WorldWideScience

Sample records for strand mat polymeric

  1. Fatigue Characteristic of Chopped Strand Mat/Polyester Composite

    Directory of Open Access Journals (Sweden)

    I Made Astika

    2012-11-01

    Full Text Available The application of composite as an alternatif material to substitute of metal has better properties than metal such as light, high elasticity, corrosion and fatigue resistance. Some components in its application are subjected to millions of varying stress cycles that initiated to fatigue failure such as crack, delamination and fracture. The strength of composite is influenced by construction, fiber type, orientation and fiber fraction. The objective of this experiment is to investigate the fatigue characteristic on SCM composite. Material composite to be used is glass fiber with chopped strand mat (CSM as fiber and Yukalac 157 BQTN-EX with 1% hardener (Mexpox as matrix. The mold process was built with hand lay-up. Fiber volume fractions in composite are 40, 32 and 24 %. The tests to be done on composite are fatigue and tensile test. The research show that the increasing of fiber fraction in composite affects increasing of fatigue life, endurance limit and tensile strength. Fatigue failure modes of composite are debonding, matrix cracking, delamination and fiber fracture.

  2. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    Science.gov (United States)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  3. Highly Luminescent Dual Mode Polymeric Nanofiber-Based Flexible Mat for White Security Paper and Encrypted Nanotaggant Applications.

    Science.gov (United States)

    Gangwar, Amit Kumar; Gupta, Ashish; Kedawat, Garima; Kumar, Pawan; Singh, Bhanu Pratap; Singh, Nidhi; Srivastava, Avanish K; Dhakate, Sanjay R; Gupta, Bipin Kumar

    2018-05-23

    Increasing counterfeiting of important data, currency, stamp papers, branded products etc., has become a major security threat which could lead to serious damage to the global economy. Consequences of such damage are compelling for researchers to develop new high-end security features to address full-proof solutions. Herein, we report a dual mode flexible highly luminescent white security paper and nanotaggants composed of nanophosphors incorporated in polymer matrix to form a nanofiber-based mat for anti-counterfeiting applications. The dual mode nanofibers are fabricated by electrospinning technique by admixing the composite of NaYF 4 :Eu 3+ @NaYF 4 :Yb 3+ , Er 3+ nanophosphors in the polyvinyl alcohol solution. This flexible polymer mat derived from nanofibers appears white in daylight, while emitting strong red (NaYF 4 :Eu 3+ ) and green (NaYF 4 :Yb 3+ , Er 3+ ) colors at excitation wavelengths of 254 nm and 980 nm, respectively. These luminescent nanofibers can also be encrypted as a new class of nanotaggants to protect confidential documents. These obtained results suggest that highly luminescent dual mode polymeric nanofiber-based flexible white security paper and nanotaggants could offer next-generation high-end unique security features against counterfeiting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices.

    Science.gov (United States)

    Giuffrida, Maria Chiara; Zanoli, Laura Maria; D'Agata, Roberta; Finotti, Alessia; Gambari, Roberto; Spoto, Giuseppe

    2015-02-01

    Nucleic-acid amplification is a crucial step in nucleic-acid-sequence-detection assays. The use of digital microfluidic devices to miniaturize amplification techniques reduces the required sample volume and the analysis time and offers new possibilities for process automation and integration in a single device. The recently introduced droplet polymerase-chain-reaction (PCR) amplification methods require repeated cycles of two or three temperature-dependent steps during the amplification of the nucleic-acid target sequence. In contrast, low-temperature isothermal-amplification methods have no need for thermal cycling, thus requiring simplified microfluidic-device features. Here, the combined use of digital microfluidics and molecular-beacon (MB)-assisted isothermal circular-strand-displacement polymerization (ICSDP) to detect microRNA-210 sequences is described. MicroRNA-210 has been described as the most consistently and predominantly upregulated hypoxia-inducible factor. The nmol L(-1)-pmol L(-1) detection capabilities of the method were first tested by targeting single-stranded DNA sequences from the genetically modified Roundup Ready soybean. The ability of the droplet-ICSDP method to discriminate between full-matched, single-mismatched, and unrelated sequences was also investigated. The detection of a range of nmol L(-1)-pmol L(-1) microRNA-210 solutions compartmentalized in nanoliter-sized droplets was performed, establishing the ability of the method to detect as little as 10(-18) mol of microRNA target sequences compartmentalized in 20 nL droplets. The suitability of the method for biological samples was tested by detecting microRNA-210 from transfected K562 cells.

  5. Optimization of Polymer-ECM Composite Scaffolds for Tissue Engineering: Effect of Cells and Culture Conditions on Polymeric Nanofiber Mats

    Directory of Open Access Journals (Sweden)

    Ritu Goyal

    2017-01-01

    Full Text Available The design of composite tissue scaffolds containing an extracellular matrix (ECM and synthetic polymer fibers is a new approach to create bioactive scaffolds that can enhance cell function. Currently, studies investigating the effects of ECM-deposition and decellularization on polymer degradation are still lacking, as are data on optimizing the stability of the ECM-containing composite scaffolds during prolonged cell culture. In this study, we develop fibrous scaffolds using three polymer compositions, representing slow (E0000, medium (E0500, and fast (E1000 degrading materials, to investigate the stability, degradation, and mechanics of the scaffolds during ECM deposition and decellularization, and during the complete cellularization-decell-recell cycle. We report data on percent molecular weight (% Mw retention of polymeric fiber mats, changes in scaffold stiffness, ECM deposition, and the presence of fibronectin after decellularization. We concluded that the fast degrading E1000 (Mw retention ≤ 50% after 28 days was not sufficiently stable to allow scaffold handling after 28 days in culture, while the slow degradation of E0000 (Mw retention ≥ 80% in 28 days did not allow deposited ECM to replace the polymer support. The scaffolds made from medium degrading E0500 (Mw retention about 60% at 28 days allowed the gradual replacement of the polymer network with cell-derived ECM while maintaining the polymer network support. Thus, polymers with an intermediate rate of degradation, maintaining good scaffold handling properties after 28 days in culture, seem best suited for creating ECM-polymer composite scaffolds.

  6. Emerging investigator series: development and application of polymeric electrospun nanofiber mats as equilibrium-passive sampler media for organic compounds.

    Science.gov (United States)

    Qian, Jiajie; Jennings, Brandon; Cwiertny, David M; Martinez, Andres

    2017-11-15

    We fabricated a suite of polymeric electrospun nanofiber mats (ENMs) and investigated their performance as next-generation passive sampler media for environmental monitoring of organic compounds. Electrospinning of common polymers [e.g., polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and polystyrene (PS), among others] yielded ENMs with reproducible control of nanofiber diameters (from 50 to 340 nm). The ENM performance was investigated initially with model hydrophilic (aniline and nitrobenzene) and hydrophobic (selected PCB congeners and dioxin) compounds, generally revealing fast chemical uptake into all of these ENMs, which was well described by a one compartment, first-order kinetic model. Typical times to reach 90% equilibrium (t 90% ) were ≤7 days under mixing conditions for all the ENMs and equilibrium timescales suggest that ENMs may be used in the field as an equilibrium-passive sampler, at least for our model compounds. Equilibrium partitioning coefficients (K ENM-W , L kg -1 ) averaged 2 and 4.7 log units for the hydrophilic and hydrophobic analytes, respectively. PAN, PMMA and PS were prioritized for additional studies because they exhibited not only the greatest capacity for simultaneous uptake of the entire model suite (log K ENM-W ∼1.5-6.2), but also fast uptake. For these optimized ENMs, the rates of uptake into PAN and PMMA were limited by aqueous phase diffusion to the nanofiber surface, and the rate-determining step for PS was analyte specific. Sorption isotherms also revealed that the environmental application of these optimized ENMs would occur within the linear uptake regime. We examined the ENM performance for the measurement of pore water concentrations from spiked soil and freshwater sediments. Soil and sediment studies not only yielded reproducible pore water concentrations and comparable values to other passive sampler materials, but also provided practical insights into ENM stability and fouling in such systems

  7. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays.

    Science.gov (United States)

    Hu, Kun; Liu, Jinwen; Chen, Jia; Huang, Yong; Zhao, Shulin; Tian, Jianniao; Zhang, Guohai

    2013-04-15

    An amplified graphene oxide (GO) based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling is developed for bioassays. The dye-labeled single-strand DNA (aptamer hairpin) was adsorbed on the surface of GO, which result in the fluorescence quenching of dye, and exhibiting minimal background fluorescence. Upon the target, primer and polymerase, the stem of the aptamer hairpin was opened, and binds with the primer to triggers the circular target strand-displacement polymerization reaction, which produces huge amounts of duplex helixes DNA and lead to strong fluorescence emission due to shielding of nucelobases within its double-helix structure. During the polymerization reaction, the primer was extended, and target was displaced. And the displaced target recognizes and hybridizes with another hairpin probe, triggering the next round of polymerization reaction, and the circle process induces fluorescence signal amplification for the detection of analyte. To test the feasibility of the aptasensor systems, interferon-gamma (IFN-γ) was employed as a model analyte. A detection limit as low as 1.5 fM is obtained based on the GO aptasensor with a linear range of three orders of magnitude. The present method was successfully applied for the detection of IFN-γ in human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. MAT FOR LEPTOSPIROSIS DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    Esti Rahardianingtyas.

    2014-06-01

    Full Text Available Leptospirosis is a disease caused by bacterial infection leptospira interrogans.Leptospira bacteria is a spiral bacterium with solid strands with two flagella periplasmik.Septicaemic phase patient samples taken from the blood and cerebrospinal fluid, whereassamples taken at phase immune extracted from urine. The diagnosis of leptospirosis occurdirectly or indirectly. Diagnosis is done by directly isolate and identify the causative agents ofthe agent. Diagnosis is done indirectly by detecting specific antibodies from the patient's body.Gold Standard of the diagnosis of leptospirosis is MAT. Mat made by reacting antibodies toleptospira antigen. Positive results seen with clump formed.Key words: Leptospirosis, Leptospirosis Diagnostic, MAT (Microscopic Agglutination Test Leptospirosis merupakan penyakit yang disebabkan karena infeksi bakteri leptospirainterrogans. Bakteri leptospira merupakan bakteri spiral dengan untaian yang padat dengan duaflagella periplasmik. Sampel pasien pada fase septicaemic diambil dari darah dan cairanserebrospinal, sedangkan sampel yang diambil pada fase immune diambil dari urine. Diagnosisleptospirosis dilakukan secara langsung maupun tidak langsung. Diagnosis secara langsungdilakukan dengan cara mengisolasi agen penyebab dan mengidentifikasi agen tersebut. Diagnosissecara tidak langsung dilakukan dengan cara mendeteksi antibodi spesiflk dari dalam tubuhpasien. Gold Standart dari diagnosis leptospirosis adalah MAT. Mat dilakukan dengan caramereaksikan antibodi dengan antigen leptospira. Hasil positif dilihat dengan terbentuk gumpalanagglutinasiKata kunci: Leptospirosis, Leptospira, Leptospirosis Diagnosis.

  9. Dual-cyclical nucleic acid strand-displacement polymerization based signal amplification system for highly sensitive determination of p53 gene.

    Science.gov (United States)

    Xu, Jianguo; Wu, Zai-Sheng; Li, Hongling; Wang, Zhenmeng; Le, Jingqing; Zheng, Tingting; Jia, Lee

    2016-12-15

    In the present study, we proposed a novel dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) based signal amplification system for highly sensitive determination of tumor suppressor genes. The system primarily consisted of a signaling hairpin probe (SHP), a label-free hairpin probe (LHP) and an initiating primer (IP). The presence of target DNA was able to induce one CNDP through continuous process of ligation, polymerization and nicking, leading to extensively accumulation of two nicked triggers (NT1 and NT2). Intriguingly, the NT1 could directly hybridize SHP, while the NT2 could act as the target analog to induce another CNDP. The resulting dual-CNDP contributed the striking signal amplification, and only a very weak blank noise existed since the ligation template of target was not involved. In this case, the target could be detected in a wide linear range (5 orders of magnitude), and a low detection limit (78 fM) was obtained, which is superior to most of the existing fluorescent methods. Moreover, the dual-CNDP sensing system provided a high selectivity towards target DNA against mismatched target and was successfully applied to analysis of target gene extracted from cancer cells or in human serum-contained samples, indicating its great potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Talking Mats

    DEFF Research Database (Denmark)

    2012-01-01

    Talking Mats are visualizations in the handy size of a set of cards used to support interviews with people with mental disabilities.......Talking Mats are visualizations in the handy size of a set of cards used to support interviews with people with mental disabilities....

  11. Visual detection of glial cell line-derived neurotrophic factor based on a molecular translator and isothermal strand-displacement polymerization reaction.

    Science.gov (United States)

    Zhang, Li-Yong; Xing, Tao; Du, Li-Xin; Li, Qing-Min; Liu, Wei-Dong; Wang, Ji-Yue; Cai, Jing

    2015-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a small protein that potently promotes the survival of many types of neurons. Detection of GDNF is vital to monitoring the survival of sympathetic and sensory neurons. However, the specific method for GDNF detection is also un-discovered. The purpose of this study is to explore the method for protein detection of GDNF. A novel visual detection method based on a molecular translator and isothermal strand-displacement polymerization reaction (ISDPR) has been proposed for the detection of GDNF. In this study, a molecular translator was employed to convert the input protein to output deoxyribonucleic acid signal, which was further amplified by ISDPR. The product of ISDPR was detected by a lateral flow biosensor within 30 minutes. This novel visual detection method based on a molecular translator and ISDPR has very high sensitivity and selectivity, with a dynamic response ranging from 1 pg/mL to 10 ng/mL, and the detection limit was 1 pg/mL of GDNF. This novel visual detection method exhibits high sensitivity and selectivity, which is very simple and universal for GDNF detection to help disease therapy in clinical practice.

  12. Identification of a premature termination of DNA polymerization in ...

    Indian Academy of Sciences (India)

    2013-04-25

    Apr 25, 2013 ... strands to the 5′ end of the template strands, forming double- stranded DNA with ... duplex stem is important for high processive polymerization. HIV-1 reverse ... KF has been used as a model to study DNA polymerase.

  13. Diazotrophic microbial mats

    NARCIS (Netherlands)

    Severin, I.; Stal, L.J.; Seckbach, J.; Oren, A.

    2010-01-01

    Microbial mats have been the focus of scientific research for a few decades. These small-scale ecosystems are examples of versatile benthic communities of microorganisms, usually dominated by phototrophic bacteria (e.g., Krumbein et al., 1977; Jørgensen et al., 1983). They develop as vertically

  14. Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae

    Science.gov (United States)

    Haber, James E.

    2012-01-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break. PMID:22555442

  15. Molecular ecology of microbial mats

    NARCIS (Netherlands)

    Bolhuis, H.; Cretoiu, M.S.; Stal, L.J.

    2014-01-01

    Phototrophic microbial mats are ideal model systems for ecological and evolutionary analysis of highly diverse microbial communities. Microbial mats are small-scale, nearly closed, and self-sustaining benthic ecosystems that comprise the major element cycles, trophic levels, and food webs. The steep

  16. MICROBIAL MATS - A JOINT VENTURE

    NARCIS (Netherlands)

    VANGEMERDEN, H

    Microbial mats characteristically are dominated by a few functional groups of microbes: cyanobacteria, colorless sulfur bacteria, purple sulfur bacteria, and sulfate-reducing bacteria. Their combined metabolic activities result in steep environmental microgradients, particularly of oxygen and

  17. Elektroaktive polymerer

    DEFF Research Database (Denmark)

    West, K.

    Traditionelt tænker vi på polymerer (plastik) som elektrisk isolerende materialer - det som er udenpå ledningerne. I dag kender vi imidlertid også polymerer med intrinsisk elektrisk ledningsevne, og plast er på vej ind i anvendelser, der tidligereudelukkende var baseret på metaller og uorganiske...... halvledere. Hertil kommer, at en del af de ledende polymerer kan stimuleres til at skifte mellem en ledende og en halvledende tilstand, hvorved de ændret både form og farve. I foredraget gives der enrække eksempler på anvendelse af polymerer som elektriske komponenter - rækkende fra polymer elektronik over...

  18. Stranded Specimen Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Mammal and Turtle Division collects data about individual cetaceans and sea turtles that come ashore, or strand on the beach. The date and location of...

  19. Alaska Beluga Strandings

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NMFS is mandated by the Marine Mammal Protection Act (MMPA) to collect reports of marine mammal stranding events. This particular catalogue item is specific to the...

  20. Matérn thinned Cox processes

    DEFF Research Database (Denmark)

    Andersen, Ina Trolle; Hahn, Ute

    2016-01-01

    and hard core behaviour can be achieved by applying a dependent Matérn thinning to a Cox process. An exact formula for the intensity of a Matérn thinned shot noise Cox process is derived from the Palm distribution. For the more general class of Matérn thinned Cox processes, formulae for the intensity...

  1. Matérn thinned Cox processes

    DEFF Research Database (Denmark)

    Andersen, Ina Trolle; Hahn, Ute

    of clustering and hard core behaviour can be achieved by applying a dependent Matérn thinning to a Cox process. An exact formula for the intensity of a Matérn thinned shot noise Cox process is derived from the Palm distribution. For the more general class of Matérn thinned Cox processes, formulae...

  2. Ectomycorrhizal mats alter forest soil biogeochemistry

    Science.gov (United States)

    Laurel A. Kluber; Kathryn M. Tinnesand; Bruce A. Caldwell; Susie M. Dunham; Rockie R. Yarwood; Peter J. Bottomley; David D. Myrold

    2010-01-01

    Dense hyphal mats formed by ectomycorrhizal (EcM) fungi are prominent features in Douglas-fir forest ecosystems, and have been estimated to cover up to 40% of the soil surface in some forest stands. Two morphotypes of EcM mats have been previously described: rhizomorphic mats, which have thick hyphal rhizomorphs and are found primarily in the organic horizon, and...

  3. Projet ViscoMatData

    OpenAIRE

    ENGUENG,; ABIB,

    2009-01-01

    ViscoMatData est un logiciel extranet d'une gestion d'une base de données multilingue sur les propriétés des matériaux viscoélastiques des chaussées. Ce rapport constitue l'un des livrables de la deuxième partie de ce projet. Pour présenter le travail réalisé durant cette deuxième partie, nous commencerons par faire un rappel sur le contexte du projet et le projet et le projet lui-même. Puis, nous nous intéresserons à l'architecture mise en place pour le développement, la réalisation et nous ...

  4. Preface - BraMat 2017

    Science.gov (United States)

    Munteanu, Daniel

    2018-04-01

    The main goal of the BraMat 2017 Conference was, as for the previous editions, to stimulate an international exchange of information in the field of materials science and engineering and to establish future research directions. The main topics of this edition included: ​Metallic materials (Section I), Biomaterials (Section II), Ceramics, polymers and composite materials (Section III), Surface engineering (Section IV), Nanomaterials (Section V), Welding engineering (Section VI), Safety engineering (Section VII), and Magnesium science and engineering (Section VIII).

  5. Safety Protocols at MAT Lab

    International Nuclear Information System (INIS)

    Wadawale, A.; Chopade, S.; Chaudhury, K.; Pal, M.K.; Kushwah, N.; Shah, A.Y.; Kedarnath, G.; Priyadarsini, K.I.; Jain, V.K.

    2017-01-01

    MAT Lab of Chemistry Division, BARC (A Class 10000 Clean room laboratory) has been in operation since 2004 for process development of ultra-purification of several strategically important materials (Ga, As, Sb, In, CsI and Ge) and synthesis of their organometallic compounds. Of these, work related to purification of As, Sb, and In, has been discontinued. Due to high toxicity and pyrophoric nature of some of the compounds, stringent safety regulations were formulated and subsequently implemented by the division

  6. Foam-mat drying technology: A review.

    Science.gov (United States)

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  7. Polymeric materials from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; Silva, Cristina G. da; Castro, Daniele O.; Ramires, Elaine C.; Oliveira, Fernando de; Santos, Rachel P. O. [Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo, CP 780, 13560-970 São Carlos, São Paulo (Brazil)

    2016-05-18

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called “biopolyethylene” (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  8. Polymeric materials from renewable resources

    Science.gov (United States)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.

    2016-05-01

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  9. Strand SPA & Konverentsikeskus

    Index Scriptorium Estoniae

    2008-01-01

    Strand SPA & Konverentsikeskus on Pärnu suurim äri- ja konverentsiklientidele suunatud hotell, mis klientide seas on hinnatud just selle kompleksuse tõttu, kuna kõik, mida külaline vajab ja soovib, on olemas ühe katuse all

  10. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  11. Polyacrylonitrile/polyaniline core/shell nanofiber mat for removal of hexavalent chromium from aqueous solution: mechanism and applications

    KAUST Repository

    Wang, Jianqiang

    2013-01-01

    Polyacrylonitrile/polyaniline core/shell nanofibers were prepared via electrospinning followed by in situ polymerization of aniline. Nanofibers with different morphology were obtained by changing the polymerization temperature. When used as absorbent for Cr(vi) ions, the core/shell nanofiber mats exhibit excellent adsorption capability. The equilibrium capacity is 24.96, 37.24, and 52.00 mg g-1 for 105, 156, and 207 mg L-1 initial Cr(vi) solution, respectively, and the adsorption capacity increases with temperature. The adsorption follows a pseudo second order kinetics model and is best fit using the Langmuir isotherm model. The mats show excellent selectivity towards Cr(vi) ions in the presence of competing ions albeit a small decrease in adsorption is observed. The mats can be regenerated and reused after treatment with NaOH making them promising candidates as practical adsorbents for Cr(vi) removal. © The Royal Society of Chemistry 2013.

  12. MatLab Script and Functional Programming

    Science.gov (United States)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  13. Sea Turtle Stranding Network Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Turtle Stranding and Salvage Network (STSSN) was formally established in 1980 to collect information on and document the stranding of marine turtles along...

  14. Effect of Furnish on Temperature and Vapor Pressure Behavior in the Center of Mat Panels during Hot Pressing

    Directory of Open Access Journals (Sweden)

    Muhammad Navis Rofii

    2014-07-01

    Full Text Available Particleboard achieves its overall performance characteristics during hot pressing process. As this process is influenced by several factors, particularly temperature and pressure, it is very important to understand the behavior of both. This study investigates the effects of furnish materials on temperature and vapor pressure behavior inside particleboard mat panels during hot pressing. Strand type particles from hinoki and ring-flaker recycled wood particles were used as furnish for laboratory-scale particleboard panels with a target density of 0.76 g/cm³. Mat panels with a moisture content of about 10% were hot pressed at a platen temperature of 180°C and an initial pressure of 3 MPa until the mat center reached the same temperature as the platen. A press monitoring device (PressMAN Lite was used for detecting the temperature and vapor pressure change in the center of the mat panels. The study showed that the furnish type affected the temperature and vapor behavior inside the mat panels. Particleboard made of hinoki strand resulted in a longer plateau time, a higher plateau temperature and a higher gas pressure generated during hot pressing than those of ring-flaker recycled wood particles. Mixed board resulted in values between those of the two other furnish materials.

  15. Investigation of VEGGIE Root Mat

    Science.gov (United States)

    Subbiah, Arun M.

    2013-01-01

    VEGGIE is a plant growth facility that utilizes the phenomenon of capillary action as its primary watering system. A cloth made of Meta Aramid fiber, known as Nomex is used to wick water up from a reservoir to the bottom of the plants roots. This root mat system is intended to be low maintenance with no moving parts and requires minimal crew interface time. Unfortunately, the water wicking rates are inconsistent throughout the plant life cycle, thus causing plants to die. Over-wicking of water occurs toward the beginning of the cycle, while under-wicking occurs toward the middle. This inconsistency of wicking has become a major issue, drastically inhibiting plant growth. The primary objective is to determine the root cause of the inconsistent wicking through experimental testing. Suspect causes for the capillary water column to break include: a vacuum effect due to a negative pressure gradient in the water reservoir, contamination of material due to minerals in water and back wash from plant fertilizer, induced air bubbles while using syringe refill method, and material limitations of Nomex's ability to absorb and retain water. Experimental testing will be conducted to systematically determine the cause of under and over-wicking. Pressure gages will be used to determine pressure drop during the course of the plant life cycle and during the water refill process. A debubbler device will be connected to a root mat in order to equalize pressure inside the reservoir. Moisture and evaporation tests will simultaneously be implemented to observe moisture content and wicking rates over the course of a plant cycle. Water retention tests will be performed using strips of Nomex to determine materials wicking rates, porosity, and absorptivity. Through these experimental tests, we will have a better understanding of material properties of Nomex, as well as determine the root cause of water column breakage. With consistent test results, a forward plan can be achieved to resolve

  16. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  17. Stranded costs and exit fees

    International Nuclear Information System (INIS)

    2002-01-01

    The New Brunswick Market Design Committee has been directed to examine the issue of stranded costs since it is a major component of restructuring within the electricity sector. When regulated monopolies are faced with competition, they could find that some of their embedded costs cannot be recovered. These costs are referred to as stranded costs. Common sources include large capital investments in uneconomic plants or expensive power purchase contracts or fuel supply contracts. In general, stranded costs do not include gains or losses associated with normal business risks experienced by regulated utilities. This report presents recommendations for mitigation of stranded costs, valuation methodologies and cost-recovery mechanisms. It also presents a summary of experience with stranded costs in other jurisdictions such as California, Rhode Island, Pennsylvania and Ontario. Stranded costs are often recovered through an obligatory charge on all customers, particularly in jurisdictions where retail competition exists. In the New Brunswick market, however, the only customers who can create stranded costs are those eligible to choose their own suppliers. It is argued that since most customers will not have a choice of electricity suppliers, they cannot generate stranded costs and therefore, should not have to pay costs stranded by others. A method to quantify stranded costs is presented, along with a review of transmission-related stranded costs in New Brunswick. Expansion of self-generation in New Brunswick could strand transmission assets. Currently, self-generators only contribute a small amount to fixed charges of the transmission system. However, under new recommended tariffs, the amount could increase. It is likely that the net amount of stranded transmission costs will not be large. 2 refs., 1 fig

  18. Microbial communities and exopolysaccharides from Polynesian mats.

    Science.gov (United States)

    Rougeaux, H; Guezennec, M; Che, L M; Payri, C; Deslandes, E; Guezennec, J

    2001-03-01

    Microbial mats present in two shallow atolls of French Polynesia were characterized by high amounts of exopolysaccharides associated with cyanobacteria as the predominating species. Cyanobacteria were found in the first centimeters of the gelatinous mats, whereas deeper layers showing the occurrence of the sulfate reducers Desulfovibrio and Desulfobacter species as determined by the presence of specific biomarkers. Exopolysaccharides were extracted from these mats and partially characterized. All fractions contained both neutral sugars and uronic acids with a predominance of the former. The large diversity in monosaccharides can be interpreted as the result of exopolymer biosynthesis by either different or unidentified cyanobacterial species.

  19. Development of kenaf mat for slope stabilization

    Science.gov (United States)

    Ahmad, M. M.; Manaf, M. B. H. Ab; Zainol, N. Z.

    2017-09-01

    This study focusing on the ability of kenaf mat to act as reinforcement to laterite compared to the conventional geosynthetic in term of stabilizing the slope. Kenaf mat specimens studied in this paper are made up from natural kenaf fiber with 3mm thickness, 150mm length and 20mm width. With the same size of specimens, geosynthetic that obtain from the industry are being tested for both direct shear and tensile tests. Plasticity index of the soil sample used is equal to 13 which indicate that the soil is slightly plastic. Result shows that the friction angle of kenaf mat is higher compared to friction between soil particles itself. In term of resistance to tensile load, the tensile strength of kenaf mat is 0.033N/mm2 which is lower than the tensile strength of geosynthetic.

  20. Environmental controls on photosynthetic microbial mat distribution and morphogenesis on a 3.42 Ga clastic-starved platform.

    Science.gov (United States)

    Tice, Michael M

    2009-12-01

    Three morphotypes of microbial mats are preserved in rocks deposited in shallow-water facies of the 3.42 Ga Buck Reef chert (BRC). Morphotype alpha consists of fine anastomosing and bifurcating carbonaceous laminations, which loosely drape underlying detrital grains or form silica-filled lenses. Morphotype beta consists of meshes of fine carbonaceous strands intergrown with detrital grains and dark laminations, which loosely drape coarse detrital grains. Morphotype gamma consists of fine, even carbonaceous laminations that tightly drape underlying detrital grains. Preservation of nearly uncompacted mat morphologies and detrital grains deposited during mat growth within a well-characterized sedimentary unit makes quantitative correlation between morphology and paleoenvironment possible. All mats are preserved in the shallowest-water interval of those rocks deposited below normal wave base and above storm wave base. This interval is bounded below by a transgressive lag formed during regional flooding and above by a small condensed section that marks a local relative sea-level maximum. Restriction of all mat morphotypes to the shallowest interval of the storm-active layer in the BRC ocean reinforces previous interpretations that these mats were constructed primarily by photosynthetic organisms. Morphotypes alpha and beta dominate the lower half of this interval and grew during deposition of relatively coarse detrital carbonaceous grains, while morphotype gamma dominates the upper half and grew during deposition of fine detrital carbonaceous grains. The observed mat distribution suggests that either light intensity or, more likely, small variations in ambient current energy acted as a first-order control on mat morphotype distribution. These results demonstrate significant environmental control on biological morphogenetic processes independent of influences from siliciclastic sedimentation.

  1. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns

    Science.gov (United States)

    Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.

    2018-02-01

    As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.

  2. "Click" i polymerer 2

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    "Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer......"Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer...

  3. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  4. Investigation of needleless electrospun PAN nanofiber mats

    Science.gov (United States)

    Sabantina, Lilia; Mirasol, José Rodríguez; Cordero, Tomás; Finsterbusch, Karin; Ehrmann, Andrea

    2018-04-01

    Polyacrylonitrile (PAN) can be spun from a nontoxic solvent (DMSO, dimethyl sulfoxide) and is nevertheless waterproof, opposite to the biopolymers which are spinnable from aqueous solutions. This makes PAN an interesting material for electrospinning nanofiber mats which can be used for diverse biotechnological or medical applications, such as filters, cell growth, wound healing or tissue engineering. On the other hand, PAN is a typical base material for producing carbon nanofibers. Nevertheless, electrospinning PAN necessitates convenient spinning parameters to create nanofibers without too many membranes or agglomerations. Thus we have studied the influence of spinning parameters on the needleless electrospinning process of PAN dissolved in DMSO and the resulting nanofiber mats.

  5. Radiobiology of DNA strand breakage

    International Nuclear Information System (INIS)

    Johansen, I.

    1975-01-01

    The yield of single-strand breaks in lambda DNA within lysogenic host bacteria was measured after exposure to 4-MeV electrons (50 msec) and rapid transfer (45 msec) to alkaline detergent. In nitrogen anoxia the yield was 1.2 x 10 -12 DNA single-strand breaks per rad per dalton, and under full oxygenation the yield increased to 5 x 10 -12 breaks per rad per dalton. A search for the presence of fast repair mechanisms failed to demonstrate the presence of any mechanism for repair of strand breaks operating within a fraction of a second. Strand breaks produced in the presence of oxygen were repaired in 30--40 sec, while breaks produced under anoxia were rejoined even slower. A functional product from the polAl gene was needed for the rejoining of the broken molecules. Intermediate levels of DNA strand breakage seen at low concentrations of oxygen are dependent on the concentration of cellular sulfhydryl compounds, suggesting that in strand breakage oxygen and hydrogen donors compete for reactions with radiation-induced transients in the DNA. Intercomparisons of data on radiation-induced lethality of cells and single-strand breaks in episomal DNA allow the distinction between two classes of radiation-induced radicals, R 1 and R 2 , with different chemical properties; R 1 reacts readily with oxygen and N-oxyls under formation of potentially lethal products. The reactivity of oxygen in this reaction is 30--40 times higher than that of TMPN. R 2 reacts 16 times more readily than R 1 with oxygen under formation of single-strand breaks in the DNA. R 2 does not react with N-oxyls

  6. HiRadMat: materials under scrutiny

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    CERN's new facility, HiRadMat (High Radiation to Materials), which is designed to test materials for the world's future particle accelerators, should be operational and welcoming its first experiments by the end of the year.   The HiRadMat facility, located in the TNC tunnel. The materials used in the LHC and its experiments are exposed to very high-energy particles. The LHC machine experts obviously didn't wait for the first collisions in the world's most powerful accelerator to put the materials through their paces - the equipment was validated following a series of stringent tests. And these tests will get even tougher now, with the arrival of HiRadMat. The tunnel that formerly housed the West Area Neutrino Facility (WANF) has been completely revamped to make way for CERN's latest facility, HiRadMat. Supported by the Radioprotection service, a team from the Engineering (EN) Department handled the dismantling operations from October 2009 to December 2010. "We could only work on disman...

  7. Thermodynamics and phase transformations the selected works of Mats Hillert

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    This book is a compendium of Mat Hillert's publications. Mat Hillert is a world specialist in metal alloy at the origin of a universal computing code used to calculate the diagrams of phase. This work is in English.

  8. Modelling Toehold-Mediated RNA Strand Displacement

    OpenAIRE

    Šulc, Petr; Ouldridge, Thomas E.; Romano, Flavio; Doye, Jonathan P.K.; Louis, Ard A.

    2015-01-01

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperat...

  9. Contributions of Ectomycorrhizal Fungal Mats to Forest Soil Carbon Cycles

    Science.gov (United States)

    Kluber, L. A.; Phillips, C. L.; Myrold, D. D.; Bond, B. J.

    2008-12-01

    Ectomycorrhizal (EM) fungi are a prominent and ubiquitous feature of forest soils, forming symbioses with most tree species, yet little is known about the magnitude of their impact on forest carbon cycles. A subset of EM fungi form dense, perennial aggregations of hyphae, which have elevated respiration rates compared with neighboring non-mat soils. These mats are a foci of EM activity and thereby a natural laboratory for examining how EM fungi impact forest soils. In order to constrain the contributions of EM fungi to forest soil respiration, we quantified the proportion of respiration derived from EM mat soils in an old-growth Douglas-fir stand in western Oregon. One dominant genus of mat-forming fungi, Piloderma, covered 56% of the soil surface area. Piloderma mats were monitored for respiration rates over 15 months and found to have on average 10% higher respiration than non-mat soil. At the stand level, this amounts to roughly 6% of soil respiration due to the presence of Piloderma mats. We calculate that these mats may constitute 27% of autotrophic respiration, based on respiration rates from trenched plots in a neighboring forest stand. Furthermore, enzyme activity and microbial community profiles in mat and non-mat soil provide evidence that specialized communities utilizing chitin contribute to this increased efflux. With 60% higher chitinase activity in mats, the breakdown of chitin is likely an important carbon flux while providing carbon and nitrogen to the microbial communities associated with mats. Quantitative PCR showed similar populations of fungi and bacteria in mat and non-mat soils; however, community analysis revealed distinct fungal and bacterial communities in the two soil types. The higher respiration associated with EM mats does not appear to be due only to a proliferation of EM fungi, but to a shift in overall community composition to organisms that efficiently utilize the unique resources available within the mat, including plant and

  10. Siwonhan-mat: The third taste of Korean foods

    Directory of Open Access Journals (Sweden)

    Soon Ah Kang

    2016-03-01

    Conclusion: Siwonhan-mat is a unique sensation found in Korean food. Understanding siwonhan-mat is a key to learning about Korean food and its food culture. Therefore, this paper serves an important role in understanding Korean food. Siwonhan-mat is often mistranslated using words to describe temperature, such as cool. This misinterpretation has resulted in confusion over the original meaning of siwonhan-mat and contributed to the incorrect usage of the word.

  11. Method for production of carbon nanofiber mat or carbon paper

    Science.gov (United States)

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  12. Fair Exchange in Strand Spaces

    Directory of Open Access Journals (Sweden)

    Joshua D. Guttman

    2009-10-01

    Full Text Available Many cryptographic protocols are intended to coordinate state changes among principals. Exchange protocols coordinate delivery of new values to the participants, e.g. additions to the set of values they possess. An exchange protocol is fair if it ensures that delivery of new values is balanced: If one participant obtains a new possession via the protocol, then all other participants will, too. Fair exchange requires progress assumptions, unlike some other protocol properties. The strand space model is a framework for design and verification of cryptographic protocols. A strand is a local behavior of a single principal in a single session of a protocol. A bundle is a partially ordered global execution built from protocol strands and adversary activities. The strand space model needs two additions for fair exchange protocols. First, we regard the state as a multiset of facts, and we allow strands to cause changes in this state via multiset rewriting. Second, progress assumptions stipulate that some channels are resilient-and guaranteed to deliver messages-and some principals are assumed not to stop at certain critical steps. This method leads to proofs of correctness that cleanly separate protocol properties, such as authentication and confidentiality, from invariants governing state evolution. G. Wang's recent fair exchange protocol illustrates the approach.

  13. Does siwonhan-mat represent delicious in Korean foods?

    Directory of Open Access Journals (Sweden)

    Dai Ja Jang

    2016-06-01

    Conclusion: Balancing kan is a determining factor of siwonhan-mat in Korean cuisine. Particularly, a strong association between siwonhan-mat and deliciousness was found in kuk and tang, suggesting the importance of siwonhan-mat in experiencing the best flavor in Korean food.

  14. Beaded Fiber Mats of PVA Containing Unsaturated Heteropoly Salt

    Institute of Scientific and Technical Information of China (English)

    Guo Cheng YANG; Yan PAN; Jian GONG; Chang Lu SHAO; Shang Bin WEN; Chen SHAO; Lun Yu QU

    2004-01-01

    Poly(vinyl alcohol) (PVA) fiber mats containing unsaturated heteropoly salt was prepared for the first time. IR, X-ray diffraction and SEM photographs characterized the beaded fiber mats.The viscoelasticity and the conductivity of the solution were the key factors that influence the formation of the beaded fiber mats.

  15. Developing DNA barcoding (matK) primers for marama bean ...

    African Journals Online (AJOL)

    The homology found with Tylosema fassoglensis (trnK gene) and Pisum sativum (matK gene) suggests that an identical region was amplified for Tylosema esculentum. A phylogenetic tree was constructed based on the matK sequences and the results suggest that the matK region can also be used in determining levels of ...

  16. Disruption of photoautotrophic intertidal mats by filamentous fungi

    DEFF Research Database (Denmark)

    Carreira, Cátia; Staal, Marc Jaap; Falkoski, Daniel

    2015-01-01

    Summary: Ring-like structures, 2.0-4.8cm in diameter, observed in photosynthetic microbial mats on the Wadden Sea island Schiermonnikoog (the Netherlands) showed to be the result of the fungus Emericellopsis sp. degrading the photoautotrophic top layer of the mat. The mats were predominantly comp...

  17. Biocidal Activity of Plasma Modified Electrospun Polysulfone Mats Functionalized with Polyethyleneimine-Capped Silver Nanoparticles

    KAUST Repository

    Schiffman, Jessica D.

    2011-11-01

    The incorporation of silver nanoparticles (AgNPs) into polymeric nanofibers has attracted a great deal of attention due to the strong antimicrobial activity that the resulting fibers exhibit. However, bactericidal efficacy of AgNP-coated electrospun fibrous mats has not yet been demonstrated. In this study, polysulfone (PSf) fibers were electrospun and surface-modified using an oxygen plasma treatment, which allowed for facile irreversible deposition of cationically charged polyethyleneimine (PEI)-AgNPs via electrostatic interactions. The PSf-AgNP mats were characterized for relative silver concentration as a function of plasma treatment time using ICP-MS and changes in contact angle. Plasma treatment of 60 s was the shortest time required for maximum loss of bacteria (Escherichia coli) viability. Time-dependent bacterial cytotoxicity studies indicate that the optimized PSf-AgNP mats exhibit a high level of inactivation against both Gram negative bacteria, Escherichia coli, and Gram positive bacteria, Bacillus anthracis and Staphylococcus aureus. © 2011 American Chemical Society.

  18. Mekh-mat entrance examinations problems

    CERN Document Server

    Vardi, I

    2000-01-01

    This paper provides a complete solution set to 25 ``killer problems'' given to Jewish candidates to the Mekh--mat at Moscow State University during the 1970's and 1980's. Typically, the problems are at the mathematical olympiad level and some feature interesting theorems. However, a number of the problems are flawed, or even completely wrong. The paper therefore includes an evaluation of the problems in the style of a referee report.

  19. Chemical engineering and thermodynamics using Mat lab

    International Nuclear Information System (INIS)

    Kim Heon; Kim, Moon Gap; Lee, Hak Yeong; Yeo, Yeong Gu; Ham, Seong Won

    2002-02-01

    This book consists of twelve chapters and four appendixes about chemical engineering and thermodynamics using Mat lab, which deals with introduction, energy budget, entropy, thermodynamics process, generalization on any fluid, engineering equation of state for PVT properties, deviation of the function, phase equilibrium of pure fluid, basic of multicomponent, phase equilibrium of compound by state equation, activity model and reaction system. The appendixes is about summary of computer program, related mathematical formula and material property of pure component.

  20. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng

    2015-09-01

    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  1. Characterization and Modification of Electrospun Fiber Mats for Use in Composite Proton Exchange Membranes

    Science.gov (United States)

    Mannarino, Matthew Marchand

    Electrostatic fiber formation, or electrospinning, offers a particularly simple and robust method to create polymeric nanofibers of various sizes and morphologies. In electrospinning, a viscoelastic fluid is charged so that a liquid jet is ejected from the surface of the fluid (typically in the form of a drop supplied by a needle or spinneret) and collected on a grounded plate, creating a nonwoven fiber mat. Modification of the diameter of the fibers as well as the porosity, specific surface area, and mechanical properties of the mat allows one to tailor electrospun mats for specific applications. Despite the widespread and rapidly growing use of electrospinning in the fabrication of novel nanomaterials, there are no simple, universal methods of predicting, a priori, the properties of electrospun fibers from knowledge of the polymer solution properties and electrospinning operating conditions alone. Changing a single fluid or processing parameter can affect the jet and fiber formation through several mechanisms. For example, using a different solvent can change several properties of the electrospinning fluid, such as the dielectric constant, conductivity, surface tension, and solute-solvent interaction. The work in this thesis seeks to develop a simple relation for predicting terminal jet diameter during electrospinning, which accounts for solution viscoelasticity as well as solution conductivity and operating parameters that can be easily measured and controlled. The mechanical and tribological properties of electrospun fiber mats are of paramount importance to their utility as components in a variety of applications. Although some mechanical properties of these mats have been investigated previously, reports of their tribological properties are essentially nonexistent. In this thesis, electrospun nanofiber mats of poly(trimethyl hexamethylene terephthalamide) (PA 6(3)T) and poly(hexamethylene adipamide) (PA 6,6) are characterized mechanically and tribologically

  2. Southeast US Historical Marine Mammal Stranding Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data on marine mammal strandings are collected by the Southeast Marine Mammal Stranding Network. Basic data on the location, species identification, animal...

  3. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  4. Charpy V, an application in Mat lab

    International Nuclear Information System (INIS)

    Castillo M, J.A.; Torres V, M.

    2003-01-01

    The obtained results with the system Charpy V V 1 designed in Mat lab for the estimate of parameters of three mathematical models are shown. The adjustment of data is used to determine the fracture energy, the lateral expansion and the percentage of ductility of steels coming from the reactor vessels of Laguna Verde, Veracruz. The data come from test tubes type Charpy V of irradiated material and not irradiated. To verify our results they were compared with those obtained by General Electric of data coming from the Laguna Verde nuclear power plant. (Author)

  5. How compressible is recombinant battery separator mat?

    Energy Technology Data Exchange (ETDEWEB)

    Pendry, C. [Hollingsworth and Vose, Postlip Mills Winchcombe (United Kingdom)

    1999-03-01

    In the past few years, the recombinant battery separator mat (RBSM) for valve-regulated lead/acid (VRLA) batteries has become the focus of much attention. Compression, and the ability of microglass separators to maintain a level of `springiness` have helped reduce premature capacity loss. As higher compressions are reached, we need to determine what, if any, damage can be caused during the assembly process. This paper reviews the findings when RBSM materials, with different surface areas, are compressed under forces up to 500 kPa in the dry state. (orig.)

  6. Manufacture and impact analysis of bmx helmet made from polymeric foam composite strengthened by oil palm empty fruit bunch fiber

    Science.gov (United States)

    Mahadi

    2018-02-01

    Helmets are protective head gears wear by bicycle riders for protection against injury in case of the accident. Helmet standards require helmets to be tested with a simple drop test onto an anvil. The purpose of research is to know toughness of bicycle helmet made from polymeric foam composite strengthened by oil palm empty fruit bunch fiber. This research contains report result manufacture and impacts analysis of bicycle helmet made from polymeric foam composite materials strengthened by oil palm empty fruit bunch fiber (EFB). The geometric helmet structure consists of shell and liner; both layers have sandwich structure. The shell uses matrix unsaturated Polyester BQTN-157EX material, chopped strand mat 300 glass fiber reinforce and methyl ethyl ketone peroxide (MEKPO) catalyst with the weight composition of 100 gr, 15 gr, and 5 gr. The liner uses matrix unsaturated Polyester BQTN-157 EX material, EFB fiber reinforces, Polyurethane blowing agent, and MEKPO catalyst with the composition of 275 gr (50%), 27.5 gr (5%), 247 gr (45%), and 27.5 gr (5%). Layers of the helmet made by using hand lay-up method and gravity casting method. Mechanical properties of polymeric foam were the tensile strength (ơt) 1.17 Mpa, compressive strength (ơc) 0.51 MPa, bending strength (ơb) 3.94 MPa, elasticity modulus (E) 37.97 Mpa, density (ρ) 193 (kg/m3). M4A model helmet is the most ergonomic with the thickness 10 mm and the amount of air channel 11. Free fall impact test was done in 9 samples with the thickness of 10 mm with the height of 1.5 m. The result of the impact test was impacted force (Fi) 241.55 N, Impulse (I) 6.28 Ns, impact Strength (ơi) 2.02 Mpa and impact Energy (Ei) 283.77 Joule. The properties of bicycle helmet model BMX-M4A type was 264 mm length, 184 mm width, 154 mm height, 10 mm thick, 580 mm head circle, 331 g mass and 11 wind channels.

  7. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Science.gov (United States)

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  8. Physical and Mechanical Properties of Jute Mat Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    S.M Sadaf

    2011-11-01

    Full Text Available Cellulose jute fibre offers a number of benefits as reinforcement for synthetic polymers since it has a high specific strength and stiffness, low hardness, relatively low density and biodegradability. To reduce moisture uptake and hence to improve the mechanical properties of the composites, bleached jute mats were incorporated as reinforcing elements in the epoxy matrix. Composites at varying volume fractions and different orientations of jute mat were fabricated by hot compression machine under specific pressures and temperatures. Tensile, flexure, impact and water absorption tests of composites were conducted. Jute mat oriented at (0 ± 45–90° composites showed reduced strength compared to (0–90° fibre mat composites. Impact strength and water uptake of high volume fraction jute mat reinforced composites was higher compared to that of lower volume fraction composites. Fracture surfaces of jute mat composites were analyzed under SEM. Fracture surface of (0–90° jute mat oriented composites showed twisted fibres, while (0 ± 45–90° jute mat oriented composites had fibre pull-out without any twisting. Overall, composites containing 52% jute mat at orientations of (0–90° showed better properties compared to other fabricated composites.

  9. Polymeric bicontinuous microemulsions

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.W.; Lipic, P.M.

    1997-01-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in nurtures containing a model diblock copolymer and two homopolymers. Alt...

  10. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng; Hadjichristidis, Nikolaos; Schlaad, Helmut

    2015-01-01

    . In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges

  11. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  12. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  13. Surface-Initiated Atom Transfer Radical Polymerization from Electrospun Mats: An Alternative to Nafion

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Dimitrov, Ivaylo; Tynelius, Oskar

    2017-01-01

    , respectively. The membrane morphology is probedby scanning electron microscopy. A membrane with protonconductivity as high as 100 mS cm−1 is obtained. Long-termdurability study in direct methanol fuel cells is conducted forover 1500 h demonstrating the viability of this novel facileapproach....

  14. Electrospinning and stabilization of chitosan nanofiber mats

    Science.gov (United States)

    Grimmelsmann, N.; Grothe, T.; Homburg, S. V.; Ehrmann, A.

    2017-10-01

    Chitosan is of special interest for biotechnological and medical applications due to its antibacterial, antifungal and other intrinsic physical and chemical properties. The biopolymer can, e.g., be used for biotechnological purposes, as a filter medium, in medical products, etc. In all these applications, the inner surface should be maximized to increase the contact area with the filtered medium etc. and thus the chitosan’s efficacy. Chitosan dissolves in acidic solutions, opposite to neutral water. Electrospinning is possible, e.g., by co-spinning with PEO (poly(ethylene oxide)). Tests with different chitosan:PEO ratios revealed that higher PEO fractions resulted in better spinnability and more regular fibre mats, but make stabilization of the fibre structure more challenging.

  15. Flygande mat - kabinpersonals måltidssituation

    OpenAIRE

    Johansson, Johanna; Hugosson, Ellen

    2015-01-01

    Inledning Yrket som kabinanställd inom flyget präglas av serviceanda och ansvar för passagerares säkerhet. Arbetsmiljön innebär fysiska påfrestningar vad gäller till exempel kabintryck och låg syrenivå. Mat och måltider intas under olika tider på dygnet och infaller sällan på normala måltidstider. Kabinpersonalens måltider regleras av regler, avtal och policyer rörande arbetstidens längd. Syfte Syftet var att undersöka kabinpersonalens måltider under arbetstid, med fokus på riktlinjer och pol...

  16. MAT@USC Candidates and Latino English Language Learners

    Science.gov (United States)

    Lomeli, Cynthia Leticia

    2012-01-01

    The purpose of this study was to further understand the perceptions of MAT@USC teacher candidates and how their perceptions and previous experiences affect the educational experiences of Latino English language learners. Three questions were developed to guide this study: (1) What are the perceptions of MAT@USC candidates in selected courses…

  17. Matting Of Hair Due To ′Sunsilk′ Shampoo

    Directory of Open Access Journals (Sweden)

    Nadeem Mohd

    1995-01-01

    Full Text Available Matting of hair been reported from time to time due to treatment of hair with detergent, shampoos, waving lotions, setting lotions and bleaches. A case of matting of hairs in a young girl due to a change in the brand of shampoo is reported.

