WorldWideScience

Sample records for strain relaxation mechanisms

  1. Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation

    International Nuclear Information System (INIS)

    Pant, P.; Budai, J.D.; Narayan, J.

    2010-01-01

    Using high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction, we investigated the strain relaxation mechanisms for nonpolar (1 1 -2 0) a-plane ZnO epitaxy on (1 -1 0 2) r-plane sapphire, where the in-plane misfit ranges from -1.5% for the [0 0 0 1]ZnO-parallel [1 -1 0 -1]sapphire to -18.3% for the [-1 1 0 0]ZnO-parallel [-1 -1 2 0]sapphire direction. For the large misfit [-1 1 0 0]ZnO direction the misfit strains are fully relaxed at the growth temperature, and only thermal misfit and defect strains, which cannot be relaxed fully by slip dislocations, remain on cooling. For the small misfit direction, lattice misfit is not fully relaxed at the growth temperature. As a result, additive unrelaxed lattice and thermal misfit and defect strains contribute to the measured strain. Our X-ray diffraction measurements of lattice parameters show that the anisotropic in-plane biaxial strain leads to a distortion of the hexagonal symmetry of the ZnO basal plane. Based on the anisotropic strain relaxation observed along the orthogonal in-plane [-1 1 0 0] and [0 0 0 1]ZnO stress directions and our HRTEM investigations of the interface, we show that the plastic relaxation occurring in the small misfit direction [0 0 0 1]ZnO by dislocation nucleation is incomplete. These results are consistent with the domain-matching paradigm of a complete strain relaxation for large misfits and a difficulty in relaxing the film strain for small misfits.

  2. Strain modulations as a mechanism to reduce stress relaxation in laryngeal tissues.

    Science.gov (United States)

    Hunter, Eric J; Siegmund, Thomas; Chan, Roger W

    2014-01-01

    Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so), cyclic and faster posturing often found in speech tasks or vocal embellishment (1-10 Hz), and shear strain associated with vocal fold vibration during phonation (100 Hz and higher). Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude), as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation) and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored.

  3. Strain modulations as a mechanism to reduce stress relaxation in laryngeal tissues.

    Directory of Open Access Journals (Sweden)

    Eric J Hunter

    Full Text Available Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so, cyclic and faster posturing often found in speech tasks or vocal embellishment (1-10 Hz, and shear strain associated with vocal fold vibration during phonation (100 Hz and higher. Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude, as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored.

  4. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  5. Understanding the elastic relaxation mechanisms of strain in Ge islands on pit-patterned Si(001) substrates

    International Nuclear Information System (INIS)

    Vastola, G; Montalenti, F; Miglio, Leo

    2008-01-01

    Substrate pre-patterning is a new and effective route for growing ordered arrays of heteroepitaxial nanoislands. Here, by exploiting elasticity theory solved by using finite element methods, we show why islands growing inside pits are better relaxed with respect to the flat-substrate case. Pit pre-patterning is demonstrated to be more important than previously realized, allowing for further degrees of freedom in controlling not only positioning but also shape, strain, and coherence of the growing islands. Our results offer a solid interpretation for the recent experimental results obtained by the group of Professor Guenther Bauer.

  6. In situ real-time x-ray reciprocal space mapping during InGaAs/GaAs growth for understanding strain relaxation mechanisms

    International Nuclear Information System (INIS)

    Sasaki, Takuo; Suzuki, Hidetoshi; Sai, Akihisa; Lee, Jong-Han; Kamiya, Itaru; Ohshita, Yoshio; Yamaguchi, Masafumi; Takahashi, Masamitsu; Fujikawa, Seiji; Arafune, Koji

    2009-01-01

    In situ real-time X-ray diffraction measurements during In 0.12 Ga 0.88 As/GaAs(001) epitaxial growth are performed for the first time to understand the strain relaxation mechanisms in a lattice-mismatched system. The high resolution reciprocal space maps of 004 diffraction obtained at interval of 6.2 nm thickness enable transient behavior of residual strain and crystal quality to be observed simultaneously as a function of InGaAs film thickness. From the evolution of these data, five thickness ranges with different relaxation processes and these transition points are determined quantitatively, and the dominant dislocation behavior in each phase is deduced. (author)

  7. Relaxation strain measurements in cellular dislocation structures

    International Nuclear Information System (INIS)

    Tsai, C.Y.; Quesnel, D.J.

    1984-01-01

    The conventional picture of what happens during a stress relaxation usually involves imagining the response of a single dislocation to a steadily decreasing stress. The velocity of this dislocation decreases with decreasing stress in such a way that we can measure the stress dependence of the dislocation velocity. Analysis of the data from a different viewpoint enables us to calculate the apparent activation volume for the motion of the dislocation under the assumption of thermally activated glie. Conventional thinking about stress relaxation, however, does not consider the eventual fate of this dislocation. If the stress relaxes to a low enough level, it is clear that the dislocation must stop. This is consistent with the idea that we can determine the stress dependence of the dislocation velocity from relaxation data only for those cases where the dislocation's velocity is allowed to approach zero asymptotically, in short, for those cases where the dislocation never stops. This conflict poses a dilemma for the experimentalist. In real crystals, however, obstacles impede the dislocation's progress so that those dislocations which are stopped at a given stress will probably never resume motion under the influence of the steadily declining stress present during relaxation. Thus one could envision stress relaxation as a process of exhaustion of mobile dislocations, rather than a process of decreasing dislocation velocity. Clearly both points of view have merit and in reality both mechanisms contribute to the phenomena

  8. Statistical mechanics of violent relaxation

    International Nuclear Information System (INIS)

    Shu, F.H.

    1978-01-01

    We reexamine the foundations of Lynden-Bell's statistical mechanical discussion of violent relaxation in collisionless stellar systems. We argue that Lynden-Bell's formulation in terms of a continuum description introduces unnecessary complications, and we consider a more conventional formulation in terms of particles. We then find the exclusion principle discovered by Lynden-Bell to be quantitatively important only at phase densities where two-body encounters are no longer negligible. Since the edynamical basis for the exclusion principle vanishes in such cases anyway, Lynden-Bell statistics always reduces in practice to Maxwell-Boltzmann statistics when applied to stellar systems. Lynden-Bell also found the equilibrium distribution function generally to be a sum of Maxwellians with velocity dispersions dependent on the phase density at star formation. We show that this difficulty vanishes in the particulate description for an encounterless stellar system as long as stars of different masses are initially well mixed in phase space. Our methods also demonstrate the equivalence between Gibbs's formalism which uses the microcanonical ensemble and Boltzmann's formalism which uses a coarse-grained continuum description. In addition, we clarify the concept of irreversible behavior on a macroscopic scale for an encounterless stellar system. Finally, we comment on the use of unusual macroscopic constraints to simulate the effects of incomplete relaxation

  9. Strain relaxation of germanium-tin (GeSn) fins

    Science.gov (United States)

    Kang, Yuye; Huang, Yi-Chiau; Lee, Kwang Hong; Bao, Shuyu; Wang, Wei; Lei, Dian; Masudy-Panah, Saeid; Dong, Yuan; Wu, Ying; Xu, Shengqiang; Tan, Chuan Seng; Gong, Xiao; Yeo, Yee-Chia

    2018-02-01

    Strain relaxation of biaxially strained Ge1-xSnx layer when it is patterned into Ge1-xSnx fin structures is studied. Ge1-xSnx-on-insulator (GeSnOI) substrate was realized using a direct wafer bonding (DWB) technique and Ge1-xSnx fin structures were formed by electron beam lithography (EBL) patterning and dry etching. The strain in the Ge1-xSnx fins having fin widths (WFin) ranging from 1 μm down to 80 nm was characterized using micro-Raman spectroscopy. Raman measurements show that the strain relaxation increases with decreasing WFin. Finite element (FE) simulation shows that the strain component in the transverse direction relaxes with decreasing WFin, while the strain component along the fin direction remains unchanged. For various Ge1-xSnx fin widths, transverse strain relaxation was further extracted using micro-Raman spectroscopy, which is consistent with the simulation results.

  10. Characterization of strain rate sensitivity and activation volume using the indentation relaxation test

    International Nuclear Information System (INIS)

    Xu Baoxing; Chen Xi; Yue Zhufeng

    2010-01-01

    We present the possibility of extracting the strain rate sensitivity, activation volume and Helmholtz free energy (for dislocation activation) using just one indentation stress relaxation test, and the approach is demonstrated with polycrystalline copper. The Helmholtz free energy measured from indentation relaxation agrees well with that from the conventional compression relaxation test, which validates the proposed approach. From the indentation relaxation test, the measured indentation strain rate sensitivity exponent is found to be slightly larger, and the indentation activation volume much smaller, than their counterparts from the compression test. The results indicate the involvement of multiple dislocation mechanisms in the indentation test.

  11. Resonant tunneling measurements of size-induced strain relaxation

    Science.gov (United States)

    Akyuz, Can Deniz

    Lattice mismatch strain available in such semiconductor heterostructures as Si/SiGe or GaAs/AlGaAs can be employed to alter the electronic and optoelectronic properties of semiconductor structures and devices. When deep submicron structures are fabricated from strained material, strained layers relax by sidewall expansion giving rise to size- and geometry-dependent strain gradients throughout the structure. This thesis describes a novel experimental technique to probe the size-induced strain relaxation by studying the tunneling current characteristics of strained p-type Si/SiGe resonant tunneling diodes. Our current-voltage measurements on submicron strained p-Si/SiGe double- and triple-barrier resonant tunneling structures as a function of device diameter, D, provide experimental access to both the average strain relaxation (which leads to relative shifts in the tunneling current peak positions) and strain gradients (which give rise to a fine structure in the current peaks due to inhomogeneous strain-induced lateral quantization). We find that strain relaxation is significant, with a large fraction of the strain energy relaxed on average in D ≤ 0.25 m m devices. Further, the in-plane potentials that arise from inhomogeneous strain gradients are large. In the D ˜ 0.2 m m devices, the corresponding lateral potentials are approximately parabolic exceeding ˜ 25 meV near the perimeter. These potentials create discrete hole states in double-barrier structures (single well), and coupled hole states in triple-barrier structures (two wells). Our results are in excellent agreement with finite-element strain calculations in which the strained layers are permitted to relax to a state of minimum energy by sidewall expansion. Size-induced strain relaxation will undoubtedly become a serious technological issue once strained devices are scaled down to the deep submicron regime. Interestingly, our calculations predict and our measurements are consistent with the appearance of

  12. Strain Relaxation and Vacancy Creation in Thin Platinum Films

    International Nuclear Information System (INIS)

    Gruber, W.; Chakravarty, S.; Schmidt, H.; Baehtz, C.; Leitenberger, W.; Bruns, M.; Kobler, A.; Kuebel, C.

    2011-01-01

    Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 deg. C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.

  13. Epitaxial strain relaxation by provoking edge dislocation dipoles

    Science.gov (United States)

    Soufi, A.; El-Hami, K.

    2018-02-01

    Thin solid films have been used in various devices and engineering systems such as rapid development of highly integrated electronic circuits, the use of surface coatings to protect structural materials in high temperature environments, and thin films are integral parts of many micro-electro-mechanical systems designed to serve as sensors, actuators. Among techniques of ultra-thin films deposition, the heteroepitaxial method becomes the most useful at nanoscale level to obtain performed materials in various applications areas. On the other hand, stresses that appeared during the elaboration of thin films could rise deformations and fractures in materials. The key solution to solve this problem at the nanoscale level is the nucleation of interface dislocations from free surfaces. By provoking edge dislocation dipoles we obtained a strain relaxation in thin films. Moreover, the dynamic of nucleation in edge dislocations from free lateral surfaces was also studied.

  14. On the Novel Biaxial Strain Relaxation Mechanism in Epitaxial Composition Graded La1−xSrxMnO3 Thin Film Synthesized by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Yishu Wang

    2015-11-01

    Full Text Available We report on a novel method to fabricate composition gradient, epitaxial La1−xSrxMnO3 thin films with the objective to alleviate biaxial film strain. In this work, epitaxial, composition gradient La1−xSrxMnO3, and pure LaMnO3 and La0.67Sr0.33MnO3 thin films were deposited by radio frequency (RF magnetron sputtering. The crystalline and epitaxy of all films were first studied by symmetric θ–2θ X-ray diffraction (XRD and low angle XRD experiments. Detailed microstructural characterization across the film thickness was conducted by high-resolution transmission electron microscopy and electron diffraction. Four compositional gradient domains were observed in the La1−xSrxMnO3 film ranging from LaMnO3 rich to La0.67Sr0.33MnO3 at the surface. A continuous reduction in the lattice parameter was observed accompanied by a significant reduction in the out-of-plane strain in the film. Fabrication of the composition gradient La1−xSrxMnO3 thin film was found to be a powerful method to relieve biaxial strain under critical thickness. Besides, the coexistence of domains with a composition variance is opening up various new possibilities of designing new nanoscale structures with unusual cross coupled properties.

  15. Isochronous relaxation curves for type 304 stainless steel after monotonic and cyclic strain

    International Nuclear Information System (INIS)

    Swindeman, R.W.

    1978-01-01

    Relaxation tests to 100 hr were performed on type 304 stainless steel in the temperature range 480 to 650 0 C and were used to develop isochronous relaxation curves. Behavior after monotonic and cyclic strain was compared. Relaxation differed only slightly as a consequence of the type of previous strain, provided that plastic flow preceded the relaxation period. We observed that the short-time relaxation behavior did not manifest strong heat-to-heat variation in creep strength

  16. Strain Rate Dependence of Compressive Yield and Relaxation in DGEBA Epoxies

    Science.gov (United States)

    Arechederra, Gabriel K.; Reprogle, Riley C.; Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.; Chambers, Robert S.

    2015-03-01

    The mechanical response in uniaxial compression of two diglycidyl ether of bisphenol-A epoxies were studied. These were 828DEA (Epon 828 cured with diethanolamine (DEA)) and 828T403 (Epon 828 cured with Jeffamine T-403). Two types of uniaxial compression tests were performed: A) constant strain rate compression and B) constant strain rate compression followed by a constant strain relaxation. The peak (yield) stress was analyzed as a function of strain rate from Eyring theory for activation volume. Runs at different temperatures permitted the construction of a mastercurve, and the resulting shift factors resulted in an activation energy. Strain and hold tests were performed for a low strain rate where a peak stress was lacking and for a higher strain rate where the peak stress was apparent. Relaxation from strains at different places along the stress-strain curve was tracked and compared. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Microstructural stress relaxation mechanics in functionally different tendons.

    Science.gov (United States)

    Screen, H R C; Toorani, S; Shelton, J C

    2013-01-01

    Tendons experience widely varying loading conditions in vivo. They may be categorised by their function as either positional tendons, which are used for intricate movements and experience lower stress, or as energy storage tendons which act as highly stressed springs during locomotion. Structural and compositional differences between tendons are thought to enable an optimisation of their properties to suit their functional environment. However, little is known about structure-function relationships in tendon. This study adopts porcine flexor and extensor tendon fascicles as examples of high stress and low stress tendons, comparing their mechanical behaviour at the micro-level in order to understand their stress relaxation response. Stress-relaxation was shown to occur predominantly through sliding between collagen fibres. However, in the more highly stressed flexor tendon fascicles, more fibre reorganisation was evident when the tissue was exposed to low strains. By contrast, the low load extensor tendon fascicles appears to have less capacity for fibre reorganisation or shearing than the energy storage tendon, relying more heavily on fibril level relaxation. The extensor fascicles were also unable to sustain loads without rapid and complete stress relaxation. These findings highlight the need to optimise tendon repair solutions for specific tendons, and match tendon properties when using grafts in tendon repairs. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Universal Mechanism of Spin Relaxation in Solids

    Science.gov (United States)

    Chudnovsky, Eugene

    2006-03-01

    Conventional elastic theory ignores internal local twists and torques. Meantime, spin-lattice relaxation is inherently coupled with local elastic twists through conservation of the total angular momentum (spin + lattice). This coupling gives universal lower bound (free of fitting parameters) on the relaxation of the atomic or molecular spin in a solid [1] and on the relaxation of the electron spin in a quantum dot [2]. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling, Phys. Rev. B 72, 094426 (2005). [2] C. Calero, E. M. Chudnovsky, and D. A. Garanin, Phys. Rev. Lett. 95, 166603 (2005).

  19. Strain relaxation of CdTe on Ge studied by medium energy ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pillet, J.C., E-mail: jean-christophe.pillet@cea.fr [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA, LETI, Département Optique et Photonique, F38054 Grenoble (France); Pierre, F. [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA, LETI, Service de Caractérisation des Matériaux et Composants, F38054 Grenoble (France); Jalabert, D. [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA-INAC/UJF-Grenoble 1 UMR-E, SP2M, LEMMA, Minatec Grenoble F-38054 (France)

    2016-10-01

    We have used the medium energy ion scattering (MEIS) technique to assess the strain relaxation in molecular-beam epitaxial (MBE) grown CdTe (2 1 1)/Ge (2 1 1) system. A previous X-ray diffraction study, on 10 samples of the same heterostructure having thicknesses ranging from 25 nm to 10 μm has allowed the measurement of the strain relaxation on a large scale. However, the X-ray diffraction measurements cannot achieve a stress measurement in close proximity to the CdTe/Ge interface at the nanometer scale. Due to the huge lattice misfit between the CdTe and Ge, a high degree of disorder is expected at the interface. The MEIS in channeling mode is a good alternative in order to profile defects with a high depth resolution. For a 21 nm thick CdTe layer, we observed, at the interface, a high density of Cd and/or Te atoms moved from their expected crystallographic positions followed by a rapid recombination of defects. Strain relaxation mechanisms in the vicinity of the interface are discussed.

  20. Nonmaxwell relaxation in disordered media: Physical mechanisms and fractional relaxation equations

    International Nuclear Information System (INIS)

    Arkhincheev, V.E.

    2004-12-01

    The problem of charge relaxation in disordered systems has been solved. It is shown, that due to the inhomogeneity of the medium the charge relaxation has a non-Maxwell character. The two physical mechanisms of a such behavior have been founded. The first one is connected with the 'fractality' of conducting ways. The second mechanism of nonexponential non-Maxwell behavior is connected with the frequency dispersion of effective conductivity of heterogeneous medium, initially consisting of conducting phases without dispersion. The new generalized relaxation equations in the form of fractional temporal integro-differential equations are deduced. (author)

  1. Different strain relaxation mechanisms in strained Si/Si sub 1 sub - sub x Ge sub x /Si heterostructures by high dose B sup + and BF sub 2 sup + doping

    CERN Document Server

    Chen, C C; Zhang, S L; Zhu, D Z; Vantomme, A

    2002-01-01

    Strained Si/Si sub 0 sub . sub 8 Ge sub 0 sub . sub 2 /Si heterostructures are implanted at room temperature with 7.5 keV B sup + and 33 keV BF sub 2 sup + ions to a high dose of 2x10 sup 1 sup 5 ions/cm sup 2 , respectively. The samples are subsequently subjected to three-step anneals (spacer anneal, oxidation anneal and rapid thermal anneal), which are used to simulate a real fabrication process of SiGe-based MOSFET devices. The damage induced by implantation and its recovery are characterized by 2 MeV sup 4 He sup + RBS/channeling spectrometry. A damage layer on the surface is induced by B sup + implantation, but BF sup + sub 2 ion implantation amorphizes the surface of Si/Si sub 0 sub . sub 8 Ge sub 0 sub . sub 2 /Si heterostructure. Channeling angular scans along the axial direction demonstrate that the strain stored in the SiGe layer could be nearly completely retained for the B sup + implanted and subsequently annealed sample. However, the strain in the BF sub 2 sup + implanted/annealed SiGe layer has...

  2. Mechanism of nuclear cross-relaxation in magnetically ordered media

    Energy Technology Data Exchange (ETDEWEB)

    Buishvili, L L; Volzhan, E B; Giorgadze, N P [AN Gruzinskoj SSR, Tbilisi. Inst. Fiziki

    1975-09-01

    A mechanism of two-step nuclear relaxation in magnetic ordered dielectrics is proposed. The case is considered where the energy conservation in the cross relaxation (CR) process is ensured by the lattice itself without spin-spin interactions. Expressions have been obtained describing the temperature dependence of the CR rate. For a nonuniform broadened NMR line it has been shown that the spin-lattice relaxation time for a spin packet taken out from the equilibrium may be determined by the CR time owing to the mechanism suggested. When the quantization axes for electron and nuclear spins coincide, the spin-lattice relaxation is due to the three-magnon mechanism. The cross-relaxation stage has been shown to play a significant role in the range of low temperatures (T<10 deg K) and to become negligible with a temperature increase.

  3. Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO3 films

    International Nuclear Information System (INIS)

    Wang, Tianqi; Ganguly, Koustav; Marshall, Patrick; Xu, Peng; Jalan, Bharat

    2013-01-01

    We report on the study of the critical thickness and the strain relaxation in epitaxial SrTiO 3 film grown on (La 0.3 Sr 0.7 )(Al 0.65 Ta 0.35 )O 3 (001) (LSAT) substrate using the hybrid molecular beam epitaxy approach. No change in the film's lattice parameter (both the in-plane and the out-of-plane) was observed up to a film thickness of 180 nm, which is in sharp contrast to the theoretical critical thickness of ∼12 nm calculated using the equilibrium theory of strain relaxation. For film thicknesses greater than 180 nm, the out-of-plane lattice parameter was found to decrease hyperbolically in an excellent agreement with the relaxation via forming misfit dislocations. Possible mechanisms are discussed by which the elastic strain energy can be accommodated prior to forming misfit dislocations leading to such anomalously large critical thickness

  4. Relaxation mechanism of the hydrated electron.

    Science.gov (United States)

    Elkins, Madeline H; Williams, Holly L; Shreve, Alexander T; Neumark, Daniel M

    2013-12-20

    The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model.

  5. Thermal Annealing induced relaxation of compressive strain in porous GaN structures

    KAUST Repository

    Ben Slimane, Ahmed

    2012-01-01

    The effect of annealing on strain relaxation in porous GaN fabricated using electroless chemical etching is presented. The Raman shift of 1 cm-1 in phonon frequency of annealed porous GaN with respect to as-grown GaN corresponds to a relaxation of compressive strain by 0.41 ± 0.04 GPa. The strain relief promises a marked reduction in threading dislocation for subsequent epitaxial growth.

