naroska, B.; Hansson, M.; Joensson, L.; Osman, S.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Jung, A.W.; Krueger, K.; Lendermann, V.; Meier, K.; Schultz-Coulon, H.C.; Urban, K.; Herrera, G.; Lopez-Fernandez, R.; Kapichine, M.; Makankine, A.; Morozov, A.; Palichik, V.; Spaskov, V.; Tchoulakov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Schmitz, C.; Straumann, U.; Truoel, P.; Nankov, K.; Tsakov, I.; Schoening, A.
2009-01-01
The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2 2 2 and the inelasticity 0.1 s 0 and Λ(anti Λ) production cross sections and their ratios are determined. K s 0 production is compared to the production of charged particles in the same region of phase space. The Λ- anti Λ asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data. (orig.)
Learning theory of distributed spectral algorithms
Guo, Zheng-Chu; Lin, Shao-Bo; Zhou, Ding-Xuan
2017-07-01
Spectral algorithms have been widely used and studied in learning theory and inverse problems. This paper is concerned with distributed spectral algorithms, for handling big data, based on a divide-and-conquer approach. We present a learning theory for these distributed kernel-based learning algorithms in a regression framework including nice error bounds and optimal minimax learning rates achieved by means of a novel integral operator approach and a second order decomposition of inverse operators. Our quantitative estimates are given in terms of regularity of the regression function, effective dimension of the reproducing kernel Hilbert space, and qualification of the filter function of the spectral algorithm. They do not need any eigenfunction or noise conditions and are better than the existing results even for the classical family of spectral algorithms.
Learning theory of distributed spectral algorithms
International Nuclear Information System (INIS)
Guo, Zheng-Chu; Lin, Shao-Bo; Zhou, Ding-Xuan
2017-01-01
Spectral algorithms have been widely used and studied in learning theory and inverse problems. This paper is concerned with distributed spectral algorithms, for handling big data, based on a divide-and-conquer approach. We present a learning theory for these distributed kernel-based learning algorithms in a regression framework including nice error bounds and optimal minimax learning rates achieved by means of a novel integral operator approach and a second order decomposition of inverse operators. Our quantitative estimates are given in terms of regularity of the regression function, effective dimension of the reproducing kernel Hilbert space, and qualification of the filter function of the spectral algorithm. They do not need any eigenfunction or noise conditions and are better than the existing results even for the classical family of spectral algorithms. (paper)
An EPR experiment testing the non-separability of the $K^{0} \\overline{K^{0}}$ wave function
Apostolakis, Alcibiades J; Backenstoss, Gerhard; Bargassa, P; Behnke, O; Benelli, A; Bertin, V; Blanc, F; Bloch, P; Carlson, P J; Carroll, M; Cawley, E; Chardin, G; Chertok, M B; Cody, A; Dejardin, M; Derré, J; Ealet, A; Eleftheriadis, C; Ferreira-Marques, R; Fetscher, W; Fidecaro, Maria; Filipcic, A; Francis, D; Fry, J; Gabathuler, Erwin; Gamet, R; Gerber, H J; Go, A; Guyot, C; Haselden, A; Hayman, P J; Henry-Coüannier, F; Hollander, R W; Hubert, E; Jon-And, K; Kettle, P R; Kochowski, Claude; Kokkas, P; Kreuger, R; Le Gac, R; Leimgruber, F; Mandic, I; Manthos, N; Marel, Gérard; Mikuz, M; Miller, J; Montanet, François; Müller, A; Nakada, Tatsuya; Pagels, B; Papadopoulos, I M; Pavlopoulos, P; Policarpo, Armando; Polivka, G; Rickenbach, R; Roberts, B L; Ruf, T; Schäfer, M; Schaller, L A; Schietinger, T; Schopper, A; Schune, P; Tauscher, Ludwig; Thibault, C; Touchard, F; Touramanis, C; van Eijk, C W E; Vlachos, S; Weber, P; Wigger, I; Wolter, M; Yéche, C; Zavrtanik, D
1998-01-01
The EPR-type strangeness correlation in the \\PKz \\PaKz ~system produced in the reaction $\\Pap \\Pp \\rightarrow \\PKz \\PaKz$ at rest has been tested using the CPLEAR detector. The strangeness was tagged via strong interaction with absorbers away from the creation point. The results are consistent with the QM non-separability of the wave function and exclude a spontaneous wave-function factorisation at creation (CL $> 99.99\\%$).
Inclusive neutral-strange-particle production from high-energy νp charged-current interactions
International Nuclear Information System (INIS)
Berge, J.P.; Bogert, D.; Cundy, D.C.; DiBianca, F.A.; Endorf, J.; Hanft, R.; Kochowski, C.; Malko, J.A.; Moffatt, G.; Nezrick, F.A.; Scott, W.G.; Smart, W.; Lynch, G.R.; Marriner, J.P.; Stevenson, M.L.; Cence, R.J.; Harris, F.A.; Jones, M.; Parker, S.I.; Peters, M.W.; Peterson, V.Z.; Stenger, V.J.; Bell, J.; Coffin, C.T.; Diamond, R.N.; French, H.T.; Louis, W.C.; Roe, B.P.; Ross, R.T.; Seidl, A.A.; Vander Velde, J.C.; Wang, E.
1978-01-01
We have studied the properties of inclusive neutral-strange-particle production in charged-current νp interactions. The rate for producing at least one neutral strange particle in a charged-current interaction is 0.14 +- 0.02. The inclusive distributions for events with neutral strange particles and for all charged-current events exhibit the same qaulitative behavior. We find no acceptable candidates for the ΔS = - ΔQ Λ production reaction νp → μ - 2π + π - in approximately 3000 charged-current events with E/sub ν/ > 10 GeV. We find upper limits (relative to the total charged-current sample) for charmed-particle production in any one mass region with subsequent decay into Λmπ and Kmπ final states of 1% and 2%, respectively
Multi-strange baryon production in pp, p-Pb and Pb-Pb collisions at LHC measured with ALICE
Colella, Domenico
2015-01-01
Transverse momentum spectra and yields of charged $\\Xi$ and $\\Omega$ at mid-rapidity in pp, p-Pb and Pb-Pb collisions at the LHC have been measured by the ALICE Collaboration. These baryons are identified by reconstruction of their weak decay topology, in modes with only charged decay products, using the excellent tracking and particle identification capabilities of the detector. The recent measurements of the multi-strange baryon production relative to non-strange particles in p-Pb collisions are presented: this would help to understand the change in relative strangeness production from pp collisions to Pb-Pb collisions. Results on the nuclear modification factors for the charged $\\Xi$ and $\\Omega$ particles, compared with those for other light particles, are also reported.
International Nuclear Information System (INIS)
2010-01-01
The International Symposium on "Strangeness in Nuclear and Hadronic Systems (SENDAI08)" was held at the Tohoku University Centennial Hall from Monday, 15th December, through Thursday, 18th December 2008; while a pre-symposium was also organized on 14th December. About 126 scientists participated in SENDAI08, including more than 46 from abroad. The symposium was organized as the third in the SENDAI symposium series on strangeness nuclear physics, which was initiated by the Tohoku University's experimental nuclear physics group in 1998. This time, it is motivated by recent progress of the research on nuclear and hadronic systems involving strangeness degree of freedom, particularly, by beams of electrons and photons at JLab, FINUDA, SPring8, LNS Tohoku, etc. and also at new facilities that will be completed in the near future such as J-PARC, etc.
Stevanovic, Dragan
2015-01-01
Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of gra