  18. Effects of preprocessing method on TVOC emission of car mat

    Science.gov (United States)

    Wang, Min; Jia, Li

    2013-02-01

    The effects of the mat preprocessing method on total volatile organic compounds (TVOC) emission of car mat are studied in this paper. An appropriate TVOC emission period for car mat is suggested. The emission factors for total volatile organic compounds from three kinds of new car mats are discussed. The car mats are preprocessed by washing, baking and ventilation. When car mats are preprocessed by washing, the TVOC emission for all samples tested are lower than that preprocessed in other methods. The TVOC emission is in stable situation for a minimum of 4 days. The TVOC emitted from some samples may exceed 2500μg/kg. But the TVOC emitted from washed Polyamide (PA) and wool mat is less than 2500μg/kg. The emission factors of total volatile organic compounds (TVOC) are experimentally investigated in the case of different preprocessing methods. The air temperature in environment chamber and the water temperature for washing are important factors influencing on emission of car mats.

  19. Microbial mat ecosystems: Structure types, functional diversity, and biotechnological application

    Directory of Open Access Journals (Sweden)

    Cristina M. Prieto-Barajas

    2018-01-01

    Full Text Available Microbial mats are horizontally stratified microbial communities, exhibiting a structure defined by physiochemical gradients, which models microbial diversity, physiological activities, and their dynamics as a whole system. These ecosystems are commonly associated with aquatic habitats, including hot springs, hypersaline ponds, and intertidal coastal zones and oligotrophic environments, all of them harbour phototrophic mats and other environments such as acidic hot springs or acid mine drainage harbour non-photosynthetic mats. This review analyses the complex structure, diversity, and interactions between the microorganisms that form the framework of different types of microbial mats located around the globe. Furthermore, the many tools that allow studying microbial mats in depth and their potential biotechnological applications are discussed.

  20. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application

    International Nuclear Information System (INIS)

    Fu, Jiapeng; Pang, Zengyuan; Yang, Jie; Huang, Fenglin; Cai, Yibing; Wei, Qufu

    2015-01-01

    Graphical abstract: - Highlights: • PANI nanorods have been grown onto the surface of CMC/cellulose nanofibers for the fabrication of biosensor substrate material. • The proposed laccase biosensor exhibited a low detection limit and high sensitivity in the detection of catechol. • Hierarchical PANI/CMC/cellulose nanofibers are the promising material in the design of high-efficient biosensors. - Abstract: We report a facile approach to synthesizing and immobilizing polyaniline nanorods onto carboxymethyl cellulose (CMC)-modified cellulose nanofibers for their biosensing application. Firstly, the hierarchical PANI/CMC/cellulose nanofibers were fabricated by in situ polymerization of aniline on the CMC-modified cellulose nanofiber. Subsequently, the PANI/CMC/cellulose nanofibrous mat modified with laccase (Lac) was used as biosensor substrate material for the detection of catechol. PANI/CMC/cellulose nanofibers with highly conductive and three dimensional nanostructure were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, the Lac/PANI/CMC/cellulose/glassy carbon electrode (GCE) exhibited a fast response time (within 8 s), a linear response range from 0.497 μM to 2.27 mM with a high sensitivity and low detection limit of 0.374 μM (3σ). The developed biosensor also displayed good repeatability, reproducibility as well as selectivity. The results indicated that the composite mat has potential application in enzyme biosensors

  1. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiapeng, E-mail: firgexiao@sina.cn; Pang, Zengyuan, E-mail: pangzengyuan1212@163.com; Yang, Jie, E-mail: young1993@126.com; Huang, Fenglin, E-mail: flhuang@jiangnan.edu.cn; Cai, Yibing, E-mail: yibingcai@jiangnan.edu.cn; Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn

    2015-09-15

    Graphical abstract: - Highlights: • PANI nanorods have been grown onto the surface of CMC/cellulose nanofibers for the fabrication of biosensor substrate material. • The proposed laccase biosensor exhibited a low detection limit and high sensitivity in the detection of catechol. • Hierarchical PANI/CMC/cellulose nanofibers are the promising material in the design of high-efficient biosensors. - Abstract: We report a facile approach to synthesizing and immobilizing polyaniline nanorods onto carboxymethyl cellulose (CMC)-modified cellulose nanofibers for their biosensing application. Firstly, the hierarchical PANI/CMC/cellulose nanofibers were fabricated by in situ polymerization of aniline on the CMC-modified cellulose nanofiber. Subsequently, the PANI/CMC/cellulose nanofibrous mat modified with laccase (Lac) was used as biosensor substrate material for the detection of catechol. PANI/CMC/cellulose nanofibers with highly conductive and three dimensional nanostructure were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, the Lac/PANI/CMC/cellulose/glassy carbon electrode (GCE) exhibited a fast response time (within 8 s), a linear response range from 0.497 μM to 2.27 mM with a high sensitivity and low detection limit of 0.374 μM (3σ). The developed biosensor also displayed good repeatability, reproducibility as well as selectivity. The results indicated that the composite mat has potential application in enzyme biosensors.

  2. Spatial patterns of cyanobacterial mat growth on sand ripples

    Science.gov (United States)

    Mariotti, G.; Klepac-Ceraj, V.; Perron, J. T.; Bosak, T.

    2016-02-01

    Photosynthetic microbial mats produce organic matter, cycle nutrients, bind pollutants and stabilize sediment in sandy marine environments. Here, we investigate the influence of bedforms and wave motion on the growth rate, composition and spatial variability of microbial mats by growing cyanobacterial mats on a rippled bed of carbonate sand in a wave tank. The tank was forced with an oscillatory flow with velocities below the threshold for sediment motion yet able to induce a porewater flow within the sediment. Different spatial patterns developed in mats depending on the initial biochemistry of the water medium. When growing in a medium rich in nitrogen, phosphorous and micronutrients, mats grew faster on ripple troughs than on ripple crests. After two months, mats covered the bed surface uniformly, and the microbial communities on the crests and in the troughs had similar compositions. Differences in bed shear stress and nutrient availability between crests and troughs were not able to explain the faster growth in the troughs. We hypothesize that this growth pattern is due to a "strainer" effect, i.e. the suspended bacteria from the inoculum were preferentially delivered to troughs by the wave-induced porewater flow. In the experiments initiated in a medium previously used up by a microbial mat and thus depleted in nutrients, mats grew preferentially on the ripple crests. This spatial pattern persisted for nearly two years, and the microbial composition on troughs and crests was different. We attribute this pattern to the upwelling of porewater in the crests, which increased the delivery of nutrients from sediment to the cyanobacteria on the bed surface. Thus, the macroscopic patterns formed by photosynthetic microbial mats on sand ripples may be used to infer whether mats are nutrient-limited and whether they are recently colonized or older than a month.

  3. Diversity and stratification of archaea in a hypersaline microbial mat.

    Science.gov (United States)

    Robertson, Charles E; Spear, John R; Harris, J Kirk; Pace, Norman R

    2009-04-01

    The Guerrero Negro (GN) hypersaline microbial mats have become one focus for biogeochemical studies of stratified ecosystems. The GN mats are found beneath several of a series of ponds of increasing salinity that make up a solar saltern fed from Pacific Ocean water pumped from the Laguna Ojo de Liebre near GN, Baja California Sur, Mexico. Molecular surveys of the laminated photosynthetic microbial mat below the fourth pond in the series identified an enormous diversity of bacteria in the mat, but archaea have received little attention. To determine the bulk contribution of archaeal phylotypes to the pond 4 study site, we determined the phylogenetic distribution of archaeal rRNA gene sequences in PCR libraries based on nominally universal primers. The ratios of bacterial/archaeal/eukaryotic rRNA genes, 90%/9%/1%, suggest that the archaeal contribution to the metabolic activities of the mat may be significant. To explore the distribution of archaea in the mat, sequences derived using archaeon-specific PCR primers were surveyed in 10 strata of the 6-cm-thick mat. The diversity of archaea overall was substantial albeit less than the diversity observed previously for bacteria. Archaeal diversity, mainly euryarchaeotes, was highest in the uppermost 2 to 3 mm of the mat and decreased rapidly with depth, where crenarchaeotes dominated. Only 3% of the sequences were specifically related to known organisms including methanogens. While some mat archaeal clades corresponded with known chemical gradients, others did not, which is likely explained by heretofore-unrecognized gradients. Some clades did not segregate by depth in the mat, indicating broad metabolic repertoires, undersampling, or both.

  4. Radiation induced emulsion polymerization

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1990-01-01

    High energy radiation is particularly favored for the initiation of emulsion polymerization. The yield of free radicals, for example, from the radiolysis of the aqueous phase, is high; G(radical) values of 5-7. In addition, the rather special kinetics associated with emulsion polymerization lead, in general, to very large kinetic chain lengths, even with 'non-ideal' monomers such as vinyl acetate. Together, high polymerization rates at low doses become possible. There are some important advantages of radiation polymerization compared with chemical initiators, such as potassium persulfate. Perhaps the most important among them is the temperature independence of the initiation step. This makes low temperature polymerization very accessible. With monomers such as vinyl acetate, where chain termination to monomer is predominant, low temperatures lead to often highly desirable higher molecular weights. With styrene, the classical ideally behaved monomer, there are the advantages such as, for example, the feasibility of using cationic monomers. These and some attendant disadvantages are discussed in detail, including pilot plant studies

  5. Renewable Resources and a Recycled Polymer as Raw Materials: Mats from Electrospinning of Lignocellulosic Biomass and PET Solutions

    Directory of Open Access Journals (Sweden)

    Rachel Passos de Oliveira Santos

    2018-05-01

    Full Text Available Interest in the use of renewable raw materials in the preparation of materials has been growing uninterruptedly in recent decades. The aim of this strategy is to offer alternatives to the use of fossil fuel-based raw materials and to meet the demand for materials that are less detrimental to the environment after disposal. In this context, several studies have been carried out on the use of lignocellulosic biomass and its main components (cellulose, hemicelluloses, and lignin as raw materials for polymeric materials. Lignocellulosic fibers have a high content of cellulose, but there has been a notable lack of investigations on application of the electrospinning technique for solutions prepared from raw lignocellulosic biomass, even though the presence of cellulose favors the alignment of the fiber chains during electrospinning. In this investigation, ultrathin (submicrometric and nanoscale aligned fibers were successfully prepared via electrospinning (room temperature of solutions prepared with different contents of lignocellulosic sisal fibers combined with recycled poly(ethylene terephthalate (PET using trifluoroacetic acid (TFA as solvent. The “macro” fibers were deconstructed by the action of TFA, resulting in solutions containing their constituents, i.e., cellulose, hemicelluloses, and lignin, in addition to PET. The “macro” sisal fibers were reconstructed at the nanometer and submicrometric scale from these solutions. The SEM micrographs of the mats containing the components of sisal showed distinct fiber networks, likely due to differences in the solubility of these components in TFA and in their dielectric constants. The mechanical properties of the mats (dynamic mechanical analysis, DMA, and tensile properties were evaluated with the samples positioned both in the direction (dir of and in opposition (op to the alignment of the nano and ultrathin fibers, which can be considered a novelty in the analysis of this type of material

  6. Genotoxic evaluation of polymeric nanoparticles

    Directory of Open Access Journals (Sweden)

    Tamara Iglesias Alonso

    2015-06-01

    Full Text Available An important strategy for optimizing the therapeutic efficacy of many conventional drugs is the development of polymeric nanoparticles (NPs, as it may expand their activities, reduce their toxicity, increase their bioactivity and improve biodistribution. The main objective of this study was to evaluate the genotoxicity of 8 different poly (anhydride NPs designed for the oral administration of therapeutic compounds by using the comet assay in combination with the enzyme formamidopypiridine DNA-glycosylase (FPG. Furthermore, the mitogen capacity of the NPs was evaluated by the proliferation assay. All NPs were tested at four concentrations (0, 0.5, 1 and 2 mg/mL in Caco-2 cells after 3 hours of treatment while selected NPs were also tested after 24 h. The comet assay was performed immediately after the treatment and cell proliferation was assessed by counting the treated cells after their incubation at 37 °C for 48h. Cells treated with 1 µM of the photosensitizer Ro 19-8022 plus 5 min of light, as well as cells treated with 100 µM H2O2 were included as positive controls in all the experiments. All NPs studied did not result in any increase in the frequency of strand breaks or alkali-labile sites in Caco-2 cells but they induced a slight concentration-dependent increase in net FPG sensitive sites (oxidized and/or alkylated bases. Furthermore, treated cells did not show changes in levels of proliferation in comparison with the negative control.

  7. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    , external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous......In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  8. Inflation of a Polymeric Menbrane

    DEFF Research Database (Denmark)

    Kristensen, Susanne B.; Larsen, Johannes R.; Hassager, Ole

    1998-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane.......We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane....

  9. Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Miguel A. Hidalgo-Salazar

    2018-03-01

    Full Text Available In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique and Epoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique biocomposites were prepared using thermocompression and resin film infusion processes. Neat polymeric matrices and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior of these materials has been studied by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. Tensile and flexural test revealed that nonwoven Fique reinforced composites exhibited higher modulus and strength but lower deformation capability as compared with LLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation has an effect on the thermal stability of the composites. On the other hand, Fique fibers did not change the crystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromolecules chains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of considering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture of biocomposites for automotive applications. In addition to the processing test specimens, it was also possible to manufacture a part of LLDPE-Fique, and one part of EP-Fique. Keywords: Biocomposites, Natural materials, Nonwoven Fique fiber mat, LLDPE, Epoxy Resin

  10. Water flow and solute transport in floating fen root mats

    Science.gov (United States)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    Floating fens are valuable wetlands, found in North-Western Europe, that are formed by floating root mats when old turf ponds are colonized by plants. These terrestrialization ecosystems are known for their biodiversity and the presence of rare plant species, and the root mats reveal different vegetation zones at a small scale. The vegetation zones are a result of strong gradients in abiotic conditions, including groundwater dynamics, nutrients and pH. To prevent irreversible drought effects such as land subsidence and mineralization of peat, water management involves import of water from elsewhere to maintain constant surface water levels. Imported water may have elevated levels of salinity during dry summers, and salt exposure may threaten the vegetation. To assess the risk of exposure of the rare plant species to salinity, the hydrology of such root mats must be understood. Physical properties of root mats have scarcely been investigated. We have measured soil characteristics, hydraulic conductivity, vertical root mat movement and groundwater dynamics in a floating root mat in the nature reserve Nieuwkoopse Plassen, in the Netherlands. The root mat mostly consists of roots and organic material, in which the soil has a high saturated water content, and strongly varies in its stage of decomposition. We have found a distinct negative correlation between degree of decomposition and hydraulic conductivity, similar to observations for bogs in the literature. Our results show that the relatively young, thin edge of the root mat that colonizes the surface water has a high hydraulic conductivity and floats in the surface water, resulting in very small groundwater fluctuations within the root mat. The older part of the root mat, that is connected to the deeper peat layers is hydrologically more isolated and the material has a lower conductivity. Here, the groundwater fluctuates strongly with atmospheric forcing. The zones of hydraulic properties and vegetation, appear to

  11. Modelling toehold-mediated RNA strand displacement.

    Science.gov (United States)

    Šulc, Petr; Ouldridge, Thomas E; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A

    2015-03-10

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperature and make two experimentally testable predictions: that the displacement is faster if the toehold is placed at the 5' end of the substrate; and that the displacement slows down with increasing temperature for longer toeholds. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Polymerized and functionalized triglycerides

    Science.gov (United States)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  13. Polymerization by radiation. Application

    International Nuclear Information System (INIS)

    Romero, M.; Fernandez Miranda, J.

    1997-01-01

    Achieved results of the research work done in the field of radiation polymerization are summarized. Developing new chromatographic matrices, the radiation grafting of Glycidyl methacrylate on the surface of Low Density Polyethylene beads was studied. The dependence of both, the grafted degree and width of the grafted layer, with the radiation dose applied, is presented

  14. RAFT polymerization mediated bioconjugation strategies

    OpenAIRE

    Bulmuş, Volga

    2011-01-01

    This review aims to highlight the use of RAFT polymerization in the synthesis of polymer bioconjugates. It covers two main bioconjugation strategies using the RAFT process: (i) post-polymerization bioconjugations using pre-synthesized reactive polymers, and (ii) bioconjugations via in situ polymerization using biomolecule-modified monomers or chain transfer agents. © 2011 The Royal Society of Chemistry.

  15. Vulnerability of R-MAT networks with communities

    Directory of Open Access Journals (Sweden)

    Nikolay Alexandrovich Kinash

    2016-06-01

    Full Text Available A generator R-MAT for modeling networks with different laws of link constructions within and between communities has been developed. Network attack simulations have been performed and pertinent robustness of diverse network combinations has been concluded.

  16. Fabrication of nanofiber mats from electrospinning of functionalized polymers

    Science.gov (United States)

    Oktay, Burcu; Kayaman-Apohan, Nilhan; Erdem-Kuruca, Serap

    2014-08-01

    Electrospinning technique enabled us to prepare nanofibers from synthetic and natural polymers. In this study, it was aimed to fabricate electrospun poly(vinyl alcohol) (PVA) based nanofibers by reactive electrospinning process. To improve endurance of fiber toward to many solvents, PVA was functionalized with photo-crosslinkable groups before spinning. Afterward PVA was crosslinked by UV radiation during electrospinning process. The nanofiber mats were characterized by scanning electron microscopy (SEM). The results showed that homogenous, uniform and crosslinked PVA nanofibers in diameters of about 200 nm were obtained. Thermal stability of the nanofiber mat was investigated with thermal gravimetric analysis (TGA). Also the potential use of this nanofiber mats for tissue engineering was examined. Osteosarcoma (Saos) cells were cultured on the nanofiber mats.

  17. Fabrication of nanofiber mats from electrospinning of functionalized polymers

    International Nuclear Information System (INIS)

    Oktay, Burcu; Kayaman-Apohan, Nilhan; Erdem-Kuruca, Serap

    2014-01-01

    Electrospinning technique enabled us to prepare nanofibers from synthetic and natural polymers. In this study, it was aimed to fabricate electrospun poly(vinyl alcohol) (PVA) based nanofibers by reactive electrospinning process. To improve endurance of fiber toward to many solvents, PVA was functionalized with photo-crosslinkable groups before spinning. Afterward PVA was crosslinked by UV radiation during electrospinning process. The nanofiber mats were characterized by scanning electron microscopy (SEM). The results showed that homogenous, uniform and crosslinked PVA nanofibers in diameters of about 200 nm were obtained. Thermal stability of the nanofiber mat was investigated with thermal gravimetric analysis (TGA). Also the potential use of this nanofiber mats for tissue engineering was examined. Osteosarcoma (Saos) cells were cultured on the nanofiber mats

  18. Thermal Protection System Materials (TPSM): 3D MAT

    Data.gov (United States)

    National Aeronautics and Space Administration — The 3D MAT Project seeks to design and develop a game changing Woven Thermal Protection System (TPS) technology tailored to meet the needs of the Orion Multi-Purpose...

  19. Counting viruses and bacteria in photosynthetic microbial mats

    NARCIS (Netherlands)

    Carreira, C; Staal, M.; Middelboe, M.; Brussaard, C.P.D.

    2015-01-01

    Viral abundances in benthic environments are the highest found in aquatic systems. Photosynthetic microbial mats represent benthic environments with high microbial activity and possibly high viral densities, yet viral abundances have not been examined in such systems. Existing extraction procedures

  20. Biodiversity of the microbial mat of the Garga hot spring.

    Science.gov (United States)

    Rozanov, Alexey Sergeevich; Bryanskaya, Alla Victorovna; Ivanisenko, Timofey Vladimirovich; Malup, Tatyana Konstantinovna; Peltek, Sergey Evgenievich

    2017-12-28

    Microbial mats are a good model system for ecological and evolutionary analysis of microbial communities. There are more than 20 alkaline hot springs on the banks of the Barguzin river inflows. Water temperature reaches 75 °C and pH is usually 8.0-9.0. The formation of microbial mats is observed in all hot springs. Microbial communities of hot springs of the Baikal rift zone are poorly studied. Garga is the biggest hot spring in this area. In this study, we investigated bacterial and archaeal diversity of the Garga hot spring (Baikal rift zone, Russia) using 16S rRNA metagenomic sequencing. We studied two types of microbial communities: (i) small white biofilms on rocks in the points with the highest temperature (75 °C) and (ii) continuous thick phototrophic microbial mats observed at temperatures below 70 °C. Archaea (mainly Crenarchaeota; 19.8% of the total sequences) were detected only in the small biofilms. The high abundance of Archaea in the sample from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. In the microbial mats, primary products were formed by cyanobacteria of the genus Leptolyngbya. Heterotrophic microorganisms were mostly represented by Actinobacteria and Proteobacteria in all studied samples of the microbial mats. Planctomycetes, Chloroflexi, and Chlorobi were abundant in the middle layer of the microbial mats, while heterotrophic microorganisms represented mostly by Firmicutes (Clostridia, strict anaerobes) dominated in the bottom part. Besides prokaryotes, we detect some species of Algae with help of detection their chloroplasts 16 s rRNA. High abundance of Archaea in samples from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. Metagenomic analysis of microbial communities of the microbial mat of Garga hot spring showed that

  1. Carbon cycling and calcification in hypersaline microbial mats

    OpenAIRE

    Ludwig, Rebecca

    2004-01-01

    Phototrophic microbial mats are laminated aggregations of microorganisms that thrive in extreme and oligotrophic environments. Primary production rates by oxygenic phototrophs are extremely high. Primary producers supply heterotrophic mat members with organic carbon, which in turn regenerate CO2 needed for autotrophic carbon fixation. Another potential source of CO2 is calcification, which is known to shift the carbonate equilibrium towards CO2. This thesis investigated the carbon cycle of mi...

  2. Le matérialisme scientifique

    Science.gov (United States)

    Meunier, Jean-François

    2004-03-01

    De nos jours, il arrive quotidiennement aux grands hommes d'avoir à fréquenter d'ignorants mortels épris d'une conviction maladive que la science est la grande responsable de tous les maux du monde. Évidemment sans physique atomique, il n'y aurait pas eu d'Hiroshima et sans révolution industrielle, pas de pollution et etc. Cependant, ces accusations envers le progrès technique sont tout à fait injustes, irréfléchies et, j'irai même jusqu'à dire, irresponsables, puisque le calcul, i.e. la planification, même la plus élémentaire, est ce qui caractérise le mieux, pragmatiquement, la société humaine. À mon avis, les problèmes sociaux tireraient plutôt leur origine de sciences sociales irréalistes, qui, concrètment, inspireraient ou serviraient d'alibis à ceux qui détiennent véritablement le pouvoir. Dans cet article, je tenterai donc de démontrer la meilleure véracité et efficacité du matérialisme scientifique. Cette doctrine, dont Mario Bunge est le plus illustre représentant, s'appuy sur les résultats théoriques et expérimentaux des sciences factuelles ainsi que sur l'exactitude logique des mathématiques, utilisées ici comme langage universel de l'expression des idées. Cette conception philosophique qui s'inspire principalement du modèle des théories physiques, stipule que les réalités sociales sont, comme tout autre réalité, matérielles, mathématisables et représentables comme des systèmes en interaction. En fait, le modèle des physiciens ayant historiquement fait ses preuves en matière de testabilité et de cohérence interne est proposé d'être appliquer aux sciences sociales, aujourd'hui scindées des sciences dites pures sous l'inspiration des pseudo penseurs néo-kantiens, phénoménologiques et post-moderne. Cette nouvelle approche permettrait ainsi d'évoluer plus exactement vers une compréhension des bases sociales et biologiques du comportement humain afin de développer une éthique sans cesse plus r

  3. Flexible and freestanding supercapacitor based on nanostructured poly(m-aminophenol)/carbon nanofiber hybrid mats with high energy and power densities

    Science.gov (United States)

    Choudhury, Arup; Dey, Baban; Sinha Mahapatra, Susanta; Kim, Doo-Won; Yang, Kap-Seung; Yang, Duck-Joo

    2018-04-01

    Nanostructured poly(m-aminophenol) (PmAP) coated freestanding carbon nanofiber (CNF) mats were fabricated through simple in situ rapid-mixing polymerization of m-aminophenol in the presence of a CNF mat for flexible solid-state supercapacitors. The surface compositions, morphology and pore structure of the hybrid mats were characterized by using various techniques, e.g., FTIR, Raman, XRD, FE-SEM, TEM, and N2 absorption. The results show that the PmAP nanoparticles were homogeneously deposited on CNF surfaces and formed a thin flexible hybrid mat, which were directly used to made electrodes for electrochemical analysis without using any binders or conductive additives. The electrochemical performances of the hybrid mats were easily tailored by varying the PmAP loading on a hybrid electrode. The PmAP/CNF-10 hybrid electrode with a relatively low PmAP loading (> 42 wt%) showed a high specific capacitance of 325.8 F g-1 and a volumetric capacitance of 273.6 F cm-3 at a current density of 0.5 A g-1, together with a specific capacitance retention of 196.2 F g-1 at 20 A g-1. The PmAP/CNF-10 hybrid electrode showed good cycling stability with 88.2% capacitance retention after 5000 cycles. A maximum energy density of 45.2 Wh kg-1 and power density of 20.4 kW kg-1 were achieved for the PmAP/CNF-10 hybrid electrode. This facile and cost-effective synthesis of a flexible binder-free PmAP/CNF hybrid mat with excellent capacitive performances encourages its possible commercial exploitation.

  4. Improving cytoactive of endothelial cell by introducing fibronectin to the surface of poly L-Lactic acid fiber mats via dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wufeng; Zhang, Xiazhi; Wu, Keke; Liu, Xiaoyan; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Zhou, Changren

    2016-12-01

    A simple but straightforward approach was reported to prepare fiber mats modified with fibronectin (Fn) protein for endothelial cells activity study. Based on the self-polymerization and strong adhesion feature of dopamine, poly L-Lactic acid (PLLA) fibers mat was modified via simply immersing them into dopamine solution for 16 h. Subsequently, Fn was immobilized onto the fiber mats surface by the coupling reactive polydopamine (PDA) layer and Fn. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to determine the chemical compositions of fiber mats surface, which confirmed the successful immobilization of PDA and Fn molecules on the fiber surface. Scanning electronic microscopy (SEM) was used to observe the surface morphology changes after modification with PDA and Fn. The data of water contact angle showed that the hydrophilicity of the fiber mats was improved after surface modification. The data of in vitro cell culture proved that the PDA and Fn modified surface significantly enhanced the adhesion, proliferation and cell activity of endothelial cells on the fiber mats. And the release of tumor necrosis factor-α (TNF-α) by endothelial cells on the modified surface was suppressed compared to that on culture plate and PLLA film at 2 and 4 days, while the secretion of interleukin-1β (IL-1β) was increased compared to that on culture plate and PLLA film at 2 days. - Highlights: • Fibronectin (Fn) was grafted on PLLA fiber surface mediated by polydopamine coating. • Fn modified PLLA fiber enhanced the adhesion, proliferation of endothelial cells. • Fn and polydopamine modified PLLA fiber could adjust the release of inflammatory factor.

  5. Regulation of electron transfer processes affects phototrophic mat structure and activity

    Science.gov (United States)

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  6. Regulation of electron transfer processes affects phototrophic mat structure and activity

    Directory of Open Access Journals (Sweden)

    Haluk eBeyenal

    2015-09-01

    Full Text Available Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA. We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl (cathodic mat system and +300 mVAg/AgCl (anodic mat system and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both anodic and cathodic mat systems. Interestingly, the cathodic mats generated the highest reducing current at the same time points that the anodic mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the cathodic mats than in the anodic mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the cathodic mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that

  7. Regulation of electron transfer processes affects phototrophic mat structure and activity.

    Science.gov (United States)

    Ha, Phuc T; Renslow, Ryan S; Atci, Erhan; Reardon, Patrick N; Lindemann, Stephen R; Fredrickson, James K; Call, Douglas R; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  8. The stranding anomaly as population indicator

    DEFF Research Database (Denmark)

    Peltier, Helene; Baagøe, Hans J.; Camphuysen, Kees C. J.

    2013-01-01

    Ecological indicators for monitoring strategies are expected to combine three major characteristics: ecological significance, statistical credibility, and cost-effectiveness. Strategies based on stranding networks rank highly in cost-effectiveness, but their ecological significance and statistica...... surveys, mostly SCANS surveys (1994 and 2005). This new indicator could be applied to cetacean populations across the world and more widely to marine megafauna....... credibility are disputed. Our present goal is to improve the value of stranding data as population indicator as part of monitoring strategies by constructing the spatial and temporal null hypothesis for strandings. The null hypothesis is defined as: small cetacean distribution and mortality are uniform...

  9. Strand Displacement by DNA Polymerase III Occurs through a τ-ψ-χ Link to Single-stranded DNA-binding Protein Coating the Lagging Strand Template*

    OpenAIRE

    Yuan, Quan; McHenry, Charles S.

    2009-01-01

    In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of γ-complex to support the reaction in the absence of τ. However, if γ-complex is p...

  10. Radiation polymerization of tetrafluoroethylene

    International Nuclear Information System (INIS)

    Kadoi, H.; Lugao, A.B.; Oikawa, H.

    1984-01-01

    Tetrafluoroethylene (TFE) monomer was obtained by means of the pyrolysis of chlorodifluoromethane (R-22). The experiments were carried out in quartz tube with temperature between 700 0 and 800 0 C. The principal reaction of the pyrolysis is considered to be: 2CHClF2 ----> C 2 F 4 +2HCl. However, by-products such as HF, C 3 F 6 , C 2 HClF 4 , C 4 F 8 etc are also produced in the pyrolysis process. The conversions of R-22 varied from 30 to 50%, depending upon the temperature, pressure and flow rate of R-22 in the furnace. Finally the TFE monomer of purity higher than 99.98% was obtained by fractional distillation in low temperatures ranging from -10 0 to -30 0 C. The bulk polymerization of this monomer induced by γ-rays from 3000Ci cobalt-60 source was studied at various temperatures (room temperature, 0 0 , -23 0 and -78 0 C). The monomers were introduced into stainless steel vessels of 15 and 60 ml volume under vacuum. The control of polymerization reaction was rather hard at temperatures higher than -23 0 C due to the difficulty of removing the heat of reaction. However, the polymerization at -78 0 C was very easy to control. The white polymer particles were obtained in agglomerated state. The IR spectra of the polymers were consistent with those of commercial products. The melting points of samples were between 326 0 and 331 0 C. (Author) [pt

  11. Photosynthetic Microbial Mats are Exemplary Sources of Diverse Biosignatures (Invited)

    Science.gov (United States)

    Des Marais, D. J.; Jahnke, L. L.

    2013-12-01

    Marine cyanobacterial microbial mats are widespread, compact, self-contained ecosystems that create diverse biosignatures and have an ancient fossil record. Within the mats, oxygenic photosynthesis provides organic substrates and O2 to the community. Both the absorption and scattering of light change the intensity and spectral composition of incident radiation as it penetrates a mat. Some phototrophs utilize infrared light near the base of the photic zone. A mat's upper layers can become highly reduced and sulfidic at night. Counteracting gradients of O2 and sulfide shape the chemical environment and provide daily-contrasting microenvironments separated on a scale of a few mm. Radiation hazards (UV, etc.), O2 and sulfide toxicity elicit motility and other physiological responses. This combination of benefits and hazards of light, O2 and sulfide promotes the allocation of various essential mat processes between light and dark periods and to various depths in the mat. Associated nonphotosynthetic communities, including anaerobes, strongly influence many of the ecosystem's overall characteristics, and their processes affect any biosignatures that enter the fossil record. A biosignature is an object, substance and/or pattern whose origin specifically requires a biological agent. The value of a biosignature depends not only on the probability of life creating it, but also on the improbability of nonbiological processes producing it. Microbial mats create biosignatures that identify particular groups of organisms and also reveal attributes of the mat ecosystem. For example, branched hydrocarbons and pigments can be diagnostic of cyanobacteria and other phototrophic bacteria, and isoprenoids can indicate particular groups of archea. Assemblages of lipid biosignatures change with depth due to changes in microbial populations and diagenetic transformations of organic matter. The 13C/12C values of organic matter and carbonates reflect isotopic discrimination by particular

  12. Radiation chemistry of polymeric system

    International Nuclear Information System (INIS)

    Machi, Sueo; Ishigaki, Isao

    1978-01-01

    Among wide application of radiation in the field of polymer chemistry, practices of polymerization, graft polymerization, bridging, etc. are introduced hereinafter. As for the radiation sources of radiation polymerization, in addition to the 60 Co-γ ray with long permeation distance which has been usually applied, electron beam accelerators with high energy, large current and high reliability have come to be produced, and the liquid phase polymerization by electron beam has attracted attention industrially. Concerning polymerizing reactions, explanations were given to electron beam polymerization under high dose rate, the polymerization in supercooling state or under high pressure, and emulsifying polymerization. As for radiation bridging, radiation is applied for the bridging of hydrogel, acceleration of bridging and improvement of radiation resistance. It is also utilized for reforming membranes by graft polymerization, and synthesis of polymers for medical use. Application of fixed enzymes in the medical field has been investigated by fixing various enzymes by low temperature γ-ray polymerization with glassy monomers such as HEMA. (Kobatake, H.)

  13. Gyrospun antimicrobial nanoparticle loaded fibrous polymeric filters

    Energy Technology Data Exchange (ETDEWEB)

    Eranka Illangakoon, U.; Mahalingam, S.; Wang, K. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Cheong, Y.-K. [School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Canales, E. [Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 7JE (United Kingdom); Ren, G.G. [School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Cloutman-Green, E. [Department of Microbiology, Virology, and Infection Prevention Control, Great Ormond Street Hospital NHS Foundation Trust, London WCIN 3JH (United Kingdom); Edirisinghe, M., E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Ciric, L. [Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 7JE (United Kingdom)

    2017-05-01

    A one step approach to prepare hybrid nanoparticle embedded polymer fibres using pressurised gyration is presented. Two types of novel antimicrobial nanoparticles and poly(methylmethacrylate) polymer were used in this work. X-ray diffraction analysis of the nanoparticles revealed Ag, Cu and W are the main elements present in them. The concentration of the polymer solution and the nanoparticle concentration had a significant influence on the fibre diameter, pore size and morphology. Fibres with a diameter in the range of 6–20 μm were spun using 20 wt% polymer solutions containing 0.1, 0.25 and 0.5 wt% nanoparticles under 0.3 MPa working pressure and a rotational speed of 36,000 rpm. Continuous, bead-free fibre morphologies were obtained for each case. The pore size in the fibres varied between 36 and 300 nm. Successful incorporation of the nanoparticles in polymer fibres was confirmed by energy dispersive x-ray analysis. The fibres were also gyrospun on to metallic discs to prepare filters which were tested for their antibacterial activity on a suspension of Pseudomonas aeruginosa. Nanoparticle loaded fibres showed higher antibacterial efficacy than pure poly(methylmethacrylate) fibres. - Highlights: • Nanoparticles containing Ag, Cu and W were studied for antimicrobial activity. • Hybrid nanoparticle-polymeric fibres were prepared using pressurised gyration. • Fibre characteristics were tailored using material and forming process variables. • Nanoparticle loaded fibre mats show higher antibacterial efficacy.

  14. The (not so) Immortal Strand Hypothesis

    OpenAIRE

    Tomasetti, Cristian; Bozic, Ivana

    2015-01-01

    Background: Non-random segregation of DNA strands during stem cell replication has been proposed as a mechanism to minimize accumulated genetic errors in stem cells of rapidly dividing tissues. According to this hypothesis, an “immortal” DNA strand is passed to the stem cell daughter and not the more differentiated cell, keeping the stem cell lineage replication error-free. After it was introduced, experimental evidence both in favor and against the hypothesis has been presented. Principal...

  15. Two-step activation of meiosis by the mat1 locus in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Willer, M; Hoffmann, Ulla-Lisbeth; Styrkársdóttir, U

    1995-01-01

    in which the mat1 locus plays two roles in controlling meiosis. In the first instance, the mat1-Pc and mat1-Mc functions are required to produce the mating pheromones and receptors that allow the generation of a pheromone signal. This signal is required to induce the expression of mat1-Pm and mat1-Mm......The mat1 locus is a key regulator of both conjugation and meiosis in the fission yeast Schizosaccharomyces pombe. Two alternative DNA segments of this locus, mat1-P and mat1-M, specify the haploid cell types (Plus and Minus). Each segment includes two genes: mat1-P includes mat1-Pc and mat1-Pm....... This appears to be the major pheromone-dependent step in controlling meiosis since ectopic expression of these genes allows meiosis in the absence of mat1-Pc and mat1-Mc. The mat1-Pm and mat1-Mm products complete the initiation of meiosis by activating transcription of the mei3 gene....

  16. Fluorometric determination of nucleic acids based on the use of polydopamine nanotubes and target-induced strand displacement amplification.

    Science.gov (United States)

    Ge, Jia; Bai, Dong-Mei; -Geng, Xin; Hu, Ya-Lei; Cai, Qi-Yong; Xing, Ke; Zhang, Lin; Li, Zhao-Hui

    2018-01-10

    The authors describe a fluorometric method for the quantitation of nucleic acids by combining (a) cycled strand displacement amplification, (b) the unique features of the DNA probe SYBR Green, and (c) polydopamine nanotubes. SYBR Green undergoes strong fluorescence enhancement upon intercalation into double-stranded DNA (dsDNA). The polydopamine nanotubes selectively adsorb single-stranded DNA (ssDNA) and molecular beacons. In the absence of target DNA, the molecular beacon, primer and SYBR Green are adsorbed on the surface of polydopamine nanotubes. This results in quenching of the fluorescence of SYBR Green, typically measured at excitation/emission wavelengths of 488/518 nm. Upon addition of analyte (target DNA) and polymerase, the stem of the molecular beacon is opened so that it can bind to the primer. This triggers target strand displacement polymerization, during which dsDNA is synthesized. The hybridized target is then displaced due to the strand displacement activity of the polymerase. The displaced target hybridizes with another molecular beacon. This triggers the next round of polymerization. Consequently, a large amount of dsDNA is formed which is detected by addition of SYBR Green. Thus, sensitive and selective fluorometric detection is realized. The fluorescent sensing strategy shows very good analytical performances towards DNA detection, such as a wide linear range from 0.05 to 25 nM with a low limit of detection of 20 pM. Graphical abstract Schematic of a fluorometric strategy for highly sensitive and selective determination of nucleic acids by combining strand displacement amplification and the unique features of SYBR Green I (SG) and polydopamine nanotubes.

  17. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat

    International Nuclear Information System (INIS)

    Zhou, Jintang; Yao, Zhengjun; Chen, Yongxin; Wei, Dongbo; Wu, Yibing

    2013-01-01

    Highlights: • Over 10% glass fiber was used to reinforce phenolic foam in the shape of glass fiber mat. • Nucleating agents were used together with glass fiber mat and improved tensile strength of phenolic foam by 215.6%. • Nucleating agents lead to a smaller bubble size of phenolic foam. • The glass transition temperature of phenolic foam remained unchanged during the reinforcement. - Abstract: In this paper, thermomechanical analysis (TMA) and dynamic mechanical analysis were employed to study the properties of phenolic foam reinforced with glass fiber mat. Unreinforced phenolic foam was taken as the control sample. Mechanical tests and scanning electron microscopy were performed to confirm the results of TMA. The results show that glass fiber mat reinforcement improves the mechanical performance of phenolic foam, and nucleating agents improve it further. Phenolic foam reinforced with glass fiber mat has a smaller thermal expansion coefficient compared with unreinforced foam. The storage modulus of the reinforced phenolic foam is also higher than that in unreinforced foam, whereas the loss modulus of the former is lower than that of the latter. The glass transition temperature of the phenolic foam matrix remains unchanged during the reinforcement

  18. Packaging based on polymeric materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available In the past two years the consumption of common in the developed countries world wide (high tonnage polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging materials, are presented in this article. Recycling methods, as well as the development trends of polymeric packaging materials are also presented.

  19. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  20. Synthesis of magnetic polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2010-05-13

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  1. Synthesis of magnetic polymeric microspheres

    International Nuclear Information System (INIS)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I

    2010-01-01

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  2. A Nanoscale Study of Carbon and Nitrogen Fluxes in Mats of Purple Sulfur Bacteria: Implications for Carbon Cycling at the Surface of Coastal Sediments

    Directory of Open Access Journals (Sweden)

    Cédric Hubas

    2017-10-01

    Full Text Available Mass blooms of purple sulfur bacteria growing seasonally on green stranded macroalgae have a major impact on the microbial composition and functionality of intertidal mats. To explore the active anoxygenic phototrophic community in purple bacterial mats from the Roscoff Aber Bay (Brittany, France, we conducted a combined approach including molecular and high-resolution secondary ion mass spectrometry (NanoSIMS analyses. To investigate the dynamics of carbon and nitrogen assimilation activities, NanoSIMS was coupled with a stable isotope probing (SIP experiment and a compound specific isotope analysis (CSIA of fatty acid methyl ester (FAME. Sediment samples were incubated with 13C- and/or 15N-labeled acetate, pyruvate, bicarbonate and ammonium. NanoSIMS analysis of 13C - and 15N -incubated samples showed elevated incorporations of 13C - and 15N in the light and of 13C -acetate in the dark into dense populations of spherical cells that unambiguously dominated the mats. These results confirmed CSIA data that ranked vaccenic acid, an unambiguous marker of purple sulfur bacteria, as the most strongly enriched in the light after 13C -acetate amendment and indicated that acetate uptake, the most active in the mat, was not light-dependent. Analysis of DNA- and cDNA-derived pufM gene sequences revealed that Thiohalocapsa-related clones dominated both libraries and were the most photosynthetically active members of the mat samples. This study provides novel insights into the contribution of purple sulfur bacteria to the carbon cycle during their seasonal developments at the sediment surface in the intertidal zone.

  3. Critique de la dématérialisation

    OpenAIRE

    Robert , Pascal

    2004-01-01

    International audience; La notion de " dématérialisation " constitue actuellement l'une des pièces maîtresses de l'idéologie de la communication. Or, après enquête, nous constatons que la dématérialisation ne se rencontre ni dans les TIC ni dans les réseaux où se dévoilent en revanche un nouveau mode de matérialisation ainsi qu'un processus de virtualisation par changement d'échelle. Nous nous interrogeons donc sur la fonction sociale et politique que cette notion joue dans les discours qui l...

  4. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  5. Interactions in the Geo-Biosphere: Processes of Carbonate Precipitation in Microbial Mats

    Science.gov (United States)

    Dupraz, C.; Visscher, P. T.

    2009-12-01

    Microbial communities are situated at the interface between the biosphere, the lithosphere and the hydrosphere. These microbes are key players in the global carbon cycle, where they influence the balance between the organic and inorganic carbon reservoirs. Microbial populations can be organized in microbial mats, which can be defined as organosedimentary biofilms that are dominated by cyanobacteria, and exhibit tight coupling of element cycles. Complex interactions between mat microbes and their surrounding environment can result in the precipitation of carbonate minerals. This process refers as ‘organomineralization sensu lato' (Dupraz et al. in press), which differs from ‘biomineralization’ (e.g., in shells and bones) by lacking genetic control on the mineral product. Organomineralization can be: (1) active, when microbial metabolic reactions are responsible for the precipitation (“biologically-induced” mineralization) or (2) passive, when mineralization within a microbial organic matrix is environmentally driven (e.g., through degassing or desiccation) (“biologically-influenced” mineralization). Studying microbe-mineral interactions is essential to many emerging fields of the biogeoscience, such as the study of life in extreme environments (e.g, deep biosphere), the origin of life, the search for traces of extraterrestrial life or the seek of new carbon sink. This research approach combines sedimentology, biogeochemistry and microbiology. Two tightly coupled components that control carbonate organomineralization s.l.: (1) the alkalinity engine and (2) the extracellular organic matter (EOM), which is ultimately the location of mineral nucleation. Carbonate alkalinity can be altered both by microbial metabolism and environmental factors. In microbial mats, the net accumulation of carbonate minerals often reflect the balance between metabolic activities that consume/produce CO2 and/or organic acids. For example, photosynthesis and sulfate reduction

  6. Mechanical properties of rubberwood oriented strand lumber (OSL: The effect of strand length

    Directory of Open Access Journals (Sweden)

    Buhnnum Kyokong

    2005-09-01

    Full Text Available Effect of strand length on mechanical properties (tension, compression and bending of oriented strand lumber (OSL made of rubberwood (Hevea brasiliensis Muell. Arg. was reported. Three strand lengths of 50 mm, 100 mm, and 150 mm with 1 mm thickness and 15 mm width were used. The strands were mixed with 5% pMDI glue (weight basis in a tumble mixer. The OSL specimens were formed by hot pressing process of unidirectionally aligned strands. Average specific gravity and moisture content were 0.76 and 8.34%, respectively. Tension and compression tests were carried out for directions both parallel and perpendicular to grain while bending test was performed only in parallel direction. Ultimate stresses and moduli of elasticity were examined from the stress-strain curves. It was found that for the parallel-to-grain direction, the longer strand OSL gave higher strength. The role of the strand length did not appear for the direction normal to the grain. The relationship between the mechanical properties of OSL and strand length was well described by the modified Hankinson formula.

  7. Storage of yerba maté in controlled atmosphere

    Directory of Open Access Journals (Sweden)

    Sarah Lemos Cogo Prestes

    2014-04-01

    Full Text Available The aim of this study was to evaluate the effect of controlled atmosphere in the change of color, chlorophyll degradation and phenolic compounds concentration in yerba maté thickly ground (“cancheada” and thinly milled (“socada”. Yerba maté samples from the towns of Arvorezinha (RS - Brazil and São Mateus do Sul (PR - Brazil were stored in four levels of oxygen (1, 3, 6 and 20.9kPa of O2 and four levels of carbon dioxide (0, 3, 6 and 18kPa of CO2 and then were analyzed, after nine months of storage. According to the results, the O2 partial pressure reduction decreased the loss of green coloration, kept a higher content of chlorophylls and of total phenolic compounds. In relation to the different levels of CO2, a response as remarkable as O2 was not observed. The yerba maté that was thickly ground (“cancheada” presented a better storage potential than the one thinly milled (“socada” in the storage with O2 and with CO2. The 1kPa of O2 condition kept the yerba maté greener and with a higher content of chlorophylls and of total phenolic compounds after nine months of storage. The CO2 partial pressure kept the yerba maté coloration greener and with a higher content of chlorophylls and of total phenolic compounds, regardless of the level used, in the maté from both cultivation areas.

  8. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat.

    Science.gov (United States)

    Harris, J Kirk; Caporaso, J Gregory; Walker, Jeffrey J; Spear, John R; Gold, Nicholas J; Robertson, Charles E; Hugenholtz, Philip; Goodrich, Julia; McDonald, Daniel; Knights, Dan; Marshall, Paul; Tufo, Henry; Knight, Rob; Pace, Norman R

    2013-01-01

    The microbial mats of Guerrero Negro (GN), Baja California Sur, Mexico historically were considered a simple environment, dominated by cyanobacteria and sulfate-reducing bacteria. Culture-independent rRNA community profiling instead revealed these microbial mats as among the most phylogenetically diverse environments known. A preliminary molecular survey of the GN mat based on only ∼1500 small subunit rRNA gene sequences discovered several new phylum-level groups in the bacterial phylogenetic domain and many previously undetected lower-level taxa. We determined an additional ∼119,000 nearly full-length sequences and 28,000 >200 nucleotide 454 reads from a 10-layer depth profile of the GN mat. With this unprecedented coverage of long sequences from one environment, we confirm the mat is phylogenetically stratified, presumably corresponding to light and geochemical gradients throughout the depth of the mat. Previous shotgun metagenomic data from the same depth profile show the same stratified pattern and suggest that metagenome properties may be predictable from rRNA gene sequences. We verify previously identified novel lineages and identify new phylogenetic diversity at lower taxonomic levels, for example, thousands of operational taxonomic units at the family-genus levels differ considerably from known sequences. The new sequences populate parts of the bacterial phylogenetic tree that previously were poorly described, but indicate that any comprehensive survey of GN diversity has only begun. Finally, we show that taxonomic conclusions are generally congruent between Sanger and 454 sequencing technologies, with the taxonomic resolution achieved dependent on the abundance of reference sequences in the relevant region of the rRNA tree of life.

  9. Flow of light energy in benthic photosynthetic microbial mats

    Energy Technology Data Exchange (ETDEWEB)

    Al-Najjar, Mohammad Ahmad A.

    2010-12-15

    The work in this thesis demonstrates the assessment of the energy budget inside microbial mat ecosystems, and the factors affecting light utilization efficiency. It presents the first balanced light energy budget for benthic microbial mat ecosystems, and shows how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (Jabs). The energy budget was dominated by heat dissipation on the expense of photosynthesis. The maximum efficiency of photosynthesis was at light limiting conditions When comparing three different marine benthic photosynthetic ecosystems (originated from Abu-Dhabi, Arctic, and Exmouth Gulf in Western Australia), differences in the efficiencies were calculated. The results demonstrated that the maximum efficiency depended on mat characteristics affecting light absorption and scattering; such as, photopigments ratio and distribution, and the structural organization of the photosynthetic organisms relative to other absorbing components of the ecosystem (i.e., EPS, mineral particles, detritus, etc.). The maximum efficiency decreased with increasing light penetration depth, and increased with increasing the accessory pigments (phycocyanin and fucoxanthin)/chlorophyll ratio. Spatial heterogeneity in photosynthetic efficiency, pigment distribution, as well as light acclimation in microbial mats originating from different geographical locations was investigated. We used a combined pigment imaging approach (variable chlorophyll fluorescence and hyperspectral imaging), and fingerprinting approach. For each mat, the photosynthetic activity was proportional to the local pigment concentration in the photic zone, but not for the deeper layers and between different mats. In each mat, yield of PSII and E1/2 (light acclimation) generally decreased in parallel with depth, but the gradients in both parameters varied greatly between samples. This mismatch between pigments concentration

  10. The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution

    NARCIS (Netherlands)

    Bolton, M.D.; Jonge, de R.; Inderbitzin, P.; Liu, Z.; Birla, K.; Peer, Van de Y.; Subbarao, K.; Thomma, B.P.H.J.; Secor, G.