  6. Dynamic stress relaxation due to cyclic variation of strain at elevated temperature

    International Nuclear Information System (INIS)

    Suzuki, F.

    1975-01-01

    The relaxation of stress which occurs when low amplitude alternating strains are superimposed on constant mean total strains is studied in this paper. Experiments were carried out on a 0.16 per cent carbon steel and an AISI 347 stainless steel at 450 0 C and 650 0 C respectively in which the decrease of axial mean stress was measured as a function of time. When even a low amplitude alternating strain was applied, the rate of stress relaxation was observed to increase. Analytical predictions based on creep and static relaxation data show fairly good agreement with experiments in the period corresponding to transient creep. (author)

  7. Boron diffusion in strained and strain-relaxed SiGe

    International Nuclear Information System (INIS)

    Wang, C.C.; Sheu, Y.M.; Liu, Sally; Duffy, R.; Heringa, A.; Cowern, N.E.B.; Griffin, P.B.

    2005-01-01

    SiGe has been utilized for aggressive CMOS technologies development recently and there are many references [M. Shima, T. Ueno, T. Kumise, H. Shido, Y. Sakuma, S. Nakamura, Symposium on VLSI Technology Technical Digest, 2002, pp. 94-95; T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, M. Bohr, International Electron Devices Meeting Technical Digest, December 2003, pp. 978-980; P. Bai, C. Auth, S. Balakrishnan, M. Bost, R. Brain, V. Chikarmane, R. Heussner, M. Hussein, J. Hwang, D. Ingerly, R. James, J. Jeong, C. Kenyon, E. Lee, S. Lee, N. Lindert, M. Liu, Z. Ma, T. Marieb, A. Murthy, R. Nagisetty, S. Natarajan, J. Neirynck, A. Ott, C. Parker, J. Sebastian, R. Shaheed, S. Sivakumar, J. Steigerwald, S. Tyagi, C. Weber, B. Woolery, A. Yeoh, K. Zhang, M. Bohr, International Electron Devices Meeting Technical Digest, December 2004, pp. 657-660] presenting the advantages brought by it. A better understanding regarding the boron diffusion behavior within and in the vicinity of SiGe is necessary to optimize the extension and the source/drain in pMOSFET. In order to achieve the goal, both effects from mechanical strain and Ge doping on boron diffusion have been investigated. However, only a few publications discuss the impacts of both. Furthermore, most researches investigate these two effects under the conditions of low boron concentration [P. Kuo, J.L. Hoyt, J.F. Gibbons, J.E. Turner, D. Lefforge, Appl. Phys. Lett. 66 (January (5)) (1995) 580-582; N.R. Zangenberg, J. Fage-Pedersen, J. Lundsgaard Hansen, A. Nylandsted Larsen, J. Appl. Phys. 94 (September (6)) (2003) 3883-3890] and high thermal budget anneal [P. Kuo, J.L. Hoyt, J.F. Gibbons, J.E. Turner, D. Lefforge, Appl. Phys. Lett. 66 (January (5)) (1995) 580-582; N.R. Zangenberg, J. Fage-Pedersen, J. Lundsgaard Hansen, A. Nylandsted Larsen, J. Appl

  8. Mechanical properties of plant cell walls probed by relaxation spectra

    DEFF Research Database (Denmark)

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola

    2011-01-01

    Relax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated......Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild...... type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply...

  9. Thermal Annealing induced relaxation of compressive strain in porous GaN structures

    KAUST Repository

    Ben Slimane, Ahmed; Najar, Adel; Ng, Tien Khee; Ooi, Boon S.

    2012-01-01

    The effect of annealing on strain relaxation in porous GaN fabricated using electroless chemical etching is presented. The Raman shift of 1 cm-1 in phonon frequency of annealed porous GaN with respect to as-grown GaN corresponds to a relaxation

  10. Studying the effect of stress relaxation and creep on lattice strain evolution of stainless steel under tension

    International Nuclear Information System (INIS)

    Wang, H.; Clausen, B.; Tomé, C.N.; Wu, P.D.

    2013-01-01

    Due to relatively long associated count times, in situ strain measurements using neutron diffraction requires periodic interruption of the test to collect the diffraction data by holding either the stress or the strain constant. As a consequence, stress relaxation or strain creep induced by the interrupts is inevitable, especially at loads which are close to the flow stress of the material. An in situ neutron diffraction technique, which consists in performing the diffraction measurements using continuous event-mode data collection while conducting the mechanical loading monotonically with a very slow loading rate, is proposed here to avoid the effects associated with interrupts. The lattice strains in stainless steel under uniaxial tension are measured using the three techniques, and the experimental results are compared to study the effect of stress relaxation and strain creep on the lattice strain measurements. The experimental results are simulated using both the elastic viscoplastic self-consistent (EVPSC) model and the elastic plastic self-consistent (EPSC) model. Both the EVPSC and EPSC models give reasonable predictions for all the three tests, with EVPSC having the added advantage over EPSC that it allows us to address the relaxation and creep effects in the interrupted tests

  11. The structural and electrical characterisation of SiGe heterostructures deposited on strain relaxed virtual substrates

    International Nuclear Information System (INIS)

    Hammond, R.

    1998-09-01

    The influence of lateral dimensions on the relaxation mechanism and the resulting effect on the surface topography of limited-area, linearly graded Si 1-x Ge x virtual substrates has been investigated for the first time. A dramatic change in the relaxation mechanism of such buffer layers has been observed for depositions on Si mesa pillars of lateral dimensions of 10μm and below. For such depositions, misfit dislocations are able to extend, unhindered, and terminate at the edges of the growth zone. In this manner, orthogonal misfit dislocation interactions are avoided, yielding a surface free of the problematic surface cross-hatch roughening. However, as the lateral dimension of the growth zone is increased to 20μm, orthogonal misfit interactions occur and relaxation is dominated by the Modified Frank-Read (MFR) multiplication mechanism. The resulting surface morphology shows a pronounced surface cross-hatch roughening. It is proposed that such cross-hatch roughening is a direct consequence of the cooperative stress fields associated with the MFR mechanism. It is postulated that the method of limited-area, linearly graded buffer layers provides a unique opportunity, by which 'ideal' virtual substrates, free of surface cross-hatch and threading dislocations, may be produced to any Ge content. In addition, a unique method by which the electrical performance of low temperature, strained layer depositions may be optimised is discussed. The method relies on the elimination of as-grown lattice imperfections via a post growth thermal anneal treatment. A 25-fold increase in low temperature hole mobility of a Si 0.5 Ge 0.5 /Si 0.7 Ge 0.3 heterostructure has been demonstrated using a 30minute, 750 deg C in-situ, post growth anneal. (author)

  12. Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires.

    Science.gov (United States)

    Rieger, Torsten; Zellekens, Patrick; Demarina, Natalia; Hassan, Ali Al; Hackemüller, Franz Josef; Lüth, Hans; Pietsch, Ullrich; Schäpers, Thomas; Grützmacher, Detlev; Lepsa, Mihail Ion

    2017-11-30

    The growth, crystal structure, strain relaxation and room temperature transport characteristics of GaAs/InSb core-shell nanowires grown using molecular beam epitaxy are investigated. Due to the large lattice mismatch between GaAs and InSb of 14%, a transition from island-based to layer-like growth occurs during the formation of the shell. High resolution transmission electron microscopy in combination with geometric phase analyses as well as X-ray diffraction with synchrotron radiation are used to investigate the strain relaxation and prove the existence of different dislocations relaxing the strain on zinc blende and wurtzite core-shell nanowire segments. While on the wurtzite phase only Frank partial dislocations are found, the strain on the zinc blende phase is relaxed by dislocations with perfect, Shockley partial and Frank partial dislocations. Even for ultrathin shells of about 2 nm thickness, the strain caused by the high lattice mismatch between GaAs and InSb is relaxed almost completely. Transfer characteristics of the core-shell nanowires show an ambipolar conductance behavior whose strength strongly depends on the dimensions of the nanowires. The interpretation is given based on an electronic band profile which is calculated for completely relaxed core/shell structures. The peculiarities of the band alignment in this situation implies simultaneously occupied electron and hole channels in the InSb shell. The ambipolar behavior is then explained by the change of carrier concentration in both channels by the gate voltage.

  13. Enhanced relaxation of strained Ge{sub x}Si{sub 1-x} layers induced by Co/Ge{sub x}Si{sub 1-x} thermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, M C; Elliman, R G; Rao, M R [Australian National Univ., Canberra, ACT (Australia); Baribeau, J M [National Research Council of Canada, Ottawa, ON (Canada)

    1994-12-31

    Enhanced relaxation of strained Ge{sub x}Si{sub l-x} layers during the formation of CoSi{sub 2} by Co/Ge{sub x}Si{sub 1-x} thermal reaction has been observed. Raman spectroscopy and transmission electron microscopy were used to monitor the extent of relaxation. Possible mechanisms responsible for the enhanced relaxation, including metal-induced dislocation nucleation, chemical and/or structural inhomogeneities at the reacted layer/Ge{sub x}Si{sub 1-x} interface and point defect injection due to silicide formation will be discussed. Also, methodologies for inhibiting relaxation will be presented. 11 refs., 1 fig.

  14. Enhanced relaxation of strained Ge{sub x}Si{sub 1-x} layers induced by Co/Ge{sub x}Si{sub 1-x} thermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, M.C.; Elliman, R.G.; Rao, M.R. [Australian National Univ., Canberra, ACT (Australia); Baribeau, J.M. [National Research Council of Canada, Ottawa, ON (Canada)

    1993-12-31

    Enhanced relaxation of strained Ge{sub x}Si{sub l-x} layers during the formation of CoSi{sub 2} by Co/Ge{sub x}Si{sub 1-x} thermal reaction has been observed. Raman spectroscopy and transmission electron microscopy were used to monitor the extent of relaxation. Possible mechanisms responsible for the enhanced relaxation, including metal-induced dislocation nucleation, chemical and/or structural inhomogeneities at the reacted layer/Ge{sub x}Si{sub 1-x} interface and point defect injection due to silicide formation will be discussed. Also, methodologies for inhibiting relaxation will be presented. 11 refs., 1 fig.

  15. UV-Photoreflectance and Raman Characterization of Strain Relaxation in Si on Silicon-Germanium Films

    International Nuclear Information System (INIS)

    Current, Michael; Chism, Will; Yoo, Woo Sik; Vartanian, Victor

    2011-01-01

    Photoreflectance (PR), using a uv (374 nm) diode laser probe beam, and Raman spectroscopy, using a multi-wavelength Ar + laser coupled to a high-resolution multi-wavelength spectrometer, were used to characterize the strain relaxation of Si top layers grown on a graded and relaxed SiGe buffer stack with a final Ge concentration of 20%. The Si top layer thicknesses ranged from 1.6 to 18 nm. Considerable radial variation in the strain relaxation was seen in all sampled wafers, highlighting the need for rapid, local strain characterization. Strong correlation between shift in the Si layer dielectric response, measured by uv-PR, and the Si top layer strain, measured by Raman, is reported.

  16. Strain-Induced Enhancement of the Electron Energy Relaxation in Strongly Correlated Superconductors

    Directory of Open Access Journals (Sweden)

    C. Gadermaier

    2014-03-01

    Full Text Available We use femtosecond optical spectroscopy to systematically measure the primary energy relaxation rate Γ_{1} of photoexcited carriers in cuprate and pnictide superconductors. We find that Γ_{1} increases monotonically with increased negative strain in the crystallographic a axis. Generally, the Bardeen-Shockley deformation potential theorem and, specifically, pressure-induced Raman shifts reported in the literature suggest that increased negative strain enhances electron-phonon coupling, which implies that the observed direct correspondence between a and Γ_{1} is consistent with the canonical assignment of Γ_{1} to the electron-phonon interaction. The well-known nonmonotonic dependence of the superconducting critical temperature T_{c} on the a-axis strain is also reflected in a systematic dependence T_{c} on Γ_{1}, with a distinct maximum at intermediate values (∼16  ps^{−1} at room temperature. The empirical nonmonotonic systematic variation of T_{c} with the strength of the electron-phonon interaction provides us with unique insight into the role of electron-phonon interaction in relation to the mechanism of high-T_{c} superconductivity as a crossover phenomenon.

  17. Introduction to electronic relaxation in solids: mechanisms and measuring techniques

    International Nuclear Information System (INIS)

    Bonville, P.

    1983-01-01

    The fluctuations of electronic magnetic moments in solids may be investigated by several techniques, either electronic or nuclear. This paper is an introduction of the most frequently encountered paramagnetic relaxation mechanisms (phonons, conduction electrons, exchange or dipolar interactions) in condensed matter, and to the different techniques used for measuring relaxation frequencies: electronic paramagnetic resonance, nuclear magnetic resonance, Moessbauer spectroscopy, inelastic neutron scattering, measurement of longitudinal ac susceptibility and γ-γ perturbed angular correlations. We mainly focus our attention on individual ionic fluctuation spectra, the majority of the experimental work refered to concerning rare earth systems [fr

  18. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Simonsen, Ulf

    2010-01-01

    This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small...... (SK(Ca)) and intermediate (IK(Ca))-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IK(Ca) and SK(Ca)3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries......, respectively. In 5-hydroxytryptamine (1 microM)-contracted bronchioles (828 +/- 20 microm, n = 84) and U46619 (0.03 microM)-contracted arteries (720 +/- 24 microm, n = 68), NS309 (0.001-10 microM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IK...

  19. Strain relaxation and self-organization phenomena in heteroepitaxial systems

    DEFF Research Database (Denmark)

    Shiryaev, Sergey Y; Hansen, J. Lundsgaard; Larsen, A. Nylandsted

    1995-01-01

    The plastic behavior of strained, compositionally graded Si1-xGex alloy layers grown on Si substrates has been studied by a combination of optical, atomic force, and transmission electron microscopy. Formation of ordered patterns of misfit dislocations has been found in films grown at low (simila...

  20. The impact of elastic and plastic strain on relaxation and crystallization of Pd–Ni–P-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Mitrofanov, Yu.P.; Peterlechner, M.; Binkowski, I.; Zadorozhnyy, M.Yu.; Golovin, I.S.; Divinski, S.V.; Wilde, G.

    2015-01-01

    The effects of deformation and subsequent heat treatment on the low-temperature heat capacity, enthalpy relaxation rate and mechanical losses of two Pd–Ni–P-based bulk metallic glasses of slightly different compositions and different thermal stabilities have been investigated. It was found that the crystallization temperatures decreased significantly with imposed strain and the effect was more pronounced for the alloy with a higher thermal stability. The boson heat capacity peak increases with increasing strain in both alloys. However, after annealing treatments above room temperature, it relaxes to a lower enthalpy state as compared to that of the as-quenched state for the alloy with a lower thermal stability. The existence of two counteracting processes that might be related to different shear band structures within one homogeneously deformed sample is suggested. These results agree with the internal friction data, which indicate different regimes of mechanical damping as a function of the strain amplitude, while the critical amplitude of a transition between the regimes depends on the imposed strain. The results are interpreted within the energy landscape approach and advocate that the composition-dependent local atomic configurations affect significantly the response of the glass to an applied strain

  1. Anomalous radial and angular strain relaxation around dilute p-, isoelectronic-, and n-type dopants in Si crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mingshu [School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Dong, Juncai, E-mail: dongjc@ihep.ac.cn [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Dongliang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-02-01

    Doping is widely applied in yielding desirable properties and functions in silicon technology; thus, fully understanding the relaxation mechanism for lattice-mismatch strain is of fundamental importance. Here we systematically study the local lattice distortion near dilute IIIA-, IVA-, and VA-group substitutional dopants in Si crystal using density functional theory, and anomalous radial and angular strain relaxation modes are first revealed. Both the nearest-neighbor (NN) bond-distances and the tetrahedral bond-angles are found to exhibit completely opposite dependence on the electronic configurations for the low Z (Z<26) and high Z (Z>26) dopants. More surprisingly, negative and positive angular shifts for the second NN twelve Si2 atoms are unveiled surrounding the p- and n-type dopants, respectively. While electron localization function shows that the doped hole and electron are highly localized near the dopants, hence being responsible for the abnormal angular shifts, a universal radial strain relaxation mechanism dominated by a competition of the Coulomb interactions among the ion-core, bond-charge, and the localized hole or electron is also proposed. These findings may prove to be instrumental in precise design of silicon-based solotronics.

  2. Relaxation mechanisms in a gold thin film on a compliant substrate as revealed by X-ray diffraction

    Science.gov (United States)

    Godard, Pierre; Renault, Pierre-Olivier; Faurie, Damien; Thiaudière, Dominique

    2017-05-01

    The fact that the polymeric substrate does not relax after a load jump allows realizing an original relaxation experiment of a metallic thin film. Thanks to the combination of two strain probes done at different scales, namely, X-ray synchrotron diffraction and digital image correlation techniques, the apparent activation volumes are monitored and their values help to capture leading deformation mechanisms in thin films. Such experiments have been performed on a nanocrystalline gold thin film, and deformation mechanisms involved during a biaxial straining have been distinguished between different texture components.

  3. Experiments and Modeling of Si-Ge Interdiffusion with Partial Strain Relaxation in Epitaxial SiGe Heterostructures

    KAUST Repository

    Dong, Y.

    2014-07-26

    Si-Ge interdiffusion and strain relaxation were studied in a metastable SiGe epitaxial structure. With Ge concentration profiling and ex-situ strain analysis, it was shown that during thermal anneals, both Si-Ge interdiffusion and strain relaxation occurred. Furthermore, the time evolutions of both strain relaxation and interdiffusion were characterized. It showed that during the ramp-up stage of thermal anneals at higher temperatures (800°C and 840°C), the degree of relaxation, R, reached a “plateau”, while interdiffusion was negligible. With the approximation that the R value is constant after the ramp-up stage, a quantitative interdiffusivity model was built to account for both the effect of strain relaxation and the impact of the relaxation induced dislocations, which gave good agreement with the experiment data.

  4. Dielectric and mechanical relaxation in isooctylcyanobiphenyl (8*OCB)

    Energy Technology Data Exchange (ETDEWEB)

    Pawlus, S; Mierzwa, M; Paluch, M; Rzoska, S J [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C M, E-mail: michal.mierzwa@us.edu.p [Chemistry Division, Naval Research Laboratory, Code 6120, Washington, DC 20375-5342 (United States)

    2010-06-16

    The dynamics of isooctylcyanobiphenyl (8*OCB) was characterized using dielectric and mechanical spectroscopies. This isomer of the liquid crystalline octylcyanobiphenyl (8OCB) vitrifies during cooling or on application of pressure, exhibiting the typical features of glass-forming liquids: non-Debye relaxation function, non-Arrhenius temperature dependence of the relaxation times, {tau}{sub {alpha}}, a dynamic crossover at T {approx} 1.6T{sub g}. This crossover is evidenced by changes in the behavior of both the peak shape and the temperature dependence of {tau}{sub {alpha}}. The primary relaxation time at the crossover, 2 ns at ambient pressure, is the smallest value reported to date for any molecular liquid or polymer. Interestingly, at all temperatures below this crossover, {tau}{sub {alpha}}and the dc conductivity remain coupled (i.e., conform to the Debye-Stokes-Einstein relation). Two secondary relaxations are observed in the glassy state, one of which is identified as the Johari-Goldstein process. Unlike the case for 8OCB, no liquid crystalline phase could be attained for 8*OCB, demonstrating that relatively small differences in chemical structure can effect substantial changes in the intermolecular potential.

  5. Relaxation of electron–hole spins in strained graphene nanoribbons

    International Nuclear Information System (INIS)

    Prabhakar, Sanjay; Melnik, Roderick

    2015-01-01

    We investigate the influence of magnetic field originating from the electromechanical effect on the spin-flip behaviors caused by electromagnetic field radiation in the strained graphene nanoribbons (GNRs). We show that the spin splitting energy difference (≈10 meV) due to pseudospin is much larger than the spin-orbit coupling effect (Balakrishnan et al 2013 Nat. Phys. 9 284) that might provide an evidence of broken symmetry of degeneracy. The induced spin splitting energy due to ripple waves can be further enhanced with increasing values of applied tensile edge stress for potential applications in straintronic devices. In particular, we show that the enhancement in the magnitude of the ripple waves due to externally applied tensile edge stress extends the tuning of spin-flip behaviors to larger widths of GNRs. (paper)

  6. Mechanisms of relaxation and spin decoherence in nanomagnets

    Science.gov (United States)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  7. Low-temperature strain ageing in In-Pb alloys under stress relaxation conditions

    International Nuclear Information System (INIS)

    Fomenko, L.S.

    2000-01-01

    The dynamic strain ageing (DSA) of In-Pb (6 and 8 at. % Pb) substitutional solid solution single crystals is studied at temperatures 77-205 K under stress relaxation conditions. The dependences of the stress increment after relaxation connected with DSA on stress relaxation time, stress relaxation rate at the end of the relaxation, temperature, alloy content, flow stress, and strain are determined. It is shown that the DSA kinetic is described by a Harper-type equation with the exponent equal to 1/3 and a low activation energy value (0.3-0.34 eV). This provides a low temperature of the DSA onset (∼ 0.17 T m , where T m is the melt temperature) and is evidence of pipe-mode diffusion. It is supposed that the obstacles to dislocation motion in the crystals studied consist of the groups of solutes, and the strength of the obstacles increases during the DSA due to the pipe diffusion of the solute atoms along the dislocations

  8. Relaxation Mechanisms, Structure and Properties of Semi-Coherent Interfaces

    Directory of Open Access Journals (Sweden)

    Shuai Shao

    2015-10-01

    Full Text Available In this work, using the Cu–Ni (111 semi-coherent interface as a model system, we combine atomistic simulations and defect theory to reveal the relaxation mechanisms, structure, and properties of semi-coherent interfaces. By calculating the generalized stacking fault energy (GSFE profile of the interface, two stable structures and a high-energy structure are located. During the relaxation, the regions that possess the stable structures expand and develop into coherent regions; the regions with high-energy structure shrink into the intersection of misfit dislocations (nodes. This process reduces the interface excess potential energy but increases the core energy of the misfit dislocations and nodes. The core width is dependent on the GSFE of the interface. The high-energy structure relaxes by relative rotation and dilatation between the crystals. The relative rotation is responsible for the spiral pattern at nodes. The relative dilatation is responsible for the creation of free volume at nodes, which facilitates the nodes’ structural transformation. Several node structures have been observed and analyzed. The various structures have significant impact on the plastic deformation in terms of lattice dislocation nucleation, as well as the point defect formation energies.

