WorldWideScience

Sample records for strangeness excitation functions

  1. Strange diquarks and orbital excitations of hyperons

    International Nuclear Information System (INIS)

    Kondratyuk, L.A.; Ralchenko, Yu.V.; Vasilets, A.V.

    1987-01-01

    Using the model of the QCD string with spin-orbital interaction the masses of strange diquarks are determined. The spectra of orbital excitations of the Λ and Σ hyperons are calculated and discussed. Also the decay modes for Λ's and Σ's are considered

  2. Excitations of strange bottom baryons

    Energy Technology Data Exchange (ETDEWEB)

    Woloshyn, R.M. [TRIUMF, Vancouver, British Columbia (Canada)

    2016-09-15

    The ground-state and first-excited-state masses of Ω{sub b} and Ω{sub bb} baryons are calculated in lattice QCD using dynamical 2 + 1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations. (orig.)

  3. Predictions for Excited Strange Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Ishara P.; Goity, Jose L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.

  4. Strange functions in real analysis

    CERN Document Server

    Kharazishvili, AB

    2005-01-01

    Weierstrass and Blancmange nowhere differentiable functions, Lebesgue integrable functions with everywhere divergent Fourier series, and various nonintegrable Lebesgue measurable functions. While dubbed strange or "pathological," these functions are ubiquitous throughout mathematics and play an important role in analysis, not only as counterexamples of seemingly true and natural statements, but also to stimulate and inspire the further development of real analysis.Strange Functions in Real Analysis explores a number of important examples and constructions of pathological functions. After introducing the basic concepts, the author begins with Cantor and Peano-type functions, then moves to functions whose constructions require essentially noneffective methods. These include functions without the Baire property, functions associated with a Hamel basis of the real line, and Sierpinski-Zygmund functions that are discontinuous on each subset of the real line having the cardinality continuum. Finally, he considers e...

  5. Production of excited double hypernuclei via Fermi breakup of excited strange systems

    International Nuclear Information System (INIS)

    Sanchez Lorente, Alicia; Botvina, Alexander S.; Pochodzalla, Josef

    2011-01-01

    Precise spectroscopy of multi-strange hypernuclei provides a unique chance to explore the hyperon-hyperon interaction. In the present work we explore the production of excited states in double hypernuclei following the micro-canonical break-up of an initially excited double hypernucleus which is created by the absorption and conversion of a stopped Ξ - hyperon. Rather independent on the spectrum of possible excited states in the produced double hypernuclei the formation of excited states dominates in our model. For different initial target nuclei which absorb the Ξ - , different double hypernuclei nuclei dominate. Thus the ability to assign the various observable γ-transitions in a unique way to a specific double hypernuclei by exploring various light targets as proposed by the PANDA Collaboration seems possible. We also confront our predictions with the correlated pion spectra measured by the E906 Collaboration.

  6. Characterisation of a dense state of quarks and gluons by the multi-strange hyperons excitation functions as measured with the Star experiment at RHIC

    International Nuclear Information System (INIS)

    Speltz, J.

    2006-10-01

    In this work, we characterize the production of the multi-strange baryons Xi and Omega in Au+Au collisions at RHIC, where the possible formation of a matter of deconfined quarks and gluons (QGP) is expected. We analyze with the STAR experiment, the collisions obtained at an energy of 62 GeV, intermediate between the one reached at the SPS (17 GeV) and the nominal energy of RHIC (200 GeV). Transverse momentum spectra, yields and elliptic flow are measured with different methods allowing for a relevant estimation of systematic errors. The results are compared to statistical and hydrodynamic models that we have adapted for their use at 62 GeV. The so obtained chemical and dynamic properties of the created medium indicate the formation of a thermalized, at least partially, medium and suggests the formation of a comparable matter at 62 GeV and at 200 GeV. (author)

  7. Measurement of the Strange Spectral Function in Hadronic $\\tau$ Decays

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Menke, S.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    Tau Lepton decays with open strangeness in the final state are measured with the OPAL detector at LEP to determine the strange hadronic spectral function of the tau lepton. The decays tau- -> (Kpi)-nu tau, (Kpipi)-nu tau and (Kpipipi)-nu tau with final states consisting of neutral and charged kaons and pions have been studied. The invariant mass distributions of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including eta mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the tau lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(tau- -> K-pi0nu tau) = (0.471+-0.059stat+-0.023sys)% and B(tau- -> K-pi+pi-nu tau) = (0.415+-0.053stat+-0.040sys)% ha...

  8. Strange effects of strong high-frequency excitation

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    Three general effects of mechanical high-frequency excitation (HFE) are described: Stiffening - an apparent change in the stiffness associated with an equilibrium; Biasing - a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening...

  9. Production of excited charm and charm-strange mesons at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.; Mattingly, M.C.K.; Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.; Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H.P.; Juengst, M.; Nuncio-Quiroz, A.E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.; Brook, N.H.; Heath, G.P.; Morris, J.D.; Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.; Kim, J.Y.; Ibrahim, Z.A.; Kamaluddin, B.; Wan Abdullah, W.A.T.; Ning, Y.; Ren, Z.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Gil, M.; Olkiewicz, K.; Stopa, P.; Zawiejski, L.; Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.; Kotanski, A.; Slominski, W.; Behrens, U.; Blohm, C.; Bonato, A.; Borras, K.; Ciesielski, R.; Coppola, N.; Fang, S.; Fourletova, J.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I.I.; Klein, U.; Koetz, U.; Kowalski, H.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I.A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Rinaldi, L.; Roloff, P.; Rubinsky, I.; Santamarta, R.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Wolf, G.; Wrona, K.; Yaguees Molina, A.G.; Youngman, C.; Zeuner, W.; Drugakov, V.; Lohmann, W.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P.G.; Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N.N.; Bussey, P.J.; Doyle, A.T.; Dunne, W.; Forrest, M.; Rosin, M.; Saxon, D.H.; Skillicorn, I.O.; Gialas, I.; Papageorgiu, K.; Holm, U.; Klanner, R.; Lohrmann, E.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.; Foudas, C.; Fry, C.; Long, K.R.; Tapper, A.D.; Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A.N.; Boos, E.G.; Pokrovskiy, N.S.; Zhautykov, B.O.; Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lisovyi, M.; Lontkovskyi, D.; Makarenko, I.; Sorokin, I.; Verbytskyi, A.; Volynets, O.; Son, D.; Favereau, J. de; Piotrzkowski, K.; Barreiro, F.; Glasman, C.; Jimenez, M.; Labarga, L.; Peso, J. del; Ron, E.; Soares, M.; Terron, J.; Zambrana, M.; Corriveau, F.; Liu, C.; Schwartz, J.; Walsh, R.; Zhou, C.; Tsurugai, T.; Antonov, A.; Dolgoshein, B.A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.; Dementiev, R.K.; Ermolov, P.F.; Gladilin, L.K.; Golubkov, Yu.A.; Khein, L.A.; Korzhavina, I.A.; Kuzmin, V.A.; Levchenko, B.B.; Lukina, O.Yu.; Proskuryakov, A.S.; Shcheglova, L.M.; Zotkin, D.S.; Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W.B.; Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.; Bruemmer, N.; Bylsma, B.; Durkin, L.S.; Lee, A.; Ling, T.Y.; Allfrey, P.D.; Bell, M.A.; Cooper-Sarkar, A.M.; Devenish, R.C.E.; Ferrando, J.; Foster, B.; Korcsak-Gorzo, K.; Oliver, K.; Robertson, A.; Uribe-Estrada, C.; Walczak, R.; Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.; Oh, B.Y.; Raval, A.; Ukleja, J.; Whitmore, J.J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cole, J.E.; Hart, J.C.

    2009-01-01

    The production of excited charm, D 1 (2420) 0 and D 2 * (2460) 0 , and charm-strange, D s 1(2536) ± , mesons in ep collisions was measured with the ZEUS detector at HERA using an integrated luminosity of 126 pb -1 . Masses, widths and helicity parameters were determined. The measured yields were converted to the rates of c quarks hadronising as a given excited charm meson and to the ratios of the dominant D 2 * (2460) 0 and D s1 (2536) ± branching fractions. A search for the radially excited charm meson, D *' (2640) ± , was also performed. The results are compared with those measured previously and with theoretical expectations. (orig.)

  10. Production of excited charm and charm-strange mesons at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2008-07-15

    The production of excited charm, D{sub 1}(2420){sup 0} and D{sup *}{sub 2}(2460){sup 0}, and charm-strange, D{sub s1}(2536){sup {+-}}, mesons in ep collisions was measured with the ZEUS detector at HERA using an integrated luminosity of 126 pb{sup -1}. Masses, widths and helicity parameters were determined. The measured yields were converted to the rates of c quarks hadronising as a given excited charm meson and to the ratios of the dominant D{sup *}{sub 2}(2460){sup 0} and D{sub s1}(2536){sup {+-}} branching fractions. A search for the radially excited charm meson, D{sup *'}(2640){sup {+-}}, was also performed. The results are compared with those measured previously and with theoretical expectations. (orig.)

  11. Production of excited charm and charm-strange mesons at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2008-07-01

    The production of excited charm, D 1 (2420) 0 and D * 2 (2460) 0 , and charm-strange, D s1 (2536) ± , mesons in ep collisions was measured with the ZEUS detector at HERA using an integrated luminosity of 126 pb -1 . Masses, widths and helicity parameters were determined. The measured yields were converted to the rates of c quarks hadronising as a given excited charm meson and to the ratios of the dominant D * 2 (2460) 0 and D s1 (2536) ± branching fractions. A search for the radially excited charm meson, D *' (2640) ± , was also performed. The results are compared with those measured previously and with theoretical expectations. (orig.)

  12. The strange 0++ and 2++ radial excitations: A review of LASS data

    International Nuclear Information System (INIS)

    Aston, D.; Bienz, T.; Bird, F.; Dunwoodie, W.; Johnson, W.B.; Kunz, P.; Kwon, Y.; Leith, D.W.G.S.; Levinson, L.; Ratcliff, B.N.; Rensing, P.; Schultz, D.; Shapiro, S.; Sinervo, P.K.; Tarnopolsky, G.; Toge, N.; Waite, A.; Williams, S.; Awaji, N.; Fujii, K.; Hayashii, H.; Iwata, S.; Kajikawa, R.; Matsui, T.; Miyamoto, A.; Ozaki, H.; Pak, C.O.; Shimomura, T.; Sugiyama, A.; Suzuki, S.; Tauchi, T.; D'Amore, J.; Endorf, R.; Martinez, J.; Meadows, B.T.; Nussbaum, M.; Ukai, K.

    1991-10-01

    The experimental status of the strange 0 ++ and 2 ++ mesons is briefly reviewed and compared with expectations from the quark model. The results are taken from a high statistics study of strange mesons produced in LASS by an 11 GeV/c K - beam. 13 refs., 8 figs., 1 tab

  13. Measurement of the strangeness spectral function and the mass of the strange quark in hadronic {tau} decays with the OPAL detector

    Energy Technology Data Exchange (ETDEWEB)

    Mader, W.

    2004-03-01

    Tau lepton decays with open strangeness in the final state are measured with the Opal detector at LEP to determine the strange hadronic spectral function of the {tau} lepton and the mass of the strange quark. The decays {tau}{sup -} {yields} (K{pi}){sup -}{nu}{sub {tau}}, (K{pi}{pi}){sup -}{nu}{sub {tau}} and (K{pi}{pi}{pi}){sup -}{nu}{sub {tau}} with final states consisting of neutral and charged kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including {eta} mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the {tau} lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B({tau}{sup -} {yields} K{sup -}{pi}{sup 0}{nu}{sub {tau}}) = (0.471 {+-} 0.064{sub stat} {+-} 0.021{sub sys})%, B({tau}{sup -} {yields} K{sup -}{pi}{sup +}{pi}{sup -}{nu}{sub {tau}}) = (0.415 {+-} 0.059{sub stat} {+-} 0.031{sub sys})% have been measured. From the CKM weighted difference of strange and non-strange spectral moments, the mass of the strange quark at the {tau} mass scale has been determined: m{sub s}(m{sub {tau}}{sup 2}) = (84 {+-} 14{sub exp} {+-} 6{sub V{sub us}} {+-} 17{sub theo}) MeV. Evolving this result to customary scales yields m{sub s}(1 GeV{sup 2}) = (111{sub -35}{sup +26}) MeV, m{sub s}(4 GeV{sup 2}) = (82{sub -25}{sup +19}) MeV. (orig.)

  14. Measurement of the strangeness spectral function and the mass of the strange quark in hadronic τ decays with the OPAL detector

    International Nuclear Information System (INIS)

    Mader, W.

    2004-03-01

    Tau lepton decays with open strangeness in the final state are measured with the Opal detector at LEP to determine the strange hadronic spectral function of the τ lepton and the mass of the strange quark. The decays τ - → (Kπ) - ν τ , (Kππ) - ν τ and (Kπππ) - ν τ with final states consisting of neutral and charged kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including η mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the τ lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(τ - → K - π 0 ν τ ) = (0.471 ± 0.064 stat ± 0.021 sys )%, B(τ - → K - π + π - ν τ ) = (0.415 ± 0.059 stat ± 0.031 sys )% have been measured. From the CKM weighted difference of strange and non-strange spectral moments, the mass of the strange quark at the τ mass scale has been determined: m s (m τ 2 ) = (84 ± 14 exp ± 6 V us ± 17 theo ) MeV. Evolving this result to customary scales yields m s (1 GeV 2 ) = (111 -35 +26 ) MeV, m s (4 GeV 2 ) = (82 -25 +19 ) MeV. (orig.)

  15. Study of the excited 1{sup -} charm and charm-strange mesons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang; Jiang, Yue; Wang, Tianhong; Yuan, Han; Wang, Guo-Li [Harbin Institute of Technology, Harbin (China); Chang, Chao-Hsi [CCAST (World Laboratory), P.O. Box 8730, Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China)

    2017-05-15

    We give a systematical study on the recently reported excited charm and charm-strange mesons with potential 1{sup -} spin-parity, including the D{sup *}{sub s1}(2700){sup +}, D{sup *}{sub s1}(2860){sup +}, D{sup *}(2600){sup 0}, D{sup *}(2650){sup 0}, D{sup *}{sub 1}(2680){sup 0} and D{sup *}{sub 1}(2760){sup 0}. The main strong decay properties are obtained in the framework of Bethe-Salpeter (BS) methods. Our results reveal that the two 1{sup -} charm-strange mesons can be well described by the further 2{sup 3}S{sub 1}-1{sup 3}D{sub 1} mixing scheme with a mixing angle of (8.7{sup +3.9}{sub -3.2}) {sup circle}. The predicted decay ratio (B(D{sup *}K))/(B(D K)) for D{sup *}{sub s1}(2860) is 0.62{sup +0.22}{sub -0.12}. D{sup *}(2600){sup 0} can also be explained as the 2{sup 3}S{sub 1} predominant state with a mixing angle of -(7.5{sup +4.0}{sub -3.3}) {sup circle}. Considering the mass range, D{sup *}(2650){sup 0} and D{sup *}{sub 1}(2680){sup 0} are more likely to be the 2{sup 3}S{sub 1} predominant states, although the total widths under the two 2{sup 3}S{sub 1} and 1{sup 3}D{sub 1} assignments have no great conflict with the current experimental data. The calculated width for the LHCb D{sup *}{sub 1}(2760){sup 0} seems to be about 100 MeV larger than the experimental measurement if taking it as 1{sup 3}D{sub 1} or 1{sup 3}D{sub 1} dominant state c anti u. The comparisons with other calculations and several important decay ratios are also presented. For the identification of these 1{sup -} charm mesons, further experimental information, such as (B(Dπ))/(B(D{sup *}π)), is necessary. (orig.)

  16. Measurement of the Strangeness Spectral Function and the Mass of the Strange Quark in Hadronic tau Decays with the OPAL Detector

    CERN Document Server

    Mader, Wolfgang Franz

    2004-01-01

    Tau lepton decays with open strangeness in the final state are measured with the Opal detector at LEP to determine the strange hadronic spectral function of the τ lepton and the mass of the strange quark. The decays τ −→ (Kπ) −ντ , (Kππ) −ντ and (Kπππ) −ντ with final states consisting of neutral and charged kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including η mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the τ lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(τ − → K −π 0 ντ ) = (0.471 ± 0.064stat ± 0.021sys) % B(τ − → K ...

  17. Characterisation of a dense state of quarks and gluons by the multi-strange hyperons excitation functions as measured with the Star experiment at RHIC; Caracterisation d'un etat dense de quarks et de gluons grace aux fonctions d'excitation des hyperons multi-etranges mesurees avec l'experience STAR au RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Speltz, J

    2006-10-15

    In this work, we characterize the production of the multi-strange baryons Xi and Omega in Au+Au collisions at RHIC, where the possible formation of a matter of deconfined quarks and gluons (QGP) is expected. We analyze with the STAR experiment, the collisions obtained at an energy of 62 GeV, intermediate between the one reached at the SPS (17 GeV) and the nominal energy of RHIC (200 GeV). Transverse momentum spectra, yields and elliptic flow are measured with different methods allowing for a relevant estimation of systematic errors. The results are compared to statistical and hydrodynamic models that we have adapted for their use at 62 GeV. The so obtained chemical and dynamic properties of the created medium indicate the formation of a thermalized, at least partially, medium and suggests the formation of a comparable matter at 62 GeV and at 200 GeV. (author)

  18. Excited-state density functional theory

    International Nuclear Information System (INIS)

    Harbola, Manoj K; Hemanadhan, M; Shamim, Md; Samal, P

    2012-01-01

    Starting with a brief introduction to excited-state density functional theory, we present our method of constructing modified local density approximated (MLDA) energy functionals for the excited states. We show that these functionals give accurate results for kinetic energy and exchange energy compared to the ground state LDA functionals. Further, with the inclusion of GGA correction, highly accurate total energies for excited states are obtained. We conclude with a brief discussion on the further direction of research that include the construction of correlation energy functional and exchange potential for excited states.

  19. Strange Baryon Physics in Full Lattice QCD

    International Nuclear Information System (INIS)

    Huey-Wen Lin

    2007-01-01

    Strange baryon spectra and form factors are key probes to study excited nuclear matter. The use of lattice QCD allows us to test the strength of the Standard Model by calculating strange baryon quantities from first principles

  20. Strangeness content and structure function of the nucleon in a statistical quark model

    CERN Document Server

    Trevisan, L A; Tomio, L

    1999-01-01

    The strangeness content of the nucleon is determined from a statistical model using confined quark levels, and is shown to have a good agreement with the corresponding values extracted from experimental data. The quark levels are generated in a Dirac equation that uses a linear confining potential (scalar plus vector). With the requirement that the result for the Gottfried sum rule violation, given by the new muon collaboration (NMC), is well reproduced, we also obtain the difference between the structure functions of the proton and neutron, and the corresponding sea quark contributions. (27 refs).

  1. Molecular excited states from the SCAN functional

    Science.gov (United States)

    Tozer, David J.; Peach, Michael J. G.

    2018-06-01

    The performance of the strongly constrained and appropriately normed (SCAN) meta-generalised gradient approximation exchange-correlation functional is investigated for the calculation of time-dependent density-functional theory molecular excitation energies of local, charge-transfer and Rydberg character, together with the excited ? potential energy curve in H2. The SCAN results frequently resemble those obtained using a global hybrid functional, with either a standard or increased fraction of exact orbital exchange. For local excitations, SCAN can exhibit significant triplet instability problems, resulting in imaginary triplet excitation energies for a number of cases. The Tamm-Dancoff approximation offers a simple approach to improve the situation, but the excitation energies are still significantly underestimated. Understanding the origin of these (near)-triplet instabilities may provide useful insight into future functional development.

  2. Effect of the strange axial form factor on structure functions for neutral current neutrino scattering in the quasielastic region

    International Nuclear Information System (INIS)

    Kim, Kyungsik

    2011-01-01

    We study the effect of the strange axial form factor on various structure functions for the neutral reaction of neutrino-nucleus scattering in the quasielastic region within the framework of a relativistic single particle model. We use 12 C as the target nucleus, and the incident neutrino energy range is between 150 MeV and 1.5 GeV. The structure functions are extracted at a fixed three momentum transfer and energy transfer by using the intrinsic helicity of neutrino. While the effect of the strange axial form factor is very small, the effect on various structure functions is exhibited explicitly.

  3. Study of $\\tau$ decays involving kaons, spectral functions and determination of the strange quark mass

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Lees, J.P.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Alemany, R.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Park, I.C.; Riu, I.; Colaleo, A.; Creanza, D.; De Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Boix, G.; Cattaneo, M.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Tournefier, E.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Teixeira-Dias, P.; Thompson, A.S.; Buchmuller, O.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Goodsir, S.; Martin, E.B.; Marinelli, N.; Sedgbeer, J.K.; Spagnolo, P.; Thomson, Evelyn J.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A.P.; Bowdery, C.K.; Buck, P.G.; Colrain, P.; Crawford, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Williams, M.I.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; van Gemmeren, P.; Wachsmuth, H.; Zeitnitz, C.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Etienne, F.; Motsch, F.; Payre, P.; Talby, M.; Thulasidas, M.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Buescher, Volker; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Hocker, Andreas; Jacholkowska, A.; Kim, D.W.; Le Diberder, F.; Lefrancois, J.; Lutz, A.M.; Schune, M.H.; Veillet, J.J.; Videau, I.; Zerwas, D.; Bagliesi, Giuseppe; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Ferrante, I.; Foa, L.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Cowan, G.; Green, M.G.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Thompson, J.C.; Bloch-Devaux, Brigitte; Colas, P.; Emery, S.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S.N.; Dann, J.H.; Johnson, R.P.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Kelly, M.S.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Prange, G.; Giannini, G.; Gobbo, B.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Charles, E.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Greening, T.C.; Hayes, O.J.; Hu, H.; Jin, S.; McNamara, P.A., III; Nachtman, J.M.; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    1999-01-01

    All ALEPH measurements of branching ratios of tau decays involving kaons are summarized including a combination of results obtained with K^0_S and K^0_L detection. The decay dynamics are studied, leading to the determination of contributions from vector K^*(892) and K^{*}(1410), and axial-vector K_1(1270) and K_1(1400) resonances. Agreement with isospin symmetry is observed among the different final states. Under the hypothesis of the conserved vector current, the spectral function for the K\\bar{K}\\pi mode is compared with the corresponding cross section for low energy e^+e^- annihilation, yielding an axial-vector fraction of (94^{+6}_{-8})% for this mode. The branching ratio for tau decay into all strange final states is determined to be B(\\tau^-\\to X^-(S=-1)\

  4. Strange Dibaryons

    International Nuclear Information System (INIS)

    Franklin, G.B.; Athanas, M.; Barnes, P.D.

    1993-01-01

    Strange Dibaryons, six valence-quark hadrons constructed from one or more strange quarks, are predicted to have greater binding than dibaryons in the non-strange sector. The flavor-singlet dibaryon with quark structure ''uuddss'' is of particular theoretical and experimental interest. A brief review of the status of H dibaryon studies is presented with emphasis on experiment E813 currently taking data at the AGS

  5. Strange particles

    International Nuclear Information System (INIS)

    Chinowsky, W.

    1989-01-01

    Work done in the mid 1950s at Brookhaven National Laboratory on strange particles is described. Experiments were done on the Cosmotron. The author describes his own and others' work on neutral kaons, lambda and theta particles and points out the theoretical gap between predictions and experimental findings. By the end of the decade, the theory of strange particles was better understood. (UK)

  6. Some Convex Functions Based Measures of Independence and Their Application to Strange Attractor Reconstruction

    Directory of Open Access Journals (Sweden)

    Kazuyuki Aihara

    2011-04-01

    Full Text Available The classical information-theoretic measures such as the entropy and the mutual information (MI are widely applicable to many areas in science and engineering. Csiszar generalized the entropy and the MI by using the convex functions. Recently, we proposed the grid occupancy (GO and the quasientropy (QE as measures of independence. The QE explicitly includes a convex function in its definition, while the expectation of GO is a subclass of QE. In this paper, we study the effect of different convex functions on GO, QE, and Csiszar’s generalized mutual information (GMI. A quality factor (QF is proposed to quantify the sharpness of their minima. Using the QF, it is shown that these measures can have sharper minima than the classical MI. Besides, a recursive algorithm for computing GMI, which is a generalization of Fraser and Swinney’s algorithm for computing MI, is proposed. Moreover, we apply GO, QE, and GMI to chaotic time series analysis. It is shown that these measures are good criteria for determining the optimum delay in strange attractor reconstruction.

  7. Neutron excitation function guide for reactor dosimetry

    International Nuclear Information System (INIS)

    Gritzay, O.; Vlasov, M.; Chervonna, L.; Klimova, N.; Kolota, G.; Zerkin, V.

    2002-01-01

    Neutron Excitation Function Guide for Reactor Dosimetry (NEFGRD) has been prepared in the Ukrainian Nuclear Data Center (UKRNDC) using ZVV 9.2 code for graphical data presentation. The data can be retrieved through Web or obtained on CD-ROM or as hard copy report. NEFGRD contains graphical and text information for 56 nuclides (81 dosimetry reactions). Each reaction is provided by the information part and several graphical function blocks (from one to nine). (author)

  8. Study of natural spin-parity strange meson radial excitations in K-p → K-π+n at 11 GeV/c

    International Nuclear Information System (INIS)

    Durkin, L.S.

    1980-12-01

    Results are presented from a high statistics study of the reaction K - p → K - π + n at 11 GeV/c. This data was selected offline from an approx. 1000 event/μb K - p experiment run on the Large Aperture Solenoid Spectrometer (LASS) at SLAC which triggered on essentially the total inelastic cross section. This K - π + n sample, after cuts, contained approx. 42,000 events in the Kπ invariant mass region from 0.65 GeV to 2.30 GeV, and absolute value t' 2 . A spherical harmonic angular moments analysis of this data is presented, as well as an energy independent partial wave analysis (PWA) of these angular moments. The nearly uniform acceptance characteristics of this data allowed a detailed analysis, which yielded information on natural spin-parity strange meson resonances in the Kπ invariant mass range from 0.65 GeV to 2.30 GeV. The well established K*(895), K*(1430), and K*(1780) are observed, and clear evidence is presented for a J/sup P/ = 4 + strange meson state at a mass of 2.08 GeV. The K - π + elastic scattering partial waves extracted in this PWA show unambiguous evidence for a relatively narrow S wave resonance near 1.42 GeV in the Kπ invariant mass. This state is a confirmation of the 0 + K(1500) seen in previous PWA's. A new higher S wave resonance is clearly seen unambiguously near 1.90 GeV. Unambiguous evidence is presented for a relatively wide P wave resonance in the 1.70 GeV region.A second new P wave resonance also is seen in two of four ambiguous partial wave solutions in the 2.10 GeV region. These resonance states are discussed within the framework of a simple harmonic oscillator quark model. In particular three of the underlying resonances are discussed as possible natural spin-parity strange meson radial excitations

  9. Strange Particle Production from SIS to LHC

    CERN Document Server

    Oeschler, H; Redlich, Krzysztof

    2003-01-01

    A review of meson emission in heavy ion collisions at incident energies from SIS up to collider energies is presented. A statistical model assuming chemical equilibrium and local strangeness conservation (i.e. strangeness conservation per collision) explains most of the observed features. Emphasis is put onto the study of $K^+$ and $K^-$ emission at low incident energies. In the framework of this statistical model it is shown that the experimentally observed equality of $K^+$ and $K^-$ rates at ``threshold-corrected'' energies $\\sqrt{s} - \\sqrt{s_{th}}$ is due to a crossing of two excitation functions. Furthermore, the independence of the $K^+$ to $K^-$ ratio on the number of participating nucleons observed between SIS and RHIC is consistent with this model. It is demonstrated that the $K^-$ production at SIS energies occurs predominantly via strangeness exchange and this channel is approaching chemical equilibrium. The observed maximum in the $K^+/\\pi^+$ excitation function is also seen in the ratio of stran...

  10. Strange Assemblage

    Directory of Open Access Journals (Sweden)

    David Robert Cole

    2014-08-01

    Full Text Available This paper contends that the power of Deleuze & Guattari’s (1988 notion of assemblage as theorised in 1000 Plateaus can be normalised and reductive with reference to its application to any social-cultural context where an open system of dynamic and fluid elements are located. Rather than determining the assemblage in this way, this paper argues for an alternative conception of ‘strange assemblage’ that must be deliberately and consciously created through rigorous and focused intellectual, creative and philosophical work around what makes assemblages singular. The paper will proceed with examples of ‘strange assemblage’ taken from a film by Peter Greenaway (A Zed and 2 Noughts; the film ‘Performance’; educational research with Sudanese families in Australia; the book, Bomb Culture by Jeff Nuttall (1970; and the band Hawkwind. Fittingly, these elements are themselves chosen to demonstrate the concept of ‘strange assemblage’, and how it can be presented. How exactly the elements of a ‘strange assemblage’ come together and work in the world is unknown until they are specifically elaborated and created ‘in the moment’. Such spontaneous methodology reminds us of the 1960s ‘Happenings’, the Situationist International and Dada/Surrealism. The difference that will be opened up by this paper is that all elements of this ‘strange assemblage’ cohere in terms of a rendering of ‘the unacceptable.'

  11. Fusion excitation functions involving transitional nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Jiang, C.L.; Esbensen, H. [and others

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  12. Strangeness photoproduction

    International Nuclear Information System (INIS)

    Berthot, J.; Saghai, B.

    1989-01-01

    A non exhaustive review, about the strangeness photo-production is presented here in relation with the new electrons machines. Accent is put on the elementary reaction γp → K + Λ. The experiments on electroproduction and the study of hypernuclei with the electromagnetic probe are also discussed [fr

  13. Electron distribution function in electron-beam-excited plasmas

    International Nuclear Information System (INIS)

    Brau, C.A.

    1976-01-01

    In monatomic plasmas excited by high-intensity relativistic electron beams, the electron secondary distribution function is dominated by elastic electron-electron collisions at low electron energies and by inelastic electron-atom collisions at high electron energies (above the excitation threshold). Under these conditions, the total rate of excitation by inelastic collisions is limited by the rate at which electron-electron collisions relax the distribution function in the neighborhood of the excitation threshold. To describe this effect quantitatively, an approximate analytic solution of the electron Boltzmann equation is obtained, including both electron-electron and inelastic collisions. The result provides a simple formula for the total rate of excitation

  14. Highly excited strings I: Generating function

    Directory of Open Access Journals (Sweden)

    Dimitri P. Skliros

    2017-03-01

    Full Text Available This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES. In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators in general toroidal compactifications E=RD−1,1×TDcr−D (with generic constant Kähler and complex structure target space moduli, background Kaluza–Klein (KK gauge fields and torsion. We adopt a novel approach that does not rely on a “reverse engineering” method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string duality in string theory.

  15. Strange statistics, braid group representations and multipoint functions in the N-component model

    International Nuclear Information System (INIS)

    Lee, H.C.; Ge, M.L.; Couture, M.; Wu, Y.S.

    1989-01-01

    The statistics of fields in low dimensions is studied from the point of view of the braid group B n of n strings. Explicit representations M R for the N-component model, N = 2 to 5, are derived by solving the Yang-Baxter-like braid group relations for the statistical matrix R, which describes the transformation of the bilinear product of two N-component fields under the transposition of coordinates. When R 2 not equal to 1 the statistics is neither Bose-Einstein nor Fermi-Dirac; it is strange. It is shown that for each N, the N + 1 parameter family of solutions obtained is the most general one under a given set of constraints including charge conservation. Extended Nth order (N > 2) Alexander-Conway relations for link polynomials are derived. They depend nonhomogeneously only on one of the N + 1 parameters. The N = 3 and 4 ones agree with those previously derived

  16. Strange Men

    OpenAIRE

    Snider, William Stephen

    2017-01-01

    Haamid lives a modest life running a restaurant in a small market town in Uganda. A member of the minority Indian population, he is estranged from his family for reasons he prefers not to discuss. At night he cooks elaborate dinners that he eats alone. When an openly gay Peace Corps volunteer comes to town looking for more than a good meal, Haamid's comfortable routine is broken, and his life is put in danger. STRANGE MEN explores the limits of good intentions and the uneven stakes for Americ...

  17. From strange stars to strange dwarfs

    International Nuclear Information System (INIS)

    Glendenning, N.K.; Kettner, C.; Weber, F.

    1995-01-01

    We determine all possible equilibrium sequences of compact strange-matter stars with nuclear crusts, which range from massive strange stars to strange white dwarf endash like objects (strange dwarfs). The properties of such stars are compared with those of their nonstrange counterparts emdash neutron stars and ordinary white dwarfs. The main emphasis of this paper is on strange dwarfs, which we divide into two distinct categories. The first one consists of a core of strange matter enveloped within ordinary white dwarf matter. Such stars are hydrostatically stable with or without the strange core and are therefore referred to as open-quote open-quote trivial close-quote close-quote strange dwarfs. This is different for the second category which forms an entirely new class of dwarf stars that contain nuclear material up to 4x10 4 times denser than in ordinary white dwarfs of average mass, M∼0.6 M circle-dot , and still about 400 times denser than in the densest white dwarfs. The entire family of such dwarfs, denoted dense strange dwarfs, owes its hydrostatic stability to the strange core. A striking features of strange dwarfs is that the entire sequence from the maximum-mass strange star to the maximum-mass strange dwarf is stable to radial oscillations. The minimum-mass star is only conditionally stable, and the sequences on both sides are stable. Such a stable, continuous connection does not exist between ordinary white dwarfs and neutron stars, which are known to be separated by a broad range of unstable stars. We find an expansive range of very low mass (planetary-like) strange-matter stars (masses even below 10 -4 M circle-dot are possible) that arise as natural dark-matter candidates, which if abundant enough in our Galaxy, should be seen in the gravitational microlensing searches that are presently being performed. copyright 1995 The American Astronomical Society

  18. Electro and photoproduction of strangeness

    International Nuclear Information System (INIS)

    Bertini, R.

    1988-01-01

    Strangeness-production studies and the characteristics of the electron accelerators applied in the experiments are discussed. The strangeness of the nucleon, the polarization in hyperon production, strange dybaryons, hypernuclei and baryons resonance and strangeness are the main topics. The importance of the electromagnetic probe as a tool in hyperon polarization measurements, in order to understand why hyperons become polarized at large momentum transfer, is underlined. High beam energies (30 GeV or so) and targets are needed for the study of the nucleon spin functions, as well as transverse and longitudinal polarization of the beam must be provided. In the following studies the needed energy range has been determinated: for the study of the strangeness content of the nucleon a beam energy higher than 3-4 GeV, in the search of H and D baryons, energies higher than 4 GeV, for the production of hypernuclei, the hyperon polarization and the baryon resonances study, beam energies ranging in the 3-4 GeV gap are enough. The relation meson-nucleon sigma terms to the strange quark content of the nucleon is discussed. In the measurement of the K-N sigma term, low energy Kaon beams and, possibly, polarized targets are needed

  19. A simple method for automatic measurement of excitation functions

    International Nuclear Information System (INIS)

    Ogawa, M.; Adachi, M.; Arai, E.

    1975-01-01

    An apparatus has been constructed to perform the sequence control of a beam-analysing magnet for automatic excitation function measurements. This device is also applied to the feedback control of the magnet to lock the beam energy. (Auth.)

  20. Internuclear potentials from heavy ion fusion excitation functions

    International Nuclear Information System (INIS)

    Birkelund, J.R.; Huizenga, J.R.

    1977-01-01

    A discussion is given of the determination of internuclear potentials from heavy ion fusion excitation functions. It is found that this calculation is complicated by the difficulties involved in a calculation of the frictional energy loss and by the problem of measurement of excitation function with sufficient accuracy to closely define the barrier radius. Any quantitative comparisons made between the nuclear potential derived from fusion data and theoretical nuclear potentials depend upon the solutions of the above problems. 15 references

  1. Measurement of nuclear potentials from fusion excitation functions

    International Nuclear Information System (INIS)

    Huizenga, J.R.; Birkelund, J.R.

    1984-01-01

    The basis for measuring nuclear potentials from fusion excitation functions at energies above barrier is reviewed. It is argued that because of experimental and conceptual problems fusion excitation functions at high energies cannot lead to model independent measurements of internuclear potential at small separations. The Al 27 + Ne 20 reaction previously analyzed by others is used as an example of problems arising from the inability to distinguish complete and incomplete fusion in experimental data

  2. Dependence of the giant dipole strength function on excitation energy

    International Nuclear Information System (INIS)

    Draper, J.E.; Newton, J.O.; Sobotka, L.G.; Lindenberger, H.; Wozniak, G.J.; Moretto, L.G.; Stephens, F.S.; Diamond, R.M.; McDonald, R.J.

    1982-01-01

    Spectra of γ rays associated with deep-inelastic products from the 1150-MeV 136 Xe+ 181 Ta reaction have been measured. The yield of 10--20-MeV γ rays initially increases rapidly with the excitation energy of the products and then more slowly for excitation energies in excess of 120 MeV. Statistical-model calculations with ground-state values of the giant dipole strength function fail to reproduce the shape of the measured γ-ray spectra. This suggests a dependence of the giant dipole strength function on excitation energy

  3. Wigner function and tomogram of the excited squeezed vacuum state

    International Nuclear Information System (INIS)

    Meng Xiangguo; Wang Jisuo; Fan Hongyi

    2007-01-01

    The excited squeezed light (ESL) can be the outcome of interaction between squeezed light probe and excited atom, which can explore the status and the structure of the atom. We calculate the Wigner function and tomogram of ESL that may be comparable to the experimental measurement of quadrature-amplitude distribution for the light field obtained using balanced homodyne detection. The method of calculation seems new

  4. Wigner function and tomogram of the excited squeezed vacuum state

    Energy Technology Data Exchange (ETDEWEB)

    Meng Xiangguo [Department of Physics, Liaocheng University, Shandong Province 252059 (China); Wang Jisuo [Department of Physics, Liaocheng University, Shandong Province 252059 (China)]. E-mail: jswang@lcu.edu.cn; Fan Hongyi [Department of Physics, Liaocheng University, Shandong Province 252059 (China); CCAST (World Laboratory), P.O. Box 8730, 100080 Beijing (China)

    2007-01-29

    The excited squeezed light (ESL) can be the outcome of interaction between squeezed light probe and excited atom, which can explore the status and the structure of the atom. We calculate the Wigner function and tomogram of ESL that may be comparable to the experimental measurement of quadrature-amplitude distribution for the light field obtained using balanced homodyne detection. The method of calculation seems new.

  5. ALICE Masterclass on strangeness

    Directory of Open Access Journals (Sweden)

    Foka Panagiota

    2014-04-01

    Full Text Available An educational activity, the International Particle Physics Masterclasses, was developed by the International Particle Physics Outreach Group with the aim to bring the excitement of cutting-edge particle-physics research into the classroom. Thousands of pupils, every year since 2005, in many countries all over the world, are hosted in research centers or universities close to their schools and become “scientists for a day” as they are introduced to the mysteries of particle physics. The program of a typical day includes lectures that give insight to topics and methods of fundamental research followed by a “hands-on” session where the high-school students perform themselves measurements on real data from particle-physics experiments. The last three years data from the ALICE experiment at LHC were used. The performed measurement “strangeness enhancement” and the employed methodology are presented.

  6. Distribution function of excitations in systems with fractional statistics

    International Nuclear Information System (INIS)

    Protogenov, A.P.

    1992-08-01

    The distribution function of low-energy excitations in 2+1D systems has been considered. It is shown that in these systems the quantum distribution function differs from the usual one by having a finite value of the entropy of linked braids. (author). 47 refs

  7. Strange quarks in nuclei

    International Nuclear Information System (INIS)

    Dover, C.B.

    1991-06-01

    We survey the field of strange particle nuclear physics, starting with the spectroscopy of strangeness S = -1 Λ hypernuclei, proceeding to an interpretation of recent data on S = -2 ΛΛ hypernuclear production and decay, and finishing with some speculations on the production of multi-strange nuclear composites (hypernuclei or ''strangelets'') in relativistic heavy ion collisions. 41 refs., 5 figs

  8. Effects of dynamic aspects on fusion excitation functions

    International Nuclear Information System (INIS)

    Hassan, G.S.

    2008-01-01

    As an extension of the macroscopic theory, the nucleus- nucleus fusion has been described in terms of the chaotic regime dynamics (liquid drop potential energy plus one body dissipation).Three milestone configurations are attended : the touching , the conditional saddle point and the unconditional saddle one. We would like to deduce the associated extra push and extra-extra push energy values required to carry the system between these configurations, respectively. The next step is to light on the effect of these limiting values on the fusion excitation functions and their significance for accurate fitting of the measured functions for larger values of the angular momentum. It is found that there is a limiting values of excitation energy and angular momentum for each interacting pair, over which these aspects must be considered to fit the excitation functions of different nucleus nucleus fusion .These values were found to be in relation with the limiting angular momentum for fusion in major cases

  9. Relative excitation functions for singly-excited and core-excited levels of S V--S IX populated by the beam-foil interaction

    International Nuclear Information System (INIS)

    Moenke, D.; Bengtsson, P.; Engstroem, L.; Hutton, R.; Jupen, C.; Kirm, M.; Westerlind, M.

    1994-01-01

    We have investigated the relative excitation functions for low-lying singly excited and low-lying core-excited levels in S V (S 4+ ) to S IX (S 8+ ) after beam-foil excitation using ions in the energy range 2--10 MeV. The spectral line intensities have been normalized to the same number of particles at each ion energy and corrections for the level lifetimes have been made. The overall accuracy of the measured relative excitation function at each energy and charge state is estimated to be better than 2%. A comparison of the relative excitation functions for singly excited and core-excited lines shows a difference in S VII, but not in S VI

  10. Strangeness Suppression and Color Deconfinement

    Science.gov (United States)

    Satz, Helmut

    2018-02-01

    The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.

  11. El strength function at high spin and excitation energy

    International Nuclear Information System (INIS)

    Barrette, J.

    1983-04-01

    Recently giant dipole resonance-like concentration of the dipole strength function in nuclei was observed at both high excitation energies and high spins. This observation raises the possibility of obtaining new information on the shape of rapidly rotating heated nuclei. Recent experimental results on this subject are reviewed

  12. Rydberg energies using excited state density functional theory

    International Nuclear Information System (INIS)

    Cheng, C.-L.; Wu Qin; Van Voorhis, Troy

    2008-01-01

    We utilize excited state density functional theory (eDFT) to study Rydberg states in atoms. We show both analytically and numerically that semilocal functionals can give quite reasonable Rydberg energies from eDFT, even in cases where time dependent density functional theory (TDDFT) fails catastrophically. We trace these findings to the fact that in eDFT the Kohn-Sham potential for each state is computed using the appropriate excited state density. Unlike the ground state potential, which typically falls off exponentially, the sequence of excited state potentials has a component that falls off polynomially with distance, leading to a Rydberg-type series. We also address the rigorous basis of eDFT for these systems. Perdew and Levy have shown using the constrained search formalism that every stationary density corresponds, in principle, to an exact stationary state of the full many-body Hamiltonian. In the present context, this means that the excited state DFT solutions are rigorous as long as they deliver the minimum noninteracting kinetic energy for the given density. We use optimized effective potential techniques to show that, in some cases, the eDFT Rydberg solutions appear to deliver the minimum kinetic energy because the associated density is not pure state v-representable. We thus find that eDFT plays a complementary role to constrained DFT: The former works only if the excited state density is not the ground state of some potential while the latter applies only when the density is a ground state density.

  13. Excitation functions of the 98Mo+d reactions

    International Nuclear Information System (INIS)

    Zarubin, P.P.; Padalko, V.Yu.; Khrisanfov, Yu.V.; Lebedev, P.P.; Podkopaev, Yu.N.

    The excitation functions of the 98 Mo+d reactions were studied. The energy dependence of (d,p),(d,n) and (d,α) reactions was investigated by the activation analysis. The energies of deuterons in the range (6-12) MeV were determined by means of the aluminium filters. 98 Mo foils with surface densities of 1.02, 0.23 and 0.14 mgxcm -2 with 98 Mo enrichment of 94.1% were used as targets. The gamma spectra were measured by a Ge(Li) detector. The 98 Mo(d,p) 99 Mo reaction excitation function was determined via detection of 739 and 181 keV γ-radiation of 99 Mo (Tsub(1/2)=66.47h); 140 keV γ-radiation of 99 Tc (Tsub(1/2)=6h) was detected for the 98 Mo(d,n) 99 Tc reaction excitation function determination and 460, 568, 1091, 1200 and 1492 keV γ-quanta of 96 Nb (Tsub(1/2)=23.35h) - for the 98 Mo(d,α) 96 Nb reaction. In the excitation function the wide extremum was observed at Esub(d) approximately 10 MeV. The ratio of cross sections σsup(m)(d,n)/σ(d,p) on the 98 Mo target was determined. The ratio σsup(m)(d,n)/σ(d,p) was found to be decreasing function of the deuteron energy. The relative cross sections were determined with an accuracy of +-5%, while for the absolute values of cross sections the accuracy was +-15%

  14. Strange sea determination from collider data

    Science.gov (United States)

    Alekhin, S.; Blümlein, J.; Moch, S.

    2018-02-01

    We consider determinations of the strange sea in the nucleon based on QCD analyses of data collected at the LHC with focus on the recent high-statistics ATLAS measurement of the W±- and Z-boson production. We study the effect of different functional forms for parameterization of the parton distribution functions and the combination of various data sets in the analysis. We compare to earlier strange sea determinations and discuss ways to improve them in the future.

  15. Strange sea determination from collider data

    International Nuclear Information System (INIS)

    Alekhin, S.; Bluemlein, J.; Moch, S.

    2017-08-01

    We consider determinations of the strange sea in the nucleon based on QCD analyses of data collected at the LHC with focus on the recent high-statistics ATLAS measurement of the W ± - and Z-boson production. We study the effect of different functional forms for parameterization of the parton distribution functions and the combination of various data sets in the analysis. We compare to earlier strange sea determinations and discuss ways to improve them in the future.

  16. Strange sea determination from collider data

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Bluemlein, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Moch, S. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2017-08-15

    We consider determinations of the strange sea in the nucleon based on QCD analyses of data collected at the LHC with focus on the recent high-statistics ATLAS measurement of the W{sup ±}- and Z-boson production. We study the effect of different functional forms for parameterization of the parton distribution functions and the combination of various data sets in the analysis. We compare to earlier strange sea determinations and discuss ways to improve them in the future.

  17. Strange baryons in a chiral quark-meson model. Pt. 2

    International Nuclear Information System (INIS)

    McGovern, J.A.; Birse, M.C.

    1990-01-01

    The chrial-quark meson model is used to study baryon properties with realistic breaking of SU(3). The symmetry breaking is assumed to be strong, so that a random phase approximation (RPA) can be used. In this the strange baryons are described as excitations built on the hedgehog soliton and have an excitation energy of 315 MeV. Other properties of strange baryons are obtained by an approximate spin-isospin projection from the RPA wave function. The magnetic moments agree reasonably well with experiment, but the deviations from the experimental values suggest that the method is valid for the case of rather stronger symmetry breaking than is realistic. The dependence of the RPA energy on the magnitude of the symmetry breaking is examined, and found to be strongly nonlinear for realistic values. This supports the idea that a large πN sigma commutator need not imply a large strange-quark content in the proton. For reasonable values of the scalar meson masses the strange-quark condensate is found to be less than 5% of the total, at the mean-field level. We also estimate the contribution to the condensate from RPA correlations. Within a one-mode approximation we find these to be very small, ≅ 2%. (orig.)

  18. Today's View on Strangeness

    CERN Document Server

    Ellis, Jonathan Richard

    2005-01-01

    There are several different experimental indications, such as the pion-nucleon sigma term and polarized deep-inelastic scattering, which suggest that the nucleon wave function contains a hidden s bar s component. This is expected in chiral soliton models, which also predicted the existence of new exotic baryons that may recently have been observed. Another hint of hidden strangeness in the nucleon is provided by copious phi production in various N bar N annihilation channels, which may be due to evasions of the Okubo-Zweig-Iizuka rule. One way to probe the possible polarization of hidden s bar s pairs in the nucleon may be via Lambda polarization in deep-inelastic scattering.

  19. Aspects of strangeness

    International Nuclear Information System (INIS)

    Dover, C.B.

    1995-01-01

    We review various aspects of strangeness production in relativistic heavy ion collisions from AGS to CERN energies. The experimental data are briefly summarized and various possible theoretical interpretations of these data are evaluated, such as quark-gluon- plasma (QGP), hadron gas (HG) thermal models, or event generators (cascade models). Some comments on the production of strange clusters are offered

  20. Is the nucleon strange?

    CERN Document Server

    Nowak, M A; Zahed, I

    1989-01-01

    The issue of the strangeness content of the proton in relation to a large σ π N term is examined using the instanton-antiinstanton description of the QCD ground state. Modulo plausible assumptions, our results indicate no strangeness admixture in the nucleon state at zero momentum transfer.

  1. Strangeness nuclear physics

    International Nuclear Information System (INIS)

    Imai, Kenichi

    1999-01-01

    A simple review of strangeness nuclear physics is stated in the order of introduction, generation, structure and decay of hyper-nucleus and S=-2 nuclear physics. Strangeness nuclear physics investigate the structure and nuclear force of new created nucleus by introducing strangeness to the nuclear matter. The fundamental problems are hyperon-nucleon and hyperon-hyperon interaction. There are many methods to generate hyper nucleus. The stopped K - reaction is the best one. Λ and S hyper and S=-2 nucleus were generated by (K - , π) and (π + , K + ) reaction, (K - , π) reaction and (K - , K + ) reaction, respectively. The elementary decay process in the nucleus is Λ - > pπ (Q=38 MeV), nπ 0 and Λp - > np (Q=176 MeV), Λn- > nn. In emulsion, mass of light nucleus less than 160 were determined. Two measurement units are stated. One of them is a double focusing type K beam line in BNL to investigate H dibaryon by (K - , K + ) reaction. The other is KEK-SKS, which is superconducting kaon spectrometer to study hyper nucleus by (π + , K + ) reaction. The various kinds of binding energy of Λ single-particle states are displayed as a function of A -2/3 . These experimental data fit well with DWIA calculation using Woods-Saxon type one-body potential. A spectrum of 12C (π + , K + ) reaction showed small peak without main two peaks, which was a hyperfine structure between the exited state of 11 C core and couple of s 1/2 Λ. Although γ-ray was detected by three nucleuses such as 4 HΛ, 7 Li Λ and 9 Be Λ , γ-ray spectrometry of hyper nucleus remains unexplored. E hyper nucleus is detected by 4He(K-, t) and not by 4 He (K - , π + ). The binding energy of 4He Σ is 4.4 + 1 MeV and the width 7.0 + 0.7 MeV. Λ hyper nucleus decay is occurred by weak interaction. The elementary processes are a mesonic decay of Λ - > pπ - and Λ - > nπ 0 and a nonmesonic decay of Λn - > nn and Λp- > np. The lifetime of hyper nucleus is shorter than free Λ. Subject of S=-2 nuclear

  2. Evaluation of isomeric excitation functions in neutron induced reactions

    International Nuclear Information System (INIS)

    Grudzevich, O.; Ignatyuk, A.; Zolotarev, K.

    1992-01-01

    The possibilities of isomer levels experimental excitation functions description with theoretical models are discussed. It is shown that the experimental data in many cases can be described by theoretical models quite well without parameter fitting. However, large discrepancies are observed for some reactions. In our opinion, these discrepancies are due to uncertainties of discrete level schemes, schemes of gamma-transitions between levels and spin dependence of level density. Small values of isomeric ratios (< 0.1) have been described with the largest errors. The simple formulae for energy dependence of isomeric ratio for (n,g) reaction has been proposed. (author). 53 refs, 10 figs, 8 tabs

  3. Systematics of excitation functions for (n, charged particle) reactions

    International Nuclear Information System (INIS)

    Zhao Zhixiang; Zhou Delin

    1986-06-01

    On the bases of evaporation model considering the preequilibrium emission under some approximations, the analytical expressions including two adjustable parameters have been derived for excitation functions of (n, charged particle) reactions. Fitting these expressions to the available measured data, these parameters have been extracted and the systematic behaviour of the parameters have been studied. More accurate predictions than before could be obtained by using these expressions and systematic parameters. In the present work the neutron energy is considered up to about 20 MeV and the target mass region is 23< A<197

  4. Delta function excitation of waves in the earth's ionosphere

    Science.gov (United States)

    Vidmar, R. J.; Crawford, F. W.; Harker, K. J.