    2014-01-01

    Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1 (MAT1-1-1 or MAT1-2-1) and only

  11. Intrant ELISA: A Novel Approach to Fabrication of Electrospun Fiber Mat-Assisted Biosensor Platforms and Their Integration within Standard Analytical Well Plates

    Directory of Open Access Journals (Sweden)

    Samira Hosseini

    2016-11-01

    Full Text Available A combination of far-field electrospinning (FFES and free-radical polymerization has been used to fabricate coated electrospun polymer fiber mats as a new type of biosensor platform. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV electrospun fibers were dip-coated with different compositions of poly methyl methacrylate-co-methacrylic acid (poly(MMA-co-MAA. This synergistic approach utilizes large specific surface area of PHBV fibers and co-polymer coatings that feature an optimum concentration of surface carboxyl (–COOH groups. The platform surface morphology, porosity and tunable hydrophobicity enhance biomolecular interactions via plurality of molecular forces. These customized fiber mats have been integrated into a newly designed 96-well plate called an “intrant enzyme-linked immunosorbent assay” or i-ELISA. I-ELISA allows colorimetric sandwich assay to be carried out without any modifications or additional steps in ELISA methodology. By introducing the fiber mats in fabrication of i-ELISA via extensions on the lid, we address some of the limitations of the previous designs while demonstrating an enhanced signal intensity up to 12 times higher than that of conventional assays. With improved sensitivity, specificity and accuracy in the detection of dengue virus, i-ELISA has proven to be a reliable platform for biomolecular recognition. The proposed fiber mat-assisted well plate in this study holds great potential as a universal approach for integration of different types of fiber mats with pre-designed specific properties in order to enhance the detection sensitivity of the assay.

  12. Connecting localized DNA strand displacement reactions

    Science.gov (United States)

    Mullor Ruiz, Ismael; Arbona, Jean-Michel; Lad, Amitkumar; Mendoza, Oscar; Aimé, Jean-Pierre; Elezgaray, Juan

    2015-07-01

    Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions.Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR02434J

  13. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker.......A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  14. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    Science.gov (United States)

    Leem, S H; Ropp, P A; Sugino, A

    1994-08-11

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in DNA metabolism. The deletion strains did not exhibit UV-sensitivity. However, they did show weak sensitivity to MMS-treatment and exhibited a hyper-recombination phenotype when intragenic recombination was measured during meiosis. Furthermore, MAT alpha pol4 delta segregants had a higher frequency of illegitimate mating with a MAT alpha tester strain than that of wild-type cells. These results suggest that DNA polymerase IV participates in a double-strand break repair pathway. A 3.2kb of the POL4 transcript was weakly expressed in mitotically growing cells. During meiosis, a 2.2 kb POL4 transcript was greatly induced, while the 3.2 kb transcript stayed at constant levels. This induction was delayed in a swi4 delta strain during meiosis, while no effect was observed in a swi6 delta strain.

  15. Targeting S-adenosylmethionine biosynthesis with a novel allosteric inhibitor of Mat2A

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Casey L.; Kaiser, Stephen E.; Bolaños, Ben; Nowlin, Dawn; Grantner, Rita; Karlicek-Bryant, Shannon; Feng, Jun Li; Jenkinson, Stephen; Freeman-Cook, Kevin; Dann, Stephen G.; Wang, Xiaoli; Wells, Peter A.; Fantin, Valeria R.; Stewart, Al E.; Grant, Stephan K. (Pfizer)

    2017-05-29

    S-Adenosyl-L-methionine (SAM) is an enzyme cofactor used in methyl transfer reactions and polyamine biosynthesis. The biosynthesis of SAM from ATP and L-methionine is performed by the methionine adenosyltransferase enzyme family (Mat; EC 2.5.1.6). Human methionine adenosyltransferase 2A (Mat2A), the extrahepatic isoform, is often deregulated in cancer. We identified a Mat2A inhibitor, PF-9366, that binds an allosteric site on Mat2A that overlaps with the binding site for the Mat2A regulator, Mat2B. Studies exploiting PF-9366 suggested a general mode of Mat2A allosteric regulation. Allosteric binding of PF-9366 or Mat2B altered the Mat2A active site, resulting in increased substrate affinity and decreased enzyme turnover. These data support a model whereby Mat2B functions as an inhibitor of Mat2A activity when methionine or SAM levels are high, yet functions as an activator of Mat2A when methionine or SAM levels are low. The ramification of Mat2A activity modulation in cancer cells is also described.

  16. Microbial mat-induced sedimentary structures in siliciclastic sediments

    Indian Academy of Sciences (India)

    This paper addresses macroscopic signatures of microbial mat-related structures within the. 1.6Ga-old Chorhat Sandstone ... Sandstone differentiated in facies superposed one over the other and their respective structural assemblages (b). may be ..... within the classification of primary sedimentary struc- tures; J. Sed. Res.

  17. The Varian MAT-250 mass spectrometer. Steady isotopes laboratory

    International Nuclear Information System (INIS)

    Hernandez M, V.; Tavera D, M.L.

    1997-01-01

    This work treats over the performance and applications of the Varian Mat-250 mass spectrometer which is in the environmental isotope laboratory. It can be applied over topics such as: ions formation, acceleration and collimation, ions separation, ions detection, data transformation, sampling, δ notation. (Author)

  18. The Ububele Baby Mat Service – A primary preventative mental ...

    African Journals Online (AJOL)

    The Ububele Baby Mat Service is a community-based, parent–infant mental health intervention offered at five primary health care clinics in Alexandra Township, in Johannesburg. The aim of the intervention is to promote healthy caregiver-infant attachments. There has been a steady increase in the number of mother-baby ...

  19. Evaluation of the WavTrac Expeditionary Mobility Matting System

    Science.gov (United States)

    2017-04-01

    Dr. Timothy W. Rushing was Chief, APB; Dr. Gordon W. McMahon was Chief, ESMD; and Nicholas Boone was the Technical Director for Force Projection...were tan in color and had a nonskid material applied to the wearing surface. Typical mat dimensions were 12 ft, 2 in. wide by 48 ft, 6 in. long

  20. Social yoga mats: reinforcing synergy between physical and social activity

    DEFF Research Database (Denmark)

    Nagargoje, Arun; Sokoler, Tomas; Maybach, Karl

    2011-01-01

    This paper discusses our early research into the design space for digital technologies that extend the existing synergistic relationship between physical and social activity from fitness centers to the home. We focus on yoga activity for senior citizens and explore the concept of social yoga mats...

  1. Matting of Hair Due to Halo-egg Shampoo

    Directory of Open Access Journals (Sweden)

    Z M Mani

    1983-01-01

    Full Text Available A case of hair matting in an 18 year old female is reported. The hair got densely entangled immediately after washing the hair with ′Halo Egg′ shampoo. The hair was disentangled completely after prolonged dipping of the hair in arachis oil frr 5 days.

  2. Diversity of nitrogen-fixing bacteria in cyanobacterial mats

    NARCIS (Netherlands)

    Severin, I.; Acinas, S.G.; Stal, L.J.

    2010-01-01

    The structure of the microbial community and the diversity of the functional gene for dinitrogenase reductase and its transcripts were investigated by analyzing >1400 16S rRNA gene and nifH sequences from two microbial mats situated in the intertidal zone of the Dutch barrier island Schiermonnikoog.

  3. Response of cyanobacterial mats to nutrient and salinity changes

    Czech Academy of Sciences Publication Activity Database

    Rejmánková, E.; Komárková, Jaroslava

    2005-01-01

    Roč. 83, č. 2 (2005), s. 87-107 ISSN 0304-3770. [INTECOL International Wetlands Conference /7./. Utrecht, 25.07.2004-30.7.2004] Grant - others:NSF(US) 0089211 Institutional research plan: CEZ:AV0Z60170517 Keywords : cyanobacterial mats * Belize * P-N impact Subject RIV: EH - Ecology, Behaviour Impact factor: 1.344, year: 2005

  4. Advanced HVAC modeling with FemLab/Simulink/MatLab

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2003-01-01

    The combined MatLab toolboxes FemLab and Simulink are evaluated as solvers for HVAC problems based on partial differential equations (PDEs). The FemLab software is designed to simulate systems of coupled PDEs, 1-D, 2-D or 3-D, nonlinear and time dependent. In order to show how the program works, a

  5. Coastal Microbial Mat Diversity along a Natural Salinity Gradient

    NARCIS (Netherlands)

    Bolhuis, H.; Fillinger, L.; Stal, L.J.

    2013-01-01

    The North Sea coast of the Dutch barrier island of Schiermonnikoog is covered by microbial mats that initiate a succession of plant communities that eventually results in the development of a densely vegetated salt marsh. The North Sea beach has a natural elevation running from the low water mark to

  6. Asymmetric strand segregation: epigenetic costs of genetic fidelity?

    Directory of Open Access Journals (Sweden)

    Diane P Genereux

    2009-06-01

    Full Text Available Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric -- but not symmetric -- strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease.

  7. Collaborative Research: Polymeric Multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shenqiang [Temple Univ., Philadelphia, PA (United States). College of Engineering

    2017-04-20

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamental understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.

  8. Polymerization with freezing

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2005-01-01

    Irreversible aggregation processes involving reactive and frozen clusters are investigated using the rate equation approach. In aggregation events, two clusters join irreversibly to form a larger cluster; additionally, reactive clusters may spontaneously freeze. Frozen clusters do not participate in merger events. Generally, freezing controls the nature of the aggregation process, as demonstrated by the final distribution of frozen clusters. The cluster mass distribution has a power-law tail, F k ∼k -γ , when the freezing process is sufficiently slow. Different exponents, γ = 1 and 3, are found for the constant and the product aggregation rates, respectively. For the latter case, the standard polymerization model, either no gels, or a single gel, or even multiple gels, may be produced

  9. A novel methanol sensor based on gas-penetration through a porous polypyrrole-coated polyacrylonitrile nanofiber mat.

    Science.gov (United States)

    Jun, Tae-Sun; Ho, Thi Anh; Rashid, Muhammad; Kim, Yong Shin

    2013-09-01

    In this work, we propose a novel chemoresistive gas sensor operated under a vertical analyte flow passing through a permeable sensing membrane. Such a configuration is different from the use of a planar sensor implemented under a conventional horizontal flow. A highly porous core-shell polyacrylonitrile-polypyrrole (PAN@PPy) nanofiber mat was prepared as the sensing element via electrospinning and two-step vapor-phase polymerization (VPP). Various analysis methods such as SEM, TEM, FT-IR and XPS measurements were employed in order to characterize structural features of the porous sensing mat. These analyses confirmed that very thin (ca. 10 nm) conductive PPy sheath layers were deposited by VPP on electrospun PAN nanofibers with an average diameter of 258 nm. Preliminary results revealed that the gas penetration-type PAN@PPy sensor had a higher sensor response and shorter detection and recovery times upon exposure to methanol analyte when compared with a conventional horizontal flow sensor due to efficient and fast analyte transfer into the sensing layer.

  10. Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene

    Science.gov (United States)

    Hidalgo-Salazar, Miguel A.; Correa, Juan P.

    2018-03-01

    In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique) and Epoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique) biocomposites were prepared using thermocompression and resin film infusion processes. Neat polymeric matrices and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior of these materials has been studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Tensile and flexural test revealed that nonwoven Fique reinforced composites exhibited higher modulus and strength but lower deformation capability as compared with LLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation has an effect on the thermal stability of the composites. On the other hand, Fique fibers did not change the crystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromolecules chains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of considering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture of biocomposites for automotive applications. In addition to the processing test specimens, it was also possible to manufacture a part of LLDPE-Fique, and one part of EP-Fique.

  11. Molecular Characterisation and Co-cultivation of Bacterial Biofilm Communities Associated with the Mat-Forming Diatom Didymosphenia geminata.

    Science.gov (United States)

    Brandes, Josephin; Kuhajek, Jeanne M; Goodwin, Eric; Wood, Susanna A

    2016-10-01

    Didymosphenia geminata (Lyngbye) M. Schmidt is a stalked freshwater diatom that is expanding its range globally. In some rivers, D. geminata forms thick and expansive polysaccharide-dominated mats. Like other stalked diatoms, D. geminata cells attach to the substratum with a pad of adhesive extracellular polymeric substance. Research on D. geminata and other diatoms suggests that bacterial biofilm composition may contribute to successful attachment. The aim of this study was to investigate the composition and role of bacterial biofilm communities in D. geminata attachment and survival. Bacterial biofilms were collected at four sites in the main stem of a river (containing D. geminata) and in four tributaries (free of D. geminata). Samples were characterised using automated rRNA intergenic spacer analysis and high-throughput sequencing (HTS). Mat-associated bacteria were isolated and their effect on the early establishment of D. geminata cells assessed using co-culturing experiments. ARISA and HTS data showed differences in bacterial communities between samples with and without D. geminata at two of the four sites. Samples with D. geminata had a higher relative abundance of Sphingobacteria (p geminata reduced survival (p geminata. Attachment was enhanced by Micrococcus sp. and Pseudomonas sp. (p geminata, and may partly explain observed distribution patterns.

  12. All-Organic High-Performance Piezoelectric Nanogenerator with Multilayer Assembled Electrospun Nanofiber Mats for Self-Powered Multifunctional Sensors.

    Science.gov (United States)

    Maity, Kuntal; Mandal, Dipankar

    2018-05-30

    Rapid development of wearable electronics, piezoelectric nanogenerator (PNG), has been paid a special attention because of its sustainable and accessible energy generation. In this context, we present a simple yet highly efficient design strategy to enhance the output performance of an all-organic PNG (OPNG) based on multilayer assembled electrospun poly(vinylidene fluoride) (PVDF) nanofiber (NF) mats where vapor-phase polymerized poly(3,4-ethylenedioxythiophene)-coated PVDF NFs are assembled as electrodes and neat PVDF NFs are utilized as an active component. In addition to the multilayer assembly, electrode compatibility and durability remain a challenging task to mitigate the primary requirements of wearable electronics. A multilayer networked three-dimensional structure integrated with a compatible electrode thereby provides enhanced output voltage and current (e.g., open-circuit voltage, V oc ≈ 48 V, and short-circuit current, I sc ≈ 6 μA, upon 8.3 kPa of the applied stress amplitude) with superior piezoelectric energy conversion efficiency of 66% compared to the single-mat device. Besides, OPNG also shows ultrasensitivity toward human movements such as foot strikes and walking. The weight measurement mapping is critically explored by principal component analysis that may have enormous applications in medical diagnosis to smart packaging industries. More importantly, fatigue test under continuous mechanical impact (over 6 months) shows great promise as a robust wearable mechanical energy harvester.

  13. Matérn-based nonstationary cross-covariance models for global processes

    KAUST Repository

    Jun, Mikyoung

    2014-01-01

    -covariance models, based on the Matérn covariance model class, that are suitable for describing prominent nonstationary characteristics of the global processes. In particular, we seek nonstationary versions of Matérn covariance models whose smoothness parameters

  14. Two-step activation of meiosis by the mat1 locus in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Willer, M; Hoffmann, Ulla-Lisbeth; Styrkársdóttir, U

    1995-01-01

    of meiosis is based largely on indirect observations, and a more precise investigation of these events was required to define the interaction between the mat1 genes. Here we resolve this issue using synthetic pheromones and P/M strains with mutations in either mat1-Pc or mat1-Mc. Our results suggest a model...... in which the mat1 locus plays two roles in controlling meiosis. In the first instance, the mat1-Pc and mat1-Mc functions are required to produce the mating pheromones and receptors that allow the generation of a pheromone signal. This signal is required to induce the expression of mat1-Pm and mat1-Mm...

  15. Polymeric micelles for drug targeting.

    Science.gov (United States)

    Mahmud, Abdullah; Xiong, Xiao-Bing; Aliabadi, Hamidreza Montazeri; Lavasanifar, Afsaneh

    2007-11-01

    Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.

  16. The general atomic strand winding machine

    International Nuclear Information System (INIS)

    Matt, P.

    1976-01-01

    In conjunction with the integrated development of their high temperature gas cooled reactors (HTGR), General Atomic of San Diego, USA, also developed a strand winding system for the horizontal prestressing of pressure vessels. The machine lay-out, its capabilities and the test program carried out in the laboratory and on a full scale pressure vessel model are described. (author)

  17. Missing Strands? Dealing with Hair Loss

    Science.gov (United States)

    ... 2017 Print this issue Missing Strands? Dealing with Hair Loss En español Send us your comments Hair loss is often associated with men and aging, but ... or their treatments, and many other things cause hair loss. The most common type of hair loss is ...

  18. Untangling the Strands of the Fourteenth Amendment.

    Science.gov (United States)

    Lupu, Ira C.

    1979-01-01

    Explores trends in the Court's interpretation of the libertarian and egalitarian dimensions of the Fourteenth Amendment and offers a theory of the two strands. Available from Michigan Law Review, Hutchins Hall, Ann Arbor, MI 48109; single issues $3.50. (Author/IRT)

  19. The (not so immortal strand hypothesis

    Directory of Open Access Journals (Sweden)

    Cristian Tomasetti

    2015-03-01

    Significance: Utilizing an approach that is fundamentally different from previous efforts to confirm or refute the immortal strand hypothesis, we provide evidence against non-random segregation of DNA during stem cell replication. Our results strongly suggest that parental DNA is passed randomly to stem cell daughters and provides new insight into the mechanism of DNA replication in stem cells.

  20. The (not so) immortal strand hypothesis.

    Science.gov (United States)

    Tomasetti, Cristian; Bozic, Ivana

    2015-03-01

    Non-random segregation of DNA strands during stem cell replication has been proposed as a mechanism to minimize accumulated genetic errors in stem cells of rapidly dividing tissues. According to this hypothesis, an "immortal" DNA strand is passed to the stem cell daughter and not the more differentiated cell, keeping the stem cell lineage replication error-free. After it was introduced, experimental evidence both in favor and against the hypothesis has been presented. Using a novel methodology that utilizes cancer sequencing data we are able to estimate the rate of accumulation of mutations in healthy stem cells of the colon, blood and head and neck tissues. We find that in these tissues mutations in stem cells accumulate at rates strikingly similar to those expected without the protection from the immortal strand mechanism. Utilizing an approach that is fundamentally different from previous efforts to confirm or refute the immortal strand hypothesis, we provide evidence against non-random segregation of DNA during stem cell replication. Our results strongly suggest that parental DNA is passed randomly to stem cell daughters and provides new insight into the mechanism of DNA replication in stem cells. Copyright © 2015. Published by Elsevier B.V.

  1. SAKAMATA : A tool to avoid whale strandings

    NARCIS (Netherlands)

    Benders, F.P.A.; Beerens, S.P.; Verboom, W.C.

    2004-01-01

    World-wide a concern exists about the influence of man-made noise on marine life, and particularly of high power sonar. Most concern lies with marine mammals that use acoustics for hunting, communication and/or navigation. This concern is fed by recent strandings of whales that could be related to

  2. SAKAMATA : A tool to avoid whale strandings

    NARCIS (Netherlands)

    Benders, F.P.A.; Beerens, S.P.; Verboom, W.C.

    2002-01-01

    World-wide a concern exists about the influence of man-made noise on marine life, and particularly of high power sonar. Most concern lies with marine mammals that use acoustics for hunting, communication and/or navigation. This concern is fed by recent strandings of whales that could be related to

  3. Fragmentation in DNA double-strand breaks

    International Nuclear Information System (INIS)

    Wei Zhiyong; Suzhou Univ., Suzhou; Zhang Lihui; Li Ming; Fan Wo; Xu Yujie

    2005-01-01

    DNA double strand breaks are important lesions induced by irradiations. Random breakage model or quantification supported by this concept is suitable to analyze DNA double strand break data induced by low LET radiation, but deviation from random breakage model is more evident in high LET radiation data analysis. In this work we develop a new method, statistical fragmentation model, to analyze the fragmentation process of DNA double strand breaks. After charged particles enter the biological cell, they produce ionizations along their tracks, and transfer their energies to the cells and break the cellular DNA strands into fragments. The probable distribution of the fragments is obtained under the condition in which the entropy is maximum. Under the approximation E≅E 0 + E 1 l + E 2 l 2 , the distribution functions are obtained as exp(αl + βl 2 ). There are two components, the one proportional to exp(βl 2 ), mainly contributes to the low mass fragment yields, the other component, proportional to exp(αl), decreases slowly as the mass of the fragments increases. Numerical solution of the constraint equations provides parameters α and β. Experimental data, especially when the energy deposition is higher, support the statistical fragmentation model. (authors)

  4. Low-residue euthanasia of stranded mysticetes.

    Science.gov (United States)

    Harms, Craig A; McLellan, William A; Moore, Michael J; Barco, Susan G; Clarke, Elsburgh O; Thayer, Victoria G; Rowles, Teresa K

    2014-01-01

    Euthanasia of stranded large whales poses logistic, safety, pharmaceutical, delivery, public relations, and disposal challenges. Reasonable arguments may be made for allowing a stranded whale to expire naturally. However, slow cardiovascular collapse from gravitational effects outside of neutral buoyancy, often combined with severely debilitating conditions, motivate humane efforts to end the animal's suffering. The size of the animal and prevailing environmental conditions often pose safety concerns for stranding personnel, which take priority over other considerations. When considering chemical euthanasia, the size of the animal also necessitates large quantities of euthanasia agents. Drug residues are a concern for relay toxicity to scavengers, particularly for pentobarbital-containing euthanasia solutions. Pentobarbital is also an environmental concern because of its stability and long persistence in aquatic environments. We describe a euthanasia technique for stranded mysticetes using readily available, relatively inexpensive, preanesthetic and anesthetic drugs (midazolam, acepromazine, xylazine) followed by saturated KCl delivered via custom-made needles and a low-cost, basic, pressurized canister. This method provides effective euthanasia while moderating personnel exposure to hazardous situations and minimizing drug residues of concern for relay toxicity.

  5. The Varian MAT-250 mass spectrometer. Steady isotopes laboratory; Espectrometro de masas Varian MAT-250. Laboratorio de isotopos estables

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, V.; Tavera D, M.L. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    This work treats over the performance and applications of the Varian Mat-250 mass spectrometer which is in the environmental isotope laboratory. It can be applied over topics such as: ions formation, acceleration and collimation, ions separation, ions detection, data transformation, sampling, {delta} notation. (Author)

  6. Comment on "Performance of a spin based insulated gate field effect transistor" [cond-mat/0603260] [cond-mat/0603260

    OpenAIRE

    Bandyopadhyay, S.; Cahay, M.

    2006-01-01

    In a recent e-print [cond-mat/0603260] Hall and Flatte claim that a particular spin based field effect transistor (SPINFET), which they have analyzed, will have a lower threshold voltage, lower switching energy and lower leakage current than a comparable metal oxide semiconductor field effect transistor (MOSFET). Here, we show that all three claims of HF are invalid.

  7. Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) Users' Workshop Presentations

    Science.gov (United States)

    Litt, Jonathan S. (Compiler)

    2018-01-01

    NASA Glenn Research Center hosted a Users' Workshop on the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) on August 21, 2017. The objective of this workshop was to update the user community on the latest features of T-MATS, and to provide a forum to present work performed using T-MATS. Presentations highlighted creative applications and the development of new features and libraries, and emphasized the flexibility and simulation power of T-MATS.

  8. Regulation of electron transfer processes affects phototrophic mat structure and activity

    OpenAIRE

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located ne...

  9. Flakeboard thickness swelling. Part I, Stress relaxation in a flakeboard mat

    Science.gov (United States)

    R. L. Geimer; J. H. Kwon; J. Bolton

    1998-01-01

    The steam injection schedule best suited for dimensionally stabilizing a flake mat is one in which steam treatment is initiated before the press is closed and is continued at least until the mat attains target thickness. Experiments showed that resinless mats treated with 20 sec of steam at 600 kPa had maximum thickness swelling of 205% compared to 350% for resinless...

  10. Organometallic Polymeric Conductors

    Science.gov (United States)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  11. KARAKTERISTIK ORIENTED STRAND BOARD DARI KAYU AKASIA DAN AFRIKA BERDASARKAN PENYUSUNAN ARAH STRAND

    Directory of Open Access Journals (Sweden)

    Nurhaida

    2008-04-01

    Full Text Available The research objectives arc to evaluate physical and mechanical properties of OSB based on strands orientation; and to evaluate physical and mechanical properties of OSB made from akasia wood (Acacia mangium Wild and afrika wood (Maesopsis eminii Engl. Akasia and afrika wood are used for OSB strand material with phenol formaldehyde (PF as adhesives and addition of paraffin. OSB made in this research is consist of three plies whereas are differed into eight (8 strand orientations. In the making process, hot press was carried out at 160OC and pressure 25kg.cm-2 for 15 minutes. Determination of OSB physical and mechanical properties is referred to JIS A 5908-2003. Result showed that strand orientations has no affect to OSB physical properties except for linicr swelling 24h, but it significantly influence all mechanical properties of OSB. Wood species have an effect on mechanical properties of OSB in the dry test, wet MOE lengthwise test and OSB physical properties, particularly to OSB density and water absorbing capability at 2h and 24h. All of OSB physical properties arc meet JIS A 5908-2003 standard, but not all of the mechanical properties such as dry MOE lengthwise, dry MOE and MOR widthwise. The best physical and mechanical properties is presented by OSB made from akasia wood in strand orientation F, G, Band C whereas all parameters meet JIS A 5908-2003 standard. In comparation with strand orientation B that is frequent used in industry, strand orientation F and G arc proficient to raise the modulus elasticity value (MOE and strength (MOR as much as 167.81-231.65% and 89.73-109.87%, respectively; especially in widthwise board application. Furthermore, strand orientation F and G arc more flexible as structural components

  12. Modification of Jute Fibers with Polystyrene via Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Plackett, David; Jankova, Katja Atanassova; Egsgaard, Helge

    2005-01-01

    Atom transfer radical polymerization (ATRP) was investigated as a method of covalently bonding polystyrene to jute (Corchorus capsularis) and as a possible approach to fiber composites with enhanced properties. Jute fibers were modified with a brominated initiator and subsequently ATRP modified...... to attach polystyrene and then examined using SEM, DSC, TGA, FTIR, XPS, elemental analysis, and Py-GC-MS. These techniques confirmed that polystyrene had been covalently bound to the fibers and consequently ATRP-modified jute fiber mats were used to prepare hot-pressed polystyrene composites. Composite...

  13. Aspects of the ecology of mat-forming lichens

    Directory of Open Access Journals (Sweden)

    P. D. Crittenden

    2000-03-01

    Full Text Available Lichen species in the genera Cladonia (subgenus Cladina, Cetraria, Stereocaulon and Alectoria are important vegetation components on well-drained terrain and on elevated micro-sites in peatlands in boreal-Arctic regions. These lichens often form closed mats, the component thalli in which grow vertically upwards at the apices and die off in the older basal regions; they are therefore only loosely attached to the underlying soil. This growth habit is relatively unusual in lichens being found in <0.5% of known species. It might facilitate internal nutrienr recycling and higher growth rates and, together with the production of allelochemicals, it might underlie the considerable ecological success of mat-forming lichens; experiments to critically assess the importance of these processes are required. Mat-forming lichens can constitute in excess of 60% of the winter food intake of caribou and reindeer. Accordingly there is a pressing need for data on lichen growth rates, measured as mass increment, in order to help determine the carrying capacity of winter ranges for rhese herbivores and to better predict recovery rates following grazing. Trampling during the snow-free season fragments lichen thalli; mat-forming lichens regenerate very successfully from thallus fragments provided trampling does nor re-occur. Frequent recurrence of trampling creates disturbed habitats from which lichens will rapidly become eliminated consistent with J.P. Grime's CSR strategy theory. Such damage to lichen ground cover has occurred where reindeer or caribou are unable to migrate away from their winter range such as on small islands or where political boundaries have been fenced; it can also occur on summer range that contains a significant lichen component and on winter range where numbers of migrarory animals become excessive. Species of Stereocaulon, and other genera that contain cyanobacteria (most notably Peltigera and Nephroma, are among the principal agents of

  14. De fysica van polymere materialen

    NARCIS (Netherlands)

    Struik, L.C.E.

    1987-01-01

    Rede, uitgesproken ter gelegenheid van de aanvaarding van het ambt van buitengewoon hoogleraar in de fysica van polymere materialen aan de Universitelt Twente op donderdag 22 januarì 1987 door Dr.lr. L.C.E. Struik.

  15. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng; Hadjichristidis, Nikolaos; Gnanou, Yves

    2014-01-01

    .e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  16. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Zhao, Junpeng; Zhang, Hefeng; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands

  17. Southeast Region Level A Marine Mammal Stranding Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data on marine mammal strandings are collected by the Southeast Marine Mammal Stranding Network. Basic data on the location, species identification, animal...

  18. Corrosion characteristics of unprotected post-tensioning strands under stress.

    Science.gov (United States)

    2014-05-01

    An investigation was conducted to determine the effect of stress condition : and environmental exposure on corrosion of post-tensioned strands during ungrouted periods. : Exposures for periods of up to 4 weeks of stressed, as-received strand placed i...

  19. Pulsed-laser polymerization in compartmentalized liquids. 1. Polymerization in vesicles

    NARCIS (Netherlands)

    Jung, M.; Casteren, van I.A.; Monteiro, M.J.; Herk, van A.M.; German, A.L.

    2000-01-01

    Polymerization in vesicles is a novel type of polymerization in heterogeneous media, leading to parachute-like vesicle-polymer hybrid morphologies. To explore the kinetics of vesicle polymerizations and to learn more about the actual locus of polymerization we applied the pulsed-laser polymerization

  20. The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution.

    Science.gov (United States)

    Bolton, Melvin D; de Jonge, Ronnie; Inderbitzin, Patrik; Liu, Zhaohui; Birla, Keshav; Van de Peer, Yves; Subbarao, Krishna V; Thomma, Bart P H J; Secor, Gary A

    2014-01-01

    Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1 (MAT1-1-1 or MAT1-2-1) and only isolates of opposite mating type are sexually compatible. In contrast, self-fertile (homothallic) species contain both MAT genes at MAT1. Knowledge of the reproductive capacities of plant pathogens are of particular interest because recombining populations tend to be more difficult to manage in agricultural settings. In this study, we sequenced MAT1 in the heterothallic Dothideomycete fungus Cercospora beticola to gain insight into the reproductive capabilities of this important plant pathogen. In addition to the expected MAT gene at MAT1, each isolate contained fragments of both MAT1-1-1 and MAT1-2-1 at ostensibly random loci across the genome. When MAT fragments from each locus were manually assembled, they reconstituted MAT1-1-1 and MAT1-2-1 exons with high identity, suggesting a retroposition event occurred in a homothallic ancestor in which both MAT genes were fused. The genome sequences of related taxa revealed that MAT gene fragment pattern of Cercospora zeae-maydis was analogous to C. beticola. In contrast, the genome of more distantly related Mycosphaerella graminicola did not contain MAT fragments. Although fragments occurred in syntenic regions of the C. beticola and C. zeae-maydis genomes, each MAT fragment was more closely related to the intact MAT gene of the same species. Taken together, these data suggest MAT genes fragmented after divergence of M. graminicola from the remaining taxa, and concerted evolution functioned to homogenize MAT fragments and MAT genes in each species. Published by Elsevier Inc.

  1. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  2. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  3. Electroactivity in Polymeric Materials

    CERN Document Server

    2012-01-01

    Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles.  The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.  This book captures: A complete introduction to electroactive materials including examples and recent developments The theory and applications of numerous topics like electroactive bending of dielectric elastomers and electroactive contraction and expansion New topics, such as biomimetic applications and energy harvesting This is a must-read within the electroactive community, particularly for professionals and graduate students who are interested in the ...

  4. Simple design for DNA nanotubes from a minimal set of unmodified strands: rapid, room-temperature assembly and readily tunable structure.

    Science.gov (United States)

    Hamblin, Graham D; Hariri, Amani A; Carneiro, Karina M M; Lau, Kai L; Cosa, Gonzalo; Sleiman, Hanadi F

    2013-04-23

    DNA nanotubes have great potential as nanoscale scaffolds for the organization of materials and the templation of nanowires and as drug delivery vehicles. Current methods for making DNA nanotubes either rely on a tile-based step-growth polymerization mechanism or use a large number of component strands and long annealing times. Step-growth polymerization gives little control over length, is sensitive to stoichiometry, and is slow to generate long products. Here, we present a design strategy for DNA nanotubes that uses an alternative, more controlled growth mechanism, while using just five unmodified component strands and a long enzymatically produced backbone. These tubes form rapidly at room temperature and have numerous, orthogonal sites available for the programmable incorporation of arrays of cargo along their length. As a proof-of-concept, cyanine dyes were organized into two distinct patterns by inclusion into these DNA nanotubes.

  5. A mass stranding of the squid martialia hyadesi Rochebrune and ...

    African Journals Online (AJOL)

    1997-02-11

    Feb 11, 1997 ... All animals were immature, with females in lower stages of maturity than males. No predatory marine mammals were seen in the area during or after the stranding event. An interpretation of the stranding is presented with reference to historical reports of squid strandings worldwide. Evidence suggests some ...

  6. The European Nb3Sn advanced strand development programme

    International Nuclear Information System (INIS)

    Vostner, A.; Salpietro, E.

    2005-01-01

    Strands relevant for fusion with high critical current densities and moderate hysteresis losses were developed and already produced on industrial scale. Based on these achievements EFDA-CSU Garching has launched a Nb 3 Sn strand development and procurement action inside Europe in order to assess the current status of the Nb 3 Sn strand production capability. All six addressed companies have replied positively to the strand R and D programme which includes the three major Nb 3 Sn production techniques namely the bronze, internal-tin and powder-in-tube (PIT) route. According to the strand requirements for the ITER TF conductor a critical current density of 800 A/mm 2 (at 12 T, 4.2 K and 10 μV/m) and overall strand hysteresis losses below 500 kJ/m 3 have been specified as the minimum guaranteed strand performance. The second major objective of this programme is to motivate the strand manufacturers to develop and design high performance Nb 3 Sn strands optimised for the ITER conductor. For this purpose, a target critical current density of 1100 A/mm 2 has been added to the specification. This paper describes the strategy behind the strand development programme, the actual status of the strand production as well as first preliminary results obtained from the strand suppliers

  7. Thermodynamics and phase transformations: the selected works of Mats Hillert

    International Nuclear Information System (INIS)

    Agren, J.; Brechet, Y.; Hutchinson, Ch.; Purdy, G.

    2006-01-01

    For over half a century, Mats Hillert has contributed greatly to the science of materials. He is widely known and respected as an innovator and an educator, a scientist with an enormous breadth of interest and depth of insight. In acknowledgment of his many contributions, a conference was held in Stockholm in December 2004 to mark his eightieth birthday. This volume was conceived prior to, and publicly announced during the conference. The difficult choice of twenty-four papers from a publication list of more than three hundred was carried out in consultation with Mats. He also suggested or approved the scientists who would be invited to write a brief introduction to each paper. A brief reading of the topics of the selected papers and their introductions reveals something of their range and depth. Several early selections (for example, those on 'The Role of Interfacial Energy during Solid State Phase Transformations', and 'A Solid-Solution Model for Inhomogeneous Systems') contained seminal material that established Mats as a leading figure in the study of phase transformations in solids. Others established his presence in the areas of solidification and computational thermodynamics. A review of his full publication list shows that he has consistently built upon those early foundational papers, and maintained a dominant position in those fields. Although many of his contributions have been of a theoretical nature, he has always maintained a close contact with experiment, and indeed, he has designed numerous critical experiments. This volume represents a judicious sampling of Mats Hillert's extensive body of work; it is necessarily incomplete, but it is hoped and expected that it will prove useful to students of materials science and engineering at all levels, and that it will inspire the further study and appreciation of his many contributions. (authors)

  8. Accuracy of Jump-Mat Systems for Measuring Jump Height.

    Science.gov (United States)

    Pueo, Basilio; Lipinska, Patrycja; Jiménez-Olmedo, José M; Zmijewski, Piotr; Hopkins, Will G

    2017-08-01

    Vertical-jump tests are commonly used to evaluate lower-limb power of athletes and nonathletes. Several types of equipment are available for this purpose. To compare the error of measurement of 2 jump-mat systems (Chronojump-Boscosystem and Globus Ergo Tester) with that of a motion-capture system as a criterion and to determine the modifying effect of foot length on jump height. Thirty-one young adult men alternated 4 countermovement jumps with 4 squat jumps. Mean jump height and standard deviations representing technical error of measurement arising from each device and variability arising from the subjects themselves were estimated with a novel mixed model and evaluated via standardization and magnitude-based inference. The jump-mat systems produced nearly identical measures of jump height (differences in means and in technical errors of measurement ≤1 mm). Countermovement and squat-jump height were both 13.6 cm higher with motion capture (90% confidence limits ±0.3 cm), but this very large difference was reduced to small unclear differences when adjusted to a foot length of zero. Variability in countermovement and squat-jump height arising from the subjects was small (1.1 and 1.5 cm, respectively, 90% confidence limits ±0.3 cm); technical error of motion capture was similar in magnitude (1.7 and 1.6 cm, ±0.3 and ±0.4 cm), and that of the jump mats was similar or smaller (1.2 and 0.3 cm, ±0.5 and ±0.9 cm). The jump-mat systems provide trustworthy measurements for monitoring changes in jump height. Foot length can explain the substantially higher jump height observed with motion capture.

  9. Matted-fiber divertor tagets for sputter resistance

    International Nuclear Information System (INIS)

    Gierszewski, P.J.; Todreas, N.E.; Mikic, B.; Yang, T.F.

    1981-06-01

    Reductions in net sputtering yields can be obtained by altering the surface topography to maximize redeposition of sputtered atoms. A simple analysis is used to indicate a potential reduction by a factor of 2 to 5 for matted fiber divertor targets, relatively independent of incident, reflected and sputtered atom distributions. The fiber temperature is also shown to be acceptable, even up to 10 MW/m 2 , for reasonably combinations of materials, fiber diameter and fiber spacing

  10. Alpha Matting with KL-Divergence Based Sparse Sampling.

    Science.gov (United States)

    Karacan, Levent; Erdem, Aykut; Erdem, Erkut

    2017-06-22

    In this paper, we present a new sampling-based alpha matting approach for the accurate estimation of foreground and background layers of an image. Previous sampling-based methods typically rely on certain heuristics in collecting representative samples from known regions, and thus their performance deteriorates if the underlying assumptions are not satisfied. To alleviate this, we take an entirely new approach and formulate sampling as a sparse subset selection problem where we propose to pick a small set of candidate samples that best explains the unknown pixels. Moreover, we describe a new dissimilarity measure for comparing two samples which is based on KLdivergence between the distributions of features extracted in the vicinity of the samples. The proposed framework is general and could be easily extended to video matting by additionally taking temporal information into account in the sampling process. Evaluation on standard benchmark datasets for image and video matting demonstrates that our approach provides more accurate results compared to the state-of-the-art methods.

  11. Phenotypic variation and characterization of mutant matting in shiitake

    International Nuclear Information System (INIS)

    Ibrahim Mahmood; Azhar Mohamad

    2016-01-01

    Shiitake (Lentinula edodes) is an edible mushroom that has many uses such as: pharmaceutical, nutraceutical and cosmeceutical industries. In this study, we will induce Shiitake to create the genetic variation via exposing the spores of shiitake to gamma (γ) ray at different doses (0-700 Gy) then make the matting between two different monokaryon mycelium (MM). potato dextrose agar (PDA), this media will be used for spore germination and monokaryon mycelium subculturing during this study. The compatibility of the matting will be observed macroscopically (observing on the plates of PDA) and microscopically (by observing the clamps test under the microscope (Olympus brand)). The finding of this study, there is no significant changing in the growth performance of irradiated monokaryon mycelium in comparing with non-irradiated mycelium. From 108 matting only 15 were compatibles. This study, the physical mutagen will be used followed by mating as a normal stage of life cycle for creating potential strain of shiitake with alteration in phenotypic characterization of dikaryon mycelium (DM) as a compatible mating for two MM. (author)

  12. Simulated Carbon Cycling in a Model Microbial Mat.

    Science.gov (United States)

    Decker, K. L.; Potter, C. S.

    2006-12-01

    We present here the novel addition of detailed organic carbon cycling to our model of a hypersaline microbial mat ecosystem. This ecosystem model, MBGC (Microbial BioGeoChemistry), simulates carbon fixation through oxygenic and anoxygenic photosynthesis, and the release of C and electrons for microbial heterotrophs via cyanobacterial exudates and also via a pool of dead cells. Previously in MBGC, the organic portion of the carbon cycle was simplified into a black-box rate of accumulation of simple and complex organic compounds based on photosynthesis and mortality rates. We will discuss the novel inclusion of fermentation as a source of carbon and electrons for use in methanogenesis and sulfate reduction, and the influence of photorespiration on labile carbon exudation rates in cyanobacteria. We will also discuss the modeling of decomposition of dead cells and the ultimate release of inorganic carbon. The detailed modeling of organic carbon cycling is important to the accurate representation of inorganic carbon flux through the mat, as well as to accurate representation of growth models of the heterotrophs under different environmental conditions. Because the model ecosystem is an analog of ancient microbial mats that had huge impacts on the atmosphere of early earth, this MBGC can be useful as a biological component to either early earth models or models of other planets that potentially harbor life.

  13. Hydroponic root mats for wastewater treatment-a review.

    Science.gov (United States)

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  14. Determination of 210Po in tea, mat and their infusions and its annual intake by Syrians

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Nashawati, A.; Amin, Y.; Al-Akel, B.

    2004-01-01

    Polonium-210 was determined in 34 kinds of imported tea and 9 kinds of mat collected from the Syrian local market. The 210 Po concentration was found to vary from 5.5 to 39 Bq x kg -1 and 47 to 82 Bq x kg -1 in tea and mat samples, respectively. In addition 210 Po was also determined in tea and mat infusions where different infusion conditions have been examined: amount, temperature and infusion time. The results have shown that the amount of 210 Po transferred from tea and mat leaves to the aqueous extract ranged from 9 to 21% and 3 to 15%, respectively. The annual intake of 210 Po by Syrians due to tea consumption and mat infusions was calculated and found to be 9 Bq and 151 Bq for tea and mat respectively: washing of mat with warm water is recommended before preparation the infusions to decrease the annual intake of 210 Po. (author)

  15. Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention.

    Science.gov (United States)

    Samprasit, Wipada; Kaomongkolgit, Ruchadaporn; Sukma, Monrudee; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2015-03-06

    The mucoadhesive electrospun nanofibre mats were developed using chitosan (CS) and thiolated chitosan (CS-SH) as mucoadhesive polymers. Garcinia mangostana (GM) extract was incorporated into nanofibre mats. The antibacterial activity in the single and combined agents was evaluated against dental caries pathogens. The morphology of mats was observed using SEM. The mats were evaluated for GM extract amount, mucoadhesion, in vitro release, antibacterial activity and cytotoxicity. The mucoadhesion and antibacterial activity were determined in healthy human volunteers. The prepared mats were in nanoscale with good physical and mucoadhesive properties. The CS-SH caused the higher mucoadhesion. All mats rapidly released active substances, which had the synergistic antibacterial activity. In addition, the reduction of bacteria and good mucoadhesion in the oral cavity occurred without cytotoxicity. The results suggest that mats have the potential to be mucoadhesive dosage forms to maintain oral hygiene by reducing the bacterial growth that causes the dental caries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Studying Microbial Mat Functioning Amidst "Unexpected Diversity": Methodological Approaches and Initial Results from Metatranscriptomes of Mats Over Diel cycles, iTags from Long Term Manipulations, and Biogeochemical Cycling in Simplified Microbial Mats Constructed from Cultures

    Science.gov (United States)

    Bebout, B.; Bebout, L. E.; Detweiler, A. M.; Everroad, R. C.; Lee, J.; Pett-Ridge, J.; Weber, P. K.

    2014-12-01

    Microbial mats are famously amongst the most diverse microbial ecosystems on Earth, inhabiting some of the most inclement environments known, including hypersaline, dry, hot, cold, nutrient poor, and high UV environments. The high microbial diversity of microbial mats makes studies of microbial ecology notably difficult. To address this challenge, we have been using a combination of metagenomics, metatranscriptomics, iTags and culture-based simplified microbial mats to study biogeochemical cycling (H2 production, N2 fixation, and fermentation) in microbial mats collected from Elkhorn Slough, Monterey Bay, California. Metatranscriptomes of microbial mats incubated over a diel cycle have revealed that a number of gene systems activate only during the day in Cyanobacteria, while the remaining appear to be constitutive. The dominant cyanobacterium in the mat (Microcoleus chthonoplastes) expresses several pathways for nitrogen scavenging undocumented in cultured strains, as well as the expression of two starch storage and utilization cycles. Community composition shifts in response to long term manipulations of mats were assessed using iTags. Changes in community diversity were observed as hydrogen fluxes increased in response to a lowering of sulfate concentrations. To produce simplified microbial mats, we have isolated members of 13 of the 15 top taxa from our iTag libraries into culture. Simplified microbial mats and simple co-cultures and consortia constructed from these isolates reproduce many of the natural patterns of biogeochemical cycling in the parent natural microbial mats, but against a background of far lower overall diversity, simplifying studies of changes in gene expression (over the short term), interactions between community members, and community composition changes (over the longer term), in response to environmental forcing.

  17. Organic and mineral imprints in fossil photosynthetic mats of an East Antarctic lake.

    Science.gov (United States)

    Lepot, K; Compère, P; Gérard, E; Namsaraev, Z; Verleyen, E; Tavernier, I; Hodgson, D A; Vyverman, W; Gilbert, B; Wilmotte, A; Javaux, E J

    2014-09-01

    Lacustrine microbial mats in Antarctic ice-free oases are considered modern analogues of early microbial ecosystems as their primary production is generally dominated by cyanobacteria, the heterotrophic food chain typically truncated due to extreme environmental conditions, and they are geographically isolated. To better understand early fossilization and mineralization processes in this context, we studied the microstructure and chemistry of organo-mineral associations in a suite of sediments 50-4530 cal. years old from a lake in Skarvsnes, Lützow Holm Bay, East Antarctica. First, we report an exceptional preservation of fossil autotrophs and their biomolecules on millennial timescales. The pigment scytonemin is preserved inside cyanobacterial sheaths. As non-pigmented sheaths are also preserved, scytonemin likely played little role in the preservation of sheath polysaccharides, which have been cross-linked by ether bonds. Coccoids preserved thylakoids and autofluorescence of pigments such as carotenoids. This exceptional preservation of autotrophs in the fossil mats argues for limited biodegradation during and after deposition. Moreover, cell-shaped aggregates preserved sulfur-rich nanoglobules, supporting fossilization of instable intracellular byproducts of chemotrophic or phototrophic S-oxidizers. Second, we report a diversity of micro- to nanostructured CaCO3 precipitates intimately associated with extracellular polymeric substances, cyanobacteria, and/or other prokaryotes. Micro-peloids Type 1 display features that distinguish them from known carbonates crystallized in inorganic conditions: (i) Type 1A are often filled with globular nanocarbonates and/or surrounded by a fibrous fringe, (ii) Type 1B are empty and display ovoid to wrinkled fringes of nanocrystallites that can be radially oriented (fibrous or triangular) or multilayered, and (iii) all show small-size variations. Type 2 rounded carbonates 1-2 μm in diameter occurring inside autofluorescent

  18. Strand displacement by DNA polymerase III occurs through a tau-psi-chi link to single-stranded DNA-binding protein coating the lagging strand template.

    Science.gov (United States)

    Yuan, Quan; McHenry, Charles S

    2009-11-13

    In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of gamma-complex to support the reaction in the absence of tau. However, if gamma-complex is present to load beta(2), a truncated tau protein containing only domains III-V will suffice. This truncated protein is sufficient to bind both the alpha subunit of DNA polymerase (Pol) III and chipsi. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where tau is only required to serve as a scaffold to hold Pol III and chi in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476-23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-tau-psi-chi-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (k(cat)/K(m)) for the strand displacement reaction is approximately 300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (approximately 300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.

  19. Development of strand burner for solid propellant burning rate studies

    International Nuclear Information System (INIS)

    Aziz, A; Mamat, R; Ali, W K Wan

    2013-01-01

    It is well-known that a strand burner is an apparatus that provides burning rate measurements of a solid propellant at an elevated pressure in order to obtain the burning characteristics of a propellant. This paper describes the facilities developed by author that was used in his studies. The burning rate characteristics of solid propellant have be evaluated over five different chamber pressures ranging from 1 atm to 31 atm using a strand burner. The strand burner has a mounting stand that allows the propellant strand to be mounted vertically. The strand was ignited electrically using hot wire, and the burning time was recorded by electronic timer. Wire technique was used to measure the burning rate. Preliminary results from these techniques are presented. This study shows that the strand burner can be used on propellant strands to obtain accurate low pressure burning rate data

  20. Tagging target genes of the mat1-2-1 transcription factor in Fusarium verticillioides (Gibberella fujikuroi MP-A)

    NARCIS (Netherlands)

    Keszthelyi, A.; Jeney, A.; Kerenyi, Z.; Mendes, O.; Waalwijk, C.; Hornok, L.