  9. Modeling of the mechanical behavior of austenitic stainless steels under pure fatigue and fatigue relaxation loadings

    International Nuclear Information System (INIS)

    Hajjaji-Rachdi, Fatima

    2015-01-01

    Austenitic stainless steels are potential candidates for structural components of sodium-cooled fast neutron reactors. Many of these components will be subjected to cyclic loadings including long hold times (1 month) under creep or relaxation at high temperature. These hold times are unattainable experimentally. The aim of the present study is to propose mechanical models which take into account the involved mechanisms and their interactions during such complex loadings. First, an experimental study of the pure fatigue and fatigue-relaxation behavior of 316L(N) at 500 C has been carried out with very long hold times (10 h and 50 h) compared with the ones studied in literature. Tensile tests at 600 C with different applied strain rates have been undertaken in order to study the dynamic strain ageing phenomenon. Before focusing on more complex loadings, the mean field homogenization approach has been used to predict the mechanical behavior of different FCC metals and alloys under low cycle fatigue at room temperature. Both Hill-Hutchinson and Kroener models have been used. Next, a physically-based model based on dislocation densities has been developed and its parameters measured. The model allows predictions in a qualitative agreement with experimental data for tensile loadings. Finally, this model has been enriched to take into account visco-plasticity, dislocation climb and interaction between dislocations and solute atoms, which are influent during creep-fatigue or fatigue relaxation at high temperature. The proposed model uses three adjustable parameters only and allows rather accurate prediction of the behavior of 316L(N) steel under tensile loading and relaxation. (author) [fr

  10. Mechanism of laser-induced stress relaxation in cartilage

    Science.gov (United States)

    Sobol, Emil N.; Sviridov, Alexander P.; Omelchenko, Alexander I.; Bagratashvili, Victor N.; Bagratashvili, Nodar V.; Popov, Vladimir K.

    1997-06-01

    The paper presents theoretical and experimental results allowing to discuss and understand the mechanism of stress relaxation and reshaping of cartilage under laser radiation. A carbon dioxide and a Holmium laser was used for treatment of rabbits and human cartilage. We measured temperature, stress, amplitude of oscillation by free and forced vibration, internal friction, and light scattering in the course of laser irradiation. Using experimental data and theoretical modeling of heat and mass transfer in cartilaginous tissue we estimated the values of transformation heat, diffusion coefficients and energy activation for water movement.

  11. Twins and strain relaxation in zinc-blende GaAs nanowires grown on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Piñero, J.C., E-mail: josecarlos.pinero@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, 11510, Puerto Real, Cádiz (Spain); Araújo, D.; Pastore, C.E.; Gutierrez, M. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, 11510, Puerto Real, Cádiz (Spain); Frigeri, C. [Istituto CNR-IMEM Parco Area delle Scienze 37/A, Fontanini, 43010, Parma (Italy); Benali, A.; Lelièvre, J.F.; Gendry, M. [INL-Institut des Nanotechnologies de Lyon, UMR 5270 Ecole Centrale de Lyon 36, Avenue Guy de Collongue, 69134, Ecully Cedex (France)

    2017-02-15

    Highlights: • A TEM-HREM study of GaAs nanowires, growth over Si, is presented. • Misfit dislocations are detected in the Si/GaAs magma interface. • The study demonstrates strain relaxation through twin formation in some nanowires. - Abstract: To integrate materials with large lattice mismatch as GaAs on silicon (Si) substrate, one possible approach, to improve the GaAs crystalline quality, is to use nanowires (NWs) technology. In the present contribution, NWs are grown on <111> oriented Si substrates by molecular beam epitaxy (MBE) using vapor-liquid-solid (VLS) method. Transmission electron microscopy (TEM) analyses show that NWs are mainly grown alternating wurtzite and zinc blend (ZB) phases, and only few are purely ZB. On the latter, High Resolution Electron Microscopy (HREM) evidences the presence of twins near the surface of the NW showing limited concordance with the calculations of Yuan (2013) [1], where {111} twin planes in a <111>-oriented GaAs NW attain attractive interactions mediated by surface strain. In addition, such twins allow slight strain relaxation and are probably induced by the local huge elastic strain observed by HREM in the lattice between the twin and the surface. The latter is attributed to some slight bending of the NW as shown by the inversion of the strain from one side to the other side of the NW.

  12. Anisotropic strain relaxation in (Ba0.6Sr0.4)TiO3 epitaxial thin films

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.

    2005-05-01

    We have studied the evolution of anisotropic epitaxial strains in ⟨110⟩-oriented (Ba0.60Sr0.40)TiO3 paraelectric (m3m) thin films grown on orthorhombic (mm2) ⟨100⟩-oriented NdGaO3 by high-resolution x-ray diffractometry. All the six independent components of the three-dimensional strain tensor were measured in films with 25-1200-nm thickness, from which the principal stresses and strains were obtained. Pole figure analysis indicated that the epitaxial relations are [001]m3m‖[001]mm2 and [1¯10]m3m‖[010]mm2 in the plane of the film, and [110]m3m‖[100]mm2 along the growth direction. The dislocation system responsible for strain relief along [001] has been determined to be ∣b ∣(001)=3/4∣b∣. Strain relief along the [1¯10] direction, on the other hand, has been determined to be due to a coupled mechanism given by ∣b∣(1¯10)=∣b∣ and ∣b∣(1¯10)=√3 /4∣b∣. Critical thicknesses, as determined from nonlinear regression using the Matthews-Blakeslee equation, for misfit dislocation formation along [001] and [1¯10] direction were found to be 5 and 7 nm, respectively. The residual strain energy density was calculated as ˜2.9×106J/m3 at 25 nm, which was found to relax an order of magnitude by 200 nm. At 200 nm, the linear dislocation density along [001] and [1¯10] are ˜6.5×105 and ˜6×105cm-1, respectively. For films thicker than 600 nm, additional strain relief occurred through surface undulations, indicating that this secondary strain-relief mechanism is a volume effect that sets in upon cooling from the growth temperature.

  13. Tuning decoherence in superconducting transmon qubits by mechanical strain

    Energy Technology Data Exchange (ETDEWEB)

    Brehm, Jan; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey; Lisenfeld, Juergen [Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2016-07-01

    Two-level tunneling systems (TLS) are formed by structural defects in disordered materials. They gained recent attention as an important decoherence source in superconducting qubits, where they appear on surface oxides and at film interfaces. Although the most advanced qubits do not show avoided level crossings arising from a strong coupling to individual TLS, they commonly display a pronounced frequency dependence of relaxation rates, with distinguishable peaks that may point towards weak resonant coupling to single TLS. Previously, we have shown that TLS are tunable via an applied mechanical strain. Here, we employ this method to test whether the characteristic decoherence spectrum of a transmon qubit sample responds to changes in the applied strain, as it can be expected when the decohering bath is formed of atomic TLS. In our experiment, we will employ a highly coherent X-mon qubit sample and tune the strain by bending the qubit chip via a piezo actuator. Our latest results will be presented.

  14. Misfit strain relaxation in (Ba0.60Sr0.40)TiO3 epitaxial thin films on orthorhombic NdGaO3 substrates

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.

    2006-07-01

    Strain relaxation in (Ba0.60Sr0.40)TiO3 (BST) thin films on ⟨110⟩ orthorhombic NdGaO3 substrates is investigated by x-ray diffractometry. Pole figure analysis indicates a [010]BST∥[1¯10]NGO and [001]BST∥[001]NGO in-plane and [100]BST∥[100]NGO out-of-plane epitaxial relationship. The residual strains are relaxed at h ˜200nm, and for h >600nm, films are essentially strain free. Two independent dislocations mechanisms operate to relieve the anisotropic misfit strains along the principal directions. The critical thickness for misfit dislocation formation along [001] and [010] are 11 and 15nm, respectively. Stress analysis indicates deviation from linear elasticity for h <200. The films with 10

  15. Stress relaxation insensitive designs for metal compliant mechanism threshold accelerometers

    Directory of Open Access Journals (Sweden)

    Carlos Vilorio

    2015-12-01

    Full Text Available We present two designs for metal compliant mechanisms for use as threshold accelerometers which require zero external power. Both designs rely on long, thin flexures positioned orthogonally to a flat body. The first design involves cutting or stamping a thin spring-steel sheet and then bending elements to form the necessary thin flexors. The second design uses precut spring-steel flexure elements mounted into a mold which is then filled with molten tin to form a bimetallic device. Accelerations necessary to switch the devices between bistable states were measured using a centrifuge. Both designs showed very little variation in threshold acceleration due to stress relaxation over a period of several weeks. Relatively large variations in threshold acceleration were observed for devices of the same design, most likely due to variations in the angle of the flexor elements relative to the main body of the devices. Keywords: Structural health monitoring, Sensor, Accelerometer, Zero power, Shock, Threshold

  16. Experiments and Modeling of Si-Ge Interdiffusion with Partial Strain Relaxation in Epitaxial SiGe Heterostructures

    KAUST Repository

    Dong, Y.; Mooney, P. M.; Cai, F.; Anjum, Dalaver H.; Ur-Rehman, N.; Zhang, Xixiang; Xia, G. (Maggie)

    2014-01-01

    ”, while interdiffusion was negligible. With the approximation that the R value is constant after the ramp-up stage, a quantitative interdiffusivity model was built to account for both the effect of strain relaxation and the impact of the relaxation induced

  17. X-ray grazing incidence study of inhomogeneous strain relaxation in Si/SiGe wires

    International Nuclear Information System (INIS)

    Hesse, A.; Zhuang, Y.; Holy, V.; Stangl, J.; Zerlauth, S.; Schaeffler, F.; Bauer, G.; Darowski, N.; Pietsch, U.

    2003-01-01

    The elastic strain relaxation in a series of dry-etched periodic multilayer Si/SiGe wire samples with different etching depths was investigated systematically by means of grazing incidence diffraction (GID). The samples were patterned by holographic lithography and reactive ion etching from a Si/SiGe superlattice grown by molecular beam epitaxy. Scanning electron microscopy and atomic force microscopy were employed to obtain information on the shape of the wires. The inhomogeneous strain distribution in the etched wires and in the non-etched part of the multilayers was derived by means of finite element calculations which were used as an input for simulations of the scattered X-ray intensities in depth dependent GID. The theoretical calculations for the scattered intensities are based on distorted-wave Born approximation. The unperturbed scattering potential was chosen with a reduced optical density corresponding to the ratio of wire width and wire period, in order to reflect the main interaction between the incident X-rays and the patterned samples. The calculations are in good agreement with the experimental data demonstrating the variation of strain relaxation with depth

  18. Improved optical properties of InAs quantum dots for intermediate band solar cells by suppression of misfit strain relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, H. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287-6106 (United States); Prioli, R. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); Departamento de Física, Pontificia Universidade Católica do Rio de Janeiro, Marques de São Vicente 225, Rio de Janeiro 22452-900 RJ (Brazil); Fischer, A. M.; Ponce, F. A., E-mail: ponce@asu.edu [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); Kawabata, R. M. S.; Pinto, L. D.; Souza, P. L. [LabSem, CETUC, Pontificia Universidade Católica do Rio de Janeiro, Marques de São Vicente 225, Rio de Janeiro 22452-900 RJ (Brazil); Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutores – DISSE – PUC-Rio, RJ (Brazil); Jakomin, R. [Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutores – DISSE – PUC-Rio, RJ (Brazil); Campus de Xerem, UFRJ, Duque de Caxias-RJ (Brazil); Pires, M. P. [Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutores – DISSE – PUC-Rio, RJ (Brazil); Instituto de Física, UFRJ, Rio de Janeiro-RJ (Brazil)

    2016-07-21

    The properties of InAs quantum dots (QDs) have been studied for application in intermediate band solar cells. It is found that suppression of plastic relaxation in the QDs has a significant effect on the optoelectronic properties. Partial capping plus annealing is shown to be effective in controlling the height of the QDs and in suppressing plastic relaxation. A force balancing model is used to explain the relationship between plastic relaxation and QD height. A strong luminescence has been observed from strained QDs, indicating the presence of localized states in the desired energy range. No luminescence has been observed from plastically relaxed QDs.

  19. Irradiation creep, stress relaxation and a mechanical equation of state

    International Nuclear Information System (INIS)

    Foster, J.P.

    1976-01-01

    Irradiation creep and stress relaxation data are available from the United Kingdom for 20 percent CW M316, 20 percent CW FV 548 and FHT PE16 using pure torsion in the absence of swelling at 300 0 C. Irradiation creep models were used to calculate the relaxation and permanent deflection of the stress relaxation tests. Two relationships between irradiation creep and stress relaxation were assessed by comparing the measured and calculated stress relaxation and permanent deflection. The results show that for M316 and FV548, the stress relaxation and deflection may be calculated using irradiation creep models when the stress rate term arising from the irradiation creep model is set equal to zero. In the case of PE16, the inability to calculate the stress relaxation and permanent deflection from the irradiation creep data was attributed to differences in creep behavior arising from lot-to-lot variations in alloying elements and impurity content. A modification of the FV548 and PE16 irradiation creep coefficients was necessary in order to calculate the stress relaxation and deflection. The modifications in FV548 and PE16 irradiation creep properties reduces the large variation in the transient or incubation parameter predicted by irradiation creep tests for M316, FV548 and PE16

  20. Mechanisms of mechanical strain memory in airway smooth muscle.

    Science.gov (United States)

    Kim, Hak Rim; Hai, Chi-Ming

    2005-10-01

    We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.

  1. Numerical evaluation of Auger recombination coefficients in relaxed and strained germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dominici, Stefano [Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary' s Street, Boston, Massachusetts 02215 (United States); Wen, Hanqing; Bellotti, Enrico [Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary' s Street, Boston, Massachusetts 02215 (United States); Bertazzi, Francesco; Goano, Michele [Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); IEIIT-CNR, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2016-05-23

    The potential applications of germanium and its alloys in infrared silicon-based photonics have led to a renewed interest in their optical properties. In this letter, we report on the numerical determination of Auger coefficients at T = 300 K for relaxed and biaxially strained germanium. We use a Green's function based model that takes into account all relevant direct and phonon-assisted processes and perform calculations up to a strain level corresponding to the transition from indirect to direct energy gap. We have considered excess carrier concentrations ranging from 10{sup 16} cm{sup −3} to 5 × 10{sup 19} cm{sup −3}. For use in device level simulations, we also provide fitting formulas for the calculated electron and hole Auger coefficients as functions of carrier density.

  2. Basic MR relaxation mechanisms and contrast agent design.

    Science.gov (United States)

    De León-Rodríguez, Luis M; Martins, André F; Pinho, Marco C; Rofsky, Neil M; Sherry, A Dean

    2015-09-01

    The diagnostic capabilities of magnetic resonance imaging (MRI) have undergone continuous and substantial evolution by virtue of hardware and software innovations and the development and implementation of exogenous contrast media. Thirty years since the first MRI contrast agent was approved for clinical use, a reliance on MR contrast media persists, largely to improve image quality with higher contrast resolution and to provide additional functional characterization of normal and abnormal tissues. Further development of MR contrast media is an important component in the quest for continued augmentation of diagnostic capabilities. In this review we detail the many important considerations when pursuing the design and use of MR contrast media. We offer a perspective on the importance of chemical stability, particularly kinetic stability, and how this influences one's thinking about the safety of metal-ligand-based contrast agents. We discuss the mechanisms involved in MR relaxation in the context of probe design strategies. A brief description of currently available contrast agents is accompanied by an in-depth discussion that highlights promising MRI contrast agents in the development of future clinical and research applications. Our intention is to give a diverse audience an improved understanding of the factors involved in developing new types of safe and highly efficient MR contrast agents and, at the same time, provide an appreciation of the insights into physiology and disease that newer types of responsive agents can provide. © 2015 Wiley Periodicals, Inc.

  3. Influence of strain relaxation in axial [Formula: see text] nanowire heterostructures on their electronic properties.

    Science.gov (United States)

    Marquardt, Oliver; Krause, Thilo; Kaganer, Vladimir; Martín-Sánchez, Javier; Hanke, Michael; Brandt, Oliver

    2017-05-26

    We present a systematic theoretical study of the influence of elastic strain relaxation on the built-in electrostatic potentials and the electronic properties of axial [Formula: see text] nanowire (NW) heterostructures. Our simulations reveal that for a sufficiently large ratio between the thickness of the [Formula: see text] disk and the diameter of the NW, the elastic relaxation leads to a significant reduction of the built-in electrostatic potential in comparison to a planar system of similar layer thickness and In content. In this case, the ground state transition energies approach constant values with increasing thickness of the disk and only depend on the In content, a behavior usually associated to that of a quantum well free of built-in electrostatic potentials. We show that the structures under consideration are by no means field-free, and the built-in potentials continue to play an important role even for ultrathin NWs. In particular, strain and the resulting polarization potentials induce complex confinement features of electrons and holes, which depend on the In content, shape, and dimensions of the heterostructure.

  4. Structural Relaxations and Thermodynamic Properties of Molecular Amorphous Solids by Mechanical Milling

    Science.gov (United States)

    Tsukushi, I.; Yamamuro, O.; Matsuo, T.

    The organic crystals of tri-O-methyl-β-cyclodextrin (TMCD) and its three clathrate compounds containing benzoic acid (BA), p-nitrobenzoic acid (NBA) and p-hydroxybenzoic acid (HBA), sucrose (SUC), salicin (SAL), phenolphthalein (PP), 1,3,5-tri-α-naphthylbenzene (TNB) were amorphized by milling with a vibrating mill for 2 ˜ 16 hours at room temperature. The amorphization was checked by differential scanning calorimetry (DSC) and X-ray powder diffraction. The heat capacities of crystals, liquid quenched glasses (LQG), and mechanically-milled amorphous solid (MMAS) of TMCD and TNB were measured with an adiabatic calorimeter in the temperature range between 12 and 375 K. For both compounds, the enthalpy relaxation of MMAS appeared in the wide temperature range below Tg and the released configurational enthalpy was much larger than that of LQG, indicating that MMAS is more disordered and strained than LQG.

  5. The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves

    Directory of Open Access Journals (Sweden)

    Andrew V. Khokhlov

    2017-04-01

    Full Text Available The nonlinear Maxwell-type constitutive relation with two arbitrary material functions for viscoelastoplastic multi-modulus materials is studied analytically in uniaxial isothermic case to reveal the model abilities and applicability scope and to develop techniques of its identification, tuning and fitting. The constitutive equation is aimed at adequate modeling of the rheological phenomena set which is typical for reonomic materials exhibiting non-linear hereditary properties, strong strain rate sensitivity, secondary creep, yielding at constant stress, tension compression asymmetry and such temperature effects as increase of material compliance, strain rate sensitivity and rates of dissipation, relaxation, creep and plastic strain accumulation with temperature growth. The model is applicable for simulation of mechanical behaviour of various polymers, their solutions and melts, solid propellants, sand-asphalt concretes, composite materials, titanium and aluminum alloys, ceramics at high temperature and so on. To describe the influence of temperature on material mechanical behavior (under isothermic conditions, two scalar material parameters of the model (viscosity coefficient and “modulus of elasticity” are considered as a functions of temperature level. The general restrictions on their properties which are necessary and sufficient for adequate qualitative description of the basic thermomechanical phenomena related to typical temperature influence on creep and relaxation curves, creep recovery curves, creep curves under step-wise loading and quasi-static stress-strain curves of viscoelastoplastic materials are obtained. The restrictions are derived using systematic analytical study of general qualitative features of the theoretic creep and relaxation curves, creep curves under step-wise loading, long-term strength curves and stress-strain curves at constant strain or stress rates generated by the constitutive equation (under minimal

  6. Mechanical relaxation in chalcogenide glasses of the Ge-As-S system

    International Nuclear Information System (INIS)

    Bilanych, V.S.; Melnychenko, T.D.; Rizak, V.M.; Makauz, I.I.

    2006-01-01

    The temperature and frequency-related dependences of the internal friction and the shear modulus in Ge x As 40-x S 60 glasses have been studied. The maxima of internal friction of both the relaxation and non relaxation types have been found in the low-temperature range. A relaxation maximum has been revealed in the vitrification region, and its parameters have been determined. Possible mechanisms of these processes have been discussed

  7. Strain relaxation in epitaxial GaAs/Si (0 0 1) nanostructures

    Science.gov (United States)

    Kozak, Roksolana; Prieto, Ivan; Arroyo Rojas Dasilva, Yadira; Erni, Rolf; Skibitzki, Oliver; Capellini, Giovanni; Schroeder, Thomas; von Känel, Hans; Rossell, Marta D.

    2017-11-01

    Crystal defects, present in 100 nm GaAs nanocrystals grown by metal organic vapour phase epitaxy on top of (0 0 1)-oriented Si nanotips (with a tip opening 50-90 nm), have been studied by means of high-resolution aberration-corrected high-angle annular dark-field scanning transmission electron microscopy. The role of 60° perfect, 30° and 90° Shockley partial misfit dislocations (MDs) in the plastic strain relaxation of GaAs on Si is discussed. Formation conditions of stair-rod dislocations and coherent twin boundaries in the GaAs nanocrystals are explained. Also, although stacking faults are commonly observed, we show here that synthesis of GaAs nanocrystals with a minimum number of these defects is possible. On the other hand, from the number of MDs, we have to conclude that the GaAs nanoparticles are fully relaxed plastically, such that for the present tip sizes no substrate compliance can be observed.

  8. Radiative and non-radiative relaxation of excitons in strain-compensated quantum dots

    International Nuclear Information System (INIS)

    Kujiraoka, M.; Ishi-Hayase, J.; Akahane, K.; Yamamoto, Y.; Ema, K.; Sasaki, M.