    1983-01-01

    Excitation of the earth's ionosphere by delta function current sheets is considered, and the temporal and spatial evolution of wave packets is analyzed for a two-component collisional F2 layer. Approximations of an inverse Fourier-Laplace transform via saddle point methods provide plots of typical wave packets. These illustrate cold plasma wave theory and may be used as a diagnostic tool since it is possible to relate specific features, e.g., the frequency of a modulation envelope, to plasma parameters such as the electron cyclotron frequency. It is also possible to deduce the propagation path length and orientation of a remote radio beacon.

  5. Wigner function for the generalized excited pair coherent state

    International Nuclear Information System (INIS)

    Meng Xiangguo; Wang Jisuo; Liang Baolong; Li Hongqi

    2008-01-01

    This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state |η> representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, the variations of the Wigner function distributions with the parameters q, α, k and l are discussed. The tomogram of the GEPCS is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η 1 , η 2 , τ 1 , τ 2 >. The entangled states |η> and η 1 , η 2 , τ 1 , τ 2 > provide two good representative space for studying the Wigner functions and tomograms of various two-mode correlated quantum states

  6. Theoretical perspective on strangeness production

    Directory of Open Access Journals (Sweden)

    Ko Che Ming

    2018-01-01

    Full Text Available A brief review of some highlights and puzzles on strangeness production in heavy ion collisions is given. These include strangeness production and the nuclear equation of state; deeply subthreshold strangeness production; mean-field potentials on strange hadrons; phi meson in dense matter; anomalous strange hadron to pion ratios; density fluctuations on particle production; A hyperon polarization and the vorticity field, and exotic hadrons.

  7. Strange Light Nuclei

    Directory of Open Access Journals (Sweden)

    Nakamura Satoshi N.

    2014-04-01

    Full Text Available “Strange” means 1 unusual or surprising, especially in a way that is difficult to explain or understand or 2 having strangeness degree of freedom. Light nuclear systems with strangeness, light hypernuclei, are perfect playground to study baryon force which would be a bridge between well established nuclear force in low energy region and QCD, the first principle of the strong interaction. Overview of study of light hypernuclei is given and recent experimental findings are reviewed.

  8. Response function of spin-isospin nuclear excitations

    International Nuclear Information System (INIS)

    Salvetti, A.R.

    1986-01-01

    The selected aspects of spin-isospir nuclear excitations are studied. The spreading width of M/ states in even Ca isotopes for the purpose of trying to understand the missing strenght specially in 44 Ca, was estimated. The doorway calculation, was used, considering the level of complexity next to the independent particle M/ state. Using a nuclear matter context, the system response function to a spin-isospin probe and verify how the response function behaves for free fermions and in the ring approximation was studied. Higher correlations to polarization propagation such as the induced interaction and self-energy corrections was introduced. The dopping of colletive effects by such collisions terms was verified. It was investigate how to estimate the short range term of the effective interaction in the spin-isospin channel and the possibility of detecting a difference between these short range terms in the longitudinal and the transverse channel, for understanding the absence of pior condensation precursor states and negative results in a recent attempt to detect differences between longitudinal and transverse response functions one naively expects theoretically. (author) [pt

  9. A new deterministic model of strange stars

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook; Shit, G.C. [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Chakraborty, Koushik [Government Training College, Department of Physics, Hooghly, West Bengal (India); Kuhfittig, P.K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States); Rahman, Mosiur [Meghnad Saha Institute of Technology, Department of Mathematics, Kolkata (India)

    2014-10-15

    The observed evidence for the existence of strange stars and the concomitant observed masses and radii are used to derive an interpolation formula for the mass as a function of the radial coordinate. The resulting general mass function becomes an effective model for a strange star. The analysis is based on the MIT bag model and yields the energy density, as well as the radial and transverse pressures. Using the interpolation function for the mass, it is shown that a mass-radius relation due to Buchdahl is satisfied in our model. We find the surface redshift (Z) corresponding to the compactness of the stars. Finally, from our results, we predict some characteristics of a strange star of radius 9.9 km. (orig.)

  10. Ultrarelativistic cascades and strangeness production

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, D.E. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States). Physics Dept.

    1998-08-24

    A two-phase cascade code, LUCIFER II, developed for the treatment of ultra high energy-ion-ion collisions is applied to the production of strangeness at SPS energies {radical}(s)=17-20. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy-ion experiments at the CERN SPS. (orig.) 26 refs.

  11. Ultrarelativistic cascades and strangeness production

    International Nuclear Information System (INIS)

    Kahana, D.E.; Kahana, S.H.

    1998-01-01

    A two-phase cascade code, LUCIFER II, developed for the treatment of ultra high energy-ion-ion collisions is applied to the production of strangeness at SPS energies √(s)=17-20. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy-ion experiments at the CERN SPS. (orig.)

  12. Ultrarelativistic cascades and strangeness production

    International Nuclear Information System (INIS)

    Kahana, D.E.; Kahana, S.H.

    1998-02-01

    A two phase cascade, LUCIFER II, developed for the treatment of ultra high energy Ion-Ion collisions is applied to the production of strangeness at SPS energies. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy ion experiments at the CERN SPS

  13. Strangeness and charm production in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Xu, Nu

    2001-01-01

    We discuss the dynamical effects of strangeness and charm production in high energy nuclear collisions. In order to understand the early stage dynamical evolution, it is necessary to study the transverse momentum distributions of multi-strange hadrons like Ξ and Ω and charm mesons like J/Ψ as a function of collision centrality

  14. Nucleon strangeness: present and future

    CERN Document Server

    Sapozhnikov, M G

    2010-01-01

    A review of experimental results for the measurement of the strange quark distributions in the nucleon, is given. Contributions of the strange quarks to the nucleon mass, electromagnetic form factors and spin, are discussed.

  15. A Fat strange Repeller

    Institute of Scientific and Technical Information of China (English)

    申影; 何阅; 姜玉梅; 何大韧

    2004-01-01

    This article reports an observation on a fat strange repeller, which appears after a characteristic crisis observed in a kicked rotor subjected to a piecewise continuous force field. The discontinuity border in the definition range of the two-dimensional mapping, which describes the system, oscillates as the discrete time develops. At a threshold of a control parameter a fat chaotic attractor suddenly transfers to a fat transient set. The strange repeller, which appears after the crisis, is also a fat fractal. This is the reason why super-transience happens

  16. Strangeness at SIS energies

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2005-09-28

    In this contribution the authors discuss the physics of strange hadrons in low energy ({approx_equal} 1-2 AGeV) heavy ion collision. In this energy range the relevant strange particle are the kaons and anti-kaons. The most interesting aspect concerning these particles are so called in-medium modifications. They will attempt to review the current status of understanding of these in medium modifications. In addition they briefly discuss other issues related with kaon production, such as the nuclear equation of state and chemical equilibrium.

  17. Evaluation of excitation functions for isomeric levels in neutron reactions

    International Nuclear Information System (INIS)

    Grudzevich, O.T.; Zelenetskij, A.V.; Zolotarev, K.I.; Kornilov, N.V.; Pashchenko, A.B.

    1993-07-01

    The authors consider the use of theoretical models to describe experimental excitation functions for isomeric levels in neutron reactions and to predict the cross-sections when no experimental data are available. It is shown that, in many cases, experimental data can be described quite satisfactorily by calculations without adjustment of parameters. For threshold reactions at a neutron energy of ∼ 14 MeV the agreement between calculated and experimental isomeric ratios is ∼ 20%, and is determined mainly by errors in the experimental ratios. However, for some reactions there are considerable differences between experimental and calculated data, which are due, in the authors' opinion, to uncertainties in the schemes of the low-lying levels and of gamma transitions between levels and to the spin dependence of level density. The small isomeric ratio values R<0.1 are described with the lowest accuracy. A formula is suggested for the energy dependence of the isomeric ratio in the (n,γ) reaction. (author)

  18. Excitation functions of the systems 12C+14C and 13C+12C

    International Nuclear Information System (INIS)

    Haindl, E.

    1975-01-01

    The excitation functions of the systems 12 C+ 14 C and 13 C+ 12 C are investigated for different exit channels. The excitation functions measured do not show correlated structures as in the system 12 C+ 12 C. (WL/AK) [de

  19. Local density approximation for exchange in excited-state density functional theory

    OpenAIRE

    Harbola, Manoj K.; Samal, Prasanjit

    2004-01-01

    Local density approximation for the exchange energy is made for treatment of excited-states in density-functional theory. It is shown that taking care of the state-dependence of the LDA exchange energy functional leads to accurate excitation energies.

  20. Strangeness in nuclei

    International Nuclear Information System (INIS)

    Dover, C.B.

    1988-01-01

    We review some of the motivations for the study of strange particle nuclear physics. A status report on recent progress in the spectroscopy of Λ and Σ hypernuclei is provided, as well as a discussion of future prospects for the study of S = /minus/1 and /minus/2 systems. The importance of the nuclear physics program at future high intensity hadron facilities is emphasized. 45 refs

  1. Strangeness in nuclear collisions

    International Nuclear Information System (INIS)

    Gazdzicki, M.; Roehrich, D.

    1996-01-01

    Data on the mean multiplicity of strange hadrons produced in minimum bias proton-proton and central nucleus-nucleus collisions at momenta between 2.8 and 400 GeV/c per nucleon have been compiled. The multiplicities for nucleon-nucleon interactions were constructed. The ratios of strange particle multiplicity to participant nucleon as well as to pion multiplicity are larger for central nucleus-nucleus collisions than for nucleon-nucleon interactions at all studied energies. The data at AGS energies suggest that the latter ratio saturates with increasing masses of the colliding nuclei. The strangeness to pion multiplicity ratio observed in nucleon-nucleon interactions increases with collision energy in the whole energy range studied. A qualitatively different behaviour is observed for central nucleus-nucleus collisions: the ratio rapidly increases when going from Dubna to AGS energies and changes little between AGS and SPS energies. This change in the behaviour can be related to the increase in the entropy production observed in central nucleus-nucleus collisions at the same energy range. The results are interpreted within a statistical approach. They are consistent with the hypothesis that the quark gluon plasma is created at SPS energies, the critical collision energy being between AGS and SPS energies. (orig.)

  2. Stars of strange matter

    International Nuclear Information System (INIS)

    Bethe, H.A.; Brown, G.E.; Cooperstein, J.

    1987-01-01

    We investigate suggestions that quark matter with strangeness per baryon of order unity may be stable. We model this matter at nuclear matter densities as a gas of close packed Λ-particles. From the known mass of the Λ-particle we obtain an estimate of the energy and chemical potential of strange matter at nuclear densities. These are sufficiently high to preclude any phase transition from neutron matter to strange matter in the region near nucleon matter density. Including effects from gluon exchange phenomenologically, we investigate higher densities, consistently making approximations which underestimate the density of transition. In this way we find a transition density ρ tr > or approx.7ρ 0 , where ρ 0 is nuclear matter density. This is not far from the maximum density in the center of the most massive neutron stars that can be constructed. Since we have underestimated ρ tr and still find it to be ∝7ρ 0 , we do not believe that the transition from neutron to quark matter is likely in neutron stars. Moreover, measured masses of observed neutron stars are ≅1.4 M sun , where M sun is the solar mass. For such masses, the central (maximum) density is ρ c 0 . Transition to quark matter is certainly excluded for these densities. (orig.)

  3. Magnetic monopoles and strange matter

    International Nuclear Information System (INIS)

    Sanudo, J.; Segui, A.

    1985-07-01

    We show that, if the density of grand unified monopoles at T approx. = 200 MeV is of the order of or greater than 4.4 * 10 21 cm -3 , they annihilate all of the strange matter produced in the quagmahadron phase transition which the Universe undergoes at this temperature. We also study gravitational capture of monopoles by lumps of strange matter. This yields upper limits on the density of monopoles for different sizes of strange ball. (author)

  4. Strangeness production in proton–proton and proton–nucleus ...

    Indian Academy of Sciences (India)

    Therefore, the strangeness production is expected to provide information about the resonances lying at higher excitation energies. For beam energies very close to the kaon production threshold the hyperon–proton final state interaction effects are quite important. Thus, these studies provide a check on the models of ...

  5. Sequential double excitations from linear-response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Martín A.; Ratner, Mark A.; Schatz, George C., E-mail: g-schatz@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chen, Lin X. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave., Lemont, Illinois 60439 (United States)

    2016-05-28

    Traditional UV/vis and X-ray spectroscopies focus mainly on the study of excitations starting exclusively from electronic ground states. However there are many experiments where transitions from excited states, both absorption and emission, are probed. In this work we develop a formalism based on linear-response time-dependent density functional theory to investigate spectroscopic properties of excited states. We apply our model to study the excited-state absorption of a diplatinum(II) complex under X-rays, and transient vis/UV absorption of pyrene and azobenzene.

  6. Exploring excited eigenstates of many-body systems using the functional renormalization group

    Science.gov (United States)

    Klöckner, Christian; Kennes, Dante Marvin; Karrasch, Christoph

    2018-05-01

    We introduce approximate, functional renormalization group based schemes to obtain correlation functions in pure excited eigenstates of large fermionic many-body systems at arbitrary energies. The algorithms are thoroughly benchmarked and their strengths and shortcomings are documented using a one-dimensional interacting tight-binding chain as a prototypical testbed. We study two "toy applications" from the world of Luttinger liquid physics: the survival of power laws in lowly excited states as well as the spectral function of high-energy "block" excitations, which feature several single-particle Fermi edges.

  7. Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.

    Science.gov (United States)

    Kowalczyk, Tim; Le, Khoa; Irle, Stephan

    2016-01-12

    We present an implementation of energies and gradients for the ΔDFTB method, an analogue of Δ-self-consistent-field density functional theory (ΔSCF) within density-functional tight-binding, for the lowest singlet excited state of closed-shell molecules. Benchmarks of ΔDFTB excitation energies, optimized geometries, Stokes shifts, and vibrational frequencies reveal that ΔDFTB provides a qualitatively correct description of changes in molecular geometries and vibrational frequencies due to excited-state relaxation. The accuracy of ΔDFTB Stokes shifts is comparable to that of ΔSCF-DFT, and ΔDFTB performs similarly to ΔSCF with the PBE functional for vertical excitation energies of larger chromophores where the need for efficient excited-state methods is most urgent. We provide some justification for the use of an excited-state reference density in the DFTB expansion of the electronic energy and demonstrate that ΔDFTB preserves many of the properties of its parent ΔSCF approach. This implementation fills an important gap in the extended framework of DFTB, where access to excited states has been limited to the time-dependent linear-response approach, and affords access to rapid exploration of a valuable class of excited-state potential energy surfaces.

  8. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  9. Strange culinary cncounters:

    DEFF Research Database (Denmark)

    Leer, Jonatan; Kjær, Katrine Meldgaard

    Strange Culinary Encounters: Stranger Fetishism in Cooking Shows In this paper, we will examine the ways in which the encountering of 'other' food cultures is played out in the two travelogue cooking shows Gordon's Great Escape and Jamie's Italian Escape, arguing that despite their ‘noble......’ intentions and ‘enlightened’ cosmopolitan approach to meeting the other (culinary culture), ultimately, Jamie and Gordon's respective culinary adventures work to create a social hierarchy in their own favor. Inspired by Sara Ahmed’s work on stranger fetishism, we will investigate how the two protagonist...

  10. Strangeness in nuclei

    International Nuclear Information System (INIS)

    Buettgen, R.; Holinde, K.; Holzenkamp, B.; Speth, J.

    1986-01-01

    We present further results of our general program, which is to construct meson-exchange potentials for hadronic systems involving strange particles. In this contribution we investigate the relationship between the free ΛN-interaction and the effective interactions inside of a nucleus. These polarization effects are taken into account within a generalized Brueckner G-matrix. Within this approximation we calculate the binding energy and effective mass of a Λ-particle in nuclear matter as well as the Landau-parameters of the ΛN-system

  11. Strange experiments at the AGS

    International Nuclear Information System (INIS)

    Chrien, R.

    1990-01-01

    The purpose of this review is to report recent progress in nuclear experiments involving strangeness which have been carried out at the Brookhaven Alternating Gradient Synchrotron over the past three years. These recent developments are noted in three areas: few body systems and dibaryons; strange probes of the nucleus; and associated production of hypernuclei. 9 refs., 3 figs

  12. Overview of strangeness nuclear physics

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1998-01-01

    Novel as well as puzzling aspects of strangeness (S = -1 and S = -2) nuclear physics are highlighted. Opportunities to gain new insights into hypernuclear spectroscopy, structure, and weak decays and to contribute to the continuing effort to understand the fundamental baryon-baryon force are outlined. Connections to strangeness in heavy-ion reactions and astrophysics are noted

  13. The Hawkes process with different excitation functions and its asymptotoc behavior

    DEFF Research Database (Denmark)

    Fierro, Raúl; Leiva, Víctor; Møller, Jesper

    The standard Hawkes process is constructed from a homogeneous Poisson process and using the same exciting function for dierent generations of offspring. We propose an extension of this process by considering different exciting functions. This consideration could be important to be taken into acco......The standard Hawkes process is constructed from a homogeneous Poisson process and using the same exciting function for dierent generations of offspring. We propose an extension of this process by considering different exciting functions. This consideration could be important to be taken...... into account in a number of fields; e.g. in seismology, where main shocks produce aftershocks with possibly different intensities. The main results are devoted to the asymptotic behavior of this extension of the Hawkes process. Indeed, a law of large numbers and a central limit theorem are stated...

  14. Integral excitation functions for proton and alpha induced reactions on target elements 22 <= Z <= 28

    International Nuclear Information System (INIS)

    Brinkmann, G.

    1979-01-01

    In the framework of a systematic study which is also important for certain cosmological questions a series of integral excitation functions of p- and α-induced nuclear reactions on target elements 22 [de

  15. 35Cl + 12C asymmetrical fission excitation functions

    International Nuclear Information System (INIS)

    Beck, C.; Mahboub, D.; Nouicer, R.; Freeman, R.M.; Haas, F.; Youlal, M.; Matsuse, T.; Sanders, S.J.

    1996-04-01

    The fully energy-damped yields from the 35 Cl + 12 C reaction have been systematically investigated using particle-particle coincidence techniques at a 35 Cl bombarding energy of ∼ 8 MeV/nucleon. The fragment-fragment correlation data show that the majority of events arises from a binary-decay process with rather large numbers of secondary light-charged particles emitted from the two excited exit fragments. No evidence is observed for ternary breakup events. The binary-process results of the present measurement, along with those of earlier, inclusive experimental data obtained at several lower bombarding energies are compared with predictions of two different kinds of statistical model calculations. The methods give comparable predictions and are both in good agreement with the experimental results thus confirming the fusion-fission origin of the fully-damped yields. (author)

  16. The EDDA experiment: proton-proton elastic scattering excitation functions at intermediate energies

    International Nuclear Information System (INIS)

    Hinterberher, F.

    1996-01-01

    The EDDA experiment is designed to provide a high precision measurement of proton-proton elastic scattering excitation functions ranging from 0.5 to 2.5 GeV of (lab) incident kinetic energy. It is an internal target experiment utilizing the proton beam of the cooler synchrotron COSY operated by KFA Juelich. The excitation functions are measured during the acceleration ramp of COSY. (author)

  17. Complete fusion excitation function for the 16O + natS reaction

    International Nuclear Information System (INIS)

    Wang Sufang; Zheng Jiwen; Liu Guoxing

    1994-01-01

    The complete fusion excitation function for the 16 O + nat S reaction has been measured in the range of 50-75 MeV with a step of 1.0 MeV by using a position sensitive ΔE-E telescope system. The model parameters have been extracted from data analysis. The striking gross structure of the excitation function has been observed. The energies of peaks are at E CM 38,43 and 48 MeV respectively

  18. Measurement of $\\alpha_{s}$ and the non-strange spectral functions in hadronic $\\tau$ decays with OPAL

    CERN Document Server

    Menke, S

    1999-01-01

    The spectral functions of the vector current and the axial-vector current have been measured in hadronic tau decays using the OPAL detector at LEP. Within the framework of the Operator Product Expansion a simultaneous determination of the strong coupling constant alpha /sub s/, the non-perturbative operators of dimension 6 and 8 and of the gluon condensate has been performed. Different perturbative descriptions have been compared to the data. The Contour Improved Fixed Order Perturbation Theory gives alpha /sub s/(m/sub tau //sup 2/)=0.348+or-0.009/sub exp/+or-0.019/sub theo/ at the tau - mass scale and alpha /sub s/(m/sub Z//sup 2/)=0.1219+or-0.0010/sub exp/+or-0.0017/sub theo/ at the Z/sup 0/-mass scale. The values obtained for alpha /sub s/(m/sub Z//sup 2/) using Fixed Order Perturbation Theory or Renormalon Chain Resummation are 2.3and 4.1 smaller, respectively. The `running' of the strong coupling between s /sub 0/ approximately=1.3 GeV/sup 2/ and s/sub 0/=m/sub tau //sup 2/ has been tested from direct f...

  19. Fast pulsars, strange stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1990-02-01

    The initial motivation for this work was the reported discovery in January 1989 of a 1/2 millisecond pulsar in the remnant of the spectacular supernova, 1987A. The status of this discovery has come into grave doubt as of data taken by the same group in February, 1990. At this time we must consider that the millisecond signal does not belong to the pulsar. The existence of a neutron star in remnant of the supernova is suspected because of recent observations on the light curve of the remnant, and of course by the neutrino burst that announced the supernova. However its frequency is unknown. I can make a strong case that a pulsar rotation period of about 1 ms divides those that can be understood quite comfortably as neutron stars, and those that cannot. What we will soon learn is whether there is an invisible boundary below which pulsar periods do not fall, in which case, all are presumable neutron stars, or whether there exist sub- millisecond pulsars, which almost certainly cannot be neutron stars. Their most plausible structure is that of a self-bound star, a strange-quark-matter star. The existence of such stars would imply that the ground state of the strong interaction is not, as we usually assume, hadronic matter, but rather strange quark matter. Let us look respectively at stars that are bound only by gravity, and hypothetical stars that are self-bound, for which gravity is so to speak, icing on the cake

  20. Towards Strange Metallic Holography

    International Nuclear Information System (INIS)

    2010-01-01

    We initiate a holographic model building approach to 'strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarized branes, and from a gravitating charged Fermi gas. We also identify general features of renormalization group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z (ge) 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.

  1. Excitation functions for some evaporation residues identified in the interaction of 20Ne and 93Nb at moderate excitation energies

    International Nuclear Information System (INIS)

    Agarwal, Avinash; Rizvi, I.A.; Gupta, Meenal; Ahamad, Tauseef; Ghugre, S.S.; Sinha, A.K.; Chaubey, A.K.

    2008-01-01

    With the motivation of studying the complete and incomplete fusion reactions, excitation functions for the reactions 93 Nb(Ne, p2n) 110 Sn, 93 Nb(Ne, 2pn) 110 In, 93 Nb(Ne, 2p2n) 109 In, 93 Nb(Ne, αn) 108 In, 93 Nb(Neα2n) 107 In and 93 Nb(Ne, α p n) 107 Cd have been measured at the incident energy ranging from 91.4 MeV - 145 MeV. The well established activation technique followed by off line high purity gamma- ray spectroscopy was employed. The measured excitation functions were compared with the statistical model calculations by using the codes ALICE-91 and Pace-4. The effect of variation of different parameters including level density parameter involved in these codes has also been studied. Excellent agreement was found between theoretical and experimental values in some of the fusion evaporation reaction channels. However, significant enhancement of cross-section observed in α-emission channels may be due to incomplete fusion process. (author)

  2. Range-separated density-functional theory for molecular excitation energies

    International Nuclear Information System (INIS)

    Rebolini, E.

    2014-01-01

    Linear-response time-dependent density-functional theory (TDDFT) is nowadays a method of choice to compute molecular excitation energies. However, within the usual adiabatic semi-local approximations, it is not able to describe properly Rydberg, charge-transfer or multiple excitations. Range separation of the electronic interaction allows one to mix rigorously density-functional methods at short range and wave function or Green's function methods at long range. When applied to the exchange functional, it already corrects most of these deficiencies but multiple excitations remain absent as they need a frequency-dependent kernel. In this thesis, the effects of range separation are first assessed on the excitation energies of a partially-interacting system in an analytic and numerical study in order to provide guidelines for future developments of range-separated methods for excitation energy calculations. It is then applied on the exchange and correlation TDDFT kernels in a single-determinant approximation in which the long-range part of the correlation kernel vanishes. A long-range frequency-dependent second-order correlation kernel is then derived from the Bethe-Salpeter equation and added perturbatively to the range-separated TDDFT kernel in order to take into account the effects of double excitations. (author)

  3. Output pressure and harmonic characteristics of a CMUT as function of bias and excitation voltage

    DEFF Research Database (Denmark)

    Lei, Anders; Diederichsen, Søren Elmin; Hansen, Sebastian Molbech

    2015-01-01

    of the transmitted signal. The generation of intrinsic harmonics by the CMUT can be minimized by decreasing the excitation signal. This, however, leads to lower fundamental pressure which limits the desired generation of harmonics in the medium. This work examines the output pressure and harmonic characteristics...... of a CMUT as function of bias and excitation voltage. The harmonic to fundamental ratio of the surface pressures declines for decreasing excitation voltage and increasing bias voltage. The ratio, however, becomes unchanged for bias levels close to the pull-in voltage. The harmonic limitations of the CMUT...

  4. Investigation of Multiconfigurational Short-Range Density Functional Theory for Electronic Excitations in Organic Molecules

    DEFF Research Database (Denmark)

    Hubert, Mickaël; Hedegård, Erik D.; Jensen, Hans Jørgen Aa

    2016-01-01

    -srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2......Computational methods that can accurately and effectively predict all types of electronic excitations for any molecular system are missing in the toolbox of the computational chemist. Although various Kohn-Sham density-functional methods (KS-DFT) fulfill this aim in some cases, they become...... and double excitations have been promising, it is nevertheless important that the accuracy of MC-srDFT is at least comparable to the best KS-DFT methods also for organic molecules that are typically of single-reference character. In this paper we therefore systematically investigate the performance of MC...

  5. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.

    Science.gov (United States)

    Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon

    2018-04-05

    The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.

  6. Use of polarization measurements in evaluating cascade contributions to optical excitation functions

    International Nuclear Information System (INIS)

    McConkey, J.W.

    1981-01-01

    Recent developments in theory and experimental measurements of rotational line polarization fractions of diatomic molecules following electron impact are used to show how in some instances cascade free optical excitation functions can be derived without additional measurements of the cascading contribution. The Lyman system of H 2 is presented as an example and some previously conflicting excitation cross-section measurements obtained by different techniques are reconciled

  7. Magnetotransport in a Model of a Disordered Strange Metal

    Science.gov (United States)

    Patel, Aavishkar A.; McGreevy, John; Arovas, Daniel P.; Sachdev, Subir

    2018-04-01

    Despite much theoretical effort, there is no complete theory of the "strange" metal state of the high temperature superconductors, and its linear-in-temperature T resistivity. Recent experiments showing an unexpected linear-in-field B magnetoresistivity have deepened the puzzle. We propose a simple model of itinerant electrons, interacting via random couplings, with electrons localized on a lattice of "quantum dots" or "islands." This model is solvable in a particular large-N limit and can reproduce observed behavior. The key feature of our model is that the electrons in each quantum dot are described by a Sachdev-Ye-Kitaev model describing electrons without quasiparticle excitations. For a particular choice of the interaction between the itinerant and localized electrons, this model realizes a controlled description of a diffusive marginal-Fermi liquid (MFL) without momentum conservation, which has a linear-in-T resistivity and a T ln T specific heat as T →0 . By tuning the strength of this interaction relative to the bandwidth of the itinerant electrons, we can additionally obtain a finite-T crossover to a fully incoherent regime that also has a linear-in-T resistivity. We describe the magnetotransport properties of this model and show that the MFL regime has conductivities that scale as a function of B /T ; however, the magnetoresistance saturates at large B . We then consider a macroscopically disordered sample with domains of such MFLs with varying densities of electrons and islands. Using an effective-medium approximation, we obtain a macroscopic electrical resistance that scales linearly in the magnetic field B applied perpendicular to the plane of the sample, at large B . The resistance also scales linearly in T at small B , and as T f (B /T ) at intermediate B . We consider implications for recent experiments reporting linear transverse magnetoresistance in the strange metal phases of the pnictides and cuprates.

  8. Proton-proton elastic scattering excitation functions at intermediate energies: Cross sections and analyzing powers

    CERN Document Server

    Hinterberger, F; Altmeier, M; Bauer, F; Bisplinghoff, J; Büsser, K; Busch, M; Colberg, T; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jonas, E; Krause, H; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuk, T; Meinerzhagen, A; Naehle, O; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Trelle, H J; Weise, E; Wellinghausen, A; Woller, K; Ziegler, R

    2000-01-01

    The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH sub 2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power A sub N and the polarization correlation parameters A sub N sub N , A sub S sub S and A sub S sub L are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent d sigma/d OMEGA and A sub N data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.

  9. Application of an excited state LDA exchange energy functional for the calculation of transition energy of atoms within time-independent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Md; Harbola, Manoj K, E-mail: sami@iitk.ac.i, E-mail: mkh@iitk.ac.i [Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India)

    2010-11-14

    Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.

  10. Application of an excited state LDA exchange energy functional for the calculation of transition energy of atoms within time-independent density functional theory

    International Nuclear Information System (INIS)

    Shamim, Md; Harbola, Manoj K

    2010-01-01

    Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.

  11. Relativistic Energy Density Functionals: Exotic modes of excitation

    International Nuclear Information System (INIS)

    Vretenar, D.; Paar, N.; Marketin, T.

    2008-01-01

    The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of β-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.

  12. Controlling Strange Attractor in Dynamics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A nonlinear system which exhibits a strange attractor is considered, with the goal of illustrating how to control the chaotic dynamical system and to obtain a desired attracting periodic orbit by the OGY control algorithm.

  13. Strange mesonic transition form factor

    International Nuclear Information System (INIS)

    Goity, J.L.; Musolf, M.J.

    1996-01-01

    The strange-quark vector current ρ-to-π meson transition form factor is computed at one-loop order using strange meson intermediate states. A comparison is made with a φ-meson dominance model estimate. We find that one-loop contributions are comparable in magnitude to those predicted by φ-meson dominance. It is possible that the one-loop contribution can make the matrix element as large as those of the electromagnetic current mediating vector meson radiative decays. However, due to the quadratic dependence of the one-loop results on the hadronic form factor cutoff mass, a large uncertainty in the estimate of the loops is unavoidable. These results indicate that non-nucleonic strange quarks could contribute appreciable in moderate-parallel Q 2 parallel parity-violating electron-nucleus scattering measurements aimed at probing the strange-quark content of the nucleon. copyright 1996 The American Physical Society

  14. Theoretical Issues in Strangeness Production

    International Nuclear Information System (INIS)

    Laget, Jean-Marc

    2000-01-01

    After pioneering works on hypernuclei, strangeness production mechanisms have been studied in hadron collisions and photoreactions in the sixties. Recent experiments at SATURNE and COSY, in the hadronic sector, as well as ELSA and JLab, in the electromagnetic sector, have confirmed our basic ideas on the reaction mechanisms. In the near future, strangeness production at JLab, HERMES and COMPASS may prove to be a powerful tool to study hadronic matter

  15. Excitation functions of radionuclides produced by proton induced reactions on gadolinium targets

    International Nuclear Information System (INIS)

    Challana, M.B.; Comsana, M.N.H.; Moawadb, G.S.; Abou-Zeid, M.A.

    2008-01-01

    Cross section study for proton induced reaction on natural Gadolinium targets were performed. Excitation functions for the reactions n atGd(p,x) 152m+g , 154m,154g Tb from threshold up to E p = 18 MeV have been measured employing the stacked foil activation technique, and using high resolution HPGe gamma spectrometry. Utilizing the simultaneous measurement of the excitation function of n atCu(p,x) 62 Zn, n atCu(p,x) 63 Zn, and n atCu(p,x) 65 Zn as monitor reactions. The theoretical analysis of the excitation functions has been done employing both ALICE-91 and EMPIRE-II codes. In general, theoretical calculations agree well with the experimental data. A significant contribution of pre-equilibrium component has been observed at these energies

  16. Strange particles from dense hadronic matter

    International Nuclear Information System (INIS)

    Rafelski, J.; Letessier, J.; Tounsi, A.

    1996-01-01

    After a brief survey of the remarkable accomplishments of the current heavy ion collision experiments up to 200A GeV, we address in depth the role of strange particle production in the search for new phases of matter in these collisions. In particular, we show that the observed enhancement pattern of otherwise rarely produced multistrange antibaryons can be consistently explained assuming color deconfinement in a localized, rapidly disintegrating hadronic source. We develop the theoretical description of this source, and in particular study QCD based processes of strangeness production in the deconfined, thermal quark-gluon plasma phase, allowing for approach to chemical equilibrium and dynamical evolution. We also address thermal charm production. Using a rapid hadronization model we obtain final state particle yields, providing detailed theoretical predictions about strange particle spectra and yields as functions of heavy ion energy. Our presentation is comprehensive and self contained: we introduce the procedures used in data interpretation in considerable detail, discuss the particular importance of selected experimental results, and show how they impact the theoretical developments. (author)

  17. Remeasurement and compilation of excitation function of proton induced reactions on iron for activation techniques

    International Nuclear Information System (INIS)

    Takacs, S.; Vasvary, L.; Tarkanyi, F.

    1994-01-01

    Excitation functions of proton induced reactions on nat Fe(p, xn) 56 Co have been remeasured in the energy region up to 18 MeV using stacked foil technique and standard high resolution gamma-ray spectrometry at the Debrecen MGC-20E cyclotron. Compilation of the available data measured between 1959 and 1993 has been made. The corresponding excitation functions have been reviewed, critical comparison of all the available data was done to obtain the most accurate data set. The feasibility of the evaluated data set was checked by reproducing experimental calibration curves for TLA by calculation. (orig.)

  18. Measurement and analysis of excitation functions in (α,np) reactions on 128,130Te

    International Nuclear Information System (INIS)

    Singh, B.P.; Sankaracharyulu, M.G.V.; Ansari, M.A.; Prasad, R.; Bhardwaj, H.D.

    1992-02-01

    Excitation functions for the reactions 128 Te(α,np) 130 I, 130 Te(α,np) 132 I and 130 Te(α,np) 132m I have been measured using stacked foil technique and have also been calculated using statistical model with and without the inclusion of pre-equilibrium emission. As expected, inclusion of pre-equilibrium emission in compound nucleus calculations agree well with the experimental excitation functions. The pre-equilibrium fraction has been found to be energy and target mass number dependent. (author). 37 refs, 7 figs, 3 tabs

  19. Development of the system for excitation function automatic measurement of nuclear reactions

    International Nuclear Information System (INIS)

    Sapozhnikov, A.B.

    2004-01-01

    Full text: The resonance nuclear reaction method is applied at the tandem accelerator UKP-2-1 to determinate films thickness and obtain light element depth distribution. The system for automatic measurement of the nuclear reaction excitation curve has been developed. It allowed to obtain an excitation function of nuclear reaction using continuous changing potential of the target with energy step of 6 eV. Saw-tooth voltage with amplitude up to 6 kV from the block of scanning beam is fed to a target. The amplitude is determined by constant voltage from the scanning beam block control. Nal(Tl) detector detects gamma quanta - the products of a nuclear reaction and transforms they in voltage impulses. The impulses through the amplifier income in the single-channel analyzer which forms impulses to start the analog-to-digital converter. The value of saw-tooth voltage corresponding to the moment of gamma quantum detection is read by the analog-to-digital converter, where it is transformed to digital code and transmitted to the computer. The computer program has been developed to control the process of accumulation of excitation function. The dependence a detected γ-quanta yield from a target potential is automatically plotted by the program. This dependence corresponds to the nuclear reaction excitation function. If scanning amplitude is not enough in order to scan need depth of a sample, an operator increases energy of the proton beam changing high voltage potential of the terminal up 3 keV and measures the nuclear reaction excitation function with the new energy. This procedure can be repeated some times. After that 'sewing' of excitation functions is carried out by the program under the hypothesis that nuclear reaction yield in last points be identical

  20. Halo structure of strange particles in nuclei

    International Nuclear Information System (INIS)

    Akaishi, Yoshinori; Yamazaki, Toshimitsu.

    1997-01-01

    Some characteristic behaviors of hyperons in nuclei which have recently been revealed experimentally and theoretically are discussed with the emphasis on the repulsive part of the hyperon-nucleus interaction. The observed Σ 4 He nucleus is a bound state with J π = 0 + and T ≅ 1/2. Its nucleus-Σ potential derived from a realistic ΣN interaction is characterized by inner repulsion and a strong Lane term, which play important roles in forming the Σ-hypernuclear bound state. In 208 Pb a typical Coulomb-assisted bound state is expected, where Σ is trapped in the surface region by the nucleus-Σ potential with the aid of Coulomb and centrifugal interactions. In the double-strangeness (S=-2) sector, there is a possibility that the lightest double-Λ hypernucleus ΛΛ 4 H is abundantly populated by stopping Ξ - on 4 He. Its formation branching amounts to about 15%. A stopped Ξ - on 9 Be will also produce efficiently a variety of double-Λ hyperfragments. Discrete spectra of weak-decay pions from the fragments will provide a means of mass spectroscopy of double-Λ hypernuclei. In the S=-2 five-body system an excited state Ξ 5 H is predicted to appear with 'strangeness halo' and the ground state ΛΛ 5 H with almost pure ΛΛ component. (author)

  1. Medium effects in strange quark matter and strange stars

    International Nuclear Information System (INIS)

    Schertler, K.; Greiner, C.; Thoma, M.H.

    1997-01-01

    We investigate the properties of strange quark matter at zero temperature including medium effects. The quarks are considered as quasiparticles which acquire an effective mass generated by the interaction with the other quarks of the dense system. The effective quark masses are derived from the zero momentum limit of the dispersion relations following from an effective quark propagator obtained from resumming one-loop self-energy diagrams in the hard dense loop approximation. This leads to a thermodynamic self-consistent description of strange quark matter as an ideal Fermi gas of quasiparticles. Within this approach we find that medium effects reduce the overall binding energy with respect to 56 Fe of strange quark matter. For typical values of the strong coupling constant (α s >or∼1) strange quark matter is not absolutely stable. The application to pure strange quark matter stars shows that medium effects have, nevertheless, no impact on the mass-radius relation of the stars. However, a phase transition to hadronic matter at the surface of the stars becomes more likely. (orig.)

  2. Analysis of Real Ship Rolling Dynamics under Wave Excitement Force Composed of Sums of Cosine Functions

    International Nuclear Information System (INIS)

    Zhang, Y. S.; Cai, F.; Xu, W. M.

    2011-01-01

    The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.

  3. Operational production of Geodetic Excitation Functions from EOP estimated values at ASI-CGS

    Science.gov (United States)

    Sciarretta, C.; Luceri, V.; Bianco, G.

    2009-04-01

    ASI-CGS is routinely providing geodetic excitation functions from its own estimated EOP values (at present SLR and VLBI; the current use of GPS EOP's is also planned as soon as this product will be fully operational) on the ASI geodetic web site (http://geodaf.mt.asi.it). This product has been generated and monitored (for ASI internal use only) in a long pre-operational phase (more than two years), including validation and testing. The daily geodetic excitation functions are now weekly updated along with the operational ASI SLR and VLBI EOP solutions and compared, whenever possible, with the atmospheric excitation functions available at the IERS SBAAM, under the IB and not-IB assumption, including the "wind" term. The work will present the available estimated geodetic function time series and its comparison with the relevant atmospheric excitation functions, deriving quantitative indicators on the quality of the estimates. The similarities as well as the discrepancies among the atmospheric and geodetic series will be analysed and commented, evaluating in particular the degree of correlation among the two estimated time series and the likelihood of a linear dependence hypothesis.

  4. Production of excited charmed mesons at LEP

    CERN Document Server

    Abbaneo, D

    2000-01-01

    Studies od the production of orbitally excited charmed and charmed strange mesons in e+e- collisions, performed by the LEP collaborations are reviewed. Measurements of the production rates of orbitally excited charmed mesons in semileptonic b decays are presented. Searches for charmed meson radial excitations are also briefly discussed.

  5. Tsunami excitation by inland/coastal earthquakes: the Green function approach

    Directory of Open Access Journals (Sweden)

    T. B. Yanovskaya

    2003-01-01

    Full Text Available In the framework of the linear theory, the representation theorem is derived for an incompressible liquid layer with a boundary of arbitrary shape and in a homogeneous gravity field. In addition, the asymptotic representation for the Green function, in a layer of constant thickness is obtained. The validity of the approach for the calculation of the tsunami wavefield based on the Green function technique is verified comparing the results with those obtained from the modal theory, for a liquid layer of infinite horizontal dimensions. The Green function approach is preferable for the estimation of the excitation spectra, since in the case of an infinite liquid layer it leads to simple analytical expressions. From this analysis it is easy to describe the peculiarities of tsunami excitation by different sources. The method is extended to the excitation of tsunami in a semiinfinite layer with a sloping boundary. Numerical modelling of the tsunami wavefield, excited by point sources at different distances from the coastline, shows that when the source is located at a distance from the coastline equal or larger than the source depth, the shore presence does not affect the excitation of the tsunami. When the source is moved towards thecoastline, the low frequency content in the excitation spectrum ecreases, while the high frequencies content increases dramatically. The maximum of the excitation spectra from inland sources, located at a distance from the shore like the source depth, becomes less than 10% of that radiated if the same source is located in the open ocean. The effect of the finiteness of the source is also studied and the excitation spectrum is obtained by integration over the fault area. Numerical modelling of the excitation spectra for different source models shows that, for a given seismic moment, the spectral level, as well as the maximum value of the spectra, decreases with increasing fault size. When the sources are located in the

  6. Iodine (p,n) and (d,2n) excitation function measurements

    International Nuclear Information System (INIS)

    West, H.I. Jr.; Nuckolls, R.M.; Mustafa, M.G.; Lanier, R.G.

    1991-01-01

    We have measured the nuclear excitation functions for the reactions 127 I (p,n) 127 Xe and 127 I(d,2n) 127 Xe. These results are being used in the interpretation of data obtained from nuclear test diagnostics. 15 refs., 3 figs., 3 tabs

  7. Calculation of excitation functions of the 54, 56, 57, 58 Fe (p, n ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 83; Issue 4. Calculation of excitation functions of the 54,56,57 ... Proton-induced reaction cross-sections provide clues to understand the nuclear structure and offers a good testing ground for ideas about nuclear forces. In addition, complete information in this field is ...

  8. Excitation functions for deuterium-induced reactions on 194Pt near the coulomb barrier

    Czech Academy of Sciences Publication Activity Database

    Kulko, A. A.; Skobelev, N. K.; Kroha, Václav; Penionzhkevich, Y. E.; Mrázek, Jaromír; Burjan, Václav; Hons, Zdeněk; Šimečková, Eva; Piskoř, Štěpán; Kugler, Andrej; Demekhina, N. A.; Sobolev, Yu. G.; Chuvilskaya, T. V.; Shirokova, K.; Kuterbekov, K.

    2012-01-01

    Roč. 9, 6-7 (2012), s. 502-507 ISSN 1547-4771 R&D Projects: GA MŠk LA08002 Institutional support: RVO:61389005 Keywords : nucelar reactions * excitation functions * charged particle activation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  9. Measurement and analysis of excitation functions in 20Ne + 27Al system

    International Nuclear Information System (INIS)

    Pachouri, Dipti; Singh, D.; Ali, R.; Afzal Ansari, M.; Rashid, M.H.

    2008-01-01

    In the present work, the excitation functions (EFs) for radioactive residues produced in the interaction of 20 Ne ion with 27 Al have been measured in order to study the reaction dynamics, particularly in the low mass region using the off-line γ-ray measurement activation technique for bombarding energies below 150 MeV

  10. Strange matter in compact stars

    Science.gov (United States)

    Klähn, Thomas; Blaschke, David B.

    2018-02-01

    We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations) remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  11. Strange matter in compact stars

    Directory of Open Access Journals (Sweden)

    Klähn Thomas

    2018-01-01

    Full Text Available We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  12. Strangeness photoproduction on the deuterium target

    NARCIS (Netherlands)

    Shende, Sugat Vyankatesh

    2007-01-01

    More information on the nucleon excitation function can be gained by studying the photoproduction experiments. In these experiments, the nucleon inside the nucleous is excited by shooting a high energy photon beam. The excited spectrum of the nucleon is then studied by measuring the energy and

  13. Neutrino dimuon production and the strangeness asymmetry of the nucleon

    International Nuclear Information System (INIS)

    Olness, F.; Nadolsky, P.; Pumplin, J.; Stump, D.; Huston, J.; Tung, W.K.; Lai, H.L.; Kretzer, S.; Owens, J.F.

    2005-01-01

    We have performed the first global QCD analysis to include the CCFR and NuTeV dimuon data, which provide direct constraints on the strange and antistrange parton distributions, s(x) and anti s(x). To explore the strangeness sector, we adopt a general parametrization of the non-perturbative s(x), anti s(x) functions satisfying basic QCD requirements. We find that the strangeness asymmetry, as represented by the momentum integral [S - ]≡∫ 0 1 x [s(x)- anti s(x)] dx, is sensitive to the dimuon data provided the theoretical QCD constraints are enforced. We use the Lagrange multiplier method to probe the quality of the global fit as a function of [S - ] and find -0.001 - ] < 0.004. Representative parton distribution sets spanning this range are given. Comparisons with previous work are made. (orig.)

  14. Measurement of fusion excitation functions in the system {sup 78}Kr + {sup 100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Jiang, C.L.; Esbensen, H. [and others

    1995-08-01

    Earlier measurements of fusion reactions involving {sup 78}Kr and {sup 100}Mo projectiles and Ni-targets showed surprisingly large fusion yields at low energies which could not be explained by coupled-channels calculations. The main difference to similar measurements involving the neighboring {sup 86}Kr and {sup 92}Mo isotopes was the different slope of the excitation functions at sub-barrier energies. An analysis of a variety of experiments showed a correlation between the nuclear structure and the slope of the excitation functions, with the {open_quotes}soft{close_quotes} transitional nuclei ({sup 78}Kr, {sup 100}Mo) exhibiting shallower slopes than the {open_quotes}stiff{close_quotes} nuclei ({sup 86}Kr, {sup 92}Mo) measured at the same energies with respect to the barrier. In this experiment we studied the fusion excitation function involving two transitional nuclei {sup 78}Kr + {sup 100}Mo. The measurements were performed with {sup 78}Kr beams from the ECR source at energies between 285-370 MeV. Separation of the evaporation nucleus from the elastically scattered particles was achieved by measuring time-of-flight and magnetic rigidity in the gas-filled spectrograph. The data were completely analyzed. A comparison of the cross sections with measurements for the system {sup 86}Kr + {sup 92}Mo populating the same compound nucleus {sup 178}Pt. It shows good agreement at the highest energies, but quite different falloffs of the excitation functions toward lower energies. Coupled-channels calculations, including multi-phonon excitation for the two systems, are being performed.

  15. Production of strange particles in hadronization processes

    International Nuclear Information System (INIS)

    Hofmann, W.

    1987-08-01

    Strange particles provide an important tool for the study of the color confinement mechanisms involved in hadronization processes. We review data on inclusive strange-particle production and on correlations between strange particles in high-energy reactions, and discuss phenomenological models for parton fragmentation. 58 refs., 24 figs

  16. Strangeness production at high baryon density

    Energy Technology Data Exchange (ETDEWEB)

    Satz, Helmut [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany)

    2016-08-15

    We propose to measure strange and non-strange hadron abundances at NICA in both AA and pp collisions, in order to test the validity range and possible extension schemes for present explanations of the energy and collision dependence of strange particle suppression. (orig.)

  17. Strange matter and Big Bang helium synthesis

    International Nuclear Information System (INIS)

    Madsen, J.; Riisager, K.

    1985-01-01

    Stable strange quark matter produced in the QCD phase transition in the early universe will trap neutrons and repel protons, thus reducing primordial helium production, Ysub(p). For reasonable values of Ysub(p), the radius of strange droplets must exceed 10 -6 cm if strange matter shall solve the dark-matter problem without spoiling Big Bang helium synthesis. (orig.)

  18. Excitation spectra and wave functions of quasiparticle bound states in bilayer Rashba superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Yoichi, E-mail: higashiyoichi@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Nagai, Yuki [CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Yoshida, Tomohiro [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Kato, Masaru [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Yanase, Youichi [Department of Physics, Niigata University, Niigata 950-2181 (Japan)

    2015-11-15

    Highlights: • We focus on the pair-density wave state in bilayer Rashba superconductors. • The zero energy Bogoliubov wave functions are localized at the edge and vortex core. • We investigate the excitation spectra of edge and vortex bound states. - Abstract: We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair-density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical value.

  19. Strange Hadronic Matter in a Chiral Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Liang; SONG Hong-Qiu; WANG Ping; SU Ru-Keng

    2000-01-01

    The strange hadronic matter with nucleon, Λ-hyperon and E-hyperon is studied by using a chiral symmetry model in a mean-field approximation. The saturation properties and stabilities of the strange hadronic matter are discussed. The result indicates a quite large strangeness fraction (fs) region where the strange hadronic matter is stable against particle emission. In the large fs region, the component dominates, resulting in a deep minimum in the curve of the binding energy per baryon EB versus the strangeness fraction fs with (EB, fs) -~ (-26.0MeV, 1.23).

  20. Charm and strange quark contributions to the proton structure

    Energy Technology Data Exchange (ETDEWEB)

    Torokoff, K

    1999-02-01

    The possibility to have charm and strange quarks as quantum mechanical fluctuations in the proton wave function is investigated based on a model for non-perturbative QCD dynamics. Both hadron and parton basis are examined. A scheme for energy fluctuations is constructed and compared with explicit energy-momentum conservation. Resulting momentum distributions for charm and strange quarks in the proton are derived at the starting scale Q{sub 0} for the perturbative QCD evolution. Kinematical constraints are found to be important when comparing to the `intrinsic charm` model 20 refs, 30 figs, 9 tabs

  1. Charm and strange quark contributions to the proton structure

    International Nuclear Information System (INIS)

    Torokoff, K.

    1999-02-01

    The possibility to have charm and strange quarks as quantum mechanical fluctuations in the proton wave function is investigated based on a model for non-perturbative QCD dynamics. Both hadron and parton basis are examined. A scheme for energy fluctuations is constructed and compared with explicit energy-momentum conservation. Resulting momentum distributions for charm and strange quarks in the proton are derived at the starting scale Q 0 for the perturbative QCD evolution. Kinematical constraints are found to be important when comparing to the 'intrinsic charm' model

  2. Torsional oscillations of strange stars

    Directory of Open Access Journals (Sweden)

    Mannarelli Massimo

    2014-01-01

    Full Text Available Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.

  3. A strange cat in Dublin

    Science.gov (United States)

    O'Raifeartaigh, Cormac

    2012-11-01

    Not many life stories in physics involve Nazis, illicit sex, a strange cat and the genetic code. Thus, a new biography of the great Austrian physicist Erwin Schrödinger is always of interest, and with Erwin Schrödinger and the Quantum Revolution, veteran science writer John Gribbin does not disappoint.

  4. Strange matter and dihyperon physics

    International Nuclear Information System (INIS)

    Barnes, P.D.

    1986-01-01

    A short review of the properties of Strange Matter is followed by a discussion of dihyperon physics. Calculations of the mass, lifetime and decay modes of the H particle are discussed, along with a review of experiments designed to search for the H Dibaryon. 32 refs., 15 figs

  5. Will strangeness win the prize?

    Energy Technology Data Exchange (ETDEWEB)

    Kapusta, Joseph I. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States). E-mail: kapusta at physics.spa.umn.edu

    2001-03-01

    Five groups have made predictions involving the production of strange hadrons and entered them in a competition set up by Barbara Jacak, Xin-Nian Wang and myself in the spring of 1998 for the purpose of comparing with first-year physics results from RHIC. These predictions are summarized and evaluated. (author)

  6. Strange-quark-matter stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-11-01

    We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab

  7. Wavelet based comparison of high frequency oscillations in the geodetic and fluid excitation functions of polar motion

    Science.gov (United States)

    Kosek, W.; Popinski, W.; Niedzielski, T.