    2007-01-01

    Mating type in filamentous ascomycetes is controlled by idiomorphic alleles, named MAT1-1 and MAT1-2, which contain 1-3 genes. Of these genes MAT1-1-1 and MAT1-2-1 encode putative transcription factors and are thus considered to be the major regulators of sexual communication and mating. Fungi with

  1. The multiple personalities of Watson and Crick strands.

    Science.gov (United States)

    Cartwright, Reed A; Graur, Dan

    2011-02-08

    In genetics it is customary to refer to double-stranded DNA as containing a "Watson strand" and a "Crick strand." However, there seems to be no consensus in the literature on the exact meaning of these two terms, and the many usages contradict one another as well as the original definition. Here, we review the history of the terminology and suggest retaining a single sense that is currently the most useful and consistent. The Saccharomyces Genome Database defines the Watson strand as the strand which has its 5'-end at the short-arm telomere and the Crick strand as its complement. The Watson strand is always used as the reference strand in their database. Using this as the basis of our standard, we recommend that Watson and Crick strand terminology only be used in the context of genomics. When possible, the centromere or other genomic feature should be used as a reference point, dividing the chromosome into two arms of unequal lengths. Under our proposal, the Watson strand is standardized as the strand whose 5'-end is on the short arm of the chromosome, and the Crick strand as the one whose 5'-end is on the long arm. Furthermore, the Watson strand should be retained as the reference (plus) strand in a genomic database. This usage not only makes the determination of Watson and Crick unambiguous, but also allows unambiguous selection of reference stands for genomics. This article was reviewed by John M. Logsdon, Igor B. Rogozin (nominated by Andrey Rzhetsky), and William Martin.

  2. The multiple personalities of Watson and Crick strands

    Directory of Open Access Journals (Sweden)

    Graur Dan

    2011-02-01

    Full Text Available Abstract Background In genetics it is customary to refer to double-stranded DNA as containing a "Watson strand" and a "Crick strand." However, there seems to be no consensus in the literature on the exact meaning of these two terms, and the many usages contradict one another as well as the original definition. Here, we review the history of the terminology and suggest retaining a single sense that is currently the most useful and consistent. Proposal The Saccharomyces Genome Database defines the Watson strand as the strand which has its 5'-end at the short-arm telomere and the Crick strand as its complement. The Watson strand is always used as the reference strand in their database. Using this as the basis of our standard, we recommend that Watson and Crick strand terminology only be used in the context of genomics. When possible, the centromere or other genomic feature should be used as a reference point, dividing the chromosome into two arms of unequal lengths. Under our proposal, the Watson strand is standardized as the strand whose 5'-end is on the short arm of the chromosome, and the Crick strand as the one whose 5'-end is on the long arm. Furthermore, the Watson strand should be retained as the reference (plus strand in a genomic database. This usage not only makes the determination of Watson and Crick unambiguous, but also allows unambiguous selection of reference stands for genomics. Reviewers This article was reviewed by John M. Logsdon, Igor B. Rogozin (nominated by Andrey Rzhetsky, and William Martin.

  3. Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA.

    Science.gov (United States)

    Khodakov, Dmitriy A; Khodakova, Anastasia S; Huang, David M; Linacre, Adrian; Ellis, Amanda V

    2015-03-04

    Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within double-stranded DNA generated from real-life human mitochondrial DNA samples. Aside from the potential diagnostic value, the current study represents an additional way to control the strand displacement reaction rate without altering other reaction parameters and provides new insights into the influence of single nucleotide substitutions on 3- and 4-way branch migration efficiency and kinetics.

  4. Polymeric media for tritium fixation

    International Nuclear Information System (INIS)

    Franz, J.A.; Burger, L.L.

    1975-01-01

    The synthesis and leach testing of several polymeric media for tritium fixation are presented. Tritiated bakelite, poly(acrylonitrile) and polystyrene successfully fixed tritium. Tritium leach rates at the tracer level appear to be negligible. Advantages and disadvantages of the processes are discussed, and further bench-scale investigations underway are reported. Rough cost estimates are presented for the different media and are compared with alternate approaches such as deep-well injection and long-term tank storage. Polymeric media costs are high compared to deep-well storage and are of the same order of magnitude per liter of water as for isotopic enrichment. With this limitation, polymeric media can be economically feasible only for highly concentrated tritiated wastes. It is recommended that the bakelite and polystyrene processes be examined on a larger scale to permit more accurate cost analysis and process design. (auth)

  5. Olefin metathesis and metathesis polymerization

    CERN Document Server

    Ivin, K J

    1997-01-01

    This book is a follow-up to Ivins Olefin Metathesis, (Academic Press, 1983). Bringing the standard text in the field up to date, this Second Edition is a result of rapid growth in the field, sparked by the discovery of numerous well-defined metal carbene complexes that can act as very efficient initiators of all types of olefin metathesis reaction, including ring-closing metathesis of acyclic dienes, enynes, and dienynes; ring-opening metathesis polymerizationof cycloalkenes, acyclic diene metathesis polymerization; and polymerization of alkynes, as well as simple olefin metathesis. Olefin Metathesis and Metathesis Polymerization provides a broad, up-to-date account of the subject from its beginnings in 1957 to the latest applications in organic synthesis. The book follows the same format as the original, making it useful toteachers and to researchers, and will be of particular interest to those working in the fields of organic chemistry, polymer chemistry, organometallic chemistry, catalysis, materials scien...

  6. On-demand photoinitiated polymerization

    Science.gov (United States)

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  7. Pentafluorosulfanyl Substituents in Polymerization Catalysis.

    Science.gov (United States)

    Kenyon, Philip; Mecking, Stefan

    2017-10-04

    Highly electron-withdrawing pentafluorosulfanyl groups were probed as substituents in an organometallic catalyst. In Ni(II) salicylaldiminato complexes as an example case, these highly electron-withdrawing substituents allow for polymerization of ethylene to higher molecular weights with reduced branching due to significant reductions in β-hydrogen elimination. Combined with the excellent functional group tolerance of neutral Ni(II) complexes, this suppression of β-hydrogen elimination allows for the direct polymerization of ethylene in water to nanocrystal dispersions of disentangled, ultrahigh-molecular-weight linear polyethylene.

  8. Radiation Induced Polymerization of Pyrrole

    International Nuclear Information System (INIS)

    Sarada Idris; Ratnam, C.T.; Ahmad Ashrif Abu Bakar

    2016-01-01

    We demonstrate the polymerization of pyrrole by gamma irradiation. The pyrrole films were exposed to gamma ray from cobalt 60 source at doses ranging from 0 to 150 kGy. The films were subjected to structural and morphological analyses by using FTIR, SEM and AFM techniques. Similar studies were also made on pristine pyrrole film which serve as control. Results revealed that pyrrole has been successfully polymerized through irradiation induced reactions. The SEM images depicted the formation of cauliflower shape upon gamma irradiation. The structural changes of pyrrole also evidenced by FTIR spectra. Surface topography and roughness of pyrrole before and after gamma irradiation found to show significant differences. (author)

  9. Rigid Polyurethane Foam Thermal Insulation Protected with Mineral Intumescent Mat

    Directory of Open Access Journals (Sweden)

    Kirpluks Mikelis

    2014-12-01

    Full Text Available One of the biggest disadvantages of rigid polyurethane (PU foams is its low thermal resistance, high flammability and high smoke production. Greatest advantage of this thermal insulation material is its low thermal conductivity (λ, which at 18-28 mW/(m•K is superior to other materials. To lower the flammability of PU foams, different flame retardants (FR are used. Usually, industrially viable are halogenated liquid FRs but recent trends in EU regulations show that they are not desirable any more. Main concern is toxicity of smoke and health hazard form volatiles in PU foam materials. Development of intumescent passive fire protection for foam materials would answer problems with flammability without using halogenated FRs. It is possible to add expandable graphite (EG into PU foam structure but this increases the thermal conductivity greatly. Thus, the main advantage of PU foam is lost. To decrease the flammability of PU foams, three different contents 3%; 9% and 15% of EG were added to PU foam formulation. Sample with 15% of EG increased λ of PU foam from 24.0 to 30.0 mW/(m•K. This paper describes the study where PU foam developed from renewable resources is protected with thermally expandable intumescent mat from Technical Fibre Products Ltd. (TFP as an alternative to EG added into PU material. TFP produces range of mineral fibre mats with EG that produce passive fire barrier. Two type mats were used to develop sandwich-type PU foams. Also, synergy effect of non-halogenated FR, dimethyl propyl phosphate and EG was studied. Flammability of developed materials was assessed using Cone Calorimeter equipment. Density, thermal conductivity, compression strength and modulus of elasticity were tested for developed PU foams. PU foam morphology was assessed from scanning electron microscopy images.

  10. Phylogenetic relationships and evolution of Crassulaceae inferred from matK sequence data.

    Science.gov (United States)

    Mort, Mark E.; Soltis, Douglas E.; Soltis, Pamela S.; Francisco-Ortega, Javier; Santos-Guerra, Arnoldo

    2001-01-01

    Chloroplast gene matK sequence data were used to estimate the phylogeny of 112 species of Crassulaceae sampled from 33 genera and all six recognized subfamilies. Our analyses suggest that five of six subfamilies recognized in the most recent comprehensive classification of the family are not monophyletic. Instead, we recovered a basal split in Crassulaceae between the southern African CRASSULA: clade (Crassuloideae) and the rest of the family (Sedoideae). These results are compatible with recent studies of cpDNA restriction site analyses. Within Sedoideae, four subclades were also recovered: KALANCHOE:, Leucosedum, Acre, and AEONIUM:; evidence also exists for a TELEPHIUM: clade and SEMPERVIVUM: clade. The genus SEDUM: is highly polyphyletic with representatives spread throughout the large Sedoideae clade. Sympetaly and polymerous flowers have arisen multiple times in Crassulaceae and thus are not appropriate characters upon which to base subfamilial limits, as has been done in the past. One floral character, haplostemy, appears to be confined to the well-supported CRASSULA: clade. Our analyses suggest a southern African origin of the family, with subsequent dispersal northward into the Mediterranean region. From there, the family spread to Asia/eastern Europe and northern Europe; two separate lineages of European Crassulaceae subsequently dispersed to North America and underwent substantial diversification. Our analyses also suggest that the original base chromosome number in Crassulaceae is x = 8 and that polyploidy has played an important role in seven clades. Three of these clades are exclusively polyploid (SEMPERVIVUM: clade and two subclades within the KALANCHOE: and AEONIUM: clades), whereas four (Crassula, Telephium, Leucosedum, and ACRE: clades) comprise both diploid and polyploid taxa. Polyploidy is particularly rampant and cytological evolution especially complex in the ACRE: clade.

  11. Solution-blown nanofiber mats from fish sarcoplasmic protein

    DEFF Research Database (Denmark)

    Sett, S.; Boutrup Stephansen, Karen; Yarin, A.L.

    2016-01-01

    In the present work, solution-blowing was adopted to form nanofibers from fish sarcoplasmic proteins (FSPs). Nanofiber mats containing different weight ratios (up to 90/10) of FSP in the FSP/nylon 6 blended nanofibers were formed from formic acid solutions, and compared to electrospun fibers made...... that the production rate of solution-blowing was increased 30-fold in relation to electrospinning. Overall, this study reveals FSP as an interesting biopolymeric alternative to synthetic polymers, and the introduction of FSP to nylon 6 provides a composite with controlled properties....

  12. Siwonhan-mat: The third taste of Korean foods

    OpenAIRE

    Soon Ah Kang; Hyun Ji Oh; Dai Ja Jang; Min Jung Kim; Dae Young Kwon

    2016-01-01

    Background: Smell and taste are frequently referenced senses when describing flavors of food. In addition to these two senses, Koreans have regarded that there is another sense of taste experienced through the body. This third sense, siwonhan-mat (시원한 맛), describes the sensation of the body including the tongue, stomach, and intestines when eating. While smell and taste play an important role in the enjoyment of food, it is also crucial to evaluate what your body can experience from eating. I...

  13. Determination of triiodothyronine using RIA-Mat T3 kit

    International Nuclear Information System (INIS)

    Hara, Masao

    1975-01-01

    A RIA-Mat T 3 kit was used for an in vitro measurement of triiodothyronine in serum. A resin strip was utilized to absorb free triiodothyronine after the serum was incubated with antibody against triiodothyronine. This test was easy to manipulate and the reproducibility test with same sera, dilution test, and recovery test were also satisfactory. The normal range of triiodothyronine determined with this test kit was 119 +- 40 ng/dl using 50 test sera. Ninety sera with various thyroid diseases were also determined. (auth.)

  14. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio

    2013-07-01

    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  15. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization

  16. Enhancement of the in-plane shear properties of carbon fiber composites containing carbon nanotube mats

    Science.gov (United States)

    Kim, Hansang

    2015-01-01

    The in-plane shear property of carbon fiber laminates is one of the most important structural features of aerospace and marine structures. Fiber-matrix debonding caused by in-plane shear loading is the major failure mode of carbon fiber composites because of the stress concentration at the interfaces. In this study, carbon nanotube mats (CNT mat) were incorporated in two different types of carbon fiber composites. For the case of woven fabric composites, mechanical interlocking between the CNTs and the carbon fibers increased resistance to shear failure. However, not much improvement was observed for the prepreg composites as a result of incorporation of the CNT mats. The reinforcement mechanism of the CNT mat layer was investigated by a fractographic study using scanning electron microscopy. In addition, the CNT mat was functionalized by three different methods and the effectiveness of the functionalization methods was determined and the most appropriate functionalization method for the CNT mat was air oxidation.

  17. Electrospun magnetic nanofibre mats – A new bondable biomaterial using remotely activated magnetic heating

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yi [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai (China); Leung, Victor; Yuqin Wan, Lynn [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Dutz, Silvio [Institut für Biomedizinische Technik und Informatik, Technische Universität Ilmenau (Germany); Department of Nano Biophotonics, Leibniz Institute of Photonic Technology, Jena (Germany); Ko, Frank K., E-mail: frank.ko@ubc.ca [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Häfeli, Urs O., E-mail: urs.hafeli@ubc.ca [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver (Canada)

    2015-04-15

    A solvothermal process was adopted to produce hydrophilic magnetite (Fe{sub 3}O{sub 4}) nanoparticles which were subsequently emulsified with a chloroform/methanol (70/30 v/v) solution of poly(caprolactone) (PCL) and then electrospun into a 0.2 mm thick PCL mat. The magnetic heating of the mats at a field amplitude of 25 kA/m and frequency of 400 kHz exhibited promising efficiency for magnetic hyperthermia, with a specific absorption rate of about 40 W/g for the magnetic mat. The produced heat was used to melt the magnetic mat onto the surrounding non-magnetic polymer mat from within, without destroying the nanostructure of the non-magnetic polymer more than 0.5 mm away. Magnetic nanofibre mats might thus be useful for internal heat sealing applications, and potentially also for thermotherapy.

  18. Improving strand quality of upland oaks for use in oriented strand board

    Science.gov (United States)

    David B. DeValliance; Jody D. Gray; Shawn T. Grushecky

    2013-01-01

    Past research estimates that more than 1 million tons of oak logging residues go unused in West Virginia each year. Much research has been done investigating potential products and markets for this underutilized resource. West Virginia is home to an oriented strand board (OSB) producer that consumes large volumes of small diameter, low quality round wood. However, the...

  19. Five-Strand versus Four-Strand Hamstring Tendon Graft Technique for Anterior Cruciate Ligament Reconstruction: A Biomechanical Comparison.

    Science.gov (United States)

    Vaillant, Eric R; Parks, Brent G; Camire, Lyn M; Hinton, Richard Y

    2017-11-01

    The aim of this article is to compare diameter and stiffness, displacement, and strain in a five-strand versus four-strand hamstring graft for anterior cruciate ligament reconstruction. Eight matched pairs of lower extremities underwent four-strand or five-strand hamstring graft reconstruction. Diameter was significantly higher in the five-strand versus the four-strand construct ( p  = 0.002). No significant difference was found between the groups in construct displacement or stiffness. Significantly higher strain was observed in the inner limb versus the outer limb in the four-strand construct ( p  = 0.001) and in the inner limb versus the fifth limb in the 5-strand construct ( p  = 0.004). A fifth limb added to a four-strand hamstring graft significantly increased graft diameter but did not significantly change stiffness or displacement, suggesting that attachment of additional graft material via suture did not provide for full incorporation of the added limb into the graft at time zero. The inner limb in both constructs absorbed significantly greater load than did other limbs. The use of suture to attach additional material to a four-strand hamstring graft may not contribute to improved biomechanical qualities of the graft at time zero. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Novel polymeric materials from triglycerides

    Science.gov (United States)

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  1. Novel solid state polymeric batteries

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, A.; Glasse, M.; Latham, R.; Linford, R.

    1986-01-01

    AC conductivity measurements have been performed on a number of polymeric electrolytes containing Mg, Ca, Sr and Zn perchlorates and Mg and Ca thiocyanates. The electrolytes were characterized using DSC. Results are reported of preliminary tests of cells incorporating anodes of the above metals. 11 refs.

  2. Reactive surfactants in heterophase polymerization

    NARCIS (Netherlands)

    Guyot, A.; Tauer, K.; Asua, J.M.; Es, van J.J.G.S.; Gauthier, C.; Hellgren, A.C.; Sherrington, D.C.; Montoya-Goni, A.; Sjöberg, M.; Sindt, O.; Vidal, F.F.M.; Unzue, M.; Schoonbrood, H.A.S.; Schipper, E.T.W.M.; Lacroix-Desmazes, P.

    1999-01-01

    This paper summarizes the work carried out during 3 years in a Network of the program "Human Capital and Mobility" of the European Union CHRX 93-0159 entitled "Reactive surfactants in heterophase polymerization for high performance polymers". A series of about 25 original papers will be published in

  3. Biodegradable polymeric prodrugs of naltrexone

    NARCIS (Netherlands)

    Bennet, D.B.; Li, X.; Adams, N.W.; Kim, S.W.; Hoes, C.J.T.; Hoes, C.J.T.; Feijen, Jan

    1991-01-01

    The development of a biodegradable polymeric drug delivery system for the narcotic antagonist naltrexone may improve patient compliance in the treatment of opiate addiction. Random copolymers consisting of the ¿-amino acids N5-(3-hydroxypropyl--glutamine and -leucine were synthesized with equimolar

  4. Hole hopping rates in single strand oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, Raffaele [Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, TO (Italy); Capobianco, Amedeo [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy); Peluso, Andrea, E-mail: apeluso@unisa.it [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy)

    2014-08-31

    Highlights: • DNA hole transfer rates have been computed. • Delocalized adenine domains significantly affect hole transfer rates in DNA. • Franck–Condon weighted density of state from DFT normal modes. • DNA application in molecular electronics. - Abstract: The rates of hole transfer between guanine and adenine in single strand DNA have been evaluated by using Fermi’s golden rule and Kubo’s generating function approach for the Franck–Condon weighted density of states. The whole sets of the normal modes and vibrational frequencies of the two nucleobases, obtained at DFT/B3LYP level of calculation, have been considered in computations. The results show that in single strand the pyramidalization/planarization mode of the amino groups of both nucleobases plays the major role. At room temperature, the Franck–Condon density of states extends over a wide range of hole site energy difference, 0–1 eV, giving some hints about the design of oligonucleotides of potential technological interest.

  5. Preparations of spherical polymeric particles from Tanzanian ...

    African Journals Online (AJOL)

    Spherical Polymeric Particles (SPP) have been prepared from Tanzanian Cashew Nut Shell Liquid (CNSL) by suspension polymerization technique involving either step-growth or chain- growth polymerization mechanisms. The sizes of the SPP, which ranged from 0.1 to 2.0 mm were strongly influenced by the amounts of ...

  6. Selection of bioindicators to detect lead pollution in Ebro delta microbial mats, using high-resolution microscopic techniques

    International Nuclear Information System (INIS)

    Maldonado, J.; Sole, A.; Puyen, Z.M.; Esteve, I.

    2011-01-01

    Lead (Pb) is a metal that is non-essential to any metabolic process and, moreover, highly deleterious to life. In microbial mats - benthic stratified ecosystems - located in coastal areas, phototrophic microorganisms (algae and oxygenic phototrophic bacteria) are the primary producers and they are exposed to pollution by metals. In this paper we describe the search for bioindicators among phototrophic populations of Ebro delta microbial mats, using high-resolution microscopic techniques that we have optimized in previous studies. Confocal laser scanning microscopy coupled to a spectrofluorometric detector (CLSM-λscan) to determine in vivo sensitivity of different cyanobacteria to lead, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both coupled to energy dispersive X-ray microanalysis (EDX), to determine the extra- and intracellular sequestration of this metal in cells, were the techniques used for this purpose. Oscillatoria sp. PCC 7515, Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313 tested in this paper could be considered bioindicators for lead pollution, because all of these microorganisms are indigenous, have high tolerance to high concentrations of lead and are able to accumulate this metal externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Experiments made with microcosms demonstrated that Phormidium-like and Lyngbya-like organisms selected themselves at the highest concentrations of lead assayed. In the present study it is shown that all cyanobacteria studied (both in culture and in microcosms) present PP inclusions in their cytoplasm and that these increase in number in lead polluted cultures and microcosms. We believe that the application of these microscopic techniques open up broad prospects for future studies of metal ecotoxicity.

  7. Selection of bioindicators to detect lead pollution in Ebro delta microbial mats, using high-resolution microscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, J.; Sole, A.; Puyen, Z.M. [Departament de Genetica i Microbiologia, Facultat de Biociencies, Universitat Autonoma de Barcelona, Edifici C, Campus de la UAB, Cerdanyola del Valles, Bellaterra (Spain); Esteve, I., E-mail: isabel.esteve@uab.cat [Departament de Genetica i Microbiologia, Facultat de Biociencies, Universitat Autonoma de Barcelona, Edifici C, Campus de la UAB, Cerdanyola del Valles, Bellaterra (Spain)

    2011-07-15

    Lead (Pb) is a metal that is non-essential to any metabolic process and, moreover, highly deleterious to life. In microbial mats - benthic stratified ecosystems - located in coastal areas, phototrophic microorganisms (algae and oxygenic phototrophic bacteria) are the primary producers and they are exposed to pollution by metals. In this paper we describe the search for bioindicators among phototrophic populations of Ebro delta microbial mats, using high-resolution microscopic techniques that we have optimized in previous studies. Confocal laser scanning microscopy coupled to a spectrofluorometric detector (CLSM-{lambda}scan) to determine in vivo sensitivity of different cyanobacteria to lead, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both coupled to energy dispersive X-ray microanalysis (EDX), to determine the extra- and intracellular sequestration of this metal in cells, were the techniques used for this purpose. Oscillatoria sp. PCC 7515, Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313 tested in this paper could be considered bioindicators for lead pollution, because all of these microorganisms are indigenous, have high tolerance to high concentrations of lead and are able to accumulate this metal externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Experiments made with microcosms demonstrated that Phormidium-like and Lyngbya-like organisms selected themselves at the highest concentrations of lead assayed. In the present study it is shown that all cyanobacteria studied (both in culture and in microcosms) present PP inclusions in their cytoplasm and that these increase in number in lead polluted cultures and microcosms. We believe that the application of these microscopic techniques open up broad prospects for future studies of metal ecotoxicity.

  8. Selection of bioindicators to detect lead pollution in Ebro delta microbial mats, using high-resolution microscopic techniques.

    Science.gov (United States)

    Maldonado, J; Solé, A; Puyen, Z M; Esteve, I

    2011-07-01

    Lead (Pb) is a metal that is non-essential to any metabolic process and, moreover, highly deleterious to life. In microbial mats - benthic stratified ecosystems - located in coastal areas, phototrophic microorganisms (algae and oxygenic phototrophic bacteria) are the primary producers and they are exposed to pollution by metals. In this paper we describe the search for bioindicators among phototrophic populations of Ebro delta microbial mats, using high-resolution microscopic techniques that we have optimized in previous studies. Confocal laser scanning microscopy coupled to a spectrofluorometric detector (CLSM-λscan) to determine in vivo sensitivity of different cyanobacteria to lead, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both coupled to energy dispersive X-ray microanalysis (EDX), to determine the extra- and intracellular sequestration of this metal in cells, were the techniques used for this purpose. Oscillatoria sp. PCC 7515, Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313 tested in this paper could be considered bioindicators for lead pollution, because all of these microorganisms are indigenous, have high tolerance to high concentrations of lead and are able to accumulate this metal externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Experiments made with microcosms demonstrated that Phormidium-like and Lyngbya-like organisms selected themselves at the highest concentrations of lead assayed. In the present study it is shown that all cyanobacteria studied (both in culture and in microcosms) present PP inclusions in their cytoplasm and that these increase in number in lead polluted cultures and microcosms. We believe that the application of these microscopic techniques open up broad prospects for future studies of metal ecotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Prédiction du comportement à long terme des matériaux polymères

    Science.gov (United States)

    Lemaire, J.

    1998-06-01

    Most of the world activity on research, development and control of polymer durability is still based on empirical techniques developed in the early ages of polymer uses. Those techniques should be critically analysed considering the state of the art in the fundamental understanding of these complex phenomena. A more rational approach is described, especially to predict the lifetime of polymeric materials in environmental conditions. That approach is based on the recognition of the chemical evolution mechanisms. Les activités de recherche, développement et contrôle de durabilité des matériaux polymères sont encore, pour une part très importante, basées sur l'emploi de techniques empiriques dont les principes ont été énoncés dès le début de l'exploitation de ces matériaux. Une analyse critique de ces méthodes s'impose aujourd'hui en tenant compte de l'avancement des connaissances. Une approche plus rationnelle est décrite, approche basée sur la reconnaissance des mécanismes d'évolution chimique. A titre d'exemple, le mécanisme d'évolution du PVC sous contraintes conjuguées de l'UV, de la chaleur et de l'oxygène, est décrit. Des études récentes de photooxydation de polymères conducteurs au sein de polyéthylène sont également succinctement rapportées.

  10. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine

    International Nuclear Information System (INIS)

    Drewniak, Lukasz; Maryan, Natalia; Lewandowski, Wiktor; Kaczanowski, Szymon; Sklodowska, Aleksandra

    2012-01-01

    The ancient Zloty Stok (SW Poland) gold mine is such an environment, where different microbial communities, able to utilize inorganic arsenic species As(III) and As(V), are found. The purpose of the present study was to (i) estimate prokaryotic diversity in the microbial mats in bottom sediments of this gold mine, (ii) identify microorganisms that can metabolize arsenic, and (iii) estimate their potential role in the arsenic geochemistry of the mine and in the environment. The oxidation/reduction experiments showed that the microbial mat community may significantly contribute to arsenic contamination in groundwater. The presence of both arsenite oxidizing and dissimilatory arsenate reducing bacteria in the mat was confirmed by the detection of arsenite oxidase and dissimilatory arsenate reductase genes, respectively. This work also demonstrated that microorganisms utilizing other compounds that naturally co-occur with arsenic are present within the microbial mat community and may contribute to the arsenic geochemistry in the environment. - Highlights: ► The microbial mats from this ancient gold mine are highly diverse community. ► As(III) oxidizing and As(V) reducing bacteria are present in the mats. ► As redox transformations are linked to the metabolism of microbial mats bacteria. ► Microbial mats play a crucial role in the As biogeochemical cycle within the mine. - The microbial mats from this ancient gold mine can mediate oxidation/reduction reaction of arsenic and in this way may significantly contribute to arsenic contamination in groundwater.

  11. Perfect simulation and moment properties for the Matérn type III process

    DEFF Research Database (Denmark)

    Møller, Jesper; Huber, Mark L.; Wolpert, Robert L.

    2010-01-01

    In a seminal work, Bertil Matérn introduced several types of processes for modeling repulsive point processes. In this paper an algorithm is presented for the perfect simulation of the Matérn III process within a bounded window in , fully accounting for edge effects. A simple upper bound on the m......In a seminal work, Bertil Matérn introduced several types of processes for modeling repulsive point processes. In this paper an algorithm is presented for the perfect simulation of the Matérn III process within a bounded window in , fully accounting for edge effects. A simple upper bound...

  12. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  13. Glycine Polymerization on Oxide Minerals.

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH 3 + group of adsorbed Gly to the nucleophilic NH 2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  14. Reconstruction of hyperspectral image using matting model for classification

    Science.gov (United States)

    Xie, Weiying; Li, Yunsong; Ge, Chiru

    2016-05-01

    Although hyperspectral images (HSIs) captured by satellites provide much information in spectral regions, some bands are redundant or have large amounts of noise, which are not suitable for image analysis. To address this problem, we introduce a method for reconstructing the HSI with noise reduction and contrast enhancement using a matting model for the first time. The matting model refers to each spectral band of an HSI that can be decomposed into three components, i.e., alpha channel, spectral foreground, and spectral background. First, one spectral band of an HSI with more refined information than most other bands is selected, and is referred to as an alpha channel of the HSI to estimate the hyperspectral foreground and hyperspectral background. Finally, a combination operation is applied to reconstruct the HSI. In addition, the support vector machine (SVM) classifier and three sparsity-based classifiers, i.e., orthogonal matching pursuit (OMP), simultaneous OMP, and OMP based on first-order neighborhood system weighted classifiers, are utilized on the reconstructed HSI and the original HSI to verify the effectiveness of the proposed method. Specifically, using the reconstructed HSI, the average accuracy of the SVM classifier can be improved by as much as 19%.

  15. Mechanisms of Mindfulness Training: Monitor and Acceptance Theory (MAT)1

    Science.gov (United States)

    Lindsay, Emily K.; Creswell, J. David

    2016-01-01

    Despite evidence linking trait mindfulness and mindfulness training with a broad range of effects, still little is known about its underlying active mechanisms. Mindfulness is commonly defined as (1) the ongoing monitoring of present-moment experience (2) with an orientation of acceptance. Building on conceptual, clinical, and empirical work, we describe a testable theoretical account to help explain mindfulness effects on cognition, affect, stress, and health outcomes. Specifically, Monitor and Acceptance Theory (MAT) posits that (1), by enhancing awareness of one’s experiences, the skill of attention monitoring explains how mindfulness improves cognitive functioning outcomes, yet this same skill can increase affective reactivity. Second (2), by modifying one’s relation to monitored experience, acceptance is necessary for reducing affective reactivity, such that attention monitoring and acceptance skills together explain how mindfulness improves negative affectivity, stress, and stress-related health outcomes. We discuss how MAT contributes to mindfulness science, suggest plausible alternatives to the account, and offer specific predictions for future research. PMID:27835764

  16. Coastal microbial mat diversity along a natural salinity gradient.

    Directory of Open Access Journals (Sweden)

    Henk Bolhuis

    Full Text Available The North Sea coast of the Dutch barrier island of Schiermonnikoog is covered by microbial mats that initiate a succession of plant communities that eventually results in the development of a densely vegetated salt marsh. The North Sea beach has a natural elevation running from the low water mark to the dunes resulting in gradients of environmental factors perpendicular to the beach. These gradients are due to the input of seawater at the low water mark and of freshwater from upwelling groundwater at the dunes and rainfall. The result is a natural and dynamic salinity gradient depending on the tide, rainfall and wind. We studied the microbial community composition in thirty three samples taken every ten meters along this natural salinity gradient by using denaturing gradient gel electrophoresis (DGGE of rRNA gene fragments. We looked at representatives from each Domain of life (Bacteria, Archaea and Eukarya and with a particular emphasis on Cyanobacteria. Analysis of the DGGE fingerprints together with pigment composition revealed three distinct microbial mat communities, a marine community dominated by diatoms as primary producers, an intermediate brackish community dominated by Cyanobacteria as primary producers and a freshwater community with Cyanobacteria and freshwater green algae.

  17. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    Science.gov (United States)

    Jahnke, Linda L.; Embaye, Tsege; Turk, Kendra A.

    2003-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments where microorganisms had virtually no competition apart from the harsh conditions of hypersalinity, desiccation and intense light. Today, the modern counterparts of these microbial ecosystems find appropriate niches in only a few places where extremes eliminate eukaryotic grazers. Answers to many outstanding questions about the evolution of microorganisms and their environments on early Earth are best answered through study of these extant analogs. Lipids associated with various groups of bacteria can be valuable biomarkers for identification of specific groups of microorganisms both in ancient organic-rich sedimentary rocks (geolipids) and contemporary microbial communities (membrane lipids). Use of compound specific isotope analysis adds additional refinement to the identification of biomarker source, so that it is possible to take advantage of the 3C-depletions associated with various functional groups of organisms (i.e. autotrophs, heterotrophs, methanotrophs, methanogens) responsible for the cycling of carbon within a microbial community. Our recent work has focused on a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico which support the abundant growth of Microcoleus-dominated microbial mats. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface.

  18. Zirconium Hydroxide-coated Nanofiber Mats for Nerve Agent Decontamination.

    Science.gov (United States)

    Kim, Sohee; Ying, Wu Bin; Jung, Hyunsook; Ryu, Sam Gon; Lee, Bumjae; Lee, Kyung Jin

    2017-03-16

    Diverse innovative fabrics with specific functionalities have been developed for requirements such as self-decontamination of chemical/biological pollutants and toxic nerve agents. In this work, Zr(OH) 4 -coated nylon-6,6 nanofiber mats were fabricated for the decontamination of nerve agents. Nylon-6,6 fabric was prepared via the electrospinning process, followed by coating with Zr(OH) 4 , which was obtained by the hydrolysis of Zr(OBu) 4 by a sol-gel reaction on nanofiber surfaces. The reaction conditions were optimized by varying the amounts of Zr(OBu) 4 ,the reaction time, and the temperature of the sol-gel reaction. The composite nanofibers show high decontamination efficiency against diisopropylfluorophosphate, which is a nerve agent analogue, due to its high nucleophilicity that aids in the catalysis of the hydrolysis of the phosphonate ester bonds. Composite nanofiber mats have a large potential and can be applied in specific fields such as military and medical markets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Stranded cost recovery in electricity market reforms in the US

    International Nuclear Information System (INIS)

    Woo, C.K.; Lloyd, D.; Karimov, R.; Tishler, A.

    2003-01-01

    An important element of an electricity market reform is stranded cost recovery. This paper explains the cause of stranded costs, describes four recovery mechanisms, evaluates these mechanisms using the criteria of recovery certainty, economic efficiency and equity, reviews the financial performance of 12 utilities in the US in connection to stranded cost recovery, and shows why the mechanism used in California has contributed to the reform failure in that state. (Author)

  20. Theoretical analysis on ac loss properties of two-strand parallel conductors composed of superconducting multifilamentary strands

    CERN Document Server

    Iwakuma, M; Funaki, K

    2002-01-01

    The ac loss properties of two-strand parallel conductors composed of superconducting multifilamentary strands were theoretically investigated. The constituent strands generally need to be insulated and transposed for the sake of uniform current distribution and low ac loss. In case the transposition points deviate from the optimum ones, shielding current is induced according to the interlinkage magnetic flux of the twisted loop enclosed by the insulated strands and the contact resistances at the terminals. It produces an additional ac loss. Supposing a simple situation where a two-strand parallel conductor with one-point transposition is exposed to a uniform ac magnetic field, the basic equations for the magnetic field were proposed and the theoretical expressions of the additional ac losses derived. As a result, the following features were shown. The additional ac loss in the non-saturation case, where the induced shielding current is less than the critical current of a strand, is proportional to the square ...

  1. A methodology to identify stranded generation facilities and estimate stranded costs for Louisiana's electric utility industry

    Science.gov (United States)

    Cope, Robert Frank, III

    1998-12-01

    The electric utility industry in the United States is currently experiencing a new and different type of growing pain. It is the pain of having to restructure itself into a competitive business. Many industry experts are trying to explain how the nation as a whole, as well as individual states, will implement restructuring and handle its numerous "transition problems." One significant transition problem for federal and state regulators rests with determining a utility's stranded costs. Stranded generation facilities are assets which would be uneconomic in a competitive environment or costs for assets whose regulated book value is greater than market value. At issue is the methodology which will be used to estimate stranded costs. The two primary methods are known as "Top-Down" and "Bottom-Up." The "Top-Down" approach simply determines the present value of the losses in revenue as the market price for electricity changes over a period of time into the future. The problem with this approach is that it does not take into account technical issues associated with the generation and wheeling of electricity. The "Bottom-Up" approach computes the present value of specific strandable generation facilities and compares the resulting valuations with their historical costs. It is regarded as a detailed and difficult, but more precise, approach to identifying stranded assets and their associated costs. This dissertation develops a "Bottom-Up" quantitative, optimization-based approach to electric power wheeling within the state of Louisiana. It optimally evaluates all production capabilities and coordinates the movement of bulk power through transmission interconnections of competing companies in and around the state. Sensitivity analysis to this approach is performed by varying seasonal consumer demand, electric power imports, and transmission inter-connection cost parameters. Generation facility economic dispatch and transmission interconnection bulk power transfers, specific

  2. Excess single-stranded DNA inhibits meiotic double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Rebecca Johnson

    2007-11-01

    Full Text Available During meiosis, self-inflicted DNA double-strand breaks (DSBs are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1. We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE, in cells lacking Dmc1 strand-exchange protein. Turnover and resection of the VDE-DSBs was assessed in two different reporter cassettes that can repair using flanking direct repeat sequences, thereby obviating the need for a Dmc1-dependent DNA strand invasion step. Access of the single-strand binding complex replication protein A, which is normally used in all modes of DSB repair, was checked in chromatin immunoprecipitation experiments, using antibody against Rfa1. Repair of the VDE-DSBs was severely inhibited in dmc1Delta cells, a defect that was associated with a reduction in the long tract resection required to initiate single-strand annealing between the flanking repeat sequences. Mutants that either reduce Spo11-DSB formation or abolish resection at Spo11-DSBs rescued the repair block. We also found that a replication protein A component, Rfa1, does not accumulate to expected levels at unrepaired single-stranded DNA (ssDNA in dmc1Delta cells. The requirement of Dmc1 for VDE-DSB repair using flanking repeats appears to be caused by the accumulation of large quantities of ssDNA that accumulate at Spo11-DSBs when Dmc1 is absent. We propose that these resected DSBs sequester both resection machinery and ssDNA binding proteins, which in wild-type cells would normally be recycled as Spo11-DSBs repair. The implication is that repair proteins are in limited supply, and this could reflect an underlying mechanism for regulating DSB repair in wild-type cells, providing protection from potentially harmful effects

  3. Microbial mat structures in profile: The Neoproterozoic Sonia Sandstone, Rajasthan, India

    Science.gov (United States)

    Samanta, Pradip; Mukhopadhyay, Soumik; Mondal, Anudeb; Sarkar, Subir

    2011-01-01

    Ubiquitous microorganisms, especially cyanobacteria preferably grow on the sediment surface thereby producing microbial mats. In the absence of grazers and bioturbators, microbial mat is a unique feature of the Proterozoic. Most of the papers so far published described a wide variety of bed surface microbial mat structures with rare illustrations from sections perpendicular to bedding. Nonetheless, bed surface exposures are relatively rare in rock records. This limitation of bed surface exposures in rock records suggest that a study of microbial mats in bed-across sections is needed. The 60 m thick coastal marine interval of the Sonia Sandstone Formation is bounded between two terrestrial intervals, a transgressive lag at the base and an unconformity at the top, and has been chosen for exploration of microbial mat structures in bed-across sections. A wide variety of microbial mat-induced structures in bed-across sections are preserved within the coastal interval of the Sonia Sandstone. Though many of these structures are similar in some aspects with bed surface structures, some of those presented here are new. The palaeogeographic range of these microbial structures extends from supralittoral to neritic. Diagenetic alterations of microbial mats produce pyrite and those zones are suitable for the preservation of microbial remains. SEM and EDAX analyses show fossil preservation of filamentous microbial remains that confirm the presence of microbial mats within the coastal interval of the Sonia Sandstone. Effects of proliferation of microbial mats in the siliciclastic depositional setting are numerous. The mat-cover on sediment surfaces hinders reworking and/or erosion of the sediments thereby increases the net sedimentation rate. Successive deposition and preservation of thick microbial mat layer under reducing environments should have a great potential for hydrocarbon production and preservation and therefore these Proterozoic formations could be a target for

  4. Evaluation of polyacrylonitrile electrospun nano-fibrous mats as leukocyte removal filter media.

    Science.gov (United States)

    Pourbaghi, Raha; Zarrebini, Mohammad; Semnani, Dariush; Pourazar, Abbasali; Akbari, Nahid; Shamsfar, Reihaneh

    2017-09-13

    Removal of leukocytes from blood products is the most effective means for elimination of undesirable side effects and prevention of possible reactions in recipients. Micro-fibrous mats are currently used for removal of leukocytes from blood. In this study, samples of electrospun nano-fibrous mats were produced. The performance of the produced electrospun nano-fibrous mats as means of leukocytes removal from fresh whole blood was both evaluated and compared with that of commercially available micro-fibrous mats. In order to produce the samples, polyacrylonitrile (PAN) nano-fibrous mats were made under different electrospinning conditions. Mean fiber diameter, pore characterization and surface roughness of the PAN nano-fibrous mats were determined using image processing technique. In order to evaluate the surface tension of the fabricated mats, water contact angle was measured. The leukocyte removal performance, erythrocytes recovery percent and hemolysis rate of the nano-fibrous mats were compared. The effectiveness of nano-fibrous mats in removing leukocyte was established using both scanning electron microscope and optical microscope. Results showed that for given weight, the fabricated nano-fibrous mats were not only more efficient but also more cost-effective than their commercial counterparts. Results confirmed that changes in mean fiber diameter, the number of layer and weight of each layer in the absence of any chemical reaction or physical surface modification, the fabricated nano-fibrous mats were able to remove 5-log of leukocytes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  5. Strand Plasticity Governs Fatigue in Colloidal Gels

    Science.gov (United States)

    van Doorn, Jan Maarten; Verweij, Joanne E.; Sprakel, Joris; van der Gucht, Jasper

    2018-05-01

    The repeated loading of a solid leads to microstructural damage that ultimately results in catastrophic material failure. While posing a major threat to the stability of virtually all materials, the microscopic origins of fatigue, especially for soft solids, remain elusive. Here we explore fatigue in colloidal gels as prototypical inhomogeneous soft solids by combining experiments and computer simulations. Our results reveal how mechanical loading leads to irreversible strand stretching, which builds slack into the network that softens the solid at small strains and causes strain hardening at larger deformations. We thus find that microscopic plasticity governs fatigue at much larger scales. This gives rise to a new picture of fatigue in soft thermal solids and calls for new theoretical descriptions of soft gel mechanics in which local plasticity is taken into account.

  6. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    Science.gov (United States)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  7. SCATTERING FROM RAMIFIED POLYMERIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    M.Benhamou

    2004-01-01

    Full Text Available Here, of great interest to us is a quantitative study of the scattering properties from ramified polymeric systems of arbitrary topology. We consider three types of systems, namely ramified polymers in solution, ramified polymer blends, or ternary mixtures made of two ramified polymers of different chemical nature immersed in a good solvent. To achieve the goal of the study, use is made of the Random Phase Approximation. First we determine the exact expression of the form factor of an ideal ramified polymer of any topology, from which we extract the exact expression of its gyration radius. Using the classical Zimm's formulae and the exact form factor, we determine all scattering properties of these three types of ramified polymeric systems. The main conclusion is that ramification of the chains induces drastic changes of the scattering properties.

  8. Stranding of two sperm whales (Physeter macrocephalus) in the "North Sea trap" at Henne Strand, Denmark

    DEFF Research Database (Denmark)

    Hansen, Mette Sif; Alstrup, Aage K. O.; Hansen, Jørgen H.

    2016-01-01

    In February 2014 two male sperm whales (Physeter macrocephalus) stranded at Henne Strand, Denmark. One whale (MCE 1644) was found dead, while the other (MCE 1645) was still alive, but drowned during the high tide. To increase our knowledge of sperm whales, conduct forage investigations, post......-mortem and diagnostic examinations were carried out. The decay of the carcasses progressed quickly. The whales had large (MCE 1644) or moderate (MCE 1645) numbers of squid beaks (Gonatus fabricii) in the stomachventricles, but no evidence of recentfresh feeding. Both whales had acute dermatitis probably due to trauma...... severe localized or systemic infections. The finding of large volumes of bloody pleural fluid with large quantities of C. septicum suggests that MCE 1644 died of infection. However, reservations must be taken due to the pronounced decay of the carcass. Sperm whales have strong social bonds where...

  9. Polymeric nanoparticles for optical sensing.

    Science.gov (United States)

    Canfarotta, Francesco; Whitcombe, Michael J; Piletsky, Sergey A

    2013-12-01

    Nanotechnology is a powerful tool for use in diagnostic applications. For these purposes a variety of functional nanoparticles containing fluorescent labels, gold and quantum dots at their cores have been produced, with the aim of enhanced sensitivity and multiplexing capabilities. This work will review progress in the application of polymeric nanoparticles in optical diagnostics, both for in vitro and in vivo detection, together with a discussion of their biodistribution and biocompatibility. © 2013.

  10. Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA

    OpenAIRE

    Khodakov, Dmitriy A.; Khodakova, Anastasia S.; Huang, David M.; Linacre, Adrian; Ellis, Amanda V.

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within doubl...

  11. Second-strand cDNA synthesis: classical method

    International Nuclear Information System (INIS)

    Gubler, U.

    1987-01-01

    The classical scheme for the synthesis of double-stranded cDNA as it was reported in 1976 is described. Reverse transcription of mRNA with oligo(dT) as the primer generates first strands with a small loop at the 3' end of the cDNA (the end that corresponds to the 5' end of the mRNA). Subsequent removal of the mRNA by alkaline hydrolysis leaves single-stranded cDNA molecules again with a small 3' loop. This loop can be used by either reverse transcriptase or Klenow fragment of DNA polymerase I as a primer for second-strand synthesis. The resulting products are double-stranded cDNA molecules that are covalently closed at the end corresponding to the 5' end of the original mRNA. Subsequent cleavage of the short piece of single-stranded cDNA within the loop with the single-strand-specific S 1 nuclease generate open double-stranded molecules that can be used for molecular cloning in plasmids or in phage. Useful variations of this scheme have been described

  12. Getting Frustrated: Modelling Emotion Contagion in Stranded Passengers

    NARCIS (Netherlands)

    van der Wal, C. Natalie; Couwenberg, Maik; Bosse, T.

    2017-01-01

    Train passengers can get stranded due to a variety of events, such as a delay, technical malfunctioning or a natural disaster. Stranded passengers can get frustrated, which could escalate in misbehaviours. Examples are verbal and physical violence or dangerous behaviours such as opening emergency

  13. Cetacean strandings along the coast of Izmir Bay, Turkey

    NARCIS (Netherlands)

    Guclusoy, H.; Veryeri, N.; Cirik, S.

    2004-01-01

    The present paper provides information on the stranding of cetaceans in Izmir Bay, Aegean Sea, between 1992 and 2004. The data were collected opportunistically during sightings and stranding data collection for Monk Seals. A total of 12 cetaceans, namely Bottle-nosed Dolphin, Tursiops truncatus

  14. Testing the utility of matK and ITS DNA regions for discrimination of Allium species

    Science.gov (United States)

    Molecular phylogenetic analysis of the genus Allium L. has been mainly based on the nucleotide sequences of ITS region. In 2009 matK and rbcL were accepted as a two-locus DNA barcode to classify plant species by the Consortium for the Barcode of Life (CBOL) Plant Working Group. MatK region has been ...

  15. Coastal microbial mats: the physiology of a small-scale ecosystem

    NARCIS (Netherlands)

    Stal, L.J.

    2001-01-01

    Coastal inter-tidal sandy sediments, salt marshes and mangrove forests often support the development of microbial mats. Microbial mats are complex associations of one or several functional groups of microorganisms and their formation usually starts with the growth of a cyanobacterial population on a

  16. COMPETITION BETWEEN ANOXYGENIC PHOTOTROPHIC BACTERIA AND COLORLESS SULFUR BACTERIA IN A MICROBIAL MAT

    NARCIS (Netherlands)

    VISSCHER, PT; VANDENENDE, FP; SCHAUB, BEM; VANGEMERDEN, H

    The populations of chemolithoautotrophic (colorless) sulfur bacteria and anoxygenic phototrophic bacteria were enumerated in a marine microbial mat. The highest population densities were found in the 0-5 mm layer of the mat: 2.0 X 10(9) cells CM-3 sediment, and 4.0 X 10(7) cells cm-3 sediment for

  17. Polycaprolactone-Chitin Nanofibrous Mats as Potential Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Min Sup Kim

    2012-01-01

    Full Text Available We describe here the preparation of poly(caprolactone (PCL-chitin nanofibrous mats by electrospinning from a blended solution of PCL and chitin dissolved in a cosolvent, 1,1,1,3,3,3-hexafluoro-2-propanol and trifluoroacetic acid. Scanning electron microscopy showed that the neutralized PCL-chitin nanofibrous mats were morphologically stable, with a mean diameter of 340.5±2.6 nm, compared with a diameter of 524.2±12.1 nm for PCL mats. The nanofibrous mats showed decreased water contact angles as the proportion of chitin increased. However, the tensile properties of nanofibrous mats containing 30~50% (wt/wt chitin were enhanced compared with PCL-only mats. In vitro studies showed that the viability of human dermal fibroblasts (HDFs for up to 7 days in culture was higher on composite (OD value: 1.42±0.09 than on PCL-only (0.51±0.14 nanofibrous mats, with viability correlated with chitin concentration. Together, our results suggest that PCL-chitin nanofibrous mats can be used as an implantable substrate to modulate HDF viability in tissue engineering.

  18. Design of a smart textile mat to study pressure distribution on multiple foam material configurations

    NARCIS (Netherlands)

    Donselaar, van R.; Chen, W.

    2011-01-01

    In this paper, we present a design of a smart textile pressure mat to study the pressure distribution with multiple foam material configurations for neonatal monitoring at Neonatal Intensive Care Units (NICU). A smart textile mat with 64 pressure sensors has been developed including software at the

  19. Evaluating carbon stores at the earth-atmosphere interface: moss and lichen mats of subarctic Alaska

    Science.gov (United States)

    Robert J. Smith; Sarah Jovan; Bruce. McCune

    2015-01-01

    A fundamental goal of the forest inventory in interior Alaska is to accurately estimate carbon pools in a way that sheds light on the feedbacks between forests and climate. In boreal forests, moss and lichen mats often serve as the interface between soils and the atmosphere, therefore characterizing the biomass and composition of mats is essential for understanding how...