    2008-01-01

    We have investigated the population dynamics of excitons in strain-compensated InAs quantum dots (QDs) using a pump-probe technique under resonant excitation. Precise control of polarization directions of incident pulses enabled us to selectively estimate population lifetimes for two orthogonally polarized exciton ground states according to polarization selection rules. Measured decay times of the probe transmissions were highly dependent on the polarization directions of the exciton states. We found that the ratio of the decay times for the orthogonally polarized states is in quantitative agreement with the ratio of square of the transition dipole moments. This indicates that radiative recombination processes have a dominant effect on the population dynamics and that non-radiative and spin relaxations are negligible in our QDs. As a result, we can estimate the radiative lifetimes to be 1.0±0.1 and 1.7±0.2 ns for orthogonally polarized exciton ground states

  9. Hard sphere colloidal dispersions: Mechanical relaxation pertaining to thermodynamic forces

    NARCIS (Netherlands)

    Mellema, J.; de Kruif, C.G.; Blom, C.; Vrij, A.

    1987-01-01

    The complex viscosity of sterically stabilized (hard) silica spheres in cyclohexane has been measured between 80 Hz and 170 kHz with torsion pendulums and a nickel tube resonator. The observed relaxation behaviour can be attributed to the interplay of hydrodynamic and thermodynamic forces. The

  10. Structure, interface abruptness and strain relaxation in self-assisted grown InAs/GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Frigeri, Cesare, E-mail: frigeri@imem.cnr.it [CNR-IMEM Institute, Parma (Italy); Scarpellini, David [L–NESS and Dept. Materials Science, University of Milano Bicocca, Milano (Italy); Department of Industrial Engineering University of Rome Tor Vergata, Rome (Italy); Fedorov, Alexey [LNESS and CNR-IFN, Como (Italy); Bietti, Sergio; Somaschini, Claudio [L–NESS and Dept. Materials Science, University of Milano Bicocca, Milano (Italy); Grillo, Vincenzo [CNR-IMEM Institute, Parma (Italy); CNR-S3-NANO Center, Modena (Italy); Esposito, Luca; Salvalaglio, Marco; Marzegalli, Anna; Montalenti, Francesco [L–NESS and Dept. Materials Science, University of Milano Bicocca, Milano (Italy); Sanguinetti, Stefano [L–NESS and Dept. Materials Science, University of Milano Bicocca, Milano (Italy); LNESS and CNR-IFN, Como (Italy)

    2017-02-15

    Highlights: • We study 2 critical issues (interface abruptness and strain release) in InAs/GaAs NWs. • Structural and chemical interface sharpness ≤1.5 nm, better than in previous reports. • Simultaneous elastic and plastic relaxation is shown that agrees with FEM simulations. • Structural, chemical and strain release investigations were performed by STEM. • New MBE self-seeded method whereby InAs is grown by splitting In and As depositions. - Abstract: The structure, interface abruptness and strain relaxation in InAs/GaAs nanowires grown by molecular beam epitaxy in the Ga self-catalysed mode on (111) Si have been investigated by transmission electron microscopy. The nanowires had the zincblende phase. The InAs/GaAs interface was atomically and chemically sharp with a width around 1.5 nm, i.e. significantly smaller than previously reported values. This was achieved by the consumption of the Ga droplet and formation of a flat top facet of the GaAs followed by the growth of InAs by splitting the depositions of In and As. Both elastic and plastic strain relaxation took place simultaneously. Experimental TEM results about strain relaxation very well agree with linear elasticity theory calculations by the finite element methods.

  11. Structure, interface abruptness and strain relaxation in self-assisted grown InAs/GaAs nanowires

    International Nuclear Information System (INIS)

    Frigeri, Cesare; Scarpellini, David; Fedorov, Alexey; Bietti, Sergio; Somaschini, Claudio; Grillo, Vincenzo; Esposito, Luca; Salvalaglio, Marco; Marzegalli, Anna; Montalenti, Francesco; Sanguinetti, Stefano

    2017-01-01

    Highlights: • We study 2 critical issues (interface abruptness and strain release) in InAs/GaAs NWs. • Structural and chemical interface sharpness ≤1.5 nm, better than in previous reports. • Simultaneous elastic and plastic relaxation is shown that agrees with FEM simulations. • Structural, chemical and strain release investigations were performed by STEM. • New MBE self-seeded method whereby InAs is grown by splitting In and As depositions. - Abstract: The structure, interface abruptness and strain relaxation in InAs/GaAs nanowires grown by molecular beam epitaxy in the Ga self-catalysed mode on (111) Si have been investigated by transmission electron microscopy. The nanowires had the zincblende phase. The InAs/GaAs interface was atomically and chemically sharp with a width around 1.5 nm, i.e. significantly smaller than previously reported values. This was achieved by the consumption of the Ga droplet and formation of a flat top facet of the GaAs followed by the growth of InAs by splitting the depositions of In and As. Both elastic and plastic strain relaxation took place simultaneously. Experimental TEM results about strain relaxation very well agree with linear elasticity theory calculations by the finite element methods.

  12. Measurement of strain and strain relaxation in free-standing Si membranes by convergent beam electron diffraction and finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Gao, H., E-mail: hongye18@mm.kyushu-u.ac.jp [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Ikeda, K.; Hata, S.; Nakashima, H. [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Wang, D.; Nakashima, H. [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2011-04-15

    Bridge-shaped free-standing Si membranes (FSSM), strained by low-pressure (LP) Si{sub x}N{sub y}, plasma-enhanced (PE) Si{sub x}N{sub y} and Si{sub x}Ge{sub 1-x} stressors, were measured by convergent beam electron diffraction (CBED) and the finite element method (FEM). The results of CBED show that, while the strain along the length of the FSSM is compressive in an LPSi{sub x}N{sub y}/Si sample, those along the length of the FSSM are tensile in PESi{sub x}N{sub y}/Si and Si{sub x}Ge{sub 1-x}/Si samples. The average absolute values of strains are different in FSSM with LPSi{sub x}N{sub y}, PESi{sub x}N{sub y} and Si{sub x}Ge{sub 1-x} as stressors. The FEM was used to compensate the results of CBED taking into account the strain relaxation in transmission electron microscopy (TEM) sample preparation. The FEM results give the strain properties in three dimensions, and are in good agreement with the results of CBED. There is approximately no strain relaxation along the length of FSSM, and the elastic strains along the other two axes in FSSM are partially relaxed by thinning down for the preparation of TEM samples.

  13. Measurement of strain and strain relaxation in free-standing Si membranes by convergent beam electron diffraction and finite element method

    International Nuclear Information System (INIS)

    Gao, H.; Ikeda, K.; Hata, S.; Nakashima, H.; Wang, D.; Nakashima, H.

    2011-01-01

    Bridge-shaped free-standing Si membranes (FSSM), strained by low-pressure (LP) Si x N y , plasma-enhanced (PE) Si x N y and Si x Ge 1-x stressors, were measured by convergent beam electron diffraction (CBED) and the finite element method (FEM). The results of CBED show that, while the strain along the length of the FSSM is compressive in an LPSi x N y /Si sample, those along the length of the FSSM are tensile in PESi x N y /Si and Si x Ge 1-x /Si samples. The average absolute values of strains are different in FSSM with LPSi x N y , PESi x N y and Si x Ge 1-x as stressors. The FEM was used to compensate the results of CBED taking into account the strain relaxation in transmission electron microscopy (TEM) sample preparation. The FEM results give the strain properties in three dimensions, and are in good agreement with the results of CBED. There is approximately no strain relaxation along the length of FSSM, and the elastic strains along the other two axes in FSSM are partially relaxed by thinning down for the preparation of TEM samples.

  14. Effect of lithographically-induced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19

    Science.gov (United States)

    Beardsley, R. P.; Parkes, D. E.; Zemen, J.; Bowe, S.; Edmonds, K. W.; Reardon, C.; Maccherozzi, F.; Isakov, I.; Warburton, P. A.; Campion, R. P.; Gallagher, B. L.; Cavill, S. A.; Rushforth, A. W.

    2017-02-01

    We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials.

  15. In-situ measurement of the strain relaxation of GaN nanograins during X-ray irradiation

    International Nuclear Information System (INIS)

    Choe, Hyeokmin; Lee, Sanghwa; Sohn, Yuri; Kim, Chinkyo

    2008-01-01

    GaN nanograins were grown on a c-plane sapphire substrate and their strain relaxation due to X-ray irradiation was investigated in-situ by utilizing synchrotron xray scattering. The GaN nanograins were constantly exposed to the synchrotron X-ray and θ-2θ scans through the (002) Bragg peak of GaN were repeatedly carried out during the irradiation. The Bragg peak of the compressively strained GaN nanograins gradually shifted toward higher angle, which implies that the GaN nanograins in compressive strain experienced strain relaxation during X-ray irradiation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Fatigue life evaluation based on welding residual stress relaxation and notch strain approach for cruciform welded joint

    International Nuclear Information System (INIS)

    Han, Jeong Woo; Han, Seung Ho; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint

  17. On relaxation mechanism of tangensial losses in soils

    International Nuclear Information System (INIS)

    Babayev, M.P.; Gerayzade, A.P.; Mamedov, N.A.

    2009-01-01

    By experimentally at high-frequency bridge method on dependence of a tangent of a corner of dielectric losses of soil fom humidity and frequency of an electromagnetic field are investigated. In air-dry samples of soils the size of the most probable time of a relaxation and its maximum is established. It is shown that in the field of gravitational humidity, in the soil sample, at a maximum of a tangent of a corner of dielectric losses through conductivity will be veiled, i.e. obviously is not shown. As a result of the received data it is established that in the field of the adsorbed soil moisture the spectrum of time of relaxation is characterized by the wide strip reflecting heterogeneity of its dielectric properties. All this is offered to be used at designing of delkometric hydrometers and measurement of soil humidity

  18. Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide.

    Science.gov (United States)

    Armenise, Iole; Kustova, Elena

    2018-05-21

    A complete vibrational state-specific kinetic scheme describing dissociating carbon dioxide mixtures is proposed. CO 2 symmetric, bending and asymmetric vibrations and dissociation-recombination are strongly coupled through inter-mode vibrational energy transfers. Comparative study of state-resolved rate coefficients is carried out; the effect of different transitions may vary considerably with temperature. A non-equilibrium 1-D boundary layer flow typical to hypersonic planetary entry is studied in the state-to-state approach. To assess the sensitivity of fluid-dynamic variables and heat transfer to various vibrational transitions and chemical reactions, corresponding processes are successively included to the kinetic scheme. It is shown that vibrational-translational (VT) transitions in the symmetric and asymmetric modes do not alter the flow and can be neglected whereas the VT 2 exchange in the bending mode is the main channel of vibrational relaxation. Inter-mode vibrational exchanges affect the flow implicitly, through energy redistribution enhancing VT relaxation; the dominating role belongs to near-resonant transitions between symmetric and bending modes as well as between CO molecules and CO 2 asymmetric mode. Strong coupling between VT 2 relaxation and chemical reactions is emphasized. While vibrational distributions and average vibrational energy show strong dependence on the kinetic scheme, the heat flux is more sensitive to chemical reactions.

  19. The effects of strain relaxation on the dielectric properties of epitaxial ferroelectric Pb(Zr0.2Ti0.8)TiO3 thin films

    Science.gov (United States)

    Khan, Asif Islam; Yu, Pu; Trassin, Morgan; Lee, Michelle J.; You, Long; Salahuddin, Sayeef

    2014-07-01

    We study the effects of strain relaxation on the dielectric properties of epitaxial 40 nm Pb(Zr0.2Ti0.8)TiO3 (PZT) films. A significant increase in the defect and dislocation density due to strain relaxation is observed in PZT films with tetragonality c/a fatigue in ferroelectric materials.

  20. Influence of anisotropic strain relaxation on the magnetoresistance properties of epitaxial Fe3O4 (110) films

    Science.gov (United States)

    Sofin, R. G. S.; Wu, Han-Chun; Ramos, R.; Arora, S. K.; Shvets, I. V.

    2015-11-01

    We studied Fe3O4 (110) films grown epitaxially on MgO (110) substrates using oxygen plasma assisted molecular beam epitaxy. The films with thickness of 30-200 nm showed anisotropic in-plane partial strain relaxation. Magneto resistance (MR) measurements with current and magnetic field along ⟨001⟩ direction showed higher MR compared to ⟨1 ¯ 10 ⟩ direction. Maximum value of MR was measured at Verwey transition temperature for both directions. We explain the observed anisotropy in the MR on the basis of the effects of anisotropic misfit strain, and the difference between the density of antiferromagnetically coupled antiphase boundaries formed along ⟨001⟩ and ⟨1 ¯ 10 ⟩ crystallographic directions, suggesting the dependence of spin polarisation on the anisotropic strain relaxation along the said crystallographic directions.

  1. Pseudo-variables method to calculate HMA relaxation modulus through low-temperature induced stress and strain

    International Nuclear Information System (INIS)

    Canestrari, Francesco; Stimilli, Arianna; Bahia, Hussain U.; Virgili, Amedeo

    2015-01-01

    Highlights: • Proposal of a new method to analyze low-temperature cracking of bituminous mixtures. • Reliability of the relaxation modulus master curve modeling through Prony series. • Suitability of the pseudo-variables approach for a close form solution. - Abstract: Thermal cracking is a critical failure mode for asphalt pavements. Relaxation modulus is the major viscoelastic property that controls the development of thermally induced tensile stresses. Therefore, accurate determination of the relaxation modulus is fundamental for designing long lasting pavements. This paper proposes a reliable analytical solution for constructing the relaxation modulus master curve by measuring stress and strain thermally induced in asphalt mixtures. The solution, based on Boltzmann’s Superposition Principle and pseudo-variables concepts, accounts for time and temperature dependency of bituminous materials modulus, avoiding complex integral transformations. The applicability of the solution is demonstrated by testing a reference mixture using the Asphalt Thermal Cracking Analyzer (ATCA) device. By applying thermal loadings on restrained and unrestrained asphalt beams, ATCA allows the determination of several parameters, but is still unable to provide reliable estimations of relaxation properties. Without them the measurements from ATCA cannot be used in modeling of pavement behavior. Thus, the proposed solution successfully integrates ATCA experimental data. The same methodology can be applied to all test methods that concurrently measure stress and strain. The statistical parameters used to evaluate the goodness of fit show optimum correlation between theoretical and experimental results, demonstrating the accuracy of this mathematical approach

  2. One-to-one correspondence of charge-imbalance relaxing mechanisms with pair-breaking mechanisms in superconductors

    International Nuclear Information System (INIS)

    Lemberger, T.R.

    1984-01-01

    A one-to-one correspondence of charge-imbalance relaxing mechanisms with pair-breaking mechanisms in superconductors is demonstrated. The characteristic rates for these two effects are shown to be equal, within factors of order unity. These results are used to estimate the charge-imbalance relaxation rate associated with the proximity effect of a normal metal in metallic contact with a superconductor

  3. Epitaxial strain and its relaxation at the LaAlO{sub 3}/SrTiO{sub 3} interface

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guozhen, E-mail: guozhen.liu@hotmail.com [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Lei, Qingyu; Wolak, Matthäus A.; Xi, Xiaoxing [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Li, Qun [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Long-Qing [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Winkler, Christopher; Sloppy, Jennifer; Taheri, Mitra L. [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States)

    2016-08-28

    A series of LaAlO{sub 3} thin films with different thicknesses were deposited by pulsed laser deposition at temperatures from 720 °C to 800 °C. The results from grazing incidence x-ray diffraction and reciprocal space mapping indicate that a thin layer of LaAlO{sub 3} adjacent to the SrTiO{sub 3} substrate remains almost coherently strained to the substrate, while the top layer starts to relax quickly above a certain critical thickness, followed by a gradual relaxation at larger film thickness when they are grown at lower temperatures. The atomic force microscopy results show that the fast relaxation is accompanied by the formation of cracks on the film surface. This can be ascribed to the larger energy release rate when compared with the resistance of LaAlO{sub 3} to cracking, according to calculations from the Griffith fracture theory. For films grown at 720 °C, a drop in sheet resistance by two orders of magnitude is observed when the top layer starts to relax, indicating a relationship between the strain and the conductivity of the two-dimensional electron gas at the LaAlO{sub 3}/SrTiO{sub 3} interface. The strain engineered by growth temperature provides a useful tool for the manipulation of the electronic properties of oxide heterointerfaces.

  4. Simulation of hole-mobility in doped relaxed and strained Ge layers

    Science.gov (United States)

    Watling, Jeremy R.; Riddet, Craig; Chan, Morgan Kah H.; Asenov, Asen

    2010-11-01

    As silicon based metal-oxide-semiconductor field-effect transistors (MOSFETs) are reaching the limits of their performance with scaling, alternative channel materials are being considered to maintain performance in future complementary metal-oxide semiconductor technology generations. Thus there is renewed interest in employing Ge as a channel material in p-MOSFETs, due to the significant improvement in hole mobility as compared to Si. Here we employ full-band Monte Carlo to study hole transport properties in Ge. We present mobility and velocity-field characteristics for different transport directions in p-doped relaxed and strained Ge layers. The simulations are based on a method for over-coming the potentially large dynamic range of scattering rates, which results from the long-range nature of the unscreened Coulombic interaction. Our model for ionized impurity scattering includes the affects of dynamic Lindhard screening, coupled with phase-shift, and multi-ion corrections along with plasmon scattering. We show that all these effects play a role in determining the hole carrier transport in doped Ge layers and cannot be neglected.

  5. Precession mechanism of spin relaxation at frequent electron-electron collisions

    CERN Document Server

    Glazov, M M

    2002-01-01

    It is shown that the spin relaxation mechanism in the two-dimensional electron gas, is controlled not only through the electron pulse relaxation processes, determining the mobility, but through the electron-electron collisions as well. It is decided to use the kinetic equation, describing the electron spin mixing in the k-space, for determining the spin relaxation time tau sub s at frequent electron-electron collisions. The tau sub s time is calculated for the nondegenerated electron gas both with an account and with no account of the exchange interaction

  6. Strain relaxation studies of the Fe3O4/MgO (100) heteroepitaxial system grown by magnetron sputtering

    International Nuclear Information System (INIS)

    Balakrishnan, K; Arora, S K; Shvets, I V

    2004-01-01

    Detailed strain relaxation studies of epitaxial magnetite, Fe 3 O 4 , films on MgO(100) substrates grown by magnetron sputtering reveal the accommodation of strain up to 600 nm thickness, a thickness far above the critical thickness (t c ) predicted by theoretical models. The results are in agreement with the suggestion that the excess strain in Fe 3 O 4 /MgO (100) heteroepitaxy is accommodated by the presence of antiphase boundaries. The compressive strain generated by the antiphase boundaries compensates for the tensile strain within the growth islands, allowing the film to remain fully coherent with the substrate. Contrary to earlier findings, magnetization decreases with an increase in the film thickness. This vindicates the view that the structure of the antiphase boundaries depends on the growth conditions

  7. Smooth muscle relaxant activity of Crocus sativus (saffron and its constituents: possible mechanisms

    Directory of Open Access Journals (Sweden)

    Amin Mokhtari-Zaer

    2015-08-01

    Full Text Available Saffron, Crocus sativus L. (C. sativus is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO are also reviewed.

  8. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft

  9. Observation of in-plane asymmetric strain relaxation during crystal growth and growth interruption in InGaAs/GaAs(001)

    International Nuclear Information System (INIS)

    Sasaki, Takuo; Shimomura, Kenichi; Kamiya, Itaru; Ohshita, Yoshio; Yamaguchi, Masafumi; Suzuki, Hidetoshi; Takahasi, Masamitu

    2012-01-01

    In-plane asymmetric strain relaxation in lattice-mismatched InGaAs/GaAs(001) heteroepitaxy is studied by in situ three-dimensional X-ray reciprocal space mapping. Repeating crystal growth and growth interruptions during measurements allows us to investigate whether the strain relaxation is limited at a certain thickness or saturated. We find that the degree of relaxation during growth interruption depends on both the film thickness and the in-plane directions. Significant lattice relaxation is observed in rapid relaxation regimes during interruption. This is a clear indication that relaxation is kinetically limited. In addition, relaxation along the [110] direction can saturate more readily than that along the [1-bar10] direction. We discuss this result in terms of the interaction between orthogonally aligned dislocations. (author)

  10. Strain relaxation of GaAs/Ge crystals on patterned Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.; Känel, H. von [Laboratory for Solid State Physics, ETH Zürich, Otto-Stern-Weg 1, CH-8093 Zürich (Switzerland); Isa, F.; Isella, G. [L-NESS, Department of Physics, Politecnico di Milano, via Anzani 42, I-22100 Como (Italy); Salvalaglio, M.; Miglio, L. [L-NESS, Department of Materials Science, Università di Milano-Bicocca, via Cozzi 55, I-20125 Milano (Italy); Wewior, L.; Fuster, D.; Alén, B. [IMM, Instituto de Microelectrónica de Madrid (CNM, CSIC), C/Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Richter, M.; Uccelli, E. [Functional Materials Group, IBM Research-Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Niedermann, P.; Neels, A.; Dommann, A. [Centre Suisse d' Electronique et Microtechnique, Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland); Mancarella, F. [CNR-IMM of Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2014-01-13

    We report on the mask-less integration of GaAs crystals several microns in size on patterned Si substrates by metal organic vapor phase epitaxy. The lattice parameter mismatch is bridged by first growing 2-μm-tall intermediate Ge mesas on 8-μm-tall Si pillars by low-energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs crystals towards full pyramids exhibiting energetically stable (111) facets with decreasing Si pillar size. The release of the strain induced by the mismatch of thermal expansion coefficients in the GaAs crystals has been studied by X-ray diffraction and photoluminescence measurements. The strain release mechanism is discussed within the framework of linear elasticity theory by Finite Element Method simulations, based on realistic geometries extracted from scanning electron microscopy images.

  11. Strain relaxation of GaAs/Ge crystals on patterned Si substrates

    International Nuclear Information System (INIS)

    Taboada, A. G.; Kreiliger, T.; Falub, C. V.; Känel, H. von; Isa, F.; Isella, G.; Salvalaglio, M.; Miglio, L.; Wewior, L.; Fuster, D.; Alén, B.; Richter, M.; Uccelli, E.; Niedermann, P.; Neels, A.; Dommann, A.; Mancarella, F.