    2011-10-01

    It has been already shown that short period oscillations in polar motion, with periods less than 100 days, are very chaotic and are responsible for increase in short-term prediction errors of pole coordinates data. The wavelet technique enables to compare the geodetic and fluid excitation functions in the high frequency band in many different ways, e.g. by looking at the semblance function. The waveletbased semblance filtering enables determination the common signal in both geodetic and fluid excitation time series. In this paper the considered fluid excitation functions consist of the atmospheric, oceanic and land hydrology excitation functions from ECMWF atmospheric data produced by IERS Associated Product Centre Deutsches GeoForschungsZentrum, Potsdam. The geodetic excitation functions have been computed from the combined IERS pole coordinates data.

  8. Generating functions and stability study of multivariate self-excited epidemic processes

    Science.gov (United States)

    Saichev, A. I.; Sornette, D.

    2011-09-01

    We present a stability study of the class of multivariate self-excited Hawkes point processes, that can model natural and social systems, including earthquakes, epileptic seizures and the dynamics of neuron assemblies, bursts of exchanges in social communities, interactions between Internet bloggers, bank network fragility and cascading of failures, national sovereign default contagion, and so on. We present the general theory of multivariate generating functions to derive the number of events over all generations of various types that are triggered by a mother event of a given type. We obtain the stability domains of various systems, as a function of the topological structure of the mutual excitations across different event types. We find that mutual triggering tends to provide a significant extension of the stability (or subcritical) domain compared with the case where event types are decoupled, that is, when an event of a given type can only trigger events of the same type.

  9. Excitation functions and production of arsenic radioisotopes for environmental toxicology and biomedical purposes

    International Nuclear Information System (INIS)

    Basile, D.; Birattari, C.; Bonard, M.; Salomone, A.; Goetz, L.; Sabbioni, E.

    1981-01-01

    Many arsenic radionuclides have come to be used as tracers in biology and in the study of environmental pollution of both water and soil. In nuclear medicine, radioactive 74 As has been employed as a positron emitter for the localization of brain tumors, cerebral occlusive vascular lesions, arterious-venous malformations, etc. The aim of the work described was to study the excitation functions for the production of the arsenic radioisotopes from targets of natural germanium via nuclear reactions (p, xn). (author)

  10. Two-photon excitation of porphyrin-functionalized porous silicon nanoparticles for photodynamic therapy.

    Science.gov (United States)

    Secret, Emilie; Maynadier, Marie; Gallud, Audrey; Chaix, Arnaud; Bouffard, Elise; Gary-Bobo, Magali; Marcotte, Nathalie; Mongin, Olivier; El Cheikh, Khaled; Hugues, Vincent; Auffan, Mélanie; Frochot, Céline; Morère, Alain; Maillard, Philippe; Blanchard-Desce, Mireille; Sailor, Michael J; Garcia, Marcel; Durand, Jean-Olivier; Cunin, Frédérique

    2014-12-03

    Porous silicon nanoparticles (pSiNPs) act as a sensitizer for the 2-photon excitation of a pendant porphyrin using NIR laser light, for imaging and photodynamic therapy. Mannose-functionalized pSiNPs can be vectorized to MCF-7 human breast cancer cells through a mannose receptor-mediated endocytosis mechanism to provide a 3-fold enhancement of the 2-photon PDT effect. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Excitation functions for alpha-particle-induced reactions with natural antimony

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. L.; Shah, D. J.; Mukherjee, S.; Chintalapudi, S. N. [Vadodara, M. S. Univ. of Baroda (India). Fac. of Science. Dept. of Physics

    1997-07-01

    Stacked-foil activation technique and {gamma} - rays spectroscopy were used for the determination of the excitation functions of the {sup 121}Sb [({alpha}, n); ({alpha}, 2n); ({alpha},4 n); ({alpha}, p3n); ({alpha}, {alpha}n)]; and Sb [({alpha}, 3n); ({alpha}, 4n); ({alpha}, {alpha}3n)] reactions. The excitation functions for the production of {sup 124}I, {sup 123}I, {sup 121}I, {sup 121}Te and {sup 120}Sb were reported up to 50 MeV. The reactions {sup 121} Sb ({alpha}, {alpha}n) + {sup 123} Sb ({alpha}, {alpha}3n) are measured for the first time. Since natural antimony used as the target has two odd mass stable isotopes of abundances 57.3 % ({sup 121}Sb), their activation in some cases gives the same product nucleus through different reaction channels but with very different Q-values. In such cases, the individual reaction cross-sections are separated with the help of theoretical cross-sections. The experimental cross-sections were compared with the predictions based on hybrid model of Blann. The high-energy part of the excitation functions are dominated by the pre-equilibrium reaction mechanism and the initial exciton number n{sub 0} = 4 (4 p 0 h) gives fairly good agreement with presently measured results.

  12. Influence of the excited states on the electron-energy distribution function in low-pressure microwave argon plasmas

    International Nuclear Information System (INIS)

    Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.

    2005-01-01

    In this work the influence of the excited states on the electron-energy distribution function has been determined for an argon microwave discharge at low pressure. A collisional-radiative model of argon has been developed taking into account the most recent experimental and theoretical values of argon-electron-impact excitation cross sections. The model has been solved along with the electron Boltzmann equation in order to study the influence of the inelastic collisions from the argon excited states on the electron-energy distribution function. Results show that under certain conditions the excited states can play an important role in determining the shape of the distribution function and the mean kinetic energy of the electrons, deplecting the high-energy tail due to inelastic processes from the excited states, especially from the 4s excited configuration. It has been found that from the populations of the excited states an excitation temperature can be defined. This excitation temperature, which can be experimentally determined by optical emission spectroscopy, is lower than the electron kinetic temperature obtained from the electron-energy distribution function

  13. Strangeness in hot and dense nuclear matter

    International Nuclear Information System (INIS)

    Nappi, E.

    2009-01-01

    Ultra-relativistic heavy-ion collisions are believed to provide the extreme conditions of energy densities able to lead to a transition to a short-lived state, called Quark-Gluon Plasma (QGP), where the quarks are no longer bound inside hadrons. The studies performed so far, formerly at SPS (CERN) and later at RHIC (BNL) allowed to achieve a multitude of crucial results consistent with the hypothesis that a new phase of the QCD matter has been indeed created. However, the emerging picture is that of the formation of a strongly interacting medium with negligibly small viscosity, a perfect liquid, rather than the ideal perturbative QCD parton-gas predicted by most theorists. The head-on collision between lead nuclei at the unprecedented energies of the forthcoming Large Hadron Collider (LHC) at CERN, due to start in 2008, will allow to measure the properties of compressed and excited nuclear matter at even higher initial densities and temperatures, far above the predicted QCD phase transition point. The longer duration of the quark-gluon plasma phase and the much more abundant production of hard probes, which depend much less on details of the later hadronic phase, will likely provide a consistent and uncontroversial experimental evidence of the QGP formation. Among the signals what witness the charge in the nature of the state of nuclear matter, the chemical equilibrium value of the strangeness plays a key role since it is directly sensitive to the matter properties and provides information on the link between the partonic and the hadronic phases. The aim of this course is to overview the underlying goals, the current status and the prospect of the physics of the nucleus-nucleus collisions at ultrarelativistic energies. Among the experimental methods adopted to investigate the challenging signatures of the QGP formation, emphasis on those related to the strangeness flavour will be given.

  14. Excited-State N2 Dissociation Pathway on Fe-Functionalized Au.

    Science.gov (United States)

    Martirez, John Mark P; Carter, Emily A

    2017-03-29

    Localized surface plasmon resonances (LSPRs) offer the possibility of light-activated chemical catalysis on surfaces of strongly plasmonic metal nanoparticles. This technology relies on lower-barrier bond formation and/or dissociation routes made available through energy transfer following the eventual decay of LSPRs. The coupling between these decay processes and a chemical trajectory (nuclear motion, charge-transfer, intersystem crossing, etc.) dictates the availability of these alternative (possibly lower barrier) excited-state channels. The Haber-Bosch method of NH 3 synthesis from N 2 and H 2 is notoriously energy intensive. This is due to the difficulty of N 2 dissociation despite the overall reaction being thermodynamically favorable at ambient temperatures and pressures. LSPRs may provide means to improve the kinetics of N 2 dissociation via induced resonance electronic excitation. In this work, we calculate, via embedded n-electron valence second-order perturbation theory within the density functional embedding theory, the excited-state potential energy surfaces for dissociation of N 2 on an Fe-doped Au(111) surface. This metal alloy may take advantage simultaneously of the strong LSPR of Au and the catalytic activity of Fe toward N 2 dissociation. We find the ground-state dissociation activation energy to be 4.74 eV/N 2 , with Fe as the active site on the surface. Consecutive resonance energy transfers (RETs) may be accessed due to the availability of many electronically excited states with intermediate energies arising from the metal surface that may couple to states induced by the Fe-dopant and the adsorbate molecule, and crossing between excited states may effectively lower the dissociation barrier to 1.33 eV. Our work illustrates that large energetic barriers, prohibitive toward chemical reaction, may be overcome through multiple RETs facilitating an otherwise difficult chemical process.

  15. New results on mesons containing strange quarks

    International Nuclear Information System (INIS)

    Aston, D.; Awaji, N.; Bienz, T.

    1987-01-01

    Recent results of strange and strangeonium mesons are presented. The data come from a high sensitivity study (4.1 ev/nb) of K - p interactions at 11 GeV/c using the LASS spectrometer at SLAC. The complete leading orbitally-excited K* series up through J/sup P/ = 5 - and a substantial number of the expected underlying states are observed decaying into K - π + , anti K 3 0 π + π - , and K eta final states, and new measurements are made of their masses, widths, and branching ratios. Production of strangeonium states via hypercharge exchange is observed into K 3 0 K 3 0 , K - K + , and K 3 0 K +- π -+ final states. The leading orbitally-excited phi series through J/sup P/ = 3 - is clearly seen and evidence is presented for additional high spin structure in the 2.2 GeV/c 2 region. No f 2 (1720) is observed. The K 3 0 K +- π -+ spectrum is dominated by 1 + (K* anti K + anti K* K) production in the region below 1.6 GeV/c 2 . These results are compared with data on the same systems produced by different production mechanisms. 12 refs., 28 figs

  16. Excited State Contributions to the Heavy Baryon Fragmentation Functions in a Quark-Diquark Model

    CERN Document Server

    Adamov, A D; Goldstein, Gary R.

    2001-01-01

    Spin dependent fragmentation functions for heavy flavor quarks to fragment into heavy baryons are calculated in a quark-diquark model. The production of intermediate spin 1/2 and 3/2 excited states is explicity included. The resulting $\\Lambda_b$ production rate and polarization at LEP energies are in agreement with experiment. The $\\Lambda_c$ and $\\Xi_c$ functions are also obtained. The spin independent $f_1(z)$ is compared to data. The integrated values for production rates agree with the data.

  17. Constraining nuclear photon strength functions by the decay properties of photo-excited states

    Science.gov (United States)

    Isaak, J.; Savran, D.; Krtička, M.; Ahmed, M. W.; Beller, J.; Fiori, E.; Glorius, J.; Kelley, J. H.; Löher, B.; Pietralla, N.; Romig, C.; Rusev, G.; Scheck, M.; Schnorrenberger, L.; Silva, J.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zweidinger, M.

    2013-12-01

    A new approach for constraining the low-energy part of the electric dipole Photon Strength Function (E1-PSF) is presented. Experiments at the Darmstadt High-Intensity Photon Setup and the High Intensity γ→-Ray Source have been performed to investigate the decay properties of 130Te between 5.50 and 8.15 MeV excitation energy. In particular, the average γ-ray branching ratio to the ground state and the population intensity of low-lying excited states have been studied. A comparison to the statistical model shows that the latter is sensitive to the low-energy behavior of the E1-PSF, while the average ground state branching ratio cannot be described by the statistical model in the energy range between 5.5 and 6.5 MeV.

  18. Performance of Popular XC-Functionals for the Description of Excitation Energies in GFP-Like Chromophore Models

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard; Rocha-Rinza, Tomás

    2012-01-01

    this task. We present an evaluation of the performance of commonly used XC-functionals for the prediction of excitation energies of GFP-like chromophores. In particular, we have considered the TD-DFT vertical excitation energies of chromophores displaying different charge states. We compare the quality...

  19. Soft X-ray excited optical luminescence from functional organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Sham, T.K., E-mail: tsham@uwo.ca

    2015-10-01

    Highlights: • Many functional organic materials convert X-ray energy into visible light. • The X-ray induced luminescence (XEOL) across an absorption edge can be site and excitation channel specific. • XEOL is composition, morphology, size and crystallinity dependent. • XEOL using the time structure of a synchrotron can reveal the decay and energy transfer dynamics of the sample. • The combined use of XEOL and XAS in the analysis of functional organic materials is illustrated. - Abstract: This brief report reviews some of the recent findings in the study of synchrotron based X-ray excited optical luminescence (XEOL) from representative organic light emitting device (OLED) and related functional organic materials. The systems of interest include Alq{sub 3}, aluminium tris(8-hydroxylquinoline); Ru(bipy){sub 3}{sup 2+}, tris-(2,2-bipyridine) ruthenium(II); Ir(bpy){sub 3}, tris(2-phenyl-bipyridine)iridium; PVK (poly(N-vinylcarbazole)) and [Au{sub 2}(dppe)(bipy)]{sup 2+}, a Au(I) polymer containing 1,2-bis(diphenylphosphino)ethane and the 4,40-bipyridyl ligands, as well as TBPe (2,5,8,11-tetra-tert-butylperylene) polyhedral crystals and fluorescein isothiocyanate (FITC) and FITC-labelled proteins. It is shown that tunable and pulsed X-rays from synchrotron light sources enable the detailed tracking of the optical properties of organic functional materials by monitoring the luminescence in both the energy and time domain as the excitation energy is scanned across an element-specific absorption edge. The use of XEOL and X-ray absorption spectroscopy (XAS) in materials analysis is illustrated.

  20. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States.

    Science.gov (United States)

    Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao

    2017-09-21

    To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.

  1. Strange exotic states and compact stars

    International Nuclear Information System (INIS)

    Sagert, Irina; Wietoska, Mirjam; Schaffner-Bielich, Juergen

    2006-01-01

    We discuss the possible appearance of strange exotic multi-quark states in the interiors of neutron stars and signals for the existence of strange quark matter in the cores of compact stars. We show how the in-medium properties of possible pentaquark states are constrained by pulsar mass measurements. The possibility of generating the observed large pulsar kick velocities by asymmetric emission of neutrinos from strange quark matter in magnetic fields is outlined

  2. Excitation functions for quasielastic transfer reactions induced with heavy ions in bismuth

    International Nuclear Information System (INIS)

    Gardes, D.; Bimbot, R.; Maison, J.; de Reilhac, L.; Rivet, M.F.; Fleury, A.; Hubert, F.; Llabador, Y.

    1978-01-01

    The excitation functions for the production of 210 Bi, 210 Po, /sup 207-211/At, and 211 Rn through quasielastic transfer reactions induced with heavy ions in 209 Bi have been measured. The corresponding reactions involved the transfer of one neutron, one proton, two charges, and three charges from projectile to target. The projectiles used were 12 C, 14 N, 16 O, 19 F, 20 Ne, 40 Ar, 40 Ca, 56 Fe, and 63 Cu. The experimental techniques involved target irradiations and off-line α and γ activity measurements. Chemical separations were used to solve specific problems. Careful measuremnts of incident energies and cross sections were performed close to the reaction thresholds. All excitation functions exhibit the typical features of quasielastic transfer reactions: a sharp increase at low energy, and a constant value at high incident energy. The position of the thresholds are strongly influenced by the energetics of the reaction: High cross sections are observed under the strong interaction barrier if the energy balance at the minimum distance of approach is positive. This balance is equal to the difference between the interaction potentials in the entrance and exit channels, corrected for the mass balance. The constant cross sections observed for the high energy part of a given excitation function are consistent with the assumption that the curve P (R) which represents the transfer probability versus the distance between the nucleus centers does not vary with incident energy. This assumption implies the constancy of the optimum distance of approach R/sub opt/, of the R window ΔR for which P (R) is significant, and of the magnitude of P (R). Moreover the data show that the high energy cross sections for one-proton transfer are independent of the projectile, while odd-even effects of the projectile atomic number Z on the two-charge transfer cross sections are observed for the lightest incident ions 14 N to 20 Ne

  3. Chiral symmetry and strangeness at SIS energies

    International Nuclear Information System (INIS)

    Lutz, M.F.M.

    2003-11-01

    In this talk we review the consequences of the chiral SU(3) symmetry for strangeness propagation in nuclear matter. Objects of crucial importance are the meson-baryon scattering amplitudes obtained within the chiral coupled-channel effective field theory. Results for antikaon and hyperon-resonance spectral functions in cold nuclear matter are presented and discussed. The importance of the Σ(1385) resonance for the subthreshold antikaon production in heavy-ion reaction at SIS is pointed out. The in-medium properties of the latter together with an antikaon spectral function based on chiral SU(3) dynamics suggest a significant enhancement of the π Λ → anti Κ N reaction in nuclear matter. (orig.)

  4. Excitation functions for some Ne induced reactions with Holmium: incomplete fusion vs complete fusion

    International Nuclear Information System (INIS)

    Agarwal, Avinash; Kumar, Munish; Sharma, Anjali; Rizvi, I.A.; Ahamad, Tauseef; Ghugre, S.S.; Sinha, A.K.; Chaubey, A.K.

    2010-01-01

    Reactions induced by 20 Ne are expected to be considerably more complex than those of 12 C, and 16 O. As a part of the ongoing program to understand CF and ICF reaction mechanisms, it is of great interest to see whether the same experimental technique yield similarly valuable information for 20 Ne induced reactions. In this present work an attempt has been made to measure the excitation functions for fifteen evaporation residues (ERs) identified in the interaction of 20 Ne + 165 Ho system in the energy range 4 -7 MeV/A

  5. Excitation functions for quasi-elastic transfer reactions induced with heavy ions in bismuth

    International Nuclear Information System (INIS)

    Gardes, D.; Bimbot, R.; Maison, J.; Reilhac, L. de; Rivet, M.F.; Fleury, A.; Hubert, F.; Llabador, Y.

    1977-01-01

    The excitation functions for the production of 210 Bi, 210 Po, sup(207-211)At and 211 Rn through quasi-elastic transfer reactions induced with heavy ions in 209 Bi have been measured. The corresponding reactions involved the transfer of one neutron, one proton, two and three charges from projectile to target. The projectiles used were 12 C, 14 N, 16 O, 19 F, 20 Ne, 40 Ca, 56 Fe and 63 Cu. The experimental techniques involved target irradiations and off-line α and γ activity measurements. Chemical separations were used to solve specific problems. Careful measurements of incident energies and cross sections were performed close to the reaction thresholds

  6. Quark Condensate in the Strange Matter

    Institute of Scientific and Technical Information of China (English)

    LU Chang-Fang; LU" Xiao-Fu

    2003-01-01

    In a nonlinear chiral SU(3) framework, we investigate the quark condensate in the strange matter including N, Σ, Ξ, and Λ, making use of chiral symmetry spontaneous breaking Lagrangian and mean-field approximation. The results show that the chiral symmetry is restored partially when the strange matter density increases and that 〈π→2〉 plays a very important role in the strange matter which may approach the constituents of the neutron stars. In addition, we can find that the strange matter density where the π-condensate emerges leads to the ratio of the nucleon number to baryon number.

  7. A search for parameters of universal sub-barrier fusion excitation function

    Energy Technology Data Exchange (ETDEWEB)

    Qu, W.W. [Medical College of Soochow University, School of Radiation Medicine and Protection, Soochow (China); Zhang, G.L. [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Wolski, R. [Henryk Niewodniczanski Institute of Nuclear Physics PAS, Cracow (Poland)

    2016-11-15

    Many fusion experimental data have been analyzed in terms of a simple universal function which could be used for predictions of fusion cross section below the barrier for arbitrary systems. Sub-barrier fusions based on the concept of Q -fusion value dependence were studied. It is attempted to parameterize the energy-reduced fusion excitation functions around the Coulomb barriers by an analytical phenomenological function. It was found that the speed of driving nuclei towards fusion is faster with the increase of mass asymmetry of colliding systems and those systems with a large difference of the ratio of neutrons to protons. However, a general trend with respect to total mass has not been observed. An exposition of more qualitative conclusions is hindered by apparent inconsistencies of measured fusion cross sections. (orig.)

  8. Assessment of oscillator strengths with multiconfigurational short-range density functional theory for electronic excitations in organic molecules

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan

    2017-01-01

    considered the large collection of organic molecules whose excited states were investigated with a range of electronic structure methods by Thiel et al. As a by-product of our calculations of oscillator strengths, we also obtain electronic excitation energies, which enable us to compare the performance......We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...

  9. Strangeness of the nucleon from lattice quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, Constantia [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center (CaSToRC); Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Constantinou, Martha; Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Dinter, Simon; Drach, Vincent [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, Giannis; Vaquero, Alejandro [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center (CaSToRC); Collaboration: ETM Collaboration

    2013-10-15

    We present a non-perturbative calculation of the strangeness of the nucleon y{sub N} within the framework of lattice QCD. This observable is known to be an important cornerstone to interpret results from direct dark matter detection experiments. We perform a lattice computation for y{sub N} with an analysis of systematic effects originating from discretization, finite size, chiral extrapolation and excited state effects leading to a value of y{sub N}=0.135(46) which turns out to be rather small. As a main result of our work, we demonstrate that the error for y{sub N} is dominated by systematic uncertainties.

  10. Excitation function of elastic $pp$ scattering from a unitarily extended Bialas-Bzdak model

    CERN Document Server

    Nemes, F.; Csanád, M.

    2015-01-01

    The Bialas-Bzdak model of elastic proton-proton scattering assumes a purely imaginary forward scattering amplitude, which consequently vanishes at the diffractive minima. We extended the model to arbitrarily large real parts in a way that constraints from unitarity are satisfied. The resulting model is able to describe elastic $pp$ scattering not only at the lower ISR energies but also at $\\sqrt{s}=$7~TeV in a statistically acceptable manner, both in the diffractive cone and in the region of the first diffractive minimum. The total cross-section as well as the differential cross-section of elastic proton-proton scattering is predicted for the future LHC energies of $\\sqrt{s}=$13, 14, 15~TeV and also to 28~TeV. A non-trivial, significantly non-exponential feature of the differential cross-section of elastic proton-proton scattering is analyzed and the excitation function of the non-exponential behavior is predicted. The excitation function of the shadow profiles is discussed and related to saturation at small ...

  11. Electromagnetic production of associated strangeness

    Energy Technology Data Exchange (ETDEWEB)

    David, J C [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee; Fayard, C; Lamot, G H [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; Saghai, B [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee

    1996-04-01

    A formalism, based on an isobaric approach using Feynman diagram techniques, which includes the nucleonic (spin {<=} 5/2), hyperonic (spin 1/2) and kaonic resonances, is developed. Using this formalism, a thorough investigation of electromagnetic strangeness processes is performed. A reaction mechanism, describing well enough the data, is found to include a reasonable number of baryonic resonances among a very large number of potential candidates. Predictions for the upcoming photoproduction polarization and electroproduction observables are presented, and their sensitivity to the phenomenological models ingredients are emphasized. (K.A.). 70 refs.; Submitted to Physical Review, C (US).

  12. Electromagnetic production of associated strangeness

    International Nuclear Information System (INIS)

    David, J.C.; CEA Centre d'Etudes de Saclay, 91 - Gif-sur-Yvette; Fayard, C.; Lamot, G.H.; Saghai, B.

    1996-04-01

    A formalism, based on an isobaric approach using Feynman diagram techniques, which includes the nucleonic (spin ≤ 5/2), hyperonic (spin 1/2) and kaonic resonances, is developed. Using this formalism, a thorough investigation of electromagnetic strangeness processes is performed. A reaction mechanism, describing well enough the data, is found to include a reasonable number of baryonic resonances among a very large number of potential candidates. Predictions for the upcoming photoproduction polarization and electroproduction observables are presented, and their sensitivity to the phenomenological models ingredients are emphasized. (K.A.)

  13. New strangeness results from HADES

    Czech Academy of Sciences Publication Activity Database

    Fabbietti, L.; Agakishiev, G.; Agodi, C.; Balanda, A.; Bellia, G.; Belver, D.; Belyaev, A.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Braun-Munzinger, P.; Cabanelas, P.; Castro, E.; Chernenko, S.; Christ, T.; Destefanis, M.; Díaz, J.; Dohrmann, F.; Dybczak, A.; Eberl, T.; Fateev, O.; Friese, J.; Frohlich, I.; Galatyuk, T.; Garzón, J.A.; Gernhäuser, R.; Gil, A.; Gilardi, C.; Golubeva, M.; Gonzalez-Diaz, D.; Grosse, E.; Guber, F.; Heilmann, M.; Hennino, T.; Holzman, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Kanaki, K.; Karavicheva, T.; Kirschner, D.; Koenig, I.; Koenig, W.; Kolb, B.W.; Kotte, R.; Kozuch, A.; Krása, Antonín; Křížek, Filip; Krücken, R.; Kühn, W.; Kugler, Andrej; Kurepin, A.; Lamas-Valverde, J.; Lang, S.; Lange, J.S.; Lapidus, K.; Lopes, L.; Maier, L.; Mangiarotti, A.; Marín, J.; Markert, J.; Metag, V.; Michalska, B.; Michel, J.; Mishra, D.; Moriniére, E.; Mousa, J.; Muntz, C.; Naumann, L.; Novotný, R.; Otwinowski, J.; Pachmayer, Y.C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Cavalcanti, T.P.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Roy-Stephan, M.; Rustamov, A.; Sadovsky, A.; Sailer, B.; Salabura, P.; Schmah, A.; Simon, R. S.; Sobolev, Yuri, G.; Spataro, S.; Spruck, B.; Strobele, H.; Stroth, J.; Sturm, C.; Sudol, M.; Tarantola, A.; Teilab, K.; Tlustý, Pavel; Traxler, M.; Trebacz, R.; Tsertos, H.; Veretenkin, I.; Wagner, Vladimír; Wen, H.; Wisniowski, M.; Wojcik, T.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.V.; Zhou, P.; Zumbruch, P.

    2009-01-01

    Roč. 36, č. 6 (2009), 064005/1-064005/12 ISSN 0954-3899. [12th International Conference on Strangeness in Quark Matter. Beijing, 05.10.2008-10.10.2008] R&D Projects: GA AV ČR IAA100480803; GA MŠk LC07050 Institutional research plan: CEZ:AV0Z10480505 Keywords : heavy-ion collisions * kaon production * sis energies Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.124, year: 2009

  14. Strangeness production with protons and pions

    International Nuclear Information System (INIS)

    Dover, C.B.

    1993-01-01

    We discuss the spectrum of physics questions related to strangeness which could be addressed with intense beams of protons and pions in the few GeV region. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hypernuclei in proton and pion-nucleus collisions, and spin phenomena in hypernuclei

  15. On the properties of strange quark matter

    International Nuclear Information System (INIS)

    Zhou Leming; Peng Guangxiong; Ning Pingzhi

    1999-01-01

    According to authors' recent studies, the authors derive a new mass formula for strange quarks at zero temperature. The authors apply it to investigating the properties of strange quark matter and obtain similar results to those in the MIT bag model. A different point in authors' results is that the variation of sound velocity with energy density becomes a little slower

  16. Strangeness fluctuations and MEMO production at FAIR

    International Nuclear Information System (INIS)

    Steinheimer, Jan; Mitrovski, Michael; Schuster, Tim; Petersen, Hannah; Bleicher, Marcus; Stoecker, Horst

    2009-01-01

    We apply a coupled transport-hydrodynamics model to discuss the production of multi-strange meta-stable objects in Pb + Pb reactions at the FAIR facility. In addition to making predictions for yields of these particles we are able to calculate particle dependent rapidity and momentum distributions. We argue that the FAIR energy regime is the optimal place to search for multi-strange baryonic object (due to the high baryon density, favoring a distillation of strangeness). Additionally, we show results for strangeness and baryon density fluctuations. Using the UrQMD model we calculate the strangeness separation in phase space which might lead to an enhanced production of MEMOs compared to models that assume global thermalization.

  17. Voiced Excitations

    National Research Council Canada - National Science Library

    Holzricher, John

    2004-01-01

    To more easily obtain a voiced excitation function for speech characterization, measurements of skin motion, tracheal tube, and vocal fold, motions were made and compared to EM sensor-glottal derived...

  18. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    Science.gov (United States)

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  19. Excitation functions of parameters in Erlang distribution, Schwinger mechanism, and Tsallis statistics in RHIC BES program

    International Nuclear Information System (INIS)

    Gao, Li-Na; Liu, Fu-Hu; Lacey, Roy A.

    2016-01-01

    Experimental results of the transverse-momentum distributions of φ mesons and Ω hyperons produced in gold-gold (Au-Au) collisions with different centrality intervals, measured by the STAR Collaboration at different energies (7.7, 11.5, 19.6, 27, and 39 GeV) in the beam energy scan (BES) program at the relativistic heavy-ion collider (RHIC), are approximately described by the single Erlang distribution and the two-component Schwinger mechanism. Moreover, the STAR experimental transverse-momentum distributions of negatively charged particles, produced in Au-Au collisions at RHIC BES energies, are approximately described by the two-component Erlang distribution and the single Tsallis statistics. The excitation functions of free parameters are obtained from the fit to the experimental data. A weak softest point in the string tension in Ω hyperon spectra is observed at 7.7 GeV. (orig.)

  20. A new analysis technique to measure fusion excitation functions with large beam energy dispersions

    Science.gov (United States)

    Figuera, P.; Di Pietro, A.; Fisichella, M.; Lattuada, M.; Shotter, A. C.; Ruiz, C.; Zadro, M.

    2018-01-01

    Peculiar nuclear structures of two colliding nuclei such has clustering, neutron halo/skin or very low breakup thresholds can affect the reaction dynamics below the Coulomb barrier and this may also have astrophysical consequences. In order to have a better understanding of this topic, in the last decade, several experiments were performed. A typical experimental challenge of such studies is the need to measure excitation functions below the Coulomb barrier, having a strong energy dependence, with rather large beam energy dispersions inside the target. This may easily lead to ambiguities in associating the measured cross section with a proper beam energy. In this paper a discussion on this topic is reported and a new technique to deal with the above problem will be proposed.

  1. Analysis of correlation effects in autoionizing doubly excited states of barium using Coulomb Green's function

    International Nuclear Information System (INIS)

    Poirier, M.

    1997-01-01

    Though one would expect that large-angular momentum doubly excited states exhibit weak electronic correlations, it is shown in this paper that a first-order perturbation theory ignoring such correlations may completely fail in predicting correct autoionization probabilities: quadrupolar transitions are poorly described by lowest-order perturbation theory, except for very large angular momenta. Inclusion of second-order dipole-dipole term considerably improves the accuracy of the method. This effect is computed using Coulomb Green's function in its analytical form, probably applied here for the first time to autoionization processes. Examples are given in barium for 5d j 5g [k[ states (j=3/2, 5/2) and for 5d 5/2 nl [k[ states with l > 4. (orig.)

  2. p-p analyzing power excitation function between 510 and 725 MeV

    International Nuclear Information System (INIS)

    Beurtey, R.; Arvieux, J.; Boivin, M.; Boyard, J.L.; Durand, J.M.; Combes-Comets, M.P.; Courtat, P.; Gacougnolle, R.; Le Bornec, Y.; Garcon, M.

    1993-01-01

    In an earlier experiment some evidence was observed for narrow dibaryons in the analyzing power excitation function of p-p elastic scattering at √s=2160 MeV and 2192 MeV, with width Γ≅13-14 MeV. A different procedure has been carried out at the SATURNE synchrotron, in order to obtain a very high accuracy of the analyzing power for a large number of energies between 510 and 725 MeV. The results show no evidence for any structure with width ∼5 to 20 MeV. The reasons at the difference between the two experiments are discussed. (K.A.) 2 refs., 3 figs

  3. The thermotidal exciting function for water vapour absorption of solar radiation

    Directory of Open Access Journals (Sweden)

    M. BONAFEDE

    1976-06-01

    Full Text Available The thermotidal exciting function J is considered, for
    the absorption of solar radiation by water vapour, according to the model
    derived by Siebert. The Mugge-Moller formula for water vapour absorption
    is integrated numerically, using experimental data for the water vapour
    concentration in the troposphere and the stratosphere. It appears that
    Siebort's formula is a reasonable approximation at low tropospheric levels
    but it dramatically overestimates the water vapour thermotidal heating
    in the upper troposphere and in the stratosphere. It seems thus possible
    that, if the correct vertical profile is employed for J , the amplitudes and
    phases of the diurnal temperature oscillations and of the tidal wind speeds
    may suffer significant changes from those previously calculated and possibly explain the three hours delay of the observed phases from the computed values.

  4. Experimental studies on excitation functions of the proton-induced activation reactions on silver

    International Nuclear Information System (INIS)

    Uddin, M.S.; Hagiwara, M.; Baba, M.; Tarkanyi, F.; Ditroi, F.

    2005-01-01

    Excitation functions were measured for the production of 106m,105 Ag, 103,101,100 Pd, 105,102,101m,100,99 Rh and 97 Ru via proton-induced activation reactions on natural silver using a stacked foil technique in the energy range 11-80 MeV. The residual activity measurements were carried out nondestructively by the high-resolution HPGe γ-ray spectroscopy. Thick target integral yields were deduced using the measured cross-sections from the respective threshold energies of the investigated reactions up to 80 MeV. The present work gives new results for the investigated radionuclides. The data in MENDL-2P deduced with the theoretical model code ALICE-IPPE are consistent in shape with the measured values, but show disagreement in magnitude

  5. Excitation function of elastic scattering on 12C + 4He system, at low energies

    International Nuclear Information System (INIS)

    Perez-Torres, R.; Aguilera, E. F.; Martinez-Quiroz, E.; Murillo, G.; Belyaeva, T. L.; Maldonado-Velazquez, M.

    2011-01-01

    Interactions in the 12 C + 4 He system are of great interest in astrophysics and to help determine the relative abundances of elements in stars, at the end of helium burning [1, 2]. The Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico, have made measurements of elastic scattering for this system, using the inverse kinematics method with thick white gas [3, 4], for E CM (0.5 - 4 MeV) θ CM = 180 o . In this work we obtain excitation functions of elastic scattering of 12 C + 4 He system with angular and energy dependence; E CM = 0.5 - 4 MeV and θ CM 100 o -170 o .Using inverse kinematics method with thick white gas and energy loss tables. (Author)

  6. Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description.

    Science.gov (United States)

    Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta

    2015-12-08

    We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.

  7. Assessment of time-dependent density functional theory with the restricted excitation space approximation for excited state calculations of large systems

    Science.gov (United States)

    Hanson-Heine, Magnus W. D.; George, Michael W.; Besley, Nicholas A.

    2018-06-01

    The restricted excitation subspace approximation is explored as a basis to reduce the memory storage required in linear response time-dependent density functional theory (TDDFT) calculations within the Tamm-Dancoff approximation. It is shown that excluding the core orbitals and up to 70% of the virtual orbitals in the construction of the excitation subspace does not result in significant changes in computed UV/vis spectra for large molecules. The reduced size of the excitation subspace greatly reduces the size of the subspace vectors that need to be stored when using the Davidson procedure to determine the eigenvalues of the TDDFT equations. Furthermore, additional screening of the two-electron integrals in combination with a reduction in the size of the numerical integration grid used in the TDDFT calculation leads to significant computational savings. The use of these approximations represents a simple approach to extend TDDFT to the study of large systems and make the calculations increasingly tractable using modest computing resources.

  8. How strange a non-strange heavy baryon?

    International Nuclear Information System (INIS)

    Zhitnitsky, A.R.

    1997-01-01

    We give some general arguments in favor of the large magnitude of matrix elements of an operator associated with nonvalence quarks in heavy hadrons. In particular, we estimate matrix element left angle Λ b vertical stroke ss vertical stroke Λ b right angle to be of order of 1 for Λ b baryon whose valence content is b, u, d quarks. The arguments are based on the QCD sum rules and low energy theorems. The physical picture behind the phenomenon is somewhat similar to the one associated with the large strange content of the nucleon, i.e. with the large magnitude of the matrix element left angle p vertical stroke ss vertical stroke p right angle ∼ 1. We discuss some possible applications of the result. (orig.)

  9. Neutral strange particle production in neutrino and antineutrino charged current interactions on protons

    Science.gov (United States)

    Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; O'Neale, S. W.; Villalobos-Baillie, O.; Klein, H.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Miller, D. B.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H. P.; Myatt, G.; Radojicic, D.; Bullock, F. W.; Burke, S.

    1993-06-01

    The production of the neutral strange particles K 0, Λ andbar Λ in vp andbar vp charged current interactions is studied in an experiment with the Big European Bubble Chamber. Mean multiplicities are measured as a function of the event variables E v, W 2 and Q 2 and of the hadron variables x F, z and p {T/2}. K *± (892) and ∑ *± (1385) signals are observed, whereas there is no evidence for ∑ *- (1385) production in vp scattering. Forward, backward and total mean multiplicities are found to compare well with the predictions of an empirical model for deep-inelastic reactions in the case of the strange mesons K 0 and K *± (892) but less so for the strange baryons Λ,bar Λ and ∑ *± (1385). The strange baryon multiplicities are used to obtain the decuplet to octet baryon production ratio and to assess the probabilities of a uu or ud system to break up.

  10. Overview of the electromagnetic production of strange mesons at MAMI

    Czech Academy of Sciences Publication Activity Database

    Achenbach, P.; Rodriguez, M. G.; Tsukada, K.; Gayoso, C. A.; Böhm, R.; Borodina, O.; Bosnar, D.; Bozkurt, V.; Bydžovský, Petr; Debenjak, L.; Distler, M. O.; Esser, A.; Friscic, I.; Fujii, Y.; Gogami, T.; Hashimoto, O.; Hirose, S.; Kanda, H.; Kaneta, M.; Kim, E.; Margaryan, A.; Merkel, H.; Müller, U.; Nagao, S.; Nakamura, S. N.; Pochodzalla, J.; Rappold, C.; Reinhold, J.; Saito, T. R.; Lorente, A.S.; Majos, S. S.; Schlimme, B. S.; Schoth, M.; Schultz, F.; Sfienti, C.; Sirca, S.; Tang, L.; Thiel, M.

    2013-01-01

    Roč. 914, SEP (2013), s. 41-50 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GAP203/12/2126 Institutional support: RVO:61389005 Keywords : strangeness reactions * Kaon electro-production * missing mass spectroscopy * structure functions Subject RIV: BE - Theoretical Physics Impact factor: 2.499, year: 2013 http://www.sciencedirect.com/science/article/pii/S0375947413000304

  11. Measurement and analysis of excitation functions in 16O + 103Rh system in the excitation energy range ≅ 2-4 MeV/A

    International Nuclear Information System (INIS)

    Singh, Devendra P.; Unnati; Sharma, Manoj Kumar; Singh, Pushpendra P.; Singh, B.P.; Prasad, R.; Gupta, Sunita; Rakesh Kumar; Bhardwaj, H.D.

    2006-01-01

    In the present work, excitation functions for seven evaporation residues (ERs) produced via complete fusion and incomplete fusion processes in 16 O + 103 Rh system have been measured in the energy range ≅ 47-85 MeV, using recoil catcher technique followed by off-line gamma-ray spectrometry. Comparison of the experimental data with statistical model based computer code PACE 2 revealed dominance of incomplete fusion in reactions involving alpha-emission channels. To the best of our knowledge these reactions are being reported for the first time

  12. Strangeness by Thermal Model Simulation at RHIC

    Institute of Scientific and Technical Information of China (English)

    SHI Xing-Hua; MA Yu-Gang; CAI Xiang-Zhou; CHEN Jin-Hui; MA Guo-Liang; ZHONG Chen

    2009-01-01

    The local temperature effect on strangeness enhancement in relativistic heavy ion collisions is discussed in the framework of the thermal model in which the K+ /h+ ratio becomes smaller with increasing freeze-out temperature.Considering that most strangeness particles of final-state particles are from the kaon meson,the temperature effect may play a role in strangeness production in hot dense matter where a slightly different temperature distribution in different areas could be produced by jet energy loss.This phenomenon is predicted by thermal model calculation at RHIC energy.The Ε-/φ ratio in central Au+Au collisions at 200 GeV from the thermal model depends on the freeze-out temperature obviously when γs is different.It should be one of the reasons why strangeness enhancements of Ε and φ are different though they include two strange quarks.These results indicate that thermodynamics is an important factor for strangeness production and the strangeness enhancement phenomenon.

  13. Obtaining Hartree-Fock and density functional theory doubly excited states with Car-Parrinello density matrix search

    Science.gov (United States)

    Liang, Wenkel; Isborn, Christine M.; Li, Xiaosong

    2009-11-01

    The calculation of doubly excited states is one of the major problems plaguing the modern day excited state workhorse methodology of linear response time dependent Hartree-Fock (TDHF) and density function theory (TDDFT). We have previously shown that the use of a resonantly tuned field within real-time TDHF and TDDFT is able to simultaneously excite both the α and β electrons to achieve the two-electron excited states of minimal basis H2 and HeH+ [C. M. Isborn and X. Li, J. Chem. Phys. 129, 204107 (2008)]. We now extend this method to many electron systems with the use of our Car-Parrinello density matrix search (CP-DMS) with a first-principles fictitious mass method for wave function optimization [X. Li, C. L. Moss, W. Liang, and Y. Feng, J. Chem. Phys. 130, 234115 (2009)]. Real-time TDHF/TDDFT is used during the application of the laser field perturbation, driving the electron density toward the doubly excited state. The CP-DMS method then converges the density to the nearest stationary state. We present these stationary state doubly excited state energies and properties at the HF and DFT levels for H2, HeH+, lithium hydride, ethylene, and butadiene.

  14. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange.

    Science.gov (United States)

    Heßelmann, Andreas

    2015-04-14

    Molecular excitation energies have been calculated with time-dependent density-functional theory (TDDFT) using random-phase approximation Hessians augmented with exact exchange contributions in various orders. It has been observed that this approach yields fairly accurate local valence excitations if combined with accurate asymptotically corrected exchange-correlation potentials used in the ground-state Kohn-Sham calculations. The inclusion of long-range particle-particle with hole-hole interactions in the kernel leads to errors of 0.14 eV only for the lowest excitations of a selection of three alkene, three carbonyl, and five azabenzene molecules, thus surpassing the accuracy of a number of common TDDFT and even some wave function correlation methods. In the case of long-range charge-transfer excitations, the method typically underestimates accurate reference excitation energies by 8% on average, which is better than with standard hybrid-GGA functionals but worse compared to range-separated functional approximations.

  15. Textile Electrodes Embedded in Clothing: A Practical Alternative to Traditional Surface Electromyography when Assessing Muscle Excitation during Functional Movements

    Directory of Open Access Journals (Sweden)

    Steffi L. Colyer, Polly M. McGuigan

    2018-03-01

    Full Text Available Textile electromyography (EMG electrodes embedded in clothing allow muscle excitation to be recorded in previously inaccessible settings; however, their ability to accurately and reliably measure EMG during dynamic tasks remains largely unexplored. To quantify the validity and reliability of textile electrodes, 16 recreationally active males completed two identical testing sessions, within which three functional movements (run, cycle and squat were performed twice: once wearing EMG shorts (measuring quadriceps, hamstrings and gluteals myoelectric activity and once with surface EMG electrodes attached to the vastus lateralis, biceps femoris and gluteus maximus. EMG signals were identically processed to provide average rectified EMG (normalized to walking and excitation length. Results were compared across measurement systems and demonstrated good agreement between the magnitude of muscle excitation when EMG activity was lower, but agreement was poorer when excitation was higher. The length of excitation bursts was consistently longer when measured using textile vs. surface EMG electrodes. Comparable between-session (day-to-day repeatability was found for average rectified EMG (mean coefficient of variation, CV: 42.6 and 41.2% and excitation length (CV: 12.9 and 9.8% when using textile and surface EMG, respectively. Additionally, similar within-session repeatability (CV was recorded for average rectified EMG (13.8 and 14.1% and excitation length (13.0 and 12.7% for textile and surface electrodes, respectively. Generally, textile EMG electrodes appear to be capable of providing comparable muscle excitation information and reproducibility to surface EMG during dynamic tasks. Textile EMG shorts could therefore be a practical alternative to traditional laboratory-based methods allowing muscle excitation information to be collected in more externally-valid training environments.

  16. A study of excitation functions for the radio-active isotopes produced by α-induced reactions in gold

    International Nuclear Information System (INIS)

    Singh, B.P.; Prasad, R.; Bhardwaj, H.D.

    1992-04-01

    Excitation functions for the reactions 197 Au(α,xn) 201-x Tl(x=1-4) have been measured in the energy range approx. 30-60 MeV using stacked foil technique. Ge(Li) gamma ray spectroscopy has been used for the analysis of irradiated samples. Excitation functions have also been calculated theoretically using two different computer codes (ACT and ALICE) with and without the inclusion of pre-equilibrium emission. As expected inclusion of pre-equilibrium emission to the compound nucleon calculations agree well with the experimentally measured excitation functions. An interesting trend in pre-equilibrium fraction with energy has been observed. (author). 33 refs, 6 figs

  17. Analysis of the excitation functions for 3He- and α-induced reactions on 107Ag and 109Ag

    International Nuclear Information System (INIS)

    Misaelides, P.

    1976-06-01

    Excitation functions of 32 3 He- and α-induced nuclear reactions on 107 Ag and 109 Ag have been measured. The incident projectile energies ranged from 10 to 40 MeV for the 3 He-ions and 10 to 100 MeV for the α-particles. The recoil range of some 3 He-induced reaction products and the isomeric ratio values indicate the predominance of a precompound-compound nucleous mechanism. The experimental cross sections were compared with the excitation functions calculated on the basis of the compound nucleus and hybrid models. Using the values n 0 ( 3 He) = 5 and n 0 (α) = 4 for the initial exciton number and a = A/12.5 for the level density parameter a satisfactory reproduction of the experimental results for the α-induced reactions was achieved, whereas the calculated excitation functions for the 3 He-induced reactions are about a factor of two higher. (orig.) [de

  18. Gentlest ascent dynamics for calculating first excited state and exploring energy landscape of Kohn-Sham density functionals.

    Science.gov (United States)

    Li, Chen; Lu, Jianfeng; Yang, Weitao

    2015-12-14

    We develop the gentlest ascent dynamics for Kohn-Sham density functional theory to search for the index-1 saddle points on the energy landscape of the Kohn-Sham density functionals. These stationary solutions correspond to excited states in the ground state functionals. As shown by various examples, the first excited states of many chemical systems are given by these index-1 saddle points. Our novel approach provides an alternative, more robust way to obtain these excited states, compared with the widely used ΔSCF approach. The method can be easily generalized to target higher index saddle points. Our results also reveal the physical interest and relevance of studying the Kohn-Sham energy landscape.

  19. Weak strange particle production: advantages and difficulties

    International Nuclear Information System (INIS)

    Angelescu, Tatiana; Baker, O.K.

    2002-01-01

    Electromagnetic strange particle production developed at Jefferson Laboratory was an important source of information on strange particle electromagnetic formfactors and induced and transferred polarization. The high quality of the beam and the detection techniques involved could be an argument for detecting strange particles in weak interactions and answer questions about cross sections, weak formfactors, neutrino properties, which have not been investigated yet. The paper analyses some aspects related to the weak lambda production and detection with the Hall C facilities at Jefferson Laboratory and the limitations in measuring the weak interaction quantities. (authors)

  20. Nuclear physics with strange particles

    International Nuclear Information System (INIS)

    Dover, C.B.

    1988-01-01

    Recent progress in the understanding of strange particle interactions with nuclear systems is reviewed. We discuss the relative merits of various reactions such as (K - , π/sup +-/), (π + , K + ), or (γ, K + ) for hypernuclear production. The structure of /sub Λ/ 13 C is analyzed in some detail, in order to illustrate the role of the ΛN residual interaction and approximate dynamical symmetries in hypernuclear structure. Recent results on the single particle states of a Λ in heavy systems, as revealed by (π + , K + ) reaction studies, are used to extract information on the density dependence and effective mass which characterize the Λ-nucleus mean field. Finally, we develop the idea the K + -nucleus scattering at low energies is sensitive to the subtle ''swelling'' effects for nucleons bound in nuclei. 64 refs., 13 figs

  1. Studying Strangeness Production with HADES

    Science.gov (United States)

    Schuldes, Heidi

    2018-02-01

    The High-Acceptance DiElectron Spectrometer (HADES) operates in the 1 - 2A GeV energy regime in fixed target experiments to explore baryon-rich strongly interacting matter in heavy-ion collisions at moderate temperatures with rare and penetrating probes. We present results on the production of strange hadrons below their respective NN threshold energy in Au+Au collisions at 1.23A GeV ( = 2.4 GeV). Special emphasis is put on the enhanced feed-down contribution of ϕ mesons to the inclusive yield of K- and its implication on the measured spectral shape of K-. Furthermore, we investigate global properties of the system, confronting the measured hadron yields and transverse mass spectra with a Statistical Hadronization Model (SHM) and a blastwave parameterization, respectively. These supplement the world data of the chemical and kinetic freeze-out temperatures.

  2. Quark-flavor mixing and the nucleon strangeness form factors

    International Nuclear Information System (INIS)

    Ito, H.

    1995-01-01

    We have calculated the strangeness form factors of the nucleon G E s (Q), G M s (Q) and G A s (Q) and the electromagnetic form factors G E N (Q) as well, by using a relativistic constituent quark model of the nucleon wave function on the light-cone. Octet of Goldstone bosons (π, K, η) are assumed to induce the SU flavor mixing among the light constituent quarks; d-→K+s →d for example, and this mechanism induces the strangeness content in the nucleon. To calculate the meson-loop corrections to the electroweak couplings of constituent quarks, we have employed two models of the quark-meson vertex; (1) composite model of the Goldstone bosons (2) and (3) chiral quark Lagrangian. The loop momenta are regulated in a gauge-invariant way for both models

  3. Linear interpolation method in ensemble Kohn-Sham and range-separated density-functional approximations for excited states

    DEFF Research Database (Denmark)

    Senjean, Bruno; Knecht, Stefan; Jensen, Hans Jørgen Aa

    2015-01-01

    Gross-Oliveira-Kohn density-functional theory (GOK-DFT) for ensembles is, in principle, very attractive but has been hard to use in practice. A practical model based on GOK-DFT for the calculation of electronic excitation energies is discussed. The model relies on two modifications of GOK-DFT: use...... promising results have been obtained for both single (including charge transfer) and double excitations with spin-independent short-range local and semilocal functionals. Even at the Kohn-Sham ensemble DFT level, which is recovered when the range-separation parameter is set to 0, LIM performs better than...

  4. Influence of Exchange-Correlation Functional in the Calculations of Vertical Excitation Energies of Halogenated Copper Phthalocyanines using Time-Dependent Density Functional Theory (TD-DFT)

    International Nuclear Information System (INIS)

    Lee, Sang Uck

    2013-01-01

    The accurate prediction of vertical excitation energies is very important for the development of new materials in the dye and pigment industry. A time-dependent density functional theory (TD-DFT) approach coupled with 22 different exchange-correlation functionals was used for the prediction of vertical excitation energies in the halogenated copper phthalocyanine molecules in order to find the most appropriate functional and to determine the accuracy of the prediction of the absorption wavelength and observed spectral shifts. Among the tested functional, B3LYP functional provides much more accurate vertical excitation energies and UV-vis spectra. Our results clearly provide a benchmark calibration of the TD-DFT method for phthalocyanine based dyes and pigments used in industry

  5. Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function

    Directory of Open Access Journals (Sweden)

    Aurore Thibaut

    2017-05-01

    Full Text Available What determines motor recovery in stroke is still unknown and finding markers that could predict and improve stroke recovery is a challenge. In this study, we aimed at understanding the neural mechanisms of motor function recovery after stroke using neurophysiological markers by means of cortical excitability (transcranial magnetic stimulation—TMS and brain oscillations (electroencephalography—EEG. In this cross-sectional study, 55 subjects with chronic stroke (62 ± 14 yo, 17 women, 32 ± 42 months post-stroke were recruited in two sites. We analyzed TMS measures (i.e., motor threshold—MT—of the affected and unaffected sides and EEG variables (i.e., power spectrum in different frequency bands and different brain regions of the affected and unaffected hemispheres and their correlation with motor impairment as measured by Fugl-Meyer. Multiple univariate and multivariate linear regression analyses were performed to identify the predictors of good motor function. A significant interaction effect of MT in the affected hemisphere and power in beta bandwidth over the central region for both affected and unaffected hemispheres was found. We identified that motor function positively correlates with beta rhythm over the central region of the unaffected hemisphere, while it negatively correlates with beta rhythm in the affected hemisphere. Our results suggest that cortical activity in the affected and unaffected hemisphere measured by EEG provides new insights on the association between high-frequency rhythms and motor impairment, highlighting the role of an excess of beta in the affected central cortical region in poor motor function in stroke recovery.