  20. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing

    CSIR Research Space (South Africa)

    Naseria, N

    2014-08-01

    Full Text Available The aim of this study was to develop electrospun chitosan/polyethylene oxide-based randomly oriented fiber mats reinforced with chitin nanocrystals (ChNC) for wound dressing. Microscopy studies showedporous mats of smooth and beadless fibers...

  1. Distinctive fungal and bacterial communities are associated with mats formed by ectomycorrhizal fungi

    Science.gov (United States)

    Laurel A. Kluber; Jane E. Smith; David D. Myrold

    2011-01-01

    The distinct rhizomorphic mats formed by ectomycorrhizal Piloderma fungi are common features of the organic soil horizons of coniferous forests of the Pacific Northwest. These mats have been found to cover 25-40% of the forest floor in some Douglas-fir stands, and are associated with physical and biochemical properties that distinguish them from...

  2. Estimation of axial stiffness of plant fibres from compaction of non-woven mats

    DEFF Research Database (Denmark)

    Gamstedt, E. K.; Bommier, E.; Madsen, Bo

    2014-01-01

    -plane randomly oriented fibre mats. The model by Toll is used to relate the load-displacement curve from the test to the Young modulus of the fibre, taking into account the natural variability in fibre cross section. Several tests have been performed on hemp fibre mats and compared with results from single...

  3. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming.

    Science.gov (United States)

    Boyd, Eric S; King, Susan; Tomberlin, Jeffery K; Nordstrom, D Kirk; Krabbenhoft, David P; Barkay, Tamar; Geesey, Gill G

    2009-04-01

    Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH approximately 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg(+)), while undetectable or near the detection limit (0.025 ng l(-1)) in the source water of the springs, was present at concentrations of 4-7 ng g(-1) dry weight of mat biomass. Detection of MeHg(+) in tracheal tissue of larvae grazing the mat suggests that MeHg(+) enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg(+) was two to five times higher in larval tissue than mat biomass indicating MeHg(+) biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg(+) to species in the food web whose range extends beyond a particular geothermal feature of YNP.

  4. Perfect simulation and moment properties for the Matérn type III process

    DEFF Research Database (Denmark)

    Møller, Jesper; Huber, Mark L.; Wolpert, Robert L.

    In a seminal work, Bertil Matérn introduced several types of processes for modeling repulsive point processes. In this paper an algorithm is presented for the perfect simulation of the Mat´ern III process within a bounded window in Rd fully accounting for edge effects. A simple upper bound...

  5. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katrina A. Rieger

    2016-04-01

    Full Text Available Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid (PAA, chitosan (CS, and polydiallyldimethylammonium chloride (pDADMAC. The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%. Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process.

  6. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Science.gov (United States)

    Rieger, Katrina A.; Porter, Michael; Schiffman, Jessica D.

    2016-01-01

    Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyldimethylammonium chloride (pDADMAC). The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm) of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%). Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process. PMID:28773422

  7. Electrospun polyvinylpyrrolidone (PVP)/green tea extract composite nanofiber mats and their antioxidant activities

    Science.gov (United States)

    Pusporini, Pusporini; Edikresnha, Dhewa; Sriyanti, Ida; Suciati, Tri; Miftahul Munir, Muhammad; Khairurrijal, Khairurrijal

    2018-05-01

    Electrospinning was employed to make PVP (polyvinylpyrrolidone)/GTE (green tea extract) composite nanofiber mats. The electrospun PVP nanofiber mat as well as the PVP/GTE nanofiber mats were uniform. The average fiber diameter of PVP/GTE composite nanofiber mat decreased with increasing the GTE weight fraction (or decreasing the PVP weight fraction) in the PVP/GTE solution because the PVP/GTE solution concentration decreased. Then, the broad FTIR peak representing the stretching vibrations of O–H in hydroxyl groups of phenols and the stretching of N–H in amine groups of the GTE paste shifted to higher wavenumbers in the PVP/GTE composite nanofiber mats. These peak shifts implied that PVP and catechins of GTE in the PVP/GTE composite nanofiber mats had intermolecular interactions via hydrogen bonds between carbonyl groups of PVP and hydroxyl groups of catechins in GTE. Lastly, the antioxidant activity of the PVP/GTE composite nanofiber mat increased with reducing the average fiber diameter because the amount of catechins in the composite nanofiber mat increased with the increase of surface area due to the reduction of the average fiber diameter.

  8. Polymeric Coatings for Combating Biocorrosion

    Science.gov (United States)

    Guo, Jing; Yuan, Shaojun; Jiang, Wei; Lv, Li; Liang, Bin; Pehkonen, Simo O.

    2018-03-01

    Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  9. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  10. Structural features of single-stranded integron cassette attC sites and their role in strand selection.

    Directory of Open Access Journals (Sweden)

    Marie Bouvier

    2009-09-01

    Full Text Available We recently showed that cassette integration and deletion in integron platforms were occurring through unconventional site-specific recombination reactions involving only the bottom strand of attC sites. The lack of sequence conservation among attC sites led us to hypothesize that sequence-independent structural recognition determinants must exist within attC sites. The structural data obtained from a synaptic complex of the Vibrio cholerae integrase with the bottom strand of an attC site has shown the importance of extra helical bases (EHB inside the stem-loop structure formed from the bottom strand. Here, we systematically determined the contribution of three structural elements common to all known single-stranded attC site recombination substrates (the EHBs, the unpaired central spacer (UCS, and the variable terminal structure (VTS to strand choice and recombination. Their roles have been evaluated in vivo in the attIxattC reaction context using the suicide conjugation assay we previously developed, but also in an attCxattC reaction using a deletion assay. Conjugation was used to deliver the attC sites in single-stranded form. Our results show that strand choice is primarily directed by the first EHB, but the presence of the two other EHBs also serves to increase this strand selection. We found that the structure of the central spacer is essential to achieve high level recombination of the bottom strand, suggesting a dual role for this structure in active site exclusion and for hindering the reverse reaction after the first strand exchange. Moreover, we have shown that the VTS has apparently no role in strand selectivity.

  11. Control of DNA strand displacement kinetics using toehold exchange.

    Science.gov (United States)

    Zhang, David Yu; Winfree, Erik

    2009-12-02

    DNA is increasingly being used as the engineering material of choice for the construction of nanoscale circuits, structures, and motors. Many of these enzyme-free constructions function by DNA strand displacement reactions. The kinetics of strand displacement can be modulated by toeholds, short single-stranded segments of DNA that colocalize reactant DNA molecules. Recently, the toehold exchange process was introduced as a method for designing fast and reversible strand displacement reactions. Here, we characterize the kinetics of DNA toehold exchange and model it as a three-step process. This model is simple and quantitatively predicts the kinetics of 85 different strand displacement reactions from the DNA sequences. Furthermore, we use toehold exchange to construct a simple catalytic reaction. This work improves the understanding of the kinetics of nucleic acid reactions and will be useful in the rational design of dynamic DNA and RNA circuits and nanodevices.

  12. Biomedical Applications of Antibacterial Nanofiber Mats Made of Electrospinning with Wire Electrodes

    Directory of Open Access Journals (Sweden)

    Yi-Jun Pan

    2016-02-01

    Full Text Available Twisted stainless steel wires are used as wire electrodes for electrospinning the polyvinyl alcohol (PVA/zinc citrate nanofiber mats. The morphology and diameter of the nanofibers in PVA/zinc citrate nanofiber mats are evaluated. We measured the antibacterial efficacy against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli of the nanofiber mats. We also examined the cell adhesion affinity of mammalian tissue culture cells on these nanofiber mats. Our results indicate that an increase in zinc citrate increases the viscosity and electrical conductivity of PVA solution. In addition, increasing zinc citrate results in a smaller diameter of nanofibers that reaches below 100 nm. According to the antibacterial test results, increasing zinc citrate enlarges the inhibition zone of S. aureus but only has a bacteriostatic effect against E. coli. Finally, cell adhesion test results indicate that all nanofiber mats have satisfactory cell attachment regardless of the content of zinc citrate.

  13. MatLab Programming for Engineers Having No Formal Programming Knowledge

    Science.gov (United States)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.

  14. Composite poly(vinyl alcohol/poly(vinyl acetate electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs

    Directory of Open Access Journals (Sweden)

    Jannesari M

    2011-05-01

    Full Text Available Marziyeh Jannesari1, Jaleh Varshosaz2, Mohammad Morshed1, Maedeh Zamani11Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran; 2Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, IranAbstract: The aim of this study was to develop novel biomedicated nanofiber electrospun mats for controlled drug release, especially drug release directly to an injury site to accelerate wound healing. Nanofibers of poly(vinyl alcohol (PVA, poly(vinyl acetate (PVAc, and a 50:50 composite blend, loaded with ciprofloxacin HCl (CipHCl, were successfully prepared by an electrospinning technique for the first time. The morphology and average diameter of the electrospun nanofibers were investigated by scanning electron microscopy. X-ray diffraction studies indicated an amorphous distribution of the drug inside the nanofiber blend. Introducing the drug into polymeric solutions significantly decreased solution viscosities as well as nanofiber diameter. In vitro drug release evaluations showed that both the kind of polymer and the amount of drug loaded greatly affected the degree of swelling, weight loss, and initial burst and rate of drug release. Blending PVA and PVAc exhibited a useful and convenient method for electrospinning in order to control the rate and period of drug release in wound healing applications. Also, the thickness of the blend nanofiber mats strongly influenced the initial release and rate of drug release.Keywords: biodegradable polymers, drug delivery, controlled release, electrospun nanofibers, wound dressing

  15. Validity Study of a Jump Mat Compared to the Reference Standard Force Plate.

    Science.gov (United States)

    Rogan, Slavko; Radlinger, Lorenz; Imhasly, Caroline; Kneubuehler, Andrea; Hilfiker, Roger

    2015-12-01

    In the field of vertical jump diagnostics, force plates (FP) are the reference standard. Recently, despite a lack of evidence, jump mats have been used increasingly. Important factors in favor of jumping mats are their low cost and portability. This validity study compared the Haynl-Elektronik jump mat (HE jump mat) with the reference standard force plate. Ten healthy volunteers participated and each participant completed three series of five drop jumps (DJ). The parameters ground contact time (GCT) and vertical jump height (VJH) from the HE jump mat and the FP were used to evaluate the concurrent validity. The following statistical calculations were performed: Pearson's correlation (r), Bland-Altman plots (standard and for adjusted trend), and regression equations. The Bland-Altman plots suggest that the HE jump mat measures shorter contact times and higher jump heights than the FP. The trend-adjusted Bland-Altman plot shows higher mean differences and wider wing-spreads of confidence limits during longer GCT. During the VJH the mean differences and the wing-spreads of the confidence limits throughout the range present as relatively constant. The following regression equations were created, as close as possible to the true value: GCT = 5.920385 + 1.072293 × [value HE jump mat] and VJH = -1.73777 + 1.011156 × [value HE jump mat]. The HE jump mat can be recommended in relation to the validity of constraints. In this study, only a part of the quality criteria were examined. For the final recommendation it is advised to examine the HE jump mat on the other quality criteria (test-retest reliability, sensitivity change).

  16. Acute Pyelonephritis with Perinephric Stranding on CT

    Directory of Open Access Journals (Sweden)

    Ronald Goubert

    2018-01-01

    Full Text Available History of present illness: A 54-year old female presented to the emergency department with complaints of fevers, dysuria, urinary frequency, and diffuse abdominal pain. Her temperature was 103°F, but the remainder of her vital signs were normal. Upon physical examination, the patient had tenderness to palpation in the left upper and left lower abdomen and left costovertebral angle tenderness. Due to the location of pain (diverticulitis is in the differential for left-sided abdominal pain in this age group and patient’s reported history of nephrolithiasis, a computed tomography (CT scan of the abdomen and pelvis with intravenous (IV contrast was ordered because the physician felt this could best work up both of these possible conditions. Significant findings: A CT abdomen and pelvis with IV contrast showed neither nephrolithiasis nor diverticulitis, and instead showed heterogeneous enhancement of the left kidney with mild edematous enlargement and striated left nephrogram. Significant perinephric stranding (red arrows was also noted and was consistent with severe acute pyelonephritis. Discussion: Acute pyelonephritis (APN is a bacterial infection of the renal parenchyma which can present with a spectrum of symptoms including flank pain, high-grade fever, vomiting, and urinary tract symptoms.1,2 The diagnosis of APN can be made based on these clinical features with associated laboratory findings of bacteriuria, pyuria, positive urine cultures, and leukocytosis.1,2,7 Early diagnosis and treatment of APN is essential to prevent complications such as renal abscess or infarct, which could lead to renal failure, sepsis, and shock.3 CT has a sensitivity and specificity of 86.8% and 87.5%, respectively, for diagnosing APN. Common findings include striated nephrograms or perinephric fat stranding.2 However, imaging is not required for diagnosis and is typically reserved for patients who are immunocompromised, have severe symptoms, or show no clinical

  17. Utilization of MatPIV program to different geotechnical models

    Science.gov (United States)

    Aklik, P.; Idinger, G.

    2009-04-01

    The Particle Imaging Velocimetry (PIV) technique is being used to measure soil displacements. PIV has been used for many years in fluid mechanics; but for physical modeling in geotechnical engineering, this technique is still relatively new. PIV is a worldwide growth in soil mechanics over the last decade owing to the developments in digital cameras and laser technologies. The use of PIV is feasible provided the surface contains sufficient texture. A Cambridge group has shown that natural sand contains enough texture for applying PIV. In a texture-based approach, the only requirement is for any patch, big or small to be sufficiently unique so that statistical tracking of this patch is possible. In this paper, some of the soil mechanic's models were investigated such as retaining walls, slope failures, and foundations. The photographs were taken with the help of the high resolution digital camera, the displacements of soils were evaluated with free software named as MatPIV and the displacement graphics between the two images were obtained. Nikon D60 digital camera is 10.2 MB and it has special properties which makes it possible to use in PIV applications. These special properties are Airflow Control System and Image Sensor cleaning for protection against dust, Active D-Lighting for highlighted or shadowy areas while shooting, advanced three-point AF system for fast, efficient and precise autofocus. Its fast and continuous shooting mode enables up to 100 JPEG images at three frames per second. Norm Sand (DIN 1164) was used for all the models in a glass rectangular box. For every experiment, MatPIV was used to calculate the velocities from the two images. MatPIV program was used in two ways such as easy way and difficult way: In the easy way, the two images with 64*64 pixels with 50% or 75% overlap of the interrogation windows were taken into consideration and the calculation was performed with a single iteration through the images and the result consisted of four

  18. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  19. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu; Hsiao, Vincent; Zheng, Yue Bing; Huang, Tony Jun

    2012-01-01

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  20. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  1. Double Stranded RNA in Human Seminal Plasma

    Directory of Open Access Journals (Sweden)

    Maxim V. Zagoskin

    2017-10-01

    Full Text Available Recently, human semen was shown to contain cell-free nucleic acids, such as DNA, long single stranded RNA, and small RNAs–miRNA and piRNA. The RNAs have been suggested to have potential biological roles as communication molecules between cells and in the temporal and spatial regulation of gene expression in the male reproductive system. Here we demonstrate that human seminal plasma contains a variety of cell-free dsRNAs, describe a robust method to isolate this type of nucleic acid in preparative amounts, and discuss the potential biological roles of these molecules in inheritance. dsRNA plays a role in a variety of biological processes, including gene regulation, is extremely stable and can gain access to cells from the extracellular medium. We suggest that one of the possible functions of dsRNA in human seminal plasma may be to influence human oocytes and therefore, influence the offspring. It also remains possible that these dsRNAs might have potential use as biomarkers for the study of human physiopathological conditions and genetic variation.

  2. Dynamics of Leading-strand Lesion Skipping by the Replisome

    Science.gov (United States)

    Yeeles, Joseph T.P.; Marians, Kenneth J.

    2013-01-01

    SUMMARY The E. coli replisome stalls transiently when it encounters a lesion in the leading-strand template, skipping over the damage by reinitiating replication at a new primer synthesized downstream by the primase. We report here that template unwinding and lagging-strand synthesis continue downstream of the lesion at a reduced rate after replisome stalling, that one replisome is capable of skipping multiple lesions, and that the rate limiting steps of replication restart involve the synthesis and activation of the new primer downstream. We also find little support for the concept that polymerase uncoupling, where extensive lagging-strand synthesis proceeds downstream in the absence of leading-strand synthesis, involves physical separation of the leading-strand polymerase from the replisome. Instead, our data indicate that extensive uncoupled replication likely results from a failure of the leading-strand polymerase still associated with the DNA helicase and the lagging-strand polymerase that are proceeding downstream to reinitiate synthesis. PMID:24268579

  3. Polymeric membrane materials for artificial organs.

    Science.gov (United States)

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  4. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  5. Current redistribution in cables made of insulated, soldered, or oxidized strands

    International Nuclear Information System (INIS)

    Turck, B.

    1979-07-01

    Current redistributions are compared in cables made of insulated strands, soldered, or oxidized strands and insulated strands with periodic joints. After discussing the different current redistributions in the cases of a rapidly changing current and a dc current, several particular situations are investigated: what happens if a strand is broken, or if a local normal zone appears that does not affect all the strands equally, the detection of this normal zone, and the influence of short circuits between strands

  6. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles.

    Science.gov (United States)

    Kohsari, Iraj; Shariatinia, Zahra; Pourmortazavi, Seied Mahdi

    2016-10-01

    Antimicrobial chitosan-polyethylene oxide (CS-PEO) nanofiber mats loaded with 3, 5 and 10% (w/w) of zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs, ∼60nm diameter) were developed by electrospinning technique. The CS-PEO-GA-3% ZIF-8 NPs crosslinked with glutaraldehyde (GA) vapor was also prepared. The electrospun mats were characterized by various analysis including FE-SEM, EDAX, elemental mapping, FT-IR, contact angle, TGA/DSC as well as tensile strength analysis. The nanofibers had average diameters within the range ∼70-120nm. Antimicrobial activities of the CS-PEO and CS-PEO-3% ZIF-8 mats were evaluated by the viable cell-counting method for determining their effectiveness in reducing or halting the growth of Staphylococcus aureus and Escherichia coli bacteria so that the CS-PEO mat containing 3% ZIF-8 revealed 100% bactericidal activity against both kinds of bacteria. The crosslinked CS-PEO-GA-3% ZIF-8 NPs sample was less thermally stable but more hydrophilic than its related non-crosslinked mat reflecting there was no need to crosslink the fibers using a chemical crosslinker having adverse effects. The highest hydrophobicity and appropriate thermal and tensile properties of CS-PEO-3% ZIF-8 NPs among those of the mats including 5 and 10% ZIF-8 NPs suggested that the mentioned mat is the most suitable sample for food coating applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A Modeling Comparison of Methanogenesis from Noncompetitive vs Competitive Substrates in a Simulated Hypersaline Microbial Mat

    Science.gov (United States)

    Decker, K. L.; Potter, C.; Hoehler, T.

    2005-12-01

    The well-documented assumption about methanogens that co-occur in hypersaline mat communities with sulfate-reducing bacteria (SRB) is that they rely entirely on non-competitive substrates for methanogenesis. The reason for this is that during sulfate reduction, sulfur-reducing bacteria efficiently utilize H2, leaving a concentration too low for methanogenesis. Early results from recent work on a hypersaline microbial mat from salt evaporation ponds of Guerrero Negro, Baja, Mexico cast doubt that methanogenesis only occurs via non-competitive substrates, because it shows an excess of H2 in the mat rather than a paucity. We explore the use of our simulation model of the microbial biogeochemistry of a hypersaline mat (named MBGC) to compare methane production rates in a 1 cm thick mat when the methanogens use competitive substrates versus noncompetitive substrates. In the `non-competitive substrate' version of the model, methanogens rely exclusively on methylated amines that are accumulated as compatible solutes in cyanobacteria and released after lysis. In contrast, the `competitive substrate' models examine methanogen use of substrates (such as H2 + acetate) with different SRB population sizes (from absent to low). The comparison of these models of methane and sulfide biogeochemistry of a hypersaline mat has both ecological and geobiological significance, as one hypothesis of Archean microbial mats is that they existed in a low sulfate environment.

  8. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats

    Directory of Open Access Journals (Sweden)

    Chunhui Xiang

    2016-04-01

    Full Text Available Tensile strength, Young’s modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber–fiber load sharing. Single-walled carbon nanotubes (CNTs were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young’s modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber–fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young’s modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young’s modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young’s modulus of the electrospun nylon 6 non-woven fiber mats.

  9. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat

    Energy Technology Data Exchange (ETDEWEB)

    Mobberley, Jennifer M.; Lindemann, Stephen R.; Bernstein, Hans C.; Moran, James J.; Renslow, Ryan S.; Babauta, Jerome; Hu, Dehong; Beyenal, Haluk; Nelson, William C.

    2017-03-21

    Phototrophic mat communities are model ecosystems for studying energy cycling and elemental transformations because complete biogeochemical cycles occur over millimeter-to-centimeter scales. Characterization of energy and nutrient capture within hypersaline phototrophic mats has focused on specific processes and organisms, however little is known about community-wide distribution of and linkages between these processes. To investigate energy and macronutrient capture and flow through a structured community, the spatial and organismal distribution of metabolic functions within a compact hypersaline mat community from Hot Lake have been broadly elucidated through species-resolved metagenomics and geochemical, microbial diversity, and metabolic gradient measurements. Draft reconstructed genomes of abundant organisms revealed three dominant cyanobacterial populations differentially distributed across the top layers of the mat suggesting niche separation along light and oxygen gradients. Many organisms contained diverse functional profiles, allowing for metabolic response to changing conditions within the mat. Organisms with partial nitrogen and sulfur metabolisms were widespread indicating dependence upon metabolite exchange. In addition, changes in community spatial structure were observed over the diel. These results indicate that organisms within the mat community have adapted to the temporally dynamic environmental gradients in this hypersaline mat through metabolic flexibility and fluid syntrophic interactions, including shifts in spatial arrangements.

  10. Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    Science.gov (United States)

    Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.

  11. Modification of PLGA Nanofibrous Mats by Electron Beam Irradiation for Soft Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Jae Baek Lee

    2015-01-01

    Full Text Available Biodegradable poly(lactide-co-glycolide (PLGA has found widespread use in modern medical practice. However, the degradation rate of PLGA should be adjusted for specific biomedical applications such as tissue engineering, drug delivery, and surgical implantation. This study focused on the effect of electron beam radiation on nanofibrous PLGA mats in terms of physical properties and degradation behavior with cell proliferation. PLGA nanofiber mats were prepared by electrospinning, and electron beam was irradiated at doses of 50, 100, 150, 200, 250, and 300 kGy. PLGA mats showed dimensional integrity after electron beam irradiation without change of fiber diameter. The degradation behavior of a control PLGA nanofiber (0 kGy and electron beam-irradiated PLGA nanofibers was analyzed by measuring the molecular weight, weight loss, change of chemical structure, and fibrous morphology. The molecular weight of the PLGA nanofibers decreased with increasing electron beam radiation dose. The mechanical properties of the PLGA nanofibrous mats were decreased with increasing electron beam irradiation dose. Cell proliferation behavior on all electron beam irradiated PLGA mats was similar to the control PLGA mats. Electron beam irradiation of PLGA nanofibrous mats is a potentially useful approach for modulating the biodegradation rate of tissue-specific nonwoven nanofibrous scaffolds, specifically for soft tissue engineering applications.

  12. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses

    Directory of Open Access Journals (Sweden)

    Simon Roux

    2016-12-01

    Full Text Available Background Viruses strongly influence microbial population dynamics and ecosystem functions. However, our ability to quantitatively evaluate those viral impacts is limited to the few cultivated viruses and double-stranded DNA (dsDNA viral genomes captured in quantitative viral metagenomes (viromes. This leaves the ecology of non-dsDNA viruses nearly unknown, including single-stranded DNA (ssDNA viruses that have been frequently observed in viromes, but not quantified due to amplification biases in sequencing library preparations (Multiple Displacement Amplification, Linker Amplification or Tagmentation. Methods Here we designed mock viral communities including both ssDNA and dsDNA viruses to evaluate the capability of a sequencing library preparation approach including an Adaptase step prior to Linker Amplification for quantitative amplification of both dsDNA and ssDNA templates. We then surveyed aquatic samples to provide first estimates of the abundance of ssDNA viruses. Results Mock community experiments confirmed the biased nature of existing library preparation methods for ssDNA templates (either largely enriched or selected against and showed that the protocol using Adaptase plus Linker Amplification yielded viromes that were ±1.8-fold quantitative for ssDNA and dsDNA viruses. Application of this protocol to community virus DNA from three freshwater and three marine samples revealed that ssDNA viruses as a whole represent only a minor fraction (<5% of DNA virus communities, though individual ssDNA genomes, both eukaryote-infecting Circular Rep-Encoding Single-Stranded DNA (CRESS-DNA viruses and bacteriophages from the Microviridae family, can be among the most abundant viral genomes in a sample. Discussion Together these findings provide empirical data for a new virome library preparation protocol, and a first estimate of ssDNA virus abundance in aquatic systems.

  13. Twin screw extruders as polymerization reactors for a free radical homo polymerization

    NARCIS (Netherlands)

    Ganzeveld, K.J.; Janssen, L.P.B.M.

    The bulk polymerization of n-butylmethacrylate was investigated in a counter-rotating twin screw extruder. It appeared that the gel effect, occurring with bulk polymerizations, affected the polymerization progress very strongly. Due to this effect the conversion of the reaction is independent of the

  14. Strand critical current degradation in $Nb_{3}$ Sn Rutherford cables

    CERN Document Server

    Barzi, E; Higley, H C; Scanlan, R M; Yamada, R; Zlobin, A V

    2001-01-01

    Fermilab is developing 11 Tesla superconducting accelerator magnets based on Nb/sub 3/Sn superconductor. Multifilamentary Nb/sub 3/Sn strands produced using the modified jelly roll, internal tin, and powder-in-tube technologies were used for the development and test of the prototype cable. To optimize the cable geometry with respect to the critical current, short samples of Rutherford cable with packing factors in the 85 to 95% range were fabricated and studied. In this paper, the results of measurements of critical current, n-value and RRR made on the round virgin strands and on the strands extracted from the cable samples are presented. (5 refs).

  15. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat.

    Science.gov (United States)

    Haas, Sebastian; de Beer, Dirk; Klatt, Judith M; Fink, Artur; Rench, Rebecca McCauley; Hamilton, Trinity L; Meyer, Volker; Kakuk, Brian; Macalady, Jennifer L

    2018-01-01

    We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 μmol photons m -2 s -1 , and UV light (97% sequence identity) of clones affiliated with Prosthecochloris , a genus within the green sulfur bacteria (GSB), which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (β-)isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3-6 μmol L -1 ) was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm -3 d -1 ). The anoxic water column was oligotrophic and low in dissolved organic carbon (175-228 μmol L -1 ). High concentrations of pyrite (FeS 2 ; 1-47 μmol cm -3 ) together with low microbial process rates (sulfate reduction, CO 2 fixation) indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III) (4.3-22.2 μmol cm -3 ) is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats.

  16. Tracing biosignatures from the Recent to the Jurassic in sabkha-associated microbial mats

    Science.gov (United States)

    van der Land, Cees; Dutton, Kirsten; Andrade, Luiza; Paul, Andreas; Sherry, Angela; Fender, Tom; Hewett, Guy; Jones, Martin; Lokier, Stephen W.; Head, Ian M.

    2017-04-01

    Microbial mat ecosystems have been operating at the sediment-fluid interface for over 3400 million years, influencing the flux, transformation and preservation of carbon from the biosphere to the physical environment. These ecosystems are excellent recorders of rapid and profound changes in earth surface environments and biota as they often survive crisis-induced extreme paleoenvironmental conditions. Their biosignatures, captured in the preserved organic matter and the biominerals that form the microbialite rock, constitute a significant tool in understanding geobiological processes and the interactions of the microbial communities with sediments and with the prevailing physical chemical parameters, as well as the environmental conditions at a local and global scale. Nevertheless, the exact pathways of diagenetic organic matter transformation and early-lithification, essential for the accretion and preservation in the geological record as microbialites, are not well understood. The Abu Dhabi coastal sabkha system contains a vast microbial mat belt that is dominated by continuous polygonal and internally-laminated microbial mats across the upper and middle intertidal zones. This modern system is believed to be the best analogue for the Upper Jurassic Arab Formation, which is both a prolific hydrocarbon reservoir and source rock facies in the United Arab Emirates and in neighbouring countries. In order to characterise the processes that lead to the formation of microbialites we investigated the modern and Jurassic system using a multidisciplinary approach, including growth of field-sampled microbial mats under controlled conditions in the laboratory and field-based analysis of microbial communities, mat mineralogy and organic biomarker analysis. In this study, we focus on hydrocarbon biomarker data obtained from the surface of microbial mats actively growing in the intertidal zone of the modern system. By comparing these findings to data obtained from recently

  17. Microbial Mats on the Orkney Islands Revisited: Microenvironment and Microbial Community Composition

    DEFF Research Database (Denmark)

    Wieland, A.; Kühl, M.; McGowan, L.

    2003-01-01

    of these sediments. High amounts of algal lipids and slightly higher numbers (genera, abundances) of cyanobacteria were found in Waulkmill Bay mats. However, overall only a few genera and low numbers of unicellular and filamentous cyanobacteria were present in mats from Waulkmill and Swanbister beach, as deduced...... fragment length polymorphism) analysis in Swanbister beach mats, the depth distribution of different populations of purple and sulfate-reducing bacteria could be related to the microenvironmental conditions. Oxygen, but also sulfide and other (inorganic and organic) sulfur compounds, seems to play...

  18. MAT2B promotes adipogenesis by modulating SAMe levels and activating AKT/ERK pathway during porcine intramuscular preadipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Cunzhen; Chen, Xiaochang; Wu, Wenjing; Wang, Wusu; Pang, Weijun; Yang, Gongshe, E-mail: gsyang999@hotmail.com

    2016-05-15

    Intramuscular fat (IMF) has been demonstrated as one of the crucial factors of livestock meat quality. The MAT2B protein with MAT2α catalyzes the formation of methyl donor S- adenosylmethionine (SAMe) to mediate cell metabolism including proliferation and apoptosis. However, the regulatory effect of MAT2B on IMF deposition is still unclear. In this study, the effect of MAT2B on adipogenesis and its potential mechanism during porcine intramuscular preadipocyte differentiation was studied. The results showed that overexpression of MAT2B promoted adipogenesis and significantly up-regulated the mRNA and protein levels of adipogenic marker genes including FASN, PPARγ and aP2, consistently, knockdown of MAT2B inhibited lipid accumulation and down-regulated the mRNA and protein levels of the above genes. Furthermore, flow cytometry and EdU-labeling assay indicated that MAT2B regulate adipogenesis was partly due to influence intracellular SAMe levels and further affect cell clonal expansion. Also, increased expression of MAT2B activated the phosphorylations of AKT and ERK1/2, whereas knockdown of MAT2B blocked AKT signaling and repressed the phosphorylation of ERK1/2. Moreover, the inhibitory effect of LY294002 (a specific PI3K inhibitor) on the activities of AKT and ERK1/2 was partially recovered by overexpression of MAT2B in porcine intramuscular adipocytes. Finally, Co-IP experiments showed that MAT2B can directly interact with AKT. Taken together, our findings suggested that MAT2B acted as a positive regulator through modifying SAMe levels as well as activating AKT/ERK signaling pathway to promote porcine intramuscular adipocyte differentiation. - Highlights: • MAT2B up-regulates the expression of adipogenic marker genes and promotes porcine intramuscular preadipocyte differentiation. • MAT2B influences intracellular SAMe levels and further affects cell clonal expansion. • MAT2B interacts with AKT and activates AKT/ERK signaling pathway.

  19. Mechanical property characterization of polymeric composites reinforced by continuous microfibers

    Science.gov (United States)

    Zubayar, Ali

    Innumerable experimental works have been conducted to study the effect of polymerization on the potential properties of the composites. Experimental techniques are employed to understand the effects of various fibers, their volume fractions and matrix properties in polymer composites. However, these experiments require fabrication of various composites which are time consuming and cost prohibitive. Advances in computational micromechanics allow us to study the various polymer based composites by using finite element simulations. The mechanical properties of continuous fiber composite strands are directional. In traditional continuous fiber laminated composites, all fibers lie in the same plane. This provides very desirable increases in the in-plane mechanical properties, but little in the transverse mechanical properties. The effect of different fiber/matrix combinations with various orientations is also available. Overall mechanical properties of different micro continuous fiber reinforced composites with orthogonal geometry are still unavailable in the contemporary research field. In this research, the mechanical properties of advanced polymeric composite reinforced by continuous micro fiber will be characterized based on analytical investigation and FE computational modeling. Initially, we have chosen IM7/PEEK, Carbon Fiber/Nylon 6, and Carbon Fiber/Epoxy as three different case study materials for analysis. To obtain the equivalent properties of the micro-hetero structures, a concept of micro-scale representative volume elements (RVEs) is introduced. Five types of micro scale RVEs (3 square and 2 hexagonal) containing a continuous micro fiber in the polymer matrix were designed. Uniaxial tensile, lateral expansion and transverse shear tests on each RVE were designed and conducted by the finite element computer modeling software ANSYS. The formulae based on elasticity theory were derived for extracting the equivalent mechanical properties (Young's moduli, shear

  20. Natural triple beta-stranded fibrous folds.

    Science.gov (United States)

    Mitraki, Anna; Papanikolopoulou, Katerina; Van Raaij, Mark J

    2006-01-01

    A distinctive family of beta-structured folds has recently been described for fibrous proteins from viruses. Virus fibers are usually involved in specific host-cell recognition. They are asymmetric homotrimeric proteins consisting of an N-terminal virus-binding tail, a central shaft or stalk domain, and a C-terminal globular receptor-binding domain. Often they are entirely or nearly entirely composed of beta-structure. Apart from their biological relevance and possible gene therapy applications, their shape, stability, and rigidity suggest they may be useful as blueprints for biomechanical design. Folding and unfolding studies suggest their globular C-terminal domain may fold first, followed by a "zipping-up" of the shaft domains. The C-terminal domains appear to be important for registration because peptides corresponding to shaft domains alone aggregate into nonnative fibers and/or amyloid structures. C-terminal domains can be exchanged between different fibers and the resulting chimeric proteins are useful as a way to solve structures of unknown parts of the shaft domains. The following natural triple beta-stranded fibrous folds have been discovered by X-ray crystallography: the triple beta-spiral, triple beta-helix, and T4 short tail fiber fold. All have a central longitudinal hydrophobic core and extensive intermonomer polar and nonpolar interactions. Now that a reasonable body of structural and folding knowledge has been assembled about these fibrous proteins, the next challenge and opportunity is to start using this information in medical and industrial applications such as gene therapy and nanotechnology.

  1. A cascade autocatalytic strand displacement amplification and hybridization chain reaction event for label-free and ultrasensitive electrochemical nucleic acid biosensing.

    Science.gov (United States)

    Chen, Zhiqiang; Liu, Ying; Xin, Chen; Zhao, Jikuan; Liu, Shufeng

    2018-04-23

    Herein, an autocatalytic strand displacement amplification (ASDA) strategy was proposed for the first time, which was further ingeniously coupled with hybridization chain reaction (HCR) event for the isothermal, label-free and multiple amplification toward nucleic acid detection. During the ASDA module, the target recognition opens the immobilized hairpin probe (IP) and initiates the annealing of the auxiliary DNA strand (AS) with the opened IP for the successive polymerization and nicking reaction in the presence of DNA polymerase and nicking endonuclease. This induces the target recycling and generation of a large amount of intermediate DNA sequences, which can be used as target analogy to execute the autocatalytic strand displacement amplification. Simultaneously, the introduced AS strand can propagate the HCR between two hairpins (H1 and H2) to form a linear DNA concatamer with cytosine (C)-rich loop region, which can facilitate the in-situ synthesis of silver nanoclusters (AgNCs) as electrochemical tags for further amplification toward target responses. With current cascade ASDA and HCR strategy, the detection of target DNA could be achieved with a low detection limit of about 0.16 fM and a good selectivity. The developed biosensor also exhibits the distinct advantages of flexibility and simplicity in probe design and biosensor fabrication, and label-free electrochemical detection, thus opens a promising avenue for the detection of nucleic acid with low abundance in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands for time and skilled technical personnel, HVTs are currently used in only a few research laboratories worldwide. Instead, most researchers in this filed are attracted to more facile Schlenk techniques. The basic principle of this technique followed in all laboratories is substantially the same, i.e. the use of alternate vacuum and inert gas atmosphere in glass apparatus for the purification/charging of monomer, solvents, additives, and for the manipulation of air-sensitive compounds such as alkyl metal initiators, organometallic or organic catalysts. However, it is executed quite differently in each research group in terms of the structure of Schlenk apparatus (manifolds, connections, purification/storage flasks, reactors, etc.), the use of small supplementary devices (soft tubing, cannulas, stopcocks, etc.) and experimental procedures. The operational methods are partly purpose-oriented while also featured by a high flexibility, which makes it impossible to describe in detail each specific one. In this chapter we will briefly exemplify the application of Schlenk techniques for anionic polymerization by describing the performance of a few experiments from our own work.

  3. Drying Spirulina with Foam Mat Drying at Medium Temperature

    Directory of Open Access Journals (Sweden)

    Aji Prasetyaningrum

    2012-10-01

    Full Text Available Spirulina is a single cell blue green microalgae (Cyanobacteria containing many Phytonutrients (Beta-carotene, Chlorophyl, Xanthophyl, Phyocianin using as anti-carcinogen in food. Producing dry spirulina by quick drying process at medium temperature is very important to retain the Phytonutrient quality. Currently, the work is still challenging due to the gel formation that block the water diffusion from inside to the surface.  This research studies the performance of foam-mat drying on production of dry spirulina. In this method the spirulina was mixed with foaming agent (glair/egg albumen, popular as white egg at 2.5% by weight at air velocity 2.2 m/sec. Here, the effect of spirulina thickness and operational temperature on drying time and quality (Beta-carotene and color were observed. The drying time was estimated based on the measurement of water content in spirulina versus time. Result showed that the thicker spirulina, the longer drying time. Conversely, the higher operational temperature, faster drying time. At thickness ranging 1-3 mm and operational temperature below 70oC, the quality of spirulina can fit the market requirement

  4. Collimation and material science studies (ColMat) at GSI.

    CERN Document Server

    Stadlmann, J; Kollmus, H; Krause, M; Mustafin, E; Petzenhauser, I; Spiller, P; Strasik, I; Tahir, N; Tomut, M; Trautmann, C

    2010-01-01

    Within the frame of the EuCARD program, the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt is performing accelerator R&D in workpackage 8: ColMat. The coordinated effort is focussed on materials aspects important for building the FAIR accelerator facility at GSI and the LHC upgrade at CERN. Accelerator components and especially protection devices have to be operated in high dose environments. The radiation hazard occurs either by the primary proton and ion beams or the secondary radiation after initial beam loss. Detailed numerical simulations have been carried out to study the damage caused to solid targets by the full impact of the LHC beam as well as the SPS beam. Tungsten, copper and graphite as possible collimator materials have been studied. Experimental an theoretical studies on radiation damage on materials used for the LHC upgrade and the FAIR accelerators are performed at the present GSI experimental facilities. Technical decisions based on these results will have an impact on the F...

  5. Hydrogel-Electrospun Fiber Mat Composite Coatings for Neural Prostheses

    Directory of Open Access Journals (Sweden)

    Ning eHan

    2011-03-01

    Full Text Available Achieving stable, long-term performance of implanted neural prosthetic devices has been challenging because of implantation related neuron loss and a foreign body response that results in encapsulating glial scar formation. To improve neuron-prosthesis integration and form chronic, stable interfaces, we investigated the potential of neurotrophin-eluting hydrogel-electrospun fiber mat (EFM composite coatings. In particular, poly(ethylene glycol-poly(ε-caprolactone (PEGPCL hydrogel- poly(ε-caprolactone (PCL EFM composites were applied as coatings for multielectrode arrays (MEAs. Coatings were stable and persisted on electrode surfaces for over 1 month under an agarose gel tissue phantom and over 9 months in a PBS immersion bath. To demonstrate drug release, a neurotrophin, nerve growth factor (NGF, was loaded in the PEGPCL hydrogel layer, and coating cytotoxicity and sustained NGF release were evaluated using a PC12 cell culture model. Quantitative MTT assays showed that these coatings had no significant toxicity toward PC12 cells, and neurite extension at day 7 and 14 confirmed sustained release of NGF at biologically significant concentrations for at least 2 weeks. Our results demonstrate that hydrogel-EFM composite materials can be applied to neural prostheses as a means to improve neuron-electrode proximity and enhance long-term device performance and function.

  6. Laser cleaning of 19th century Congo rattan mats

    International Nuclear Information System (INIS)

    Carmona, N.; Oujja, M.; Roemich, H.; Castillejo, M.

    2011-01-01

    There is a growing interest by art conservators for laser cleaning of organic materials, such as wooden artworks, paper and textiles, since traditional cleaning with solvents can be a source of further decay and mechanical cleaning may be too abrasive for sensitive fibers. In this work we present a successful laser cleaning approach for 19th century rattan mats from the Brooklyn Museum collection of African Art, now part of the study collection at the Conservation Center in New York. Tests were carried out using the fundamental (1064 nm) and second harmonic (532 nm) wavelength of a Q-switched Nd:YAG laser to measure threshold values both for surface damage and color changes for different types of rattan samples. The irradiated substrates were investigated by optical microscopy, scanning electron microscopy and by UV-vis spectroscopy in order to determine the efficiency of laser cleaning and to assess possible deterioration effects that may have occurred as a result of laser irradiation. The study showed that by using the laser emission at 532 nm, a wavelength for which photon energy is below the bond dissociation level of the main cellulosic compounds and the water absorption is negligible, it is possible to select a range of laser fluences to remove the black dust layer without damaging the rattan material.

  7. Soil stabilization mat for lunar launch/landing site

    Science.gov (United States)

    Acord, Amy L.; Cohenour, Mark W.; Ephraim, Daniel; Gochoel, Dennis; Roberts, Jefferson G.

    1990-01-01

    Facilities which are capable of handling frequent arrivals and departures of spaceships between Earth and a lunar colony are necessary. The facility must be able to provide these services with minimal interruption of operational activity within the colony. The major concerns associated with the space traffic are the dust and rock particles that will be kicked up by the rocket exhaust. As a result of the reduced gravitation of the Moon, these particles scatter over large horizontal distances. This flying debris will not only seriously interrupt the routine operations of the colony, but could cause damage to the equipment and facilities surrounding the launch site. An approach to overcome this problem is presented. A proposed design for a lunar take-off/landing mat is presented. This proposal goes beyond dealing with the usual problems of heat and load resistances associated with take-off and landing, by solving the problem of soil stabilization at the site. Through adequate stabilization, the problem of flying debris is eliminated.

  8. Deficiency Mutations of Alpha-1 Antitrypsin. Effects on Folding, Function, and Polymerization.

    Science.gov (United States)

    Haq, Imran; Irving, James A; Saleh, Aarash D; Dron, Louis; Regan-Mochrie, Gemma L; Motamedi-Shad, Neda; Hurst, John R; Gooptu, Bibek; Lomas, David A

    2016-01-01

    Misfolding, polymerization, and defective secretion of functional alpha-1 antitrypsin underlies the predisposition to severe liver and lung disease in alpha-1 antitrypsin deficiency. We have identified a novel (Ala336Pro, Baghdad) deficiency variant and characterized it relative to the wild-type (M) and Glu342Lys (Z) alleles. The index case is a homozygous individual of consanguineous parentage, with levels of circulating alpha-1 antitrypsin in the moderate deficiency range, but is a biochemical phenotype that could not be classified by standard methods. The majority of the protein was present as functionally inactive polymer, and the remaining monomer was 37% active relative to the wild-type protein. These factors combined indicate an 85 to 95% functional deficiency, similar to that seen with ZZ homozygotes. Biochemical, biophysical, and computational studies further defined the molecular basis of this deficiency. These studies demonstrated that native Ala336Pro alpha-1 antitrypsin could populate the polymerogenic intermediate-and therefore polymerize-more readily than either wild-type alpha-1 antitrypsin or the Z variant. In contrast, folding was far less impaired in Ala336Pro alpha-1 antitrypsin than in the Z variant. The data are consistent with a disparate contribution by the "breach" region and "shutter" region of strand 5A to folding and polymerization mechanisms. Moreover, the findings demonstrate that, in these variants, folding efficiency does not correlate directly with the tendency to polymerize in vitro or in vivo. They therefore differentiate generalized misfolding from polymerization tendencies in missense variants of alpha-1 antitrypsin. Clinically, they further support the need to quantify loss-of-function in alpha-1 antitrypsin deficiency to individualize patient care.

  9. Photosynthetic and Behavioral Versatility of the Cyanobacterium Oscillatoria-Boryana in a Sulfide-Rich Microbial Mat

    DEFF Research Database (Denmark)

    CASTENHOLZ, RW; JØRGENSEN, BB; DAMELIO, E.

    1991-01-01

    and predominant population which was spread over the mat surface during darkness and on overcast days ( 300 W m-2), O. boryana disappeared almost entirely from the mat surface to a position of about 1 mm below the surface pellicle of the mat. O2, sulfide, and pH microelectrodes inserted into excised mat cores...... photosynthesis of O. boryana occurred. This capability was confirmed for O. boryana by [C-14]-photoincorporation and sulfide-microelectrode experiments. Forced exposure to high irradiance levels (500-700 W m-2) was inhibitory to oxygenic photosynthesis in O. boryana, but these intensities impinging on mats...

  10. Equilibrious Strand Exchange Promoted by DNA Conformational Switching

    Science.gov (United States)

    Wu, Zhiguo; Xie, Xiao; Li, Puzhen; Zhao, Jiayi; Huang, Lili; Zhou, Xiang

    2013-01-01

    Most of DNA strand exchange reactions in vitro are based on toehold strategy which is generally nonequilibrium, and intracellular strand exchange mediated by proteins shows little sequence specificity. Herein, a new strand exchange promoted by equilibrious DNA conformational switching is verified. Duplexes containing c-myc sequence which is potentially converted into G-quadruplex are designed in this strategy. The dynamic equilibrium between duplex and G4-DNA is response to the specific exchange of homologous single-stranded DNA (ssDNA). The SER is enzyme free and sequence specific. No ATP is needed and the displaced ssDNAs are identical to the homologous ssDNAs. The SER products and exchange kenetics are analyzed by PAGE and the RecA mediated SER is performed as the contrast. This SER is a new feature of G4-DNAs and a novel strategy to utilize the dynamic equilibrium of DNA conformations.

  11. Mass strandings of various ommastrephid squid species have been ...

    African Journals Online (AJOL)

    spamer

    escape reaction, to jet backwards at speed, is commonly observed. Appearing to ... on the occasion of a single mass stranding (La Pylaie, as cited in Lane 1957). ..... have also been associated with the displacement of major water masses ...

  12. Corrosion performance of prestressing strands in contact with dissimilar grouts.

    Science.gov (United States)

    2013-01-01

    To improve the corrosion protection provided to prestressing strands, anti-bleed grouts are used to fill voids in post-tensioning : ducts that result from bleeding and shrinkage of older Portland Cement grouts. Environmental differences caused by exp...

  13. Polymeric implant of methylprednisolone for spinal injury ...

    African Journals Online (AJOL)

    Polymeric implant of methylprednisolone for spinal injury: preparation and characterization. Bo Yin, Jian-Jun Ji, Ming Yang. Abstract. Purpose: To improve the effectiveness and reduce the systemic side effects of methylprednisolone in traumatic spinal injuries, its polymeric implants were prepared using chitosan and sodium ...

  14. The risk of stranded assets for utilities in Canada

    International Nuclear Information System (INIS)

    Schroeder, W.

    1998-01-01

    The problems of dealing with stranded assets in Canada and the United States were discussed. Compared to the United States, the risk associated with stranded assets for utilities in Canada was considered to be relatively low because of the following factors: (1) low variable cost, (2) isolation, (3) lack of transmission interconnection capacity, (4) lack of tight synchronization in North America, (5) the likelihood of an increase in natural gas prices, (6) the absence of jurisdictional disputes such as FERC versus the states, (7) social considerations, (8) the learning curve, (9) politics, (10) weak balance sheets, (11) relatively low electricity prices, (12) the weak Canadian dollar, and (13) the possibility of refinancing at lower interest rates. Ontario Hydro, New Brunswick and Nova Scotia Power are the three Canadian utilities that may have stranded costs. For Ontario Hydro and New Brunswick Power the stranded costs would be related to nuclear generator problems, whereas for Nova Scotia Power, the stranded costs would be related to the thermal generating base, the threat from Sable Island Gas and the changing tax structure of the utility. Some other reasons why stranded assets could be created in Canada would include low variable costs and high fixed costs, over capacity of at least 30 per cent in generation, limited domestic energy growth, competitive threat from gas, reliability and safety of nuclear plants, and technology change. Five factors in terms of which stranded assets can be expressed are: (1) variable cost definition, (2) total cost definition, (3) operating profit definition, (4) wide geographic definition, and (5) free market definition. In calculating stranded assets, the number of years over which the assets are recovered and the discount rate are considered to be key factors. 26 tabs

  15. The Effect of Basepair Mismatch on DNA Strand Displacement

    OpenAIRE

    Broadwater, D.?W.?Bo; Kim, Harold?D.

    2016-01-01

    DNA strand displacement is a key reaction in DNA homologous recombination and DNA mismatch repair and is also heavily utilized in DNA-based computation and locomotion. Despite its ubiquity in science and engineering, sequence-dependent effects of displacement kinetics have not been extensively characterized. Here, we measured toehold-mediated strand displacement kinetics using single-molecule fluorescence in the presence of a single base pair mismatch. The apparent displacement rate varied si...

  16. Withdrawal Strength of Dowels in Plywood and Oriented Strand Board

    OpenAIRE

    ERDİL, Yusuf Z.; ECKELMAN, Carl A.