    2014-01-01

    We report on the mask-less integration of GaAs crystals several microns in size on patterned Si substrates by metal organic vapor phase epitaxy. The lattice parameter mismatch is bridged by first growing 2-μm-tall intermediate Ge mesas on 8-μm-tall Si pillars by low-energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs crystals towards full pyramids exhibiting energetically stable (111) facets with decreasing Si pillar size. The release of the strain induced by the mismatch of thermal expansion coefficients in the GaAs crystals has been studied by X-ray diffraction and photoluminescence measurements. The strain release mechanism is discussed within the framework of linear elasticity theory by Finite Element Method simulations, based on realistic geometries extracted from scanning electron microscopy images

  12. Anomalous misfit strain relaxation in ultrathin YBa2Cu3O7-δ epitaxial films

    International Nuclear Information System (INIS)

    Kamigaki, K.; Terauchi, H.; Terashima, T.; Bando, Y.; Iijima, K.; Yamamoto, K.; Hirata, K.; Hayashi, K.; Nakagawa, I.; Tomii, Y.

    1991-01-01

    Ultrathin YBa 2 Cu 3 O 7-δ epitaxial films were successfully grown in situ on (001) SrTiO 3 and MgO substrates by means of ozone-incorporating activated reactive evaporation. The x-ray-diffraction study was carefully examined to determine the structural properties of the grown films. Excellent crystallinity with no interfacial disorders was revealed by the appearance of the Laue oscillations. It was found that in a well lattice-matched YBa 2 Cu 3 O 7-δ /SrTiO 3 system, the crystallinity was deteriorated due to defect introduction at the critical layer thickness h c ( ∼ 130 A). Interestingly, also in a poorly lattice-matched YBa 2 Cu 3 O 7-δ /MgO system, excellent crystallinity was revealed even at above h c ( 2 Cu 3 O 7-δ /MgO system. In such a system, no crystal imperfection of the MgO substrate caused by defect introduction was elucidated by the grazing incidence x-ray scattering, which indicated that the MgO substrate did not contribute to the anomalous misfit relaxation. The anomalous growth manner was also found in YBa 2 Cu 3 O 7-δ /MgO according to surface morphology investigations. Below 40 A( > h c ), island nucleation growth was found. Above 40 A, it was observed that an atomically smooth surface was obtained and the crystallinity was simultaneously improved. It is suggested that YBa 2 Cu 3 O 7-δ possesses an anomalous misfit relaxation mechanism, and that especially in the growth on MgO, it couples with the characteristic growth behavior at the initial stage

  13. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    International Nuclear Information System (INIS)

    Herman, R.M.

    1982-01-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 10 9 , in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of h) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms

  14. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    Science.gov (United States)

    Herman, R. M.

    1982-03-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 109, in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of ℏ) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit-relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms.

  15. Mechanical Spectroscopy: Some Applications On Structural Changes And Relaxation Dynamics In Soft Matter

    Directory of Open Access Journals (Sweden)

    Wu Xuebang

    2015-09-01

    Full Text Available The general trend in soft matter is to study systems of increasing complexity covering a wide range in time and frequency. Mechanical spectroscopy is a powerful tool for understanding the structure and relaxation dynamics of these materials over a large temperature range and frequency scale. In this work, we collect a few recent applications using low-frequency mechanical spectroscopy for elucidating the structural changes and relaxation dynamics in soft matter, largely based on the author’s group. We illustrate the potential of mechanical spectroscopy with three kinds of soft materials: colloids, polymers and granular systems. Examples include structural changes in colloids, segmental relaxations in amorphous polymers, and resonant dissipation of grain chains in three-dimensional media. The present work shows that mechanical spectroscopy has been applied as a necessary and complementary tool to study the dynamics of such complex systems.

  16. Mechanism of kolaviron-induced relaxation of rabbit aortic smooth ...

    African Journals Online (AJOL)

    (KV) and the exert mechanisms of action on VSM of rabbit aorta have not been reported. The present study examines the vascular effect of kolaviron on VSM of rabbit aorta and the possible mechanism of its vasorelaxant effect. MATERIALS AND METHODS. Extraction of Kolaviron (KV). Garcinia Kola seeds were obtained ...

  17. Perinatal development influences mechanisms of bradykinin-induced relaxations in pulmonary resistance and conduit arteries differently.

    Science.gov (United States)

    Boels, P J; Deutsch, J; Gao, B; Haworth, S G

    2001-07-01

    As bradykinin (BYK) relaxes conduit (EPA) and resistance (RPA) pulmonary arteries from both perinatal and adult lungs, we investigated whether this vasodilator's relaxation-mechanisms were altered during perinatal development, differed between EPA and RPA and differed with other endothelium-dependent vasodilators, acetyicholine (ACH) and substance P (SP). Arteries from mature foetal (5 days), neonatal (approximately 5 min), newborn (60-84 h) and adult pigs (> or =6 months) were isolated, mounted for in vitro isometric force recording, activated with PGF(2alpha) (30 micromol/l) and relaxed with BYK (10 pmol/l-1 micromol/l), SP (10 pmol/l-0.1 micromol/l) or ACH (1 nmol/l-1 mmol/l). (i) BYK: L-NAME (100 micromol/l) attenuated relaxations in foetal EPA ( approximately 55%) but nearly abolished them in the adult ( approximately 80%). In RPA, L-NAME nearly abolished ( approximately 90%) relaxations in the foetus and this effect diminished progressively with age to approximately 20% in the adult. Indomethacin (IND, micromol/l) attenuated relaxations in neonatal (approximately 25%), new-born and adult EPA (both approximately 45%). Together, L-NAME and IND abolished relaxations in all EPA and in neonatal RPA but not in older RPA. SKF525a (100 micromol/l) attenuated relaxations in foetal RPA ( approximately 4%), diminishing in the adult RPA to approximately 10%. Together, SKF52Sa and L-NAME largely abolished relaxations in postnatal RPA (approximately 80%). Activation with K(+)=125 mmol/l attenuated relaxations in adult EPA (approximately 80%), foetal RPA ( approximately 45%) and neonatal RPA (approximately 75%) and abolished relaxations in RPA from older ages. (ii) ACH: L-NAME abolished relaxations in new-born EPA and RPA. In adult EPA, combined L-NAME and IND moderately attenuated relaxations. (iii) SP: Combined application of L-NAME and IND attenuated relaxations to a similar degree in new-born and adult EPA and RPA. In postnatal EPA, BYK-relaxations depend completely on

  18. Viscoelastic characterization of compacted pharmaceutical excipient materials by analysis of frequency-dependent mechanical relaxation processes

    Science.gov (United States)

    Welch, K.; Mousavi, S.; Lundberg, B.; Strømme, M.

    2005-09-01

    A newly developed method for determining the frequency-dependent complex Young's modulus was employed to analyze the mechanical response of compacted microcrystalline cellulose, sorbitol, ethyl cellulose and starch for frequencies up to 20 kHz. A Debye-like relaxation was observed in all the studied pharmaceutical excipient materials and a comparison with corresponding dielectric spectroscopy data was made. The location in frequency of the relaxation peak was shown to correlate to the measured tensile strength of the tablets, and the relaxation was interpreted as the vibrational response of the interparticle hydrogen and van der Waals bindings in the tablets. Further, the measured relaxation strength, holding information about the energy loss involved in the relaxation processes, showed that the weakest material in terms of tensile strength, starch, is the material among the four tested ones that is able to absorb the most energy within its structure when exposed to external perturbations inducing vibrations in the studied frequency range. The results indicate that mechanical relaxation analysis performed over relatively broad frequency ranges should be useful for predicting material properties of importance for the functionality of a material in applications such as, e.g., drug delivery, drug storage and handling, and also for clarifying the origin of hitherto unexplained molecular processes.

  19. Mechanism of resveratrol-induced relaxation of the guinea pig fundus.

    Science.gov (United States)

    Tsai, Ching-Chung; Tey, Shu-Leei; Lee, Ming-Che; Liu, Ching-Wen; Su, Yu-Tsun; Huang, Shih-Che

    2018-04-01

    Resveratrol is a polyphenolic compound that can be isolated from plants and also is a constituent of red wine. Resveratrol induces relaxation of vascular smooth muscle and may prevent cardiovascular diseases. Impaired gastric accommodation plays an important role in functional dyspepsia and fundic relaxation and is a therapeutic target of functional dyspepsia. Although drugs for fundic relaxation have been developed, these types of drugs are still rare. The purpose of this study was to investigate the relaxant effects of resveratrol in the guinea pig fundus. We studied the relaxant effects of resveratrol in the guinea pig fundus. In addition, we investigated the mechanism of resveratrol-induced relaxation on the guinea pig fundus by using tetraethylammonium (a non-selective potassium channel blocker), apamine (a selective inhibitor of the small conductance calcium-activated potassium channel), iberiotoxin (an inhibitor of large conductance calcium-activated potassium channels), glibenclamide (an ATP-sensitive potassium channel blocker), KT 5720 (a cAMP-dependent protein kinase A inhibitor), KT 5823 (a cGMP-dependent protein kinase G inhibitor), NG-nitro-L-arginine (a competitive inhibitor of nitric oxide synthase), tetrodotoxin (a selective neuronal Na + channel blocker), ω-conotoxin GVIA (a selective neuronal Ca 2+ channel blocker) and G-15 (a G-protein coupled estrogen receptor antagonist). The results of this study showed that resveratrol has potent and dose-dependent relaxant effects on the guinea pig fundic muscle. In addition, the results showed that resveratrol-induced relaxation of the guinea pig fundus occurs through nitric oxide and ATP-sensitive potassium channels. This study provides the first evidence concerning the relaxant effects of resveratrol in the guinea pig fundic muscle strips. Furthermore, resveratrol may be a potential drug to relieve gastrointestinal dyspepsia. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. In situ study of annealing-induced strain relaxation in diamond nanoparticles using Bragg coherent diffraction imaging

    Directory of Open Access Journals (Sweden)

    S. O. Hruszkewycz

    2017-02-01

    Full Text Available We observed changes in morphology and internal strain state of commercial diamond nanocrystals during high-temperature annealing. Three nanodiamonds were measured with Bragg coherent x-ray diffraction imaging, yielding three-dimensional strain-sensitive images as a function of time/temperature. Up to temperatures of 800 °C, crystals with Gaussian strain distributions with a full-width-at-half-maximum of less than 8×10−4 were largely unchanged, and annealing-induced strain relaxation was observed in a nanodiamond with maximum lattice distortions above this threshold. X-ray measurements found changes in nanodiamond morphology at temperatures above 600 °C that are consistent with graphitization of the surface, a result verified with ensemble Raman measurements.

  1. Peroxynitrite-induced relaxation in isolated canine cerebral arteries and mechanisms of action

    International Nuclear Information System (INIS)

    Li Jianfeng; Li Wenyan; Altura, Bella T.; Altura, Burton M.

    2004-01-01

    The present study was undertaken to determine the vascular actions of peroxynitrite (ONOO - ), the product of superoxide and nitric oxide (NO), in isolated canine cerebral arteries and to gain insight into its potential mechanisms of action. In the absence of any vasoactive agent, ONOO - (from 10 -7 to 10 -6 M) was able to reduce the basal tension. In prostaglandin F2α-precontracted canine basilar arterial rings, ONOO - elicited concentration-dependent relaxation at concentrations from 10 -8 to 10 -5 M. The effective concentrations producing approximately 50% maximal relaxation (EC 50 ) to ONOO - were 4.06 x 10 -6 and 4.12 x 10 -6 M in intact and denuded rings, respectively (P > 0.05). No significant differences in relaxation responses were found in ring preparations with or without endothelium (P > 0.05). The presence of either 5 μM methylene blue (MB) or 5 μM 1H-[1,2,4]oxadiazolo-[4,3-α]quinoxalin-1-one (ODQ) significantly inhibited the relaxations induced by ONOO - . Tetraethylammonium chloride (T-2265) significantly decreased the ONOO - -induced relaxations in a concentration-dependent manner. However, ONOO - had no effect on rings precontracted by high KCL (P > 0.05). Addition of low concentrations of calyculin A (50 nM) was able to abolish the ONOO - -induced relaxation. Furthermore, ONOO - significantly inhibited calcium-induced contractions of K + -depolarized canine cerebral rings in a concentration-related manner. Lastly, a variety of pharmacological agents and antagonists including L-NMMA, L-arginine, indomethacin, atropine, naloxone, diphenhydramine, cimetine, glibenclamide, haloperidol, etc., did not influence the relaxant effects of ONOO - on the rings. Our new results suggest that ONOO - -triggered relaxation, on canine cerebral arteries, is mediated by elevation of cyclic guanosine monophosphate (cGMP) levels, membrane hyperpolarization via K+ channel activation, activation of myosin light chain phosphatase activity, and interference with

  2. Acrolein relaxes mouse isolated tracheal smooth muscle via a TRPA1-dependent mechanism.

    Science.gov (United States)

    Cheah, Esther Y; Burcham, Philip C; Mann, Tracy S; Henry, Peter J

    2014-05-01

    Airway sensory C-fibres express TRPA1 channels which have recently been identified as a key chemosensory receptor for acrolein, a toxic and highly prevalent component of smoke. TRPA1 likely plays an intermediary role in eliciting a range of effects induced by acrolein including cough and neurogenic inflammation. Currently, it is not known whether acrolein-induced activation of TRPA1 produces other airway effects including relaxation of mouse airway smooth muscle. The aims of this study were to examine the effects of acrolein on airway smooth muscle tone in mouse isolated trachea, and to characterise the cellular and molecular mechanisms underpinning the effects of acrolein. Isometric tension recording studies were conducted on mouse isolated tracheal segments to characterise acrolein-induced relaxation responses. Release of the relaxant PGE₂ was measured by EIA to examine its role in the response. Use of selective antagonists/inhibitors permitted pharmacological characterisation of the molecular and cellular mechanisms underlying this relaxation response. Acrolein induced dose-dependent relaxation responses in mouse isolated tracheal segments. Importantly, these relaxation responses were significantly inhibited by the TRPA1 antagonists AP-18 and HC-030031, an NK₁ receptor antagonist RP-67580, and the EP₂ receptor antagonist PF-04418948, whilst completely abolished by the non-selective COX inhibitor indomethacin. Acrolein also caused rapid PGE₂ release which was suppressed by HC-030031. In summary, acrolein induced a novel bronchodilator response in mouse airways. Pharmacologic studies indicate that acrolein-induced relaxation likely involves interplay between TRPA1-expressing airway sensory C-fibres, NK₁ receptor-expressing epithelial cells, and EP₂-receptor expressing airway smooth muscle cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Elastic strain relaxation in interfacial dislocation patterns: II. From long- and short-range interactions to local reactions

    Science.gov (United States)

    Vattré, A.

    2017-08-01

    The long- and short-range interactions as well as planar reactions between two infinitely periodic sets of crossing dislocations are investigated using anisotropic elasticity theory in face- (fcc) and body- (bcc) centered cubic materials. Two preliminary cases are proposed to examine the substantial changes in the elastic stress states and the corresponding strain energies due to a slight rearrangement in the internal dislocation geometries and characters. In general, significant differences and discrepancies resulting from the considered cubic crystal structure and the approximation of isotropic elasticity are exhibited. In a third scenario, special attention is paid to connecting specific internal dislocation structures from the previous cases with non-equilibrium configurations predicted by the quantized Frank-Bilby equation for the (111) fcc and (110) bcc twist grain boundaries. The present solutions lead to the formation of energetically favorable dislocation junctions with non-randomly strain-relaxed configurations of lower energy. In particular, the local dislocation interactions and reactions form equilibrium hexagonal-shaped patterns with planar three-fold dislocation nodes without producing spurious far-field stresses.Numerical application results are presented from a selection of cubic metals including aluminum, copper, tantalum, and niobium. In contrast to the fcc materials, asymmetric dislocation nodes occur in the anisotropic bcc cases, within which the minimum-energy paths for predicting the fully strain-relaxed dislocation patterns depend on the Zener anisotropic factor with respect to unity. The associated changes in the dislocation structures as well as the removal of the elastic strain energy upon relaxations are quantified and also discussed.

  4. Local mechanical stress relaxation of Gunn diodes irradiated by protons

    International Nuclear Information System (INIS)

    Gradoboev, A V; Tesleva, E P

    2017-01-01

    The aim of the work is studying the impact of Gunn diodes thermocompression bonding conditions upon their resistance to being radiated with protons of various energies. It was established that the tough conditions of Gunn diodes thermocompression bonding results in local mechanic stresses introduced into the active layer of the device, reduction of electron mobility because of the faults introduction and, subsequently, to reduction of operating current, power of UHF generation, percentage of qualitative units production and general reduction of production efficiency of the devices with required characteristics. Irradiation of Gunn diodes produced under the tough conditions of thermocompression bonding with protons which energy is (40–60) MeV with an absorbed dose of (1–6)·10 2 Gy does not practically reduce the radiation resistance of Gunn diodes produced with application of the given technique. This technique can be recommended for all semiconductor devices on the base of GaAs, which parameters depend significantly upon the mobility of the electrons, to increase the efficiency of production. (paper)

  5. Effect of dislocations of forest on relaxation of mechanical stresses in irradiated zinc crystals

    International Nuclear Information System (INIS)

    Troitskij, O.A.; Kalymbetov, P.U.; Kusainov, S.G.; Shambulov, N.B.

    1988-01-01

    Effect of forest dislocations on the value of electron-plastic effect (EPE) in zinc crystals during their irradiation by accelerated electron packets is investigated. The following mechanical parameters are determined experimentally: total relaxation of voltages Δσ for 180s; change in reforming voltage Δσpl in single pulses of irradiation on the slope and bottom of relaxation curves. The results obtained testify to the effectiveness of forest dislocations as surmountable obstacles for the dislocations shiding in the basis plane

  6. Relaxation of the single-slip condition in strain-gradient plasticity.

    Science.gov (United States)

    Anguige, Keith; Dondl, Patrick W

    2014-09-08

    We consider the variational formulation of both geometrically linear and geometrically nonlinear elasto-plasticity subject to a class of hard single-slip conditions. Such side conditions typically render the associated boundary-value problems non-convex. We show that, for a large class of non-smooth plastic distortions, a given single-slip condition (specification of Burgers vectors) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. The relaxed model can be thought of as an aid to simulating macroscopic plastic behaviour without the need to resolve arbitrarily fine spatial scales.

  7. Relaxant effects of Ocimum basilicum on guinea pig tracheal chains and its possible mechanism(s

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Boskabady

    2005-01-01

    Full Text Available Therapeutic effects of Ocimum basilicum on respiratory diseases especially dyspnea have been reported in Iranian ancient medical books. In the present study, the relaxant effects of macerated and soxhlet extracts of this plant on tracheal chains of guinea pigs were evaluated. The relaxant effects of 4 cumulative concentrations of macerated and soxhlet extracts (0.25, 0.5, 0.75 and 1.0 W/V in comparison with saline as negative control and 4 cumulative concentrations of theophylline (0.25, 0.5, 0.75, and 1.0 mM as positive control were examined on precontracted tracheal chains of two groups of 6 guinea pig by 60 mM KCl (group 1 and 10 µM methacholine (group 2. Decrease in contractile tone of tracheal chains was considered as relaxant effect. In group 1 experiments only the last two higher concentrations of theophylline showed significant relaxant effect compared to that of saline (p<0.001 for both concentrations, which were significantly greater than those of macerated and soxhlet extracts (p<0.001 for all cases and in group 2 experiments both macerated and soxhlet extracts showed concentrationdependent relaxant effects compared to that of saline (p<0.05 to p<0.001 for both extracts. There were significant differences between the relaxant effects of both extracts with those of theophylline in group 2 experiments (p<0.01 to p<0.001. The relaxant effects of macerated and soxhlet extracts in group 1 were significantly lower than those of groups 2. These results showed a potent relaxant effect of Ocimum basilicum on tracheal chains of guinea pigs which were lower than theophylline at concentrations used.

  8. Mechanism of Strain Rate Effect Based on Dislocation Theory

    International Nuclear Information System (INIS)

    Kun, Qin; Shi-Sheng, Hu; Li-Ming, Yang

    2009-01-01

    Based on dislocation theory, we investigate the mechanism of strain rate effect. Strain rate effect and dislocation motion are bridged by Orowan's relationship, and the stress dependence of dislocation velocity is considered as the dynamics relationship of dislocation motion. The mechanism of strain rate effect is then investigated qualitatively by using these two relationships although the kinematics relationship of dislocation motion is absent due to complicated styles of dislocation motion. The process of strain rate effect is interpreted and some details of strain rate effect are adequately discussed. The present analyses agree with the existing experimental results. Based on the analyses, we propose that strain rate criteria rather than stress criteria should be satisfied when a metal is fully yielded at a given strain rate. (condensed matter: structure, mechanical and thermal properties)

  9. Improved thermal stability and hole mobilities in a strained-Si/strained-Si1-yGe y/strained-Si heterostructure grown on a relaxed Si1-xGe x buffer

    International Nuclear Information System (INIS)

    Gupta, Saurabh; Lee, Minjoo L.; Isaacson, David M.; Fitzgerald, Eugene A.

    2005-01-01

    A dual channel heterostructure consisting of strained-Si/strained-Si 1-y Ge y on relaxed Si 1-x Ge x (y > x), provides a platform for fabricating metal-oxide-semiconductor field-effect transistors (MOSFETs) with high hole mobilities (μ eff ) which depend directly on Ge concentration and strain in the strained-Si 1-y Ge y layer. Ge out-diffuses from the strained-Si 1-y Ge y layer into relaxed Si 1-x Ge x during high temperature processing, reducing peak Ge concentration and strain in the strained-Si 1-y Ge y layer and degrades hole μ eff in these dual channel heterostructures. A heterostructure consisting of strained-Si/strained-Si 1-y Ge y /strained-Si, referred to as a trilayer heterostructure, grown on relaxed Si 1-x Ge x has much reduced Ge out-flux from the strained-Si 1-y Ge y layer and retains higher μ eff after thermal processing. Improved hole μ eff over similar dual channel heterostructures is also observed in this heterostructure. This could be a result of preventing the hole wavefunction tunneling into the low μ eff relaxed Si 1-x Ge x layer due to the additional valence band offset provided by the underlying strained-Si layer. A diffusion coefficient has been formulated and implemented in a finite difference scheme for predicting the thermal budget of the strained SiGe heterostructures. It shows that the trilayer heterostructures have superior thermal budgets at higher Ge concentrations. Ring-shaped MOSFETs were fabricated on both platforms and subjected to various processing temperatures in order to compare the extent of μ eff reduction with thermal budget. Hole μ eff enhancements are retained to a much higher extent in a trilayer heterostructure after high temperature processing as compared to a dual channel heterostructure. The improved thermal stability and hole μ eff of a trilayer heterostructure makes it an ideal platform for fabricating high μ eff MOSFETs that can be processed over higher temperatures without significant losses in hole

  10. Mechanical Strain Measurement from Coda Wave Interferometry

    Science.gov (United States)

    Azzola, J.; Schmittbuhl, J.; Zigone, D.; Masson, F.; Magnenet, V.