  6. Flavor structure of Λ baryons from lattice QCD: From strange to charm quarks

    Science.gov (United States)

    Gubler, Philipp; Takahashi, Toru T.; Oka, Makoto

    2016-12-01

    We study Λ baryons of spin-parity 1/2± with either a strange or charm valence quark in full 2 +1 flavor lattice QCD. Multiple S U (3 ) singlet and octet operators are employed to generate the desired single baryon states on the lattice. Via the variational method, the couplings of these states to the different operators provide information about the flavor structure of the Λ baryons. We make use of the gauge configurations of the PACS-CS Collaboration and chirally extrapolate the results for the masses and S U (3 ) flavor components to the physical point. We furthermore gradually change the hopping parameter of the heaviest quark from strange to charm to study how the properties of the Λ baryons evolve as a function of the heavy quark mass. It is found that the baryon energy levels increase almost linearly with the quark mass. Meanwhile, the flavor structure of most of the states remains stable, with the exception of the lowest 1/2- state, which changes from a flavor singlet Λ to a Λc state with singlet and octet components of comparable size. Finally, we discuss whether our findings can be interpreted with the help of a simple quark model and find that the negative-parity Λc states can be naturally explained as diquark excitations of the light u and d quarks. On the other hand, the quark-model picture does not appear to be adequate for the negative-parity Λ states, suggesting the importance of other degrees of freedom to describe them.

  7. Determination of strange sea distributions from {nu}N deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Inst. for High Energy Physics, Protvino (Russian Federation); Kulagin, S. [Academy of Sciences of Russia, Moscow (Russian Federation). Inst. for Nuclear Research; Petti, R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics and Astronomy

    2008-12-15

    We present an analysis of the nucleon strange sea extracted from a global Parton Distribution Function fit including the neutrino and anti-neutrino dimuon data by the CCFR and NuTeV collaborations, the inclusive charged lepton-nucleon Deep Inelastic Scattering and Drell-Yan data. The (anti-)neutrino induced dimuon analysis is constrained by the semi-leptonic charmed-hadron branching ratio B{sub {mu}}=(8.8{+-}0.5)%, determined from the inclusive charmed hadron measurements performed by the FNAL-E531 and CHORUS neutrino emulsion experiments. Our analysis yields a strange sea suppression factor {kappa}(Q{sup 2}=20 GeV{sup 2})=0.62{+-}0.04, the most precise value available, an x-distribution of total strange sea that is slightly softer than the non-strange sea, and an asymmetry between strange and anti-strange quark distributions consistent with zero (integrated over x it is equal to 0.0013{+-}0.0009 at Q{sup 2}=20 GeV{sup 2}). (orig.)

  8. Strange (and incompatible) bedfellows: The relationship between ...

    African Journals Online (AJOL)

    Strange (and incompatible) bedfellows: The relationship between the National Health Act and the regulations relating to artificial fertilisation of persons, and its impact on individuals engaged in assisted reproduction.

  9. Associated strangeness production at intermediate energies

    International Nuclear Information System (INIS)

    Saghai, B.

    1996-04-01

    Elementary strangeness production reactions with hadronic and electromagnetic probes are briefly reviewed. Some recent theoretical and experimental findings are underlined and a few open questions are singled out. (author)

  10. New experimental results on strangeness production

    International Nuclear Information System (INIS)

    Sapozhnikov, M.G.

    1998-01-01

    New experimental results on the production of φ and f 2 ' (1525) mesons in the annihilation of stopped antiprotons are discussed. The explanation of these facts in the framework of the polarized strangeness model is considered

  11. Strangeness production in heavy ion collisions

    International Nuclear Information System (INIS)

    Redlich, K.

    2001-05-01

    Strangeness production in heavy ion collisions is discussed in a broad energy range from SIS to RHIC. In the whole energy range particle yields are showing high level of chemical equilibration which can be described by the unified freezeout conditions of fixed energy/particle ≅ 1GeV. The statistical model within the canonical formulation of strangeness conservation provides a framework to describe the observed enhancement of (multi)strange particles from p+A to A+A collisions measured at the SPS energy and predicts that this enhancement should be larger for decreasing collision energy. However, only at the SPS and RHIC chemical freezeout temperature is consistent within error with the critical value required for deconfinement and simultaneously strangeness is uncorrelated and distributed in the whole volume of the fireball. (orig.)

  12. Charges on Strange Quark Nuggets in Space

    Science.gov (United States)

    Teplitz, V.; Bhatia, A.; Abers, E.; Dicus, D.; Repko, W.; Rosenbaum, D.

    2008-01-01

    This viewgraph presentation reviews the work done in calculations to find ZN such that the rate of ambient photons ionize the strange quark nuggets (SQNs) Electrons are equal to the rate of ambient e's to replace them.

  13. Strange Attractors in Drift Wave Turbulence

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2003-01-01

    A multi-grid part-in-cell algorithm for a shearless slab drift wave model with kinetic electrons is presented. The algorithm, which is based on an exact separation of adiabatic and nonadiabatic electron responses, is used to investigate the presence of strange attractors in drift wave turbulence. Although the simulation model has a large number of degrees of freedom, it is found that the strange attractor is low-dimensional and that it is strongly affected by dissipative (collisional) effects

  14. The Fastest Rotating Pulsar: a Strange Star?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 徐轩彬; 吴鑫基

    2001-01-01

    According to the observational limits on the radius and mass, the fastest rotating pulsar (PSR 1937+21) is probably a strange star, or at least some neutron star equations of state should be ruled out, if we suggest that a dipole magnetic field is relevant to its radio emission. We presume that the millisecond pulsar is a strange star with much low mass, small radius and weak magnetic moment.

  15. Nuclear corrections in neutrino deep inelastic scattering and the extraction of the strange quark distribution

    International Nuclear Information System (INIS)

    Boros, C.

    1999-01-01

    Recent measurement of the structure function F 2 υ in neutrino deep inelastic scattering allows us to compare structure functions measured in neutrino and charged lepton scattering for the first time with reasonable precision. The comparison between neutrino and muon structure functions made by the CCFR Collaboration indicates that there is a discrepancy between these structure functions at small Bjorken x values. In this talk I examine two effects which might account for this experimental discrepancy: nuclear shadowing corrections for neutrinos and contributions from strange and anti-strange quarks. Copyright (1999) World Scientific Publishing Co. Pte. Ltd

  16. Towards a new generation of strangeness results

    International Nuclear Information System (INIS)

    Bellwied, Rene

    2004-01-01

    I will review the latest strangeness result measured in fixed target heavy-ion collisions at SIS, AGS and SPS before describing the first round of RHIC results. I will show that the systematic studies performed at the lower energies give a very consistent picture of enhanced strangeness production at SPS energies and hints of medium modification effects at the lower energies, which are dominated by larger baryon densities. The RHIC results complement this picture by again indicating strangeness production from a thermally equilibrated source, albeit at slightly higher freeze-out temperatures and lower baryon densities. RHIC adds significant new physics results to the field, though, by enabling the measurement of strange particle production at high transverse momentum, presently out to about 6 GeV/c. The new regime between 2 and 6 GeV/c is dominated by an interplay between traditional soft particle production, which is well described by hydrodynamical and thermal models, and production of strangeness from jet fragmentation. Potential new QGP signatures, such as jet quenching and elliptic flow due to parton collectivity, can be probed by measuring particle identified strange particle spectra out to high p t . I will review the latest results and show that these measurements breathe new life into a well-established field

  17. Combining extrapolation with ghost interaction correction in range-separated ensemble density functional theory for excited states

    Science.gov (United States)

    Alam, Md. Mehboob; Deur, Killian; Knecht, Stefan; Fromager, Emmanuel

    2017-11-01

    The extrapolation technique of Savin [J. Chem. Phys. 140, 18A509 (2014)], which was initially applied to range-separated ground-state-density-functional Hamiltonians, is adapted in this work to ghost-interaction-corrected (GIC) range-separated ensemble density-functional theory (eDFT) for excited states. While standard extrapolations rely on energies that decay as μ-2 in the large range-separation-parameter μ limit, we show analytically that (approximate) range-separated GIC ensemble energies converge more rapidly (as μ-3) towards their pure wavefunction theory values (μ → +∞ limit), thus requiring a different extrapolation correction. The purpose of such a correction is to further improve on the convergence and, consequently, to obtain more accurate excitation energies for a finite (and, in practice, relatively small) μ value. As a proof of concept, we apply the extrapolation method to He and small molecular systems (viz., H2, HeH+, and LiH), thus considering different types of excitations such as Rydberg, charge transfer, and double excitations. Potential energy profiles of the first three and four singlet Σ+ excitation energies in HeH+ and H2, respectively, are studied with a particular focus on avoided crossings for the latter. Finally, the extraction of individual state energies from the ensemble energy is discussed in the context of range-separated eDFT, as a perspective.

  18. Fourier analysis of nonself-averaging quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions: quantum chaos in dissipative heavy-ion collisions?

    International Nuclear Information System (INIS)

    Kun, S.Yu.; Australian Nat. Univ., Canberra; Australian National Univ., Canberra, ACT

    1997-01-01

    We employ stochastic modelling of statistical reactions with memory to study quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. The Fourier analysis of excitation function oscillations is presented. It suggests that S-matrix spin and parity decoherence, damping of the coherent nuclear rotation and quantum chaos are sufficient conditions to explain the nonself-averaging of quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. (orig.)

  19. Description of excitations in odd nonmagic nuclei by the Green's function method

    International Nuclear Information System (INIS)

    Avdeenkov, A.V.; Kamerdzhiev, S.P.

    1999-01-01

    General equations for single-particle Green's functions in nonmagic nuclei have been derived. A pairing mechanism similar to the Bardeen-Cooper-Schrieffer mechanism is singled out explicitly in these equations. A refining procedure for phenomenological single-particle energies and for the gap has been developed to avoid doubly taking into account mixing with phonons for the situation in which the input data for the problem in question are formulated in terms of these phenomenological quantities. The resulting general equations are written within the second-order approximation in the phonon-creation amplitude. This corresponds to taking into account quasiparticle(multiply-in-circle sign)phonon configuration and is shown to be a fairly good approximation for semimagic nuclei. A secular equation for calculating excitations in odd nuclei that takes fully into account ground-state correlations and which is invariant under the reversal of the sign of the energy variable has been derived in this approximation. Distributions of single-particle strengths have been computed for 119 Sn and 121 Sn. Reasonably good agreement with available experimental data has been obtained

  20. Evaluation of Complete Fusion Excitation Functions for 42≤ZpZT≤2000

    International Nuclear Information System (INIS)

    Al-Haydari, A.; Abdelghany, A.A.; Hassan, G. S.

    2011-01-01

    For fusion channels, there are two main parameters, namely the separating distance of the two colliding nuclei and the fusion barrier, which are aken as the more interest points guiding to fit the excitation functions of fusion. Interpretations and differentiations are made on different forms to deduce all concerned variables. On the other hand, the maximum values of angular momentum 1 m ax , represents the upper limit of summing all the partial parts for fusion cross section The effect of that limiting value as well as the effects of the two main parameters are checked along iwde range of energies for different heavy ion reacting pairs in comparison with the more recently measured data for sub-barrier and complete fusion channels . Also comparisons with both 1 f us and 1 c r, taken as limiting values were displayed. The effect of the nuclear part of the barrier height and approximation techniques have been checked point out the highly differentiated ones .parameterization that could be made on the imperical forms, are also displayed and tested.

  1. High-sensitivity measurements of the excitation function for Bhabha scattering at MeV energies

    International Nuclear Information System (INIS)

    Tsertos, H.; Kozhuharov, C.; Armbruster, P.; Kienle, P.; Krusche, B.; Schreckenbach, K.

    1989-02-01

    Using a monochromatic e + beam scattered on a Be foil and a high-resolution detector device, the excitation function for elastic e + e - scattering was measured with a statistical accuracy of 0.25% in 1.4 keV steps in the c.m.-energy range between 770 keV and 840 keV (1.79 - 1.86 MeV/c 2 ) at c.m. scattering angles between 80 0 and 100 0 (FWHM). Within the experimental sensitivity of 0.5 b.eV/sr (c.m.) for the energy-integrated differential cross section no resonances were observed (97% CL). From this limit we infer that a hypothetical spinless resonant state should have a width of less than 1.9 meV corresponding to a lifetime limit of 3.5x10 -13 s. This limit establishes the most stringent bound for new particles in this mass range derived from Bhabha scattering and is independent of assumptions about the internal structure of the hypothetical particles. Less sensitivite limits were, in addition, derived around 520 keV c.m. energy (≅ 1.54 MeV/c 2 ) from an investigation with a thorium and a mylar foil as scatterers. (orig.)

  2. From the HINDAS Project: Excitation Functions for Residual Nuclide Production by Proton-Induced Reactions

    International Nuclear Information System (INIS)

    Michel, R.; Gloris, M.; Protoschill, J.; Uosif, M.A.M.; Weug, M.; Herpers, U.; Kuhnhenn, J.; Kubik, P.-W.; Schumann, D.; Synal, H.-A.; Weinreich, R.; Leya, I.; David, J.C.; Leray, S.; Duijvestijn, M.; Koning, A.; Kelic, A.; Schmidt, K.H.; Cugnon, J.

    2005-01-01

    A survey is given about efforts undertaken during the HINDAS project to investigate the energy dependence of residual nuclide production by proton-induced reactions from thresholds up to 2.6 GeV. For proton-induced reactions, our experiments aimed to further develop and complete the cross-section database that was established by our collaboration in recent years. It was extended to the heavy-target elements Ta, W, Pb, and Bi for energies up to 2.6 GeV. In addition, new measurements for the target element iron were performed up to 2.6 GeV and for natural uranium for energies from 21 MeV to 69 MeV. For the target element lead, a comprehensive set of excitation functions published recently was completed by AMS-measurements of cross sections for the production of the long-lived radionuclides Be-10, Al-26, Cl-36, and I-129 and by mass spectrometric measurements for stable and radioactive rare gas isotopes of He, Ne, Ar, Kr, and Xe. Comprehensive tests of the nuclear-reaction codes TALYS and INCL4+ABLA, which were developed within the HINDAS project, were performed with the new experimental results over the entire energy range

  3. Experimental and evaluated data on the discrete level excitation function of the 238U(n,n') reaction

    International Nuclear Information System (INIS)

    Simakov, S.P.

    1991-01-01

    Experimental data on the 238 U excitation function are compiled and analyzed. The experimental data are compared with the evaluated data from the BNAB, ENDF/B-IV and ENDL-78 evaluated data libraries. It is shown that the BNAB evaluated data are in good agreement with the existing experimental data, including new results from recent experiments. (author). 26 refs, 2 figs, 2 tabs

  4. A Preliminary Transcranial Magnetic Stimulation Study of Cortical Inhibition and Excitability in High-Functioning Autism and Asperger Disorder

    Science.gov (United States)

    Enticott, Peter G.; Rinehart, Nicole J.; Tonge, Bruce J.; Bradshaw, John L.; Fitzgerald, Paul B.

    2010-01-01

    Aim: Controversy surrounds the distinction between high-functioning autism (HFA) and Asperger disorder, but motor abnormalities are associated features of both conditions. This study examined motor cortical inhibition and excitability in HFA and Asperger disorder using transcranial magnetic stimulation (TMS). Method: Participants were diagnosed by…

  5. Studying the excitation function of the full cross section of a reaction using a modified transmission technique: Initial results

    Czech Academy of Sciences Publication Activity Database

    Sobolev, Yuri, G.; Penionyhkevich, Y. E.; Borcha, K.; Ivanov, M. P.; Kugler, Andrej; Kulko, A. A.; Kroha, Václav; Maslov, V. A.; Mrázek, Jaromír; Negret, A.; Rvenko, R. V.; Savrov, Ya. Yu.; Skobelev, N. K.; Trzaska, V. G.

    2012-01-01

    Roč. 76, č. 8 (2012), s. 952-957 ISSN 1062-8738 R&D Projects: GA MŠk LA08002 Institutional support: RVO:61389005 Keywords : cross sections * excitation functions * radioactive beams Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  6. The 90deg excitation function for elastic 12C+12C scattering. The importance of Airy elephants

    International Nuclear Information System (INIS)

    McVoy, K.W.; Brandan, M.E.

    1992-01-01

    The 90deg excitation function for elastic 12 C+ 12 C scattering, at laboratory energies between the Coulomb barrier and 130 MeV, exhibits a complex structure of peaks and valleys whose nature has remained an unsolved mystery for more than 20 years. The problem has primarily been caused by the difficulty of choosing from a plethora of discretely ambiguous optical potentials. However, data accumulated above 150 MeV over the last decade have determined unique potentials at these higher energies, and the requirement of continuity downward in energy has recently permitted the determination of a unique set of potentials for angular distributions at energies below 130 MeV, where the excitation-function data exist. These new potentials are used to provide a mean-field (i.e., nonresonant) interpretation of the structure in the 12 C+ 12 C 90deg excitation function between 70 and 130 MeV. Its most prominent minima are found to be Airy minima from nuclear rainbows, with the remaining structure arising primarily from more elementary optical phenomena related to Fraunhofer diffraction. These same potentials are also successful in explaining the details of excitation functions measured very recently at other angles by Morsad. (orig.)

  7. Testing an excited-state energy density functional and the associated potential with the ionization potential theorem

    International Nuclear Information System (INIS)

    Hemanadhan, M; Shamim, Md; Harbola, Manoj K

    2014-01-01

    The modified local spin density (MLSD) functional and the related local potential for excited states is tested by employing the ionization potential theorem. The exchange functional for an excited state is constructed by splitting k-space. Since its functional derivative cannot be obtained easily, the corresponding exchange potential is given by an analogy to its ground-state counterpart. Further, to calculate the highest occupied orbital energy ϵ max accurately, the potential is corrected for its asymptotic behaviour by employing the van Leeuwen and Baerends (LB) correction to it. ϵ max so obtained is then compared with the ΔSCF ionization energy calculated using the MLSD functional with self-interaction correction for the orbitals involved in the transition. It is shown that the two match quite accurately. The match becomes even better by tuning the LB correction with respect to a parameter in it. (paper)

  8. Quasi-particle excitations and dynamical structure function of trapped Bose-condensates in the WKB approximation

    OpenAIRE

    Csordás, András; Graham, Robert; Szépfalusy, Péter

    1997-01-01

    The Bogoliubov equations of the quasi-particle excitations in a weakly interacting trapped Bose-condensate are solved in the WKB approximation in an isotropic harmonic trap, determining the discrete quasi-particle energies and wave functions by torus (Bohr-Sommerfeld) quantization of the integrable classical quasi-particle dynamics. The results are used to calculate the position and strengths of the peaks in the dynamic structure function which can be observed by off-resonance inelastic light...

  9. Theoretical perspectives on strange physics

    International Nuclear Information System (INIS)

    Ellis, J.

    1983-04-01

    Kaons are heavy enough to have an interesting range of decay modes available to them, and light enough to be produced in sufficient numbers to explore rare modes with satisfying statistics. Kaons and their decays have provided at least two major breakthroughs in our knowledge of fundamental physics. They have revealed to us CP violation, and their lack of flavor-changing neutral interactions warned us to expect charm. In addition, K 0 -anti K 0 mixing has provided us with one of our most elegant and sensitive laboratories for testing quantum mechanics. There is every reason to expect that future generations of kaon experiments with intense sources would add further to our knowledge of fundamental physics. This talk attempts to set future kaon experiments in a general theoretical context, and indicate how they may bear upon fundamental theoretical issues. A survey of different experiments which would be done with an Intense Medium Energy Source of Strangeness, including rare K decays, probes of the nature of CP isolation, μ decays, hyperon decays and neutrino physics is given

  10. Strangeness photoproduction at the BGO-OD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jude, Thomas [Physikalisches Institut, Bonn University (Germany); Collaboration: BGO-OD-Collaboration

    2016-07-01

    The BGO-OD experiment at the ELSA accelerator facility uses an energy tagged bremstrahlung photon beam to investigate the internal structure of the nucleon. The setup consists of a highly segmented BGO calorimeter surrounding the target, with a particle tracking magnetic spectrometer at forward angles. Compared to constituent quark models (CQMs), models including psuedoscalar meson-baryon interactions have had improved success in describing baryon excitation spectra. For example, the Λ(1405) appears to be dynamically generated from meson-baryon interactions at least to some extent. Vector-meson baryon interactions have also been predicted to dynamically generate states, which may have been observed in photoproduction reactions. BGO-OD is ideal for investigating low momentum transfer processes due to the acceptance and high momentum resolution at forward angles. This enables the investigation of degrees of freedom not derived from CQMs, and in particular, strangeness photoproduction where t-channel exchange mechanisms play a dominant role. With the first major data taking periods for BGO-OD complete, an extensive programme for the investigation of associated strangeness photoproduction has begun.

  11. Excited states of ReO4-: A comprehensive time-dependent relativistic density functional theory study

    Science.gov (United States)

    Xu, Wenhua; Ma, Jianyi; Peng, Daoling; Zou, Wenli; Liu, Wenjian; Staemmler, Volker

    2009-02-01

    The perrhenate anion, ReO4-, is taken as a showcase of heavy transition metal complexes, to examine the performance of time-dependent relativistic density functional linear response theory for electronic excitations, which is based on a newly proposed exact two-component Hamiltonian resulting from the symmetrized elimination of the small component. In total 30 scalar and 63 spinor excited states are investigated and the results are grossly in good agreement with those by the singles and doubles coupled-cluster linear response theory. It is found that only a few scalar states of 3T1 and 3T2 symmetries are split significantly by the spin-orbit coupling, whereas only those excited states involving the Rydberg-type virtual orbital are affected by the solvent effects. The nature of the optical absorption spectra is also highlighted.

  12. Excited states of ReO4-: A comprehensive time-dependent relativistic density functional theory study

    International Nuclear Information System (INIS)

    Xu Wenhua; Ma Jianyi; Peng Daoling; Zou Wenli; Liu Wenjian; Staemmler, Volker

    2009-01-01

    The perrhenate anion, ReO 4 - , is taken as a showcase of heavy transition metal complexes, to examine the performance of time-dependent relativistic density functional linear response theory for electronic excitations, which is based on a newly proposed exact two-component Hamiltonian resulting from the symmetrized elimination of the small component. In total 30 scalar and 63 spinor excited states are investigated and the results are grossly in good agreement with those by the singles and doubles coupled-cluster linear response theory. It is found that only a few scalar states of 3 T 1 and 3 T 2 symmetries are split significantly by the spin-orbit coupling, whereas only those excited states involving the Rydberg-type virtual orbital are affected by the solvent effects. The nature of the optical absorption spectra is also highlighted

  13. Evaluation of the excitation function for the dosimetry reaction La-139(n,g)La-140

    International Nuclear Information System (INIS)

    Zolotarev, K.

    1997-01-01

    The activation detectors on the basis of La-139(n,g)La-140 reaction are used very often in the reactor dosimetry for determination of thermal and epithermal components of neutron spectra. At present, the cross section data for this reaction are absent in the IRDF-90 ver.2 file and in the national dosimetry files such as ENDF/B-VI Dosimetry File and JENDL-3.2 Dosimetry File. The evaluation of the La-139(n,g)La-140 reaction excitation function for the Russian Reactor Dosimetry File (RRDF-96) was carried out in the energy region 1.000E-05 eV - 20 MeV. The capture cross section in the energy range from 0.00001 eV to 160 keV is given through the evaluated MLBW resolved and unresolved resonance parameters. Small background cross section was added in the resolved resonance region for taking into account the non-statistical reaction mechanism contribution. Data for En=160 keV - 1.2 MeV were obtained from evaluated average parameters in the unresolved resonance region with taking into account the competition with the neutron inelastic channels. The La-139 radiative capture cross section between 1.2 MeV and 7.6 MeV was evaluated by means of statistical analysis of the experimental data. Above 7.6 MeV the data fit was joint to the theoretical capture cross sections calculated between 7.6 and 20 MeV. Theoretical results were normalized to the evaluated value obtained from analysis experimental data at En= 14.4 - 14.8 MeV. The results of the present evaluation were compared with the ENDF/B-VI cross section data and the recommended values of resonance integral and capture cross section at En=0.0253 eV. (author)

  14. Hydrogen sulfide regulates cardiovascular function by influencing the excitability of subfornical organ neurons.

    Directory of Open Access Journals (Sweden)

    Markus Kuksis

    Full Text Available Hydrogen sulfide (H2S, a gasotransmitter endogenously found in the central nervous system, has recently been suggested to act as a signalling molecule in the brain having beneficial effects on cardiovascular function. This study was thus undertaken to investigate the effect of NaHS (an H2S donor in the subfornical organ (SFO, a central nervous system site important to blood pressure regulation. We used male Sprague-Dawley rats for both in vivo and in vitro experiments. We first used RT-PCR to confirm our previous microarray analyses showing that mRNAs for the enzymes required to produce H2S are expressed in the SFO. We then used microinjection techniques to investigate the physiological effects of NaHS in SFO, and found that NaHS microinjection (5 nmol significantly increased blood pressure (mean AUC = 853.5±105.7 mmHg*s, n = 5. Further, we used patch-clamp electrophysiology and found that 97.8% (88 of 90 of neurons depolarized in response to NaHS. This response was found to be concentration dependent with an EC50 of 35.6 µM. Coupled with the depolarized membrane potential, we observed an overall increase in neuronal excitability using an analysis of rheobase and action potential firing patterns. This study has provided the first evidence of NaHS and thus H2S actions and their cellular correlates in SFO, implicating this brain area as a site where H2S may act to control blood pressure.

  15. Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis

    Directory of Open Access Journals (Sweden)

    Thomas eGrüter

    2015-05-01

    Full Text Available Psychosis is accompanied by severe attentional deficits, and impairments in associational-memory processing and sensory information processing that are ascribed to dysfunctions in prefrontal and hippocampal function. Disruptions of glutamatergic signalling may underlie these alterations: Antagonism of the N-methyl-D-aspartate receptor (NMDAR results in similar molecular, cellular, cognitive and behavioural changes in rodents and/or humans as those that occur in psychosis, raising the question as to whether changes in glutamatergic transmission may be intrinsic to the pathophysiology of the disease. In an animal model of psychosis that comprises treatment with the irreversible NMDAR-antagonist, MK801, we explored the cellular mechanisms that may underlie hippocampal dysfunction in psychosis. MK801-treatment resulted in a profound loss of hippocampal LTP that was evident 4 weeks after treatment. Whereas neuronal expression of the immediate early gene, Arc, was enhanced in the hippocampus by spatial learning in controls, MK801-treated animals failed to show activity-dependent increases in Arc expression. By contrast, a significant increase in basal Arc expression in the absence of learning was evident compared to controls. Paired-pulse facilitation was increased at the 40 ms interval indicating that NMDAR and/or fast GABAergic-mediated neurotransmission was disrupted. In line with this, MK801-treatment resulted in a significant decrease in GABA(A, and increase in GABA(B-receptor-expression in PFC, along with a significant increase of GABA(B- and NMDAR-GluN2B expression in the dentate gyrus. NMDAR-GluN1 or GluN2A subunit expression was unchanged. These data suggest that in psychosis, deficits in hippocampus-dependent memory may be caused by a loss of hippocampal LTP that arises through enhanced hippocampal neuronal excitability, altered GluN2B and GABA receptor expression and an uncoupling of the hippocampus-prefrontal cortex circuitry.

  16. Towards a new generation of strangeness results

    CERN Document Server

    Bellwied, R

    2004-01-01

    I will review the latest strangeness result measured in fixed target heavy-ion collisions at SIS, AGS and SPS before describing the first round of RHIC results. I will show that the systematic studies performed at the lower energies give a very consistent picture of enhanced strangeness production at SPS energies and hints of medium modification effects at the lower energies, which are dominated by larger baryon densities. The RHIC results complement this picture by again indicating strangeness production from a thermally equilibrated source, albeit at slightly higher freeze-out temperatures and lower baryon densities. RHIC adds significant new physics results to the field, though, by enabling the measurement of strange particle production at high transverse momentum, presently out to about 6 GeV /c. The new regime between 2 and 6 GeV/c is dominated by an interplay between traditional soft particle production, which is well described by hydrodynamical and thermal models, and production of strangeness from jet...

  17. Strange hadron production at low transverse momenta

    Science.gov (United States)

    Veres, Gábor I.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wyslouch, B.; Zhang, J.

    2004-01-01

    Some of the latest results of the PHOBOS experiment from the \\sqrt{s_{NN}}= 200\\ GeV Au+Au data are discussed. Those relevant to strangeness production are emphasized. These observations relate to the nature of the matter created when heavy ions collide at the highest achieved energy. The invariant yields of strange and non-strange charged hadrons at very low transverse momentum have been measured, and used to differentiate between different dynamical scenarios. In the intermediate transverse momentum range, the measured ratios of strange and anti-strange kaons approach one, while the antibaryon to baryon ratio is still significantly less, independent of collision centrality and transverse momentum. At high transverse momenta, we find that central and peripheral Au+Au collisions produce similar numbers of charged hadrons per participant nucleon pair, rather than per binary nucleon-nucleon collision. Finally, we describe the upgrades of PHOBOS completed for the 2003 d+Au and p+p run, which extend the transverse momentum range over which particle identification is possible and, at the same time, implement a trigger system selective for high-pT particles.

  18. Study of excitation energy sharing in heavy ion collisions as a function of their inelasticity

    International Nuclear Information System (INIS)

    Lott, B.

    1986-01-01

    The excitation energy sharing between the fragments of a heavy ion collision has been studied for quasi-elastic and deep inelastic mechanisms. A 32 S beam of 232 MeV incident energy has been used to bombard several targets (S, 58 Ni, 93 Nb). The evaporated charged particle multiplicities have been measured by inclusive measurements of the projectile-like nuclei and exclusive measurements of the two final nuclei. Evaporation calculations using the Hauser-Feshbach formalism allows us to deduce from the multiplicity measurements the projectile-like excitation energy. These results are compatible with the assumption of an equal sharing of excitation energies for quasi-elastic reaction products, and with the assumption of a mass ratio sharing for fully relaxed reaction products. Limiting values for the relaxation time of this mode have been deduced and are in agreement with predictions from the model developed by Randrup [fr

  19. Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shunsuke A. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Taniguchi, Yasutaka [Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan); Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435 (Japan); Shinohara, Yasushi [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Yabana, Kazuhiro [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2015-12-14

    We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.

  20. Natural excitation orbitals from linear response theories : Time-dependent density functional theory, time-dependent Hartree-Fock, and time-dependent natural orbital functional theory

    NARCIS (Netherlands)

    Van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2017-01-01

    Straightforward interpretation of excitations is possible if they can be described as simple single orbital-to-orbital (or double, etc.) transitions. In linear response time-dependent density functional theory (LR-TDDFT), the (ground state) Kohn-Sham orbitals prove to be such an orbital basis. In

  1. Search for a strangeness -2 dibaryon

    International Nuclear Information System (INIS)

    Franklin, G.B.

    1985-01-01

    The existing data on the strangeness -2 two-baryon mass spectrum is reviewed and a new experiment is proposed to explore this spectrum from 100 MeV below the mass of the lightest known two-baryon strangeness -2 system, ΛΛ, to 20 MeV above the ΛΛ mass. The proposed experiment is motivated by Jaffe's 1977 prediction of a six-quark object with strangeness -2 and J/sup π/ = 0 + at a mass of 2150. This particle, called the ''H'', has been predicted by later bag models as well. Calculations indicate the proposed experiment will be a sensitive test of the dibaryon theories. 12 refs

  2. Polarization observables for strangeness photoproduction on a frozen spin target with CLAS at Jefferson Lab

    International Nuclear Information System (INIS)

    Fegan, Stuart

    2012-01-01

    The FROST experiment at Jefferson Lab used the CLAS detector in Hall B with the intention of performing a complete measurement of polarization observables associated with strangeness photoproduction, in combination with data from previous JLab experiments. This was achieved by utilizing the FROST polarized target in conjunction with polarized photon beams, allowing direct measurement of beam-target double polarization observables. By studying strangeness reactions, such as γp → K + Λ 0 , it may be possible to find 'missing' baryon resonances, predicted by symmetric quark models but not observed in previous experiments, whose results are consistent with the di-quark model. It is thought these 'missing' resonances remain undiscovered because they have different coupling strengths for different reaction channels, such as the strangeness reactions, whereas the current data is dominated by studies of pN reactions. Observing these resonances therefore has important implications for our knowledge of the excited states of nucleons, and the models predicting the quark interactions within them. The G polarization observable is one of the beam-target double polarization observables, associated with a longitudinally polarized target and a linearly polarized photon beam, and its measurement for the strangeness reaction γp → K + Λ 0 is the focus of the work presented.

  3. Extension of the excitation functions of deuteron induced reactions on {sup nat}Sn up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Hermanne, A., E-mail: aherman@vub.ac.be [Cyclotron Laboratory, Vrije Universiteit Brussel, B1050 Brussels (Belgium); Tárkányi, F.; Ditrói, F.; Takács, S. [Institute of Nuclear Research of the Hungarian Academy of Sciences, H4026 Debrecen (Hungary)

    2017-01-15

    Using the stacked-foil activation technique, cross-sections of deuteron induced reactions on natural Sn targets were determined up to 50 MeV. Excitation functions are reported for the product nuclides {sup 116m}Sb, {sup 117}Sb, {sup 118m}Sb, {sup 120m}Sb {sup 122m+g}Sb, {sup 124m+g}Sb, {sup 110}Sn(cum), {sup 113m+g}Sn(cum), {sup 117m}Sn, {sup 110m}In(cum), {sup 110g}In, {sup 111m+g}In(cum), {sup 113m}In, {sup 114m}In {sup 115m}In. Comparison with earlier published data at lower energy is discussed. For all excitation functions a theoretical calculation using the TALYS 1.6 (on-line TENDL-2015 library) code is shown.

  4. Solvent effects on excited-state structures: A quantum Monte Carlo and density functional study

    NARCIS (Netherlands)

    Guareschi, R.; Floris, F.M.; Amovilli, C.; Filippi, Claudia

    2014-01-01

    We present the first application of quantum Monte Carlo (QMC) in its variational flavor combined with the polarizable continuum model (PCM) to perform excited-state geometry optimization in solution. Our implementation of the PCM model is based on a reaction field that includes both volume and

  5. Towards a unified description of light ion fusion cross section excitation functions

    International Nuclear Information System (INIS)

    Zimmer, K.W.

    1995-01-01

    A description of light heavy-ion fusion, taking into account both entrance-channel characteristics and compound-nucleus properties, is derived within a unified theory of nuclear reactions. The dependence of the imaginary fusion potential on the level density of the compound nucleus is revealed. The 12 C + 12 C, 12 C + 14 N, 10 B + 16 O and 16 O + 16 O fusion cross sections are calculated for E cm ≤ 120 MeV and compared with experimental data. The excitation energy dependence of the level-density parameter of 24 Mg, 26 Al and 32 S is inferred below 5 MeV/A. A realistic nuclear level-density model, describing the experimental level-density parameters of highly excited nuclei, is shown to be consistent with both the global features and details of the fusion cross section. 12 C + 12 C and 16 O + 16 O fusion cross section oscillations are predicted at large excitation energies, reflecting the structure of the level density of the highly excited light compound nuclei. Differences of the 12 C + 14 N and 10 B + 16 O fusion reaction mechanisms are discussed in terms of specific entrance-channel characteristics. (orig.)

  6. Towards a unified description of light ion fusion cross section excitation functions

    International Nuclear Information System (INIS)

    Zimmer, K.W.; Rebel, H.

    1994-10-01

    A description of light heavy-ion fusion, taking into account both entrace-channel characteristics and compound-nucleus properties, is derived within a unified theory of nuclear reactions. The dependence of the imaginary fusion potential on the level density of the compound nucleus is revealed. The 12 C+ 12 C, 12 C+ 14 N, 10 B+ 16 O and 16 O+ 16 O fusion cross sections are calculated for E cm ≤120 MeV and compared with experimental data. The excitation energy dependence of the level-density parameter of 24 Mg, 26 Al and 32 S is inferred below 5 MeV/A. A realistic nuclear level-density model, describing the experimental level-density parameters of highly excited nuclei, is shown to be consistent with both the global features and details of the fusion cross section. 12 C+ 12 C and 16 O+ 16 O fusion cross section oscillations are predicted at large excitation energies, reflecting the structure of the level density of the highly excited light compound nuclei. Differences of the 12 C+ 14 N and 10 B+ 16 O fusion reaction mechanisms are discussed in terms of specific entrance-channel characteristics. (orig.)

  7. Excitation function and isomeric ratio of Tc-isotopes from the 93Nb(α, xn) reaction

    International Nuclear Information System (INIS)

    Kim, K.; Kim, G.N.; Naik, H.; Zaman, M.; Yang, S.-C.; Song, T.-Y.; Guin, R.; Das, S.K.

    2015-01-01

    The excitation functions of 94–96 Tc isotopes and independent isomeric ratios of 93m, g Tc, 94m, g Tc, and 95m, g Tc from the 93 Nb(α, xn) reaction within the energy range below 40 MeV have been determined by using a stacked-foil activation and an off-line γ-ray spectrometric technique at the Variable Energy Cyclotron Center, Kolkota, India. The excitation function of 94–96 Tc in the 93 Nb(α, xn) reaction was also calculated by using the computer code TALYS 1.6. The present data are found to be in general agreement with the literature data but have similar trend with some deviation from calculated data of the TALYS 1.6 code. The isomeric ratios of 93m, g Tc, 94m, g Tc, and 95m, g Tc in the 93 Nb(α, xn) reactions from the present work and literature data were compared with similar data in the 93 Nb( 3 He, xn) and 96 Mo(p, xn) reactions. In all the three reactions, the isomeric ratios increase with the increasing excitation energy. However, at all excitation energies, the isomeric ratios of 93m, g Tc, 94m, g Tc, and 95m, g Tc in the 93 Nb(α, xn) and 93 Nb( 3 He, xn) reactions are higher than those in the 96 Mo(p, xn) reactions, which indicate the role of input angular momentum besides excitation energy. Above the excitation energy of 35–55 MeV, the isomeric ratios of 95m, g Tc, 94m, g Tc, and 93m, g Tc decrease in all the 93 Nb(α, xn), 93 Nb( 3 He, xn) and 96 Mo(p, xn) reactions. This decreasing trend at higher excitation energy indicates the starting of pre-equilibrium reaction, which depends on the target, projectile, and type of reaction products

  8. Flipped neutrino emissivity from strange matter

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, A.; Dutta, S. (Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India))

    1994-04-15

    Energy loss due to wrong helicity sterile neutrinos through spin flip processes leads to rapid cooling of nascent neutron stars. The observed cooling of neutron stars associated with SN 1987A seems to preclude the existence of Dirac neutrinos with a mass in excess of 20 keV. Assuming that nuclear matter in the core of the neutron star undergoes a phase transition to quark matter leading to a strange star or a neutron star with a strange matter core, we examine the emission of flipped Dirac neutrinos for two dominant processes: quark-neutrino scattering [[ital q]+[nu][sub [minus

  9. Connecting coherent structures and strange attractors

    Science.gov (United States)

    Keefe, Laurence R.

    1990-01-01

    A concept of turbulence derived from nonlinear dynamical systems theory suggests that turbulent solutions to the Navier-Stokes equations are restricted to strange attractors, and, by implication, that turbulent phenomenology must find some expression or source in the structure of these mathematical objects. Examples and discussions are presented to link coherent structures to some of the commonly known characteristics of strange attractors. Basic to this link is a geometric interpretation of conditional sampling techniques employed to educe coherent structures that offers an explanation for their appearance in measurements as well as their size.

  10. Properties of Strange Matter in a Model with Effective Lagrangian

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; SU Ru-Keng; SONG Hong-Qiu; ZHANG Li-Liang

    2001-01-01

    The strange hadronic matter with nucleons, A-hyperons and E-hyperons is studied by using an effective nuclear model in a mean-field approximation. The density and strangeness fraction dependence of the effective baryon masses as well as the saturation properties and stabilities of the strange hadronic matter are discussed.``

  11. Study of stellar objects with strange quark matter crust

    International Nuclear Information System (INIS)

    Hothi, N.; Bisht, S.

    2012-01-01

    The absolute stability of strange quark matter is a viable possibility and immensely effects physics at the astrophysical scale. Relativistic heavy-ion reactions offer a stage to produce this exotic state of matter and the enhanced production of strange particles during these reactions can be studied within the framework of quark-gluon plasma (QGP). We have tried to investigate the role of strangeness under the compact star phenomenology. Emphasis is laid upon the possibility of existence of a third family of strange quark stars and its study help in revealing a number of unexplored features of the cosmos. Bag model parameters have been used to determine some integral parameters for a sequence of strange stars with crust and strange dwarfs constructed out of strange quark matter crust. A comparative analysis is performed between the strange and neutron stars and the strange and white dwarfs based upon these intrinsic parameters and paramount differences are observed. The intimacy between astrophysics and strange quarks depends strongly upon the strange quark matter hypothesis. It states that for a collection of more than a few hundred u, d and s quarks, the energy per baryon E/A of strange quark matter (SQM) can be well below the energy per baryon of the most stable atomic nuclei

  12. Measurement and analysis of excitation functions and observation of mass-asymmetry effect on incomplete fusion dynamics

    Directory of Open Access Journals (Sweden)

    Rashid M.H.

    2011-10-01

    Full Text Available Excitation functions for sixteen evaporation residues produced in the interaction of 20Ne with 165Ho have been measured in the projectile energy range ≈88-164 MeV, using catcher foil activation technique followed by gamma-ray spectrometry. It has been found in general that the excitation functions of evaporation residues produced via xn/pxn channels satisfactorily reproduced with the statistical model code PACE-2 after subtraction of precursor decay contribution. The significant enhancement in the measured excitation functions for the residues produced in alpha emission channels over the PACE-2 predictions has been observed. These alpha emission channels are attributed to incomplete fusion reaction process. The results indicate the occurrence of incomplete fusion involving break-up of projectile 20Ne into 4He + 16O and /or 8Be + 12C followed by fusion of one of the fragments with target nucleus 165Ho. The analysis of the present data suggest that probability of incomplete fusion increases with projectile energy. The ICF fraction FICF also increases with increasing mass-asymmetry of the entrance channel.

  13. Connected, disconnected and strange quark contributions to HVP

    International Nuclear Information System (INIS)

    Bijnens, Johan; Relefors, Johan

    2016-01-01

    We calculate all neutral vector two-point functions in Chiral Perturbation Theory (ChPT) to two-loop order and use these to estimate the ratio of disconnected to connected contributions as well as contributions involving the strange quark. We extend the ratio of −1/10 derived earlier in two flavour ChPT at one-loop order to a large part of the higher order contributions and discuss corrections to it. Our final estimate of the ratio disconnected to connected is negative and a few % in magnitude.

  14. Connected, disconnected and strange quark contributions to HVP

    Energy Technology Data Exchange (ETDEWEB)

    Bijnens, Johan; Relefors, Johan [Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, SE 223-62 Lund (Sweden)

    2016-11-14

    We calculate all neutral vector two-point functions in Chiral Perturbation Theory (ChPT) to two-loop order and use these to estimate the ratio of disconnected to connected contributions as well as contributions involving the strange quark. We extend the ratio of −1/10 derived earlier in two flavour ChPT at one-loop order to a large part of the higher order contributions and discuss corrections to it. Our final estimate of the ratio disconnected to connected is negative and a few % in magnitude.

  15. Connected, disconnected and strange quark contributions to HVP

    Science.gov (United States)

    Bijnens, Johan; Relefors, Johan

    2016-11-01

    We calculate all neutral vector two-point functions in Chiral Perturbation Theory (ChPT) to two-loop order and use these to estimate the ratio of disconnected to connected contributions as well as contributions involving the strange quark. We extend the ratio of -1/10 derived earlier in two flavour ChPT at one-loop order to a large part of the higher order contributions and discuss corrections to it. Our final estimate of the ratio disconnected to connected is negative and a few % in magnitude.

  16. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme.

    Science.gov (United States)

    Li, Shaohong L; Truhlar, Donald G

    2015-07-14

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations and atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.

  17. Portable vibration exciter

    Science.gov (United States)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  18. Assessment of Ab Initio and Density Functional Theory Methods for the Excitations of Donor-Acceptor Complexes: The Case of the Benzene-Tetracyanoethylene Model

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2018-04-01

    Full Text Available The understanding of the excited-state properties of electron donors, acceptors and their interfaces in organic optoelectronic devices is a fundamental issue for their performance optimization. In order to obtain a balanced description of the different excitation types for electron-donor-acceptor systems, including the singlet charge transfer (CT, local excitations, and triplet excited states, several ab initio and density functional theory (DFT methods for excited-state calculations were evaluated based upon the selected model system of benzene-tetracyanoethylene (B-TCNE complexes. On the basis of benchmark calculations of the equation-of-motion coupled-cluster with single and double excitations method, the arithmetic mean of the absolute errors and standard errors of the electronic excitation energies for the different computational methods suggest that the M11 functional in DFT is superior to the other tested DFT functionals, and time-dependent DFT (TDDFT with the Tamm–Dancoff approximation improves the accuracy of the calculated excitation energies relative to that of the full TDDFT. The performance of the M11 functional underlines the importance of kinetic energy density, spin-density gradient, and range separation in the development of novel DFT functionals. According to the TDDFT results, the performances of the different TDDFT methods on the CT properties of the B-TCNE complexes were also analyzed.

  19. Sigma terms and strangeness content of the nucleon with N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center (CaSToRC); Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Constantinou, M.; Hadjiyiannakou, K.; Strelchenko, A. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Dinter, S.; Drach, V.; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koustou, G.; Vaquero, A. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center (CaSToRC)

    2012-11-15

    We investigate excited state contaminations in a direct computation of the nucleon {sigma}-terms. This is an important source of systematic effects that needs to be controlled besides the light quark mass dependence and lattice artefacts. We use maximally twisted mass fermions with dynamical light (u,d), strange and charm degrees of freedom. Employing an efficient stochastic evaluation of the disconnected contribution available for twisted mass fermions, we show that the effect of excited states is large in particular for the strange {sigma}-terms, where it can be as big as O(>or similar 40%). This leads to the unfortunate conclusion that even with a source-sink separation of {proportional_to}1.5 fm and a good statistical accuracy it is not clear, whether excited state effects are under control for this quantity.

  20. Sigma terms and strangeness content of the nucleon with Nf=2+1+1 twisted mass fermions

    International Nuclear Information System (INIS)

    Alexandrou, C.

    2012-11-01

    We investigate excited state contaminations in a direct computation of the nucleon σ-terms. This is an important source of systematic effects that needs to be controlled besides the light quark mass dependence and lattice artefacts. We use maximally twisted mass fermions with dynamical light (u,d), strange and charm degrees of freedom. Employing an efficient stochastic evaluation of the disconnected contribution available for twisted mass fermions, we show that the effect of excited states is large in particular for the strange σ-terms, where it can be as big as O(>or similar 40%). This leads to the unfortunate conclusion that even with a source-sink separation of ∝1.5 fm and a good statistical accuracy it is not clear, whether excited state effects are under control for this quantity.

  1. Ratios of strange hadrons to pions in collisions of large and small nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Oeschler, H. [Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Cleymans, J. [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa); Hippolyte, B. [Universite de Strasbourg, CNRS-IN2P3, Institut Pluridisciplinaire Hubert Curien (IPHC), Strasbourg (France); Redlich, K. [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); ExtreMe Matter Institute EMMI, GSI, Darmstadt (Germany); Sharma, N. [Panjab University, Department of Physics, Chandigarh (India)

    2017-09-15

    The dependence of particle production on the size of the colliding nuclei is analyzed in terms of the thermal model using the canonical ensemble. The concept of strangeness correlation in clusters of sub-volume V{sub c} is used to account for the suppression of strangeness. A systematic analysis is presented of the predictions of the thermal model for particle production in collisions of small nuclei. The pattern of the maxima of strange-particles-to-pion ratios as a function of beam energy is quite special, as they do not occur at the same beam energy and are sensitive to the system size. In particular, the Λ/π{sup +} ratio shows a clear maximum even for small systems while the maximum in the K{sup +}/π{sup +} ratio is less pronounced in small systems. (orig.)

  2. A statistical approach to strange diffusion phenomena

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Sanchez, R.

    2005-01-01

    The study of particle (and heat) transport in fusion plasmas has revealed the existence of what might be called 'unusual' transport phenomena. Such phenomena are: unexpected scaling of the confinement time with system size, power degradation (i.e. sub-linear scaling of energy content with power input), profile stiffness (also known as profile consistency), rapid transient transport phenomena such as cold and heat pulses (travelling much faster than the diffusive timescale would allow), non-local behaviour and central profile peaking during off-axis heating, associated with unexplained inward pinches. The standard modelling framework, essentially equal to Fick's Law plus extensions, has great difficulty in providing an all-encompassing and satisfactory explanation of all these phenomena. This difficulty has motivated us to reconsider the basics of the modelling of diffusive phenomena. Diffusion is based on the well-known random walk. The random walk is captured in all its generality in the Continuous Time Random Walk (CTRW) formalism. The CTRW formalism is directly related to the well-known Generalized Master Equation, which describes the behaviour of tracer particle diffusion on a very fundamental level, and from which the phenomenological Fick's Law can be derived under some specific assumptions. We show that these assumptions are not necessarily satisfied under fusion plasma conditions, in which case other equations (such as the Fokker-Planck diffusion law or the Master Equation itself) provide a better description of the phenomena. This fact may explain part of the observed 'strange' phenomena (namely, the inward pinch). To show how the remaining phenomena mentioned above may perhaps find an explanation in the proposed alternative modelling framework, we have designed a toy model that incorporates a critical gradient mechanism, switching between rapid (super-diffusive) and normal diffusive transport as a function of the local gradient. It is then demonstrated

  3. Echolocation The Strange Ways of Bats

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Echolocation The Strange Ways of Bats. G Marimuthu. General Article Volume 1 Issue 5 May 1996 pp 40-48. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/05/0040-0048. Author Affiliations.

  4. Multi-strangeness dynamics at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Gaitanos, Theodoros; Lenske, Horst; Mosel, Ulrich [Institut fuer Theoretische Physik, Universitaet Giessen (Germany)

    2014-07-01

    Multi-strange bound hadron systems are excellent candidates for studying in-medium hyperon-hyperon (YY) interactions. A better understanding of the strangeness sector of the hadronic equation of state is crucial for our understanding of astrophysical objects like neutron stars. Furthermore, these studies are being motivated by actual and planed experimental activities on hypernuclear physics (HypHI and PANDA Collaborations). In fact, HypHI has already studied single-strange hypernuclei in heavy-ion collisions, whereas studies on double- and multi-strange nuclear systems are being planed by PANDA. We have reported in the past first studies on single- and double-Λ hypernuclei production in reactions induced by heavy-ions and antiprotons, respectively. The YY-interaction is still little known and many controversial theoretical predictions exist in the literature. We therefore extend our previous works by investigating the influence of various hyperon-hyperon interactions on the production dynamics of multi-Λ hypernuclei in reactions relevant for FAIR. Particular attention is paid to the heavy Ω-baryon (S=-3) and its role to the formation of multi-Λ hypernuclei in reactions induced by antiprotons.