    2001-01-01

    Plywood and oriented strand board (OSB) are being used increasingly in the construction of upholstered furniture frames. Yet there is little information available concerning the holding strength of various fasteners, and, in particular, dowels in these materials. A study was conducted accordingly, to obtain basic information about the holding strength of dowels in both plywood and oriented strand board. Results of the tests were incorporated into predictive expressions that allow designers to...

  17. Nanoparticles from a controlled polymerization process

    International Nuclear Information System (INIS)

    Tirumala, V.R.; Caneba, G.T.; Dar, Y.; Wang, H.-H.; Mancini, D.C.

    2003-01-01

    Free-radical retrograde precipitation polymerization process in the past has shown excellent control characteristics over reaction rate, molecular weight, and in the entrapment of live radicals for the generation of block copolymers. The same principle has now been extended to study the reaction confinement to a nanoscale region. Nanosized polymer particles have been reported to form from block copolymers, conventional precipitation polymerization methods, or through emulsion polymerization approaches. In this work, we present a new method of generating nanosized polymer particles by polymerizing the monomer in an environment that precipitates the polymer above the lower critical solution temperature. The nanoparticles have been characterized by both tapping-mode atomic force microscopy observations and in situ synchrotron time-resolved small-angle X-ray scattering analysis. The results from both the techniques showed the formation of nanoparticles in the size range of 15-30 nm, directly from the polymerization process.

  18. Fluid Effects in Polymers and Polymeric Composites

    CERN Document Server

    Weitsman, Y Jack

    2012-01-01

    Fluid Effects in Polymers and Polymeric Composites, written by the late Dr. Y. Jack Weitsman, addresses the wide range of parameters that affect the interaction of fluids with polymers and polymeric composites. The book aims at broadening the scope of available data, mostly limited up to this time to weight-gain recordings of fluid ingress into polymers and composites, to the practical circumstances of fluctuating exposure. Various forms of experimental data are given, in conjunction with theoretical models derived from basic scientific principles, and correlated with severity of exposure conditions and interpreted by means of rationally based theoretical models. The practical implications of the effects of fluids are discussed. The issue of fluid effects on polymers and polymeric composites is of concern to engineers and scientists active in aerospace and naval structures, as an increasing portion of these structures are made of polymeric composites and employ polymeric adhesives as a joining device. While...

  19. A model capturing novel strand symmetries in bacterial DNA

    International Nuclear Information System (INIS)

    Sobottka, Marcelo; Hart, Andrew G.

    2011-01-01

    Highlights: → We propose a simple stochastic model to construct primitive DNA sequences. → The model provide an explanation for Chargaff's second parity rule in primitive DNA sequences. → The model is also used to predict a novel type of strand symmetry in primitive DNA sequences. → We extend the results for bacterial DNA sequences and compare distributional properties intrinsic to the model to statistical estimates from 1049 bacterial genomes. → We find out statistical evidences that the novel type of strand symmetry holds for bacterial DNA sequences. -- Abstract: Chargaff's second parity rule for short oligonucleotides states that the frequency of any short nucleotide sequence on a strand is approximately equal to the frequency of its reverse complement on the same strand. Recent studies have shown that, with the exception of organellar DNA, this parity rule generally holds for double-stranded DNA genomes and fails to hold for single-stranded genomes. While Chargaff's first parity rule is fully explained by the Watson-Crick pairing in the DNA double helix, a definitive explanation for the second parity rule has not yet been determined. In this work, we propose a model based on a hidden Markov process for approximating the distributional structure of primitive DNA sequences. Then, we use the model to provide another possible theoretical explanation for Chargaff's second parity rule, and to predict novel distributional aspects of bacterial DNA sequences.

  20. Tissue strands as "bioink" for scale-up organ printing.

    Science.gov (United States)

    Yu, Yin; Ozbolat, Ibrahim T

    2014-01-01

    Organ printing, takes tissue spheroids as building blocks together with additive manufacturing technique to engineer tissue or organ replacement parts. Although a wide array of cell aggregation techniques has been investigated, and gained noticeable success, the application of tissue spheroids for scale-up tissue fabrication is still worth investigation. In this paper, we introduce a new micro-fabrication technique to create tissue strands at the scale of 500-700μm as a "bioink" for future robotic tissue printing. Printable alginate micro-conduits are used as semi-permeable capsules for tissue strand fabrication. Mouse insulinoma beta TC3 cell tissue strands were formed upon 4 days post fabrication with reasonable mechanical strength, high cell viability close to 90%, and tissue specific markers expression. Fusion was readily observed between strands when placing them together as early as 24h. Also, tissue strands were deposited with human umbilical vein smooth muscle cells (HUVSMCs) vascular conduits together to fabricated miniature pancreatic tissue analog. Our study provided a novel technique using tissue strands as "bioink" for scale-up bioprinting of tissues or organs.

  1. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand*

    Science.gov (United States)

    Teasley, Daniel C.; Parajuli, Shankar; Nguyen, Mai; Moore, Hayley R.; Alspach, Elise; Lock, Ying Jie; Honaker, Yuchi; Saharia, Abhishek; Piwnica-Worms, Helen; Stewart, Sheila A.

    2015-01-01

    The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer. PMID:25922071

  2. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand.

    Science.gov (United States)

    Teasley, Daniel C; Parajuli, Shankar; Nguyen, Mai; Moore, Hayley R; Alspach, Elise; Lock, Ying Jie; Honaker, Yuchi; Saharia, Abhishek; Piwnica-Worms, Helen; Stewart, Sheila A

    2015-06-12

    The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. VocMat projekt - uudsed e-õppe võimalused turismiasjalistele / Heli Tooman

    Index Scriptorium Estoniae

    Tooman, Heli, 1949-

    2008-01-01

    Turismivaldkonna spetsialistidele mõeldud koolitusprojektist VocMat (Vocational Management Training for the Tourism Industry). Projekti partneriteks Eestis on Ettevõtluse Arendamise Sihtasutuse Turismiarenduskeskus ja Tartu Ülikooli Pärnu kolledzh. Lisa: Kokkuvõte

  4. Biocidal Activity of Plasma Modified Electrospun Polysulfone Mats Functionalized with Polyethyleneimine-Capped Silver Nanoparticles

    KAUST Repository

    Schiffman, Jessica D.; Wang, Yue; Giannelis, Emmanuel P.; Elimelech, Menachem

    2011-01-01

    loss of bacteria (Escherichia coli) viability. Time-dependent bacterial cytotoxicity studies indicate that the optimized PSf-AgNP mats exhibit a high level of inactivation against both Gram negative bacteria, Escherichia coli, and Gram positive bacteria

  5. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    Science.gov (United States)

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Hong, Mei; Wu, Jingshen

    2016-12-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes.

  6. Synthesis of CuAlO2 nanofibrous mats by electrospinning

    International Nuclear Information System (INIS)

    Zhao Shizhen; Li Miaoyu; Liu Xiaomin; Han Gaoyi

    2009-01-01

    Electrospinning as a versatile method for preparation of nanofibers has been used to fabricate the polyvinylalcohol nanofibers containing equal molar of aluminum nitrate and copper acetate. After pretreated at 400 deg. C, the composite fibrous mats were annealed at 1100 deg. C in air for 5 h and then the delafossite-structured p-type CuAlO 2 ceramics fibrous mats were obtained. The obtained CuAlO 2 ceramics fibrous mats were characterized by scanning electrical microscope, X-ray diffraction and diffuse reflectance spectroscopy. The direct energy gap of the prepared CuAlO 2 ceramics fibrous mats was measured to be about 3.38 eV. The CuAlO 2 behaved like semiconductors and the thermally activated energy was about 0.25 eV.

  7. Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats

    Directory of Open Access Journals (Sweden)

    Z. Imran

    2013-03-01

    Full Text Available We investigate electrical and dielectric properties of cadmium titanate (CdTiO3 nanofiber mats prepared by electrospinning. The nanofibers were polycrystalline having diameter ∼50 nm-200 nm, average length ∼100 μm and crystallite size ∼25 nm. Alternating current impedance measurements were carried out from 318 K – 498 K. The frequency of ac signal was varied from 2 – 105 Hz. The complex impedance plots revealed two depressed semicircular arcs indicating the bulk and interface contribution to overall electrical behavior of nanofiber mats. The bulk resistance was found to increase with decrease in temperature exhibiting typical semiconductor like behavior. The modulus analysis shows the non-Debye type conductivity relaxation in nanofiber mats. The ac conductivity spectrum obeyed the Jonscher power law. Analysis of frequency dependent ac conductivity revealed presence of the correlated barrier hopping (CBH in nanofiber mats over the entire temperature range.

  8. A niche for cyanobacteria producing chlorophyll f within a microbial mat.

    Science.gov (United States)

    Ohkubo, Satoshi; Miyashita, Hideaki

    2017-10-01

    Acquisition of additional photosynthetic pigments enables photosynthetic organisms to survive in particular niches. To reveal the ecological significance of chlorophyll (Chl) f, we investigated the distribution of Chl and cyanobacteria within two microbial mats. In a 7-mm-thick microbial mat beneath the running water of the Nakabusa hot spring, Japan, Chl f was only distributed 4.0-6.5 mm below the surface, where the intensity of far-red light (FR) was higher than that of photosynthetically active radiation (PAR). In the same mat, two ecotypes of Synechococcus and two ecotypes of Chl f-producing Leptolyngbya were detected in the upper and deeper layers, respectively. Only the Leptolyngbya strains could grow when FR was the sole light source. These results suggest that the deeper layer of the microbial mat was a habitat for Chl f-producing cyanobacteria, and Chl f enabled them to survive in a habitat with little PAR.

  9. production and cost of cold patch road mats with bitumen extracted

    African Journals Online (AJOL)

    Jamiu

    This paper reports the production of bituminous road mats with bitumen sourced from the Nigerian Tar sand, recycled .... scrap tires are produced every year, which makes the disposal of ..... particles will be round or nearly round and will pass.

  10. Marine Microbial Mats and the Search for Evidence of Life in Deep Time and Space

    Science.gov (United States)

    Des Marais, David J.

    2011-01-01

    Cyanobacterial mats in extensive seawater evaporation ponds at Guerrero Negro, Baja California, Mexico, have been excellent subjects for microbial ecology research. The studies reviewed here have documented the steep and rapidly changing environmental gradients experienced by mat microorganisms and the very high rates of biogeochemical processes that they maintained. Recent genetic studies have revealed an enormous diversity of bacteria as well as the spatial distribution of Bacteria, Archaea and Eukarya. These findings, together with emerging insights into the intimate interactions between these diverse populations, have contributed substantially to our understanding of the origins, environmental impacts, and biosignatures of photosynthetic microbial mats. The biosignatures (preservable cells, sedimentary fabrics, organic compounds, minerals, stable isotope patterns, etc.) potentially can serve as indicators of past life on early Earth. They also can inform our search for evidence of any life on Mars. Mars exploration has revealed evidence of evaporite deposits and thermal spring deposits; similar deposits on Earth once hosted ancient microbial mat ecosystems.

  11. Controls on O2 Production in Cyanobacterial Mats and Implications for Earth's Oxygenation

    Science.gov (United States)

    Dick, Gregory J.; Grim, Sharon L.; Klatt, Judith M.

    2018-05-01

    Cyanobacterial mats are widely assumed to have been globally significant hot spots of biogeochemistry and evolution during the Archean and Proterozoic, but little is known about their quantitative contributions to global primary productivity or Earth's oxygenation. Modern systems show that mat biogeochemistry is the outcome of concerted activities and intimate interactions between various microbial metabolisms. Emerging knowledge of the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis by versatile cyanobacteria, and their interactions with sulfur-oxidizing bacteria and sulfate-reducing bacteria, highlights how ecological and geochemical processes can control O2 production in cyanobacterial mats in unexpected ways. This review explores such biological controls on O2 production. We argue that the intertwined effects of light availability, redox geochemistry, regulation and competition of microbial metabolisms, and biogeochemical feedbacks result in emergent properties of cyanobacterial mat communities that are all critical yet largely overlooked mechanisms to potentially explain the protracted nature of Earth's oxygenation.

  12. Red Tide Strands South African Rock Lobsters

    Science.gov (United States)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide. The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine. The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra

  13. Fabrication and In Vitro/In Vivo Performance of Mucoadhesive Electrospun Nanofiber Mats Containing α-Mangostin.

    Science.gov (United States)

    Samprasit, Wipada; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-10-01

    This study aimed to fabricate mucoadhesive electrospun nanofiber mats containing α-mangostin for the maintenance of oral hygiene and reduction of the bacterial growth that causes dental caries. Synthesized thiolated chitosan (CS-SH) blended with polyvinyl alcohol (PVA) was selected as the mucoadhesive polymer. α-Mangostin was incorporated into the CS-SH/PVA solution and electrospun to obtain nanofiber mats. Scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and tensile strength testing were used to characterize the mats. The swelling degree and mucoadhesion were also determined. The nanofiber mats were further evaluated regarding their α-mangostin content, in vitro α-mangostin release, antibacterial activity, cytotoxicity, in vivo performance, and stability. The results indicated that the mats were in the nanometer range. The α-mangostin was well incorporated into the mats, with an amorphous form. The mats showed suitable tensile strength, swelling, and mucoadhesive properties. The loading capacity increased when the initial amount of α-mangostin was increased. Rapid release of α-mangostin from the mats was achieved. Additionally, a fast bacterial killing rate occurred at the lowest concentration of nanofiber mats when α-mangostin was added to the mats. The mats were less cytotoxic after use for 72 h. Moreover, in vivo testing indicated that the mats could reduce the number of oral bacteria, with a good mouth feel. The mats maintained the amount of α-mangostin for 6 months. The results suggest that α-mangostin-loaded mucoadhesive electrospun nanofiber mats may be a promising material for oral care and the prevention of dental caries.

  14. Sway Area and Velocity Correlated With MobileMat Balance Error Scoring System (BESS) Scores.

    Science.gov (United States)

    Caccese, Jaclyn B; Buckley, Thomas A; Kaminski, Thomas W

    2016-08-01

    The Balance Error Scoring System (BESS) is often used for sport-related concussion balance assessment. However, moderate intratester and intertester reliability may cause low initial sensitivity, suggesting that a more objective balance assessment method is needed. The MobileMat BESS was designed for objective BESS scoring, but the outcome measures must be validated with reliable balance measures. Thus, the purpose of this investigation was to compare MobileMat BESS scores to linear and nonlinear measures of balance. Eighty-eight healthy collegiate student-athletes (age: 20.0 ± 1.4 y, height: 177.7 ± 10.7 cm, mass: 74.8 ± 13.7 kg) completed the MobileMat BESS. MobileMat BESS scores were compared with 95% area, sway velocity, approximate entropy, and sample entropy. MobileMat BESS scores were significantly correlated with 95% area for single-leg (r = .332) and tandem firm (r = .474), and double-leg foam (r = .660); and with sway velocity for single-leg (r = .406) and tandem firm (r = .601), and double-leg (r = .575) and single-leg foam (r = .434). MobileMat BESS scores were not correlated with approximate or sample entropy. MobileMat BESS scores were low to moderately correlated with linear measures, suggesting the ability to identify changes in the center of mass-center of pressure relationship, but not higher-order processing associated with nonlinear measures. These results suggest that the MobileMat BESS may be a clinically-useful tool that provides objective linear balance measures.

  15. Polymer solution, fiber mat, and nanofiber membrane-electrode-assembly therewith, and method of fabricating same

    DEFF Research Database (Denmark)

    2016-01-01

    of fibers. The fibers may further include particles of a catalyst. The fiber mat may be used to form an electrode or a membrane. In a further aspect, a fuel cell membrane-electrode-assembly has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode...... electrode. Each of the anode electrode, the cathode electrode and the membrane may be formed with a fiber mat....

  16. Physicochemical characterization of different trademarks of compound Yerba Maté and their herbs

    OpenAIRE

    Scipioni,Griselda Patricia; Ferreyra,Darío Jorge; Schmalko,Miguel Eduardo

    2007-01-01

    The objectives of this study were to evaluate the physicochemical characteristics of the main herbs used in the mixture of yerba maté with other aromatic herbs and the characterization of the trademarks of compound yerba maté. Moisture, water extract, total ash, acid-insoluble ash and caffeine concentration were determined. Results showed higher values of moisture content, total and aci-insoluble ash and lower water extracts in the herbs. Determinations were carried out in nine trademarks of ...

  17. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    Science.gov (United States)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.

  18. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats

    Directory of Open Access Journals (Sweden)

    Jackson Z Lee

    2014-02-01

    Full Text Available Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB. However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico -- permanently submerged Microcoleus microbial mats (GN-S, and intertidal Lyngbya microbial mats (GN-I -- were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU, molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of dsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and nanoSIMS (secondary ion mass-spectrometry indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.

  19. Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments

    DEFF Research Database (Denmark)

    Klatt, Christian G.; Inskeep, William P.; Herrgard, Markus

    2013-01-01

    Six phototrophic microbial mat communities from different geothermal springs (YNP) were studied using metagenome sequencing and geochemical analyses. The primary goals of this work were to determine differences in community composition of high-temperature phototrophic mats distributed across...... the Yellowstone geothermal ecosystem, and to identify metabolic attributes of predominant organisms present in these communities that may correlate with environmental attributes important in niche differentiation. Random shotgun metagenome sequences from six phototrophic communities (average 53Mbp/site) were...

  20. Modeling liquid crystal polymeric devices

    Science.gov (United States)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  1. Polymerization of lanthanide acrylonitrile complexes.

    Science.gov (United States)

    el-Mossalamy, El-Sayed H; Khalil, Ahmed A

    2002-01-01

    The molecular complexes of some lanthanides scandium (Sc3+), yttrium (Y3+), lanthanum (La3+), gadolinium (Gd3+), cerium (Ce3+) and ytterbium (Yb3) have been studies in dimethyl formamide (DMF) spectrophtometrically equilibrium constants (K), molar extintion coefficient (epsilon), energy of transition (E) and free energy (delta G*) were calculated. The polymerization of acrylonitrile has been studied and investigated in the presence of Sc3+, Y3+, La3+, Gd3+, Ce3+, and Yb3+ ions. The IR spectra of the formed AN-M (III) Br3 polymer complexes show the absence of the C identical to N band and the presence of two new bands corresponding to NH2 and OH groups. Magnetic moment values and the thermal stabilities of homopolymer and the polymer complexes were studied by means of thermogravimetric analysis and the activation energies for degradation were calculated.

  2. Enhancing the mechanical properties of electrospun polyester mats by heat treatment

    Directory of Open Access Journals (Sweden)

    M. Kancheva

    2015-01-01

    Full Text Available Microfibrous materials with a targeted design based on poly(L-lactic acid (PLA and poly(ε-caprolactone (PCL were prepared by electrospinning and by combining electrospinning and electrospraying. Several approaches were used: (i electrospinning of a common solution of the two polymers, (ii simultaneous electrospinning of two separate solutions of PLA and PCL, (iii electrospinning of PLA solution in conjunction with electrospraying of PCL solution, and (iv alternating layer-by-layer deposition by electrospinning of separate PLA and PCL solutions. The mats were heated at the melting temperature of PCL (60°", thus achieving melting of PCL fibers/particles and thermal sealing of the fibers. The mats subjected to thermal treatment were characterized by greater mean fiber diameters and reduced values of the water contact angle compared to the pristine mats. Heat treatment of the mats affected their thermal stability and led to an increase in the crystallinity degree of PLA incorporated in the mats, whereas that of PCL was reduced. All mats were characterized by enhanced mechanical properties after thermal treatment as compared to the non-treated fibrous materials.

  3. Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent

    Science.gov (United States)

    Park, H.; Kim, J. W.; Lee, J. W.

    2017-12-01

    Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.

  4. Mechanical Properties of Natural Jute Fabric/Jute Mat Fiber Reinforced Polymer Matrix Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Elsayed A. Elbadry

    2012-01-01

    Full Text Available Recycled needle punched jute fiber mats as a first natural fiber reinforcement system and these jute mats used as a core needle punched with recycled jute fabric cloths as skin layers as a second natural fiber reinforcement system were used for unsaturated polyester matrix composites via modifying the hand lay-up technique with resin preimpregnation into the jute fiber in vacuum. The effect of skin jute fabric on the tensile and bending properties of jute mat composites was investigated for different fiber weight contents. Moreover, the notch sensitivity of these composites was also compared by using the characteristic distance do calculated by Finite Element Method (FEM. The results showed that the tensile and flexural properties of jute mat composites increased by increasing the fiber weight content and by adding the jute fabric as skin layers. On the other hand, by adding the skins, the characteristic distance decreased and, therefore, the notch sensitivity of the composites increased. The fracture behavior investigated by SEM showed that extensive fiber pull-out mechanism was revealed at the tension side of jute mat composites under the bending load and by adding the jute cloth, the failure mode of jute mat was changed to fiber bridge mechanism.

  5. Sequester of metals and mineralization of organic contaminants with microbial mats

    International Nuclear Information System (INIS)

    Bender, J.; Phillips, P.; Gould, J.P.

    1995-01-01

    Several recalcitrant organic contaminants are completely mineralized to simple products by microbial mats. Contaminants include chlordane, PCB, TNT, petroleum distillates, BM compounds and TCE in a mixed contaminant solution containing Zn. Degradation rates are relatively rapid under both dark and light conditions. In addition to complete degradation of organic materials, mats have been used to reduce selenate to elemental selenium, remove Pb, Cd, Cu, Zn, Co, Cr, Fe and Mn from water and sequester uranium (U 238 ) at a rate of 3.19 mg/m 2 /h. Results of three pilot projects, including field pond treatment of mine drainage and bioreactor treatment of BTEX compounds will be reported. Microbial mats are natural heterotrophic and autotrophic communities dominated by cyanobacteria (blue-green algae). They are self-organized laminated structures annealed fightly together by slimy secretions from various microbial components. The surface slime of the mats effectively immobilizes the ecosystem to a variety of substrates, thereby stabilizing the most efficient internal microbial structure. Cyanobacteria mats are generated for bioremediation applications by enriching a water surface with ensiled grass clippings together with mat inocula developed in the laboratory

  6. Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application.

    Science.gov (United States)

    Sheng, Xiaoyue; Fan, Linpeng; He, Chuanglong; Zhang, Kuihua; Mo, Xiumei; Wang, Hongsheng

    2013-05-01

    In the present study, we reported fabrication and skin benefit of a novel vitamin E (VE)-loaded silk fibroin (SF) nanofibrous mats. RRR-α-Tocopherol polyethylene glycol 1000 succinate (VE TPGS), a water-soluble derivative of VE, was incorporated into SF nanofiber successfully by aqua solution electrospinning for the first time. Morphology of the composite nanofibers changed with the different amount of VE TPGS: a ribbon-like shape for lower loading dose of VE TPGS, while a round shape for higher loading dose (more than 4% (wt/wt) based on the weight of SF). After treated with 75% (v/v) ethanol vapor, the composite nanofibrous mats showed an excellent water-resistant ability. In vitro study disclosed a sustained release behavior of VE TPGS disassociated from the nanofibrous mats. The mouse skin fibroblasts (L929 cells) cultured on the VE-loaded SF nanofibrous mats spread and proliferated much better than on cover slips. Moreover, the incorporation of VE TPGS was found strengthening the ability of SF nanofibrous mats on protecting the cells against oxidation stress induced by tert-butyl hydroperoxide. Our data presented impressive skin benefits of this VE-loaded SF nanofibrous mats, suggesting a promising applicative potential of this novel product on personal skin care, tissue regeneration and other related area. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats.

    Science.gov (United States)

    Kim, Si-Eun; Zhang, Cong; Advincula, Abigail A; Baer, Eric; Pokorski, Jonathan K

    2016-04-13

    Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we describe melt-coextruded poly(ε-caprolactone) (PCL) nanofiber mats grafted with antifouling polymers. Nonwoven PCL fiber mats are produced using a multilayered melt coextrusion process followed by high-pressure hydroentanglement to yield porous patches. The resulting fiber mats show submicrometer cross-sectional fiber dimensions and yield pore sizes that were nearly uniform, with a mean pore size of 1.6 ± 0.9 μm. Several antifouling polymers, including hydrophilic, zwitterionic, and amphipathic molecules, are grafted to the surface of the mats using a two-step procedure that includes photochemistry followed by the copper-catalyzed azide-alkyne cycloaddition reaction. Fiber mats are evaluated using separate adsorption tests for serum proteins and E. coli. The results indicate that poly(oligo(ethylene glycol) methyl ether methacrylate)-co-(trifluoroethyl methacrylate) (poly(OEGMEMA-co-TFEMA)) grafted mats exhibit approximately 85% less protein adhesion and 97% less E. coli adsorption when compared to unmodified PCL fibermats. In dynamic antifouling testing, the amphiphilic fluorous polymer surface shows the highest flux and highest rejection value of foulants. The work presented within has implications on the high-throughput production of antifouling microporous patches for medical applications.

  8. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Shi, Xiangyang, E-mail: xshi@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); CQM - Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal (Portugal)

    2012-04-15

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  9. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Ma, Hui; Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Shi, Xiangyang

    2012-01-01

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  10. Regulation of mat responses by a differentiation MAPK pathway in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Sheelarani Karunanithi

    Full Text Available Fungal species exhibit diverse behaviors when presented with extracellular challenges. Pathogenic fungi can undergo cell differentiation and biofilm formation in response to fluctuating nutrient levels, and these responses are required for virulence. In the model fungal eukaryote Saccharomyces cerevisiae, nutrient limitation induces filamentous growth and biofilm/mat formation. Both responses require the same signal transduction (MAPK pathway and the same cell adhesion molecule (Flo11 but have been studied under different conditions. We found that filamentous growth and mat formation are aspects of a related response that is regulated by the MAPK pathway. Cells in yeast-form mats differentiated into pseudohyphae in response to nutrient limitation. The MAPK pathway regulated mat expansion (in the plane of the XY-axis and substrate invasion (downward in the plane of the Z-axis, which optimized the mat's response to extracellular nutrient levels. The MAPK pathway also regulated an upward growth pattern (in the plane of the Z-axis in response to nutrient limitation and changes in surface rigidity. Upward growth allowed for another level of mat responsiveness and resembled a type of colonial chemorepulsion. Together our results show that signaling pathways play critical roles in regulating social behaviors in which fungal cells participate. Signaling pathways may regulate similar processes in pathogens, whose highly nuanced responses are required for virulence.

  11. Fabrication and Characterization of Electrospun Polycaprolactone Blended with Chitosan-Gelatin Complex Nanofibrous Mats

    Directory of Open Access Journals (Sweden)

    Yongfang Qian

    2014-01-01

    Full Text Available Design and fabrication of nanofibrous scaffolds should mimic the native extracellular matrix. This study is aimed at investigating electrospinning of polycaprolactone (PCL blended with chitosan-gelatin complex. The morphologies were observed from scanning electron microscope. As-spun blended mats had thinner fibers than pure PCL. X-ray diffraction was used to analyze the degree of crystallinity. The intensity at two peaks at 2θ of 21° and 23.5° gradually decreased with the percentage of chitosan-gelatin complex increasing. Moreover, incorporation of the complex could obviously improve the hydrophilicity of as-spun blended mats. Mechanical properties of as-spun nanofibrous mats were also tested. The elongation at break of fibrous mats increased with the PCL content increasing and the ultimate tensile strength varied with different weight ratios. The as-spun mats had higher tensile strength when the weight ratio of PCL to CS-Gel was 75/25 compared to pure PCL. Both as-spun PCL scaffolds and PCL/CS-Gel scaffolds supported the proliferation of porcine iliac endothelial cells, and PCL/CS-Gel had better cell viability than pure PCL. Therefore, electrospun PCL/Chitosan-gelatin nanofibrous mats with weight ratio of 75/25 have better hydrophilicity mechanical properties, and cell proliferation and thus would be a promising candidate for tissue engineering scaffolds.

  12. Late Archean mineralised cyanobacterial mats and their modern analogs

    Science.gov (United States)

    Kazmierczak, J.; Altermann, W.; Kremer, B.; Kempe, S.; Eriksson, P. G.

    2008-09-01

    ,c) reminiscent of common sheaths (glycocalix), typical for coccoidal colonial (pseudoparenchymatous) entophysalidacean or pleurocapsalean cyanobacteria (Fig. 2d-f). The remains of the coccoid sheaths and capsules are visible as a system of rimmed subglobular or irregularly polygonal pits separated from adjacent pits by 2-3 μm thick walls. Microprobe analyses show that the interiors of the pits are composed of almost pure calcium carbonate whereas the rims and walls of calcium carbonate with high admixture of silicates (mostly Al-Fe clay-like silicates) and dolomite. High magnification images of rims and walls confirm the microprobe data indicating authigenic character of the minerals forming both the carbonate infilling the pits interiors (CaCO3) and their rims and walls (CaCO3 + Al-Fe silicates + dolomite). EPSC Abstracts, Vol. 3, EPSC2008-A-00493, 2008 European Planetary Science Congress, Author(s) 2008 It seems that carbonates were the first mineral phase filling the spaces remained after the plasmolysis of the cyanobacterial cell contents, whereas the formation of silicates within the exopolysaccharides forming the bulk of the sheaths and capsules was a later diagenetic process. Microprobe analyses of mineralised modern coccoid cyanobacterial mats forming tower-like structures in the highly alkaline Lake Van, Turkey [3,4] display a set of elements indicative for the presence of authigenic carbonate and silicate minerals which are almost identical with that occurring in the studied Neoarchean samples. Also the optical and SEM images of polished and etched platelets of permineralised Lake Van microbialites are strikingly similar (Fig. 2d-f). Similarly as in modern cyanobacterial and other microbial mats, the process of early post mortem mineralisation, in the case of the Nauga Formation, was most probably associated with the action of heterotrophic bacteria upon the dead cyanobacterial biomass. Heterotrophic bacteria occupying EPS layers of living and dead cyanobacterial

  13. The importance of becoming double-stranded: Innate immunity and the kinetic model of HIV-1 central plus strand synthesis

    International Nuclear Information System (INIS)

    Poeschla, Eric

    2013-01-01

    Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient “central DNA flap” in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins, and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors. - Highlights: • Two main functional models for HIV central plus strand synthesis have been proposed. • In one, a transient central DNA flap in the viral cDNA mediates HIV-1 nuclear import. • In the other, multiple kinetic consequences are emphasized. • One is defense against APOBEC3G, which deaminates single-stranded DNA. • Future questions pertain to antiviral restriction, uncoating and nuclear import

  14. Tensile and dimensional properties of wood strands made from plantation southern pine lumber

    Science.gov (United States)

    Qinglin Wu; Zhiyong Cai; Jong N. Lee

    2005-01-01

    Working stresses and performance of strand composite lumber largely depend upon the properties of each individual strand. Southern pine strands from plantation lumber grown in southern Louisiana were investigated in this study in order to understand strand behaviors. The effects of hot-pressing and resin application on tensile modulus, strength, and dimensional...

  15. Role of stranded gas in increasing global gas supplies

    Science.gov (United States)

    Attanasi, E.D.; Freeman, P.A.

    2013-01-01

    This report synthesizes the findings of three regional studies in order to evaluate, at the global scale, the contribution that stranded gas resources can make to global natural gas supplies. Stranded gas, as defined for this study, is natural gas in discovered conventional gas and oil fields that is currently not commercially producible for either physical or economic reasons. The regional studies evaluated the cost of bringing the large volumes of undeveloped gas in stranded gas fields to selected markets. In particular, stranded gas fields of selected Atlantic Basin countries, north Africa, Russia, and central Asia are screened to determine whether the volumes are sufficient to meet Europe’s increasing demand for gas imports. Stranded gas fields in Russia, central Asia, Southeast Asia, and Australia are also screened to estimate development, production, and transport costs and corresponding gas volumes that could be supplied to Asian markets in China, India, Japan, and South Korea. The data and cost analysis presented here suggest that for the European market and the markets examined in Asia, the development of stranded gas provides a way to meet projected gas import demands for the 2020-to-2040 period. Although this is a reconnaissance-type appraisal, it is based on volumes of gas that are associated with individual identified fields. Individual field data were carefully examined. Some fields were not evaluated because current technology was insufficient or it appeared the gas was likely to be held off the export market. Most of the evaluated stranded gas can be produced and delivered to markets at costs comparable to historical prices. Moreover, the associated volumes of gas are sufficient to provide an interim supply while additional technologies are developed to unlock gas diffused in shale and hydrates or while countries transition to making a greater use of renewable energy sources.

  16. New views on strand asymmetry in insect mitochondrial genomes.

    Directory of Open Access Journals (Sweden)

    Shu-Jun Wei

    Full Text Available Strand asymmetry in nucleotide composition is a remarkable feature of animal mitochondrial genomes. Understanding the mutation processes that shape strand asymmetry is essential for comprehensive knowledge of genome evolution, demographical population history and accurate phylogenetic inference. Previous studies found that the relative contributions of different substitution types to strand asymmetry are associated with replication alone or both replication and transcription. However, the relative contributions of replication and transcription to strand asymmetry remain unclear. Here we conducted a broad survey of strand asymmetry across 120 insect mitochondrial genomes, with special reference to the correlation between the signs of skew values and replication orientation/gene direction. The results show that the sign of GC skew on entire mitochondrial genomes is reversed in all species of three distantly related families of insects, Philopteridae (Phthiraptera, Aleyrodidae (Hemiptera and Braconidae (Hymenoptera; the replication-related elements in the A+T-rich regions of these species are inverted, confirming that reversal of strand asymmetry (GC skew was caused by inversion of replication origin; and finally, the sign of GC skew value is associated with replication orientation but not with gene direction, while that of AT skew value varies with gene direction, replication and codon positions used in analyses. These findings show that deaminations during replication and other mutations contribute more than selection on amino acid sequences to strand compositions of G and C, and that the replication process has a stronger affect on A and T content than does transcription. Our results may contribute to genome-wide studies of replication and transcription mechanisms.

  17. Stranding Events of Kogia Whales along the Brazilian Coast.

    Directory of Open Access Journals (Sweden)

    Jailson F Moura

    Full Text Available The genus Kogia, which comprises only two extant species, Kogia sima and Kogia breviceps, represents one of the least known groups of cetaceans in the global ocean. In some coastal regions, however, stranding events of these species have been relatively common over the last decades. Stranding provides the opportunity to investigate the biology of these cetaceans and to explore the epidemiological aspects associated with the mortality of the organisms found on the beach. A number of disturbances (including pelagic fisheries, chemical pollution, boat strikes, and noise pollution have been confirmed to pose a particular threat to the Kogia species. However, no study has yet investigated potential relationships between environmental conditions and stranding events. Here we analyse how a collection of environmental, physical, and biological variables, such as wind, sea surface temperature (SST, water depth, and chlorophyll-a, correlate to Kogia stranding events along the Brazilian coast. The results of our statistical analyses suggest that K. sima is more likely found in warm tropical waters, which provide an explanation for the high frequency of stranding in northeastern Brazilian coast. In contrast, K. breviceps appears to have a preference for temperate and productive waters. Wind speed results to be also an important factor for predicting Kogia strandings in Brazilian coast. Additionally, literature information in combination with our own data and analyses of stomach contents confirms that oceanic cephalopods constitute the primary nutritional source of both Kogia species. By using the available information as a qualitative proxy for habitat preference and feeding ecology, our study provides a novel and comprehensive assessment of Kogia stranding data in relation to environmental conditions along the Brazilian coast.

  18. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat

    Directory of Open Access Journals (Sweden)

    Sebastian Haas

    2018-04-01

    Full Text Available We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 μmol photons m-2 s-1, and UV light (<400 nm was the most abundant part of the spectrum followed by green wavelengths (475–530 nm. We measured a light-dependent carbon uptake rate of 14.5 nmol C cm-2 d-1. A 16S rRNA clone library of the green surface mat layer was dominated (74% by a cluster (>97% sequence identity of clones affiliated with Prosthecochloris, a genus within the green sulfur bacteria (GSB, which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (β-isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3–6 μmol L-1 was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm-3 d-1. The anoxic water column was oligotrophic and low in dissolved organic carbon (175–228 μmol L-1. High concentrations of pyrite (FeS2; 1–47 μmol cm-3 together with low microbial process rates (sulfate reduction, CO2 fixation indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III (4.3–22.2 μmol cm-3 is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats.

  19. gamma-Tubulin has a conserved intrinsic property of self-polymerization into double stranded filaments and fibrillar networks

    Czech Academy of Sciences Publication Activity Database

    Chumová, Jana; Trögelová, Lucie; Kourová, Hana; Volc, Jindřich; Sulimenko, Vadym; Halada, Petr; Kučera, Ondřej; Benada, Oldřich; Kuchařová, A.; Klebanovych, Anastasiya; Dráber, Pavel; Daniel, G.; Binarová, Pavla

    2018-01-01

    Roč. 1865, č. 5 (2018), s. 734-748 ISSN 0167-4889 R&D Projects: GA ČR GA15-11657S; GA ČR GA16-25159S; GA ČR GA16-23702S; GA MŠk(CZ) LM2015062 Institutional support: RVO:61388971 ; RVO:68378050 ; RVO:67985882 Keywords : gamma-Tubulin * GCP-free gamma-tubulin * Filament self-assembly Subject RIV: CE - Biochemistry OBOR OECD: Microbiology Impact factor: 4.521, year: 2016

  20. Method for forming polymerized microfluidic devices

    Science.gov (United States)

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  1. AZIDE-ALKYNE CLICK POLYMERIZATION: AN UPDATE

    Institute of Scientific and Technical Information of China (English)

    Hong-kun Li; Jing-zhi Sun; An-jun Qin; Ben Zhong Tang

    2012-01-01

    The great achievements of click chemistry have encouraged polymer scientists to use this reaction in their field.This review assembles an update of the advances of using azide-alkyne click polymerization to prepare functional polytriazoles (PTAs) with linear and hyperbranched structures.The Cu(Ⅰ)-mediated click polymerization furnishes 1,4-regioregular PTAs,whereas,the metal-free click polymerization of propiolates and azides produces PTAs with 1,4-regioisomer contents up to 90%.The PTAs display advanced functions,such as aggregation-induced emission,thermal stability,biocompatibility and optical nonlinearity.

  2. Manufacture of Strand Board Bonded with Disposal Expanded Polystyrene as Binder

    OpenAIRE

    Hermawan, Andi; Ohuchi, Takeshi; Fujimoto, Noboru; 大内, 毅; 藤本, 登留

    2010-01-01

    The objective of this study was to evaluate the physical and mechanical properties of strand board bonded with disposal expanded polystyrene (EPS) as binder. The strand board was manufactured using strand made from Douglas-fir beams selected from construction scrap wood. The strands were oriented, and two types of three-layer (face-core-face) strand board were manufactured: one in which the board bounded with only disposal EPS (P board), and the other in which the board bonded with disposal...

  3. Ketahanan Papan Unting (Oriented Strand Board) terhadap Serangan Rayap Tanah dan Rayap Kayu Kering

    OpenAIRE

    Gea, Bud diman

    2011-01-01

    Oriented strand board is panel of wood raw material from which strand composed of cross and upright structure. In order to oriented strand board can be used for interior and exterior needs, than necessary to be applied various thenology of quality improvement like durabelities and endurance of oriented strand board. For it does found endurance oriented strand board from attack of ground termite and wood dry termite, necessary doing grave yard trial and wood dry termite trial. This research ta...

  4. The Effect of Basepair Mismatch on DNA Strand Displacement.

    Science.gov (United States)

    Broadwater, D W Bo; Kim, Harold D

    2016-04-12

    DNA strand displacement is a key reaction in DNA homologous recombination and DNA mismatch repair and is also heavily utilized in DNA-based computation and locomotion. Despite its ubiquity in science and engineering, sequence-dependent effects of displacement kinetics have not been extensively characterized. Here, we measured toehold-mediated strand displacement kinetics using single-molecule fluorescence in the presence of a single basepair mismatch. The apparent displacement rate varied significantly when the mismatch was introduced in the invading DNA strand. The rate generally decreased as the mismatch in the invader was encountered earlier in displacement. Our data indicate that a single base pair mismatch in the invader stalls branch migration and displacement occurs via direct dissociation of the destabilized incumbent strand from the substrate strand. We combined both branch migration and direct dissociation into a model, which we term the concurrent displacement model, and used the first passage time approach to quantitatively explain the salient features of the observed relationship. We also introduce the concept of splitting probabilities to justify that the concurrent model can be simplified into a three-step sequential model in the presence of an invader mismatch. We expect our model to become a powerful tool to design DNA-based reaction schemes with broad functionality. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Physics of Complex Polymeric Molecules

    Science.gov (United States)

    Kelly, Joshua Walter

    The statistical physics of complex polymers with branches and circuits is the topic of this dissertation. An important motivation are large, single-stranded (ss) RNA molecules. Such molecules form complex ``secondary" and ``tertiary" structures that can be represented as branched polymers with circuits. Such structures are in part directly determined by the nucleotide sequence and in part subject to thermal fluctuations. The polymer physics literature on molecules in this class has mostly focused on randomly branched polymers without circuits while there has been minimal research on polymers with specific structures and on polymers that contain circuits. The dissertation is composed of three parts: Part I studies branched polymers with thermally fluctuating structure confined to a potential well as a simple model for the encapsidation of viral RNA. Excluded volume interactions were ignored. In Part II, I apply Flory theory to the study of the encapsidation of viral ss RNA molecules with specific branched structures, but without circuits, in the presence of excluded volume interaction. In Part III, I expand on Part II and consider complex polymers with specific structure including both branching and circuits. I introduce a method based on the mathematics of Laplacian matrices that allows me to calculate density profiles for such molecules, which was not possible within Flory theory.

  6. Identification of cis-acting elements on positive-strand subgenomic mRNA required for the synthesis of negative-strand counterpart in bovine coronavirus.

    Science.gov (United States)

    Yeh, Po-Yuan; Wu, Hung-Yi

    2014-07-30

    It has been demonstrated that, in addition to genomic RNA, sgmRNA is able to serve as a template for the synthesis of the negative-strand [(-)-strand] complement. However, the cis-acting elements on the positive-strand [(+)-strand] sgmRNA required for (-)-strand sgmRNA synthesis have not yet been systematically identified. In this study, we employed real-time quantitative reverse transcription polymerase chain reaction to analyze the cis-acting elements on bovine coronavirus (BCoV) sgmRNA 7 required for the synthesis of its (-)-strand counterpart by deletion mutagenesis. The major findings are as follows. (1) Deletion of the 5'-terminal leader sequence on sgmRNA 7 decreased the synthesis of the (-)-strand sgmRNA complement. (2) Deletions of the 3' untranslated region (UTR) bulged stem-loop showed no effect on (-)-strand sgmRNA synthesis; however, deletion of the 3' UTR pseudoknot decreased the yield of (-)-strand sgmRNA. (3) Nucleotides positioned from -15 to -34 of the sgmRNA 7 3'-terminal region are required for efficient (-)-strand sgmRNA synthesis. (4) Nucleotide species at the 3'-most position (-1) of sgmRNA 7 is correlated to the efficiency of (-)-strand sgmRNA synthesis. These results together suggest, in principle, that the 5'- and 3'-terminal sequences on sgmRNA 7 harbor cis-acting elements are critical for efficient (-)-strand sgmRNA synthesis in BCoV.

  7. Synthesis and polymerization of vinyl triazolium ionic liquids

    Science.gov (United States)

    Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof; Adzima, Brian

    2018-05-15

    Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.

  8. UV B-induced vertical migrations of cyanobacteria in a microbial mat

    International Nuclear Information System (INIS)

    Rebout, B.M.; Garcia-Pichel, F.

    1995-01-01

    Exposure to moderate doses of UV B (0.35 to 0.79 W m -2 s -1 or 0.98 to 2.2 μmol of photons m -2 s -1 at 310 nm) caused the surface layers of microbial mats from Solar Lake, Sinai, Egypt, to become visibly lighter green. Concurrent with the color change were rapid and dramatic reductions in gross photosynthesis and in the resultant high porewater oxygen concentrations in the surface layers of the mats. The depths at which both maximum gross photosynthesis and maximum oxygen concentrations occurred were displaced downward. In contrast, gross photosynthesis in the deeper layers of the mats increased in response to UV B incident upon the surface. The cessation of exposure to UV B partially reversed all of these changes. Taken together, these responses suggest that photoautotrophic members of the mat community, most likely the dominant cyanobacterium Microcoleus chthonoplastes, were migrating in response to the added UV B. The migration phenomenon was also observed in response to increases in visible radiation and UV A, but UV B was ca. 100-fold more effective than visible radiation and ca. 20-fold more effective than UV A in provoking the response. Migrating microorganisms within this mat are apparently able to sense UV B directly and respond behaviorally to limit their exposure to UV. Because of strong vertical gradients of light and dissolved substances in microbial mats, the migration and the resultant vertical redistribution of photosynthetic activity have important consequences for both the photobiology of the cyanobacteria and the net primary productivity of the mat ecosystem

  9. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Directory of Open Access Journals (Sweden)

    Jacob P. Beam

    2016-02-01

    Full Text Available Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA, and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III-oxide mat ecosystems. Spatial and temporal changes in Fe(III-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3 - 3.5; temperature = 68 - 75 °C in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4 - 40 d, and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 d, and reached steady-state levels within 14 - 30 d, corresponding to visible Fe(III-oxide accretion. Heterotrophic archaea colonized near 30 d, and emerged as the dominant functional guild after 70 d and in mature Fe(III-oxide mats (1 - 2 cm thick. First-order rate constants of Fe(III-oxide accretion ranged from 0.046 - 0.05 d-1, and in situ microelectrode measurements showed that the oxidation of Fe(II is limited by the diffusion of O2 into the Fe(III-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III-oxide mats are useful for understanding other Fe(II-oxidizing systems.

  10. Better flocculants by radiation induced polymerization

    International Nuclear Information System (INIS)

    Laizier, J.; Gaussens, G.

    1978-01-01

    The use of radiation induced polymerization should theoritically allow to prepare better flocculants. The testings of several products prepared by such a process shows that better properties are indeed obtained: better efficiencies, lower amounts needed, better overall properties [fr

  11. Compression Behavior of High Performance Polymeric Fibers

    National Research Council Canada - National Science Library

    Kumar, Satish

    2003-01-01

    Hydrogen bonding has proven to be effective in improving the compressive strength of rigid-rod polymeric fibers without resulting in a decrease in tensile strength while covalent crosslinking results in brittle fibers...

  12. Silicon dioxide obtained by Polymeric Precursor Method

    International Nuclear Information System (INIS)

    Oliveira, C.T.; Granado, S.R.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The Polymeric Precursor Method is able for obtaining several oxide material types with high surface area even obtained in particle form. Several MO 2 oxide types such as titanium, silicon and zirconium ones can be obtained by this methodology. In this work, the synthesis of silicon oxide was monitored by thermal analysis, XRD and surface area analysis in order to demonstrate the influence of the several synthesis and calcining parameters. Surface area values as higher as 370m2/g and increasing in the micropore volume nm were obtained when the material was synthesized by using ethylene glycol as polymerizing agent. XRD analysis showed that the material is amorphous when calcinated at 600°C in despite of the time of calcining, but the material morphology is strongly influenced by the polymeric resin composition. Using Glycerol as polymerizing agent, the pore size increase and the surface area goes down with the increasing in decomposition time, when compared to ethylene glycol. (author)

  13. Thermal polymerization of Moringa oleifera oil

    International Nuclear Information System (INIS)

    Melo, Tania M.S.; Novack, Katia M.; Leandro, Cristiano

    2011-01-01

    It is increasingly clear both for society and the scientific community, that is necessary to find alternatives to reduce the use of polymeric materials because of their damage to the environment. One way to minimize the environmental problems related to the use of polymers is try to make them quickly degradable. In this study it was obtained a material with polymeric appearance derived from heating of the vegetable oil extracted from seeds of Moringa oleifera. The resulting product is an interesting alternative to obtain polymeric materials that may have biodegradable characteristics, coming from a renewable source and low cost. Moringa oil can be used since it has a high content of unsaturated fatty acids, and its main constituent oleic acid. All samples were characterized by FTIR, NMR and GPC. It was obtained a polymeric material, malleable, high viscosity, with some elasticity, low crystallinity and no unpleasant odor. (author)

  14. Deformation and flow of polymeric materials

    CERN Document Server

    Münstedt, Helmut

    2014-01-01

    This book describes the properties of single polymer molecules and polymeric materials and the methods how to characterize them. Molar masses, molar mass distributions and branching structure are discussed in detail. These properties are decisive for a deeper understanding of structure/properties relationships of polymeric materials. This book therefore describes and discusses them in detail. The mechanical behavior as a function of time and temperature is a key subject of the book. The authors present it on the basis of many original results they have obtained in their long research careers. They present the temperature dependence of mechanical properties of various polymeric materials in a wide temperature range: from cryogenic temperatures to the melt. Besides an extensive data collection on the transitions of various different polymeric materials, they also carefully present the physical explanations of the observed phenomena. Glass transition and melting temperatures are discussed, particularly, with the...

  15. Polymerization of sodium methacrylate induced by irradiation

    International Nuclear Information System (INIS)

    Galvan S, A.

    1998-01-01

    This work has two objectives, first: it is pretended to localize the lines of carbon links in its IR spectra, and second: following the polymerization of sodium methacrylate according to that it is irradiated with gamma rays. (Author)

  16. Reverse-osmosis membranes by plasma polymerization

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  17. Bioadhesive polymeric platforms for transmucosal drug delivery ...

    African Journals Online (AJOL)

    Bioadhesive polymeric platforms for transmucosal drug delivery systems – a review. ... administration of certain classes of drugs, especially peptides and proteins. ... characteristics of desired bioadhesive polymers, this article then proceeds to ...

  18. Transformation kinetics of mixed polymeric substrates under ...

    African Journals Online (AJOL)

    bglucosidase and a-mannosidase were abundantly secreted in the growth medium. This research is the first report on mixed polymeric substrate biodegradation under sewer condition by A. niger, and could be considered as an open window on ...

  19. DNA turnover and strand breaks in Escherichia coli

    International Nuclear Information System (INIS)

    Hanawalt, P.; Grivell, A.; Nakayama, H.