    2017-12-01

    Coda Wave Interferometry (CWI) aims at tracking small changes in solid materials like rocks where elastic waves are diffusing. They are intensively sampling the medium, making the technique much more sensitive than those relying on direct wave arrivals. Application of CWI to ambient seismic noise has found a large range of applications over the past years like for multiscale imaging but also for monitoring complex structures such as regional faults or reservoirs (Lehujeur et al., 2015). Physically, observed changes are typically interpreted as small variations of seismic velocities. However, this interpretation remains questionable. Here, a specific focus is put on the influence of the elastic deformation of the medium on CWI measurements. The goal of the present work is to show from a direct numerical and experimental modeling that deformation signal also exists in CWI measurements which might provide new outcomes for the technique.For this purpose, we model seismic wave propagation within a diffusive medium using a spectral element approach (SPECFEM2D) during an elastic deformation of the medium. The mechanical behavior is obtained from a finite element approach (Code ASTER) keeping the mesh grid of the sample constant during the whole procedure to limit numerical artifacts. The CWI of the late wave arrivals in the synthetic seismograms is performed using both a stretching technique in the time domain and a frequency cross-correlation method. Both show that the elastic deformation of the scatters is fully correlated with time shifts of the CWI differently from an acoustoelastic effect. As an illustration, the modeled sample is chosen as an effective medium aiming to mechanically and acoustically reproduce a typical granitic reservoir rock.Our numerical approach is compared to experimental results where multi-scattering of an acoustic wave through a perforated loaded Au4G (Dural) plate is performed at laboratory scale. Experimental and numerical results of the

  11. Mechanical, relaxation behavior and thermal degradation of UV irradiated poly(vinyl acetate)/poly( methyl methacrylate) blends

    International Nuclear Information System (INIS)

    Mansour, S.A.; Hafez, M.; Hussien, K.A.

    2005-01-01

    The effect of different doses of UV- irradiation on the mechanical and relaxation properties of poly(vinyl acetate)/poly(methyl methacrylate) blends were studied. Films of PVAc/PMMA blend with different contents were prepared using the casting technique. Also, PMMA could be blended with PVAc to improve its impact strength. Moreover UV-irradiation causes degradation of PVAc and formation of ketonic and aldehyde carbonyl groups according to a suggested scheme. Irradiation of PvAc/ PMMA blends causes a higher degree of degradation as compared to the PVAc alone although the PMMA is more susceptible than PVAc to the influence of radiation. Recognizable differences are observed for all parameters between the unirradiated and irradiated samples. Existence of a relaxation mechanism within the first 200s is reported. The shear modulus for all samples is also obtained and discussed. These data are used to calculate the strain energy density using the equation proposed by Blatzetal(1974 trans. Soc.Rheol. 18 145-61), based on the n-measure of Sethe

  12. Critical thickness and strain relaxation in high-misfit heteroepitaxial systems: PbTe1-xSex on PbSe (001)

    International Nuclear Information System (INIS)

    Wiesauer, Karin; Springholz, G.

    2004-01-01

    Strain relaxation and misfit dislocation formation is investigated for the high-misfit PbTe 1-x Se x /PbSe (001) heteroepitaxial system in which the lattice mismatch varies from 0% to 5.5%. Because a two-dimensional (2D) layer growth prevails for all PbTe 1-x Se x ternary compositions, the lattice mismatch is relaxed purely by misfit dislocations. In addition, it is found that strain relaxation is not hindered by dislocation kinetics. Therefore, this material combination is an ideal model system for testing the equilibrium Frank-van der Merwe and Matthews-Blakeslee strain relaxation models. In our experiments, we find significantly lower values of the critical layer thickness as compared to the model predictions. This discrepancy is caused by the inappropriate description of the dislocation self-energies when the layer thickness becomes comparable to the dislocation core radius. To resolve this problem, a modified expression for the dislocation self-energy is proposed. The resulting theoretical critical thicknesses are in excellent agreement with the experimental data. In addition, a remarkable universal scaling behavior is found for the strain relaxation data. This underlines the breakdown of the current strain relaxation models

  13. High-temperature mechanical relaxation in glass-like B2O3

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.

    1987-01-01

    The study of high-temperature mechanical relaxation in glass-like B 2 O 3 was carried out at the temperatures from 470 to 620 K using the method of internal friction at freely damped tortional vibrations (frequency range is 0.05 - 10 Hz) and forced torsional vibrations (frequency range is 0.1 -0.00001 Hz). Possible mechanisms of high-temperature mechanical relaxation are considered. It is shown that several possible mechanisms of high-temperature mechanical relaxation in glass-like B 2 O 3 can be singled out. Switching of B-O bridge bond between two boroxol cycles of boroxol grouping for oxygen vacancy in spatial structure of glass-like B 2 O 3 , formed as a result of thermal breaking of one out of three B-O bonds, according to diffusion theory of glass viscosity. The slip of one layer boroxol groupings as to another one in the presence of only tricoordinated boron atoms in the structure of glass-like B 2 O 3

  14. Statistical mechanical analysis of linear programming relaxation for combinatorial optimization problems.

    Science.gov (United States)

    Takabe, Satoshi; Hukushima, Koji

    2016-05-01

    Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α-uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α=2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c=e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c=1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α≥3, minimum vertex covers on α-uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c=e/(α-1) where the replica symmetry is broken.

  15. Statistical mechanical analysis of linear programming relaxation for combinatorial optimization problems

    Science.gov (United States)

    Takabe, Satoshi; Hukushima, Koji

    2016-05-01

    Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α -uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α =2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c =e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c =1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α ≥3 , minimum vertex covers on α -uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c =e /(α -1 ) where the replica symmetry is broken.

  16. Mechanical control over valley magnetotransport in strained graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning, E-mail: maning@stu.xjtu.edu.cn [Department of Physics, MOE Key Laboratory of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Shengli, E-mail: zhangsl@mail.xjtu.edu.cn [Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Daqing, E-mail: liudq@cczu.edu.cn [School of Mathematics and Physics, Changzhou University, Changzhou 213164 (China)

    2016-05-06

    Recent experiments report that the graphene exhibits Landau levels (LLs) that form in the presence of a uniform strain pseudomagnetic field with magnitudes up to hundreds of tesla. We further reveal that the strain removes the valley degeneracy in LLs, and leads to a significant valley polarization with inversion symmetry broken. This accordingly gives rise to the well separated valley Hall plateaus and Shubnikov–de Haas oscillations. These effects are absent in strainless graphene, and can be used to generate and detect valley polarization by mechanical means, forming the basis for the new paradigm “valleytronics” applications. - Highlights: • We explore the mechanical strain effects on the valley magnetotransport in graphene. • We analytically derive the dc collisional and Hall conductivities under strain. • The strain removes the valley degeneracy in Landau levels. • The strain causes a significant valley polarization with inversion symmetry broken. • The strain leads to the well separated valley Hall and Shubnikov–de Haas effects.

  17. Studies on strain relaxation of La{sub 0.5}Ba{sub 0.5}MnO{sub 3} film by normal and grazing incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiou [Hangzhou Dianzi University, Institute of Materials Physics, Hangzhou (China); Tan, Weishi [Hunan City University, College of Communication and Electronic Engineering, Yiyang (China); Nanjing University of Science and Technology, Key Laboratory of Soft Chemistry and Functional Materials, Department of Applied Physics, Ministry of Education, Nanjing (China); Liu, Hao [Suzhou Institute of Industrial Technology, Department of Electronic and Communication Engineering, Suzhou (China); Cao, Mengxiong; Wang, Xingyu; Ma, Chunlin [Nanjing University of Science and Technology, Key Laboratory of Soft Chemistry and Functional Materials, Department of Applied Physics, Ministry of Education, Nanjing (China); Jia, Quanjie [The Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2017-03-15

    Perovskite manganite La{sub 0.5}Ba{sub 0.5}MnO{sub 3} (LBMO) films were deposited on (001)-oriented single-crystal SrTiO{sub 3} (STO) substrates by pulsed laser deposition. High-resolution X-ray diffraction and grazing incidence X-ray diffraction techniques were applied to characterize the crystal structure and lattice strain of LBMO films. The in-plane and out-of-plane growth orientations of LBMO films with respect to substrate surface have been studied. The epitaxial orientation relationship LBMO (001) [100] //STO (001) [100] exists at the LBMO/STO interface. The lattice strain of LBMO film begins to relax with the thickness of LBMO film up to 12 nm. When the thickness is further increased up to 43 nm, the film is in fully strain-relaxed state. Jahn-Teller strain plays an important role in LBMO/STO system. The mechanism for strain relaxation is in accordance with that of tetragonal distortion. (orig.)

  18. Highly luminescent, high-indium-content InGaN film with uniform composition and full misfit-strain relaxation

    Science.gov (United States)

    Fischer, A. M.; Wei, Y. O.; Ponce, F. A.; Moseley, M.; Gunning, B.; Doolittle, W. A.

    2013-09-01

    We have studied the properties of thick InxGa1-xN films, with indium content ranging from x ˜ 0.22 to 0.67, grown by metal-modulated epitaxy. While the low indium-content films exhibit high density of stacking faults and dislocations, a significant improvement in the crystalline quality and optical properties has been observed starting at x ˜ 0.6. Surprisingly, the InxGa1-xN film with x ˜ 0.67 exhibits high luminescence intensity, low defect density, and uniform full lattice-mismatch strain relaxation. The efficient strain relaxation is shown to be due to a critical thickness close to the monolayer range. These films were grown at low temperatures (˜400 °C) to facilitate indium incorporation and with precursor modulation to enhance surface morphology and metal adlayer diffusion. These findings should contribute to the development of growth techniques for nitride semiconductors under high lattice misfit conditions.

  19. Influence of strain relaxation on the optical properties of InGaN/GaN multiple quantum well nanorods

    International Nuclear Information System (INIS)

    Wang, Q; Bai, J; Gong, Y P; Wang, T

    2011-01-01

    Optical investigation has been carried out on InGaN/GaN nanorod structures with different indium compositions, fabricated from InGaN/GaN multiple quantum well (MQW) epitaxial wafers using a self-organized nickel nano-mask and subsequent dry etching techniques. In comparison with the as-grown InGaN/GaN MQWs, the internal quantum efficiencies of the nanorods are significantly improved, in particular, for the green InGaN/GaN nanorods with a high indium composition, the internal quantum efficiency is enhanced by a factor of 8, much larger than the enhancement factor of 3.4 for the blue InGaN/GaN nanorods. X-ray reciprocal space mapping (RSM) measurements have been performed in order to quantitatively evaluate the stain relaxation in the nanorods, demonstrating that the majority of strain in InGaN/GaN MQWs can be relaxed as a result of fabrication into nanorods. The excitation-power-dependent photoluminescence measurements have also clearly shown that a significant reduction in the strain-induced quantum confined stark effect has occurred to the nanorod structures.

  20. Relaxation of the chemical bond skin chemisorption size matter ZTP mechanics H2O myths

    CERN Document Server

    Sun, Chang Q

    2014-01-01

    The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band, and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O:H-O) and the anomalous behav...

  1. Ovariectomy increases the participation of hyperpolarizing mechanisms in the relaxation of rat aorta.

    Directory of Open Access Journals (Sweden)

    Ana Sagredo

    Full Text Available This study examines the downstream NO release pathway and the contribution of different vasodilator mediators in the acetylcholine-induced response in rat aorta 5-months after the loss of ovarian function. Aortic segments from ovariectomized and control female Sprague-Dawley rats were used to measure: the levels of superoxide anion, the superoxide dismutases (SODs activity, the cGMP formation, the cGMP-dependent protein kinase (PKG activity and the involvement of NO, cGMP, hydrogen peroxide and hyperpolarizing mechanisms in the ACh-induced relaxation. The results showed that ovariectomy did not alter ACh-induced relaxation; incubation with L-NAME, a NO synthase inhibitor, decreased the ACh-induced response to a lesser extent in aorta from ovariectomized than from control rats, while ODQ, a guanylate cyclase inhibitor, decreased that response to a similar extent; the blockade of hyperpolarizing mechanisms, by precontracting arteries with KCl, decreased the ACh-induced response to a greater extent in aortas from ovariectomized than those from control rats; catalase, that decomposes hydrogen peroxide, decreased the ACh-induced response only in aorta from ovariectomized rats. In addition, ovariectomy increased superoxide anion levels and SODs activity, decreased cGMP formation and increased PKG activity. Despite the increased superoxide anion and decreased cGMP in aorta from ovariectomized rats, ACh-induced relaxation is maintained by the existence of hyperpolarizing mechanisms in which hydrogen peroxide participates. The greater contribution of hydrogen peroxide in ACh-induced relaxation is due to increased SOD activity, in an attempt to compensate for increased superoxide anion formation. Increased PKG activity could represent a redundant mechanism to ensure vasodilator function in the aorta of ovariectomized rats.

  2. Micro-mechanics of polycrystals subjected to small strains

    International Nuclear Information System (INIS)

    Sauzay, M.

    2009-04-01

    The author proposes an overview of the different research works he performed during several years. His aim is the understanding and the modelling of plasticity and damage mechanisms in metal polycrystals subjected to small strains, mainly under long duration creep and fatigue. Three topics are more particularly developed: the distribution of mechanical fields in polycrystals subjected to small strains, the strain localisation at the grain scale, and the softening of martensitic steels under creep or fatigue loadings. For each of these topics, the author reports the investigation of microstructure and of damage and strain mechanisms (mechanical tests, microstructure observations), the modelling of these mechanisms (based on continuum mechanics, crystalline elasto-plasticity, finite elements calculations, theory of dislocations and diffusion), and the validation of these predictions at a microscopic and macroscopic scale by comparison with experimental measurements and observations

  3. Mechanical characterization of journal superconducting magnetic bearings: stiffness, hysteresis and force relaxation

    International Nuclear Information System (INIS)

    Cristache, Cristian; Valiente-Blanco, Ignacio; Diez-Jimenez, Efren; Alvarez-Valenzuela, Marco Antonio; Perez-Diaz, Jose Luis; Pato, Nelson

    2014-01-01

    Superconducting magnetic bearings (SMBs) can provide stable levitation without direct contact between them and a magnetic source (typically a permanent magnet). In this context, superconducting magnetic levitation provides a new tool for mechanical engineers to design non-contact mechanisms solving the tribological problems associated with contact at very low temperatures. In the last years, different mechanisms have been proposed taking advantage of superconducting magnetic levitation. Flywheels, conveyors or mechanisms for high-precision positioning. In this work the mechanical stiffness of a journal SMBs have been experimentally studied. Both radial and axial stiffness have been considered. The influence of the size and shape of the permanent magnets (PM), the size and shape of the HTS, the polarization and poles configuration of PMs of the journal SMB have been studied experimentally. Additionally, in this work hysteresis behavior and force relaxation are considered because they are essential for mechanical engineer when designing bearings that hold levitating axles.

  4. The Peculiarities of Strain Relaxation in GaN/AlN Superlattices Grown on Vicinal GaN (0001) Substrate: Comparative XRD and AFM Study.

    Science.gov (United States)

    Kuchuk, Andrian V; Kryvyi, Serhii; Lytvyn, Petro M; Li, Shibin; Kladko, Vasyl P; Ware, Morgan E; Mazur, Yuriy I; Safryuk, Nadiia V; Stanchu, Hryhorii V; Belyaev, Alexander E; Salamo, Gregory J

    2016-12-01

    Superlattices (SLs) consisting of symmetric layers of GaN and AlN have been investigated. Detailed X-ray diffraction and reflectivity measurements demonstrate that the relaxation of built-up strain in the films generally increases with an increasing number of repetitions; however, an apparent relaxation for subcritical thickness SLs is explained through the accumulation of Nagai tilt at each interface of the SL. Additional atomic force microscopy measurements reveal surface pit densities which appear to correlate with the amount of residual strain in the films along with the appearance of cracks for SLs which have exceeded the critical thickness for plastic relaxation. These results indicate a total SL thickness beyond which growth may be limited for the formation of high-quality coherent crystal structures; however, they may indicate a growth window for the reduction of threading dislocations by controlled relaxation of the epilayers.

  5. Strain relaxation near high-k/Si interface by post-deposition annealing

    International Nuclear Information System (INIS)

    Emoto, T.; Akimoto, K.; Yoshida, Y.; Ichimiya, A.; Nabatame, T.; Toriumi, A.

    2005-01-01

    We studied the effect of post-deposition annealing on a HfO 2 /Si interface of by extremely asymmetric X-ray diffraction. Comparing the rocking curves before annealing the sample with those of the annealed sample, it is found that an interfacial layer with a density of 3 g/cm 3 grows at the interface between the HfO 2 layer and the substrate during post-deposition annealing. The wavelength dependency of the integrated intensities of the rocking curve for the as-deposited sample fluctuated with the observation position. This fluctuation was suppressed by annealing. From these results we concluded that the strain introduced into the substrate becomes homogeneous by annealing. Moreover, a quantitative estimation of the strain by curve fitting reveals the existence of compressive strain under the HfO 2 layer

  6. A broadband damper design inspired by cartilage-like relaxation mechanisms

    Science.gov (United States)

    Liu, Lejie; Usta, Ahmet D.; Eriten, Melih

    2017-10-01

    In this study, we introduce a broadband damper design inspired by the cartilage-like relaxation mechanisms. In particular, we study broadband (static to 10 kHz) dissipative properties of model cartilage systems by probe-based static and dynamic indentation, and validate that fractional Zener models can simulate the empirical data up to a desirable accuracy within the frequency range of interest. Utilizing these observations, we design a composite damper design where a poroelastic layer is sandwiched between two hard materials, and load transfer occurs across interfaces with multiple length scales. Modeling those interfaces with fractional Zener elements in parallel configuration, and manipulating the distribution of the Zener elements across different peak relaxation frequencies, we obtain a relatively constant loss factor within an unprecedented frequency range (3-3 kHz). We also discuss how these findings can be employed in a practical damping design.

  7. Mechanical relaxations and 1/f noise in Bi, Nb, and Fe films

    International Nuclear Information System (INIS)

    Alers, G.B.; Weissman, M.B.

    1991-01-01

    Anelastic piezoresistance and 1/f noise were measured in the same samples to compare mechanical relaxations with 1/f noise. In bismuth below 200 K, both effects could be fitted to a model invoking one class of mobile defects. In niobium, both the anelastic piezoresistance and the noise scaled with the concentration of dissolved hydrogen. A well-defined peak in noise versus temperature was observed without any peak in the anelastic response. In iron, noise apparently from a carbon Snoek relaxation was observed at 220 K in a sample with high impurity concentration and at 300 K with low impurity concentration. No anelastic feature was found at 220 K in the high-impurity-concentration sample. The broad nature of 1/f noise appears to arise not from a fundamental source but from the generally poor quality of thin films

  8. Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene.

    Science.gov (United States)

    Zhao, Yunlong; Feng, Jiangang; Liu, Xue; Wang, Fengchao; Wang, Lifen; Shi, Changwei; Huang, Lei; Feng, Xi; Chen, Xiyuan; Xu, Lin; Yan, Mengyu; Zhang, Qingjie; Bai, Xuedong; Wu, Hengan; Mai, Liqiang

    2014-08-01

    High-energy lithium battery materials based on conversion/alloying reactions have tremendous potential applications in new generation energy storage devices. However, these applications are limited by inherent large volume variations and sluggish kinetics. Here we report a self-adaptive strain-relaxed electrode through crumpling of graphene to serve as high-stretchy protective shells on metal framework, to overcome these limitations. The graphene sheets are self-assembled and deeply crumpled into pinecone-like structure through a contraction-strain-driven crumpling method. The as-prepared electrode exhibits high specific capacity (2,165 mAh g(-1)), fast charge-discharge rate (20 A g(-1)) with no capacity fading in 1,000 cycles. This kind of crumpled graphene has self-adaptive behaviour of spontaneous unfolding-folding synchronized with cyclic expansion-contraction volumetric variation of core materials, which can release strain and maintain good electric contact simultaneously. It is expected that such findings will facilitate the applications of crumpled graphene and the self-adaptive materials.

  9. MOCVD growth of GaN layer on InN interlayer and relaxation of residual strain

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keon-Hun; Park, Sung Hyun; Kim, Jong Hack; Kim, Nam Hyuk; Kim, Min Hwa [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Na, Hyunseok [Department of Advanced Materials Science and Engineering, Daejin University, Pocheon, 487-711 (Korea, Republic of); Yoon, Euijoon, E-mail: eyoon@snu.ac.k [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 433-270 (Korea, Republic of)

    2010-09-01

    100 nm InN layer was grown on sapphire c-plane using a metal-organic chemical vapor deposition (MOCVD) system. Low temperature (LT) GaN layer was grown on InN layer to protect InN layer from direct exposure to hydrogen flow during high temperature (HT) GaN growth and/or abrupt decomposition. Subsequently, thick HT GaN layer (2.5 {mu}m thick) was grown at 1000 {sup o}C on LT GaN/InN/sapphire template. Microstructure of epilayer-substrate interface was investigated by transmission electron microscopy (TEM). From the high angle annular dark field TEM image, the growth of columnar structured LT GaN and HT GaN with good crystallinity was observed. Though thickness of InN interlayer is assumed to be about 100 nm based on growth rate, it was not clearly shown in TEM image due to the InN decomposition. The lattice parameters of GaN layers were measured by XRD measurement, which shows that InN interlayer reduces the compressive strain in GaN layer. The relaxation of compressive strain in GaN layer was also confirmed by photoluminescence (PL) measurement. As shown in the PL spectra, red shift of GaN band edge peak was observed, which indicates the reduction of compressive strain in GaN epilayer.

  10. Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors.