  5. CP asymmetries in Strange Baryon Decays

    Science.gov (United States)

    Bigi, I. I.; Kang, Xian-Wei; Li, Hai-Bo

    2018-01-01

    While indirect and direct CP violation (CPV) has been established in the decays of strange and beauty mesons, no CPV has yet been found for baryons. There are different paths to finding CP asymmetry in the decays of strange baryons; they are all highly non-trivial. The HyperCP Collaboration has probed CPV in the decays of single Ξ and Λ [1]. We discuss future lessons from {{{e}}}+{{{e}}}- collisions at BESIII/BEPCII: probing decays of pairs of strange baryons, namely Λ, Σ and Ξ. Realistic goals are to learn about non-perturbative QCD. One can hope to find CPV in the decays of strange baryons; one can also dream of finding the impact of New Dynamics. We point out that an important new era will start with the BESIII/BEPCII data accumulated by the end of 2018. This also supports new ideas to trigger {{J}}/{{\\psi }}\\to \\bar{{{Λ }}}{{Λ }} at the LHCb collaboration. Supported by National Science Foundation (PHY-1520966), National Natural Science Foundation of China (11335009, 11125525), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257), the National Key Basic Research Program of China (2015CB856700), Key Research Program of Frontier Sciences, CAS, (QYZDJ-SSW-SLH003), XWK’s work is also supported by MOST (Taiwan) (104-2112-M-001-022)

  6. Seismic Search for Strange Quark Matter

    Science.gov (United States)

    Teplitz, Vigdor

    2004-01-01

    Two decades ago, Witten suggested that the ground state of matter might be material of nuclear density made from up, down and strange quarks. Since then, much effort has gone into exploring astrophysical and other implications of this possibility. For example, neutron stars would almost certainly be strange quark stars; dark matter might be strange quark matter. Searches for stable strange quark matter have been made in various mass ranges, with negative, but not conclusive results. Recently, we [D. Anderson, E. Herrin, V. Teplitz, and I. Tibuleac, Bull. Seis. Soc. of Am. 93, 2363 (2003)] reported a positive result for passage through the Earth of a multi-ton "nugget" of nuclear density in a search of about a million seismic reports, to the U.S. Geological Survey for the years 1990-93, not associated with known Earthquakes. I will present the evidence (timing of first signals to the 9 stations involved, first signal directions, and unique waveform characteristics) for our conclusion and discuss potential improvements that could be obtained from exploiting the seismologically quieter environments of the moon and Mars.

  7. 'Strange money': risk, finance and socialized debt.

    Science.gov (United States)

    Dodd, Nigel

    2011-03-01

    This paper explores an essential but neglected aspect of recent discussions of the banking and financial system, namely money itself. Specifically, I take up a distinction drawn by Susan Strange which has never been fully elaborated: between a financial system that is global, and an international monetary system that remains largely territorial. I propose a sociological elaboration of this distinction by examining each category, 'finance' and 'money', in terms of its distinctive orientation to risk and debt. Money is distinguished by its high degree of liquidity and low degree of risk, corresponding to expectations that derive from its status as a 'claim upon society'- a form of socialized debt. But as Strange argued, these features of money are being undermined by the proliferation of sophisticated instruments of financial risk management -'strange money'- that, as monetary substitutes, both weaken states' capacity to manage money, and more broadly, contribute to 'overbanking'. The ultimate danger, according to Strange, is the 'death of money'. The paper concludes by exploring the implications of the distinction for sociological arguments about the changing nature of money. © London School of Economics and Political Science 2011.

  8. Strange baryon production in Z hadronic decays

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Anykeyev, V B; Apel, W D; Arnoud, Y; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barate, R; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brunet, J M; Brückman, P; Bugge, L; Buran, T; Buys, A; Bärring, O; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Cassio, V; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chikilev, O G; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Da Silva, W; Dahl-Jensen, Erik; Dahm, J; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; De Angelis, A; De Boeck, H; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; Di Ciaccio, Lucia; Dijkstra, H; Djama, F; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Dönszelmann, M; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Föth, H; Fürstenau, H; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gillespie, D; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Gracco, Valerio; Grard, F; Graziani, E; Grosdidier, G; Gunnarsson, P; Guy, J; Guz, Yu; Górski, M; Günther, M; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Haider, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Joram, Christian; Juillot, P; Jönsson, L B; Jönsson, P E; Kaiser, M; Kalmus, George Ernest; Kapusta, F; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Królikowski, J; Kubinec, P; Kucewicz, W; Kurvinen, K L; Kuznetsov, O; Köhne, J H; Köne, B; La Vaissière, C de; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lokajícek, M; Loken, J G; Loukas, D; Lutz, P; Lyons, L; López, J M; López-Aguera, M A; López-Fernandez, A; Lörstad, B; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martí i García, S; Martínez-Rivero, C; Martínez-Vidal, F; Maréchal, B; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Monge, M R; Morettini, P; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Mönig, K; Møller, R; Müller, H; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Némécek, S; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parodi, F; Passeri, A; Pegoraro, M; Pennanen, J; Peralta, L; Pernegger, H; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rídky, J; Rückstuhl, W; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Stäck, H; Szczekowski, M; Szeptycka, M; Sánchez, J; Tabarelli de Fatis, T; Tavernet, J P; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tuuva, T; Tyapkin, I A; Tyndel, M; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van Doninck, W K; Van Eldik, J; Van der Velde, C; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Voutilainen, M; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Wehr, A; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wormser, G; Woschnagg, K; Yip, K; Yu, L; Yushchenko, O P; Zach, F; Zacharatou-Jarlskog, C; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zhigunov, V P; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; de Boer, Wim; van Apeldoorn, G W; van Dam, P; Åsman, B; Österberg, K; Überschär, B; Überschär, S

    1995-01-01

    A study of the production of strange octet and decuplet baryons in hadronic decays of the Z recorded by the DELPHI detector at LEP is presented. This includes the first measurement of the \\Sigma^\\pm average multiplicity. The total and differential cross sections, the event topology and the baryon-antibaryon correlations are compared with current hadronization models.

  9. Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations

    International Nuclear Information System (INIS)

    Gu, Haichang; Song, Gangbing; Moslehy, Yashar; Mo, Y L; Sanders, David

    2010-01-01

    In this paper, a recently developed multi-functional piezoceramic-based device, named the smart aggregate, is used for the health monitoring of concrete columns subjected to shake table excitations. Two circular reinforced concrete columns instrumented with smart aggregates were fabricated and tested with a recorded seismic excitation at the structural laboratory at the University of Nevada—Reno. In the tests, the smart aggregates were used to perform multiple monitoring functions that included dynamic seismic response detection, structural health monitoring and white noise response detection. In the proposed health monitoring approach, a damage index was developed on the basis of the comparison of the transfer function with the baseline function obtained in the healthy state. A sensor-history damage index matrix is developed to monitor the damage evolution process. Experimental results showed that the acceleration level can be evaluated from the amplitude of the dynamic seismic response; the damage statuses at different locations were evaluated using a damage index matrix; the first modal frequency obtained from the white noise response decreased with increase of the damage severity. The proposed multi-functional smart aggregates have great potential for use in the structural health monitoring of large-scale concrete structures

  10. Neutral strange particle production at top SPS energy measured by the CERES experiment

    International Nuclear Information System (INIS)

    Radomski, S.

    2006-01-01

    Systematics of strange particle production in collisions of ultrarelativistic nuclei provides an insight into the properties of the strongly interacting matter. Hadrochemistry, the study of the relative yields, provides information about chemical freeze-out and the position of the system in the phase diagram. Strangeness production at Super Proton Synchrotron (SPS) energies is not fully explained by the thermal model of hadron gas. Data reported by one experiment show sharp structures as a function of energy which are interpreted as a signature for a phase transition, but due to discrepancies in the results between two different experiments, a conclusion can not be drawn. This thesis is part of an effort to build a database of the strangeness production at SPS energy. The particular subject of this work is a precise measurement of the production of K S 0 . The results are compared with two other experiments and the prediction of the thermal model. The high precision data shed light on the systematics of strangeness production and allow clarification of the experimental status. The study of transverse momentum spectra provides information about the temperature and the radial expansion of the system. Here, as in the case of particle yields, interesting structures are visible as a function of energy. A rapid increase in the number of degrees of freedom is visible in the SPS region. A large part of the strangeness is carried by the neutral strange baryon Λ. Here the experimental situation is even more complicated because the reconstruction of the Λ yield requires large extrapolation to low transverse momentum. In this work first results on Λ production will be presented. (orig.)

  11. Neutral strange particle production at top SPS energy measured by the CERES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Radomski, S.

    2006-07-05

    Systematics of strange particle production in collisions of ultrarelativistic nuclei provides an insight into the properties of the strongly interacting matter. Hadrochemistry, the study of the relative yields, provides information about chemical freeze-out and the position of the system in the phase diagram. Strangeness production at Super Proton Synchrotron (SPS) energies is not fully explained by the thermal model of hadron gas. Data reported by one experiment show sharp structures as a function of energy which are interpreted as a signature for a phase transition, but due to discrepancies in the results between two different experiments, a conclusion can not be drawn. This thesis is part of an effort to build a database of the strangeness production at SPS energy. The particular subject of this work is a precise measurement of the production of K{sub S}{sup 0}. The results are compared with two other experiments and the prediction of the thermal model. The high precision data shed light on the systematics of strangeness production and allow clarification of the experimental status. The study of transverse momentum spectra provides information about the temperature and the radial expansion of the system. Here, as in the case of particle yields, interesting structures are visible as a function of energy. A rapid increase in the number of degrees of freedom is visible in the SPS region. A large part of the strangeness is carried by the neutral strange baryon {lambda}. Here the experimental situation is even more complicated because the reconstruction of the {lambda} yield requires large extrapolation to low transverse momentum. In this work first results on {lambda} production will be presented. (orig.)

  12. Strange sea quark effects for low lying baryons

    International Nuclear Information System (INIS)

    Upadhyay, A.; Batra, Meenakshi

    2013-01-01

    Assuming hadrons as an ensemble of quark-gluon Fock states, contributions from sea quarks and gluons can be studied in detail for ground state baryons. Spin crisis of nucleons say that only a small fraction of proton spin is carried by valence quarks. Rest part is distributed among gluons and sea which includes both strange and non-strange quark-anti-quark pairs. This necessitates the study of strange sea quark contribution for other baryons too due to higher mass and presence of strange quark in valence part. Recent studies have also studied strange sea contribution for baryons using different models. We implement the statistical modeling techniques to compute strange sea quark content for baryon octet. Statistical model has already been applied to study sea quark content for nucleons in the form of scalar, vector and tensor sea. In our present work the same idea has been extended for strange sea to probe the structure in more detail. (author)

  13. Strangeness chemical equilibration in a quark-gluon plasma

    International Nuclear Information System (INIS)

    Letessier, Jean; Rafelski, Johann

    2007-01-01

    We study, in the dynamically evolving quark-gluon plasma (QGP) fireball formed in relativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC), the growth of strangeness yield toward and beyond the chemical equilibrium. We account for the contribution of the direct strangeness production and evaluate the thermal-QCD strangeness production mechanisms. The specific yield of strangeness per entropy, s/S, is the primary target variable. We explore the effect of collision impact parameter, i.e., fireball size, on kinetic strangeness chemical equilibration in QGP. Insights gained in studying the RHIC data with regard to the dynamics of the fireball are applied to the study of strangeness production at the LHC. We use these results and consider the strange hadron relative particle yields at RHIC and LHC in a systematic fashion. We consider both the dependence on s/S and the direct dependence on the participant number

  14. Fission lifetime measured by the blocking technique as a function of excitation energy in the 24 A.MeV 238U+28Si reaction

    International Nuclear Information System (INIS)

    Morjean, M.; Galin, J.; Goldenbaum, F.; Lienard, E.; Chevallier, M.; Dauvergne, D.; Kirsch, R.; Jacquet, D.; and others.

    1997-01-01

    The blocking technique was used to infer fission lifetimes as a function of excitation energy for uranium-like nuclei formed in the U+Si reactions at 24 MeV/nucleon. The fission lifetimes are found larger than 10 -19 s for excitation energies up to about 250 MeV. (K.A.)

  15. Wavelet-Based Frequency Response Function: Comparative Study of Input Excitation

    Directory of Open Access Journals (Sweden)

    K. Dziedziech

    2014-01-01

    Full Text Available Time-variant systems can be found in many areas of engineering. It is widely accepted that the classical Fourier-based methods are not suitable for the analysis and identification of such systems. The time-variant frequency response function—based on the continuous wavelet transform—is used in this paper for the analysis of time-variant systems. The focus is on the comparative study of various broadband input excitations. The performance of the method is tested using simulated data from a simple MDOF system and experimental data from a frame-like structure.

  16. Understanding the effects of packing and chemical terminations on the optical excitations of azobenzene-functionalized self-assembled monolayers

    Science.gov (United States)

    Cocchi, Caterina; Draxl, Claudia

    2017-10-01

    In a first-principles study based on many-body perturbation theory, we analyze the optical excitations of azobenzene-functionalized self-assembled monolayers (SAMs) with increasing packing density and different terminations, considering for comparison the corresponding gas-phase molecules and dimers. Intermolecular coupling increases with the density of the chromophores independently of the functional groups. The intense π → π* resonance that triggers photo-isomerization is present in the spectra of isolated dimers and diluted SAMs, but it is almost completely washed out in tightly packed architectures. Intermolecular coupling is partially inhibited by mixing differently functionalized azobenzene derivatives, in particular when large groups are involved. In this way, the excitation band inducing the photo-isomerization process is partially preserved and the effects of dense packing partly counterbalanced. Our results suggest that a tailored design of azobenzene-functionalized SAMs which optimizes the interplay between the packing density of the chromophores and their termination can lead to significant improvements in the photo-switching efficiency of these systems.

  17. Consistent evaluations of (n,2n) and (n,np) reaction excitation functions for some even-even isotopes using empirical systematics

    Energy Technology Data Exchange (ETDEWEB)

    Manokhin, Vassily N. [Russian Nuclear Data Center, Institute of Physics and Power Engineering, Obninsk (Russian Federation); Odano, Naoteru; Hasegawa, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    An approach for consistent evaluation of (n,2n) and (n,np) reaction excitation functions for some even-even isotopes with the (n,np) reaction thresholds lower than (n,2n) reaction ones is described. For determination of cross sections in the maximum of the (n,2n) and (n,np) reaction excitation functions some empirical systematics developed by Manokhin were used together with trends in dependence of gaps between the (n,2n) and (n,np) thresholds on atomic mass number A. The shapes of the (n,2n) and (n,np) reaction excitation functions were calculated using the normalized functions from the Manokhin's systematics. Excitation functions of (n,2n) and (n,np) reactions were evaluated for several nuclei by using the systematics and it was found that the approach used for the present study gives reasonable results. (author)

  18. Breakup excitation function at backward angles from α-spectra in the 6Li + 144Sm system

    International Nuclear Information System (INIS)

    Capurro, O.A.; Pacheco, A.J.; Arazi, A.; Figueira, J.M.; Martinez Heimann, D.; Negri, A.E.

    2011-01-01

    Breakup cross sections were obtained for the 6 Li + 144 Sm system at energies above and below the Coulomb barrier from a detailed analysis of the data recorded at backward angles. These cross sections are compared with inelastic target excitations previously reported revealing a similar behavior as a function of the bombarding energy but a large absolute difference between them. Using kinematical considerations we have analyzed possible contributions from different breakup channels and we have extracted information on magnitudes such as the relative kinetic energies of the corresponding breakup fragments.

  19. Final results for the excitation function and angular distributions of the 3H(d,n)4He reaction

    International Nuclear Information System (INIS)

    Tang Hongqing; Zhou Zuying; Qi Bujia; Zhou Chenwei; Du Yanfeng; Xia Haihong; Chen Zemin; Chen Zhenpeng; Chen Yingtang

    1998-01-01

    The final relative excitation function of the 3 H(d,n) 4 He rection at 0 degree is shown out. For comparison, a curve calculated from Drosg's HI-13 tandem is in progressplotted. The angular distributions of the 3 H(d,n) 4 He reaction at E d =13.36, 16.50 and 19.50 Mev in the center-of-mass system are shown out. A comparison of the legendre polynomial coefficients obtained from the present angular distribution data with Drosg's evaluation are reported

  20. Excitation functions for the formation of some short-lived products in proton-induced reactions on silver

    OpenAIRE

    Uddin, M. S.; Baba, M.; Hagiwara, M.; Latif, S. K. A.; Qaim, S. M.

    2008-01-01

    Excitation functions of the Ag-nat(p, xn)Cd-104,Cd-105 and Ag-nat(p, pxn) Ag-103,Ag-104m.g,Ag- 1049 reactions were measured for the first time over the proton energy range of 32 to about 60 MeV. The data were compared with the results of precompound-hybrid model calculations, whereby only partial agreement was obtained. The contribution of the Ag-103 precursor decay to the total formation of the therapeutic radionuclide Pd-103 in proton activation of silver was estimated: it amounted to about...

  1. Gross resonance-like structure of the complete fusion excitation function for the 16O + 28Si reaction

    International Nuclear Information System (INIS)

    Zheng Jiwen; Zheng Pingzi; Liu Guoxing

    1993-01-01

    The complete fusion excitation function for the 16 O + 28 Si reaction is measured in the incident energy range from 50 to 90 MeV with step of 1.0 MeV using a position sensitive ΔE-E telescope system. The striking gross resonance-like structure is observed when E c.m. c.m. 34.5, 38.5 and 43.0 MeV respectively. The structure vanishes gradually when E c.m. > 46.0 MeV

  2. Parametrically Excited Oscillations of Second-Order Functional Differential Equations and Application to Duffing Equations with Time Delay Feedback

    Directory of Open Access Journals (Sweden)

    Mervan Pašić

    2014-01-01

    Full Text Available We study oscillatory behaviour of a large class of second-order functional differential equations with three freedom real nonnegative parameters. According to a new oscillation criterion, we show that if at least one of these three parameters is large enough, then the main equation must be oscillatory. As an application, we study a class of Duffing type quasilinear equations with nonlinear time delayed feedback and their oscillations excited by the control gain parameter or amplitude of forcing term. Finally, some open questions and comments are given for the purpose of further study on this topic.

  3. Experimental fusion excitation functions and derived barrier distributions for heavy ion systems involving prolate and oblate target nuclei

    International Nuclear Information System (INIS)

    Bierman, J.D.; Chan, P.; Liang, J.F.; Kelly, M.P.; Sonzogni, A.A.; Vandenbosch, R.

    1996-01-01

    Fusion excitation functions spanning the entire barrier region in 1 MeV energy steps for the two systems 40 Ca + 192 Os, 194 Pt are presented. The results of fission fragment angular distribution measurements for fusion-fission of 40 Ca + 197 Au at several projectile energies within the barrier region are also presented. The fusion data is of high enough precision to allow for extraction of the distribution of fusion barriers from the second differential of the product of E and σ. Basic coupled channels calculations which are in quite good agreement with the data are shown and discussed

  4. Gross and Fine Structure of Pion Production Excitation Functions in {bold {ital p}}-Nucleus and Nucleus-Nucleus Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsson, B.; Berg, M.; Carlen, L.; Elmer, R.; Fokin, A.; Ghetti, R.; Martensson, J.; Noren, B.; Oskarsson, A.; Whitlow, H.J. [Department of Physics, University of Lund, Lund (Sweden); Ekstroem, C.; Ericsson, G.; Romanski, J.; van Veldhuizen, E.J.; Westerberg, L. [The Svedberg Laboratory and Department of Neutron Physics, University of Uppsala, Uppsala (Sweden); Julien, J. [Centre d`Etudes Nucleaires, Saclay (France); Skeppstedt, O. [Department of Physics, Chalmers Institute of Technology, Gothenburg (Sweden); Nyboe, K.; Thorsteinsen, T.F.; Amirelmi, S. [Department of Physics, University of Bergen, Bergen (Norway); Guttormsen, M.; Lo/vho/iden, G. [Department of Physics, University of Oslo, Oslo (Norway); Bellini, V.; Palazzolo, F.; Sperduto, M.L. [Istituto Nazionale di Fisica Nucleare/Laboratorio Nazionale del Sud, University of Catania, Catania (Italy); Bondorf, J.P.; Mishustin, I. [Niels Bohr Institute, Copenhagen (Denmark); Avdeichikov, V. [Joint Institute for Nuclear Research, Dubna (Russia); Lozhkin, O.V.; Murin, Y. [V.G. Khlopin Radium Institute, St.Petersburg (Russia)

    1997-05-01

    Slow ramping of the CELSIUS storage ring has been utilized to measure the yield of charged pions in proton and heavy ion induced collisions with continuously varying beam energy. Boltzmann-Uehling-Uhlenbeck predictions, including Fermi momenta of nucleons in nuclei, follow the general shape of the p-nucleus excitation functions quite well except for a general overestimation of the backward emission. For heavy ion reactions the calculated yield also falls off faster with decreasing beam energy than the data. No statistically significant narrow resonances are observed. {copyright} {ital 1997} {ital The American Physical Society}

  5. Statistical model calculation of fission isomer excitation functions in (n,n') and (n,γ) reactions

    International Nuclear Information System (INIS)

    Chatterjee, A.; Athougies, A.L.; Mehta, M.K.

    1977-01-01

    A statistical model developed by Britt and others (1971, 1973) to analyze isomer excitation functions in spallation type reactions like (α,2n) has been adopted in fission isomer calculations for (n,n') and (n,γ) reactions. Calculations done for 235 U(n,n')sup(238m)U and 235 U(n,γ)sup(236m)U reactions have been compared with experimental measurements. A listing of the computer program ISOMER using FORTRAN IV to calculate the isomer to prompt ratios is given. (M.G.B.)

  6. |Vus| determination from inclusive strange tau decay and lattice HVP

    Directory of Open Access Journals (Sweden)

    Boyle Peter

    2018-01-01

    Full Text Available We propose and apply a novel approach to determining |Vus| which uses inclusive strange hadronic tau decay data and hadronic vacuum polarization functions (HVPs computed on the lattice. The experimental and lattice data are related through dispersion relations which employ a class of weight functions having poles at space-like momentum. Implementing this approach using lattice data generated by the RBC/UKQCD collaboration, we show examples of weight functions which strongly suppress spectral integral contributions from the region where experimental data either have large uncertainties or do not exist while at the same time allowing accurate determinations of relevant lattice HVPs. Our result for |Vus| is in good agreement with determinations from K physics and 3-family CKM unitarity. The advantages of the new approach over the conventional sum rule analysis will be discussed.

  7. |Vus| determination from inclusive strange tau decay and lattice HVP

    Science.gov (United States)

    Boyle, Peter; Hudspith, Renwick James; Izubuchi, Taku; Jüttner, Andreas; Lehner, Christoph; Lewis, Randy; Maltman, Kim; Ohki, Hiroshi; Portelli, Antonin; Spraggs, Matthew

    2018-03-01

    We propose and apply a novel approach to determining |Vus| which uses inclusive strange hadronic tau decay data and hadronic vacuum polarization functions (HVPs) computed on the lattice. The experimental and lattice data are related through dispersion relations which employ a class of weight functions having poles at space-like momentum. Implementing this approach using lattice data generated by the RBC/UKQCD collaboration, we show examples of weight functions which strongly suppress spectral integral contributions from the region where experimental data either have large uncertainties or do not exist while at the same time allowing accurate determinations of relevant lattice HVPs. Our result for |Vus| is in good agreement with determinations from K physics and 3-family CKM unitarity. The advantages of the new approach over the conventional sum rule analysis will be discussed.

  8. Excitation functions for 121,123Sb(α,xn), (x=1-4) reactions in approx. 10-40 MeV range

    International Nuclear Information System (INIS)

    Prasad, R.; Bhardwaj, H.D.

    1986-04-01

    Excitation functions for 121 Sb(α,n), 121 Sb(α,2n), 123 Sb(α,n) and 123 Sb(α,3n) reactions in the energy range approx. 10 to 40 MeV have been measured using stacked-foil technique and are calculated theoretically using statistical model with and without the inclusion of pre-equilibrium emission. Inclusion of pre-equilibrium emission is found to give good agreement between the experimental and measured excitation functions. (author)

  9. Thermal structure of accreting neutron stars and strange stars

    International Nuclear Information System (INIS)

    Miralda-Escude, J.; Paczynski, B.; Haensel, P.

    1990-01-01

    Steady-state models of accreting neutron stars and strange stars are presented, and their properties as a function of accretion rate are analyzed. The models have steady-state envelopes, with stationary hydrogen burning taken into account, the helium shell flashes artificially suppressed, and the crust with a large number of secondary heat sources. The deep interiors are almost isothermal and are close to thermal equilibrium. A large number of models were calculated for many values of the accretion rates, with ordinary, pion-condensed, and strange cores, with and without secondary heat sources in the crust, and with the heavy element content of the accreting matter in the range Z = 0.0002-0.02. All models show a similar pattern of changes as the accretion rate is varied. For low accretion rates, the hydrogen burning shell is unstable; for intermediate rates, the hydrogen burning shell is stable, but helium burning is not; for high rates, the two shell sources burn together and are unstable. 60 refs

  10. Can doubly strange dibaryon resonances be discovered at RHIC?

    International Nuclear Information System (INIS)

    Paganis, S. D.; Hoffmann, G. W.; Ray, R. L.; Tang, J.-L.; Udagawa, T.; Longacre, R. S.

    2000-01-01

    The baryon-baryon continuum invariant mass spectrum generated from relativistic nucleus + nucleus collision data may reveal the existence of doubly strange dibaryons not stable against strong decay if they lie within a few MeV of threshold. Furthermore, since the dominant component of these states is a superposition of two color-octet clusters which can be produced intermediately in a color-deconfined quark-gluon plasma (QGP), an enhanced production of dibaryon resonances could be a signal of QGP formation. A total of eight, doubly strange dibaryon states are considered for experimental search using the STAR detector (solenoidal tracker at RHIC) at the new Relativistic Heavy Ion Collider (RHIC). These states may decay to ΛΛ and/or pΞ - , depending on the resonance energy. STAR's large acceptance, precision tracking and vertex reconstruction capabilities, and large data volume capacity, make it an ideal instrument to use for such a search. Detector performance and analysis sensitivity are studied as a function of resonance production rate and width for one particular dibaryon which can directly strong decay to pΞ - , but not ΛΛ. Results indicate that such resonances may be discovered using STAR if the resonance production rates are comparable to coalescence model predictions for dibaryon bound states. (c) 2000 The American Physical Society

  11. "Making strange": a role for the humanities in medical education.

    Science.gov (United States)

    Kumagai, Arno K; Wear, Delese

    2014-07-01

    Stories, film, drama, and art have been used in medical education to enhance empathy, perspective-taking, and openness to "otherness," and to stimulate reflection on self, others, and the world. Yet another, equally important function of the humanities and arts in the education of physicians is that of "making strange"-that is, portraying daily events, habits, practices, and people through literature and the arts in a way that disturbs and disrupts one's assumptions, perspectives, and ways of acting so that one sees the self, others, and the world anew. Tracing the development of this concept from Viktor Shklovsky's "enstrangement" (ostranenie) through Bertolt Brecht's "alienation effect," this essay describes the use of this technique to disrupt the "automaticity of thinking" in order to discover new ways of perceiving and being in the world.Enstrangement may be used in medical education in order to stimulate critical reflection and dialogue on assumptions, biases, and taken-for-granted societal conditions that may hinder the realization of a truly humanistic clinical practice. In addition to its ability to enhance one's critical understanding of medicine, the technique of "making strange" does something else: By disrupting fixed beliefs, this approach may allow a reexamination of patient-physician relationships in terms of human interactions and provide health care professionals an opportunity-an "open space"-to bear witness and engage with other individuals during challenging times.

  12. Overview of the electromagnetic production of strange mesons at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, P., E-mail: patrick@kph.uni-mainz.de [Institut für Kernphysik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Gómez Rodríguez, M. [Institut für Kernphysik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Tsukada, K. [Department of Physics, Tohoku University, 980-8578 Sendai (Japan); Ayerbe Gayoso, C.; Böhm, R. [Institut für Kernphysik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Borodina, O. [Institut für Kernphysik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); Bosnar, D. [Department of Physics, University of Zagreb, 10002 Zagreb (Croatia); Bozkurt, V. [GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); Bydžovský, P. [Nuclear Physics Institute, 25068 Řež near Prague (Czech Republic); Debenjak, L. [University of Ljubljana and Institut “Jožef Stefan”, 1000 Ljubljana (Slovenia); Distler, M.O.; Esser, A. [Institut für Kernphysik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Friščić, I. [Department of Physics, University of Zagreb, 10002 Zagreb (Croatia); Fujii, Y.; Gogami, T.; Hashimoto, O.; Hirose, S.; Kanda, H.; Kaneta, M. [Department of Physics, Tohoku University, 980-8578 Sendai (Japan); Kim, E. [GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); and others

    2013-09-20

    The Mainz Microtron MAMI provides a continuous-wave unpolarized or spin-polarized electron beam with energies up to 1.6 GeV and high degrees of polarization. Electro-production of strange mesons is performed in the multi-spectrometer facility with the KAOS spectrometer for kaon detection and a high-resolution spectrometer for electron detection in plane or out of plane. Differential cross section measurements of exclusive p(e,e{sup ′}K{sup +})Λ,Σ{sup 0} reactions at low four-momentum transfers in the nucleon's third resonance region have been done, followed by a measurement of the beam helicity asymmetry for p(e{sup →},e{sup ′}K{sup +})Λ. These studies are important for the understanding of the effective coupling of photons to the hadrons and their resonances and electromagnetic form factors entering different effective Lagrangian models for photo- and electro-production of strangeness. The polarized structure function, extracted from the beam helicity asymmetry, shows an especially high sensitivity to model parameters.

  13. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    International Nuclear Information System (INIS)

    Goble, J.H. Jr.

    1982-05-01

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr + , HeNe + , NaAr, and Ar 2 and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar( 3 P 2 ) + Ca + h nu → Ar + Ca + (5p 2 P/sub J/) + e - occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar( 3 P 2 ) + Ca → Ar + Ca + (4p 2 P/sub J/) + e - a surprisingly large cross section of 6.7 x 10 3 A 2 is estimated

  14. Flipped neutrino emissivity from strange matter

    International Nuclear Information System (INIS)

    Goyal, A.; Dutta, S.

    1994-01-01

    Energy loss due to wrong helicity sterile neutrinos through spin flip processes leads to rapid cooling of nascent neutron stars. The observed cooling of neutron stars associated with SN 1987A seems to preclude the existence of Dirac neutrinos with a mass in excess of 20 keV. Assuming that nuclear matter in the core of the neutron star undergoes a phase transition to quark matter leading to a strange star or a neutron star with a strange matter core, we examine the emission of flipped Dirac neutrinos for two dominant processes: quark-neutrino scattering [q+ν - (bar ν + )→q+ν + (bar ν - )] and the quark neutrino pair bremsstrahlung process [q+q→q+q+ν - bar ν - (ν+bar ν + )]. We determine the composition of quark matter just after core bounce and examine the effect of neutrino degeneracy on the emission rate and mean free path of the wrong helicity neutrinos

  15. The PANDA physics program: Strangeness and more

    Energy Technology Data Exchange (ETDEWEB)

    Iazzi, Felice, E-mail: felice.iazzi@polito.it [INFN-Sezione di Torino, Turin (Italy); Politecnico di Torino, Turin (Italy); Collaboration: PANDA Collaboration

    2016-06-21

    The physics program of the PANDA experiment at FAIR is illustrated, with a particular attention to the planned activity in the field of the doubly strange systems. The investigation of these systems can help, among others, to shed light on the role of the hyperons in the composition of the neutron stars. The great advantages that can be reached in the field of the charmed systems and nucleon structure by using high quality and intense antiproton beams are also recalled.

  16. The PANDA physics program: Strangeness and more

    International Nuclear Information System (INIS)

    Iazzi, Felice

    2016-01-01

    The physics program of the PANDA experiment at FAIR is illustrated, with a particular attention to the planned activity in the field of the doubly strange systems. The investigation of these systems can help, among others, to shed light on the role of the hyperons in the composition of the neutron stars. The great advantages that can be reached in the field of the charmed systems and nucleon structure by using high quality and intense antiproton beams are also recalled.

  17. On the description of the (HI, xn) reaction excitation functions for the case of weakly fissioning compound nuclei

    International Nuclear Information System (INIS)

    Kamanin, V.V.; Karamyan, S.A.

    1980-01-01

    A possibility to obtain parameters of nuclear temperature and critical angular momentum for the compound nucleus production on the base of the (HI, xn) reaction excitation function description are considered for the case of weakly fissioning nuclei. Experimental data on 152 Sm( 12 C, 2n) 162 Er, 148 Nd( 16 O, 3n) 161 Er, sup(150)Nd(sup(16)O, 3-5n)sup(163-161)Er, sup(148)Nd(sup(18)O, 4-5n)sup(162,161)Er, sup(118)Sn(sup(40)Ar, 5-6n)sup(153,152)Er and sup(74)Ge(sup(84)Kr, 5-6n)sup(153,152)Er reactions are discussed. The formulae, taking into accout the distribution of compound nuclei in angular momentum and competition between channels of the neutron and γ-ray emission, are given. The formulae are applied for the description of the excitation functions, characterized by a good accuracy of the particle energy measuring. A satisfactory accordance between the calculation and experiment is achieved. The conclusion on sensitivity of the nuclear temperature values to exact evaluation of competition between the neutron and γ-ray emission channels is drawn

  18. Frenkel and Charge-Transfer Excitations in Donor-acceptor Complexes from Many-Body Green's Functions Theory.

    Science.gov (United States)

    Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael

    2012-08-14

    Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.

  19. Strangeness production in AA and pp collisions

    Energy Technology Data Exchange (ETDEWEB)

    Castorina, Paolo [Universita di Catania, Dipartimento di Fisica ed Astronomia, Catania (Italy); INFN, Catania (Italy); Satz, Helmut [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany)

    2016-07-15

    Boost-invariant hadron production in high-energy collisions occurs in causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) are conserved locally in spatially restricted correlation clusters. Their size is determined by two time scales: the equilibration time specifying the formation of a quark-gluon plasma, and the hadronization time, specifying the onset of confinement. The expected values for these scales provide the theoretical basis for the suppression observed for strangeness production in elementary interactions (pp, e{sup +}e{sup -}) below LHC energies. In contrast, the space-time superposition of individual collisions in high-energy heavy-ion interactions leads to higher energy densities, resulting in much later hadronization and hence much larger hadronization volumes. This largely removes the causality constraints and results in an ideal hadronic resonance gas in full chemical equilibrium. In the present paper, we determine the collision energies needed for that; we also estimate when pp collisions reach comparable hadronization volumes and thus determine when strangeness suppression should disappear there as well. (orig.)

  20. Relativistic model for anisotropic strange stars

    Science.gov (United States)

    Deb, Debabrata; Chowdhury, Sourav Roy; Ray, Saibal; Rahaman, Farook; Guha, B. K.

    2017-12-01

    In this article, we attempt to find a singularity free solution of Einstein's field equations for compact stellar objects, precisely strange (quark) stars, considering Schwarzschild metric as the exterior spacetime. To this end, we consider that the stellar object is spherically symmetric, static and anisotropic in nature and follows the density profile given by Mak and Harko (2002) , which satisfies all the physical conditions. To investigate different properties of the ultra-dense strange stars we have employed the MIT bag model for the quark matter. Our investigation displays an interesting feature that the anisotropy of compact stars increases with the radial coordinate and attains its maximum value at the surface which seems an inherent property for the singularity free anisotropic compact stellar objects. In this connection we also perform several tests for physical features of the proposed model and show that these are reasonably acceptable within certain range. Further, we find that the model is consistent with the energy conditions and the compact stellar structure is stable with the validity of the TOV equation and Herrera cracking concept. For the masses below the maximum mass point in mass vs radius curve the typical behavior achieved within the framework of general relativity. We have calculated the maximum mass and radius of the strange stars for the three finite values of bag constant Bg.

  1. Strange mesons in dense nuclear matter

    International Nuclear Information System (INIS)

    Senger, P.

    2000-10-01

    Experimental data on the production of kaons and antikaons in heavy ion collisions at relativistic energies are reviewed with respect to in-medium effects. The K - /K + ratios measured in nucleus-nucleus collisions are 1-2 orders of magnitude larger than in proton-proton collisions. The azimuthal angle distributions of K + mesons indicate a repulsive kaon-nucleon potential. Microscopic transport calculations consistently explain both the yields and the emission patterns of kaons and antikaons when assuming that their properties are modified in dense nuclear matter. The K + production excitation functions measured in light and heavy collision systems provide evidence for a soft nuclear equation-of-state. (orig.)

  2. Complete strangeness measurements in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Tomasik, Boris [Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia); Czech Technical University in Prague, FNSPE, Prague 1 (Czech Republic); Kolomeitsev, Evgeni E. [Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia)

    2016-08-15

    We discuss strangeness production in heavy-ion collisions within and around the energy range of the planned NICA facility. We describe a minimal statistical model, in which the total strangeness yield is fixed by the observed or calculated K{sup +} multiplicity. We show how the exact strangeness conservation can be taken into account on event-by-event basis in such a model. We argue that from strange particle yields one can reveal information about the collision dynamics and about possible modifications of particle properties in medium. This can be best achieved if the complete strangeness measurement is performed, i.e. kaons, antikaons, hyperons and multistrange hyperons are registered in the same experimental setup. In particular, production of hadrons containing two and more strange quarks, like Ξ and Ω baryons could be of interest. (orig.)

  3. Cerebro-Cerebellar Functional Connectivity is Associated with Cerebellar Excitation-Inhibition Balance in Autism Spectrum Disorder.

    Science.gov (United States)

    Hegarty, John P; Weber, Dylan J; Cirstea, Carmen M; Beversdorf, David Q

    2018-05-23

    Atypical functional connectivity (FC) and an imbalance of excitation-to-inhibition (E/I) have been previously reported in cerebro-cerebellar circuits in autism spectrum disorder (ASD). The current investigation used resting state fMRI and proton magnetic resonance spectroscopy ( 1 H-MRS) to examine the relationships between E/I (glutamate + glutamine/GABA) and FC of the dorsolateral prefrontal cortex and posterolateral cerebellar hemisphere from 14 adolescents/adults with ASD and 12 age/sex/IQ-matched controls. In this pilot sample, cerebro-cerebellar FC was positively associated with cerebellar E/I and listening comprehension abilities in individuals with ASD but not controls. Additionally, a subgroup of individuals with ASD and low FC (n = 5) exhibited reduced E/I and impaired listening comprehension. Thus, altered functional coherence of cerebro-cerebellar circuits in ASD may be related with a cerebellar E/I imbalance.

  4. Experimental overview and challenge in strangeness nuclear physics — strangeness in the past and coming decades

    International Nuclear Information System (INIS)

    Imai, Kenichi

    2010-01-01

    A great progress has been made in strangeness nuclear physics in the past decade. Examples are; 1) The "hyperfine" structure of hypernuclei were measured with the Hyperball, and ΛN spin dependent interactions in p-shell hypernuclei were determined. 2) The "complete measurements" of the weak decay of hypernuclei were made and the np ratio puzzle in the non-mesonic decay was solved. 3) The discovery of a clean event of "Lambpha" and determination of its binding energy concluded that the Λ-Λ interaction is weak attractive. However, we still have important questions to be answered in this field, especially in relation with QCD and nuclear physics. For the future strangeness nuclear physics, we have and will have facilities such as JLab, SPring-8, Daphne, J-PARC, FAIR. We discuss experimental challenges in the strangeness nuclear physics and related fields in the next decade. (author)

  5. Strangeness suppression in e+e- light flavour jets

    International Nuclear Information System (INIS)

    Liu Ximing; Sun Xubin

    2007-01-01

    From the simple physical picture of quark combination model, the authors obtain the generate probabilities of various particles and relative ration in e + e - →q 0 (q 0 )-bar→h's process, and find that the relationship between the ration of strange hadron to unstrange hadron γ and the strangeness suppression factor λ. Our results can be used to explain particle ration enhancement observed in experiments without assumption of strangeness suppression factor enhancement. (authors)

  6. Form factors and other measures of strangeness in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Feldmann, T. [Siegen Univ. (Germany). Theoretische Physik I; Kroll, P. [Bergische Univ., Wuppertal (Germany). Fachbereich Physik

    2007-11-15

    We discuss the phenomenology of strange-quark dynamics in the nucleon, based on experimental and theoretical results for electroweak form factors and for parton densities. In particular, we construct a model for the generalized parton distribution that relates the asymmetry s(x)- anti s(x) between the longitudinal momentum distributions of strange quarks and antiquarks with the form factor F{sup s}{sub 1}(t), which describes the distribution of strangeness in transverse position space. (orig.)

  7. Form factors and other measures of strangeness in the nucleon

    International Nuclear Information System (INIS)

    Diehl, M.; Feldmann, T.; Kroll, P.

    2007-11-01

    We discuss the phenomenology of strange-quark dynamics in the nucleon, based on experimental and theoretical results for electroweak form factors and for parton densities. In particular, we construct a model for the generalized parton distribution that relates the asymmetry s(x)- anti s(x) between the longitudinal momentum distributions of strange quarks and antiquarks with the form factor F s 1 (t), which describes the distribution of strangeness in transverse position space. (orig.)

  8. Strange quark content in the nucleon and the strange quark vector current form factors

    International Nuclear Information System (INIS)

    Dubnicka, S.; Dubnickova, A.Z.

    1996-12-01

    A behaviour of the form factors of the nucleon matrix element of the strange quark vector current in the momentum range of the planned measurements in MIT/Bates and CEBAF is predicted theoretically without using any of the experimental information on the nucleon electromagnetic structure. The corresponding leading nonvanishing moments of the nucleon vector strangeness distribution are comparable with the values obtained by other authors in the framework of the method based on the vector meson pole fit of the isoscalar electromagnetic form factors of the nucleon. (author). 16 refs, 2 figs

  9. Calculation of excitation functions of the Fe(p, n) reaction from ...

    Indian Academy of Sciences (India)

    of using thorium for power production, which is being carried out in ADSS. .... critical temperature Tc of the phase transition from superfluid to normal state. ... are connected with the correlation function 0 through the following equations:.

  10. Space-Time Geometry of Quark and Strange Quark Matter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss die features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).

  11. Production of strange clusters in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dover, C.B.; Baltz, A.J.; Pang, Yang; Schlagel, T.J.; Kahana, S.H.

    1993-02-01

    We address a number of issues related to the production of strangeness in high energy heavy ion collisions, including the possibility that stable states of multi-strange hyperonic or quark matter might exist, and the prospects that such objects may be created and detected in the laboratory. We make use of events generated by the cascade code ARC to estimate the rapidity distribution dN/dy of strange clusters produced in Si+Au and Au+Au collisions at AGS energies. These calculations are performed in a simple coalescence model, which yields a consistent description of the strange cluster (d, 3 HE, 3 H, 4 He) production at these energies. If a doubly strange, weakly bound ΛΛ dibaryon exists, we find that it is produced rather copiously in Au+Au collisions, with dN/dy ∼0.1 at raid-rapidity. If one adds another non-strange or strange baryon to a cluster, the production rate decreases by roughly one or two orders of magnitude, respectively. For instance, we predict that the hypernucleus ΛΛ 6 He should have dN/dy ∼5 x 10 -6 for Au+Au central collisions. It should be possible to measure the successive Λ → pπ- weak decays of this object. We comment on the possibility that conventional multi-strange hypernuclei may serve as ''doorway states'' for the production of stable configurations of strange quark matter, if such states exist

  12. Strange and Multi-strange Particle Production in pPb and PbPb with CMS

    CERN Document Server

    Ni, Hong

    2017-01-01

    Identified particle spectra provide an important tool for understanding the particle production mechanism and the dynamical evolution of the medium created in relativistic heavy ion collisions. Studies involving strange and multi-strange hadrons, such as $K^0_S$, $\\Lambda$, and $\\Xi^-$, carry additional information since there is no net strangeness content in the initial colliding system. Strangeness enhancement in AA collisions with respect to pp and pA collisions has long been considered as one of the signatures for quark-gluon plasma (QGP) formation. Recent observations of collective effects in high-multiplicity pp and pA collisions raise the question of whether QGP can also be formed in the smaller systems. Systematic studies of strange particle abundance, particle ratios, and nuclear modification factors can shed light on this issue. The CMS experiment has excellent strange-particle reconstruction capabilities over a broad kinematic range, and dedicated high-multiplicity triggers in pp and pPb collision...

  13. Excited electronic states of MnO{sub 4}{sup −}: Challenges for wavefunction and density functional response theories

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Nuno M.S.; McKinlay, Russell G.; Paterson, Martin J., E-mail: m.j.paterson@hw.ac.uk

    2015-01-13

    Highlights: • Linear response coupled cluster hierarchy CCS, CC2, CCSD, CC3 applied to lowest excited states of MnO{sub 4}{sup −}. • Unphysical results obtained for approximate CCn methods. • Failure traced to very large singles amplitudes. • HF and RASSCF calculations on ground state show strong correlations give very poor HF single particle picture. • TD-CAM-B3LYP describes LMCT states with reasonable accuracy. - Abstract: The lowest excited electronic states of the permanganate ion MnO{sub 4}{sup −} are calculated using a hierarchy of coupled cluster response approaches, as well as time-dependent density functional theory. It is shown that while full linear response coupled cluster with singles and doubles (or higher) performs well, that permanganate represents a stern test for approximate coupled cluster response models, and that problems can be traced to very large orbital relaxation effects. TD-DFT is reasonably robust although errors around 0.6 eV are still observed. In order to further investigate the strong correlations prevalent in the electronic ground state large-scale RASSCF calculations were also performed. Again very large orbital relaxation in the correlated wavefunction is observed. Although the system can qualitatively be described by a single configuration, multi-reference diagnostic values show that care must be taken in this and similar metal complexes.

  14. Measurement of the strange quark contribution to the proton spin using neutral kaons at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shaojun

    2007-03-15

    This thesis reports a new ''isoscalar'' measurement of {delta}s + {delta} anti s. Because strange quarks carry no isospin, the strange seas in the proton and neutron are identical. In the deuteron, an isoscalar target, the fragmentation process in DIS can be described without any assumptions regarding isospin dependent fragmentation. In the isoscalar extraction of {delta}s + {delta} anti s only the spin asymmetry for K{sup 0}{sub s} A{sup K{sup 0}{sub s1,d}} (x,Q{sup 2}, z) and the inclusive asymmetry A{sub 1,d}(x,Q{sup 2}) are used. An accurate measurement of the total non-strange quark polarisation {delta}Q = {delta}u + {delta} anti u + {delta}d + {delta} anti d comes directly from A{sub 1,d}(x,Q{sup 2}). The fragmentation functions needed for a leading order (LO) extraction of {delta}S = {delta}s + {delta} anti s are measured directly at HERMES kinematics using the same data. As a result of this analysis, the helicity densities for the strange quarks are consistent with zero with the experimental uncertainty over the measured x kinematic range. (orig.)

  15. The impact of s- anti s asymmetry on the strange electromagnetic form factor

    Energy Technology Data Exchange (ETDEWEB)

    Ghasempour Nesheli, Ali [Islamic Azad University, Department of Physics, Shiraz Branch, Shiraz (Iran, Islamic Republic of)

    2016-09-15

    The existence of the strange quark asymmetry in the nucleon sea has been indicated by both the experimental and theoretical analyses. Although it is well known that the s- anti s asymmetry is important for some processes in high-energy hadron collisions, it has also been indicated that it can be related to the strange Dirac form factor F{sub 1}{sup s}. In this work, we have studied the impact of s- anti s asymmetry and its uncertainty from various modern parton distribution functions (PDFs) on F{sub 1} {sup s} and compared the obtained results with the available experimental information. As a result, we found that the uncertainty in F{sub 1}{sup s}(t) due to the s(x) - anti s (x) distribution is rather large so that it dominates the model uncertainty at all values of the squared momentum transfer t. However, taking into account the uncertainties, the theoretical predictions of F{sub 1}{sup s}(t) are fully compatible with the estimate extracted from experiment. We concluded that the future accurate experimental data of the strange Dirac form factor might be used to put direct constraints on the strange content of the proton and reduce its uncertainty that has always been a challenge. (orig.)

  16. Strangeness production in Pb-Pb collisions at LHC energies with ALICE

    Directory of Open Access Journals (Sweden)

    Šefčík Michal

    2018-01-01

    Full Text Available The results on the production of strange and multi-strange hadrons (K0S, Λ, Ξ and Ω measured with ALICE in Pb-Pb collisions at the top LHC energy of SNN = 5.02 TeV are reported. Thanks to its excellent tracking and particle identification capabilities, ALICE is able to measure weakly decaying particles through the topological reconstruction of the identified hadronic decay products. Results are presented as a function of centrality and include transverse momentum spectra measured at central rapidity, pT-dependent Λ/K0S ratios and integrated yields. A systematic study of strangeness production is of fundamental importance for determining the thermal properties of the system created in ultrarelativistic heavy ion collisions. In order to study strangeness enhancement, the yields of studied particles are normalised to the corresponding measurement of pion production in the various centrality classes. The results are compared to measurements performed at lower energies, as well as to different systems and to predictions from statistical hadronization models.

  17. Strange Animals and Creatures in Islamic Miniatures: Focusing on Miniatures of the Conference of the Birds

    Directory of Open Access Journals (Sweden)

    Neda Rohani

    2017-09-01

    Full Text Available Strange animals and creatures have always existed in every mythological culture. In Iran's pre-Islamic and post-Islamic miniatures and reliefs, there are many strange animals and creatures such as dragons and phoenix which were associated with the Iranian culture and civilization. Because of presence of these strange creatures, particularly human life, these creatures are first used in mythological life and then symbolically to express human ideas. However, these animals were present in both mythology and epics and, later in the Islamic era, in the mystical stories, educational stories and admonishing anecdotes like Sanai, Attar, and Rumi. This study tends to investigate genealogy of strange animals and creatures in ancient Iranian reliefs and their continued presence in miniatures of Islamic era as well as presence of these creatures in miniatures which are based on Attar’s Conference of the Birds. In fact, this study reviews elements and symbolic concepts of animals, allowing a deeper understanding of function of elements and symbolism in works of Iranian miniaturists. Contemplation of miniatures, icons and the relationship between literature and miniatures will lead to many results in recognition of mystical intellectual foundations. Therefore, this study tends to investigate mysterious and unknown aspects of Iranian miniatures and find their relationship with culture and stories.

  18. Strange fireball as an explanation of the muon excess in Auger data

    Science.gov (United States)

    Anchordoqui, Luis A.; Goldberg, Haim; Weiler, Thomas J.

    2017-03-01

    We argue that ultrahigh-energy cosmic-ray collisions in Earth's atmosphere can probe the strange quark density of the nucleon. These collisions have center-of-mass energies ≳1 04.6A GeV , where A ≥14 is the nuclear baryon number. We hypothesize the formation of a deconfined thermal fireball which undergoes a sudden hadronization. At production the fireball has a very high matter density and consists of gluons and two flavors of light quarks (u , d ). Because the fireball is formed in the baryon-rich projectile fragmentation region, the high baryochemical potential damps the production of u u ¯ and d d ¯ pairs, resulting in gluon fragmentation mainly into s s ¯. The strange quarks then become much more abundant and upon hadronization the relative density of strange hadrons is significantly enhanced over that resulting from a hadron gas. Assuming the momentum distribution functions can be approximated by Fermi-Dirac and Bose-Einstein statistics, we estimate a kaon-to-pion ratio of about 3 and expect a similar (total) baryon-to-pion ratio. We show that, if this were the case, the excess of strange hadrons would suppress the fraction of energy which is transferred to decaying π0's by about 20%, yielding an ˜40 % enhancement of the muon content in atmospheric cascades, in agreement with recent data reported by the Pierre Auger Collaboration.

  19. Neutral strange particle production in neutrino and antineutrino charged current interactions on protons

    International Nuclear Information System (INIS)

    Jones, G.T.; Jones, R.W.L.; Kennedy, B.W.; O'Neale, S.W.; Villalobos-Baillie, O.; Klein, H.; Morrison, D.R.O.; Schmid, P.; Wachsmuth, H.; Miller, D.B.; Mobayyen, M.M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U.F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H.P.; Myatt, G.; Radojicic, D.; Bullock, F.W.; Burke, S.

    1992-08-01

    The production of the neutral strange particles K 0 , Λ and anti Λ in νp and anti νp charged current interactions is studied in an experiment with the Big European Bubble Chamber. Mean multiplicities are measured as a function of the event variables. E ν , W 2 and Q 2 and of the hadron variables χ F , z and p T 2 . K* ± (892) and Σ* ± (1385) signals are observed, whereas there is no evidence for Σ* - (1385) production in νp scattering. Forward, backward and total mean multiplicities are found to compare well with the predictions of an empirical model for deep-inelastic reactions in the case of the strange mesons K 0 and K* ± (892) but less so for the strange baryons Λ, anti Λ and Σ* ± (1385). The strange baryon multiplicities are used to obtain the decuplet to octet baryon production ratio and to assess the probabilities of a uu or ud system to break up. (orig.)