    1975-01-01

    The extent of DNA turnover has been measured in a dnaB mutant of Escherichia coli, temperature sensitive for semiconservative DNA replication. At the nonpermissive temperature about 0.02 percent of the deoxynucleotides in DNA are exchanged per generation period. This turnover rate is markedly depressed in the presence of rifampicin. During thymine starvation strand breaks accumulate in the DNA of E. coli strains that are susceptible to thymineless death. Rifampicin suppresses the appearance of these breaks, consistent with our hypothesis that transcription may be accompanied by repairable single-strand breaks in DNA. DNA turnover is enhanced severalfold in strands containing 5-bromodeoxyuridine in place of thymidine, possibly because the analog (or the deoxyuridine, following debromination) is sometimes recognized and excised

  20. Stem cell identity and template DNA strand segregation.

    Science.gov (United States)

    Tajbakhsh, Shahragim

    2008-12-01

    The quest for stem cell properties to distinguish their identity from that of committed daughters has led to a re-investigation of the notion that DNA strands are not equivalent, and 'immortal' DNA strands are retained in stem cells whereas newly replicated DNA strands segregate to the differentiating daughter cell during mitosis. Whether this process occurs only in stem cells, and also in all tissues, remains unclear. That individual chromosomes can be also partitioned non-randomly raises the question if this phenomenon is related to the immortal DNA hypothesis, and it underscores the need for high-resolution techniques to observe these events empirically. Although initially postulated as a mechanism to avoid DNA replication errors, alternative views including epigenetic regulation and sister chromatid silencing may provide insights into this process.

  1. Transmission pricing and stranded costs in the electric power industry

    International Nuclear Information System (INIS)

    Baumol, W.J.; Sidak, J.G.

    1995-09-01

    Stranded costs are those costs that electric utilities are currently permitted to recover through their rates but whose recovery may be impeded or prevented by the advent of competition in the industry. Estimates of these costs run from the tens to the hundreds of billions of dollars. Should regulators permit utilities to recover stranded costs while they take steps to promote competition in the electric power industry. William Baumol and J. Gregory Sidak argue that answer to that question should be yes.The authors show that a transmission price, the price for sending electricity over the transmission grid, can be determined in a manner that is compatible with economic efficiency and clearly neutral in its effects upon all competitors in electricity generation. A correctly constructed regime of transmission pricing may in fact achieve the efficiency and equity goals that justify the recovery of stranded costs

  2. Informal Science learning in PIBID: identifying and interpreting the strands

    Directory of Open Access Journals (Sweden)

    Thomas Barbosa Fejolo

    2013-10-01

    Full Text Available This paper presents a research on informal Science learning in the context of the Institutional Scholarship Program Initiation to Teaching (PIBID. We take as reference the strands of informal Science learning (FAC, representing six dimensions of learning, they are: 1 Development of interest in Science; 2 Understanding of scientific knowledge; 3 Engaging in scientific reasoning; 4 Reflection on Science; 5 Engagement in scientific practice; 6 Identification with Science. For the lifting data, it was used the filming record of the interactions and dialogues of undergraduate students while performing activities of Optical Spectroscopy in the laboratory. Based on the procedures of content analysis and interpretations through communication, we investigate which of the six strands were present during the action of the students in activities. As a result we have drawn a learning profile for each student by distributing communications in different strands of informal Science learning.

  3. Post polymerization cure shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.

    2017-01-10

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  4. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    Science.gov (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  5. Polymeric Nanogels Obtained by Radiation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Ulanski, P.; Kadłubowski, A. K.; Olejnik,; Rokita, B.; Wach, R.; Rosiak, J. M. [Institute of Applied Radiation Chemistry, Technical University of Lodz, Lodz (Poland)

    2009-07-01

    Soft nanomaterials - polymeric nanogels and microgels - have made a fast and brilliant career, from an unwanted by-product of polymerization processes to an important and fashionable topic of interdisciplinary research in the fields of polymer chemistry and physics, materials science, pharmacy and medicine. Together with their larger analogues - macroscopic gels, most known in the form of water-swellable hydrogels - they have a broad field of actual and potential applications ranging from filler materials in coating industry to modern biomaterials.

  6. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    Science.gov (United States)

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  7. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  8. Post polymerization cure shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  9. Polymeric Nanogels Obtained by Radiation Technique

    International Nuclear Information System (INIS)

    Ulanski, P.; Kadłubowski, A.K.; Olejnik; Rokita, B.; Wach, R.; Rosiak, J.M.

    2009-01-01

    Soft nanomaterials - polymeric nanogels and microgels - have made a fast and brilliant career, from an unwanted by-product of polymerization processes to an important and fashionable topic of interdisciplinary research in the fields of polymer chemistry and physics, materials science, pharmacy and medicine. Together with their larger analogues - macroscopic gels, most known in the form of water-swellable hydrogels - they have a broad field of actual and potential applications ranging from filler materials in coating industry to modern biomaterials

  10. Effects of tacky mat contamination on bond degradation for Chemlok/liner and NBR/liner bonds

    Science.gov (United States)

    Padilla, A. M.

    1989-01-01

    Tacky mats are placed by the rubber lay-up areas for the solid rocket motor segments. These mats dust off the shoes prior to entering the platform where the lay-up work is performed. The possibility exists that a tacky mat could be touched with gloved hands prior to handling the uncured nitride butadiene rubber (NBR). Tests were run to determine if NBR were accidentally touched would there be any degradation of the liner/NBR bond. The tacky mats were judged solely on the basis of bond degradation caused by either direct or indirect contamination. Test results all indicate that there was no notable NBR/Chemlok or liner/NBR bond degradation on samples that came into contact with the tacky mat material. Testing procedures are described. The tacky mat adhesive composition does not contain fluorocarbons or release agents that would affect bonding.

  11. Stimuli-Responsive Polymeric Nanoparticles.

    Science.gov (United States)

    Liu, Xiaolin; Yang, Ying; Urban, Marek W

    2017-07-01

    There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development of Nb3Sn strands for ITER in Japan

    International Nuclear Information System (INIS)

    Isono, T.; Nunoya, Y.; Matsui, K.; Nabara, Y.; Koizumi, N.; Takahashi, Y.; Okuno, K.

    2007-01-01

    Nb 3 Sn strands for ITER Toroidal Field (TF) coils and Central Solenoids (CS) are required to have both high current density (Jc) and low hysteresis loss. The required Jc at 12 T, 4.2 K and no external strain is lager than 700 A/mm 2 for bronze processed strand and lager than 800 A/mm 2 for internal tin processed one at 12 T, 4.2 K and no external strain. Upper limit of hysteresis loss is 1,000 mJ/cm 3 at 4.2 K and a cycle of ±3 T. Outer diameter is 0.82 mm and 0.83 mm for TF coils and CS, respectively. Area ratio of copper to non copper is one and outer surface is Cr plated. Japan will procure 25% of Nb 3 Sn for ITER TF coils and 100% for ITER CS. There are four Nb 3 Sn strand suppliers in Japan; three of them use bronze process and the other uses internal tin process. For bronze processed strand, increase Jc was achieved by using bronze with high tin content of 15 to 16%. To keep productivity while using the harder bronze with high tin content, Nb is used for barrier in place of Ta. The material is expected to have better adhesion to other materials such as bronze and copper. For internal tin process, size of modules, each of which has a tin rod and a lot of Nb filaments embedded in a copper cylinder, is reduced, while total amount of tin increase in order to satisfy both required high Jc and low hysteresis loss. Each supplier fabricated a strand of more than 0.1 ton for TF coils and succeeded to develop a strand satisfying the ITER requirements of Jc and hysteresis loss. (authors)

  13. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    Science.gov (United States)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  14. The tempered polymerization of human neuroserpin.

    Directory of Open Access Journals (Sweden)

    Rosina Noto

    Full Text Available Neuroserpin, a member of the serpin protein superfamily, is an inhibitor of proteolytic activity that is involved in pathologies such as ischemia, Alzheimer's disease, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB. The latter belongs to a class of conformational diseases, known as serpinopathies, which are related to the aberrant polymerization of serpin mutants. Neuroserpin is known to polymerize, even in its wild type form, under thermal stress. Here, we study the mechanism of neuroserpin polymerization over a wide range of temperatures by different techniques. Our experiments show how the onset of polymerization is dependent on the formation of an intermediate monomeric conformer, which then associates with a native monomer to yield a dimeric species. After the formation of small polymers, the aggregation proceeds via monomer addition as well as polymer-polymer association. No further secondary mechanism takes place up to very high temperatures, thus resulting in the formation of neuroserpin linear polymeric chains. Most interesting, the overall aggregation is tuned by the co-occurrence of monomer inactivation (i.e. the formation of latent neuroserpin and by a mechanism of fragmentation. The polymerization kinetics exhibit a unique modulation of the average mass and size of polymers, which might suggest synchronization among the different processes involved. Thus, fragmentation would control and temper the aggregation process, instead of enhancing it, as typically observed (e.g. for amyloid fibrillation.

  15. Photosynthetic microbial mats today, on early Earth, (and on early Mars?)

    Science.gov (United States)

    Des Marais, D. J.

    2008-05-01

    Marine hypersaline cyanobacterial mats offer insights about their ancient ancestors, whose fossil record is 3.43 billion years old. Studies of mat microbiota have greatly expanded the known diversity of ancient microbial lineages. Their evolution was shaped by mat microenvironments, which can differ substantially from their surroundings. Oxygenic photosynthesis perhaps developed in microbial mats and probably triggered a major evolutionary transformation and diversification of the early biosphere. Gross primary production rates in cyanobacterial mats can rival the most productive ecosystems known. Sunlight changes in intensity and spectral composition as it penetrates mats, and counteracting gradients of O2 and sulfide shape the chemical microenvironment. A combination of benefits and hazards of light, O2 and sulfide promotes the allocation of the various essential mat processes between light and dark periods and to various depths in the mat. Close inspection has revealed surprises, for example: anoxygenic phototrophs inside cyanobacterial sheaths, record- high sulfate reduction rates in O2-saturated conditions, and high H2 fluxes into overlying waters. Diverse organic biomarker compounds have been documented that are amenable to long-term preservation. Such coordinated observations of populations, processes and products are making fundamental questions in ecology accessible. Cyanobacterial mats have robust fossil records in part because they populated stable continental platforms and margins, contributing to sediments having high preservation potential. Proterozoic cyanobacterial fossils and organic biomarkers are well documented. The 3.43 Ga Strelley Pool cherts, W. Australia, reveal diverse stromatolites that populated a partially restricted, low-energy shallow hypersaline basin. Molecular studies of extant bacteria hint that early chlorophyll-utilizing photosynthesizers required geochemical sources of reductants. Did these anoxygenic phototrophs once sustain an

  16. Characterization behavior of some polymeric composite ion exchangers

    International Nuclear Information System (INIS)

    El-Zahhar, A.A; Ahdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    Polymeric composite resins were prepared by template polymerization process in aqueous solution. Thermogravimetric analysis (TGA), differential thermal analysis (DTA) and The X-ray diffraction patterns (XRD) were performed to evaluate the physico chemical properties of the different polymeric composite resins. The TGA and DTA clarify high thermal stability of prepared polymeric composite resins. XRD of prepared polymeric composite shows that there is crystalline structure of some resins while other are amorphous one

  17. Possible Role of Ice in the Synthesis of Polymeric Compounds

    Science.gov (United States)

    Monnard, Pierre-Alain; Doerr, Mark; Loeffler, Philipp, M. G.

    COSPAR Session F3.6, Bremen July 18-25, 2010 Possible role of ice in the synthesis of polymeric compounds Doerr, Mark, Loeffler, Philipp M.G and Monnard, Pierre-Alain, University of Southern Den-mark, FLinT Center, Odense M, Denmark. Email: monnard@ifk.sdu.dk Cellular life relies on a collection of linear polymers (among them DNA, RNA, proteins) to perform the functions necessary to its survival. It seems likely that catalytic and informational polymers played essential roles in the emergence of the first living entities, precursors of con-temporary cells. Thus, their detection on other planetary bodies might hint at either emerging, or extant, or past life in these environments. A non-enzymatic synthesis of such polymeric materials or their precursors likely had to rely on a supply of monomers dissolved at low concentrations in an aqueous medium. An aqueous environment represents a clear hurdle to the synthesis of long polymers as it tends to inhibit polymerization due to entropic effects and favors the reverse reaction (decomposition by hy-drolysis). It was therefore proposed that polymerization could occur in a distinct micro-or nanostructured environment that would permit a local increase in the monomer concentration, reduce water activity and protect monomers and polymers from hydrolysis. Several types of micro-or nanostructured environments, among them mineral surfaces [1], lattices of organic molecules, such as amphiphile bilayer structures [2], and the eutectic phase in water-ice [3-8] have been proposed to promote RNA and peptide formation. This last environment might be of particular interest since space exploration has established that water exists on Mars, Europa, Enceladus and comets, mostly as ice. Ice deposits may also have existed on the early Earth. When an aqueous solution is cooled below its freezing point, but above the eutectic point, two aqueous phases co-exist and form the eutectic phase system: a solid (the ice crystals made of pure water

  18. Genetic transformation of Neisseria gonorrhoeae shows a strand preference

    OpenAIRE

    Duffin, Paul M.; Seifert, H. Steven

    2012-01-01

    Natural transformation is the main means of horizontal genetic exchange in the obligate human pathogen Neisseria gonorrhoeae. Neisseria spp. have been shown to preferentially take up and transform their own DNA by recognizing a non-palindromic 10 or 12 nucleotide DNA uptake sequence (DUS10 or DUS12). We investigated the ability of the DUS12 to enhance single-stranded DNA (ssDNA) transformation. Given the non-palindromic nature of the DUS12, we tested whether both strands of the DUS equally en...

  19. Industry participation workshop: Chromium electroplating of superconductor strand. Proceedings

    International Nuclear Information System (INIS)

    1994-01-01

    The primary objective of the workshop was to inform US plating vendors about the opportunity to participate in the effort on Cr plating of large quantities of superconducting wires required for the ITER and the TPX projects and DOE's interest in developing several reliable and high quality suppliers of Chromium plating services for the superconducting strand industry. The objective was also to inform plating vendors about the Cr plating technology developed in LLNL and invite interested plating vendors to get the technology. Finally the workshop was intended to inform the plating vendors about the plan to get verification of capability of two to four vendors for Cr plating of superconducting strands

  20. Nucleic Acid Analogue Induced Transcription of Double Stranded DNA

    DEFF Research Database (Denmark)

    1998-01-01

    RNA is transcribed from a double stranded DNA template by forming a complex by hybridizing to the template at a desired transcription initiation site one or more oligonucleic acid analogues of the PNA type capable of forming a transcription initiation site with the DNA and exposing the complex...... to the action of a DNA dependant RNA polymerase in the presence of nucleoside triphosphates. Equal length transcripts may be obtained by placing a block to transcription downstream from the initiation site or by cutting the template at such a selected location. The initiation site is formed by displacement...... of one strand of the DNA locally by the PNA hybridization....

  1. Conformal geometry and invariants of 3-strand Brownian braids

    International Nuclear Information System (INIS)

    Nechaev, Sergei; Voituriez, Raphael

    2005-01-01

    We propose a simple geometrical construction of topological invariants of 3-strand Brownian braids viewed as world lines of 3 particles performing independent Brownian motions in the complex plane z. Our construction is based on the properties of conformal maps of doubly-punctured plane z to the universal covering surface. The special attention is paid to the case of indistinguishable particles. Our method of conformal maps allows us to investigate the statistical properties of the topological complexity of a bunch of 3-strand Brownian braids and to compute the expectation value of the irreducible braid length in the non-Abelian case

  2. Sewage, green algal mats anchored by lugworms, and the effects on Turbellaria and small Polychaeta

    Science.gov (United States)

    Reise, Karsten

    1983-06-01

    On sandy tidal flats at the Island of Sylt (North Sea) ephemeral mats of green algae covered wide areas in the vicinity of sewage outflows. Algae became anchored in the feeding funnels of lugworms ( Arenicola marina) and thus were able to resist displacement by tidal currents. Below the algal mats anoxic conditions extend to the sediment surface. After about one month a rough sea removed all algae. Polychaetes endured this short-term environmental deterioration, while the more sensitive Turbellaria decreased in abundance and species richness. Diatom-feeders were affected most, predators to a medium extent, and bacteria-feeders the least affected. Rare and very abundant species were more affected than moderately abundant ones. None of the turbellarian species increased in abundance and none colonized the algal mats above the sediment. In a semicontrolled experiment with daily hand-removal of drift algae from a 100-m2 plot within an extensive field of algal mats, this cleaned "island" served as a refuge to Turbellaria escaping from their algal covered habitat. Here abundance doubled relative to initial conditions and was 5-times higher than below algal mats.

  3. Russian Army Mat as a Code System Controlling Behaviour in the Russian army

    Directory of Open Access Journals (Sweden)

    Vadim Mikhailin

    2004-09-01

    Full Text Available This text is to be a shortened, restructured and based on somewhat another factological foundation version of my article “Russkii mat kak muzhskoi obstsennyi kod: problema proiskhozhdeniia i evoliutsiia statusa”, published in # 43 of Novoe Literaturnoe Obozrenie. Tracing the genesis of mat to the specific modes of behaviour, peculiar to the archaic male warrior bands, I’m going to show that the military milieu (and some other, structurally close to it social strata, has always been – and remain – absolutely adequate for the mat speaking. Moreover, mat has always carried on within these strata rather specific function connected with creating of one’s identity as a military, and its use offers various and sometimes the only possible means of impact at one’s equal or subordinate (or even superior. As a matter of fact, mat is a basis for a whole code system, controlling different military behaviour practices. The problems of the freshers’ adaptation and of the national specificities in the late Soviet and modern Russian army are to be considered with special respect.

  4. Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France).

    Science.gov (United States)

    Wieland, A; Zopfi, J; Benthien, M; Kühl, M

    2005-01-01

    In situ microsensor measurements were combined with biogeochemical methods to determine oxygen, sulfur, and carbon cycling in microbial mats growing in a solar saltern (Salin-de-Giraud, France). Sulfate reduction rates closely followed the daily temperature changes and were highest during the day at 25 degrees C and lowest during the night at 11 degrees C, most probably fueled by direct substrate interactions between cyanobacteria and sulfate-reducing bacteria. Sulfate reduction was the major mineralization process during the night and the contribution of aerobic respiration to nighttime DIC production decreased. This decrease of aerobic respiration led to an increasing contribution of sulfide (and iron) oxidation to nighttime O2 consumption. A peak of elemental sulfur in a layer of high sulfate reduction at low sulfide concentration underneath the oxic zone indicated anoxygenic photosynthesis and/or sulfide oxidation by iron, which strongly contributed to sulfide consumption. We found a significant internal carbon cycling in the mat, and sulfate reduction directly supplied DIC for photosynthesis. The mats were characterized by a high iron content of 56 micromol Fe cm(-3), and iron cycling strongly controlled the sulfur cycle in the mat. This included sulfide precipitation resulting in high FeS contents with depth, and reactions of iron oxides with sulfide, especially after sunset, leading to a pronounced gap between oxygen and sulfide gradients and an unusual persistence of a pH peak in the uppermost mat layer until midnight.

  5. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    KAUST Repository

    Chennu, Arjun

    2015-12-24

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors.

  6. Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine microbial mats

    Directory of Open Access Journals (Sweden)

    Arjun eChennu

    2015-12-01

    Full Text Available Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 minutes after rehydration chlorophyll a concentrations increased 2-5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min – 48 h involved migration of the reactivated cyanobacteria towards the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and aquatic origin. However the response of upward migration and its triggering factor appears to be mat-specific and likely linked to other factors.

  7. A Process for the Creation of T-MATS Propulsion System Models from NPSS data

    Science.gov (United States)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink (Math Works, Inc.) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.

  8. Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA).

    Science.gov (United States)

    Engel, Annette Summers; Meisinger, Daniela B; Porter, Megan L; Payn, Robert A; Schmid, Michael; Stern, Libby A; Schleifer, K H; Lee, Natuschka M

    2010-01-01

    Microbial mats in sulfidic cave streams offer unique opportunities to study redox-based biogeochemical nutrient cycles. Previous work from Lower Kane Cave, Wyoming, USA, focused on the aerobic portion of microbial mats, dominated by putative chemolithoautotrophic, sulfur-oxidizing groups within the Epsilonproteobacteria and Gammaproteobacteria. To evaluate nutrient cycling and turnover within the whole mat system, a multidisciplinary strategy was used to characterize the anaerobic portion of the mats, including application of the full-cycle rRNA approach, the most probable number method, and geochemical and isotopic analyses. Seventeen major taxonomic bacterial groups and one archaeal group were retrieved from the anaerobic portions of the mats, dominated by Deltaproteobacteria and uncultured members of the Chloroflexi phylum. A nutrient spiraling model was applied to evaluate upstream to downstream changes in microbial diversity based on carbon and sulfur nutrient concentrations. Variability in dissolved sulfide concentrations was attributed to changes in the abundance of sulfide-oxidizing microbial groups and shifts in the occurrence and abundance of sulfate-reducing microbes. Gradients in carbon and sulfur isotopic composition indicated that released and recycled byproduct compounds from upstream microbial activities were incorporated by downstream communities. On the basis of the type of available chemical energy, the variability of nutrient species in a spiraling model may explain observed differences in microbial taxonomic affiliations and metabolic functions, thereby spatially linking microbial diversity to nutrient spiraling in the cave stream ecosystem.

  9. Effects of Elevated Carbon Dioxide and Salinity on the Microbial Diversity in Lithifying Microbial Mats

    Directory of Open Access Journals (Sweden)

    Steven R. Ahrendt

    2014-03-01

    Full Text Available Atmospheric levels of carbon dioxide (CO2 are rising at an accelerated rate resulting in changes in the pH and carbonate chemistry of the world’s oceans. However, there is uncertainty regarding the impact these changing environmental conditions have on carbonate-depositing microbial communities. Here, we examine the effects of elevated CO2, three times that of current atmospheric levels, on the microbial diversity associated with lithifying microbial mats. Lithifying microbial mats are complex ecosystems that facilitate the trapping and binding of sediments, and/or the precipitation of calcium carbonate into organosedimentary structures known as microbialites. To examine the impact of rising CO2 and resulting shifts in pH on lithifying microbial mats, we constructed growth chambers that could continually manipulate and monitor the mat environment. The microbial diversity of the various treatments was compared using 16S rRNA gene pyrosequencing. The results indicated that elevated CO2 levels during the six month exposure did not profoundly alter the microbial diversity, community structure, or carbonate precipitation in the microbial mats; however some key taxa, such as the sulfate-reducing bacteria Deltasulfobacterales, were enriched. These results suggest that some carbonate depositing ecosystems, such as the microbialites, may be more resilient to anthropogenic-induced environmental change than previously thought.

  10. Reefs under Siege—the Rise, Putative Drivers, and Consequences of Benthic Cyanobacterial Mats

    Directory of Open Access Journals (Sweden)

    Amanda K. Ford

    2018-02-01

    Full Text Available Benthic cyanobacteria have commonly been a small but integral component of coral reef ecosystems, fulfilling the critical function of introducing bioavailable nitrogen to an inherently oligotrophic environment. Though surveys may have previously neglected benthic cyanobacteria, or grouped them with more conspicuous benthic groups, emerging evidence strongly indicates that they are becoming increasingly prevalent on reefs worldwide. Some species can form mats comprised by a diverse microbial consortium which allows them to exist across a wide range of environmental conditions. This review evaluates the putative driving factors of increasing benthic cyanobacterial mats, including climate change, declining coastal water quality, iron input, and overexploitation of key consumer and ecosystem engineer species. Ongoing global environmental change can increase growth rates and toxin production of physiologically plastic benthic cyanobacterial mats, placing them at a considerable competitive advantage against reef-building corals. Once established, strong ecological feedbacks [e.g., inhibition of coral recruitment, release of dissolved organic carbon (DOC] reinforce reef degradation. The review also highlights previously overlooked implications of mat proliferation, which can extend beyond reef health and affect human health and welfare. Though identifying (opportunistic consumers of mats remains a priority, their perceived low palatability implies that herbivore management alone may be insufficient to control their proliferation and must be accompanied by local measures to improve water quality and watershed management.

  11. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    KAUST Repository

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Alnajjar, Mohammad Ahmad

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors.

  12. Diatom, cyanobacterial and microbial mats as indicators of hydrocarbon contaminated Arctic streams and waters

    Energy Technology Data Exchange (ETDEWEB)

    Ziervogel, H.; Selann, J.; Adeney, B. [EBA Engineering Consultants Ltd., Edmonton, AB (Canada); Nelson, J.A. [J.B. Services, Sarnia, ON (Canada); Murdock, E. [Nunavut Power, Iqaluit (Canada)

    2003-07-01

    An environmental assessment conducted at Repulse Bay, Nunavut in the summer of 2001 revealed a recent diesel spill flowing from the groundwater into a creek. The spill had not been reported. When Arctic surface waters mix with hydrocarbon impacted groundwater and sediments, distinctive mats of diatom, cyanobacteria and other bacteria are formed. These mats have the potential for phytoremediation of hydrocarbons. This paper explained the apparent dominance of mats in contaminated Arctic waters and why they promote biodegradation of hydrocarbons. Hydrocarbon-contaminated soils and groundwater are generally anaerobic. The higher dissolved carbon dioxide in polluted soils and groundwater can benefit photosynthetic cyanobacteria and diatom found in oligotrophic, lower alkalinity Arctic waters. The anaerobic and aerobic bacteria can potentially take advantage of the hydrogen substrate and the nitrogen fixing abilities of the cyanobacteria. Zooplankton predators may be killed off by the toxicity of the polluted groundwater. The paper provides examples where a microbial mat reduced the sulfate content of a hydrocarbon-impacted Arctic stream by 100 ppm, and where a pond covered in a benthic microbial mat showed no evidence of hydrocarbons in the water overlying sediments contaminated with hydrocarbons at concentrations measured at 30,000 ppm. 19 refs., 3 tabs., 8 figs.

  13. Growth, composition and metal removal potential of a Phormidium bigranulatum-dominated mat at elevated levels of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dhananjay [Plant Molecular Biology and Plant Physiology Lab, Lab no. 114, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India); Yadav, Arpana [Laboratory of Algal Biology, Department of Botany, Banaras Hindu University, Varanasi 221 005 (India); Gaur, J.P., E-mail: gaurjp@yahoo.co.in [Laboratory of Algal Biology, Department of Botany, Banaras Hindu University, Varanasi 221 005 (India)

    2012-07-15

    Prompted by the fact that interaction of metals with cyanobacterial mats has been little studied, the present study evaluates the response of a cyanobacterial mat, dominated by Phormidium bigranulatum, to elevated concentrations of Cd{sup 2+} in the medium. The mat failed to grow at 7 {mu}M of Cd{sup 2+} when the metal as also the mat inoculum were simultaneously added to the medium right in the beginning of the experiment due to marked sensitivity of P. bigranulatum, the main constituent of the mat, to high concentrations of Cd{sup 2+}. However, the mat previously grown in Cd{sup 2+}-free medium for a time period of 1-4 weeks grew successfully when exposed to media containing very high concentrations of Cd{sup 2+}. Four-week-old mat could grow at 250 {mu}M of Cd{sup 2+}, which has been found toxic to many cyanobacteria and algae by previous researchers. Greater tolerance of older mats to Cd{sup 2+} may be due to greater proportion of exopolysaccharides, which are well known to sequester metal ions extracellularly, in them. Whereas the relative proportion of P. bigranulatum declined at high concentrations of the test metal that of green algae increased due most likely to their tolerance to Cd{sup 2+}. Air bubbles were seen entrapped in the mat due obviously to photosynthetic activity. Elevated concentrations of Cd{sup 2+} reduced the number of air bubbles in the mat. Decline in number of air bubbles at high concentrations of metal ions was more prominent in the case of younger mat than in the older one. The present study also evaluated changes in species composition of mats of different age that were subsequently grown in Cd{sup 2+} enriched culture medium. Younger mats showed change in species composition at very low concentrations of Cd{sup 2+}, but older mats showed little changes even at very high concentrations of the test metal. Hence older mats more strongly resisted to changes in its species composition than the younger ones upon exposure to high

  14. Extraction optimization of soluble compounds of yerba maté

    Directory of Open Access Journals (Sweden)

    César Sambiassi

    2002-06-01

    Full Text Available The objective of this research was the extraction optimization of water soluble compounds of yerba maté. Measures variables were extract concentration and weight of leaves and twigs. Controlled variables were time and temperature of extraction and water/solid relation. A surface response method of three variables was used as experimental design, with 20 experiences in each case. The range of each variable, defined in the experimental design, was: extraction time, 13.2 to 46.8 minutes; temperature, 48.2 to 81.8°C and water solid relation, 4.64 to 11.36 g water/100 g of dry solid. Extract weight varied from 13.14 to 29.56 g in leaves and 8.98 to 16.32 g in twigs (each one per 100 g of dry solid. Extract concentration varied between 2.17 and 3.43 g/100 ml in leaves and between 1.32 and 2.31 g/100 ml in twigs. The results were fit to a linear equation in each case.O objetivo desta pesquisa foi a otimização da extração aquosa da erva mate. As variáveis medidas foram a concentração do extrato e a massa das folhas e ramos. As variáveis controladas foram: o tempo e a temperatura de extração e a relação água/sólido. Como desenho experimental foi utilizado o método de resposta superficial de três variáveis, com vinte experiências em cada caso. A faixa de variação definida para as variáveis no desenho experimental foram: tempo de extração, de 13,2 a 46,8 minutos; temperatura, de 48,2 a 81,8 °C; relação água/sólido, de 4,64 a 11,36 gramas de água por gramas de sólido seco. A massa do extrato variou de 13,14 a 29,56 gramas para as folhas desramificadas e de 8,98 a 16,32 para os ramos (cada por 100 gramas de sólido seco. A concentração de extrato variou entre 2,17 a 3,43 g/ 100 ml nas folhas e entre 1,32 e 2,31 g/ 100 ml nos ramos. Os resultados foram, em ambos casos, ajustados para uma equação linear.

  15. CRA-1 uncovers a double-strand break-dependent pathway promoting the assembly of central region proteins on chromosome axes during C. elegans meiosis.

    Science.gov (United States)

    Smolikov, Sarit; Schild-Prüfert, Kristina; Colaiácovo, Mónica P

    2008-06-06

    The synaptonemal complex (SC), a tripartite proteinaceous structure that forms between homologous chromosomes during meiosis, is crucial for faithful chromosome segregation. Here we identify CRA-1, a novel and conserved protein that is required for the assembly of the central region of the SC during C. elegans meiosis. In the absence of CRA-1, central region components fail to extensively localize onto chromosomes at early prophase and instead mostly surround the chromatin at this stage. Later in prophase, central region proteins polymerize along chromosome axes, but for the most part fail to connect the axes of paired homologous chromosomes. This defect results in an inability to stabilize homologous pairing interactions, altered double-strand break (DSB) repair progression, and a lack of chiasmata. Surprisingly, DSB formation and repair are required to promote the polymerization of the central region components along meiotic chromosome axes in cra-1 mutants. In the absence of both CRA-1 and any one of the C. elegans homologs of SPO11, MRE11, RAD51, or MSH5, the polymerization observed along chromosome axes is perturbed, resulting in the formation of aggregates of the SC central region proteins. While radiation-induced DSBs rescue this polymerization in cra-1; spo-11 mutants, they fail to do so in cra-1; mre-11, cra-1; rad-51, and cra-1; msh-5 mutants. Taken together, our studies place CRA-1 as a key component in promoting the assembly of a tripartite SC structure. Moreover, they reveal a scenario in which DSB formation and repair can drive the polymerization of SC components along chromosome axes in C. elegans.

  16. A Matérn model of the spatial covariance structure of point rain rates

    KAUST Repository

    Sun, Ying

    2014-07-15

    It is challenging to model a precipitation field due to its intermittent and highly scale-dependent nature. Many models of point rain rates or areal rainfall observations have been proposed and studied for different time scales. Among them, the spectral model based on a stochastic dynamical equation for the instantaneous point rain rate field is attractive, since it naturally leads to a consistent space–time model. In this paper, we note that the spatial covariance structure of the spectral model is equivalent to the well-known Matérn covariance model. Using high-quality rain gauge data, we estimate the parameters of the Matérn model for different time scales and demonstrate that the Matérn model is superior to an exponential model, particularly at short time scales.

  17. A Matérn model of the spatial covariance structure of point rain rates

    KAUST Repository

    Sun, Ying; Bowman, Kenneth P.; Genton, Marc G.; Tokay, Ali

    2014-01-01

    It is challenging to model a precipitation field due to its intermittent and highly scale-dependent nature. Many models of point rain rates or areal rainfall observations have been proposed and studied for different time scales. Among them, the spectral model based on a stochastic dynamical equation for the instantaneous point rain rate field is attractive, since it naturally leads to a consistent space–time model. In this paper, we note that the spatial covariance structure of the spectral model is equivalent to the well-known Matérn covariance model. Using high-quality rain gauge data, we estimate the parameters of the Matérn model for different time scales and demonstrate that the Matérn model is superior to an exponential model, particularly at short time scales.

  18. Chapitre 4. Matériaux de construction et de décoration

    OpenAIRE

    Harlé-Sambet, Yvonne; Cabart, Hubert; Charmoillaux, Julie; Girard, Ghislaine

    2017-01-01

    Si la brique apparaît comme le matériau le plus utilisé lors de la construction du château, on est cependant frappé par la variété des autres matériaux mis en œuvre. Les murs les plus anciens du logis est (XIIe siècle) ainsi que les fondations et le soubassement du château de brique (fin XIIIe siècle) sont constitués de maçonneries de galets liés au mortier. Le galet est en effet le matériau le plus fréquemment utilisé à toutes les époques dans les constructions du bas-Dauphiné. Cependant à B...

  19. Millimeter Wavelength Observations of Galactic Sources with the Mobile Anisotropy Telescope (MAT)

    Science.gov (United States)

    Cruz, K. L.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Miller, A. D.; Nolta, M. R.; Page, L. A.; Puchalla, J. L.; Torbet, E.; Tran, H. T.

    1999-12-01

    The Mobile Anisotropy Telescope (MAT) has completed two observing seasons (1997 and 1998) in Chile from the Cerro Toco site. Although the primary goal of MAT was to measure anisotropy in the Cosmic Microwave Background (CMB) radiation, the chosen observation scheme also allowed daily viewing of the Galactic Plane. We present filtered maps at 30, 40 and 144 GHz of a region of the Galactic Plane which contains several millimeter-bright regions including the Carinae nebula and IRAS 11097-6102. We report the best fit brightness temperatures as well as the total flux densities in the MAT beams (0.9, 0.6 and 0.2 degrees FWHM) . The data are calibrated with respect to Jupiter whose flux is known to better than 8% in all frequency bands. This work was funded by the National Science Foundation and the Packard Foundation.

  20. Gro2mat: a package to efficiently read gromacs output in MATLAB.

    Science.gov (United States)

    Dien, Hung; Deane, Charlotte M; Knapp, Bernhard

    2014-07-30

    Molecular dynamics (MD) simulations are a state-of-the-art computational method used to investigate molecular interactions at atomic scale. Interaction processes out of experimental reach can be monitored using MD software, such as Gromacs. Here, we present the gro2mat package that allows fast and easy access to Gromacs output files from Matlab. Gro2mat enables direct parsing of the most common Gromacs output formats including the binary xtc-format. No openly available Matlab parser currently exists for this format. The xtc reader is orders of magnitudes faster than other available pdb/ascii workarounds. Gro2mat is especially useful for scientists with an interest in quick prototyping of new mathematical and statistical approaches for Gromacs trajectory analyses. © 2014 Wiley Periodicals, Inc. Copyright © 2014 Wiley Periodicals, Inc.

  1. Survey and research on precision polymerization polymeric materials; Seimitsu jugo kobunshi zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey and research on the precision control of primary structure of polymeric materials and the precision evaluation technology have been conducted to develop advanced polymeric materials. It is proposed that the three basic processes of polymer synthesis, i.e., addition, condensation, and biomimesis, in forming the precision polymerization skeleton are to be covered through a centralized joint research effort with participation of industry, academia, and the government institute and under the leadership of researchers from academic institutions as the team leaders. For the study of technology trends, international conferences held in UK, Germany, and Hawaii are introduced, and domestic meetings, i.e., Annual Polymer Congress and Polymer Conference, are summarized. In addition, Precision Polymerization Forum and International Workshop on Precision Polymerization were held. The basic studies include a quantum-chemical elucidation of the elementary process in polymerization reaction, time-resolved analysis of polymerization process and polymer properties, synthesis of polymers with controlled microstructures by coordination polymerization using metal complexes, synthesis of polymer with controlled microstructures by precision polycondensation, molecular recognition in catalyst-reaction site, and synthesis of imprinting polymers. 246 refs., 117 figs., 14 tabs.

  2. Two modes of interaction of the single-stranded DNA-binding protein of bacteriophage T7 with the DNA polymerase-thioredoxin complex

    KAUST Repository

    Ghosh, Sharmistha; Hamdan, Samir; Richardson, Charles C.

    2010-01-01

    The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD.gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Two modes of interaction of the single-stranded DNA-binding protein of bacteriophage T7 with the DNA polymerase-thioredoxin complex

    KAUST Repository

    Ghosh, Sharmistha

    2010-04-06

    The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD.gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Negative-strand RNA viruses: The plant-infecting counterparts

    NARCIS (Netherlands)

    Kormelink, R.J.M.; Garcia, M.L.; Goodin, M.; Sasaya, T.; Haenni, A.L.

    2011-01-01

    While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome

  5. Double-Strand DNA Break Repair in Mycobacteria.

    Science.gov (United States)

    Glickman, Michael S

    2014-10-01

    Discontinuity of both strands of the chromosome is a lethal event in all living organisms because it compromises chromosome replication. As such, a diversity of DNA repair systems has evolved to repair double-strand DNA breaks (DSBs). In part, this diversity of DSB repair systems has evolved to repair breaks that arise in diverse physiologic circumstances or sequence contexts, including cellular states of nonreplication or breaks that arise between repeats. Mycobacteria elaborate a set of three genetically distinct DNA repair pathways: homologous recombination, nonhomologous end joining, and single-strand annealing. As such, mycobacterial DSB repair diverges substantially from the standard model of prokaryotic DSB repair and represents an attractive new model system. In addition, the presence in mycobacteria of a DSB repair system that can repair DSBs in nonreplicating cells (nonhomologous end joining) or when DSBs arise between repeats (single-strand annealing) has clear potential relevance to Mycobacterium tuberculosis pathogenesis, although the exact role of these systems in M. tuberculosis pathogenesis is still being elucidated. In this article we will review the genetics of mycobacterial DSB repair systems, focusing on recent insights.

  6. Short Communication A near mass stranding of cetaceans in St ...

    African Journals Online (AJOL)

    A group of 70 false killer whales Pseudorca crassidens and 124 bottlenose dolphins Tursiops sp., and a separate group of 13 Risso's dolphins Grampus griseus, assembled close inshore off a known mass-stranding site in St Helena Bay, South Africa, in October 2003. However, only a single Risso's dolphin attempted to ...

  7. Repair of double-strand breaks in Micrococcus radiodurans

    International Nuclear Information System (INIS)

    Burrell, A.D.; Dean, C.J.

    1975-01-01

    Micrococcus radiodurans has been shown to sustain double-strand breaks in its DNA after exposure to x-radiation. Following sublethal doses of x-rays (200 krad in oxygen or less), the cells were able to repair these breaks, and an intermediate fast-sedimenting DNA component seemed to be involved in the repair process

  8. RRP Nb3Sn strand studies for LARP

    International Nuclear Information System (INIS)

    Barzi, Emanuela; Bossert, Rodger; Caspi, Shlomo; Dietderich, Daniel R.; Ferracin, Paolo; Ghosh, Arup; Turrioni, Daniele

    2006-01-01

    The Nb 3 Sn strand chosen for the next step in the magnet R and D of the U.S. LHC Accelerator Research Program is the 54/61 sub-element Restacked Rod Process by Oxford Instruments, Superconducting Technology. To ensure that the 0.7 mm RRP strands to be used in the upcoming LARP magnets are suitable, extensive studies were performed. Measurements included the critical current, e , using the voltage-current (V-I) method, the stability current, I S , as the minimal quench current obtained with the voltage-field (V-H) method, and RRR. Magnetization was measured at low and high fields to determine the effective filament size and to detect flux jumps. Effects of heat treatment temperature and durations on I e and I S were also studied. Using strand billet qualification and tests of strands extracted from cables, the short sample limits of magnet performance were obtained. The details and the results of this investigation are herein described

  9. RRP Nb3Sn Strand Studies for LARP

    International Nuclear Information System (INIS)

    Barzi, Emanuela; Bossert, Rodger; Caspi, Shlomo; Dietderich, Daniel R.; Ferracin, Paolo; Ghosh, Arup; Turrioni, Daniele

    2007-01-01

    The Nb 3 Sn strand chosen for the next step in the magnet R and D of the U.S. LHC Accelerator Research Program is the 54/61 sub-element Restacked Rod Process by Oxford Instruments, Superconducting Technology. To ensure that the 0.7 mm RRP strands to be used in the upcoming LARP magnets are suitable, extensive studies were performed. Measurements included the critical current, I c , using the voltage-current (V-I) method, the stability current, I S , as the minimal quench current obtained with the voltage-field (V-H) method, and RRR. Magnetization was measured at low and high fields to determine the effective filament size and to detect flux jumps. Effects of heat treatment temperature and durations on I c and I S were also studied. Using strand billet qualification and tests of strands extracted from cables, the short sample limits of magnet performance were obtained. The details and the results of this investigation are herein described

  10. Strategies underlying RNA silencing suppression by negative strand RNA viruses

    NARCIS (Netherlands)

    Hemmes, J.C.

    2007-01-01

    The research described in this thesis focused on the strategies of negative strand RNA viruses to counteract antiviral RNA silencing. In plants and insects, RNA silencing has been shown to act as a sequence specific antiviral defence mechanism that is characterised by the processing of double

  11. Primary resistance to integrase strand-transfer inhibitors in Europe.

    NARCIS (Netherlands)

    M. Casadellá; P.M. van Ham (Petra); M. Noguera-Julian; A. van Kessel; C. Pou; L.M. Hofstra (Marije); G.A. Metcalf (Ginger A.); F. Garcia; D. Struck (Daniel); I. Alexiev (Ivailo); A.M. Bakken Kran; A.I.M. Hoepelman; L.G. Kostrikis (Leondios); S. Somogyi; K. Liitsola (Kirsi); M. Linka (Marek); C. Nielsen; D. Otelea (Dan); D. Paraskevis (Dimitrios); M. Poljak (Mario); E. Puchhammer-Stöckl (Elisabeth); D. Stanekova (Danica); M. Stanojevic (Maja); K. Van Laethem (Kristel); S. Zidovec Lepej (Snjezana); B. Clotet; C.A.B. Boucher (Charles); R. Paredes (Roger); A.M.J. Wensing (Annemarie)

    2015-01-01

    markdownabstractThe objective of this study was to define the natural genotypic variation of the HIV-1 integrase gene across Europe for epidemiological surveillance of integrase strand-transfer inhibitor (InSTI) resistance. This was a multicentre, cross-sectional study within the European SPREAD

  12. Primary resistance to integrase strand-transfer inhibitors in Europe

    NARCIS (Netherlands)

    Casadella, M.; van Ham, P. M.; Noguera-Julian, M.; van Kessel, A.; Pou, C.; Hofstra, L. M.; Santos, J. R.; Garcia, F.; Struck, D.; Alexiev, I.; Kran, A. M. Bakken; Hoepelman, A. I.; Kostrikis, L. G.; Somogyi, S.; Liitsola, K.; Linka, M.; Nielsen, C.; Otelea, D.; Paraskevis, D.; Poljak, M.; Puchhammer-Stoeckl, E.; Stanekova, D.; Stanojevic, M.; Van Laethem, K.; Lepej, S. Zidovec; Clotet, B.; Boucher, C. A. B.; Paredes, R.; Wensing, A. M. J.; Schuurman, R

    2015-01-01

    Objectives: The objective of this study was to define the natural genotypic variation of the HIV-1 integrase gene across Europe for epidemiological surveillance of integrase strand-transfer inhibitor (InSTI) resistance. Methods: This was a multicentre, cross-sectional study within the European

  13. DNA double-strand breaks & poptosis in the testis

    NARCIS (Netherlands)

    Hamer, Geert

    2003-01-01

    During spermatogenesis, DNA damage is a naturally occurring event. At a certain stage, during the first meiotic prophase, DNA breaks are endogenously induced and even required for meiotic recombination. We studied these DNA breaks but also used ionizing radiation (IR) to induce DNA double-strand

  14. Cetaceans stranded in the Netherlands from 1998 to 2007

    NARCIS (Netherlands)

    Camphuysen, C.J.; Smeenk, C.; Addink, M.; Grouw, van H.; Jansen, O.E.

    2008-01-01

    Between 1998 and 2007, 2063 cetaceans were found stranded in the Netherlands, representing at least 14 species. Two species, humpback whale (Megaptera novaeangliae) and Blainville's beaked whale (Mesoplodon densirostris), are additions to the Dutch list. Apart from the first humpback whales,

  15. DNA strand exchange catalyzed by molecular crowding in PEG solutions

    KAUST Repository

    Feng, Bobo; Frykholm, Karolin; Nordé n, Bengt; Westerlund, Fredrik

    2010-01-01

    DNA strand exchange is catalyzed by molecular crowding and hydrophobic interactions in concentrated aqueous solutions of polyethylene glycol, a discovery of relevance for understanding the function of recombination enzymes and with potential applications to DNA nanotechnology. © 2010 The Royal Society of Chemistry.

  16. 75 FR 8113 - Prestressed Concrete Steel Wire Strand From China

    Science.gov (United States)

    2010-02-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-464 and 731-TA-1160 (Final)] Prestressed Concrete Steel Wire Strand From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject investigations. DATES: Effective Date: February 16, 2010. FOR FURTHER INFORMATION...

  17. 75 FR 4104 - Prestressed Concrete Steel Wire Strand From China

    Science.gov (United States)

    2010-01-26

    ... retarded, by reason of subsidized and less-than-fair-value imports from China of prestressed concrete steel... in prestressed concrete (both pre-tensioned and post- tensioned) applications. The product definition..., producers, or exporters in China of prestressed concrete steel wire strand, and that such products are being...

  18. Spatial patterns and links between microbial community composition and function in cyanobacterial mats

    KAUST Repository

    Alnajjar, Mohammad Ahmad; Ramette, Alban; Kü hl, Michael; Hamza, Waleed; Klatt, Judith M.; Polerecky, Lubos

    2014-01-01

    We imaged reflectance and variable fluorescence in 25 cyanobacterial mats from four distant sites around the globe to assess, at different scales of resolution, spatial variabilities in the physiological parameters characterizing their photosynthetic capacity, including the absorptivity by chlorophyll a (Achl), maximum quantum yield of photosynthesis (Ymax), and light acclimation irradiance (Ik). Generally, these parameters significantly varied within individual mats on a sub-millimeter scale, with about 2-fold higher variability in the vertical than in the horizontal direction. The average vertical profiles of Ymax and Ik decreased with depth in the mat, while Achl exhibited a sub-surface maximum. The within-mat variability was comparable to, but often larger than, the between-sites variability, whereas the within-site variabilities (i.e., between samples from the same site) were generally lowest. When compared based on averaged values of their photosynthetic parameters, mats clustered according to their site of origin. Similar clustering was found when the community composition of the mats' cyanobacterial layers were compared by automated ribosomal intergenic spacer analysis (ARISA), indicating a significant link between the microbial community composition and function. Although this link is likely the result of community adaptation to the prevailing site-specific environmental conditions, our present data is insufficient to identify the main factors determining these patterns. Nevertheless, this study demonstrates that the spatial variability in the photosynthetic capacity and light acclimation of benthic phototrophic microbial communities is at least as large on a sub-millimeter scale as it is on a global scale, and suggests that this pattern of variability scaling is similar for the microbial community composition. © 2014 Al-Najjar, Ramette, Kühl, Hamza, Klatt and Polerecky.

  19. Anti-fatigue mats, low back pain, and electromyography: An interventional study.

    Science.gov (United States)

    Aghazadeh, Javad; Ghaderi, Mahmoud; Azghani, Mahmood-Reza; Khalkhali, Hamid-Reza; Allahyari, Teimour; Mohebbi, Iraj

    2015-01-01

    Increasing bilateral gluteus medius co-activation has been identified as one of the most important factors in developing low back pain due to prolonged standing in healthy people. This study aims to investigate the impact of an anti-fatigue mat on the bilateral gluteus medius co-activation pattern and to report the low back pain subjectively in 2 different standing positions on the normal rigid surface and on the anti-fatigue mat. While carrying out an easy simulated profession, 16 participants who had no low back pain background were requested to stand for 2 h in each position, with and without using the anti-fatigue floor mat, respectively. At the beginning of standing process and at every 15 min until the time of 120 min lapses, electric activities for the bilateral gluteus medius co-activation and subjective pain level in low back area were collected by the surface electromyogeraphy (EMG) and the visual analogue scale (VAS), respectively in each position. The obtained findings revealed that the anti-fatigue mat significantly decreased subjective pain level in low back area among 15 participants (p 0.05). The findings obtained under this study related to the impact of the anti-fatigue mat upon the low back pain based on the increase of > 10 mm on the VAS threshold, which showed that this intervention had no significant impact upon decreasing the number of patients suffering from the low back pain and also minimizing the bilateral gluteus medius co-activation in both pain developer groups (p > 0.05). However, 73% of the participants preferred to apply it. It seems that the anti-fatigue mat may be useful in reducing the low back pain although it objectively didn't significantly change the gluteus medius co-activation pattern related to the low back pain. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  20. Spatial patterns and links between microbial community composition and function in cyanobacterial mats

    KAUST Repository

    Alnajjar, Mohammad Ahmad

    2014-08-06

    We imaged reflectance and variable fluorescence in 25 cyanobacterial mats from four distant sites around the globe to assess, at different scales of resolution, spatial variabilities in the physiological parameters characterizing their photosynthetic capacity, including the absorptivity by chlorophyll a (Achl), maximum quantum yield of photosynthesis (Ymax), and light acclimation irradiance (Ik). Generally, these parameters significantly varied within individual mats on a sub-millimeter scale, with about 2-fold higher variability in the vertical than in the horizontal direction. The average vertical profiles of Ymax and Ik decreased with depth in the mat, while Achl exhibited a sub-surface maximum. The within-mat variability was comparable to, but often larger than, the between-sites variability, whereas the within-site variabilities (i.e., between samples from the same site) were generally lowest. When compared based on averaged values of their photosynthetic parameters, mats clustered according to their site of origin. Similar clustering was found when the community composition of the mats\\' cyanobacterial layers were compared by automated ribosomal intergenic spacer analysis (ARISA), indicating a significant link between the microbial community composition and function. Although this link is likely the result of community adaptation to the prevailing site-specific environmental conditions, our present data is insufficient to identify the main factors determining these patterns. Nevertheless, this study demonstrates that the spatial variability in the photosynthetic capacity and light acclimation of benthic phototrophic microbial communities is at least as large on a sub-millimeter scale as it is on a global scale, and suggests that this pattern of variability scaling is similar for the microbial community composition. © 2014 Al-Najjar, Ramette, Kühl, Hamza, Klatt and Polerecky.