    Science.gov (United States)

    Jiang, Ying; Liu, Zhiyuan; Matsuhisa, Naoji; Qi, Dianpeng; Leow, Wan Ru; Yang, Hui; Yu, Jiancan; Chen, Geng; Liu, Yaqing; Wan, Changjin; Liu, Zhuangjian; Chen, Xiaodong

    2018-03-01

    Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mechanical spectroscopy of thermal stress relaxation in aluminium alloys reinforced with short alumina fibres

    Energy Technology Data Exchange (ETDEWEB)

    Carreno-Morelli, E.; Schaller, R. [Ecole Polytechnique Federale, Lausanne (Switzerland). Inst. de Genie Atomique; Urreta, S.E.

    1998-05-01

    The mechanical behaviour under low temperature thermal cycling of aluminium-based composites reinforced with short Al{sub 2}O{sub 3} SAFFIL fibres has been investigated by mechanical spectroscopy (mechanical loss and elastic shear modulus measurements). A mechanical loss maximum has been observed during cooling which originates in the relaxation of thermal stresses at the interfaces due to the differential thermal expansion between matrix and reinforcement. The maximum height increases with the volumetric fibre content. In addition, if the matrix strength is increased by the appropriated choice of alloy and thermal treatment, the maximum diminishes and shifts to lower temperatures. No damage accumulation at the interfaces has been detected during long period thermal cycling in the range 100 to 500 K. A description of the damping behaviour is made in terms of the development of microplastic zones which surround the fibres. (orig.) 9 refs.

  12. Mechanisms behind the relaxing effect of furosemide on the isolated rabbit ear artery

    Energy Technology Data Exchange (ETDEWEB)

    Tian, R.; Aalkjaer, C.; Andreasen, F. (Institute of Pharmacology, University of Aarhus, Aarhus (Denmark))

    1991-01-01

    The effect of furosemide on isometric contration and {sup 86}Rb uptake were studied in the isolated rabbit central ear artery (CEA). A concentration-dependent relaxing effect of furosemide (0.06 mM-1.0 mM) was found in vessel segments with intact endothelium. The maximal relaxation was 28.6+-3.9% (10). The effect was not diminished in segments deprived of endothelium, and removal of endothelium itself caused no change of the force development to electrical field stimualtion. The relaxing effect was time-dependent and stimulation-dependent and was not significantly affected by membrane depolarization induced by increasing external (K{sup +}) from 10 to 120 mM. The {sup 86}Rb uptake was inhibited by both furosemide and ouabain (8.0+-0.5(8) and 5.3+-0.5(8) versus 12.8+-0.9(16) nmol (K{sup +})x mm{sup -1}x(10 min.){sup -1} in the furosemide (1.0 mM), ouabain (1.0 mM) and control groups, respectively) without interaction between the two drugs. The {sup 86}Rb uptake was not further inhibited by increasing the furosemide concentration from 0.12 mM to 1.0 mM. Our results suggest: firstly, the direct relaxing effect of furosemide on isolated vessel segments in endothelium-independent and secondly, the inhibition of the Na{sup +}-K{sup +}-Cl{sup -} cotransport and a possible consequent hyperpolarization of the membrane is unlikely to be the sole mechanism responsible for the vasorelaxant effect of furosemide. The demonstrated direct effect on vascular tone may be of clinical importance in situations with very high plasma concentrations of the drug or very low concentrations of serum albumin. (aluthor).

  13. Simple molecular mechanism of heat transfer: Debye relaxation versus power-law

    International Nuclear Information System (INIS)

    Gall, M.; Kutner, R.

    2005-01-01

    We study a simple molecular model (at coarse-grain level) as a basis of irreversible heat transfer through a diathermic partition. The partition separates into two adjacent parts a box containing ideal point particles that communicate only though this partition. We provide the basic mechanism of energy transfer between the left- and right-hand side gas samples by assuming equipartition of kinetic energy of all outgoing particles colliding with the partition at a given time. We analyse and compare two essentially different cases (A) the reference one, where we assume that the border walls of the box and the diathermic partitions can randomize the direction of motion of rebounding particles, and (B) the case where we assume the mirror collisions of particles with the border walls and the partition. In both cases the rebounding of the particles from border walls is elastic. The above introduced assumptions allow us to numerically simulate and analytically consider, for example, the relaxation of temperatures of both gas samples and the entropy of the system. However, in both cases the long-time relaxation is essentially different since in case (A) it is an exponential one, while in case (B) it seems to be a power-law relaxation. The obtained results well agree in case (A) with the predictions of the phenomenological, linear theory of irreversible theory had to be developed which assumes time-dependence of heat conductivity; it describes the relaxation of the system far from equilibrium. The explanation of the results obtained in this case is, nevertheless, an intriguing problem. (author)

  14. Mobility-limiting mechanisms in single and dual channel strained Si/SiGe MOSFETs

    International Nuclear Information System (INIS)

    Olsen, S.H.; Dobrosz, P.; Escobedo-Cousin, E.; Bull, S.J.; O'Neill, A.G.

    2005-01-01

    Dual channel strained Si/SiGe CMOS architectures currently receive great attention due to maximum performance benefits being predicted for both n- and p-channel MOSFETs. Epitaxial growth of a compressively strained SiGe layer followed by tensile strained Si can create a high mobility buried hole channel and a high mobility surface electron channel on a single relaxed SiGe virtual substrate. However, dual channel n-MOSFETs fabricated using a high thermal budget exhibit compromised mobility enhancements compared with single channel devices, in which both electron and hole channels form in strained Si. This paper investigates the mobility-limiting mechanisms of dual channel structures. The first evidence of increased interface roughness due to the introduction of compressively strained SiGe below the tensile strained Si channel is presented. Interface corrugations degrade electron mobility in the strained Si. Roughness measurements have been carried out using AFM and TEM. Filtering AFM images allowed roughness at wavelengths pertinent to carrier transport to be studied and the results are in agreement with electrical data. Furthermore, the first comparison of strain measurements in the surface channels of single and dual channel architectures is presented. Raman spectroscopy has been used to study channel strain both before and after processing and indicates that there is no impact of the buried SiGe layer on surface macrostrain. The results provide further evidence that the improved performance of the single channel devices fabricated using a high thermal budget arises from improved surface roughness and reduced Ge diffusion into the Si channel

  15. Relaxant mechanisms of 3, 5, 7, 30, 40-pentamethoxyflavone on isolated human cavernosum

    DEFF Research Database (Denmark)

    Jansakul, Chaweewan; Tachanaparuksa, Kuldej; Mulvany, Michael J.

    2012-01-01

    We have investigated effects and mechanisms responsible for the activity of 3, 5, 7, 30, 40-pentamethoxyflavone (PMF) on isolated human cavernosum. PMF is the major flavone isolated from Kaempferia parviflora claimed to act as an aphrodisiac. PMF caused relaxation of phenylephrine precontracted...... Krebs solution with nifedipine (blocker of L-type Ca2þ channels), or in Ca2þ-free Krebs solution, PMF caused a further inhibition of human cavernosum contracted with phenylephrine. In human cavernosum treated with thapsigargin (inhibitor of sarcoplasmic reticulum Ca2þ-ATPase) in Ca2þ-free medium, PMF...

  16. Lattice distortion and strain relaxation in epitaxial thin films of multiferroic TbMnO3 probed by X-ray diffractometry and micro-Raman spectroscopy

    Science.gov (United States)

    Hu, Y.; Stender, D.; Medarde, M.; Lippert, T.; Wokaun, A.; Schneider, C. W.

    2013-08-01

    A detailed structural XRD analysis of (1 1 0)-oriented TbMnO3 thin films grown on (1 1 0)-YAlO3 substrates shows the co-existence of a strained and relaxed "sublayer" within the films due to strain relaxation during epitaxial growth by pulsed laser deposition. The substrate-film lattice mismatch yields a compressive strain anisotropy along the two in-plane directions, i.e. [1 -1 0] and [0 0 1] and a monoclinic distortion. A further manifestation of the growth-induced strain is the hardening of Raman active modes as a result of changed atomic motions along the [1 -1 0] and [0 0 1] directions.

  17. Lattice distortion and strain relaxation in epitaxial thin films of multiferroic TbMnO{sub 3} probed by X-ray diffractometry and micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y.; Stender, D. [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Medarde, M. [Paul Scherrer Institute, Laboratory for Developments and Methods, 5232 Villigen-PSI (Switzerland); Lippert, T., E-mail: thomas.lippert@psi.ch [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Wokaun, A.; Schneider, C.W. [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen-PSI (Switzerland)

    2013-08-01

    A detailed structural XRD analysis of (1 1 0)-oriented TbMnO{sub 3} thin films grown on (1 1 0)-YAlO{sub 3} substrates shows the co-existence of a strained and relaxed “sublayer” within the films due to strain relaxation during epitaxial growth by pulsed laser deposition. The substrate-film lattice mismatch yields a compressive strain anisotropy along the two in-plane directions, i.e. [1 −1 0] and [0 0 1] and a monoclinic distortion. A further manifestation of the growth-induced strain is the hardening of Raman active modes as a result of changed atomic motions along the [1 −1 0] and [0 0 1] directions.

  18. X-ray study of strain relaxation in heteroepitaxial AlGaAs layers annealed under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Bak-Misiuk, J.; Adamczewska, J.; Kozanecki, A.; Kuritsyn, D.; Glukhanyuk, W.; Trela, J.; Misiuk, A.; Reginski, K.; Wierzchowski, W.; Wieteska, K.

    2002-01-01

    The effect of treatment at up to 1270 K under hydrostatic argon pressure, up to 1.2 GPa, on strain relaxation of AlGaAs layers was investigated by X-ray diffraction and related methods. The 1.5 μm thick AlGaAs layers were grown by molecular beam epitaxy method on 001 oriented semi-insulating GaAs substrate at 950 K. An increase of intensity of X-ray diffuse scattering, originating from hydrostatic pressure-induced misfit dislocations, was observed for all treated samples. For the samples treated at 920 K during 1 h under 0.6 GPa, the diffuse scattering was confined to the [110] crystallographic direction, perpendicular to the direction of dislocations. For the samples treated at 1.2 GPa, a different behaviour is observed, namely the diffuse scattering extends along all azimuthal directions, indicating that dislocations are created in both [110] and [1 - 10] directions. The change of strain after the treatment was most pronounced for the samples treated at 1.2 GPa for 1 h at 920 K. (author)

  19. Enhanced thermo-mechanical performance and strain-induced ...

    Indian Academy of Sciences (India)

    Enhanced thermo-mechanical performance and strain-induced band gap reduction of TiO2@PVC nanocomposite films ... School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea; School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea ...

  20. Mechanical properties of graphene nanoribbons under uniaxial tensile strain

    Science.gov (United States)

    Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu

    2018-03-01

    Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.

  1. Confronting the relaxation mechanism for a large cosmological constant with observations

    International Nuclear Information System (INIS)

    Basilakos, Spyros; Bauer, Florian; Solà, Joan

    2012-01-01

    In order to deal with a large cosmological constant a relaxation mechanism based on modified gravity has been proposed recently. By virtue of this mechanism the effect of the vacuum energy density of a given quantum field/string theory (no matter how big is its initial value in the early universe) can be neutralized dynamically, i.e. without fine tuning, and hence a Big Bang-like evolution of the cosmos becomes possible. Remarkably, a large class (F n m ) of models of this kind, namely capable of dynamically adjusting the vacuum energy irrespective of its value and size, has been identified. In this paper, we carefully put them to the experimental test. By performing a joint likelihood analysis we confront these models with the most recent observational data on type Ia supernovae (SNIa), the Cosmic Microwave Background (CMB), the Baryonic Acoustic Oscillations (BAO) and the high redshift data on the expansion rate, so as to determine which ones are the most favored by observations. We compare the optimal relaxation models F n m found by this method with the standard or concordance ΛCDM model, and find that some of these models may appear as almost indistinguishable from it. Interestingly enough, this shows that it is possible to construct viable solutions to the tough cosmological fine tuning problem with models that display the same basic phenomenological features as the concordance model

  2. Electronic, mechanical and dielectric properties of silicane under tensile strain

    International Nuclear Information System (INIS)

    Jamdagni, Pooja; Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil

    2015-01-01

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices

  3. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems.

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2016-02-28

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  4. Assessment of the growth/etch back technique for the production of Ge strain-relaxed buffers on Si

    Science.gov (United States)

    Hartmann, J. M.; Aubin, J.

    2018-04-01

    Thick Ge layers grown on Si(0 0 1) are handy for the production of GeOI wafers, as templates for the epitaxy of III-V and GeSn-based heterostructures and so on. Perfecting their crystalline quality would enable to fabricate suspended Ge micro-bridges with extremely high levels of tensile strain (for mid IR lasers). In this study, we have used a low temperature (400 °C)/high temperature (750 °C) approach to deposit with GeH4 various thickness Ge layers in the 0.5 μm - 5 μm range. They were submitted afterwards to short duration thermal cycling under H2 (in between 750 °C and 875-890 °C) to lower the Threading Dislocation Density (TDD). Some of the thickest layers were partly etched at 750 °C with gaseous HCl to recover wafer bows compatible with device processing later on. X-ray Diffraction (XRD) showed that the layers were slightly tensile-strained, with a 104.5-105.5% degree of strain relaxation irrespective of the thickness. The surface was cross-hatched, with a roughness slightly decreasing with the thickness, from 2.0 down to 0.8 nm. The TDD (from Omega scans in XRD) decreased from 8 × 107 cm-2 down to 107 cm-2 as the Ge layer thickness increased from 0.5 up to 5 μm. The lack of improvement when growing 5 μm thick layers then etching a fraction of them with HCl over same thickness layers grown in a single run was at variance with Thin Solid Films 520, 3216 (2012). Low temperature HCl defect decoration confirmed those findings, with (i) a TDD decreasing from slightly more 107 cm-2 down to 5 × 106 cm-2 as the Ge layer thickness increased from 1.3 up to 5 μm and (ii) no TDD hysteresis between growth and growth then HCl etch-back.

  5. Anisotropic-strain-relaxation-induced crosshatch morphology in epitaxial SrTiO{sub 3}/NdGaO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tan, X. L.; Chen, F.; Chen, P. F.; Xu, H. R.; Chen, B. B.; Jin, F.; Gao, G. Y.; Wu, W. B., E-mail: wuwb@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, and High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230026 (China)

    2014-10-15

    We investigate the strain relaxation and surface morphology of epitaxial SrTiO{sub 3} (STO) films grown on (001){sub O} and (110){sub O} planes of orthorhombic NdGaO{sub 3} (NGO), and (001) plane of cubic (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT) substrates. Although the average lattice mismatches are similar, strikingly regular crosshatched surface patterns can be found on STO/NGO(001){sub O}[(110){sub O}] films, contrary to the uniform surface of STO/LSAT(001). Based on the orientation and thickness dependent patterns and high-resolution x-ray diffractions, we ascribe the crosshatch morphology to the anisotropic strain relaxation with possibly the 60° misfit dislocation formation and lateral surface step flow in STO/NGO films, while an isotropic strain relaxation in STO/LSAT. Further, we show that the crosshatched STO/NGO(110){sub O} surface could be utilized as a template to modify the magnetotransport properties of epitaxial La{sub 0.6}Ca{sub 0.4}MnO{sub 3} films. This study highlights the crucial role of symmetry mismatch in determining the surface morphology of the perovskite oxide films, in addition to their epitaxial strain states, and offers a different route for designing and fabricating functional perovskite-oxide devices.

  6. InSitu SEM Investigation of Microstructural Damage Evolution and Strain Relaxation in a Melt Infiltrated SiC/SiC Composite

    Science.gov (United States)

    Sevener, Kathy; Chen, Zhe; Daly, Sam; Tracy, Jared; Kiser, Doug

    2016-01-01

    With CMC components poised to complete flight certification in turbine engines on commercial aircraft within the near future, there are many efforts within the aerospace community to model the mechanical and environmental degradation of CMCs. Direct observations of damage evolution are needed to support these modeling efforts and provide quantitative measures of damage parameters used in the various models. This study was performed to characterize the damage evolution during tensile loading of a melt infiltrated (MI) silicon carbide reinforced silicon carbide (SiC/SiC) composite. A SiC/SiC tensile coupon was loaded to a maximum global stress of 30 ksi in a tensile fixture within an SEM while observations were made at 5 ksi increments. Both traditional image analysis and DIC (digital image correlation) were used to quantify damage evolution. With the DIC analysis, microscale damage was observed at the fiber-matrix interfaces at stresses as low as 5 ksi. First matrix cracking took place between 20 and 25 ksi, accompanied by an observable relaxation in strain near matrix cracks. Matrix crack opening measurements at the maximum load ranged from 200 nm to 1.5 m. Crack opening along the fiber-matrix interface was also characterized as a function of load and angular position relative to the loading axis. This characterization was funded by NASA GRC and was performed to support NASA GRC modeling of SiC/SiC environmental degradation

  7. X-ray reciprocal space mapping of dislocation-mediated strain relaxation during InGaAs/GaAs(001) epitaxial growth

    International Nuclear Information System (INIS)

    Sasaki, Takuo; Ohshita, Yoshio; Kamiya, Itaru; Yamaguchi, Masafumi; Suzuki, Hidetoshi; Takahasi, Masamitu

    2011-01-01

    Dislocation-mediated strain relaxation during lattice-mismatched InGaAs/GaAs(001) heteroepitaxy was studied through in situ x-ray reciprocal space mapping (in situ RSM). At the synchrotron radiation facility SPring-8, a hybrid system of molecular beam epitaxy and x-ray diffractometry with a two-dimensional detector enabled us to perform in situ RSM at high-speed and high-resolution. Using this experimental setup, four results in terms of film properties were simultaneously extracted as functions of film thickness. These were the lattice constants, the diffraction broadenings along in-plane and out-of-plane directions, and the diffuse scattering. Based on correlations among these results, the strain relaxation processes were classified into four thickness ranges with different dislocation behavior. In addition, the existence of transition regimes between the thickness ranges was identified. Finally, the dominant dislocation behavior corresponding to each of the four thickness ranges and transition regimes was noted.

  8. Capacitor-less memory cell fabricated on nano-scale strained Si on a relaxed SiGe layer-on-insulator

    International Nuclear Information System (INIS)

    Kim, Tae-Hyun; Park, Jea-Gun

    2013-01-01

    We investigated the combined effect of the strained Si channel and hole confinement on the memory margin enhancement for a capacitor-less memory cell fabricated on nano-scale strained Si on a relaxed SiGe layer-on-insulator (ε-Si SGOI). The memory margin for the ε-Si SGOI capacitor-less memory cell was higher than that of the memory cell fabricated on an unstrained Si-on-insulator (SOI) and increased with increasing Ge concentration of the relaxed SiGe layer; i.e. the memory margin for the ε-Si SGOI capacitor-less memory cell (138.6 µA) at a 32 at% Ge concentration was 3.3 times higher than the SOI capacitor-less memory cell (43 µA). (paper)

  9. Zeeman relaxation of MnH (X7Σ+) in collisions with 3He: Mechanism and comparison with experiment

    International Nuclear Information System (INIS)

    Turpin, F.; Stoecklin, T.; Halvick, Ph.

    2011-01-01

    We present a theoretical study of the Zeeman relaxation of the magnetically trappable lowest field seeking state of MnH ( 7 Σ) in collisions with 3 He. We analyze the collisional Zeeman transition mechanism as a function of the final diatomic state and its variation as a function of an applied magnetic field. We show that as a result of this mechanism the levels with ΔM j >2 give negligible contributions to the Zeemam relaxation cross section. We also compare our results to the experimental cross sections obtained from the buffer-gas cooling and magnetic trapping of this molecule and investigate the dependence of the Zeeman relaxation cross section on the accuracy of the three-body interaction at ultralow energies.

  10. Zeeman relaxation of MnH (X7Σ+) in collisions with He3: Mechanism and comparison with experiment

    Science.gov (United States)

    Turpin, F.; Stoecklin, T.; Halvick, Ph.

    2011-03-01

    We present a theoretical study of the Zeeman relaxation of the magnetically trappable lowest field seeking state of MnH (7Σ) in collisions with He3. We analyze the collisional Zeeman transition mechanism as a function of the final diatomic state and its variation as a function of an applied magnetic field. We show that as a result of this mechanism the levels with ΔMj>2 give negligible contributions to the Zeemam relaxation cross section. We also compare our results to the experimental cross sections obtained from the buffer-gas cooling and magnetic trapping of this molecule and investigate the dependence of the Zeeman relaxation cross section on the accuracy of the three-body interaction at ultralow energies.

  11. Stress relaxation behavior and mechanism of AEREX350 and Waspaloy superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuzhou; Dong, Jianxin; Zhang, Maicang; Yao, Zhihao

    2016-12-15

    The relaxation properties of AEREX350 and Waspaloy were studied contrastively at temperatures ranging from 600 °C to 800 °C with the same initial stress 510 MPa. The relationship between the microstructure and relaxation properties was elucidated using scanning and transmission electron microscopy techniques. It was found that the relaxation limit and relaxation stability of the two alloys decreased obviously with the increase of temperature, but the relaxation stability of AEREX350 decreased more slowly compared with Waspaloy. Further investigations show that the relaxation behavior is mainly depended on both precipitate characteristics and its interaction with dislocations. The complex precipitates evolution of AEREX350 alloy leads to a higher relaxation limit at high temperature 800 °C, but more quantity of γ′ in Waspaloy results in a higher relaxation limit at the low temperature of 600 °C. Thus it is suggested that as fastener alloys, Waspaloy is more suitable for low temperature service while AEREX350 is the preferred choice for high temperature service.

  12. Mechanisms of stress generation and relaxation during pulsed laser deposition of epitaxial Fe-Pd magnetic shape memory alloy films on MgO

    International Nuclear Information System (INIS)

    Edler, Tobias; Mayr, S G; Buschbeck, Joerg; Mickel, Christine; Faehler, Sebastian

    2008-01-01

    Mechanical stress generation during epitaxial growth of Fe-Pd thin films on MgO from pulsed laser deposition is a key parameter for the suitability in shape memory applications. By employing in situ substrate curvature measurements, we determine the stress states as a function of film thickness and composition. Depending on composition, different stress states are observed during initial film growth, which can be attributed to different misfits. Compressive stress generation by atomic peening is observed in the later stages of growth. Comparison with ex situ x-ray based strain measurements allows integral and local stress to be distinguished and yields heterogeneities of the stress state between coherent and incoherent regions. In combination with cross-sectional TEM measurements the relevant stress relaxation mechanism is identified to be stress-induced martensite formation with (111) twinning

  13. Dielectric and shear mechanical relaxations in glass-forming liquids: A test of the Gemant-DiMarzio-Bishop model

    DEFF Research Database (Denmark)

    Niss, K.; Jakobsen, B.; Olsen, N.B.