  20. Neutral strange particle production in neutrino and antineutrino charged current interactions on protons

    International Nuclear Information System (INIS)

    Jones, G.T.; Jones, R.W.L.; Kennedy, B.W.; O'Neale, S.W.; Villalobos-Baillie, O.; Klein, H.; Morrison, D.R.O.; Schmid, P.; Wachsmuth, H.; Miller, D.B.; Mobayyen, M.M.; Wainstein, S.; Borner, H.P.; Myatt, G.; Radojicic, D.; Bullock, F.W.; Burke, S.

    1993-01-01

    The production of the neutral strange particles K 0 , Λ and anti Λ in νp and anti νp charged current interactions is studied in an experiment with the Big European Bubble Chamber. Mean multiplicities are measured as a function of the event variables E ν , W 2 and Q 2 and of the hadron variables x F , z and p T 2 . K* ± (892) and Σ* ± (1385) signals are observed, whereas there is no evidence for Σ* - (1385) production in νp scattering. Forward, backward and total mean multiplicities are found to compare well with the predictions of an empirical model for deep-inelastic reactions in the case of the strange mesons K 0 and K* ± (892) but less so for the strange baryons Λ, anti Λ and Σ* ± (1385). The strange baryon multiplicites are used to obtain the decuplet to octet baryon production ratio and to assess the probabilities of a uu or ud system to break up. (orig.)

  1. Effects of angular momentum dissipation on fluctuations of excitation functions in heavy-ion collisions

    International Nuclear Information System (INIS)

    Kun, S.Yu.; Noerenberg, W.; Technische Hochschule Darmstadt

    1992-02-01

    We study the effect from dissipation of relative angular momentum on fluctuations of exitations functions in dissipative heavy-ion collisions. Dissipation and fluctuation of relative angular momentum modify and smooth the time-angle localization of the roating dinuclear system. The secondary maxima in the energy correlation function of the cross-section are shifted to smaller values of the energy difference, the shift depending on the relaxation time and the diffusion coefficient for the angular-momentum dissipation. The results are illustrated for the collision 28 Si(E lab =130MeV)+ 48 Ti. (orig.)

  2. Probability density of wave function of excited photoelectron: understanding XANES features

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej

    2001-01-01

    Roč. 8, - (2001), s. 232-234 ISSN 0909-0495 R&D Projects: GA ČR GA202/99/0404 Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : XANES * PED - probability density of wave function Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.519, year: 2001

  3. On the excited state wave functions of Dirac fermions in the random ...

    Indian Academy of Sciences (India)

    wave functions in FRGP can be written in terms of descendents of the Liouville vertex operator. In the ... that the localization length ξ scales with the energy E as ξ ∼ E−b2/(1+b2)2. , where b is .... Let us write the Hamiltonian of the. FRGP model ...

  4. The Effect of Material Property on the Critical Velocity of Randomly Excited Nonlinear Axially Travelling Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    M. Abedi

    Full Text Available Abstract In this paper, the critical axial speeds of three types of sigmoid, power law and exponential law functionally graded plates for both isotropic and orthotropic cases are obtained via a completely analytic method. The plates are subjected to lateral white noise excitation and show evidence of large deformations. Due to randomness, the conventional deterministic methods fail and a statistical approach must be selected. Here, the probability density function is evaluated analytically for prescribed plates and used to investigate the critical axial velocity of them. Specifically the effect of in-plane forces, mean value of lateral load and the material property on the critical axial speed are studied and discussed for both isotropic and orthotropic functionally graded plates. Since the governing equation is transformed to a non dimensional format, the results can be used for a wide range of plate dimensions. It is shown that the material heterogeneity palys an essential and significant role in increasing or decreasing the critical speed of both isotropic and orthotropic functionally graded plates.

  5. Excitation function of alpha-particle-induced reactions on {sup nat}Ni from threshold to 44 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M.S. [Atomic Energy Research Establishment, Tandem Accelerator Facilities, Institute of Nuclear Science and Technology, Savar, Dhaka (Bangladesh); Kim, K.S.; Nadeem, M.; Kim, G.N. [Kyungpook National University, Department of Physics, Buk-gu, Daegu (Korea, Republic of); Sudar, S. [Debrecen University, Institute of Experimental Physics, Debrecen (Hungary)

    2017-05-15

    Excitation functions of the {sup nat}Ni(α,x){sup 62,63,65}Zn, {sup nat}Ni(α,x){sup 56,57}Ni and {sup nat}Ni(α,x){sup 56,57,58m+g}Co reactions were measured from the respective thresholds to 44MeV using the stacked-foil activation technique. The tests for the beam characterization are described. The radioactivity was measured using HPGe γ-ray detectors. Theoretical calculations on α-particles-induced reactions on {sup nat}Ni were performed using the nuclear model code TALYS-1.8. A few results are new, the others strengthen the database. Our experimental data were compared with results of nuclear model calculations and described the reaction mechanism. (orig.)

  6. Excitation functions of alpha particle induced reactions on {sup nat}Ti up to 40 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M.S., E-mail: md.shuzauddin@yahoo.com [Tandem Accelerator Facilities, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Savar, Dhaka (Bangladesh); Scholten, B. [Institut für Neurowissenschaften und Medizin, INM-5:Nuklearchemie, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-08-01

    Excitation functions of the reactions {sup nat}Ti(α,x){sup 48}Cr, {sup nat}Ti(α,x){sup 48}V and {sup nat}Ti(α,x){sup 46,48}Sc were determined by the stacked-foil activation technique up to 40 MeV. The radioactivities produced in the {sup nat}Ti target were measured by γ-ray spectrometry using HPGe detector. The reaction {sup nat}Ti(α,x){sup 51}Cr was used to determine the beam parameters. New experimental values for the above reactions have been obtained. An intercomparison of our data with the available literature values has been done. The cross section results obtained in this work could be useful in defining new monitor reactions, radiation safety and isotope production.

  7. Fission excitation function for 19F + 194,196,198Pt at near and above barrier energies

    Directory of Open Access Journals (Sweden)

    Singh Varinderjit

    2015-01-01

    Full Text Available Fission excitation functions for 19F + 194,196,198Pt reactions populating 213,215,217Fr compound nuclei are reported. Out of these three compound nuclei, 213Fr is a shell closed (N=126 compound nucleus and the other two are away from the shell closure. From a comparison of the experimental fission cross-sections with the statistical model predictions, it is observed that the fission cross-sections are underestimated by the statistical model predictions using shell corrected finite range rotating liquid drop model (FRLDM fission barriers. Further the FRLDM fission barriers are reduced to fit the fission cross-sections over the entire measured energy range.

  8. Investigations of fluctuation phenomena in the excitation functions of the cross-section by means of polarized particles

    International Nuclear Information System (INIS)

    Henneck, R.

    1976-01-01

    The present work concerns theoretical and experimental investigations of fluctuation phenomena, which appear in the excitation functions of the diff. cross-section and of the analyzing power, when bombarding nuclei with polarized particles in the energy range of strongly overlapping levels. We could show theoretically that model-dependent calculations (or assumptions), necessary for the determination of the relative amount of direct interaction contribution within the statistical model of Ericson, are not necessary for the elastic scattering of polarized spin-1/2- particles from spin-zero-target nuclei, if the additional observable analyzing power is included in the analysis. The proposed, new method hence presents an independent test for the consistency of the Hauser-Feshbach theory and its validity in the domain of strongly overlapping levels. (orig./WL) [de

  9. Excitation functions for the formation of some short-lived products in proton-induced reactions on silver

    International Nuclear Information System (INIS)

    Uddin, M.S.; Latif, S.K.A.; Baba, M.; Hagiwara, M.; Qaim, S.M.

    2008-01-01

    Excitation functions of the nat Ag(p, xn) 104, 105 Cd and nat Ag(p, pxn) 103, 104m,g, 104g Ag reactions were measured for the first time over the proton energy range of 32 to about 60 MeV. The data were compared with the results of precompound-hybrid model calculations, whereby only partial agreement was obtained. The contribution of the 103 Ag precursor decay to the total formation of the therapeutic radionuclide 103 Pd in proton activation of silver was estimated: it amounted to about 70%. The various possible routes for the production of 103 Pd were also considered: the nat Ag(p, x) 103 Pd and 103 Rh(p, n) 103 Pd processes were found to be most interesting. Despite its somewhat lower yield, the latter process is preferred because it can be applied at a low-energy cyclotron. (orig.)

  10. Investigation of incomplete fusion dynamics by measurement of excitation functions in the 20Ne + 59Co system

    International Nuclear Information System (INIS)

    Singh, D.; Linda, Sneha Bharti; Giri, Pankaj K.; Singh, Smita Shree; Kumar, Harish; Afzal Ansari, M.; Ali, Rahbar; Rashid, M.H.; Guin, R.; Das, S.K.

    2015-01-01

    In the present work, an attempt has been made to address some important aspects of CF and ICF dynamics for the system 20 Ne + 59 Co in the projectile energy range ≈ 62–150 MeV by using recoil catcher activation technique with the following off-line γ-ray spectroscopy. Excitation Functions (EFs) for the following reactions: 59 Co(Ne, α p4n) 70 Ga, 59 Co(Ne, 3αp3n) 63 Zn, 59 Co (Ne, 3αp4n) 62 Zn and 59 Co (Ne, 4α3n) 60 Cu have been measured. No precursor decay contribution has been observed for these measured evaporation residues. The measured values of total fusion cross-sections of the above evaporation residues have been compared with the theoretical total complete fusion cross sections calculated by code PACE-2, which do not take into account ICF contribution

  11. Calculation of baryon chemical potential and strangeness chemical potential in resonance matter

    International Nuclear Information System (INIS)

    Fu Yuanyong; Hu Shouyang; Lu Zhongdao

    2006-01-01

    Based on the high energy heavy-ion collisions statistical model, the baryon chemical potential and strangeness chemical potential are calculated for resonance matter with net baryon density and net strangeness density under given temperature. Furthermore, the relationship between net baryon density, net strangeness density and baryon chemical potential, strangeness chemical potential are analyzed. The results show that baryon chemical potential and strangeness chemical potential increase with net baryon density and net strangeness density increasing, the change of net baryon density affects baryon chemical potential and strangeness chemical potential more strongly than the change of net strangeness density. (authors)

  12. Malondialdehyde suppresses cerebral function by breaking homeostasis between excitation and inhibition in turtle Trachemys scripta.

    Directory of Open Access Journals (Sweden)

    Fangxu Li

    Full Text Available The levels of malondialdehyde (MDA are high in the brain during carbonyl stress, such as following daily activities and sleep deprivation. To examine our hypothesis that MDA is one of the major substances in the brain leading to fatigue, the influences of MDA on brain functions and neuronal encodings in red-eared turtle (Trachemys scripta were studied. The intrathecal injections of MDA brought about sleep-like EEG and fatigue-like behaviors in a dose-dependent manner. These changes were found associated with the deterioration of encoding action potentials in cortical neurons. In addition, MDA increased the ratio of γ-aminobutyric acid to glutamate in turtle's brain, as well as the sensitivity of GABAergic neurons to inputs compared to excitatory neurons. Therefore, MDA, as a metabolic product in the brain, may weaken cerebral function during carbonyl stress through breaking the homeostasis between excitatory and inhibitory neurons.

  13. New excitation functions for proton induced reactions on natural titanium, nickel and copper up to 70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, E. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); Duchemin, C., E-mail: Charlotte.Duchemin@subatech.in2p3.fr [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); Guertin, A. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); Haddad, F.; Michel, N. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); GIP Arronax, 1 rue Aronnax, 44817 Saint-Herblain (France); Métivier, V. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France)

    2016-09-15

    Highlights: • Natural titanium, nickel and copper targets. • 70 MeV ARRONAX cyclotron proton beam. • Stacked-foil technique and monitor reactions. • Experimental cross section values. • TALYS code version 1.6. - Abstract: New excitation functions for proton induced nuclear reactions on natural titanium, nickel and copper were measured, using the stacked-foil technique and gamma spectrometry, up to 70 MeV. The experimental cross sections were measured using the Ti-nat(p,x) V-48, Ni-nat(p,x) Ni-57 and Cu-nat(p,x) Zn-62,Co-56 monitor reactions recommended by the International Atomic Energy Agency (IAEA), depending on the investigated energy range. Data have been extracted for the Ti-nat(p,x) Sc-43,44m,46,47,48, V-48, K-42,43, Ni-nat(p,x) Ni-56,57, Co-55,56,57,58, Mn-52,54, Cu-nat(p,x) Cu-61,64, Ni-57, Co-56,57,58,60, Zn-62,65, Mn-54 reactions. Our results are discussed and compared to the existing ones as well as with the TALYS code version 1.6 calculations using default models. Our experimental data are in overall good agreement with the literature. TALYS is able to reproduce, in most cases, the experimental trend. Our new experimental results allow to expand our knowledge on these excitation functions, to confirm the existing trends and to give additional values on a large energy range. This work is in line with the new Coordinated Research Project (CRP) launched by the IAEA to expand the database of monitor reactions.

  14. Calculations of Excitation Functions of Some Structural Fusion Materials for ( n, t) Reactions up to 50 MeV Energy

    Science.gov (United States)

    Tel, E.; Durgu, C.; Aktı, N. N.; Okuducu, Ş.

    2010-06-01

    Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, the working out the systematics of ( n, t) reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. In this study, ( n, t) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn, and 56Fe have been investigated. The new calculations on the excitation functions of 27Al( n, t)25Mg, 51V( n, t)49Ti, 52Cr( n, t)50V, 55Mn( n, t)53Cr and 56Fe( n, t)54Mn reactions have been carried out up to 50 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, we have calculated ( n, t) reaction cross-sections by using new evaluated semi-empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results are discussed and compared with the experimental data taken from the literature.

  15. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    Energy Technology Data Exchange (ETDEWEB)

    Goble, J.H. Jr.

    1982-05-01

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr/sup +/, HeNe/sup +/, NaAr, and Ar/sub 2/ and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(/sup 3/P/sub 2/) + Ca + h nu ..-->.. Ar + Ca/sup +/(5p /sup 2/P/sub J/) + e/sup -/ occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(/sup 3/P/sub 2/) + Ca ..-->.. Ar + Ca/sup +/(4p /sup 2/P/sub J/) + e/sup -/ a surprisingly large cross section of 6.7 x 10/sup 3/ A/sup 2/ is estimated.

  16. Strangeness in nuclei and neutron stars

    Science.gov (United States)

    Lonardoni, Diego

    2017-01-01

    The presence of exotic particles in the core of neutron stars (NS) has been questioned for a long time. At present, it is still an unsolved problem that drives intense research efforts, both theoretical and experimental. The appearance of strange baryons in the inner regions of a NS, where the density can exceed several times the nuclear saturation density, is likely to happen due to energetic considerations. The onset of strange degrees of freedom is considered as an effective mechanism to soften the equation of state (EoS). This softening affects the entire structure of the star, reducing the pressure and therefore the maximum mass that the star can stably support. The observation of two very massive NS with masses of the order of 2M⊙ seems instead to rule out soft EoS, apparently excluding the possibility of hyperon formation in the core of the star. This inconsistency, usually referred to as the hyperon puzzle, is based on what we currently know about the interaction between strange particles and normal nucleons. The combination of a poor knowledge of the hypernuclear interactions and the difficulty of obtaining clear astrophysical evidence of the presence of hyperons in NS makes the understanding of the behavior of strange degrees of freedom in NS an intriguing theoretical challenge. We give our contribution to the discussion by studying the general problem of the hyperon-nucleon interaction. We attack this issue by employing a quantum Monte Carlo (QMC) technique, that has proven to be successful in the description of strongly correlated Fermion systems, to the study of finite size nuclear systems including strange degrees of freedom, i.e. hypernuclei. We show that many-body hypernuclear forces are fundamental to properly reproduce the ground state physics of Λ hypernuclei from light- to medium-heavy. However, the poor abundance of experimental data on strange nuclei leaves room for a good deal of indetermination in the construction of hypernuclear

  17. Energy dependence of strangeness production and event-byevent fluctuations

    Directory of Open Access Journals (Sweden)

    Rustamov Anar

    2018-01-01

    Full Text Available We review the energy dependence of strangeness production in nucleus-nucleus collisions and contrast it with the experimental observations in pp and p-A collisions at LHC energies as a function of the charged particle multiplicities. For the high multiplicity final states the results from pp and p-Pb reactions systematically approach the values obtained from Pb-Pb collisions. In statistical models this implies an approach to the thermodynamic limit, where differences of mean multiplicities between various formalisms, such as Canonical and Grand Canonical Ensembles, vanish. Furthermore, we report on event-by-event net-proton fluctuations as measured by STAR at RHIC/BNL and by ALICE at LHC/CERN and discuss various non-dynamical contributions to these measurements, which should be properly subtracted before comparison to theoretical calculations on dynamical net-baryon fluctuations.

  18. Production and energy loss of strange and heavy quarks

    International Nuclear Information System (INIS)

    2010-01-01

    Data taken over the last several years have demonstrated that RHIC has created a hot, dense medium with partonic degrees of freedom. Identified particle spectra at high transverse momentum (p T ) and heavy flavor that are thought to be well-calibrated probes thus serve as ideal tools to study the properties of the medium. We present p T distributions of particle ratios in p+p collisions from the STAR experiment to understand the particle production mechanisms. These measurements will also constrain fragmentation functions in hadron-hardon collisions. In heavy-ion collisions, we highlight (1) recent measurements of strange hadrons and heavy flavor decay electrons up to high p T to study jet interaction with the medium and explore partonic energy loss mechanisms, and (2) Υ and high p T J/ψ measurements to study the effect of color screening and other possible production mechanisms.

  19. Excited meson spectroscopy with two chirally improved quarks

    Science.gov (United States)

    Engel, G.; Lang, C. B.; Mohler, D.; Limmer, M.; Schäfer, A.

    The excited isovector meson spectrum is explored using two chirally improved dynamical quarks. Seven ensembles, with pion masses down to \\approx 250 MeV are discussed and used for extrapolations to the physical point. Strange mesons are investigated using partially quenched s-quarks. Using the variational method, we extract excited states in several channels and most of the results are in good agreement with experiment.

  20. Strangeness condensation and ''clearing'' of the vacuum

    International Nuclear Information System (INIS)

    Brown, G.E.; Kubodera, Kuniharu; Rho, M.; State Univ. of New York, Stony Brook

    1987-01-01

    We show that a substantial amount of strange quark-antiquark pair condensates in the nucleon required by the πN sigma term implies that kaons could condense in nuclear matter at a density about three times that of normal nuclear matter. This phenomenon can be understood as the ''cleansing'' of qanti q condensates from the QCD vacuum by a dense nuclear matter, resulting in a (partial) restoration of the chiral symmetry explicitly broken in the vacuum. It is suggested that the condensation signals a new phase distinct from that of quark plasma and that of ordinary dense hadronic matter. (orig.)

  1. Quark-gluon plasma, and strangeness

    International Nuclear Information System (INIS)

    Rafelski, Johann; Letessier, Jean

    2002-01-01

    In order to recognize the new form of matter created at RHIC and SPS as the deconfined quark-gluon plasma state (QGP), we need to understand the expected properties of this phase near to the conditions of its formation and disintegration. Thus, we first develop a model of QGP considering the constrains arising from QCD properties and lattice results, and explore its properties. In the second part, we describe the kinetic theory of strangeness production in the QGP phase. We show that gluon fusion dominate and evaluate the degree of equilibration expected at RHIC

  2. Strange bedfellows: Cervantes and Mary Wollstonecraft Shelley

    Directory of Open Access Journals (Sweden)

    Alfredo Moro

    2017-11-01

    Full Text Available Miguel de Cervantes and Mary Shelley do seem, at first sight, two strange bedfellows. Notwithstanding the evident differences between the narrative of both authors, the English novelist showed a notable interest for the life and works of Miguel de Cervantes throughout her literary career. This article intends to offer a precise portrait of the Cervantean interests of the author of Frankenstein, tracing these through her personal correspondence, her narrative production, and finally, through her contribution to the realm of Cervantean studies: Shelley’s Life of Cervantes (1837, published in Dyonisius Lardner’s Cabinet Cyclopaedia.

  3. STRANGE BARYONIC MATTER AND KAON CONDENSATION

    Czech Academy of Sciences Publication Activity Database

    Gazda, Daniel; Friedman, E.; Gal, A.; Mareš, Jiří

    2011-01-01

    Roč. 26, 3-4 (2011), s. 567-569 ISSN 0217-751X. [11th International Workshop on Meson Production, Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : (K)over-bar-nuclear bound states * strange baryonic matter * kaon condensation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011

  4. Strange Curves, Counting Rabbits, & Other Mathematical Explorations

    CERN Document Server

    Ball, Keith

    2011-01-01

    How does mathematics enable us to send pictures from space back to Earth? Where does the bell-shaped curve come from? Why do you need only 23 people in a room for a 50/50 chance of two of them sharing the same birthday? In Strange Curves, Counting Rabbits, and Other Mathematical Explorations, Keith Ball highlights how ideas, mostly from pure math, can answer these questions and many more. Drawing on areas of mathematics from probability theory, number theory, and geometry, he explores a wide range of concepts, some more light-hearted, others central to the development of the field and used dai

  5. Strange Quark Matter Status and Prospects

    Science.gov (United States)

    Sandweiss, J.

    2004-01-01

    The existence of quark states with more than three quarks is allowed in QCD. The stability of such quark matter states has been studied with lattice QCD and phenomenological bag models, but is not well constrained by theory. The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty. There is additional stability from reduced Coulomb repulsion. SQM is expected to have a low Z/A. Stable or metastable massive multiquark states contain u, d, and s quarks.

  6. Results from CERN experiment NA36 on strangeness production

    International Nuclear Information System (INIS)

    1991-12-01

    Measurements of the production of strange particles in the reactions S + Pb and S + S at beam momentum 200GeV/c per nucleon are presented. A short description of CERN experiment NA36 and the methods of raw data analysis, is followed by physics results concentrating on the dependence of strange particle production on multiplicity. Transverse momentum distributions are also presented

  7. Examination of the strangeness contribution to the nucleon magnetic moment

    NARCIS (Netherlands)

    Chen, XS; Timmermans, RGE; Sun, WM; Zong, HS; Wang, F

    We examine the nucleon strangeness magnetic moment mu(s) with a lowest order meson cloud model. We observe that (1) strangeness in the nucleon is a natural requirement of the empirical relation mu(p)/mu(n)similar or equal to-3/2, which favors an SU(3) octet meson cloud instead of merely the SU(2)

  8. The Geometric Structure of Strange Attractors in the Lozi Map

    Institute of Scientific and Technical Information of China (English)

    YongluoCAO; ZengrongLIU

    1998-01-01

    In this paper,the structure of the strange attractors in the Lozi map is investigated on basis of the results gotten by the authors in 1991-1993,The new results of the strange atrtractors of the Lozi map show that our viewpoint is correct.

  9. Strangeness and quark gluon plasma: Aspects of theory and experiment

    International Nuclear Information System (INIS)

    Eggers, H.C.; Rafelski, J.

    1990-07-01

    A survey of our current understanding of the strange particle signature of quark gluon plasma is presented. Emphasis is placed on the theory of strangeness production in the plasma and recent pertinent experimental results. Useful results on spectra of thermal particles are given. (orig.)

  10. Mini-Proceedings of ECT Workshop Strangeness in Nuclei

    CERN Document Server

    Zmeskal, J

    2011-01-01

    This workshop brought together international experts in the research area of strangeness in nuclei physics, working on theory as well as on experiments, to discuss the present status, to develop new methods of analysis and to have the opportunity for brainstorming towards future studies, going towards a deeper understanding of the hot topics in the low-energy QCD in the strangeness sector.

  11. Strange stars in f(R,Script T) gravity

    Science.gov (United States)

    Deb, Debabrata; Rahaman, Farook; Ray, Saibal; Guha, B. K.

    2018-03-01

    In this article we try to present spherically symmetric isotropic strange star model under the framework of f(R,Script T) theory of gravity. To this end, we consider that the Lagrangian density is a linear function of the Ricci scalar R and the trace of the energy momentum tensor Script T given as f(R,Script T)=R+2χ Script T. We also assume that the quark matter distribution is governed by the simplest form of the MIT bag model equation of state (EOS) as p=1/3(ρ‑4B), where B is the bag constant. We have obtained an exact solution of the modified form of the Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of f(R,Script T) gravity theory and have studied the dependence of different physical properties, viz., the total mass, radius, energy density and pressure for the chosen values of χ. Further, to examine physical acceptability of the proposed stellar model, we have conducted different tests in detail, viz., the energy conditions, modified TOV equation, mass-radius relation, causality condition etc. We have precisely explained the effects arising due to the coupling of the matter and geometry on the compact stellar system. For a chosen value of the bag constant, we have predicted numerical values of the different physical parameters in tabular form for the different strange star candidates. It is found that as the factor χ decreases the strange star candidates become gradually massive and larger in size with less dense stellar configuration. However, when χ increases the stars shrink gradually and become less massive to turn into a more compact stellar system. Hence for χ>0 our proposed model is suitable to explain the ultra-dense compact stars well within the observational limits and for χ<0 case allows to represent the recent massive pulsars and super-Chandrasekhar stars. For χ=0 we retrieve as usual the standard results of the general relativity (GR).

  12. Dual effect of local anesthetics on the function of excitable rod outer segment disk membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mashimo, T.; Abe, K.; Yoshiya, I.

    1986-04-01

    The effects of local anesthetics and a divalent cation, Ca2+, on the function of rhodopsin were estimated from the measurements of light-induced proton uptake. The light-induced proton uptake by rhodopsin in the rod outer segment disk membrane was enhanced at lower pH (4) but depressed at higher pHs (6 to 8) by the tertiary amine local anesthetics lidocaine, bupivacaine, tetracaine, and dibucaine. The order of local anesthetic-induced depression of the proton uptake followed that of their clinical anesthetic potencies. The depression of the proton uptake versus the concentration of the uncharged form of local anesthetic nearly describes the same curve for small and large dose of added anesthetic. Furthermore, a neutral local anesthetic, benzocaine, depressed the proton uptake at all pHs between 4 and 7. These results indicate that the depression of the proton uptake is due to the effect of only the uncharged form. It is hypothesized that the uncharged form of local anesthetics interacts hydrophobically with the rhodopsin in the disk membrane. The dual effect of local anesthetics on the proton uptake, on the other hand, suggests that the activation of the function of rhodopsin may be caused by the charged form. There was no significant change in the light-induced proton uptake by rhodopsin when 1 mM of Ca2+ was introduced into the disk membrane at varying pHs in the absence or presence of local anesthetics. This fact indicates that Ca2+ ion does not influence the diprotonating process of metarhodopsin; neither does it interfere with the local anesthetic-induced changes in the rhodopsin molecule.

  13. Assessment of the Global and Regional Land Hydrosphere and Its Impact on the Balance of the Geophysical Excitation Function of Polar Motion

    Science.gov (United States)

    Wińska, Małgorzata; Nastula, Jolanta; Kołaczek, Barbara

    2016-02-01

    The impact of continental hydrological loading from land water, snow and ice on polar motion excitation, calculated as hydrological angular momentum (HAM), is difficult to estimate, and not as much is known about it as about atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). In this paper, regional hydrological excitations to polar motion are investigated using monthly terrestrial water storage data derived from the Gravity Recovery and Climate Experiment (GRACE) mission and from the five models of land hydrology. The results show that the areas where the variance shows large variability are similar for the different models of land hydrology and for the GRACE data. Areas which have a small amplitude on the maps make an important contribution to the global hydrological excitation function of polar motion. The comparison of geodetic residuals and global hydrological excitation functions of polar motion shows that none of the hydrological excitation has enough energy to significantly improve the agreement between the observed geodetic excitation and geophysical ones.

  14. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  15. Strangeness in the nucleon on the light-cone

    International Nuclear Information System (INIS)

    Malheiro, Manuel; Melnitchouk, Wally

    1999-01-01

    Strange matrix elements of the nucleon are calculated within the light-cone formulation of the meson cloud model. The Q 2 dependence of the strange vector form factors is computed, and the strangeness radius and magnetic moment extracted, both of which are found to be very small. The strange magnetic moment μ S is seen to change sign once the spurious form factors arising from the violation of rotational invariance are subtracted. The resulting μ S is small and slightly positive, in agreement with the trend of the recent data from the SAMPLE experiment. Within the same framework one finds a small but non-zero excess of the antistrange distribution over the strange at large x. (author)

  16. Rapidity dependence of strangeness enhancement factor at FAIR energies

    International Nuclear Information System (INIS)

    Dey, Kalyan; Bhattacharjee, B.

    2014-01-01

    Strange particles are produced only at the time of collisions and thus expected to carry important information of collision dynamics. Strangeness enhancement is considered to be one of the traditional signatures of formation of Quark Gluon Plasma (QGP). Due to the limitation of the detector acceptance, the past and ongoing heavy ion experiments could measure the strangeness enhancement at midrapidity only. But the future heavy ion experiment CBM at FAIR will have the access to the entire forward rapidity hemisphere and thus the experimental determination of rapidity dependent strangeness enhancement is a possibility. In this work, an attempt has therefore been made to study the rapidity dependent strangeness enhancement at FAIR energies with the help of a string based hadronic model (UrQMD). A sum of 93 million minimum biased UrQMD events have been used for the present analysis

  17. Excitation Functions for Charged Particle Induced Reactions in Light Elements at Low Projectile Energies

    International Nuclear Information System (INIS)

    Lorenzen, J.; Brune, D.

    1973-01-01

    The present chapter has been formulated with the aim of making it useful in various fields of nuclear applications with emphasis on charged particle activation analysis. Activation analysis of light elements using charged particles has proved to be an important tool in solving various problems in analytical chemistry, e g those associated with metal surfaces. Scientists desiring to evaluate the distribution of light elements in the surface of various matrices using charged particle reactions require accurate data on cross sections in the MeV-region. A knowledge of cross section data and yield-functions is of great interest in many applied fields involving work with charged particles, such as radiological protection and health physics, material research, semiconductor material investigations and corrosion chemistry. The authors therefore decided to collect a limited number of data which find use in these fields. Although the compilation is far from being complete, it is expected to be of assistance in devising measurements of charged particle reactions in Van de Graaff or other low energy accelerators

  18. Excitation Functions for Charged Particle Induced Reactions in Light Elements at Low Projectile Energies

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, J; Brune, D

    1973-07-01

    The present chapter has been formulated with the aim of making it useful in various fields of nuclear applications with emphasis on charged particle activation analysis. Activation analysis of light elements using charged particles has proved to be an important tool in solving various problems in analytical chemistry, e g those associated with metal surfaces. Scientists desiring to evaluate the distribution of light elements in the surface of various matrices using charged particle reactions require accurate data on cross sections in the MeV-region. A knowledge of cross section data and yield-functions is of great interest in many applied fields involving work with charged particles, such as radiological protection and health physics, material research, semiconductor material investigations and corrosion chemistry. The authors therefore decided to collect a limited number of data which find use in these fields. Although the compilation is far from being complete, it is expected to be of assistance in devising measurements of charged particle reactions in Van de Graaff or other low energy accelerators

  19. Low-lying charmed and charmed-strange baryon states

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bing [Anyang Normal University, Department of Physics, Anyang (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China); Wei, Ke-Wei [Anyang Normal University, Department of Physics, Anyang (China); Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China); Matsuki, Takayuki [Tokyo Kasei University, Tokyo (Japan); Nishina Center, RIKEN, Theoretical Research Division, Saitama (Japan)

    2017-03-15

    In this work, we systematically study the mass spectra and strong decays of 1P and 2S charmed and charmed-strange baryons in the framework of non-relativistic constituent quark models. With the light quark cluster-heavy quark picture, the masses are simply calculated by a potential model. The strong decays are studied by the Eichten-Hill-Quigg decay formula. Masses and decay properties of the well-established 1S and 1P states can be reproduced by our method. Σ{sub c}(2800){sup 0,+,++} can be assigned as a Σ{sub c2}(3/2{sup -}) or Σ{sub c2}(5/2{sup -}) state. We prefer to interpret the signal Σ{sub c}(2850){sup 0} as a 2S(1/2{sup +}) state although at present we cannot thoroughly exclude the possibility that this is the same state as Σ{sub c}(2800){sup 0}. Λ{sub c}(2765){sup +} or Σ{sub c}(2765){sup +} could be explained as the Λ{sub c}{sup +}(2S) state or Σ{sup +}{sub c1}(1/2{sup -}) state, respectively. We propose to measure the branching ratio of B(Σ{sub c}(2455)π)/B(Σ{sub c}(2520)π) in the future, which may disentangle the puzzle of this state. Our results support Ξ{sub c}(2980){sup 0,+} as the first radial excited state of Ξ{sub c}(2470){sup 0,+} with J{sup P} = 1/2{sup +}. The assignment of Ξ{sub c}(2930){sup 0} is analogous to Σ{sub c}(2800){sup 0,+,++}, i.e., a Ξ{sup '}{sub c2}(3/2{sup -}) or Ξ{sup '}{sub c2}(5/2{sup -}) state. In addition, we predict some typical ratios among partial decay widths, which are valuable for experimental search for these missing charmed and charmed-strange baryons. (orig.)

  20. Strange Particles and Heavy Ion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bassalleck, Bernd [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Fields, Douglas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    2016-04-28

    This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for this award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.

  1. Notes on properties of holographic strange metals

    International Nuclear Information System (INIS)

    Lee, Bum-Hoon; Pang, Da-Wei

    2010-01-01

    We investigate properties of holographic strange metals in p+2 dimensions, generalizing the analysis performed in [S. A. Hartnoll et al. J. High Energy Phys. 04 (2010) 120]. The bulk spacetime is a p+2-dimensional Lifshitz black hole, while the role of charge carriers is played by probe D-branes. We mainly focus on massless charge carriers, where most of the results can be obtained analytically. We obtain exact results for the free energy and calculate the entropy density and the heat capacity, as well as the speed of sound at low temperature. We obtain the DC conductivity and DC Hall conductivity and find that the DC conductivity takes a universal form in the large density limit, while the Hall conductivity is also universal in all dimensions. We also study the resistivity in different limits and clarify the condition for the linear dependence on the temperature, which is a key feature of strange metals. We show that our results for the DC conductivity are consistent with those obtained via the Kubo formula and we obtain the charge diffusion constant analytically. The corresponding properties of massive charge carriers are also discussed in brief.

  2. Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

    Science.gov (United States)

    2016-06-03

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9681 Calculation of Vibrational and Electronic Excited -State Absorption Spectra...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Calculation of Vibrational and Electronic Excited -State Absorption Spectra of Arsenic-Water Complexes Using...Unclassified Unlimited Unclassified Unlimited 59 Samuel G. Lambrakos (202) 767-2601 Calculations are presented of vibrational and electronic excited -state

  3. The Measurement of the Evaporation Residues Excitation Functions in the Fusion Reactions 144Sm (40Ar,xn) and 166Er(40Ar,xn)

    Science.gov (United States)

    Chernysheva, E. V.; Rodin, A. M.; Belozerov, A. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Novoselov, A. S.; Oganessian, Yu. Ts.; Salamatin, V. S.; Stepantsov, S. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Krupa, L.; Kliman, J.; Motycak, S.; Sivacek, I.

    2015-06-01

    The evaporation residues excitation functions for the reactions 40Ar+144Sm→184Hg and 40Ar+166Er→206Rn were measured at the energies below and above the Coulomb barrier (Elab=142-207 MeV) using a mass-separator MASHA. The experimental data were compared with theoretical calculations using a Channel Coupling Model. The influence of experimental beam energy spread on the excitation functions was taking into account. It was found that structure of xn-cross sections correlate strongly with the nuclear structure of colliding nuclei.

  4. Enhancement of Cortical Excitability and Lower Limb Motor Function in Patients With Stroke by Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Chang, Min Cheol; Kim, Dae Yul; Park, Dae Hwan

    2015-01-01

    Motor dysfunction in the lower limbs is a common sequela in stroke patients. We used transcranial magnetic stimulation (TMS) to determine if applying transcranial direct current stimulation (tDCS) to the primary motor cortex helps enhance cortical excitability. Furthermore, we evaluate if combination anodal tDCS and conventional physical therapy improves motor function in the lower limbs. Twenty-four patients with early-stage stroke were randomly assigned to 2 groups: 1) the tDCS group, in which patients received 10 sessions of anodal tDCS and conventional physical therapy; and 2) the sham group, in which patients received 10 sessions of sham stimulation and conventional physical therapy. One day before and after intervention, the motor-evoked potential (MEP) of the affected tibialis anterior muscle was evaluated and motor function was assessed using the lower limb subscale of the Fugl-Meyer Assessment (FMA-LE), lower limb Motricity Index (MI-LE), Functional Ambulatory Category (FAC), Berg Balance Scale (BBS), and gait analysis. The MEPs in the tDCS group became shorter in latency and higher in amplitude after intervention in comparison with the sham group. Improvements in FMA-LE and MI-LE were greater in the tDCS group, but no significant differences in FAC or BBS scores were found. Also, the changes observed on the gait analyses did not significantly differ between the tDCS and sham groups. Combination anodal tDCS and conservative physical therapy appears to be a beneficial therapeutic modality for improving motor function in the lower limbs in patients with subacute stroke. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Thin-target excitation functions: a powerful tool for optimizing yield, radionuclidic purity and specific activity of cyclotron produced radionuclides

    International Nuclear Information System (INIS)

    Bonardi, M.L.

    2002-01-01

    In accelerator production of radionuclides, thin-target yield, y(E), is defined as a function of the projectile energy E, at the End Of an Instantaneous Bombardment (EOIB), as the slope at the origin of the growing curve of the activity per unit beam current (A/I) of a specific radionuclide vs. irradiation time, for a target in which the energy loss is negligible with respect to the projectile energy itself. In practice, y(E) is defined as the second derivative of A/I with respect to particle energy and irradiation time, calculated when the irradiation time tends to zero (EOIB). The thin-target yields of different radionuclides, produced by direct and side reactions, are numerically fitted, taking into account the overall statistical errors as weights. The 'effective' cross-section σ ± (E) as a function of projectile energy is proportional to thin-target yield, but the physical meaning of this parameter is poor, being only a raw summation of the several cross sections of the reaction channels concerned, weighted on target isotopic composition. Conversely, Thick-Target Yield, Y(E,ΔE), is defined as a two parameter function of the incident particle energy E(MeV) onto the target and the energy loss ΔE (MeV), in the target itself, obtained by integration of thin-target excitation function, y(E). This approach holds in the strict approximation of a monochromatic beam of energy E, not affected by either intrinsic energy spread or straggling. The energy straggling is computed by Monte Carlo computer codes, like TRIM 2001. In case of total particle energy absorption in the target, for a nuclear reaction of energy threshold E th , the function Y(E,ΔE) reaches a value Y(E,E- E th ), for ΔE=E- E th , that represents mathematically the envelope of the Y(E,ΔE) family of curves. This envelope is a monotonically increasing curve, never reaching either a maximum or a saturation value, even if its slope becomes negligible for high particle energies and energy losses. Some

  6. Excitation functions of proton induced reactions on {sup nat}Fe in the energy region up to 45 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangsoo [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Khandaker, Mayeen Uddin [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Naik, Haladhara [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Radiochemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2014-03-01

    The excitation functions of various reaction products such as {sup 55,56,57}Co, {sup 52}Fe, {sup 52,54}Mn, and {sup 51}Cr in the {sup nat}Fe(p, x) reactions were measured by the stacked-foil activation technique in the energy range between their respective reaction threshold and 45 MeV at the MC-50 cyclotron of the Korean Institute of Radiological and Medical Sciences, Korea. The present experimental data were compared with the existing literature data. It was found that excitation function of {sup 56,57}Co and {sup 51}Cr from the {sup nat}Fe(p, x) reaction are in agreement with the literature data. However, the cross-sections for {sup nat}Fe(p, x){sup 52}Fe reactions are lower and those for {sup nat}Fe(p, x){sup 52}Mn and {sup nat}Fe(p, x){sup 54}Mn reactions are higher than the literature data. The reaction cross-sections of the above mentioned reaction products were also compared with those from the TENDL-2012 library based on the TALYS-1.4 program as a function of proton energy, which was reproduced the trend of the excitation functions of the experimental {sup nat}Fe(p, x) reaction cross-section. The integral yields for thick target of the investigated radionuclides were calculated from the excitation function.

  7. Coulomb excitation

    International Nuclear Information System (INIS)

    McGowan, F.K.; Stelson, P.H.

    1974-01-01

    The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)

  8. Strange-face illusions during inter-subjective gazing.

    Science.gov (United States)

    Caputo, Giovanni B

    2013-03-01

    In normal observers, gazing at one's own face in the mirror for a few minutes, at a low illumination level, triggers the perception of strange faces, a new visual illusion that has been named 'strange-face in the mirror'. Individuals see huge distortions of their own faces, but they often see monstrous beings, archetypal faces, faces of relatives and deceased, and animals. In the experiment described here, strange-face illusions were perceived when two individuals, in a dimly lit room, gazed at each other in the face. Inter-subjective gazing compared to mirror-gazing produced a higher number of different strange-faces. Inter-subjective strange-face illusions were always dissociative of the subject's self and supported moderate feeling of their reality, indicating a temporary lost of self-agency. Unconscious synchronization of event-related responses to illusions was found between members in some pairs. Synchrony of illusions may indicate that unconscious response-coordination is caused by the illusion-conjunction of crossed dissociative strange-faces, which are perceived as projections into each other's visual face of reciprocal embodied representations within the pair. Inter-subjective strange-face illusions may be explained by the subject's embodied representations (somaesthetic, kinaesthetic and motor facial pattern) and the other's visual face binding. Unconscious facial mimicry may promote inter-subjective illusion-conjunction, then unconscious joint-action and response-coordination. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. On isospin excitation energy

    International Nuclear Information System (INIS)

    Li Wenfei; Zhang Fengshou; Chen Liewen

    2001-01-01

    Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments

  10. New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear PDEs

    Science.gov (United States)

    Venturi, D.; Karniadakis, G. E.

    2012-08-01

    By using functional integral methods we determine new evolution equations satisfied by the joint response-excitation probability density function (PDF) associated with the stochastic solution to first-order nonlinear partial differential equations (PDEs). The theory is presented for both fully nonlinear and for quasilinear scalar PDEs subject to random boundary conditions, random initial conditions or random forcing terms. Particular applications are discussed for the classical linear and nonlinear advection equations and for the advection-reaction equation. By using a Fourier-Galerkin spectral method we obtain numerical solutions of the proposed response-excitation PDF equations. These numerical solutions are compared against those obtained by using more conventional statistical approaches such as probabilistic collocation and multi-element probabilistic collocation methods. It is found that the response-excitation approach yields accurate predictions of the statistical properties of the system. In addition, it allows to directly ascertain the tails of probabilistic distributions, thus facilitating the assessment of rare events and associated risks. The computational cost of the response-excitation method is order magnitudes smaller than the one of more conventional statistical approaches if the PDE is subject to high-dimensional random boundary or initial conditions. The question of high-dimensionality for evolution equations involving multidimensional joint response-excitation PDFs is also addressed.

  11. Excitation functions of pion reactions on 14N, 16O, and 19F through the (3,3) resonance

    International Nuclear Information System (INIS)

    Jacob, N.P. Jr.; Markowitz, S.S.

    1976-01-01

    Cross sections for pion-induced reactions of the form (π,πN) and more complex spallation reactions of the form (π,X) have been measured from 50--550 MeV on the target nuclei 14 N, 16 O, and 19 F using the secondary pion beams at the Lawrence Berkeley Laboratory 184-inch synchrocyclotron and the Clinton P. Anderson Meson Physics Facility. The dominance of the (3,3) free-particle resonance is seen in all excitation functions determined in this work. Relative to the 12 C(π/sup plus-or-minus/,πN) 11 C reactions, the (π/sup plus-or-minus/,πN) reactions on 14 N, 16 O, and 19 F have magnitudes of 0.2, 1, and 0.7, respectively. The cross section ratio R=sigma (π - ,π - n)/sigma (π + ,π N) =1.68+-0.18 for 14 N at 188+-15 MeV, 1.68+-0.05 for 16 O at 188+-9 MeV, and 1.68+-0.03 for 19 F at 178+-2 MeV incident pion energy. The results from this work are compared to previous pion work, analogous proton-induced reactions, Monte Carlo intranuclear cascade-evaporation calculations, and to a semiclassical nucleon charge-exchange model which convincingly explains the (π,πN) reaction mechanism in the (3,3) resonance region

  12. On the Stability of Strange Dwarf Hybrid Stars

    Energy Technology Data Exchange (ETDEWEB)

    Alford, Mark G.; Harris, Steven P. [Physics Department, Washington University, St. Louis, MO 63130 (United States); Sachdeva, Pratik S., E-mail: harrissp@wustl.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2017-10-01

    We investigate the stability of “strange dwarfs”: white-dwarf-sized stars with a density discontinuity between a small dense core of quark matter and a thick low-density mantle of degenerate electrons. Previous work on strange dwarfs suggested that such a discontinuity could stabilize stars that would have been classified as unstable by the conventional criteria based on extrema in the mass–radius relation. We investigate the stability of such stars by numerically solving the Sturm–Liouville equations for the lowest-energy modes of the star. We find that the conventional criteria are correct, and strange dwarfs are not stable.

  13. Status and prospects for strange physics at LHCb

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Rare decays are fundamental probes of physics beyond the Standard Model. We present the current status of rare decays studies at the LHCb experiment and discuss a possible picture emerging from these measurements. The expanding LHCb program of strange physics, in particular of their rare decays, provides a unique and complementary probe to test the SM with respect to the beauty and charm. We present recent results on rare strange hadrons decays exploiting the LHCb Run I data. We then present prospects for strange physics with the LHCb Run II data and after the improvements in the trigger for the LHCb Upgrade.

  14. Quark Matter May Not Be Strange.

    Science.gov (United States)

    Holdom, Bob; Ren, Jing; Zhang, Chen

    2018-06-01

    If quark matter is energetically favored over nuclear matter at zero temperature and pressure, then it has long been expected to take the form of strange quark matter (SQM), with comparable amounts of u, d, and s quarks. The possibility of quark matter with only u and d quarks (udQM) is usually dismissed because of the observed stability of ordinary nuclei. However, we find that udQM generally has lower bulk energy per baryon than normal nuclei and SQM. This emerges in a phenomenological model that describes the spectra of the lightest pseudoscalar and scalar meson nonets. Taking into account the finite size effects, udQM can be the ground state of baryonic matter only for baryon number A>A_{min} with A_{min}≳300. This ensures the stability of ordinary nuclei and points to a new form of stable matter just beyond the periodic table.

  15. Strange particle production from quark matter droplets

    International Nuclear Information System (INIS)

    Werner, K.; Hladik, M.

    1995-01-01

    We recently introduced new methods to study ultrarelativistic nuclear scattering by providing a link between the string model approach and a thermal description. The string model is used to provide information about fluctuations in energy density. Regions of high energy density are considered to be quark matter droplets and treated macroscopically. At SPS energies, we find mainly medium size droplets---with energies up to few tens of Gev. A key issue is the microcanonical treatment of individual quark matter droplets. Each droplet hadronizes instantaneously according to the available n-body phase space. Due to the huge number of possible hadron configurations, special Monte Carlo techniques have been developed to calculate this disintegration. We present results concerning the production of strange particles from such a hadronization as compared to string decay. copyright 1995 American Institute of Physics

  16. Strange pathways for black hole formation

    International Nuclear Information System (INIS)

    Prakash, M.

    2000-01-01

    Immediately after they are born, neutron stars are characterized by an entropy per baryon of order unity and by the presence of trapped neutrinos. If the only hadrons in the star are nucleons, these effects slightly reduce the maximum mass relative to cold, catalyzed matter. However, if strangeness-bearing hyperons, a kaon condensate, or quarks are also present, these effects result in an increase in the maximum mass of up to ∼ 0.3M [odot] compared to that of a cold, neutrino-free star. This makes a sufficiently massive proto-neutron star metastable, so that after a delay of 10-100 seconds, the PNS collapses into a black hole. Such an event might be straightforward to observe as an abrupt cessation of neutrinos when the instability is triggered

  17. The Universe is a Strange Place

    Science.gov (United States)

    Wilczek, Frank

    2006-01-01

    Our understanding of ordinary matter is remarkably accurate and complete, but it is based on principles that are very strange and unfamiliar. As I'll explain, we've come to understand matter to be a Music of the Void, in a remarkably literal sense. Just as we physicists finalized that wonderful understanding, towards the end of the twentieth century, astronomers gave us back our humility, by informing us that ordinary matter - what we, and chemists and biologists, and astronomers themselves, have been studying all these centuries constitutes only about 5% of the mass of the universe as a whole. I'll describe some of our promising attempts to rise to this challenge by improving, rather than merely complicating, our description of the world.

  18. Strangeness photoproduction with the SAPHIR-detector

    International Nuclear Information System (INIS)

    Merkel, H.

    1993-12-01

    At the ELSA facility at Bonn a photon beam with a high duty cycle up to energies of 3.3 GeV is available. In this energy range the large solid angle detector SAPHIR enables us to investigate the strangeness photoproduction starting from threshold. SAPHIR has already achieved results for the reactions γ+p→K + +Λ and γ+p→K + +Σ 0 . This work investigates the possibilities to measure the related reactions γ+n→K 0 +Λ and γ+n→K 0 +Σ 0 at a deuteron target and to measure the reaction γ+p→K 0 +Σ + at a proton target. For the first time the Σ + polarisation has been measured. With an cross section 10 times smaller compared to the kaon hyperon reactions, the photoproduction of the Φ(1020) meson can be investigated with the SAPHIR detector too. First reconstructed events are shown. (orig.)

  19. Calculations for the excitation functions of the 63Cup, n63Zn, 63Cup, 2n62Zn and 65Cup, n65Zn reactions

    International Nuclear Information System (INIS)

    Gul, K.

    2001-01-01

    Calculations for the excitation functions of 63 Cup, n 63 Zn, 63 Cup, 2n 62 Zn and 65 Cup, n 65 Zn reactions have been carried out in 3-30 MeV energy range using statistical and pre-equilibrium nuclear reaction models. The calculations have been compared with reported measurements and discussed

  20. Analysis of complete fusion excitation functions for 7Li+152Sm, 197Au and 209Bi reactions at around barrier energies

    International Nuclear Information System (INIS)

    Kharab, Rajesh; Chahal, Rajiv; Kumar, Rajiv

    2017-01-01

    In the present work we have analyzed the fusion excitation function for CF process using the simple Wong’s formula in conjunction with the energy dependent Woods-Saxon potential (EDWSP) in near barrier energy region for 7 Li+ 152 Sm, 197 Au and 209 Bi reactions

  1. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    Science.gov (United States)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  2. Evaluation of the excitation function of the 238U(n,2n)237U reaction for neutron energies from threshold to 19 MeV

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Vinogradov, V.N.; Gay, E.V.; Rabotnov, N.S.; Salnikov, O.A.; Raics, P.; Daroczy, S.; Nagy, S.; Csikai, J.

    1983-01-01

    Experimental results for the 238 U(n,2n) reaction were collected from the literature and evaluated. The normalisation of the measured cross sections was carried out using recent values for the cross sections of standard monitor reactions as well as new nuclear decay data. The evaluated excitation function was then obtained by the Pade-approximation. (Auth.)

  3. Excitation functions of the (pn) and (p,2n) reactions on Cd isotopes. [(pn) and (p,2n) reactions on the sup(110-114,116)Cd

    Energy Technology Data Exchange (ETDEWEB)

    Skakun, E A; Klyucharev, A P; Rakivnenko, Yu N; Romanij, I A [AN Ukrainskoi SSR, Kiev. Fiziko-Tekhnicheskii Inst.

    1975-01-01

    Excitation functions of (pn)- and (p,2n)-reactions on /sup 110/-/sup 114/,/sup 116/Cd nuclei are measured in a range of incident proton energy up to 20 MeV. Experimental results are compared to calculated ones.