  1. Modular development mat reinforcing and liners containment/annulus building. Final report supplement. Volume I

    International Nuclear Information System (INIS)

    Wainrib, J.

    1978-06-01

    The feasibility of developing a modular system approach for the construction of containment mats has been established. The investigative results obtained from a plant used for the modular study has determined that (1) modularization results in a 10-week reduction in the construction schedule critical path over that for the conventional approach, and (2) modularization is cost effective and could result in a savings of approximately $10,700,000. Accordingly, it is recommended that the modular system approach be adopted as standard practice for the construction of containment mats

  2. The effect Mat Pilates practice on muscle mass in elderly women

    Directory of Open Access Journals (Sweden)

    Leliz Cristina Sampaio Queiroz

    2016-01-01

    Full Text Available Objective: to verify that the Mat Pilates practice increases muscle mass in elderly women. Methods: quasi-experimental study with primary data collection and with a convenience sample. The muscle mass of 43 elderly was evaluated for 11 weeks, by calculating the arm muscle area, before and after the intervention. Results:statistically significant difference was observed (p<0.002 between the average value of the arm muscle area, before (35.56cm2 and after the exercises (42.72cm2. Conclusion: mat Pilates program generates positive effect on increasing the muscle mass of elderly.

  3. MAT-DB - A database for nuclear energy related materials data

    International Nuclear Information System (INIS)

    Over, H.H.

    2009-01-01

    The web-enabled materials database (Mat-DB) of JRC-IE has a long-term history in storing materials test data resulting from European and international research projects. The database structure and the user-guidance has bee permanently updated improved and optimized. The database is implemented in the secure ODIN portal: https://odin.jrc.ec.europa.eu of JRC-IE. This architecture guarantees fast access to confidential and public data and documentation which are stored in an inter-related document management database (DoMa). It is a part of JRC's nuclear knowledge management. Mat-DB hosts the whole pool of IAEA surveillance data of reactor pressure vessel materials from different nuclear power plants of the member states. Mat-DB contains also thousands of European GEN IV reactor systems related R and D materials data which are an important basis for the evaluating and extrapolating design data for candidate materials and setting up design rules covering high temperature exposure, irradiation and corrosion. Those data and rules would match also fusion related components. Mat-DB covers thermo-mechanical and thermo-physical properties data of engineering alloys at low, elevated and high temperatures for base materials and joints, including irradiated materials for nuclear fission and fusion applications, thermal barrier coated materials for gas turbines and properties of corroded materials. The corrosion part refers to weight gain/loss data of high temperature exposed engineering alloys and ceramic materials. For each test type the database structure reflects international test standards and recommendations. Mat-DB features an extensive library of evaluation programs for web-enabled assessment of uniaxial creep, fatigue, crack growth and high temperature corrosion properties. Evaluations can be performed after data retrieval or independently of Mat-DB by transferring other materials data in a given format to the programs. The fast evaluation processes help the user to

  4. MatMCNP: A Code for Producing Material Cards for MCNP

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, Kendall Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saavedra, Karen C. [American Structurepoint, Inc., Indianapolis, IN (United States)

    2014-09-01

    A code for generating MCNP material cards (MatMCNP) has been written and verified for naturally occurring, stable isotopes. The program allows for material specification as either atomic or weight percent (fractions). MatMCNP also permits the specification of enriched lithium, boron, and/or uranium. In addition to producing the material cards for MCNP, the code calculates the atomic (or number) density in atoms/barn-cm as well as the multiplier that should be used to convert neutron and gamma fluences into dose in the material specified.

  5. Bagging system, soil stabilization mat, and tent frame for a lunar base

    Science.gov (United States)

    1990-01-01

    Georgia Tech's School of Textile and Fiber Engineering and School of Mechanical Engineering participated in four cooperative design efforts this year. Each of two interdisciplinary teams designed a system consisting of a lunar regolith bag and an apparatus for filling this bag. The third group designed a mat for stabilization of lunar soil during takeoff and landing, and a method for packaging and deploying this mat. Finally, the fourth group designed a sunlight diffusing tent to be used as a lunar worksite. Summaries of these projects are given.

  6. Contradicción, coherencia y compromiso: Matías Usero Torrente

    Directory of Open Access Journals (Sweden)

    Tezanos Gandarillas, Marisa

    2001-06-01

    Full Text Available The current article studies the figure of Matías Usero Torrente. His thought is considered by the author as a preceding of the principals ideas that emphasized about the relations between State and Society during the sixties in Spain.

    En el presente artículo se analiza la figura de Matías Usero Torrente. Su pensamiento es considerado por la autora del estudio como antecesor de las principales ideas que sobre las relaciones de la Iglesia con el Estado y la Sociedad cristalizaron en la década de los 60 en España.

  7. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats

    Directory of Open Access Journals (Sweden)

    Lakshminarayanan R

    2014-05-01

    Full Text Available Rajamani Lakshminarayanan,1,2 Radhakrishnan Sridhar,3,4 Xian Jun Loh,5 Muruganantham Nandhakumar,1 Veluchamy Amutha Barathi,1,6 Madhaiyan Kalaipriya,3,4 Jia Lin Kwan,1 Shou Ping Liu,1,2 Roger Wilmer Beuerman,1,2 Seeram Ramakrishna3,4,7 1Singapore Eye Research Institute, 2Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, 3Department of Mechanical Engineering, National University of Singapore, 4Center for Nanofibers and Nanotechnology, National University of Singapore, 5Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research, 3 Research Link, Singapore, 6Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 7NUS Nanoscience and Nanotechnology Initiative, Singapore Abstract: Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical

  8. Microbial Diversity and Lipid Abundance in Microbial Mats from a Sulfidic, Saline, Warm Spring in Utah, USA

    Science.gov (United States)

    Gong, J.; Edwardson, C.; Mackey, T. J.; Dzaugis, M.; Ibarra, Y.; Course 2012, G.; Frantz, C. M.; Osburn, M. R.; Hirst, M.; Williamson, C.; Hanselmann, K.; Caporaso, J.; Sessions, A. L.; Spear, J. R.

    2012-12-01

    The microbial diversity of Stinking Springs, a sulfidic, saline, warm spring northeast of the Great Salt Lake was investigated. The measured pH, temperature, salinity, and sulfide concentration along the flow path ranged from 6.64-7.77, 40-28° C, 2.9-2.2%, and 250 μM to negligible, respectively. Five sites were selected along the flow path and within each site microbial mats were dissected into depth profiles based on the color and texture of the mat layers. Genomic DNA was extracted from each layer, and the 16S rRNA gene was amplified and sequenced on the Roche 454 Titanium platform. Fatty acids were also extracted from the mat layers and analyzed by liquid chromatography and mass spectrometry. The mats at Stinking Springs were classified into roughly two morphologies with respect to their spatial distribution: loose, sometimes floating mats proximal to the spring source; and thicker, well-laminated mats distal to the spring source. Loosely-laminated mats were found in turbulent stream flow environments, whereas well-laminated mats were common in less turbulent sheet flows. Phototrophs, sulfur oxidizers, sulfate reducers, methanogens, other bacteria and archaea were identified by 16S rRNA gene sequences. Diatoms, identified by microscopy and lipid analysis were found to increase in abundance with distance from the source. Methanogens were generally more abundant in deeper mat laminae. Photoheterotrophs were found in all mat layers. Microbial diversity increased significantly with depth at most sites. In addition, two distinct microbial streamers were identified and characterized at the two fast flowing sites. These two streamer varieties were dominated by either cyanobacteria or flavobacteria. Overall, our genomic and lipid analysis suggest that the physical and chemical environment is more predictive of the community composition than mat morphology. Site Map

  9. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data.

    Science.gov (United States)

    Shen, Shihao; Park, Juw Won; Lu, Zhi-xiang; Lin, Lan; Henry, Michael D; Wu, Ying Nian; Zhou, Qing; Xing, Yi

    2014-12-23

    Ultra-deep RNA sequencing (RNA-Seq) has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We previously developed multivariate analysis of transcript splicing (MATS), a statistical method for detecting differential alternative splicing between two RNA-Seq samples. Here we describe a new statistical model and computer program, replicate MATS (rMATS), designed for detection of differential alternative splicing from replicate RNA-Seq data. rMATS uses a hierarchical model to simultaneously account for sampling uncertainty in individual replicates and variability among replicates. In addition to the analysis of unpaired replicates, rMATS also includes a model specifically designed for paired replicates between sample groups. The hypothesis-testing framework of rMATS is flexible and can assess the statistical significance over any user-defined magnitude of splicing change. The performance of rMATS is evaluated by the analysis of simulated and real RNA-Seq data. rMATS outperformed two existing methods for replicate RNA-Seq data in all simulation settings, and RT-PCR yielded a high validation rate (94%) in an RNA-Seq dataset of prostate cancer cell lines. Our data also provide guiding principles for designing RNA-Seq studies of alternative splicing. We demonstrate that it is essential to incorporate biological replicates in the study design. Of note, pooling RNAs or merging RNA-Seq data from multiple replicates is not an effective approach to account for variability, and the result is particularly sensitive to outliers. The rMATS source code is freely available at rnaseq-mats.sourceforge.net/. As the popularity of RNA-Seq continues to grow, we expect rMATS will be useful for studies of alternative splicing in diverse RNA-Seq projects.

  10. RNA STRAND: The RNA Secondary Structure and Statistical Analysis Database

    Directory of Open Access Journals (Sweden)

    Andronescu Mirela

    2008-08-01

    Full Text Available Abstract Background The ability to access, search and analyse secondary structures of a large set of known RNA molecules is very important for deriving improved RNA energy models, for evaluating computational predictions of RNA secondary structures and for a better understanding of RNA folding. Currently there is no database that can easily provide these capabilities for almost all RNA molecules with known secondary structures. Results In this paper we describe RNA STRAND – the RNA secondary STRucture and statistical ANalysis Database, a curated database containing known secondary structures of any type and organism. Our new database provides a wide collection of known RNA secondary structures drawn from public databases, searchable and downloadable in a common format. Comprehensive statistical information on the secondary structures in our database is provided using the RNA Secondary Structure Analyser, a new tool we have developed to analyse RNA secondary structures. The information thus obtained is valuable for understanding to which extent and with which probability certain structural motifs can appear. We outline several ways in which the data provided in RNA STRAND can facilitate research on RNA structure, including the improvement of RNA energy models and evaluation of secondary structure prediction programs. In order to keep up-to-date with new RNA secondary structure experiments, we offer the necessary tools to add solved RNA secondary structures to our database and invite researchers to contribute to RNA STRAND. Conclusion RNA STRAND is a carefully assembled database of trusted RNA secondary structures, with easy on-line tools for searching, analyzing and downloading user selected entries, and is publicly available at http://www.rnasoft.ca/strand.

  11. Characterization of a parallel-stranded DNA hairpin

    International Nuclear Information System (INIS)

    Germann, M.W.; Vogel, H.J.; Pon, R.T.; van de Sande, J.H.

    1989-01-01

    Recently, the authors have shown that synthetic DNA containing homooligomeric A-T base pairs can form a parallel-stranded intramolecular hairpin structure. In the present study, they have employed NMR and optical spectroscopy to investigate the structure of the parallel-stranded (PS) DNA hairpin 3'-d(T) 8 C 4 (A) 8 -3' and the related antiparallel (APS) hair 5'-d(T) 8 C 4 (A) 8 -3'. The parallel orientation of the strands in the PS oligonucleotide is achieved by introducing a 5'-5' phosphodiester linkage in the hairpin loop. Ultraviolet spectroscopic and fluorescence data of drug binding are consistent with the formation of PS and APS structures, respectively, in these two hairpins. Vacuum circular dichroism measurements in combination with theoretical CD calculations indicate that the PS structure forms a right-handed helix. 31 P NMR measurements indicate that the conformation of the phosphodiester backbone of the PS structure is not drastically different from that of the APS control. The presence of slowly exchanging imino protons at 14 ppm and the observation of nuclear Overhauser enhancement between imino protons and the AH-2 protons demonstrate that similar base pairing and base stacking between T and A residues occur in both hairpins. On the basis of NOESY measurements, they find that the orientation of the bases is in the anti region and that the sugar puckering is in the 2'-endo range. The results indicate a B-like conformation for each of the strands in the stem part of the PS hairpin and reverse Watson-Crick base pairing between the T and A residues. These data are consistent with a previously calculated structure for parallel-stranded DNA

  12. Polymerization of N-(fluoro phenyl) maleimides

    International Nuclear Information System (INIS)

    Barrales-Rienda, J.M.; Ramos, J.G.; Chaves, M.S.

    1979-01-01

    Poly(N-aryl maleimide)s of characteristic structures have been synthesized and some of their physical properties studied. The polymerization of N-(fluoro phenyl) maleimides by free-radical initiation in bulk or in solution and by anionic catalyst have been studied to compare the characteristics of polymerization by γ-ray irradiation with that by free-radical initiation. The polymers were characterized by elemental analysis, intrinsic viscosity, spectroscopy (IR and NMR), programmed thermogravimetric analysis, and x-ray diffraction. Spectra of polymers prepared by radiation and anionic polymerization were nearly identical with those of polymers prepared by free-radical polymerization initiated by azobisisobutyronitrile in bulk or in solution and by the self-initiated thermal polymerization. A variety of reaction conditions were tried, but all attempts to change the molecular structure of the polymers were unsuccessful. Rates of thermal degradation for poly[N-(fluoro phenyl) maleimide]s have been analyzed by using a multiple-heating-rate procedure. Overall activation energy, order of reaction, and frequency factor have been evaluated. 6 figures, 8 tables

  13. Four-Strand Core Suture Improves Flexor Tendon Repair Compared to Two-Strand Technique in a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Alice Wichelhaus

    2016-01-01

    Full Text Available Introduction. This study was designed to investigate the influence of the amount of suture material on the formation of peritendinous adhesions of intrasynovial flexor tendon repairs. Materials and Methods. In 14 rabbits, the flexor tendons of the third and the fourth digit of the right hind leg were cut and repaired using a 2- or 4-strand core suture technique. The repaired tendons were harvested after three and eight weeks. The range of motion of the affected toes was measured and the tendons were processed histologically. The distance between the transected tendon ends, the changes in the peritendinous space, and cellular and extracellular inflammatory reaction were quantified by different staining. Results. A 4-strand core suture resulted in significantly less gap formation. The 2-strand core suture showed a tendency to less adhesion formation. Doubling of the intratendinous suture material was accompanied by an initial increase in leukocyte infiltration and showed a greater amount of formation of myofibroblasts. From the third to the eighth week after flexor tendon repair, both the cellular and the extracellular inflammation decreased significantly. Conclusion. A 4-strand core suture repair leads to a significantly better tendon healing process with less diastasis between the sutured tendon ends despite initially pronounced inflammatory response.

  14. Detection of bacteriophage phi 6 minus-strand RNA and novel mRNA isoconformers synthesized in vivo and in vitro, by strand-separating agarose gels

    International Nuclear Information System (INIS)

    Pagratis, N.; Revel, H.R.

    1990-01-01

    Two urea-free agarose gel protocols that resolve the six individual strands of bacteriophage phi 6 dsRNA were developed and used to analyze phage RNA synthesis in vivo and in vitro. Citrate gels separate strands of the large and medium chromosomes while Tris-borate-EDTA (TBE) gels resolve the medium and small dsRNA segments. Minus strands migrate faster than plus strands on citrate gels but are retarded on TBE gels. A study of electrophoretic conditions showed that pH affects strand resolution on citrate gels, and that voltage gradient, agarose concentration, and ethidium bromide significantly alter strand migration on TBE gels. Analysis of native phi 6 RNA synthesized in vivo and in vitro showed that the large and medium message RNAs comigrate with the corresponding plus strands of denatured virion dsRNA. The small messenger RNA is exceptional. Native small mRNA was detected as three isoconformers in vivo and in vitro. The isoconformers were converted by heat denaturation to a single RNA species that comigrates with the virion s+ strand. Minus strands labeled in vivo were detected only after heat denaturation. Minus strand synthesis was detected also in heat-denatured samples from in vitro phi 6 nucleocapsid RNA polymerase reactions at pH values suboptimal for transcription

  15. 75 FR 32747 - Prestressed Concrete Steel Wire Strand from Mexico: Rescission of Antidumping Duty Administrative...

    Science.gov (United States)

    2010-06-09

    ... DEPARTMENT OF COMMERCE INTERNATIONAL TRADE ADMINISTRATION [A-201-831] Prestressed Concrete Steel Wire Strand from Mexico: Rescission of Antidumping Duty Administrative Review AGENCY: Import... request an administrative review of the antidumping duty order on prestressed concrete steel wire strand...

  16. Inter-strand resistance measurements in the termination of the ITER SULTAN samples

    International Nuclear Information System (INIS)

    Cau, F; Bruzzone, P

    2009-01-01

    In cabled conductors a perfect uniformity of the current among the strands is hardly reached, due to the non-homogeneity of the contact resistance distribution between the strands and the copper of the electrical terminations. In the case of large current unbalance, the overloaded strands hit the critical surface at high field early, developing a current sharing voltage, which drives the redistribution of the current, mainly in the electrical terminations where the inter-strand resistance is lower than in the high field conductor. If the inter-strand resistance in the termination is low, the voltage levels are sufficiently low to allow an effective redistribution of the current to the less loaded strands. The inter-strand resistance of three different termination layouts of ITER short length samples is measured to make a database available which can be used to qualify the layout of the joints and their capability of redistributing the current among the strands.

  17. Corrosion characteristics of post-tensioning strands in ungrouted ducts : summary.

    Science.gov (United States)

    2011-01-01

    To prevent corrosion of post-tensioning strands, FDOT construction specifications currently require post-tensioning ducts to be grouted within seven calendar days of strand installation. This period challenges construction schedules on large projects...

  18. Effects of filamentous macroalgae mats on growth and survival of eelgrass, Zostera marina, seedlings

    DEFF Research Database (Denmark)

    Rasmussen, Jonas; Olesen, Birgit; Krause-Jensen, Dorte

    2012-01-01

    A laboratory experiment was conducted to assess the effect of filamentous algae mats on the performance of seedlings of the eelgrass, Zostera marina. The seedlings were covered by three levels (3, 6 and 9 cm) of natural (Chaetomorpha linum) and imitation algae mats and it was hypothesized that th...

  19. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats

    NARCIS (Netherlands)

    Severin, I.; Confurius-Guns, V.; Stal, L.J.

    2012-01-01

    Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community ( transcript libraries) of three types of microbial mats situated

  20. The ichthyofauna of drifting macrophyte mats in the Ivinhema River, upper Paraná River basin, Brazil

    Science.gov (United States)

    Bulla, C. K.; Gomes, Luiz Carlos; Miranda, Leandro E.; Agostinho, A. A.

    2011-01-01

    We describe the fish assemblages associated with drifting macrophyte mats and consider their possible role as dispersal vectors in the Ivinhema River, a major tributary of the upper Paraná River, Brazil. Fish associated with drifting mats were sampled in the main river channel during January and March 2005, when the wind and/or the increased water level were sufficient to transport macrophyte stands. Fish in the drifting mats were sampled with a floating sieve (4 m long x 2 m wide x 0.6 m high, and 2 mm mesh size). In the laboratory, larvae, juvenile, and adult fish were counted and identified to the lowest possible taxonomic level. In four drifting macrophyte mats we captured 218 individuals belonging to at least 28 species, 17 families, and 6 orders. Aphyocharax dentatus, Serrasalmus spp., and Trachelyopterus galeatus were the most abundant taxa associated with the mats, but species richness ranged from 6 to 24 species per mat. In addition, 85% of the total number of individuals caught was larvae and juveniles. Although preliminary and based on limited samples, this study of drifting macrophyte mats was the first one in the last unregulated stretch of the Paraná River remaining inside Brazilian territory, and alerts us to the potential role of macrophytes mats as dispersers of fish species in the region.

  1. Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) for Imaging Electrical Conductivity of Biological Tissue: A Tutorial Review

    Science.gov (United States)

    Li, Xu; Yu, Kai; He, Bin

    2016-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging method developed to map electrical conductivity of biological tissue with millimeter level spatial resolution. In MAT-MI, a time-varying magnetic stimulation is applied to induce eddy current inside the conductive tissue sample. With the existence of a static magnetic field, the Lorentz force acting on the induced eddy current drives mechanical vibrations producing detectable ultrasound signals. These ultrasound signals can then be acquired to reconstruct a map related to the sample’s electrical conductivity contrast. This work reviews fundamental ideas of MAT-MI and major techniques developed in these years. First, the physical mechanisms underlying MAT-MI imaging are described including the magnetic induction and Lorentz force induced acoustic wave propagation. Second, experimental setups and various imaging strategies for MAT-MI are reviewed and compared together with the corresponding experimental results. In addition, as a recently developed reverse mode of MAT-MI, magneto-acousto-electrical tomography with magnetic induction (MAET-MI) is briefly reviewed in terms of its theory and experimental studies. Finally, we give our opinions on existing challenges and future directions for MAT-MI research. With all the reported and future technical advancement, MAT-MI has the potential to become an important noninvasive modality for electrical conductivity imaging of biological tissue. PMID:27542088

  2. Electrospun polymeric nanofibers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Mahya Rahmani

    2017-04-01

    Full Text Available Conventional transdermal drug delivery systems (TDDS have been designed for drug delivery through the skin. These systems use the permeability property of stratum corneum, the outermost surface layer of the skin. Applying polymeric micro and nanofibers in drug delivery has recently attracted great attention and the electrospinning technique is the preferred method for polymeric micro-nanofibers fabrication with a great potential for drug delivery. More studies in the field of nanofibers containing drug are divided two categories: first, preparation and characterization of nanofibers containing drug and second, investigation of their therapeutic applications. Drugs used in electrospun nanofibers can be categorized into three main groups, including antibiotics and antimicrobial agents, anti-inflammatory agents and vitamins with therapeutic applications. In this paper, we review the application of electrospun polymeric scaffolds in TDDS and also introduce several pharmaceutical and therapeutic agents which have been used in polymer nanofibrous patches.

  3. Biomimetic polymeric membranes for water treatment

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto

    This project is about the interplay of the three major components of aquaporin based biomimetic polymeric membranes (ABPMs): Aquaporins (AQPs), amphiphilic block copolymers, serving as a vesicular matrix for the hydrophobic AQP exterior (proteopolymersomes) and a polymeric membrane as embedment....... The interplay of proteopolymersomes and polymeric mesh support (in this case polyethersulfone, PES) was examined via integration of proteopolymersomes in an active layer (AL) formed by interfacial polymerisation between a linker molecule in aqueous phase and another in organic phase on top of the PES....... The resulting thin-film composite (TFC) membrane was analyzed via cross-flow forward osmosis (FO), scanning electron microscopy (SEM), fourier-transformed infrared spectroscopy (FTIR), as well as in the non-supported form over FTIR and a specialized microfluidic visualization approach. Where no clear dierences...

  4. Cross-linking of polymeric materials

    International Nuclear Information System (INIS)

    Bloom, L.I.; Du Plessis, T.A.; Meij, G.O.

    1991-01-01

    The invention provides a method of producing a cured polymeric artifact from a polymeric thermoplastic starting material, the material of the artifact having reduced thermoplasticity relative to the starting material and exhibiting an enhanced degree of cross-linking relative to the starting material. The method includes subjecting a polymeric thermoplastic starting material, which is capable of being cross-linked by irradiation, to sufficient irradiation partially to cross-linked the starting material to produce a thermoplastic partially cross-linked intermediate material. The thermoplasticity of the intermediate material is then reduced by heating it to raise its melting point. The invention also provides a method of making a partially cross-linked feedstocks and a master batch for use in making such artifacts

  5. Laser microstructuring for fabricating superhydrophobic polymeric surfaces

    Science.gov (United States)

    Cardoso, M. R.; Tribuzi, V.; Balogh, D. T.; Misoguti, L.; Mendonça, C. R.

    2011-02-01

    In this paper we show the fabrication of hydrophobic polymeric surfaces through laser microstructuring. By using 70-ps pulses from a Q-switched and mode-locked Nd:YAG laser at 532 nm, we were able to produce grooves with different width and separation, resulting in square-shaped pillar patterns. We investigate the dependence of the morphology on the surface static contact angle for water, showing that it is in agreement with the Cassie-Baxter model. We demonstrate the fabrication of a superhydrophobic polymeric surface, presenting a water contact angle of 157°. The surface structuring method presented here seems to be an interesting option to control the wetting properties of polymeric surfaces.

  6. IHF-independent assembly of the Tn10 strand transfer transpososome: implications for inhibition of disintegration

    OpenAIRE

    Stewart, Barry J.; Wardle, Simon J.; Haniford, David B.

    2002-01-01

    The frequency of DNA transposition in transposition systems that employ a strand transfer step may be significantly affected by the occurrence of a disintegration reaction, a reaction that reverses the strand transfer event. We have asked whether disintegration occurs in the Tn10 transposition system. We show that disintegration substrates (substrates constituting one half of the strand transfer product) are assembled into a transpososome that mimics the strand transfer intermediate. This str...

  7. Inflation and Instability of a Polymeric Membrane

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole

    1999-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane. The polymeric materialis described by an arbitrary combination of a viscoelastic and a purely viscous component to the stress. Some viscoelastic materials described by a Mooney......-Rivlin model show a monotone increasingpressure during inflation of a spherical membrane. These materials develop a homogeneous membrane thickness in agreement with the Considere-Pearson condition. Molecularly based models such as the neo-Hookean, Doi-Edwards or Tom-Pom model show a pressure maximum when...... inflated. Membranesdescribed by these models develop a local thinning of the membrane which may lead to bursting in finite time....

  8. Polymeric materials obtained by electron beam irradiation

    International Nuclear Information System (INIS)

    Dragusin, M.; Moraru, R.; Martin, D.; Radoiu, M.; Marghitu, S.; Oproiu, C.

    1995-01-01

    Research activities in the field of electron beam irradiation of monomer aqueous solution to produce polymeric materials used for waste waters treatment, agriculture and medicine are presented. The technologies and special features of these polymeric materials are also described. The influence of the chemical composition of the solution to ba irradiated, absorbed dose level and absorbed dose rate level are discussed. Two kinds of polyelectrolytes, PA and PV types and three kinds of hydrogels, pAAm, pAAmNa and pNaAc types, the production of which was first developed with IETI-10000 Co-60 source and then adapted to the linacs built in Accelerator Laboratory, are described. (author)

  9. Mechanism and kinetics of addition polymerizations

    CERN Document Server

    Kucera, M

    1991-01-01

    This volume presents an up-to-date survey of knowledge concerning addition type polymerizations. It contains nine chapters, each of which covers a particular basic term. Whenever necessary, the phenomena are discussed from the viewpoint of both stationary and non-stationary state of radical, ionic (i.e. anionic and cationic) and coordination polymerization. Special attention has been paid to the propagation process. It provides not only a general overview but also information on important special cases (theoretical conditions of propagation, influence of external factors, controlled propagatio

  10. Polymeric matrix materials for infrared metamaterials

    Science.gov (United States)

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  11. Spectroscopic study of a DNA brush synthesized in situ by surface initiated enzymatic polymerization.

    Science.gov (United States)

    Khan, M Nuruzzaman; Tjong, Vinalia; Chilkoti, Ashutosh; Zharnikov, Michael

    2013-08-29

    We used a combination of synchrotron-based X-ray photoelectron spectroscopy (XPS) and angle-resolved near-edge X-ray absorption fine structure (NEXAFS) spectroscopy to study the chemical integrity, purity, and possible internal alignment of single-strand (ss) adenine deoxynucleotide (poly(A)) DNA brushes. The brushes were synthesized by surface-initiated enzymatic polymerization (SIEP) on a 25-mer of adenine self-assembled monolayer (SAM) on gold (A25-SH), wherein the terminal 3'-OH of the A25-SH serve as the initiation sites for SIEP of poly(A). XPS and NEXAFS spectra of poly(A) brushes were found to be almost identical to those of A25-SH initiator, with no unambiguous traces of contamination. Apart from the well-defined chemical integrity and contamination-free character, the brushes were found to have a high degree of orientational order, with an upright orientation of individual strands, despite their large thickness up to ~55 nm, that corresponds to a chain length of at least several hundred nucleotides for individual ssDNA molecules. The orientational order exhibited by these poly(A) DNA brushes, mediated presumably by base stacking, was found to be independent of the brush thickness as long as the packing density was high enough. The well-defined character and orientational ordering of the ssDNA brushes make them a potentially promising system for different applications.

  12. Sequence analysis of Maturase K (matK): A chloroplast-encoding ...

    African Journals Online (AJOL)

    The application and utilization of sequence data has been found very informative in the characterization and phylogenetic relationship of different crops species. This study aimed to use bioinformatics tools to characterize the matK gene in some selected legumes with special reference to pigeon pea [cajanus cajan ...

  13. Mat-Rix-Toe: Improving Writing through a Game-Based Project in Linear Algebra

    Science.gov (United States)

    Graham-Squire, Adam; Farnell, Elin; Stockton, Julianna Connelly

    2014-01-01

    The Mat-Rix-Toe project utilizes a matrix-based game to deepen students' understanding of linear algebra concepts and strengthen students' ability to express themselves mathematically. The project was administered in three classes using slightly different approaches, each of which included some editing component to encourage the…

  14. Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand.

    Science.gov (United States)

    Hongmei, Jing; Aitchison, Jonathan C; Lacap, Donnabella C; Peerapornpisal, Yuwadee; Sompong, Udomluk; Pointing, Stephen B

    2005-08-01

    Most community molecular studies of thermophilic cyanobacterial mats to date have focused on Synechococcus occurring at temperatures of approximately 50-65 degrees C. These reveal that molecular diversity exceeds that indicated by morphology, and that phylogeographic lineages exist. The moderately thermophilic and generally filamentous cyanobacterial mat communities occurring at lower temperatures have not previously been investigated at the community molecular level. Here we report community diversity in mats of 42-53 degrees C recovered from previously unstudied geothermal locations. Separation of 16S rRNA gene-defined genotypes from community DNA was achieved by DGGE. Genotypic diversity was greater than morphotype diversity in all mats sampled, although genotypes generally corresponded to observed morphotypes. Thirty-six sequences were recovered from DGGE bands. Phylogenetic analyses revealed these to form novel thermophilic lineages distinct from their mesophilic counterparts, within Calothrix, Cyanothece, Fischerella, Phormidium, Pleurocapsa, Oscillatoria and Synechococcus. Where filamentous cyanobacterial sequences belonging to the same genus were recovered from the same site, these were generally closely affiliated. Location-specific sequences were observed for some genotypes recovered from geochemically similar yet spatially separated sites, thus providing evidence for phylogeographic lineages that evolve in isolation. Other genotypes were more closely affiliated to geographically remote counterparts from similar habitats suggesting that adaptation to certain niches is also important.

  15. Welcome address / Mats Estonius, Toomas Hendrik Ilves, Eduardo Ibàñes, Uffe A. Baslev

    Index Scriptorium Estoniae

    2010-01-01

    Läänemere strateegia konverentsi avasõnad laususid Tallinna Ülikooli teadusprorektor Mats Estonius, Eesti Vabariigi president Toomas Hendrik Ilves ((vt. ka foto lk. 21), Hispaania Kuningriigi suursaadik Eestis Eduardo Ibáñes ja Taani Kuningriigi suursaadik Eestis Uffe A. Baslev

  16. MATS--Management Accounting Tutorial System. Version 1.0. Project Documentation.

    Science.gov (United States)

    Wardle, Andrew; O'Connor, Rodric

    The Management Accounting Tutorial System (MATS) is a management accounting database for a carpet manufacturing company. The system allows the display and output of monthly activities, and is intended to provide a means of illustrating the main topics of the second year management accounting course at Manchester University. The system itself…

  17. MATS--Management Accounting Tutorial System. Version 1.0. User Guide.

    Science.gov (United States)

    Wardle, Andrew; O'Connor, Rodric

    The Management Accounting Tutorial System (MATS) is a management accounting database for a carpet manufacturing company. The system allows the display and output of monthly activities, and is intended to provide a means of illustrating the main topics of the second year management accounting course at Manchester University. The system itself…

  18. The Use of Maltodextrin Matrices to Control the Release of Minerals from Fortified Maté

    Directory of Open Access Journals (Sweden)

    Miguel E. Schmalko

    2012-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE The aim of this research was to study the sensorial acceptance of a fortified food containing different minerals (calcium, magnesium and iron and to determine the actual quantities present (bioaccessibility when extracted in maté. A sensorial analysis was performed to compare sensorial quality of fortified and non-fortified maté. Although panelists identified differences between the fortified and non-fortified maté, only 3% of them commented on an unpleasant flavor. Sequential extraction assays were performed simulating maté consumption under laboratory conditions. Profile concentration diminished sharply after the second extraction. Magnesium was found to be completely extracted in the first 500 mL. Calcium and Iron were extracted in a very low percentage (29% and 25%, respectively. The outlet rate of the minerals was fitted to two models, and a good fitness (p < 0:001 in all cases was obtained.

  19. Modeling the pullout characteristics of welded wire mats embedded in silty sand

    International Nuclear Information System (INIS)

    Sampaco, C.L.; Anderson, L.R.; Nielson, M.R.

    1994-01-01

    This paper is an outgrowth of the on-going research on discrete finite element modeling of welded wire mesh reinforced soil structures such as the welded wire and RSE walls. The stiffness characteristics of the wire mesh-soil interfaces are modeled by a nonlinear hyperbolic relationship between the applied pullout stress and the associated mat placement. The relevant parameters are estimated from laboratory pullout tests that were conducted for welded wire mats embedded on silty sand. Since the bulk of the pullout resistance of welded wire mesh reinforcements is derived from the bearing resistance of the transverse wires that constitute the test mats. This feature permits proper evaluation of actual interface parameters for the actual reinforced soil structures in which the actual lengths of the mats are longer (i.e. more transverse members) than the specimen used in the laboratory pullout tests. The resulting pullout stress-displacement formulations are then verified by comparing the predicted pullout resistance to the existing specifications and design methods for estimated the pullout capacities of grid reinforcements. 22 refs., 13 figs

  20. Modular Algorithm Testbed Suite (MATS): A Software Framework for Automatic Target Recognition

    Science.gov (United States)

    2017-01-01

    NAVAL SURFACE WARFARE CENTER PANAMA CITY DIVISION PANAMA CITY, FL 32407-7001 TECHNICAL REPORT NSWC PCD TR-2017-004 MODULAR ...31-01-2017 Technical Modular Algorithm Testbed Suite (MATS): A Software Framework for Automatic Target Recognition DR...flexible platform to facilitate the development and testing of ATR algorithms. To that end, NSWC PCD has created the Modular Algorithm Testbed Suite

  1. Smart monitoring of fluid intake and bladder voiding using pressure sensitive mats.

    Science.gov (United States)

    Cohen-McFarlane, Madison; Green, James R; Knoefel, Frank; Goubran, Rafik

    2016-08-01

    Pressure sensitive mats have been used in noninvasive smart monitoring for a variety of problems including breathing rate monitoring, sleep monitoring, mobility, and weight. This paper describes a proof of concept application of pressure mats to monitor fluid intake/output (fluid cycle) events during the night. The ability to more accurately track such events has potential implications for monitoring those individuals who have nocturia, a condition where a person wakes at night to urinate. Data were collected from a healthy young female subject instructed to drink as much water as was comfortable (700mL) and lie in a supine position on a mattress located directly on three pressure mats. This was compared to an initial data set collected immediately after voiding but before drinking, 30 minutes after drinking, 60 minutes after drinking and a final data set after again voiding the bladder. The additional pressure from the 700mL of water was detectible and tracked over the course of the hour-long testing session under idealized conditions. This provides a proof-of-concept that nocturnal fluid intake and bladder voiding events can be tracked using non-invasive pressure-sensitive mats, however additional testing and development is required to achieve a deployable monitoring system.

  2. Eight-Week Traditional Mat Pilates Training-Program Effects on Adult Fitness Characteristics

    Science.gov (United States)

    Rogers, Kate; Gibson, Ann L.

    2009-01-01

    We investigated responses of adult, novice practitioners (n = 9) to an 8-week traditional mat Pilates program (P) that met 1 hr/day three times/week. Classes consisted primarily of beginner and intermediate level exercises. Compared to an active control group (C; n = 13) that showed no improvements, those in P significantly (p less than 0.05)…

  3. Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine microbial mats

    NARCIS (Netherlands)

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Al-Najjar, Mohammad A.A.

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution

  4. Cooperação jurídica internacional em matéria civil

    Directory of Open Access Journals (Sweden)

    Carmen Tiburcio

    2013-03-01

    Full Text Available O trabalho cuida dos sistemas e dos instrumentos de cooperação em matéria civil no âmbito do Mercosul: Protocolos de Las Leñas e Ouro Preto. Analisam-se os textos dos respectivos tratados, a jurisprudência brasileira e de outros países do Mercosul.

  5. Diatom-driven recolonization of microbial mat-dominated siliciclastic tidal flat sediments.

    Science.gov (United States)

    Pan, Jerónimo; Cuadrado, Diana G; Bournod, Constanza N

    2017-10-01

    Modern microbial mats and biofilms play a paramount role in sediment biostabilization. When sporadic storms affect tidal flats of Bahía Blanca Estuary, the underlying siliciclastic sediment is exposed by physical disruption of the mat, and in a few weeks' lapse, a microbial community re-establishes. With the objective of studying colonization patterns and the ecological succession of microorganisms at the scale of these erosional structures, these were experimentally made and their biological recolonization followed for 8 weeks, with replication in winter and spring. Motile pennate diatoms led the initial colonization following two distinct patterns: a dominance by Cylindrotheca closterium in winter and by naviculoid and nitzschioid diatoms in spring. During the first 7 days, cell numbers increased 2- to 17-fold. Cell densities further increased exhibiting sigmoidal community growth, reaching 2.9-8.9 × 106 cells cm-3 maxima around day 30; centric diatoms maintained low densities throughout. In 56 days after removal of the original mat, filamentous cyanobacteria that dominate mature mats did not establish a significant biomass, leading to the rejection of the hypothesis that cyanobacteria would drive the colonization. The observed dominance of pennate diatoms is attributed to extrinsic factors determined by tidal flooding, and intrinsic ones, e.g. motility, nutrient affinity and high growth rate. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential

    DEFF Research Database (Denmark)

    Klatt, C. G.; Wood, J. M.; Rusch, D. B.

    2011-01-01

    Phototrophic microbial mat communities from 60¿°C and 65¿°C regions in the effluent channels of Mushroom and Octopus Springs (Yellowstone National Park, WY, USA) were investigated by shotgun metagenomic sequencing. Analyses of assembled metagenomic sequences resolved six dominant chlorophototrophic...

  7. Contribution of Chloroflexus respiration to oxygen cycling in a hypersaline microbial mat from Lake Chiprana, Spain

    DEFF Research Database (Denmark)

    Polerecky, Lubos; Bachar, Ami; Schoon, Raphaela

    2007-01-01

    In dense stratified systems such as microbial mats, photosynthesis and respiration are coupled due to a tight spatial overlap between oxygen-producing and -consuming microorganisms. We combined microsensors and a membrane inlet mass spectrometer with two independent light sources emitting in the ...

  8. Organic matter degradation drives benthic cyanobacterial mat abundance on caribbean coral reefs

    NARCIS (Netherlands)

    Brocke, Hannah J.; Polerecky, Lubos; De Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M.

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised

  9. The Diffusive Boundary-Layer of Sediments - Oxygen Microgradients Over a Microbial Mat

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; MARAIS, DJD

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sedimen-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate...

  10. Clinical manifestation, serology marker & microscopic agglutination test (MAT) to mortality in human leptospirosis

    Science.gov (United States)

    Perdhana, S. A. P.; Susilo, R. S. B.; Arifin; Redhono, D.; Sumandjar, T.

    2018-03-01

    Leptospirosis is a potentially fatal zoonosis that is endemic in many tropical regions and causes large epidemics after heavy rainfall and flooding. Severe disease is estimated 5–15% of all human infections. Its mortality rate is 5-40%. MAT, isolation of the organism, or leptospiral DNA in PCR are used to confirm Leptospirosis. This cross-sectional analytic study recruited 26 hospitalized leptospirosis patients admitted to Dr. Moewardi Hospital Surakarta. The diagnosis was based on clinical, laboratory and epidemiological findings. The onset of the disease was the date when the first symptom started, and the end of the analysis was the date when the patient died or discharged. Modified Faine’s score ≥ 25 tend to die (45.5%) while modified Faine’s score 20 – 24 tend to heal (60%) (OR 1.250; CI 0.259-6.029; p=1.0). Seropositive IgM predicts mortality 7.8 times higher than seronegative IgM (OR 7.800; CI 1.162-52.353; p=0.038). MAT positive predict mortality 10.667 times higher than MAT negative (OR 10.667; CI 1.705-66.720; p=0.015). Clinical manifestation, MAT, and serologic marker are all correlated with mortality in Leptospirosis. However, statistically, clinical manifestation has an insignificant correlation.

  11. Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianqiang; Luo, Chao [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Qi, Genggeng [Department of Materials Science and Engineering, Cornell University, Ithaca, NY (United States); Pan, Kai, E-mail: pankai@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Department of Materials Science and Engineering, Cornell University, Ithaca, NY (United States); Cao, Bing, E-mail: bcao@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-10-15

    Graphical abstract: - Highlights: • PAN/PPy core/shell nanofiber used for Cr(VI) removal. • Adsorption mechanisms were investigated. • Selective adsorption performances were investigated. - Abstract: Polyacrylonitrile/polypyrrole (PAN/PPy) core/shell nanofiber mat was prepared through electrospinning followed by a simple chemical oxidation method. The polypyrrole-functionalized nanofiber mats showed selective adsorption performance for anions. The interaction between heavy metal anions and polypyrrole (especially the interaction between Cr{sub 2}O{sub 7}{sup 2−} and polypyrrole) during the adsorption process was studied. The results showed that the adsorption process included two steps: one was the anion exchange process between the Cl{sup −} and Cr(VI), and the other was the redox process for the Cr(VI) ions. The adsorption amount was related to the protonation time of the PAN/PPy nanofiber mat and increased as protonation time increased. Meanwhile, the Cr(VI) ions were reduced to Cr(III) through the reaction with amino groups of polypyrrole (from secondary amines to tertiary amines). PAN/PPy nanofiber mat showed high selectivity for Cr(VI), and the adsorption performance was nearly unaffected by other co-existing anions (Cl{sup −}, NO{sub 3}{sup −}, and SO{sub 4}{sup 2−}) except for PO{sub 4}{sup 3−} for the pH change.

  12. Super-Hydrophobic High Throughput Electrospun Cellulose Acetate (CA) Nanofibrous Mats as Oil Selective Sorbents

    Science.gov (United States)

    Han, Chao

    The threat of oil pollution increases with the expansion of oil exploration and production activities, as well as the industrial growth around the world. Use of sorbents is a common method to deal with the oil spills. In this work, an advanced sorbent technology is described. A series of non-woven Cellulose Acetate (CA) nanofibrous mats with a 3D fibrous structure were synthesized by a novel high-throughput electrospinning technique. The precursor was solutions of CA/ acetic acid-acetone in various concentrations. Among them, 15.0% CA exhibits a superhydrophobic surface property, with a water contact angle of 128.95°. Its oil sorption capacity is many times higher the oil sorption capacity of the best commercial sorbent available in the market. Also, it showed good buoyancy properties on the water both as dry-mat and oil-saturated mat. In addition, it is biodegradable, easily available, easily manufactured, so the CA nanofibrous mat is an excellent candidate as oil sorbent for oil spill in water treatment.

  13. Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats

    International Nuclear Information System (INIS)

    Wang, Jianqiang; Luo, Chao; Qi, Genggeng; Pan, Kai; Cao, Bing

    2014-01-01

    Graphical abstract: - Highlights: • PAN/PPy core/shell nanofiber used for Cr(VI) removal. • Adsorption mechanisms were investigated. • Selective adsorption performances were investigated. - Abstract: Polyacrylonitrile/polypyrrole (PAN/PPy) core/shell nanofiber mat was prepared through electrospinning followed by a simple chemical oxidation method. The polypyrrole-functionalized nanofiber mats showed selective adsorption performance for anions. The interaction between heavy metal anions and polypyrrole (especially the interaction between Cr 2 O 7 2− and polypyrrole) during the adsorption process was studied. The results showed that the adsorption process included two steps: one was the anion exchange process between the Cl − and Cr(VI), and the other was the redox process for the Cr(VI) ions. The adsorption amount was related to the protonation time of the PAN/PPy nanofiber mat and increased as protonation time increased. Meanwhile, the Cr(VI) ions were reduced to Cr(III) through the reaction with amino groups of polypyrrole (from secondary amines to tertiary amines). PAN/PPy nanofiber mat showed high selectivity for Cr(VI), and the adsorption performance was nearly unaffected by other co-existing anions (Cl − , NO 3 − , and SO 4 2− ) except for PO 4 3− for the pH change

  14. In Situ Hydrogen Dynamics in a Hot Spring Microbial Mat during a Diel Cycle

    DEFF Research Database (Denmark)

    Revsbech, Niels Peter; Trampe, Erik Christian Løvbjerg; Lichtenberg, Mads

    2016-01-01

    decreasing to about 11 mol H2 liter1 just before sunrise. Another pulse of H2 production, reaching a peak concentration of 46 mol H2 liter1, was found in the early morning under dim light conditions too low to induce accumulation of O2 in the mat. The light stimulation of H2 accumulation indicated...

  15. DNA strand breaks, repair, and survival in x-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Dugle, D.L.; Gillespie, C.J.; Chapman, J.D.

    1976-01-01

    The yields of unrepairable single- and double-strand breaks in the DNA of x-irradiated Chinese hamster cells were measured by low-speed neutral and alkaline sucrose density gradient sedimentation in order to investigate the relation between these lesions and reproductive death. After maximal single-strand rejoining, at all doses, the number of residual single-strand breaks was twice the number of residual double-strand breaks. Both double-strand and unrepairable single-strand breaks were proportional to the square of absorbed dose, in the range 10-50 krad. No rejoining of double-strand breaks was observed. These observations suggest that, in mammalian cells, most double-strand breaks are not repairable, while all single-strand breaks are repaired except those that are sufficiently close on complementary strands to constitute double-strand breaks. Comparison with cell survival measurements at much lower doses suggests that loss of reproductive capacity corresponds to induction of approximately one double-strand break

  16. Oriented-strand-board- the wave of the future- for the building trade

    Science.gov (United States)

    Linda Ashton

    1984-01-01

    Move over, plywood. Oriented-strand board is here. It's less expensive. It's as durable. It has as many uses. And it is the wave of the future. "Oriented-strand board is a direct substitute for plywood" said Jerry Buckner, plant manager for the Martco oriented-strand board plant in Lemoyen. OSB, as it is commonly called, is a structural panel made...

  17. Probing electronic coupling between adenine bases in RNA strands from synchrotron radiation circular dichroism experiments

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Munksgård; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2012-01-01

    Circular dichroism spectra (176–330 nm) of RNA adenine oligomers, (rA)n (n = 1–10, 12, 15, and 20), reveal electronic coupling between two bases in short strands. The number of interacting bases in long strands is more and larger than that reported previously for the corresponding DNA strands....

  18. 77 FR 2958 - Prestressed Concrete Steel Wire Strand From Thailand: Correction to Notice of Opportunity To...

    Science.gov (United States)

    2012-01-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-549-820] Prestressed Concrete Steel Wire Strand From Thailand: Correction to Notice of Opportunity To Request Administrative Review AGENCY... prestressed concrete steel wire strand (``PC Strand'') from Thailand. See Antidumping or Countervailing Duty...

  19. Torsional regulation of hRPA-induced unwinding of double-stranded DNA

    NARCIS (Netherlands)

    De Vlaminck, I.; Vidic, I.; Van Loenhout, M.T.J.; Kanaar, R.; Lebbink, J.H.G.; Dekker, C.

    2010-01-01

    All cellular single-stranded (ss) DNA is rapidly bound and stabilized by single stranded DNA-binding proteins (SSBs). Replication protein A, the main eukaryotic SSB, is able to unwind double-stranded (ds) DNA by binding and stabilizing transiently forming bubbles of ssDNA. Here, we study the

  20. Structural features in the HIV-1 repeat region facilitate strand transfer during reverse transcription

    NARCIS (Netherlands)

    Berkhout, B.; Vastenhouw, N. L.; Klasens, B. I.; Huthoff, H.

    2001-01-01

    Two obligatory DNA strand transfers take place during reverse transcription of a retroviral RNA genome. The first strand transfer is facilitated by terminal repeat (R) elements in the viral genome. This strand-transfer reaction depends on base pairing between the cDNA of the 5'R and the 3'R. There