  4. Radial stability of anisotropic strange quark stars

    Energy Technology Data Exchange (ETDEWEB)

    Arbañil, José D.V.; Malheiro, M., E-mail: jose.arbanil@upn.pe, E-mail: malheiro@ita.br [ITA—Instituto Tecnológico de Aeronáutica—Departamento de Física, 12228-900, São José dos Campos, São Paulo (Brazil)

    2016-11-01

    The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic σ = p {sub t} − p {sub r} are considered, where p {sub t} and p {sub r} are respectively the tangential and the radial pressure: one that is null at the star's surface defined by p {sub r} ( R ) = 0, and one that is nonnull at the surface, namely, σ {sub s} = 0 and σ {sub s} {sub ≠} {sub 0}. In the case σ {sub s} = 0, the maximum mass value and the zero frequency of oscillation are found at the same central energy density, indicating that the maximum mass marks the onset of the instability. For the case σ {sub s} {sub ≠} {sub 0}, we show that the maximum mass point and the zero frequency of oscillation coincide in the same central energy density value only in a sequence of equilibrium configurations with the same value of σ {sub s} . Thus, the stability star regions are determined always by the condition dM / d ρ {sub c} {sub >} {sub 0} only when the tangential pressure is maintained fixed at the star surface's p {sub t} ( R ). These results are also quite important to analyze the stability of other anisotropic compact objects such as neutron stars, boson stars and gravastars.

  5. Benchmarking DFT and TD-DFT Functionals for the Ground and Excited States of Hydrogen-Rich Peptide Radicals.

    Science.gov (United States)

    Riffet, Vanessa; Jacquemin, Denis; Cauët, Emilie; Frison, Gilles

    2014-08-12

    We assess the pros and cons of a large panel of DFT exchange-correlation functionals for the prediction of the electronic structure of hydrogen-rich peptide radicals formed after electron attachment on a protonated peptide. Indeed, despite its importance in the understanding of the chemical changes associated with the reduction step, the question of the attachment site of an electron and, more generally, of the reduced species formed in the gas phase through electron-induced dissociation (ExD) processes in mass spectrometry is still a matter of debate. For hydrogen-rich peptide radicals in which several positive groups and low-lying π* orbitals can capture the incoming electron in ExD, inclusion of full Hartree-Fock exchange at long-range interelectronic distance is a prerequisite for an accurate description of the electronic states, thereby excluding several popular exchange-correlation functionals, e.g., B3LYP, M06-2X, or CAM-B3LYP. However, we show that this condition is not sufficient by comparing the results obtained with asymptotically correct range-separated hybrids (M11, LC-BLYP, LC-BPW91, ωB97, ωB97X, and ωB97X-D) and with reference CASSCF-MRCI and EOM-CCSD calculations. The attenuation parameter ω significantly tunes the spin density distribution and the excited states vertical energies. The investigated model structures, ranging from methylammonium to hexapeptide, allow us to obtain a description of the nature and energy of the electronic states, depending on (i) the presence of hydrogen bond(s) around the cationic site(s), (ii) the presence of π* molecular orbitals (MOs), and (iii) the selected DFT approach. It turns out that, in the present framework, LC-BLYP and ωB97 yields the most accurate results.

  6. Excited meson radiative transitions from lattice QCD using variationally optimized operators

    Energy Technology Data Exchange (ETDEWEB)

    Shultz, Christian J. [Old Dominion Univ., Norfolk, VA (United States); Dudek, Jozef J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-06-02

    We explore the use of 'optimized' operators, designed to interpolate only a single meson eigenstate, in three-point correlation functions with a vector-current insertion. These operators are constructed as linear combinations in a large basis of meson interpolating fields using a variational analysis of matrices of two-point correlation functions. After performing such a determination at both zero and non-zero momentum, we compute three-point functions and are able to study radiative transition matrix elements featuring excited state mesons. The required two- and three-point correlation functions are efficiently computed using the distillation framework in which there is a factorization between quark propagation and operator construction, allowing for a large number of meson operators of definite momentum to be considered. We illustrate the method with a calculation using anisotopic lattices having three flavors of dynamical quark all tuned to the physical strange quark mass, considering form-factors and transitions of pseudoscalar and vector meson excitations. In conclusion, the dependence on photon virtuality for a number of form-factors and transitions is extracted and some discussion of excited-state phenomenology is presented.

  7. Correction of asymmetric quark-antiquark strange sea to Weinberg angle

    International Nuclear Information System (INIS)

    Ding Yong; Lv Zhun; Ma Boqiang

    2004-01-01

    The authors derive a new Paschos-Wolfenstein relationship which should bring an important correction to Weinberg angle sin 2 θ w when considering the quark-antiquark asymmetry in the nucleon sea. The authors also obtain the distributions of asymmetric strange antistrange sea by using the light-cone meson-baryon fluctuation model with two kinds of wave functions, respectively. The most important issue is that the correction of asymmetric strange-antistrange sea can reduce approximately 30%-80% of the difference with three standard deviations between the measured value of the Weinberg angle sin 2 θ w by the NuTeV Collaboration and the predicted value by the standard model. (author)

  8. Measurement and analysis of the excitation function and isomeric cross section ratios for α-induced reaction on Ir, Au, Re and Ta nuclei

    International Nuclear Information System (INIS)

    Ismail, M.

    1998-01-01

    Excitation functions and a few isomeric cross section ratios for production of (1) 192 Au, 193 Au, 194 Au, 195 Au and 192 Ir nuclides in α-induced reactions on 191,193 Ir, (2) 197 Tl, 197m Hg, 198m.g Tl, 199 Tl and 200 Tl nuclides in α-induced reaction in 197 Au and (3) 183 Re and 184m.g Re nuclides in α-induced reaction in 181 Ta and 185 Re are obtained from the measurements of the residual activities by the conventional stacked-foils technique from threshold to 50 MeV. The excitation function and isomeric cross section ratios for nuclear reaction 181 Ta (α,n) 184m.g Re are compared with the theoretical calculation using the code Stapre which is based on exciton model for pre-equilibrium phase and Hauser-Feshbach formalism taking angular momentum and parity into account for the equilibrium phase of the nuclear reaction. All other experimental excitation functions are compared with the calculations considering equilibrium as well as pre-equilibrium reaction mechanism according to the geometry dependent hybrid (GDH) model and hybrid model of Blann using the code Alice/91. The high energy part of the excitation functions are dominated by pre-equilibrium reaction mechanism whereas the low energy parts are dominated by equilibrium evaporation with its characteristic peak. The GDH model provides a potentially better description of the physical process (i.e. a higher probability for peripheral collisions to undergo precompound decay than for central collisions) compared to hybrid model. However in the energy range of present measurement most of the excitation functions are fitted reasonably well by both GDH model and hybrid model with initial exciton number N 0 =4 (N n =2, N p =2, N h =0). Barring a few reactions we have found the overall agreement between theory and experiment is reasonably good taking the limitations of the theory into account. (author)

  9. PREFACE: Strangeness in Quark Matter (SQM2009) Strangeness in Quark Matter (SQM2009)

    Science.gov (United States)

    Fraga, Eduardo; Kodama, Takeshi; Padula, Sandra; Takahashi, Jun

    2010-09-01

    The 14th International Conference on Strangeness in Quark Matter (SQM2009) was held in Brazil from 27 September to 2 October 2009 at Hotel Atlântico, Búzios, Rio de Janeiro. The conference was jointly organized by Universidade Federal do Rio de Janeiro, Universidade Estadual de Campinas, Centro Brasileiro de Pesquisas Físicas, Universidade de São Paulo, Universidade Estadual Paulista and Universidade Federal do Rio Grande do Sul. Over 120 scientists from Argentina, Brazil, China, France, Germany, Hungary, Italy, Japan, Mexico, The Netherlands, Norway, Poland, Russia, Slovakia, South Africa, Switzerland, the UK and the USA gathered at the meeting to discuss the physics of hot and dense matter through the signals of strangeness and also the behavior of heavy quarks. Group photograph The topics covered were strange and heavy quark production in nuclear collisions, strange and heavy quark production in elementary processes, bulk matter phenomena associated with strange and heavy quarks, and strangeness in astrophysics. In view of the LHC era and many other upcoming new machines, together with recent theoretical developments, sessions focused on `New developments and new facilities' and 'Open questions' were also included. A stimulating round-table discussion on 'Physics opportunities in the next decade in the view of strangeness and heavy flavor in matter' was chaired in a relaxed atmosphere by Grazyna Odyniec and conducted by P Braun-Munzinger, W Florkowski, K Redlich, K Šafařík and H Stöcker, We thank these colleagues for pointing out to young participants new physics directions to be pursued. We also thank J Dunlop and K Redlich for excellent introductory lectures given on the Sunday evening pre-conference session. In spite of the not-so-helpful weather, the beauty and charm of the town of Búzios helped to make the meeting successful. Nevertheless, the most important contributions were the excellent talks, whose contents are part of these proceedings, given

  10. Excitation functions and isomeric ratios for the isomeric pair sup(106m)Ag and sup(106g)Ag in the 107Ag (d,t) reaction

    International Nuclear Information System (INIS)

    Lalli, M.E.; Wasilevsky de Lammirato, C.; Herreros, O.R.; Nassiff, S.J.

    1976-09-01

    Excitation functions and isomeric cross section ratios have been measured for the 107 Ag (d,t), reaction in which the isomeric pair sup(106m/106g)Ag is produced. Thick-target yields have been determined for different irradiation times and as a function of deuteron energy. Stacked silver foils with aluminium foils as monitors were bombarded with deuterons up to 27 MeV and the activities of products measured with a calibrated Ge(Li) counter. (author) [es

  11. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  12. MCSCF wave functions for excited states of polar molecules - Application to BeO. [Multi-Configuration Self-Consistent Field

    Science.gov (United States)

    Bauschlicher, C. W., Jr.; Yarkony, D. R.

    1980-01-01

    A previously reported multi-configuration self-consistent field (MCSCF) algorithm based on the generalized Brillouin theorem is extended in order to treat the excited states of polar molecules. In particular, the algorithm takes into account the proper treatment of nonorthogonality in the space of single excitations and invokes, when necessary, a constrained optimization procedure to prevent the variational collapse of excited states. In addition, a configuration selection scheme (suitable for use in conjunction with extended configuration interaction methods) is proposed for the MCSCF procedure. The algorithm is used to study the low-lying singlet states of BeO, a system which has not previously been studied using an MCSCF procedure. MCSCF wave functions are obtained for three 1 Sigma + and two 1 Pi states. The 1 Sigma + results are juxtaposed with comparable results for MgO in order to assess the generality of the description presented here.

  13. Strangeness and the quark-gluon plasma: An experimenter's perspective

    International Nuclear Information System (INIS)

    Odyniec, G.

    1994-02-01

    Current status of experimental results on strange particle production in relativistic nucleus-nucleus collisions is reviewed. Emphasis is placed on the relevance to the hypothetical quark-gluon plasma formation and the origin of the Universe

  14. Enhancement of strangeness in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Grassi, F.; Heiselberg, H.

    1990-01-01

    The theoretical and experimental conditions to obtain strange particle production in heavy ion collisions at high energies are discussed, by analysis of results obtained from Super Proton Synchrotron - CERN and Alternating Gradient Synchrotron in United States. (M.C.K.)

  15. Mass-radius relation for magnetized strange quark stars

    CERN Document Server

    Martinez, A Perez; Paret, D Manreza

    2010-01-01

    We review the stability of magnetized strange quark matter (MSQM) within the phenomenological MIT bag model, taking into account the variation of the relevant input parameters, namely, the strange quark mass, baryon density, magnetic field and bag parameter. A comparison with magnetized asymmetric quark matter in $\\beta$-equilibrium as well as with strange quark matter (SQM) is presented. We obtain that the energy per baryon for MSQM decreases as the magnetic field increases, and its minimum value at vanishing pressure is lower than the value found for SQM, which implies that MSQM is more stable than non-magnetized SQM. The mass-radius relation for magnetized strange quark stars is also obtained in this framework.

  16. Is EG 50 a White or Strange Dwarf?

    Science.gov (United States)

    Hajyan, G. S.; Vartanyan, Yu. L.

    2017-12-01

    The time dependences of the luminosity of a white dwarf and four strange dwarfs with masses of 0.5 M (the mass of the white dwarf EG 50 with a surface temperature of 2.1·104 K) are determined taking neutrino energy losses into account. It was assumed that these configurations radiate only at the expense of thermal energy reserves. It is shown that the sources of thermal energy owing to nonequilibrium b-processes and the phenomenon of crystallization of electron-nuclear matter are insignificant in determining the cooling time of white and strange dwarfs with masses of 0.5 M⨀. It is shown that in this approximation the time dependences of the luminosity of white and strange dwarfs with masses of 0.5 M⨀ differ significantly only for surface temperatures TR≥7·104 K, so it is impossible to determine whether EG 50 is a white or strange dwarf based on the cooling time.

  17. Collider phenomenology of light strange-beauty squarks

    International Nuclear Information System (INIS)

    Cheung, Kingman; Hou Weizshu

    2004-01-01

    Strong mixing between right-handed strange and beauty squarks is a possible solution to the CP violation discrepancy in B→φK S decay as recently suggested by the Belle data. In this scenario, thanks to the strong mixing one of the strange-beauty squarks can be as light as 200 GeV, even though the generic supersymmetry scale is at TeV. In this work, we study the production of this light right-handed strange-beauty squark at hadronic colliders and discuss the detection in various decay scenarios. Detection prospect at the Tevatron run II is good for the strange-beauty squark mass up to about 300 GeV

  18. Higher dimensional strange quark matter solutions in self creation cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Şen, R., E-mail: ramazansen-1991@hotmail.com [Institute for Natural and Applied Sciences, Çanakkale Onsekiz Mart University, 17020, Çanakkale (Turkey); Aygün, S., E-mail: saygun@comu.edu.tr [Department of Physics, Art and Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale 17020 (Turkey)

    2016-03-25

    In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.

  19. Nucleation of strange matter in dense stellar cores

    International Nuclear Information System (INIS)

    Horvath, J.E.; Benvenuto, O.G.; Vucetich, H.

    1992-01-01

    We investigate the nucleation of strange quark matter inside hot, dense nuclear matter. Applying Zel'dovich's kinetic theory of nucleation we find a lower limit of the temperature T for strange-matter bubbles to appear, which happens to be satisfied inside the Kelvin-Helmholtz cooling era of a compact star life but not much after it. Our bounds thus suggest that a prompt conversion could be achieved, giving support to earlier expectations for nonstandard type-II supernova scenarios

  20. Charm and strangeness of ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Gerschel, C.

    1994-01-01

    Charmonium and strangeness production in collisions induced by ultrarelativistic sulfur or silicon ions is reviewed. A suppression of charmonium production and a strangeness enhancement are observed. Predicted as potential signatures of the quark gluon plasma formation, their interpretation is still very much debated. The status of the discussion will be given as well as the expected evolutions with the forthcoming Pb beams. (author). 45 refs., 11 figs., 1 tab

  1. Hot Strange Hadronic Matter in an Effective Model

    Institute of Scientific and Technical Information of China (English)

    QIAN Wei-Liang; SU Ru-Keng; SONG Hong-Qiu

    2003-01-01

    An effective model used to describe the strange hadronic matter with nucleons, Λ-hyperons, and Ξ-hyperonsis extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fractiondependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy andpressure, as well as the equation of state of the matter, are given.

  2. Cooling Curve of Strange Star in Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Qin; LUO Zhi-Quan

    2008-01-01

    In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.

  3. Strangeness Production in a Chemically Equilibrating Quark-Gluon Plasma

    Institute of Scientific and Technical Information of China (English)

    HE Ze-Jun; LONG Jia-Li; MA Yu-Gang; MA Guo-Liang

    2004-01-01

    @@ We study the strangeness of a chemically equilibrating quark-gluon plasma at finite baryon density based on the and will accelerate with the change of the initial system from a chemically non-equilibrated to an equilibrated system. We also find that the calculated strangeness is very different from the one in the thermodynamic equilibrium system. This study may be helpful to understand the formation of quark-gluon plasma via a chemically non-equilibrated evolution framework.

  4. Non-Spherical Gravitational Collapse of Strange Quark Matter

    Institute of Scientific and Technical Information of China (English)

    Zade S S; Patil K D; Mulkalwar P N

    2008-01-01

    We study the non-spherical gravitational collapse of the strange quark null fluid.The interesting feature which emerges is that the non-spherical collapse of charged strange quark matter leads to a naked singularity whereas the gravitational collapse of neutral quark matter proceeds to form a black hole.We extend the earlier work of Harko and Cheng[Phys.Lett.A 266 (2000) 249]to the non-spherical case.

  5. Hot Strange Hadronic Matter in an Effective Model

    Institute of Scientific and Technical Information of China (English)

    QIANWei-Liang; SURu-Keng; SONGHong-Qiu

    2003-01-01

    An effective model used to describe the strange hadronic matter with nucleons, A-hyperons, and [I]-hyperons is extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fraction dependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy and pressure, as well as the equation of state of the matter, are given.

  6. Role of strangeness to the neutron star mass and cooling

    Science.gov (United States)

    Lee, Chang-Hwan; Lim, Yeunhwan; Hyun, Chang Ho; Kwak, Kyujin

    2018-01-01

    Neutron star provides unique environments for the investigation of the physics of extreme dense matter beyond normal nuclear saturation density. In such high density environments, hadrons with strange quarks are expected to play very important role in stabilizing the system. Kaons and hyperons are the lowest mass states with strangeness among meson and bayron families, respectively. In this work, we investigate the role of kaons and hyperons to the neutron star mass, and discuss their role in the neutron star cooling.

  7. Theoretical study of nuclear physics with strangeness at Nankai University

    International Nuclear Information System (INIS)

    Ning Pingzhi

    2007-01-01

    Theoretical study of nuclear physics with strangeness from the nuclear physics group at Nankai university is briefly introduced. Theoretical calculations on hyperon mean free paths in nuclear medium have been done. The other 4 topics in the area of strangeness nuclear physics are the effect of different baryon impurities in nucleus, the heavy flavored baryon hypernuclei, the eta-mesons in nuclear matter and the properties of kaonic nuclei. (authors)

  8. Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional.

    Science.gov (United States)

    Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen

    2014-09-09

    The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.

  9. Tight-binding approximations to time-dependent density functional theory — A fast approach for the calculation of electronically excited states

    Energy Technology Data Exchange (ETDEWEB)

    Rüger, Robert, E-mail: rueger@scm.com [Scientific Computing & Modelling NV, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig (Germany); Lenthe, Erik van [Scientific Computing & Modelling NV, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Heine, Thomas [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig (Germany); Visscher, Lucas [Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2016-05-14

    We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.

  10. Observation of non-statistical structures in the excitation function of the reaction 10B(14N,12C)12C under extreme forward angles

    International Nuclear Information System (INIS)

    Klauss, E.U.

    1984-01-01

    In the present thesis the excitation functions of the reaction 10 B( 14 N, 12 C) 12 C to the ground states, the first excited state at 4.43 MeV (Jsup(π) = 2 1 + ) of a 12 C residual nucleus, and to the double excitation of ejectile and residue nucleus to the 4.43 state are studied. The measurements were performed in an energy range 13MeV 14 N) 0 (in the c.m. system). By a fitting to elastic scattering data the optical potential for 10 B+ 14 N was determined. With this potential it was tried by means of Hauser-Feshbach calculations to calculate the cross sections of the reaction 10 B( 14 N, 12 C) 12 C. The strong 16 + resonance and indications of 18 + in the excitation function of the reaction 10 B( 14 N, 12 Csub(g.s.)) 12 Csub(g.s.) should be pronounced. An unexpected large cross section was observed in the reaction 10 B( 14 N, 12 Csub(g.s.)) 12 C(4 1 + ). This is considered as a further indication to the strong contribution of a direct process. (orig./HSI) [de

  11. A generalized Bethe-Weizsaecker mass formula for strange hadronic matter

    International Nuclear Information System (INIS)

    Dover, C.B.; Washington Univ., Seattle, WA; Gal, A.; Washington Univ., Seattle, WA

    1992-12-01

    The Bethe-Weizsaecker nuclear mass formula is extended to strange hadronic matter composed of nucleons, lambdas and cascade hyperons. The generalized formula contains several volume and symmetry terms constrained by phenomenologically determined λ-nuclear, ξ-nuclear and λλ interaction parameters and by hyperon-hyperon (λλ, λξ, ξξ) interaction parameters suggested by One-Boson-Exchange models. We find that hypernuclei are generally unstable to λλ → ξN conversion. For strange hadronic matter, as function of the baryon number A, the line of strong-interaction stability, along which a large strangeness fraction |S|/A ∼ 0.5 - 1.1 and a low charge fraction q/A approx-lt 0.2 hold, and no fission occurs, is determined. The binding energy per baryon increases monotonically to its bulk limit, B/A → 38 MeV, |S|/A → 1.1 and q/A → 0 for the parameters adopted here assuming that the hyperon species saturate at densities similar to those of protons and neutrons in nuclei. Even in the extreme limit of vanishingly small hyperon-hyperon interaction strengths, strange hadronic matter with B/A → 15 MeV, |S|/A → 0.7 and q/A → 0 in the bulk limit should exist; the mass formula reproduces semi-quantitatively recent mean-field calculations which implicitly assumed weak hyperon-hyperon interactions

  12. A generalized Bethe-Weizaecker mass formula for strange hadronic matter

    International Nuclear Information System (INIS)

    Dover, C.B.; Gal, A.

    1993-01-01

    We extend the Bethe- Weizsaecker nuclear mass formula to strange hadronic matter composed of nucleons, lambdas and cascade hyperons. The generalized formula contains several volume and symmetry terms constrained by phenomenologically determined Λ-nuclear, Ξ-nuclear and ΛΛ interaction parameters and by hyperon-hyperon (ΛΛ, ΛΞ, ΞΞ) interaction parameters suggested by one-boson-exchange models. We confirm that multi-Λ hypernuclei are generally unstable to ΛΛ→ΞN conversion. For strange hadronic matter we determine, as function of the baryon number A, the line of strong-interaction stability, along which a large strangeness fraction vertical stroke /Svertical stroke /A∝0.5-1.1 and a low charge fraction q/A< or ∼0.2 hold, and no fission occurs. The binding energy per baryon increases monotonically to its bulk limit, B/A→38 MeV, vertical stroke /Svertical stroke /A→ 1.1 and q/A→0 for the parameters adopted here assuming that the hyperon species saturate at densities similar to those of protons and neutrons in nuclei. Even in the extreme limit of vanishingly small hyperon-hyperon interaction strengths, strange hadronic matter with B/A→15 MeV, vertical stroke /Svertical stroke /A→0.7 and q/A→0 in the bulk limit should exist and our mass formula reproduces semi-quantitatively recent mean-field calculations which implicitly assumed weak hyperon-hyperon interactions. (orig.)

  13. Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals

    KAUST Repository

    Pandey, Laxman; Doiron, Curtis; Sears, John S.; Bré das, Jean-Luc

    2012-01-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated. © 2012 the Owner Societies.

  14. A new analysis procedure to extract fusion excitation function with large beam energy dispersions: application to the 6Li+120Sn and 7Li+119Sn

    Directory of Open Access Journals (Sweden)

    Di Pietro Alessia

    2017-01-01

    Full Text Available In the present paper it is described an analysis procedure suited for experiments where cross-sections strongly varying with energy are measured using beams having large energy dispersion. These cross-sections are typically the sub-barrier fusion excitation function of reactions induced by radioactive beams. The large beam energy dispersion, typical of these experiments, can lead to ambiguities in the association of the effective beam energy to the reaction product yields and consequently to an error in the determination of the excitation function. As a test case, the approach is applied to the experiments 6Li+120Sn and 7Li+119Sn measured in the energy range 14 MeV ≤ Ec.m. ≤28 MeV. The complete fusion cross sections are deduced from activation measurements using the stacked target technique. The results of these experiments, that employ the two weakly-bound stable Li isotopes, show that the complete fusion cross sections above the barrier are suppressed of about 70% and 85% with respect to the Universal Fusion Function, used as a standard reference, in the 6Li and 7Li induced reactions respectively. Moreover, the excitation functions of the two systems at energies below the barrier, do not show significant differences, despite the two systems have different n-transfer Qvalue.

  15. Electron energy distribution functions and thermalization times in methane and in argon--methane mixtures: An effect of vibrational excitation processes

    International Nuclear Information System (INIS)

    Krajcar-Bronic, I.; Kimura, M.

    1995-01-01

    Electron thermalization in methane and argon--methane mixtures is studied by using the Boltzmann equation. The presence of low-lying vibrational excited states in methane significantly changes electron energy distribution functions and relaxation times. We found that (i) the mean electron energy just below the first vibrational excited state is reached faster by 1000 times when the vibrational states are taken into account, and (ii) electron energy distribution functions have distinct peaks at energy intervals equal to the vibrational threshold energies. Both these effects are due to large vibrational stopping cross section. The thermalization time in mixtures of argon--methane (without vibrational states) smoothly changes as the mixture composition varies, and no significant difference in the electron energy distribution function is observed. When the vibrational excited states are taken into account, thermalization is almost completely defined by CH 4 , even at very low fractional concentrations of CH 4 . The sensitivity of the electron energy distribution functions on the momentum transfer cross sections used in calculation on the thermalization is discussed. copyright 1995 American Institute of Physics

  16. ['How strange is the patient to me?'

    Science.gov (United States)

    Karger, André; Lindtner-Rudolph, Heide; Mroczynski, Robert; Ziem, Alexander; Joksimovic, Ljiljana

    2017-09-01

    'How strange is the patient to me?' Physicians' attitudes and expectations toward treating patients with a migration background Objectives: Undergraduate and postgraduate training in cultural competence remains a challenging issue. It might be useful to integrate culturally sensitive learning objectives in existing curricula. As part of a needs assessment, this qualitative study examined the prototypical experiences in clinical routines with patients with a migration background. Twenty physicians took part in half-structured narrative interviews, which were then analyzed by linguistic-ethnographic conversation analysis. The main reasons for difficulties in patient-physician relation proved to be language barriers. Assignments of professional interpreters were rated critically. Physicians attributed the responsibility for successful communication mainly to the patient. The physicians saw little need for training in cultural competence. The integration of learning objectives related to cultural sensibility in existing curricula would seem to be useful, especially because the physicians interviewed reported little need for additional training on their own. The importance of implied negative attitudes and stereotypes in creating a culturally sensitive approach should be taken into account.

  17. Strangeness Prospects with the CBM Experiment

    International Nuclear Information System (INIS)

    Friese, Volker

    2016-01-01

    The CBM experiment will study strongly interacting matter at high net-baryon densities with nuclear collisions up to 45A GeV beam energy at the future FAIR facility. With interaction rates unprecedented in heavy-ion collisions, CBM will give access also to extremely rare probes and thus to the early stage of the collisions, in search for the first-order phase transition from confined to deconfined matter and the QCD critical point. The CBM physics programme will be started with beams delivered by the SIS-100 synchrotron, providing energies from 2 to 11 GeV/nucleon for heavy nuclei, up to 14 GeV/nucleon for light nuclei, and 30 GeV for protons. The highest net baryon densities will be explored with ion beams up to 45 GeV/nucleon energy delivered by SIS-300 in a later stage of the FAIR project.After several years of preparation, the CBM experiment now enters the realisation phase. In this article, we report on the current status of the system developments and the expected physics performance for strange and charmed observables, as well as on the roadmap towards the first data taking. (paper)

  18. Effect of the Curved Spacetime on the Electrostatic Potential Energy Distribution of Strange Stars

    Institute of Scientific and Technical Information of China (English)

    陈次星; 张家铝

    2001-01-01

    The effect of the strong gravitational field of the strange core of a strange star on its surface electrostatic potential energy distribution is discussed. We present the general-relativistic hydrodynamics equations of fluids in the presence of the electric fields and investigate the surface electrostatic potential distribution of the strange core of a strange star in hydrostatic equilibrium to correct Alcock and coworker's result [Astrophys. J. 310 (1986) 261]. Also, we discuss the temperature distribution of the bare strange star surface and give the related formulae, which may be useful if we are concerned further about the physical processes near the quark atter surfaces of strange stars.

  19. Excited state nuclear forces from the Tamm-Dancoff approximation to time-dependent density functional theory within the plane wave basis set framework

    Science.gov (United States)

    Hutter, Jürg

    2003-03-01

    An efficient formulation of time-dependent linear response density functional theory for the use within the plane wave basis set framework is presented. The method avoids the transformation of the Kohn-Sham matrix into the canonical basis and references virtual orbitals only through a projection operator. Using a Lagrangian formulation nuclear derivatives of excited state energies within the Tamm-Dancoff approximation are derived. The algorithms were implemented into a pseudo potential/plane wave code and applied to the calculation of adiabatic excitation energies, optimized geometries and vibrational frequencies of three low lying states of formaldehyde. An overall good agreement with other time-dependent density functional calculations, multireference configuration interaction calculations and experimental data was found.

  20. Excitation function for the population of the 4.51 MeV state of 27Al inelastic proton scattering. Evidence for 6- strength?

    International Nuclear Information System (INIS)

    Spicer, B.M.; Koutsoliotas, S.

    1995-01-01

    The excitation function for emission of 2.30 MeV gamma rays from the 4.51 MeV state of 27 Al formed in inelastic proton scattering has been measured for proton energies from 5.6 to 7.3 MeV. A resonance previously seen in both inelastic electron and proton scattering from 28 Si at 17.35 MeV has been observed as a resonance in the excitation function, as well as seven other resonances, all of which are narrow (i.e., less than 100 keV wide). It is suggested that these may represent fragments of 6 - strength in 28 Si. 6 refs., 1 tab., 2 figs

  1. Formation of Bonded Exciplex in the Excited States of Dicyanoanthracene-Pyridine System : Time Dependent Density Functional Theory Study

    NARCIS (Netherlands)

    Setiawan, D.; Sethio, D.; Martoprawiro, M.A.; Filatov, M.; Gaol, FL; Nguyen, QV

    2012-01-01

    Strong quenching of fluorescence was recently observed in pyridine solutions of 9,10-dicyanoanthracene chromophore. It was hypothesized that quenching may be attributed to the formation of bound charge transfer complexes in the excited states of the molecules. In this work, using time-dependent

  2. Exciting Pools

    Science.gov (United States)

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  3. Unlocking color and flavor in superconducting strange quark matter

    International Nuclear Information System (INIS)

    Alford, Mark; Berges, Juergen; Rajagopal, Krishna

    1999-01-01

    We explore the phase diagram of strongly interacting matter with massless u and d quarks as a function of the strange quark mass m s and the chemical potential μ for baryon number. Neglecting electromagnetism, we describe the different baryonic and quark matter phases at zero temperature. For quark matter, we support our model-independent arguments with a quantitative analysis of a model which uses a four-fermion interaction abstracted from single-gluon exchange. For any finite m s , at sufficiently large μ we find quark matter in a color-flavor-locked state which leaves a global vector-like SU(2) color+L+R symmetry unbroken. As a consequence, chiral symmetry is always broken in sufficiently dense quark matter. As the density is reduced, for sufficiently large m s we observe a first-order transition from the color-flavor-locked phase to color superconducting phase analogous to that in two-flavor QCD. At this unlocking transition chiral symmetry is restored. For realistic values of m s our analysis indicates that chiral symmetry breaking may be present for all densities down to those characteristic of baryonic matter. This supports the idea that quark matter and baryonic matter may be continuously connected in nature. We map the gaps at the quark Fermi surfaces in the high density color-flavor-locked phase onto gaps at the baryon Fermi surfaces at low densities

  4. Critical charges on strange quark nuggets and other extended objects

    International Nuclear Information System (INIS)

    Dicus, Duane A.; Repko, Wayne W.; Teplitz, V. L.

    2008-01-01

    We investigate the behavior of the critical charge for spontaneous pair production, Z C , defined as the charge at which the total energy of a K-shell electron is E=-m e , as a function of the radius R of the charge distribution. Our approach is to solve the Dirac equation for a potential V(r) consisting of a spherically symmetrical charge distribution of radius R and a Coulomb tail. For a spherical shell distribution of the type usually associated with color-flavor locked strange quark nuggets, we confirm the relation Z C =0.71R (fm) for sufficiently large R obtained by Madsen, who used an approach based on the Thomas-Fermi model. We also present results for a uniformly charged sphere and again find that Z C ∼R for large enough R. Also discussed is the behavior of Z C when simple ad hoc modifications are made to the potential for 0≤r< R.

  5. Testing the doubly charged charm-strange tetraquarks

    Science.gov (United States)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2018-02-01

    The spectroscopic parameters and decay channels of the doubly charged scalar, pseudoscalar and axial-vector charm-strange tetraquarks Z_{ \\overline{c}s}=[sd][\\overline{u} \\overline{c}] are explored within framework of the QCD sum rule method. The masses and current couplings of these diquark-antidiquark states are calculated by means of two-point correlation functions and taking into account the vacuum condensates up to eight dimensions. To compute the strong couplings of Z_{\\overline{c}s} states with D, Ds, D^{*}, Ds^{*}, D_{s1}(2460), D_{s0}^{*}(2317), π and K mesons we use QCD light-cone sum rules and evaluate width of their S- and P-wave decays to a pair of negatively charged conventional mesons: For the scalar state Z_{\\overline{c}s}→ D_s π , DK, D_{s1}(2460)π , for the pseudoscalar state Z_{\\overline{c}s} → Ds^{*}π , D^{*}K, D_{s0}^{*}(2317)π , and for the axial-vector state Z_{\\overline{c}s} → Ds^{*}π , D^{*}K, D_{s1}(2460)π decays are investigated. Obtained predictions for the spectroscopic parameters and decay widths of the Z_{\\overline{c}s} tetraquarks may be useful for experimental investigations of the doubly charged exotic hadrons.

  6. Production of multi-strange hyperons and strange resonances in the NA49 experiment

    CERN Document Server

    Barton, R A; Anticic, T; Bächler, J; Barna, D; Barnby, L S; Bartke, Jerzy; Betev, L; Bialkowska, H; Billmeier, A; Blume, C; Blyth, C O; Boimska, B; Botje, M; Bracinik, J; Brady, F P; Bramm, R; Brun, R; Buncic, P; Carr, L; Cebra, D; Cooper, G E; Cramer, J G; Csató, P; Eckhardt, F; Ferenc, D; Filip, P; Fischer, H G; Fodor, Z; Foka, P Y; Freund, P; Friese, V; Ftácnik, J; Gál, J; Gazdzicki, M; Georgopoulos, G; Gladysz-Dziadus, E; Hegyi, S; Hlinka, V; Höhne, C; Igo, G; Ivanov, M; Jacobs, P; Janik, R; Jones, P G; Kadija, K; Kolesnikov, V I; Kollegger, T; Kowalski, M; Van Leeuwen, M; Lévai, Peter; Malakhov, A I; Margetis, S; Markert, C; Mayes, B W; Melkumov, G L; Mischke, A; Molnár, J; Nelson, J M; Odyniec, Grazyna Janina; Pálla, G; Panagiotou, A D; Petridis, A; Pikna, M; Pinsky, L; Poskanzer, A M; Prindle, D J; Pühlhofer, F; Reid, J G; Renfordt, R E; Retyk, W; Ritter, H G; Röhrich, D; Roland, C; Roland, G; Rybicki, A; Sammer, T; Sandoval, A; Sann, H; Schäfer, E; Schmitz, N; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Snellings, R; Squier, G T A; Stock, Reinhard; Strmen, P; Ströbele, H; Susa, T; Szarka, I; Szentpétery, I; Sziklai, J; Toy, M; Trainor, T A; Trentalange, S; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Voloshin, S A; Vranic, D; Wang, F; Weerasundara, D D; Wenig, S; Wetzler, A; Whitten, C; Xu, N; Yates, T A; Yoo, I K; Zimányi, J

    2001-01-01

    The NA49 large-acceptance hadron spectrometer has measured strange and multi-strange hadrons from Pb+Pb and p+p collisions at the CERN SPS. Preliminary results for the transverse mass and rapidity distributions for X and Xi /sup +/ from central Pb+Pb collisions at 158 GeV c/sup -1//nudeon are presented. Fully integrated yields per event of 4.42+or-0.31 and 0.74+0.04 are found for Xi /sup -/ and Xi /sup +/, respectively, leading to a 4 pi Xi /sup +// Xi /sup -/ ratio of 0.17+or-0.02. The ratio Xi /sup +// Xi /sup -/ at mid-rapidity is found to be 0.22+or-0.04, agreeing with previously published values. In addition, preliminary data on the Lambda (1520) and phi (1020) resonances are presented. The Lambda (1520) multiplicity for p+p collisions is found to be 0.012+or-0.003. No signal is observed for Pb+Pb collisions and a production upper limit of 1.36 Lambda (1520) per event indicates an apparent suppression when comparing with scaled p+p data. Integrated phi (1020) yields per event are found to be 7.6+or-1.1 f...

  7. Discovery Mondays - “Relativity Theory... strange! Did you say strange?”

    CERN Multimedia

    2005-01-01

    We all know that famous equation E=mc2, but do you know its true significance? Relativity theory: what is the meaning of this strange concept which plunged the physics world into turmoil 100 years ago? What effects can be observed today? Did you know that the GPS system would not work if relativity was not taken into account? The next Discovery Monday will take you on a journey into a strange world. You will be able to witness for yourselves the consequences of Einstein's theories. How, for example, can relativity theory be tested by eclipses? What consequences does it have for the accelerators at CERN? How can it be used to measure the mass of enormous black holes? And finally, how is it linked to the puzzle surrounding the missing mass of the Universe? As part of the World Year of Physics, the next Discovery Monday will be dedicated to one of the theories that Einstein published in 1905, his “annus mirabilis”. Join us at the Microcosm (Reception Building 33, Meyrin site), on Monday 5th September ...

  8. Discovery Mondays - “Relativity Theory... strange! Did you say strange?”

    CERN Multimedia

    2005-01-01

    We all know that famous equation E=mc2, but do you know its true significance? Relativity theory: what is the meaning of this strange concept which plunged the physics world into turmoil 100 years ago? What effects can be observed today? Did you know that the GPS system would not work if relativity was not taken into account? The next Discovery Monday will take you on a journey into a strange world. You will be able to witness for yourselves the consequences of Einstein's theories. How, for example, can relativity theory be tested by eclipses? What consequences does it have for the accelerators at CERN? How can it be used to measure the mass of enormous black holes? And finally, how is it linked to the puzzle surrounding the missing mass of the Universe? As part of the World Year of Physics, the next Discovery Monday will be dedicated to one of the theories that Einstein published in 1905, his “annus mirabilis”. Join us at the Microcosm (Reception Building 33, Meyrin site), on Monday 5th Septemb...

  9. Neutral strange particle production in π-p interactions at 16 GeV/c

    International Nuclear Information System (INIS)

    Balea, E.; Berceanu, S.; Coca, C.; Sararu, A.; Karnaukhov, M.V.; Moroz, I.V.; Kellner, G.; Mihul, A.

    1979-06-01

    The production of Ksub(s)sup(0), Λ and anti Λ in π - p interactions at 16 GeV/c is investigated. Cross sections for single strange particle are determined, both inclusively and as functions of the charged multiplicity. Some characteristics of the multiplicity distributions are also discussed. Inclusive distributions are studied as function of longitudinal and transverse variables of Vsup(0) and missing mass squared. The average charged multiplicities of the systems recoiling against the Λ and Ksub(s)sup(0) are presented. (author)

  10. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  11. Observation of enhanced production of strange and multi-strange hadrons in high-multiplicity pp and p-Pb collisions with the ALICE detector.

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The production of strange hadrons has long been studied in heavy-ion collisions to investigate the formation of a deconfined medium. The interpretation of these data depends critically on the understanding of strange-particle production in smaller ‘baseline’ collision systems such as proton-proton and proton-ion. The ALICE experiment is well-suited to the measurement of identified charged hadrons and weakly-decaying strange and multi-strange baryons and has collected large samples of minimum-bias pp and p-Pb collisions. Characterising the collisions according to their final-state multiplicities reveals an enhancement in the production of strange and multi-strange particles, relative to light flavoured hadrons. This detailed information is valuable in understanding the mechanisms that control the production of strange particles.  

  12. Critical Assessment of Time-Dependent Density Functional Theory for Excited States of Open-Shell Systems: II. Doublet-Quartet Transitions.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian

    2016-06-14

    Compared with closed-shell systems, open-shell systems place three additional challenges to time-dependent density functional theory (TD-DFT) for electronically excited states: (a) the spin-contamination problem is a serious issue; (b) the exchange-correlation (XC) kernel may be numerically instable; and (c) the single-determinant description of open-shell ground states readily becomes energetically instable. Confined to flip-up single excitations, the spin-contamination problem can largely be avoided by using the spin-flip TD-DFT (SF-TD-DFT) formalism, provided that a noncollinear XC kernel is employed. As for the numerical instabilities associated with such a kernel, only an ad hoc scheme has been proposed so far, viz., the ALDA0 kernel, which amounts to setting the divergent components (arising from density gradients and kinetic energy density) simply to zero. The ground-state instability problem can effectively be avoided by introducing the Tamm-Dancoff approximation (TDA) to TD-DFT. Therefore, on a general basis, the SF-TDA/ALDA0 Ansatz is so far the only promising means within the TD-DFT framework for flip-up single excitations of open-shell systems. To assess systematically the performance of SF-TDA/ALDA0, in total 61 low-lying quartet excited states of the benchmark set of 11 small radicals [J. Chem. Theory Comput. 2016, 12, 238] are investigated with various XC functionals. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as benchmark, it is found that the mean absolute errors of SF-TDA/ALDA0 with the SAOP (statistical averaging of model orbital potentials), global hybrid, and range-separated hybrid functionals are in the range of 0.2-0.4 eV. This is in line not only with the typical accuracy of TD-DFT for singlet and triplet excited states of closed-shell systems but also with the gross accuracy of spin-adapted TD-DFT for spin-conserving excited states of open-shell systems.

  13. Organic electronic materials: Recent advances in the dft description of the ground and excited states using tuned range-separated hybrid functionals

    KAUST Repository

    Körzdörfer, Thomas

    2014-11-18

    Density functional theory (DFT) and its time-dependent extension (TD-DFT) are powerful tools enabling the theoretical prediction of the ground- and excited-state properties of organic electronic materials with reasonable accuracy at affordable computational costs. Due to their excellent accuracy-to-numerical-costs ratio, semilocal and global hybrid functionals such as B3LYP have become the workhorse for geometry optimizations and the prediction of vibrational spectra in modern theoretical organic chemistry. Despite the overwhelming success of these out-of-the-box functionals for such applications, the computational treatment of electronic and structural properties that are of particular interest in organic electronic materials sometimes reveals severe and qualitative failures of such functionals. Important examples include the overestimation of conjugation, torsional barriers, and electronic coupling as well as the underestimation of bond-length alternations or excited-state energies in low-band-gap polymers.In this Account, we highlight how these failures can be traced back to the delocalization error inherent to semilocal and global hybrid functionals, which leads to the spurious delocalization of electron densities and an overestimation of conjugation. The delocalization error for systems and functionals of interest can be quantified by allowing for fractional occupation of the highest occupied molecular orbital. It can be minimized by using long-range corrected hybrid functionals and a nonempirical tuning procedure for the range-separation parameter.We then review the benefits and drawbacks of using tuned long-range corrected hybrid functionals for the description of the ground and excited states of π-conjugated systems. In particular, we show that this approach provides for robust and efficient means of characterizing the electronic couplings in organic mixed-valence systems, for the calculation of accurate torsional barriers at the polymer limit, and for the

  14. Searching for Strange Quark Matter Objects in Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y. F.; Yu, Y. B., E-mail: hyf@nju.edu.cn [Department of Astronomy, School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2017-10-20

    The true ground state of hadronic matter may be strange quark matter (SQM). Consequently, observed pulsars may actually be strange quark stars, but not neutron stars. However, proving or disproving the SQM hypothesis still remains a difficult problem to solve due to the similarity between the macroscopical characteristics of strange quark stars and neutron stars. Here, we propose a hopeful method to probe the existence of SQM. In the framework of the SQM hypothesis, strange quark dwarfs and even strange quark planets can also stably exist. Noting that SQM planets will not be tidally disrupted even when they get very close to their host stars due to their extreme compactness, we argue that we could identify SQM planets by searching for very close-in planets among extrasolar planetary systems. Especially, we should keep our eyes on possible pulsar planets with orbital radius less than ∼5.6 × 10{sup 10} cm and period less than ∼6100 s. A thorough search in the currently detected ∼2950 exoplanets around normal main-sequence stars has failed to identify any stable close-in objects that meet the SQM criteria, i.e., lying in the tidal disruption region for normal matter planets. However, the pulsar planet PSR J1719-1438B, with an orbital radius of ∼6 × 10{sup 10} cm and orbital period of 7837 s, is, encouragingly, found to be a good candidate.

  15. Anisotropic strange stars under simplest minimal matter-geometry coupling in the f (R ,T ) gravity

    Science.gov (United States)

    Deb, Debabrata; Guha, B. K.; Rahaman, Farook; Ray, Saibal

    2018-04-01

    We study strange stars in the framework of f (R ,T ) theory of gravity. To provide exact solutions of the field equations it is considered that the gravitational Lagrangian can be expressed as the linear function of the Ricci scalar R and the trace of the stress-energy tensor T , i.e. f (R ,T )=R +2 χ T , where χ is a constant. We also consider that the strange quark matter (SQM) distribution inside the stellar system is governed by the phenomenological MIT bag model equation of state (EOS), given as pr=1/3 (ρ -4 B ) , where B is the bag constant. Further, for a specific value of B and observed values of mass of the strange star candidates we obtain the exact solution of the modified Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of f (R ,T ) gravity and have studied in detail the dependence of the different physical parameters, like the metric potentials, energy density, radial and tangential pressures and anisotropy etc., due to the chosen different values of χ . Likewise in GR, as have been shown in our previous work [Deb et al., Ann. Phys. (Amsterdam) 387, 239 (2017), 10.1016/j.aop.2017.10.010] in the present work also we find maximum anisotropy at the surface which seems an inherent property of the strange stars in modified f (R ,T ) theory of gravity. To check the physical acceptability and stability of the stellar system based on the obtained solutions we have performed different physical tests, viz., the energy conditions, Herrera cracking concept, adiabatic index etc. In this work, we also have explained the effects, those are arising due to the interaction between the matter and the curvature terms in f (R ,T ) gravity, on the anisotropic compact stellar system. It is interesting to note that as the values of χ increase the strange stars become more massive and their radius increase gradually so that eventually they gradually turn into less dense compact objects. The present study reveals that the modified f (R ,T ) gravity is a suitable

  16. Plane-Wave Implementation and Performance of à-la-Carte Coulomb-Attenuated Exchange-Correlation Functionals for Predicting Optical Excitation Energies in Some Notorious Cases.

    Science.gov (United States)

    Bircher, Martin P; Rothlisberger, Ursula

    2018-06-12

    Linear-response time-dependent density functional theory (LR-TD-DFT) has become a valuable tool in the calculation of excited states of molecules of various sizes. However, standard generalized-gradient approximation and hybrid exchange-correlation (xc) functionals often fail to correctly predict charge-transfer (CT) excitations with low orbital overlap, thus limiting the scope of the method. The Coulomb-attenuation method (CAM) in the form of the CAM-B3LYP functional has been shown to reliably remedy this problem in many CT systems, making accurate predictions possible. However, in spite of a rather consistent performance across different orbital overlap regimes, some pitfalls remain. Here, we present a fully flexible and adaptable implementation of the CAM for Γ-point calculations within the plane-wave pseudopotential molecular dynamics package CPMD and explore how customized xc functionals can improve the optical spectra of some notorious cases. We find that results obtained using plane waves agree well with those from all-electron calculations employing atom-centered bases, and that it is possible to construct a new Coulomb-attenuated xc functional based on simple considerations. We show that such a functional is able to outperform CAM-B3LYP in some cases, while retaining similar accuracy in systems where CAM-B3LYP performs well.

  17. Double-strangeness five-body system

    Energy Technology Data Exchange (ETDEWEB)

    Myint, K S [Mandalay Univ. (Myanmar). Dept. of Physics; Akaishi, Yoshinori

    1994-09-01

    We perform theoretical analysis on the structure and decay of a double-strangeness five-body system which consists of {sub {Lambda}{Lambda}}{sup 5}H and {sub {identical_to}}{sup 5}H states. In this S=-2 five-body system the thresholds of the t{Lambda}{Lambda} channel and the {alpha}{identical_to}{sup -} channel come closer with only 8.51 MeV difference. We treat both bound and resonant states of the three-body channels t{Lambda}{Lambda} and tp{identical_to}{sup -} by applying a complex rotation method. It is found that there is a bound {sub {Lambda}{Lambda}}{sup 5}H state with 6.3 MeV below the threshold of t+{Lambda}+{Lambda}. In the {identical_to}{sup -} channel a resonant {sub {identical_to}}{sup 5}H state appears at 1.7 MeV below the threshold of {alpha}+{identical_to}{sup -}. Though the existence of this state is ensured by the Coulomb interaction, it is a `halo` nuclear state rather than an atomic state as judged from its size. The conversion width of this state is 0.2 MeV which is extremely narrow. It is also found that {identical_to} mixing into the {sub {Lambda}{Lambda}}{sup 5}H ground state is small with 1.0 %. For the {sub {Lambda}{Lambda}}{sup 5}H state, the weak decay to the {alpha}+{Sigma}{sup -} final state produces a high mono-energetic {Sigma}{sup -} with branching ratio of 5.5 %. Thus the {Sigma}{sup -} with discrete energy would become a clear signature of the forming of the {Lambda}{Lambda} hypernucleus. (author).

  18. Double-strangeness five-body system

    Energy Technology Data Exchange (ETDEWEB)

    Myint, K S [Mandalay Univ. (Myanmar). Dept. of Physics; Akaishi, Yoshinori

    1995-03-01

    We perform theoretical analysis on the structure and decay of a double-strangeness five-body system which consists of {sub {Lambda}{Lambda}}{sup 5}H and {sub {Xi}}{sup 5}H states. In this S=-2 five-body system the thresholds of the t{Lambda}{Lambda} channel and the {alpha}{Xi}{sup -} channel come closer with only 8.51 MeV difference. We treat both bound and resonant states of the three-body channels t{Lambda}{Lambda} and tp{Xi}{sup -} by applying a complex rotation method. It is found that there is a bound {sub {Lambda}{Lambda}}{sup 5}H state with 6.3 MeV below the threshold of t+{Lambda}+{Lambda}. In the {Xi}{sup -} channel a resonant {sub {Xi}}{sup 5}H state appears at 1.7 MeV below the threshold of {alpha}+{Xi}{sup -}. Though the existence of this state is ensured by the Coulomb interaction, it is a `halo` nuclear state rather than an atomic state as judged from its size. The conversion width of this state is 0.2 MeV which is extremely narrow. It is also found that {Xi} mixing into the {sub {Lambda}{Lambda}}{sup 5}H ground state is small with 1.0%. For the {sub {Lambda}{Lambda}}{sup 5}H state, the weak decay to the {alpha}+{Sigma}{sup -} final state produces a high mono-energetic {Sigma}{sup -} with branching ratio of 5.5%. Thus the {Sigma}{sup -} with discrete energy would become a clear signature of the forming of the {Lambda}{Lambda} hypernucleus. (author).

  19. Study of the strangeness photoproduction on deuteron

    International Nuclear Information System (INIS)

    Rouvier, F.

    1997-01-01

    Hypernuclear physics has been getting more and more attention in the last fifteen years with the realization that it is important to study hyperon - nucleon interactions in addition to nucleon - nucleon interactions in order to have a comprehensive understanding of strong interactions. One is to study final-state interactions in processes initiated with electromagnetic probes. In this thesis we focus our attention on a particular case of hyperon-nucleon interaction, namely the Λn interaction in the continuum. The reaction γd → K +Λn is ideal for this purpose. A covariant formalism developed from an effective Lagrangian and based upon an isobaric approach is used to perform a thorough study of the electromagnetic strangeness process γd → K +Λn , for 0.8 ≤ E γ ≤ 1.7 GeV. The present model using a diagrammatic technique consists of the loop Feynman's diagram evaluation by means of the relativistic impulse approximation (the neutron is considered as spectator on its mass-shell during the process). First, we have therefore to calculate the three diagram which dominates the dynamics by its pole terms and does not include the final-state interaction. A Watson-Migdal approximation is first used to incorporate the final-state interaction Λn without Λ ↔ Σ conversion. Secondly, we have calculated the full loop diagram with many potentials models in a slow-variation approximation. It consists of extracting the tree diagram amplitude T fi t from the integral which calculates the full loop diagram T fi l . In conclusion, we have examined the changes caused by (Λ - Σ)n final-state interaction on d 3σ , d 2σ and Λ polarization for various kinematical choices. (author)

  20. Observation of two non-leading strangeness-one vector mesons

    International Nuclear Information System (INIS)

    Aston, D.; Dunwoodie, W.; Durkin, S.; Honma, A.; Hutchinson, D.; Johnson, W.B.; Kunz, P.F.; Lasinski, T.; Leith, D.W.G.S.; Levinson, L.; Meyer, W.T.; Ratcliff, B.N.; Shapiro, S.; Sinervo, P.K.; Suzuki, S.; Va'vra, J.; Williams, S.; Carnegie, R.K.; Estabrooks, P.G.; Hemingway, R.J.; McPherson, A.C.; Oakham, G.K.; McKee, R.

    1984-01-01

    We present evidence for the existence of two strange Jsup(P)=1 - mesons; one at 1410 MeV/c 2 coupling principally to Ksup(*)(892)π, and the other at 1790 MeV/c 2 coupling to Kπ, Ksup(*)π and rhoK. The data derive from a partial wave analysis of the anti K 0 π + π - system produced in the reaction K - p -> anti K 0 π + π - n at 11 GeV/c. The production mechanism and quark model assignment of each state are discussed. The state at 1410 MeV/c 2 is most naturally understood as the first radial excitation of the Ksup(*)(892), and the 1790 MeV/c 2 object can be interpreted as the triplet D wave partner to the 3 - Ksup(*)(1780). (orig.)

  1. Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self- consistent field wave functions

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Jensen, Hans Jørgen Aagaard; Knecht, Stefan

    2013-01-01

    -MC-srDFT) excitation energies calculated over a larger benchmark set of molecules with predominantly single reference character yield good agreement with their reference values, and are in general comparable to the CAM-B3LYP functional. The SOPPA-srDFT scheme is tested for a subset of molecules used for benchmarking...

  2. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    International Nuclear Information System (INIS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-01-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH 4 , NH 3 , H 2 O, SiH 4 , PH 3 , SH 2 , C 2 H 2 , C 2 H 4 , and C 2 H 6 . The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states

  3. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  4. Accelerated Time-Domain Modeling of Electromagnetic Pulse Excitation of Finite-Length Dissipative Conductors over a Ground Plane via Function Fitting and Recursive Convolution

    Energy Technology Data Exchange (ETDEWEB)

    Campione, Salvatore [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Warne, Larry K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sainath, Kamalesh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Basilio, Lorena I. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    In this report we overview the fundamental concepts for a pair of techniques which together greatly hasten computational predictions of electromagnetic pulse (EMP) excitation of finite-length dissipative conductors over a ground plane. In a time- domain, transmission line (TL) model implementation, predictions are computationally bottlenecked time-wise, either for late-time predictions (about 100ns-10000ns range) or predictions concerning EMP excitation of long TLs (order of kilometers or more ). This is because the method requires a temporal convolution to account for the losses in the ground. Addressing this to facilitate practical simulation of EMP excitation of TLs, we first apply a technique to extract an (approximate) complex exponential function basis-fit to the ground/Earth's impedance function, followed by incorporating this into a recursion-based convolution acceleration technique. Because the recursion-based method only requires the evaluation of the most recent voltage history data (versus the entire history in a "brute-force" convolution evaluation), we achieve necessary time speed- ups across a variety of TL/Earth geometry/material scenarios. Intentionally Left Blank

  5. Non-Equilibrium Heavy Flavored Hadron Yields from Chemical Equilibrium Strangeness-Rich QGP

    OpenAIRE

    Kuznetsova, Inga; Rafelski, Johann

    2008-01-01

    The yields of heavy flavored hadrons emitted from strangeness-rich QGP are evaluated within chemical non-equilibrium statistical hadronization model, conserving strangeness, charm, and entropy yields at hadronization.

  6. Strange and non-strange baryon production in ultrarelativistic sulphur-tungsten and sulphur-sulphur collisions

    International Nuclear Information System (INIS)

    Helstrup, H.

    1993-04-01

    Relativistic heavy ion collisions provide an opportunity to create a new phase of matter, the quark gluon plasma, in the laboratory. A possible quark gluon will be very short-lived, and only its decay products can be observed. There exists no unambiguous signal to identify plasma formation yet, although several candidates have been suggested. An enhanced production of strange particles is one of these proposed signals. The WA85 experiments measures strange particle production ratios in a narrow window in rapidity and transverse momentum. At present, WA85 is the only collaboration who have published results on multi strange particles. This thesis discusses the investigation of the production of strange particles in relativistic ion collisions done by the WA85 collaboration and its successors at CERN. An enhanced production of strange particles has been suggested as a signal for plasma production. Even if no plasma is produced, the experiment may reveal interesting information on the physics of the fireball produced by colliding heavy nuclei, the highest concentration of energy presently available on Earth. 80 refs., 57 figs., 11 tabs

  7. COALESCENCE OF STRANGE-QUARK PLANETS WITH STRANGE STARS: A NEW KIND OF SOURCE FOR GRAVITATIONAL WAVE BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Geng, J. J.; Huang, Y. F. [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China); Lu, T., E-mail: hyf@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2015-05-01

    Strange-quark matter (SQM) may be the true ground state of hadronic matter, indicating that the observed pulsars may actually be strange stars (SSs), but not neutron stars. According to the SQM hypothesis, the existence of a hydrostatically stable sequence of SQM stars has been predicted, ranging from 1 to 2 solar mass SSs, to smaller strange dwarfs and even strange planets. While gravitational wave (GW) astronomy is expected to open a new window to the universe, it will shed light on the search for SQM stars. Here we show that due to their extreme compactness, strange planets can spiral very close to their host SSs without being tidally disrupted. Like inspiraling neutron stars or black holes, these systems would serve as new sources of GW bursts, producing strong GWs at the final stage. The events occurring in our local universe can be detected by upcoming GW detectors, such as Advanced LIGO and the Einstein Telescope. This effect provides a unique probe to SQM objects and is hopefully a powerful tool for testing the SQM hypothesis.

  8. The physiological basis of Glottal electromagnetic micropower sensors (GEMS) and their use in defining an excitation function for the human vocal tract

    Science.gov (United States)

    Burnett, Gregory Clell

    1999-10-01

    The definition, use, and physiological basis of Glottal Electromagnetic Micropower Sensors (GEMS) is presented. These sensors are a new type of low power (excitation function for the human vocal tract. For the first time, an excitation function may be calculated in near real time using a noninvasive procedure. Several experiments and models are presented to demonstrate that the GEMS signal is representative of the motion of the subglottal posterior wall of the trachea as it vibrates in response to the pressure changes caused by the folds as they modulate the airflow supplied by the lungs. The vibrational properties of the tracheal wall are modeled using a lumped-element circuit model. Taking the output of the vocal tract to be the audio pressure captured by a microphone and the input to be the subglottal pressure, the transfer function of the vocal tract (including the nasal cavities) can be approximated every 10-30 milliseconds using an autoregressive moving-average model. Unlike the currently utilized method of transfer function approximation, this new method only involves noninvasive GEMS measurements and digital signal processing and does not demand the difficult task of obtaining precise physical measurements of the tract and subsequent estimation of the transfer function using its cross-sectional area. The ability to measure the physical motion of the trachea enables a significant number of potential applications, ranging from very accurate pitch detection to speech synthesis, speaker verification, and speech recognition.

  9. PSR1987A: the case for strange-quark stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-01-01

    The new fast pulsar observed in the remnant of SN1987A, together with other considerations, provide evidence that there are two types of collapsed stars: neutron stars, having moderate central densities and subject to the usual mass constraint, and strange-quark-matter stars. We show that (i) all known pulsar masses and frequencies, with the exception of the new one, can be accounted for by plausible neutron star models; (ii) no known neutron star model can withstand the fast rotation of the new pulsar unless the central energy density is ∼ 15 that of normal nuclei, at which densities hadrons cannot plausibly exist as constituents; and (iii) if strange-quark matter is the true ground state of the strong interactions, strange-quark stars can sustain the high rotation imputed to the new pulsar. In the absence of another plausible structure that can withstand the fast rotation, we provisionally infer that the new pulsar is such a star. (author)

  10. Not strange but bizarre physics from the sample experiment

    International Nuclear Information System (INIS)

    Leinweber, D. B.

    1999-01-01

    Since the report of the SAMPLE Collaboration suggesting the strange-quark contribution to the nucleon, G M s (0), may be greater than zero, numerous models have appeared supporting positive values for G M s (0) In this paper the bizarre physics associated with G M s (0) > 0 is illustrated. Two equations are presented describing the strange quark contribution to the nucleon magnetic moment in terms of the ratio of strange to light sea-quark-loop contributions and valence-quark ratios, probing the subtle effects of environment sensitivity. The evaluations involve no approximations outside of the usual assumption of equal current quark masses. Using the new lattice QCD results, our best estimate for G M s (0) shifts slightly from G M s (0) =-0.75 ± 0.30 μ N , to G M s (0) = -0.62 ± 0.26 μ N . Copyright (1999) World Scientific Publishing Co. Pte. Ltd

  11. Excitation functions and yields of proton induced reactions at intermediate energies leading to important diagnostics radioisotopes of 52Fe, 77Br, 82Rb, 97Ru, 111In, 123I, 127Xe, 128Cs, 178Ta and 201Tl

    International Nuclear Information System (INIS)

    Rurarz, E.

    1994-01-01

    This report describes investigations of the excitation functions of the proton induced reactions on 14 targets (Mn, Co, Br, Rb, 99 Tc, 113 Cd, 114 Cd, Cd, I, Cs, Ta, 206,207,208 Pb) leading directly or indirectly to the formation of radionuclides 52 Fe, 77 Br, 82 Rb, 97 Ru, 111 In, 123 I, 127 Xe, 128 Cs, 178 Ta and 201 Tl frequently used in diagnostic procedures of nuclear medicine. The measurements of the excitation functions were made over a wide proton energy range from the reaction threshold up to 100 MeV using the stacked foil (or pellet) technique. Small energy steps were used to allow for accurate determination of the structure of excitation functions. For 97 Ru, 111 In and 127 Xe formation with protons, new reaction channels and targets were used and data concerning this method are published for the first time. The data for 52 Fe, 77 Br, 82 Rb, 123 I, 128 Cs and 201 Tl obtained in the present work for the E p =70-100 MeV region are also published for the first time. The measured excitation functions for the formation of desired (and undesired) radionuclides (altogether 28 excitation functions) are compared with the theoretical ones calculated on the basis of a hybrid model of nuclear reactions in the form of the Overlaid Alice computer code. In order to determine the contribution of the competitive reaction channels to the purity of the produced, desired radionuclide, the excitation functions of the accompanying reactions were also calculated. The 122 calculated excitation functions for the possible contaminant are given in the present work. The comparison of experimental excitation functions with the results of model calculations showed satisfactory agreement, especially if one considers, that no parameter adjustment for individual reaction products was undertaken. From the measured excitation functions the production yields for 28 radionuclides mentioned above have been determined (author). 262 refs, 65 figs, 34 tabs

  12. Excited fermions

    International Nuclear Information System (INIS)

    Boudjema, F.; Djouadi, A.; Kneur, J.L.

    1992-01-01

    The production of excited fermions with mass above 100 GeV is considered. f→Vf (1) decay widths are calculated where V=γ, Z or W. Excited fermion pair production in e + e - annihilation and in γγ collisions, and single production in e + e - annihilation, eγ and γγ collisions is also discussed. Cross sections are calculated for all these cases. The discovery potential of the NLC at 500 GeV is compared with that of other colliders. (K.A.) 15 refs., 5 figs., 2 tabs

  13. Strange attractor in the Potts spin glass on hierarchical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Washington de [Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, Pernambuco (Brazil); Camelo-Neto, G. [Universidade Federal de Alagoas, Núcleo de Ciências Exatas, Laboratório de Física Teórica e Computacional, CEP 57309-005 Arapiraca, Alagoas (Brazil); Coutinho, S., E-mail: sergio@ufpe.br [Universidade Federal de Pernambuco, Departamento de Física, Laboratório de Física Teórica e Computacional, Cidade Universitária, CEP 50670-901 Recife, Pernambuco (Brazil)

    2013-11-29

    The spin-glass q-state Potts model on d-dimensional diamond hierarchical lattices is investigated by an exact real space renormalization group scheme. Above a critical dimension d{sub l}(q) for q>2, the coupling constants probability distribution flows to a low-temperature strange attractor or to the high-temperature paramagnetic fixed point, according to the temperature is below or above the critical temperature T{sub c}(q,d). The strange attractor was investigated considering four initial different distributions for q=3 and d=5 presenting strong robustness in shape and temperature interval suggesting a condensed phase with algebraic decay.

  14. A strange horn between Paolo Mantegazza and Charles Darwin.

    Science.gov (United States)

    Garbarino, Carla; Mazzarello, Paolo

    2013-09-01

    During the preparation of an exhibition in Pavia dedicated to the centennial anniversary of the death of the Italian Pathologist Paolo Mantegazza, a strange cheratinic horn was found at the Museum for the History of the University of Pavia labelled as 'spur of a cock transplanted into an ear of a cow.' After some historical investigation, we found this strange object was at the centre of a scientific correspondence between Mantegazza and Charles Darwin, who made reference to it in his book The Variation of Animals and Plants under Domestication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavyioncollisions. The yields of this kind of exotic strange dibaryon particles can increase significantly soon as the formation ofQGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the productionof this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomegato deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production ofdiomega in relativistic heavy ion collisions.

  16. Role of strangeness to the neutron star mass and cooling

    Directory of Open Access Journals (Sweden)

    Lee Chang-Hwan

    2018-01-01

    Full Text Available Neutron star provides unique environments for the investigation of the physics of extreme dense matter beyond normal nuclear saturation density. In such high density environments, hadrons with strange quarks are expected to play very important role in stabilizing the system. Kaons and hyperons are the lowest mass states with strangeness among meson and bayron families, respectively. In this work, we investigate the role of kaons and hyperons to the neutron star mass, and discuss their role in the neutron star cooling.

  17. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAOChong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.

  18. Statistical properties of chaotic dynamical systems which exhibit strange attractors

    International Nuclear Information System (INIS)

    Jensen, R.V.; Oberman, C.R.

    1981-07-01

    A path integral method is developed for the calculation of the statistical properties of turbulent dynamical systems. The method is applicable to conservative systems which exhibit a transition to stochasticity as well as dissipative systems which exhibit strange attractors. A specific dissipative mapping is considered in detail which models the dynamics of a Brownian particle in a wave field with a broad frequency spectrum. Results are presented for the low order statistical moments for three turbulent regimes which exhibit strange attractors corresponding to strong, intermediate, and weak collisional damping

  19. Strange magnetism and the anapole structure of the proton

    International Nuclear Information System (INIS)

    Hasty, R.; Beck, D.H.; Danagoulian, A.; Blake, A.; Carr, R.; Covrig, S.; Filipoone, B.W.; Ito, T.M.; Gao, J.; Jones, C.E.; Lee, P.; McKeown, R.D.; Savu, V.; Beise, E.J.; Breuer, H.; Spayde, D.T.; Tieulent, R.; Herda, M.C.; Barkhuff, D.; Dodson, G.; Dow, K.; Farkhondeh, M.; Kowalski, S.; Tsentalovich, E.; Yang, B.; Zwart, T.; Hawthorne-Allen, A.M.; Pitt, M.; Ritter, J.; Korsch, W.; Mueller, B.; Wells, S.P.; Averett, T.; Roche, J.; Kramer, K.

    2000-01-01

    The violation of mirror symmetry in the weak force provides a powerful tool to study the internal structure of the proton. Experimental results have been obtained that address the role of strange quarks in generating nuclear magnetism. The measurement reported here provides an unambiguous constraint on strange quark contributions to the proton's magnetic moment through the electron-proton weak interaction. We also report evidence for the existence of a parity-violating electromagnetic effect known as the anapole moment of the proton. The proton's anapole moment is not yet well understood theoretically, but it could have important implications for precision weak interaction studies in atomic systems such as cesium.

  20. Strangeness production and propagation in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Herrmann, N.

    1997-01-01

    Strangeness production is studied with the FOPI detector at GSI in the reaction 58 Ni + 58 Ni at 1.93 AGeV. K + and Λ momentum space distributions are compatible with the assumption of kinetic equilibrium with the baryons. The extrapolated production yields are in variance with chemical equilibrium. Effects of possible in-medium modification of the strange meson masses on the experimental observables are discussed. The directed sideward flow of kaons is used as an additional probe of the in-medium properties. (authors)

  1. Strangeness production in nuclear collisions: Color rope formations?

    International Nuclear Information System (INIS)

    Toneev, V.D.; Amelin, N.S.; Csernai, L.P.; Gudima, K.K.; Sivoklokov, S.Yu.

    1992-12-01

    Strangeness production at SPS-CERN energies is studied within the Quark Gluon String Model. This analysis indicates that the observed shape of rapidity and transverse mass distributions are reproduced fairly well for both peripheral and central heavy ion collisions. However, for central collisions the model underpredicts strange particles abundance by a factor of about 2:2:4 for K S 0 , Λ and anti Λ, respectively. This discrepancy can be considered as a possible manifestation of string-string interactions of a collective type similar to the formation of a color rope. The model predictions for coming experiments with the Pb beam at CERN are given. (orig.)

  2. Quark core stars, quark stars and strange stars

    International Nuclear Information System (INIS)

    Grassi, F.

    1988-01-01

    A recent one flavor quark matter equation of state is generalized to several flavors. It is shown that quarks undergo a first order phase transition. In addition, this equation of state depends on just one parameter in the two flavor case, two parameters in the three flavor case, and these parameters are constrained by phenomenology. This equation of state is then applied to the hadron-quark transition in neutron stars and the determination of quark star stability, the investigation of strange matter stability and possible strange star existence. 43 refs., 6 figs

  3. Dark matter, neutron stars, and strange quark matter.

    Science.gov (United States)

    Perez-Garcia, M Angeles; Silk, Joseph; Stone, Jirina R

    2010-10-01

    We show that self-annihilating weakly interacting massive particle (WIMP) dark matter accreted onto neutron stars may provide a mechanism to seed compact objects with long-lived lumps of strange quark matter, or strangelets, for WIMP masses above a few GeV. This effect may trigger a conversion of most of the star into a strange star. We use an energy estimate for the long-lived strangelet based on the Fermi-gas model combined with the MIT bag model to set a new limit on the possible values of the WIMP mass that can be especially relevant for subdominant species of massive neutralinos.

  4. Life Is Strange : a mediated game reception analysis

    OpenAIRE

    Mänder, Leili

    2017-01-01

    In this essay a mediated video game reception of the game Life Is Strange is made, with the purpose of examining the players' meaning-making processes from a gender perspective. The materials of this essay consist of videos from six different YouTube channels where each player film themselves whilst playing through Life Is Strange as a way to review and share the gaming experience. The results show how the meaning-making processes are littered with gender discourses and affects. The affects o...

  5. Effects of Density-Dependent Bag Constant and Strange Star Rotation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiao-Er; GUO Hua

    2003-01-01

    With the emphasis on the effects of the density-dependent bag constant and the rotation of strange star the limiting mass of strange star is calculated. The obtained results show that the limiting mass and the corresponding radius of strange star increase as the rotation frequency increases, and tend to be lowered when the density-dependent bag constant is considered.

  6. Lattice QCD studies on baryon interactions in the strangeness -2 sector with physical quark masses

    Science.gov (United States)

    Sasaki, Kenji; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya

    2018-03-01

    We investigate baryon-baryon (BB) interactions in the strangeness S = -2 sector via the coupled-channel HAL QCD method which enables us to extract the scattering observables from Nambu-Bethe-Salpeter (NBS) wave function on the lattice. The simulations are performed with (almost) physical quark masses (mπ = 146MeV) and a huge lattice volume of La = 8.1fm. We discuss the fate of H-dibaryon state through the ΛΛ and NΞ coupled-channel scatterings

  7. Lattice QCD studies on baryon interactions in the strangeness -2 sector with physical quark masses

    Directory of Open Access Journals (Sweden)

    Sasaki Kenji

    2018-01-01

    Full Text Available We investigate baryon-baryon (BB interactions in the strangeness S = −2 sector via the coupled-channel HAL QCD method which enables us to extract the scattering observables from Nambu-Bethe-Salpeter (NBS wave function on the lattice. The simulations are performed with (almost physical quark masses (mπ = 146MeV and a huge lattice volume of La = 8.1fm. We discuss the fate of H-dibaryon state through the ΛΛ and NΞ coupled-channel scatterings

  8. Assessment of the biological effects of 'strange' radiation

    International Nuclear Information System (INIS)

    Pryakhin, E.A.; Tryapitsina, G.A.; Urutskoyev, L.I.; Akleyev, A.V.

    2006-01-01

    The results from studies of the effects produced by electrical explosions of foils made from super pure materials in water point to the emergence of new chemical elements. An additional finding was the discharge of 'strange' radiation accompanying the transformation of chemical elements. However, currently, the mechanism involved in the interaction between 'strange' radiation and a substance or a biological entity remains obscure. Therefore, the aim of the present research is to investigate the biological effects of the 'strange' radiation. Pilot studies were performed at the RECOM RRC 'Kurchatov Institute' in April-May of 2004. The animals used in the experiment were female mice of C57Bl/6 line aged 80 days with body weight 16-18 g. The animals were exposed to radiation discharged during explosions of Ti foils in water and aqueous solutions. The cages with animals were placed at 1 m from the epicenter of the explosion. Explosions were carried out on the 19. (3 explosions), 20. (4 explosions) and 22. (3 explosions) of April, 2004 (explosions No1373 - No1382, respectively). The animals were assigned to 4 experimental groups comprised of 17-20 mice per group. The animals received experimental exposure within 1, 2 and 3 days of the experiment. In total, the experimental groups were exposed to 3, 7 and 10 explosions, respectively. In order to identify the biological reactions, the following parameters were estimated: number of nucleated cells in the bone marrow, number of CFU in the spleen after additional gamma-irradiation (6 Gy), cell composition of the bone marrow, the rate of erythrocytes with the different level of maturation in the bone marrow, the rate of erythrocytes with the micronuclei in the bone marrow, the reaction of bone marrow cells to additional gamma-irradiation (2 Gy), number of leucocytes in the peripheral blood, and cell composition of the peripheral blood. The following conclusions were drawn from these studies: 1. 'strange' radiation resulting

  9. Free electrons and ionic liquids: study of excited states by means of electron-energy loss spectroscopy and the density functional theory multireference configuration interaction method.

    Science.gov (United States)

    Regeta, Khrystyna; Bannwarth, Christoph; Grimme, Stefan; Allan, Michael

    2015-06-28

    The technique of low energy (0-30 eV) electron impact spectroscopy, originally developed for gas phase molecules, is applied to room temperature ionic liquids (IL). Electron energy loss (EEL) spectra recorded near threshold, by collecting 0-2 eV electrons, are largely continuous, assigned to excitation of a quasi-continuum of high overtones and combination vibrations of low-frequency modes. EEL spectra recorded by collecting 10 eV electrons show predominantly discrete vibrational and electronic bands. The vibrational energy-loss spectra correspond well to IR spectra except for a broadening (∼0.04 eV) caused by the liquid surroundings, and enhanced overtone activity indicating a contribution from resonant excitation mechanism. The spectra of four representative ILs were recorded in the energy range of electronic excitations and compared to density functional theory multireference configuration interaction (DFT/MRCI) calculations, with good agreement. The spectra up to about 8 eV are dominated by π-π* transitions of the aromatic cations. The lowest bands were identified as triplet states. The spectral region 2-8 eV was empty in the case of a cation without π orbitals. The EEL spectrum of a saturated solution of methylene green in an IL band showed the methylene green EEL band at 2 eV, indicating that ILs may be used as a host to study nonvolatile compounds by this technique in the future.

  10. Application of the Real-Time Time-Dependent Density Functional Theory to Excited-State Dynamics of Molecules and 2D Materials

    Science.gov (United States)

    Miyamoto, Yoshiyuki; Rubio, Angel

    2018-04-01

    We review our recent developments in the ab initio simulation of excited-state dynamics within the framework of time-dependent density functional theory (TDDFT). Our targets range from molecules to 2D materials, although the methods are general and can be applied to any other finite and periodic systems. We discuss examples of excited-state dynamics obtained by real-time TDDFT coupled with molecular dynamics (MD) and the Ehrenfest approximation, including photoisomerization in molecules, photoenhancement of the weak interatomic attraction of noble gas atoms, photoenhancement of the weak interlayer interaction of 2D materials, pulse-laser-induced local bond breaking of adsorbed atoms on 2D sheets, modulation of UV light intensity by graphene nanoribbons at terahertz frequencies, and collision of high-speed ions with the 2D material to simulate the images taken by He ion microscopy. We illustrate how the real-time TDDFT approach is useful for predicting and understanding non-equilibrium dynamics in condensed matter. We also discuss recent developments that address the excited-state dynamics of systems out of equilibrium and future challenges in this fascinating field of research.

  11. Search for dibaryonic de-excitations in relativistic nuclear reactions

    International Nuclear Information System (INIS)

    Besliu, C.; Popa, V.; Popa, L.; Topor Pop, V.

    1993-08-01

    Some odd characteristics are observed in the single particle distributions obtained from He + Li interactions at 4.5AGeV/c momenta which are explained as the manifestation of a new mechanism of strangeness production via dibaryonic de-excitations. A signature of the formation of hadronic and baryonic clusters is also reported. The di- pionic signals of the dibaryonic orbital de- excitations are analyzed in the frame of the MIT -bag Model and a Monte Carlo simulation. The role played by the dibaryonic resonances in relativistic nuclear collisions could be a significant one. (author). 29 refs, 7 figs

  12. Search for dibaryonic de-excitations in relativistic nuclear reactions

    International Nuclear Information System (INIS)

    Besliu, C.; Popa, V.; Popa, L.; Topor Pop, V.

    1992-08-01

    Some old characteristics are observed in the single particle distributions obtained from He + Li interactions at 4.5 A GeV/c momenta, which are explained as the manifestation of a few mechanism of strangeness production via dibaryonic de-excitations. A signature of formation of hadronic and baryonic clusters is also reported. The di-pionic signals of the dibaryonic orbital de-excitations are analysed in the frame of the MIT-bag model and the Monte Carlo simulation. The role played by the dibaryonic resonances in the relativistic nuclear collisions could be a significant one. (author). 23 refs, 5 figs, 1 tab

  13. The excitation functions of 4s-4p and 3d-4p transitions in Ni atoms sputtered from metallic targets by Ar+ ions

    International Nuclear Information System (INIS)

    Dabrowski, P.; Gabla, L.; Pedrys, R.

    1981-01-01

    The intensities of spectral lines corresponding to 4s-4p and 3d-4p transitions in Ni atoms sputtered from metallic targets by Ar + ions were measured. The energy of primary ions was varied from 4 keV to 10 keV. Both single crystal and polycrystalline targets were used at various temperatures including ferromagnetic and paramagnetic phases. The excitation functions calculated from experimental data can be explained only by the assumption that the promotion of the electrons occurs during energetic binary collisions of atomic particles in the solid. (orig.)

  14. Excitation function and yield for the 103Rh(d,2n)103Pd nuclear reaction: Optimization of the production of palladium-103

    International Nuclear Information System (INIS)

    Manenti, Simone; Alí Santoro, María del Carmen; Cotogno, Giulio; Duchemin, Charlotte; Haddad, Ferid; Holzwarth, Uwe; Groppi, Flavia

    2017-01-01

    Deuteron-induced nuclear reactions for the generation of 103 Pd were investigated using the stacked-foil activation technique on rhodium targets at deuteron energies up to E d = 33 MeV. The excitation functions of the reactions 103 Rh(d,xn) 101,103 Pd, 103 Rh(d,x) 100g,cum,101m,g,102m,g Rh and 103 Rh(d,2p) 103 Ru have been measured, and the Thick-Target Yield for 103 Pd has been calculated.

  15. Measurement of excitation functions and isomeric ratios of the 197Au(3He,xn)200- sup(x)Tl reactions, where x=2,3 and 4

    International Nuclear Information System (INIS)

    Vinagre Filho, U.M.

    1983-01-01

    The excitation functions and isomer ratios of the 197 Au( 3 He,xn) 200- sup(x)Tl reactions, with x = 2, 3 and 4, were measured at bombarding energies in the range from 15 to 36 MeV. The measured values were compared to those obtained with the use of the statistical an hybrid modeles, calculated by the ALICE code. Best fit was achieved using the simple statistical model. The results were also compared to those found in literature for the ( 3 He,xn) and ( 4 He,xn) reactions in gold. (Author) [pt

  16. Multiplicity dependence of non-extensive parameters for strange and multi-strange particles in proton-proton collisions at √(s) = 7 TeV at the LHC

    International Nuclear Information System (INIS)

    Khuntia, Arvind; Tripathy, Sushanta; Sahoo, Raghunath; Cleymans, Jean

    2017-01-01

    The transverse momentum (p T ) spectra in proton-proton collisions at √(s) = 7 TeV, measured by the ALICE experiment at the LHC are analyzed with a thermodynamically consistent Tsallis distribution. The information about the freeze-out surface in terms of freeze-out volume, temperature and the non-extensivity parameter, q, for K 0 S , Λ + anti Λ, Ξ - + anti Ξ + and Ω - + anti Ω + are extracted by fitting the p T spectra with the Tsallis distribution function. The freeze-out parameters of these particles are studied as a function of the charged particle multiplicity density (dN ch /dη). In addition, we also study these parameters as a function of the particle mass to see any possible mass ordering. The strange and multi-strange particles show mass ordering in volume, temperature, non-extensive parameter and also a strong dependence on multiplicity classes. It is observed that with increase in particle multiplicity, the non-extensivity parameter, q decreases, which indicates the tendency of the produced system towards thermodynamic equilibration. The increase in strange particle multiplicity is observed to be due to the increase of temperature and may not be due to the size of the freeze-out volume. (orig.)

  17. Multiplicity dependence of non-extensive parameters for strange and multi-strange particles in proton-proton collisions at √(s) = 7 TeV at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Khuntia, Arvind; Tripathy, Sushanta; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Indore (India); Cleymans, Jean [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa)

    2017-05-15

    The transverse momentum (p{sub T}) spectra in proton-proton collisions at √(s) = 7 TeV, measured by the ALICE experiment at the LHC are analyzed with a thermodynamically consistent Tsallis distribution. The information about the freeze-out surface in terms of freeze-out volume, temperature and the non-extensivity parameter, q, for K{sup 0}{sub S}, Λ + anti Λ, Ξ{sup -} + anti Ξ{sup +} and Ω{sup -} + anti Ω{sup +} are extracted by fitting the p{sub T} spectra with the Tsallis distribution function. The freeze-out parameters of these particles are studied as a function of the charged particle multiplicity density (dN{sub ch}/dη). In addition, we also study these parameters as a function of the particle mass to see any possible mass ordering. The strange and multi-strange particles show mass ordering in volume, temperature, non-extensive parameter and also a strong dependence on multiplicity classes. It is observed that with increase in particle multiplicity, the non-extensivity parameter, q decreases, which indicates the tendency of the produced system towards thermodynamic equilibration. The increase in strange particle multiplicity is observed to be due to the increase of temperature and may not be due to the size of the freeze-out volume. (orig.)

  18. Testing the doubly charged charm-strange tetraquarks

    Energy Technology Data Exchange (ETDEWEB)

    Agaev, S.S. [Kocaeli University, Department of Physics, Izmit (Turkey); Baku State University, Institute for Physical Problems, Baku (Azerbaijan); Azizi, K. [Dogus University, Department of Physics, Istanbul (Turkey); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Sundu, H. [Kocaeli University, Department of Physics, Izmit (Turkey)

    2018-02-15

    The spectroscopic parameters and decay channels of the doubly charged scalar, pseudoscalar and axial-vector charm-strange tetraquarks Z {sub anti} {sub cs} = [sd][uc] are explored within framework of the QCD sum rule method. The masses and current couplings of these diquark-antidiquark states are calculated by means of two-point correlation functions and taking into account the vacuum condensates up to eight dimensions. To compute the strong couplings of Z {sub anti} {sub cs} states with D, D{sub s}, D*,D{sub s}{sup *}, D{sub s1}(2460), D{sub s0}{sup *}(2317), π and K mesons we use QCD light-cone sum rules and evaluate width of their S- and P-wave decays to a pair of negatively charged conventional mesons: For the scalar state Z {sub anti} {sub cs} → D{sub s}π,DK, D{sub s1}(2460)π, for the pseudoscalar state Z {sub anti} {sub cs} → D{sub s}{sup *}π, D*K, D{sub s0}{sup *}(2317)π, and for the axial-vector state Z {sub anti} {sub cs} → D{sub s}{sup *}π, D*K, D{sub s1}(2460)π decays are investigated. Obtained predictions for the spectroscopic parameters and decay widths of the Z {sub anti} {sub cs} tetraquarks may be useful for experimental investigations of the doubly charged exotic hadrons. (orig.)

  19. Study of Strange Quark Mass in CFL Phase

    Institute of Scientific and Technical Information of China (English)

    LI Xin; L(U) Xiao-Fu

    2006-01-01

    In this paper we introduce bilocal fields in the global color symmetry model and consider color and electrical neutrality conditions simultaneously to study the effect of strange quark mass Ms for the momentum-dependent condensate of color-flavor locked phase. Consequently we find that there will be a quantum phase transition occurring.

  20. Finite Volume Effect of Baryons in Strange Hadronic Matter

    Institute of Scientific and Technical Information of China (English)

    SUN Bao-Xi; LI Lei; NING Ping-Zhi; ZHAO En-Guang

    2001-01-01

    The finite volume effect of baryons in strange hadronic matter (SHM) is studied within the framework of relativistic mean-field theory. As this effect is concerned, the saturation density of SHM turns lower, and the binding energy per baryon decreases. Its influence to the compression modulus of SHM is also discussed.

  1. Evidence for strange kinetics in Hasegawa-Mima turbulent transport

    International Nuclear Information System (INIS)

    Annibaldi, S.V.; Drury, L.O'C.; Manfredi, G.; Dendy, R.O.

    2000-01-01

    We have studied the transport of test particle ensembles moving in turbulent electrostatic fields governed by the Hasegawa-Mima (HM) equation. As a result of the interplay of the linear dispersive term and the nonlinear term in the HM equation, 'strange kinetics' emerge: the poloidal particle transport undergoes a qualitative transition from diffusive, through supradiffusive, to ballistic. (author). Letter-to-the-editor

  2. Plane Symmetric Cosmological Model with Quark and Strange ...

    Indian Academy of Sciences (India)

    Keywords. f(R,T) theory of gravity—plane symmetric space-time—quark and strange quark matter—constant deceleration parameter. 1. Introduction. Modern astrophysical observations point out that present expansion of the Universe is an accelerated epoch. The most fascinating evidence for this is found in measurements ...

  3. Strangeness production in proton–proton and proton–nucleus ...

    Indian Academy of Sciences (India)

    journal of. April 2006 physics pp. 765–780. Strangeness production in ... computing power necessary for the numerical treatment, lattice QCD has only ... tering reactions, it is necessary to use effective methods for the description of the ..... nucleus, it provides an appropriate tool to learn about the behaviour of the nuclear.

  4. Strangeness Production in Jets with ALICE at the LHC

    Science.gov (United States)

    Smith, Chrismond; Harton, Austin; Garcia, Edmundo; Alice Collaboration

    2016-03-01

    The study of strange particle production is an important tool for understanding the properties of the hot and dense QCD medium created in heavy-ion collisions at ultra-relativistic energies. The study of strange particles in these collisions provides information on parton fragmentation, a fundamental QCD process. While measurements at low and intermediate pT, are already in progress at the LHC, the study of high momentum observables is equally important for a complete understanding of the QCD matter, this can be achieved by studying jet interactions. We propose the measurement of the characteristics of the jets containing strange particles. Starting with proton-proton collisions, we have calculated the inclusive pTJet spectra and the spectra for jets containing strange particles (K-short or lambda), and we are extending this analysis to lead-lead collisions. In this talk the ALICE experiment will be described, the methodology used for the data analysis and the available results will be discussed. This material is based upon work supported by the National Science Foundation under Grants PHY-1305280 and PHY-1407051.

  5. Strange hadronic physics in electroproduction experiments at the Mainz Microtron

    Czech Academy of Sciences Publication Activity Database

    Achenbach, P.; Esser, A.; Gayoso, C. A.; Böhm, R.; Borodina, O.; Bosnar, D.; Bozkurt, V.; Bydžovský, Petr; Debenjak, L.; Distler, M. O.; Friscic, I.; Fujii, Y.; Gogami, T.; Gomez, M.R.; Hashimoto, O.; Hirose, S.; Kim, E.; Margaryan, A.; Merkel, H.; Müller, U.; Nagao, S.; Nakamura, S. N.; Pochodzalla, J.; Rappold, C.; Reinhold, J.; Saito, T.; Lorente, A.S.; Majos, S. S.; Schlimme, B. S.; Schoth, M.; Schulz, F.; Sfienti, C.; Sirca, S.; Tang, L.; Thiel, M.; Tsukada, K.

    2012-01-01

    Roč. 881, 5/6 (2012), s. 187-198 ISSN 0375-9474 R&D Projects: GA MŠk(CZ) LG11005 Institutional support: RVO:61389005 Keywords : strangeness reactions * Kaon electroproduction * missing mass spectroscopy * hypernuclei * decay-pion spectroscopy Subject RIV: BE - Theoretical Physics Impact factor: 1.525, year: 2012

  6. Properties of bare strange stars associated with surface electric fields

    International Nuclear Information System (INIS)

    Picanco Negreiros, Rodrigo; Mishustin, Igor N.; Schramm, Stefan; Weber, Fridolin

    2010-01-01

    In this paper we investigate the electrodynamic surface properties of bare strange quark stars. The surfaces of such objects are characterized by the formation of ultrahigh electric surface fields which might be as high as ∼10 19 V/cm. These fields result from the formation of electric dipole layers at the stellar surfaces. We calculate the increase in gravitational mass associated with the energy stored in the electric dipole field, which turns out to be only significant if the star possesses a sufficiently strong net electric charge distribution. In the second part of the paper, we explore the intriguing possibility of what happens when the electron layer (sphere) rotates with respect to the stellar strange matter body. We find that in this event magnetic fields can be generated which, for moderate effective rotational frequencies between the electron layer and the stellar body, agree with the magnetic fields inferred for several central compact objects. These objects could thus be comfortably interpreted as strange stars whose electron atmospheres rotate at frequencies that are moderately different (∼10 Hz) from the rotational frequencies of the strange star itself.

  7. Collective, stochastic and nonequilibrium behavior of highly excited hadronic matter

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, P [Los Alamos National Lab., NM (USA). Theoretical Div.

    1984-04-23

    We discuss selected problems concerning the dynamics and stochastic behavior of highly excited matter, particularly the QCD plasma. For the latter we consider the equation of state, kinetics, quasiparticles, flow properties and possible chaos and turbulence. The promise of phase space distribution functions for covariant transport and kinetic theory is stressed. The possibility and implications of a stochastic bag are spelled out. A simplified space-time model of hadronic collisions is pursued, with applications to A-A collisions and other matters. The domain wall between hadronic and plasma phase is of potential importance: its thickness and relation to surface tension is noticed. Finally, we review the recently developed stochastic cell model of multiparticle distributions and KNO scaling. This topic leads to the notion that fractional dimensions are involved in a rather general dynamical context. We speculate that various scaling phenomena are independent of the full dynamical structure, depending only on a general stochastic framework having to do with simple maps and strange attractors. 42 refs.

  8. Collective, stochastic and nonequilibrium behavior of highly excited hadronic matter

    International Nuclear Information System (INIS)

    Carruthers, P.

    1983-01-01

    We discuss selected problems concerning the dynamic and stochasticc behavior of highly excited matter, particularly the QCD plasma. For the latter we consider the equation of state, kinetics, quasiparticles, flow properties and possible chaos and turbulence. The promise of phase space distribution functions for covariant transport and kinetic theory is stressed. The possibility and implications of a stochastic bag are spelled out. A simplified space-time model of hadronic collisions is pursued, with applications to A-A collisions and other matters. The domain wall between hadronic and plasma phase is of potential importance: its thickness and relation to surface tension are noticed. Finally we reviewed the recently developed stochastic cell model of multiparticle distributions and KNO scaling. This topic leads to the notion that fractal dimensions are involved in a rather general dynamical context. We speculate that various scaling phenomena are independent of the full dynamical structure, depending only on a general stochastic framework having to do with simple maps and strange attractors. 42 references

  9. Excited baryons

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested

  10. Excited baryons

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  11. Autotransplantation of a Strange Positioned Impacted Central Incisor in a surgically Prepared Socket: A Miracle Esthetic Concept.

    Science.gov (United States)

    Jaiswara, Chandresh; Srivastava, Vinay K; Dhiman, Neeraj

    2016-01-01

    Esthetics is a prime concern for a young lady. Any anomaly in the anterior tooth may create anxiety and depression. This anxiety and depression may hamper her married life and overall personality. This case report reveals an unerupted right central incisor situated in a strange position, creating space in the maxillary anterior region and giving an unesthetic appearance. Autotransplantation is a method of choice for a strangely positioned impacted central incisor in a new appropriate site. This method offers a new treatment option for some clinical situations if orthodontic approach is not possible. It permits tooth movement to a distant or the opposite side of the same dental arch as well as to the opposite jaw. This procedure also offers potential benefits of reestablishment of normal alveolar process development, esthetics, functions, and arch integrity. This procedure has the potential to become a viable alternative treatment plan for young patients of low socioeconomic status, allowing the reestablish-ment and restoration of a missing tooth and their functions. This article discusses methods of auto-reimplantation of a tooth in a fresh surgically prepared socket, its biological principle, and establishment of functions, esthetics, and phonetics. Jaiswara C, Srivastava VK, Dhiman N. Autotransplantation of a Strange Positioned Impacted Central Incisor in a surgically Prepared Socket: A Miracle Esthetic Concept. Int J Clin Pediatr Dent 2016;9(3):269-272.

  12. Strangeness production in pA and AA collisions at 158 A GeV

    Institute of Scientific and Technical Information of China (English)

    王晓荣[1; 萨本豪[2; 周代翠[3; 刘涵[4; 蔡勖[5

    2000-01-01

    LUCIAE, a hadronic and string cascade model and its corresponding event generator are used to analyse strangeness production singly and multiply in p-Pb and Pb-Pb collisions at 158 A GeV. Spectra of multiplicity and transverse mass for single (Α ,Α ) and multiple (Ε Ε ) strangeness are given. in LUCIAE model it suggests a physical mechanism, i.e. the dependence of the strange quark suppression factor on incident energy, projectile mass and centrality of colliding sys-tem might result in increase of yield of strange particles with increasing the above three parameters. Calculations from the model reconstruct well the WA97 experimental data: increase of yield of strange particles with increasing centrality and increase of strangeness enhancement with increasing number of strange quarks, in relativistic nucleus-nucleus collisions.

  13. Strangeness production in pA and AA collisions at 158 A GeV

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    LUCIAE, a hadronic and string cascade model and its corresponding event generator are used to analyse strangeness production singly and multiply in p-Pb and Pb-Pb collisions at 158 A GeV. Spectra of multiplicity and transverse mass for single (Λ, Λ) and multiple (Ξ-, Ξ-, Ω-, Ω-) strangeness are given. In LUCIAE model it suggests a physical mechanism, i.e. the dependence of the strange quark suppression factor on incident energy, projectile mass and centrality of colliding system might result in increase of yield of strange particles with increasing the above three parameters. Calculations from the model reconstruct well the WA97 experimental data: increase of yield of strange particles with increasing centrality and increase of strangeness enhancement with increasing number of strange quarks, in relativistic nucleus-nucleus collisions.

  14. Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; An, Mangmang; Andrei, Cristian; Andrews, Harry Arthur; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crkovska, Jana; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Isakov, Vladimir; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Mishra, Tribeni; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Martin; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yalcin, Serpil; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2017-01-01

    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark–gluon plasma (QGP). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton–proton (pp) collisions, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton–proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The me...

  15. Excitation functions of alpha particles induced nuclear reactions on natural titanium in the energy range of 10.4–50.2 MeV

    International Nuclear Information System (INIS)

    Usman, Ahmed Rufai; Khandaker, Mayeen Uddin; Haba, Hiromitsu; Otuka, Naohiko; Murakami, Masashi

    2017-01-01

    Highlights: • Detailed presentation of new results on experimental cross-sections of "n"a"tTi(α,x) processes. • Calculations of thick target yields for scandium and other radionuclides via the "n"a"tTi(α,x) production route. • Comparison with TENDL-2015 library. • Detailed review of previous experimental data. - Abstract: We studied the excitation functions of residual radionuclide productions from α particles bombardment on natural titanium in the energy range of 10.4–50.2 MeV. A well-established stacked-foil activation technique combined with HPGe γ-ray spectrometry was used to measure the excitation functions for the "5"1","4"9","4"8Cr, "4"8V, "4"3K, and "4"3","4"4"m","4"4"g","4"6"g"+"m","4"7","4"8Sc radionuclides. The thick target yields for all assessed radionuclides were also calculated. The obtained experimental data were compared with the earlier experimental ones and also with the evaluated data in the TENDL-2015 library. A reasonable agreement was found between this work and some of the previous ones, while a partial agreement was found with the evaluated data. The present results would further enrich the experimental database and facilitate the understanding of existing discrepancies among the previous measurements. The results would also help to enhance the prediction capability of the nuclear reaction model codes.

  16. Excitation functions of proton-induced reactions on {sup nat}Fe and enriched {sup 57}Fe with particular reference to the production of {sup 57}Co

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abyad, M. [Institut fuer Nuklearchemie, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Cyclotron Facility, Nuclear Research Centre, Atomic Energy Authority, Cairo 13759 (Egypt); Comsan, M.N.H. [Cyclotron Facility, Nuclear Research Centre, Atomic Energy Authority, Cairo 13759 (Egypt); Qaim, S.M. [Institut fuer Nuklearchemie, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)], E-mail: s.m.qaim@fz-juelich.de

    2009-01-15

    Excitation functions of the reactions {sup nat}Fe(p,xn){sup 55,56,57,58}Co, {sup nat}Fe(p,x){sup 51}Cr, {sup nat}Fe(p,x){sup 54}Mn, {sup 57}Fe(p,n){sup 57}Co and {sup 57}Fe(p,{alpha}){sup 54}Mn were measured from their respective thresholds up to 18.5 MeV, with particular emphasis on data for the production of the radionuclide {sup 57}Co (T{sub 1/2}=271.8 d). The conventional stacked-foil technique was used, and the samples for irradiation were prepared by an electroplating or sedimentation process. The measured excitation curves were compared with the data available in the literature as well as with results of nuclear model calculations. From the experimental data, the theoretical yields of the investigated radionuclides were calculated as a function of the proton energy. Over the energy range E{sub p}=15{yields}5 MeV the calculated yield of {sup 57}Co from the {sup 57}Fe(p,n){sup 57}Co process amounts to 1.2 MBq/{mu}A h and from the {sup nat}Fe(p,xn){sup 57}Co reaction to 0.025 MBq/{mu}A h. The radionuclidic impurity levels are discussed. Use of highly enriched {sup 57}Fe as target material would lead to formation of high-purity {sup 57}Co.

  17. Excitation functions of alpha particles induced nuclear reactions on natural titanium in the energy range of 10.4–50.2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Usman, Ahmed Rufai [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, Umaru Musa Yar' adua University, Katsina (Nigeria); Khandaker, Mayeen Uddin, E-mail: mu_khandaker@um.edu.my [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Haba, Hiromitsu [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Otuka, Naohiko [Nuclear Data Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna (Austria); Murakami, Masashi [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan)

    2017-05-15

    Highlights: • Detailed presentation of new results on experimental cross-sections of {sup nat}Ti(α,x) processes. • Calculations of thick target yields for scandium and other radionuclides via the {sup nat}Ti(α,x) production route. • Comparison with TENDL-2015 library. • Detailed review of previous experimental data. - Abstract: We studied the excitation functions of residual radionuclide productions from α particles bombardment on natural titanium in the energy range of 10.4–50.2 MeV. A well-established stacked-foil activation technique combined with HPGe γ-ray spectrometry was used to measure the excitation functions for the {sup 51,49,48}Cr, {sup 48}V, {sup 43}K, and {sup 43,44m,44g,46g+m,47,48}Sc radionuclides. The thick target yields for all assessed radionuclides were also calculated. The obtained experimental data were compared with the earlier experimental ones and also with the evaluated data in the TENDL-2015 library. A reasonable agreement was found between this work and some of the previous ones, while a partial agreement was found with the evaluated data. The present results would further enrich the experimental database and facilitate the understanding of existing discrepancies among the previous measurements. The results would also help to enhance the prediction capability of the nuclear reaction model codes.

  18. Baryon interactions from lattice QCD with physical masses — strangeness S = -1 sector —

    Science.gov (United States)

    Nemura, Hidekatsu; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Sasaki, Kenji

    2018-03-01

    We present our recent results of baryon interactions with strangeness S = -1 based on Nambu-Bethe-Salpeter (NBS) correlation functions calculated fromlattice QCD with almost physical quark masses corresponding to (mk,mk) ≈ (146, 525) MeV and large volume (La)4 ≈ (96a)4 ≈ (8.1 fm)4. In order to perform a comprehensive study of baryon interactions, a large number of NBS correlation functions from NN to ΞΞ are calculated simultaneously by using large scale computer resources. In this contribution, we focus on the strangeness S = -1 channels of the hyperon interactions by means of HAL QCD method. Four sets of three potentials (the 3S1 - 3 D1 central, 3S1 - 3 D1 tensor, and the 1S0 central potentials) are presented for the ∑N - ∑N (the isospin I = 3/2) diagonal, the ∧N - ∧N diagonal, the ∧N → ∑N transition, and the ∑N - ∑N (I = 1/2) diagonal interactions. Scattering phase shifts for ∑N (I = 3/2) system are presented.

  19. Maternal sensitivity and infant attachment security in Korea: cross-cultural validation of the Strange Situation.

    Science.gov (United States)

    Jin, Mi Kyoung; Jacobvitz, Deborah; Hazen, Nancy; Jung, Sung Hoon

    2012-01-01

    The present study sought to analyze infant and maternal behavior both during the Strange Situation Procedure (SSP) and a free play session in a Korean sample (N = 87) to help understand whether mother-infant attachment relationships are universal or culture-specific. Distributions of attachment classifications in the Korean sample were compared with a cross-national sample. Behavior of mothers and infants following the two separation episodes in the SSP, including mothers' proximity to their infants and infants' approach to the caregiver, was also observed, as was the association between maternal sensitivity observed during free play session and infant security. The percentage of Korean infants classified as secure versus insecure mirrored the global distribution, however, only one Korean baby was classified as avoidant. Following the separation episodes in the Strange Situation, Korean mothers were more likely than mothers in Ainsworth's Baltimore sample to approach their babies immediately and sit beside them throughout the reunion episodes, even when their babies were no longer distressed. Also, Korean babies less often approached their mothers during reunions than did infants in the Baltimore sample. Finally, the link between maternal sensitivity and infant security was significant. The findings support the idea that the basic secure base function of attachment is universal and the SSP is a valid measure of secure attachment, but cultural differences in caregiving may result in variations in how this function is manifested.

  20. Baryon interactions from lattice QCD with physical masses — strangeness S = -1 sector —

    Directory of Open Access Journals (Sweden)

    Nemura Hidekatsu

    2018-01-01

    Full Text Available We present our recent results of baryon interactions with strangeness S = −1 based on Nambu-Bethe-Salpeter (NBS correlation functions calculated fromlattice QCD with almost physical quark masses corresponding to (mk,mk ≈ (146, 525 MeV and large volume (La4 ≈ (96a4 ≈ (8.1 fm4. In order to perform a comprehensive study of baryon interactions, a large number of NBS correlation functions from NN to ΞΞ are calculated simultaneously by using large scale computer resources. In this contribution, we focus on the strangeness S = −1 channels of the hyperon interactions by means of HAL QCD method. Four sets of three potentials (the 3S1 − 3 D1 central, 3S1 − 3 D1 tensor, and the 1S0 central potentials are presented for the ∑N − ∑N (the isospin I = 3/2 diagonal, the ∧N − ∧N diagonal, the ∧N → ∑N transition, and the ∑N − ∑N (I = 1/2 diagonal interactions. Scattering phase shifts for ∑N (I = 3/2 system are presented.