    2005-01-01

    that the Gemant-DiMarzio-Bishop model is correct on a qualitative level. The quantitative agreement between the model and the data is on the other hand moderate to poor. It is discussed if a model-free comparison between the dielectric and shear mechanical relaxations is relevant, and it is concluded...

  14. Effect of Pre-Strain on the Dielectric and Dynamic Mechanical Properties of HSIII Silicone

    National Research Council Canada - National Science Library

    Szabo, J. P; Underhill, R. S; Rawji, M; Keough, I. A

    2006-01-01

    ...% uni-axial pre strain. The mechanical loss factor was unaffected by pre strain. The real and imaginary parts of the complex dielectric permittivity were also unaffected by the application of a biaxial pre strain...

  15. Quenching of exciton luminescence due to impact ionization and mechanisms of electron relaxation in cadmium sulphide

    International Nuclear Information System (INIS)

    Kagan, V.D.; Karpenko, S.L.; Katilyus, R.

    1989-01-01

    Quenching of exciton luminescence in the constant electric field in cadmium sulfide at 1.8K, caused by impact ionization of free and delocalization of bound excitons by hot electrons is observed. When the field is increase up to 1 kW/cm continuous transfer from the Taundsen-Shockley law to the Davydov-Wolf one takes place. Among the samples studied pure samples are distinguished by the exciton spectrum, where, as it is shown in the work, the high-energy electrons lose quasipulse, radiating spontaneously piezophonons; in other samples scattering on impurities prevails. Theoretical processing of data on the bound exciton radiation line quenching in the moderate field region presents about 10 -4 values in pure and about 5x10 -6 cm ones in other samples for the 4 MeV energy electron free flight length. So, the optical methods used allowed one to determine high-energy electron relaxation mechanisms, prevailing in CdS at low temperature

  16. Diffusion in confinement as a microscopic relaxation mechanism in glass-forming liquids

    International Nuclear Information System (INIS)

    Mamontov, Eugene

    2012-01-01

    Using quasielastic neutron scattering, we compare dynamics in single-element liquids, glass-forming selenium and non glass-forming gallium. There is a single jump-diffusion process in gallium, whereas in selenium there is also a faster, spatially localized process. The fast and slow processes describe β- and α-relaxation, respectively. We then analyze an archetypical glass-former, glycerol, to show that the two-component fit, with β- and α-relaxations explicitly separated, yields the correct value for the translational diffusion coefficient and provides information on the spatial localization of the β-relaxation that is not experimentally accessible otherwise.

  17. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  18. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels

    International Nuclear Information System (INIS)

    Roberts, R.E.; Allen, S.; Chang, A.P.Y.; Henderson, H.; Hobson, G.C.; Karania, B.; Morgan, K.N.; Pek, A.S.Y.; Raghvani, K.; Shee, C.Y.; Shikotra, J.; Street, E.; Abbas, Z.; Ellis, K.; Heer, J.K.; Alexander, S.P.H.

    2013-01-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (−)-α-bisabolol, farnesene, umbelliferone; 3–30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (−)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (−)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (−)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. - Highlights: • Apigenin, luteolin, and (-)-α-bisabolol are present in chamomile. • They produced slow, concentration-dependent relaxations in arteries. • These

  19. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.E., E-mail: Richard.roberts@nottingham.ac.uk; Allen, S.; Chang, A.P.Y.; Henderson, H.; Hobson, G.C.; Karania, B.; Morgan, K.N.; Pek, A.S.Y.; Raghvani, K.; Shee, C.Y.; Shikotra, J.; Street, E.; Abbas, Z.; Ellis, K.; Heer, J.K.; Alexander, S.P.H., E-mail: steve.alexander@nottingham.ac.uk

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (−)-α-bisabolol, farnesene, umbelliferone; 3–30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (−)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (−)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (−)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. - Highlights: • Apigenin, luteolin, and (-)-α-bisabolol are present in chamomile. • They produced slow, concentration-dependent relaxations in arteries. • These

  20. Identification of mechanisms involved in the relaxation of rabbit cavernous smooth muscle by a new nitric oxide donor ruthenium compound

    Directory of Open Access Journals (Sweden)

    João Batista Gadelha de Cerqueira

    2012-10-01

    Full Text Available PURPOSE: The aim of this study was to evaluate the relaxation in vitro of cavernous smooth muscle induced by a new NO donor of the complex nitrosil-ruthenium, named trans-[Ru(NH34(caffeine(NO]C13 (Rut-Caf and sodium nitroprusside (SNP. MATERIALS AND METHODS: The tissues, immersed in isolated bath systems, were pre-contracted with phenilephrine (PE (1 µM and then concentration-response curves (10-12 - 10-4 M were obtained. To clarify the mechanism of action involved, it was added to the baths ODQ (10 µM, 30 µM, oxyhemoglobin (10 µM, L-cysteine (100 µM, hydroxicobalamine (100 µM, glibenclamide, iberotoxin and apamine. Tissue samples were frozen in liquid nitrogen to measure the amount of cGMP and cAMP produced. RESULTS: The substances provoked significant relaxation of the cavernous smooth muscle. Both Rut-Caf and SNP determined dose-dependent relaxation with similar potency (pEC50 and maximum effect (Emax. The substances showed activity through activation of the soluble guanylyl cyclase (sGC, because the relaxations were inhibited by ODQ. Oxyhemoglobin significantly diminished the relaxation effect of the substances. L-cysteine failed to modify the relaxations caused by the agents. Hydroxicobalamine significantly diminished the relaxation effect of Rut-Caf. Glibenclamide significantly increased the efficacy of Rut-Caf (pEC50 4.09 x 7.09. There were no alterations of potency or maximum effect of the substances with the addition of the other ion channel blockers. Rut-Caf induced production of significant amounts of cGMP and cAMP during the relaxation process. CONCLUSIONS: In conclusion, Rut-Caf causes relaxation of smooth muscle of corpus cavernosum by means of activation of sGC with intracellular production of cGMP and cAMP; and also by release of NO in the intracellular environment. Rut-Caf releases the NO free radical and it does not act directly on the potassium ion channels.

  1. Nitrergic Pathway Is the Main Contributing Mechanism in the Human Gastric Fundus Relaxation: An In Vitro Study.

    Directory of Open Access Journals (Sweden)

    Yang Won Min

    Full Text Available Human gastric fundus relaxation is mediated by intrinsic inhibitory pathway. We investigated the roles of nitrergic and purinergic pathways, two known inhibitory factors in gastric motility, on spontaneous and nerve-evoked contractions in human gastric fundus muscles.Gastric fundus muscle strips (12 circular and 13 longitudinal were obtained from patients without previous gastrointestinal motility disorder who underwent gastrectomy for stomach cancer. Using these specimens, we examined basal tone, peak, amplitude, and frequency of spontaneous contractions, and peak and nadir values under electrical field stimulation (EFS, 150 V, 0.3 ms, 10 Hz, 20 s. To examine responses to purinergic and nitrergic inhibition without cholinergic innervation, atropine (muscarinic antagonist, 1 μM, MRS2500 (a purinergic P2Y1 receptor antagonist, 1 μM, and N-nitro-L-arginine (L-NNA, a nitric oxide synthase inhibitor, 100 μM were added sequentially for spontaneous and electrically-stimulated contractions. Tetrodotoxin was used to confirm any neuronal involvement.In spontaneous contraction, L-NNA increased basal tone and peak in both muscle layers, while amplitude and frequency were unaffected. EFS (up to 10 Hz uniformly induced initial contraction and subsequent relaxation in a frequency-dependent manner. Atropine abolished initial on-contraction and induced only relaxation during EFS. While MRS2500 showed no additional influence, L-NNA reversed relaxation (p = 0.012 in circular muscle, and p = 0.006 in longitudinal muscle. Tetrodotoxin abolished any EFS-induced motor response.The relaxation of human gastric fundus muscle is reduced by nitrergic inhibition. Hence, nitrergic pathway appears to be the main mechanism for the human gastric fundus relaxation.

  2. Significance of Strain in Formulation in Theory of Solid Mechanics

    Science.gov (United States)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    2003-01-01

    The basic theory of solid mechanics was deemed complete circa 1860 when St. Venant provided the strain formulation or the field compatibility condition. The strain formulation was incomplete. The missing portion has been formulated and identified as the boundary compatibility condition (BCC). The BCC, derived through a variational formulation, has been verified through integral theorem and solution of problems. The BCC, unlike the field counterpart, do not trivialize when expressed in displacements. Navier s method and the stiffness formulation have to account for the extra conditions especially at the inter-element boundaries in a finite element model. Completion of the strain formulation has led to the revival of the direct force calculation methods: the Integrated Force Method (IFM) and its dual (IFMD) for finite element analysis, and the completed Beltrami-Michell formulation (CBMF) in elasticity. The benefits from the new methods in elasticity, in finite element analysis, and in design optimization are discussed. Existing solutions and computer codes may have to be adjusted for the compliance of the new conditions. Complacency because the discipline is over a century old and computer codes have been developed for half a century can lead to stagnation of the discipline.

  3. Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas

    Science.gov (United States)

    Margetis, J.; Mosleh, A.; Al-Kabi, S.; Ghetmiri, S. A.; Du, W.; Dou, W.; Benamara, M.; Li, B.; Mortazavi, M.; Naseem, H. A.; Yu, S.-Q.; Tolle, J.

    2017-04-01

    High quality, thick (up to 1.1 μm), strain relaxed GeSn alloys were grown on Ge-buffered Si (1 0 0) in an ASM Epsilon® chemical vapor deposition system using SnCl4 and low-cost commercial GeH4 precursors. The significance of surface chemistry in regards to growth rate and Sn-incorporation is discussed by comparing growth kinetics data in H2 and N2 carrier gas. The role of carrier gas is also explored in the suppression of Sn surface segregation and evolution of layer composition and strain profiles via secondary ion mass spectrometry and X-ray diffraction. Transmission electron microscopy revealed the spontaneous compositional splitting and formation of a thin intermediate layer in which dislocations are pinned. This intermediate layer enables the growth of a thick, strain relaxed, and defect-free epitaxial layer on its top. Last, we present photoluminescence results which indicate that both N2 and H2 growth methods produce optoelectronic device quality material.

  4. Peroxynitrite-induced relaxation in isolated rat aortic rings and mechanisms of action

    International Nuclear Information System (INIS)

    Li Jianfeng; Li Wenyan; Altura, Bella T.; Altura, Burton M.

    2005-01-01

    The present study was designed to evaluate the effects of peroxynitrite (ONOO - ), the product of superoxide and nitric oxide, on isolated segments of rat aorta. In the absence of any vasoactive agent, ONOO - (from 10 -8 to 10 -4 M) failed to alter the basal tension. In phenylephrine (PE; 5 x 10 -7 M)-precontracted rat aortic rings (RAR), ONOO - elicited concentration-dependent relaxation at concentrations of from 10 -8 to 10 -4 M. The effective concentrations producing approximately 50% of maximal relaxation (ED 5 ) to ONOO - were 1.84 x 10 -5 M and 1.96 x 10 -5 M in intact and denuded RAR, respectively (P > 0.05). No significant differences in the relaxation responses were found between RAR with or without endothelium (P > 0.05). The presence of either 5 μM methylene blue (MB) or 5 μM 1H-[1,2,4]oxadiazolo-[4,3-α]quinoxalin-1-one (ODQ) significantly inhibited the relaxations induced by ONOO - . Sildenafil (10 -7 M), on the other hand, significantly potentiated the ONOO - -induced relaxations. Tetraethylammonium chloride (T-2265) significantly decreased the ONOO - -induced relaxations in a concentration-dependent manner. However, ONOO - had no effect on RAR precontracted by high KCL (40 mM, n = 6, P > 0.05). Addition of calyculin A also significantly decreased the ONOO - -induced relaxation in a dose-dependent manner. Furthermore, ONOO - significantly inhibited calcium-induced contractions of K + -depolarized aortic rings in a concentration-related manner. Lastly, a variety of other pharmacological agents and antagonists including L-NMMA, L-arginine, indomethacin, atropine, naloxone, diphenhydramine, cimetine, glibenclamide, haloperidol, superoxide dismutase (SOD), and catalase did not influence the relaxant effects of ONOO - on RAR. Our new results suggest that ONOO - -triggered relaxation on rat aortic rings is mediated by elevation of cGMP levels, membrane hyperpolarization via K + -channel activation, activation of myosin phosphatase activity, and

  5. Hyperpolarized 13C Urea Relaxation Mechanism Reveals Renal Changes in Diabetic Nephropathy

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Stokholm Nørlinger, Thomas; Christoffer Hansen, David

    2016-01-01

    Purpose: Our aim was to assess a novel 13C radial fast spin echo golden ratio single shot method for interrogating early renal changes in the diabetic kidney, using hyperpolarized (HP) [13C,15N2]urea as a T2 relaxation based contrast bio-probe. Methods: A novel HP 13C MR contrast experiment...... saturation level and the relaxation times were observed in the healthy controls. Conclusion: HP [13C,15N2]urea apparent T2 mapping may be a useful for interrogating local renal pO2 status and renal tissue alterations....

  6. Analysis of Mechanical Stresses/Strains in Superconducting Wire

    Science.gov (United States)

    Barry, Matthew; Chen, Jingping; Zhai, Yuhu

    2016-10-01

    The optimization of superconducting magnet performance and development of high-field superconducting magnets will greatly impact the next generation of fusion devices. A successful magnet development, however, relies deeply on the understanding of superconducting materials. Among the numerous factors that impact a superconductor's performance, mechanical stress is the most important because of the extreme operation temperature and large electromagnetic forces. In this study, mechanical theory is used to calculate the stresses/strains in typical superconducting strands, which consist of a stabilizer, a barrier, a matrix and superconducting filaments. Both thermal loads and mechanical loads are included in the analysis to simulate operation conditions. Because this model simulates the typical architecture of major superconducting materials, such as Nb3Sn, MgB2, Bi-2212 etc., it provides a good overall picture for us to understand the behavior of these superconductors in terms of thermal and mechanical loads. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.

  7. Anomalous strain relaxation and light-hole character enhancement in GaAs capped InAs/In0.53Ga0.47As quantum ring

    International Nuclear Information System (INIS)

    Moon, Pilkyung; Park, Kwangmin; Yoon, Euijoon; Leburton, Jean-Pierre

    2009-01-01

    We theoretically investigated the strain profiles and the electronic structures of InAs/In 0.53 Ga 0.47 As quantum dot and GaAs capped quantum ring. In contrast to the intuitive expectation that the GaAs layer applies a strong compressive strain along the lateral directions of InAs, the GaAs embedded in the In 0.53 Ga 0.47 As matrix provides enough space for the InAs relaxation. The GaAs embedded in In 0.53 Ga 0.47 As acts as potential barrier for both electrons and heavy-holes, and as potential well for light-holes. Each hole state of the quantum ring exhibits two to eight times larger light-hole character than that of a quantum dot. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Relaxation effect of marmin on guinea pig tracheal smooth muscle via NO-independent mechanisms

    Directory of Open Access Journals (Sweden)

    Dadang Irfan Husori

    2012-05-01

    Full Text Available Objective: To investigate the relaxation mechanims of marmin on epithelium of guinea pig isolated trachea smooth muscle (TSM. Methods: The study was conducted using in vitro isolated-trachea experimental. The guinea pig isolated trachea were incubated in Krebs solution-containing organ bath and supplied with a mixed gas of O2:CO2 (95%:5%. Result: Removal of tracheal epithelium was associated with significant increases in the potencies of histamine and methacholine to contract guinea pig TSM. The pD2 value of histamine increased from 6.04依0.08 on epithelial-intact to 6.32依0.06 on epithelial-denuded (P<0.05. The pD2 value of methacholine also increased from 5.85依0.09 on epithelial-intact to 6.15依0.07 on epithelial-denuded (P<0.05. Marmin exhibited relaxation effects on TSM induced by methacholine (3伊10-5 mol/L and histamine (3伊10-5 mol/L. Inhibition of prostaglandin E2 (PGE2 through incubation with indomethacin could reduce the relaxation effect of marmin (P<0.05 on methacholine- and histamine-induced contractions. However, no significant differenceswere shown in methylene blue, Nω-nitro-L-arginine (L-NNA and propranolol-incubated TSM. Conclusions: The results suggest that marmin has relaxation effect on TSM which is epithelial-dependent through the release of PGE2. However, nitric oxide, cGMP and 毬 2-adrenergic-mediated relaxation were not involved.

  9. Influence of strain relaxation in axial {{In}}_{x}{{Ga}}_{1-x}{\\rm{N}}/{GaN} nanowire heterostructures on their electronic properties

    Science.gov (United States)

    Marquardt, Oliver; Krause, Thilo; Kaganer, Vladimir; Martín-Sánchez, Javier; Hanke, Michael; Brandt, Oliver

    2017-05-01

    We present a systematic theoretical study of the influence of elastic strain relaxation on the built-in electrostatic potentials and the electronic properties of axial {{In}}x{{Ga}}1-x{{N}}/{GaN} nanowire (NW) heterostructures. Our simulations reveal that for a sufficiently large ratio between the thickness of the {{In}}x{{Ga}}1-x{{N}} disk and the diameter of the NW, the elastic relaxation leads to a significant reduction of the built-in electrostatic potential in comparison to a planar system of similar layer thickness and In content. In this case, the ground state transition energies approach constant values with increasing thickness of the disk and only depend on the In content, a behavior usually associated to that of a quantum well free of built-in electrostatic potentials. We show that the structures under consideration are by no means field-free, and the built-in potentials continue to play an important role even for ultrathin NWs. In particular, strain and the resulting polarization potentials induce complex confinement features of electrons and holes, which depend on the In content, shape, and dimensions of the heterostructure.

  10. Ac conductivity and relaxation mechanism in Ba0.9Sr0.1TiO3

    International Nuclear Information System (INIS)

    Singh, A.K.; Barik, Subrat K.; Choudhary, R.N.P.; Mahapatra, P.K.

    2009-01-01

    The ac conductivity and relaxation mechanism in Ba 0.9 Sr 0.1 TiO 3 ceramics have been investigated systematically. A high-temperature solid-state reaction technique was used to synthesize the compound. The formation of the compound was checked by an X-ray diffraction (XRD) technique. The dielectric permittivity and the loss tangent of the sample were measured in a frequency range from 1 kHz to 1 MHz at different temperatures (30-500 deg. C). A study on dielectric properties reveals the electrical relaxation phenomenon occurs in the material. The activation energy was calculated from the temperature variation of dc conductivity. Studies of frequency and temperature dependence of ac conductivity of the compound suggest that conduction process in the material is thermally activated.

  11. Cajaninstilbene acid relaxes rat renal arteries: roles of Ca2+ antagonism and protein kinase C-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Dong-Mei Zhang

    Full Text Available Cajaninstilbene acid (CSA is a major active component present in the leaves of Cajanus cajan (L. Millsp. The present study explores the underlying cellular mechanisms for CSA-induced relaxation in rat renal arteries. Vascular reactivity was examined in arterial rings that were suspended in a Multi Myograph System and the expression of signaling proteins was assessed by Western blotting method. CSA (0.1-10 µM produced relaxations in rings pre-contracted by phenylephrine, serotonin, 9, 11-dideoxy-9α, 11α-epoxymethanoprostaglandin F(2α (U46619, and 60 mM KCl. CSA-induced relaxations did not show difference between genders and were unaffected by endothelium denudation, nor by treatment with N(G-nitro-L-arginine methyl ester, indomethacin, ICI-182780, tetraethylammonium ion, BaCl(2, glibenclamide, 4-aminopyridine or propranolol. CSA reduced contraction induced by CaCl(2 (0.01-5 mM in Ca(2+-free 60 mM KCl solution and by 30 nM (--Bay K8644 in 15 mM KCl solution. CSA inhibited 60 mM KCl-induced Ca(2+ influx in smooth muscle of renal arteries. In addition, CSA inhibited contraction evoked by phorbol 12-myristate 13-acetate (PMA, protein kinase C agonist in Ca(2+-free Krebs solution. Moreover, CSA reduced the U46619- and PMA-induced phosphorylation of myosin light chain (MLC at Ser19 and myosin phosphatase target subunit 1 (MYPT1 at Thr853 which was associated with vasoconstriction. CSA also lowered the phosphorylation of protein kinase C (PKCδ at Thr505. In summary, the present results suggest that CSA relaxes renal arteries in vitro via multiple cellular mechanisms involving partial inhibition of calcium entry via nifedipine-sensitive calcium channels, protein kinase C and Rho kinase.

  12. Relaxation of a strained 3C-SiC(1 1 1) thin film on silicon by He+ and O+ ion beam defect engineering

    International Nuclear Information System (INIS)

    Häberlen, M.; Murphy, B.; Stritzker, B.; Lindner, J.K.N.

    2012-01-01

    In this paper we report on the successful reduction of tensile strain in a thin strained ion-beam synthesized 3C-SiC(1 1 1) layer on silicon. The creation of a near-interface defect structure consisting of nanometric voids and stacking fault type defects by He ion implantation and subsequent annealing yields significant relaxation in the top SiC film. The microstructure of the defect layer is studied by transmission electron microscopy, and the strain state of the 3C-SiC layer was studied by high-resolution X-ray diffraction in a parallel beam configuration. Typical process conditions for the growth of GaN films on the SiC layer were emulated by high temperature treatments in a rapid thermal annealer or a quartz tube furnace. It is found that prolonged annealing at high temperatures leads to ripening of the voids and to a weaker reduction of the tensile strain. It is shown that this problem can be overcome by the co-implantation of oxygen ions to form highly thermally stable void/extended defect structures.

  13. F-center mechanism of long-term relaxation in lead zirconate-titanate-based piezoelectric ceramics. 1. After-heating relaxation

    Directory of Open Access Journals (Sweden)

    V. M. Ishchuk

    2015-12-01

    The oxygen vacancies-based model for description of the long-time relaxation processes is suggested. The model takes into account oxygen vacancies on the sample’s surface ends, their conversion into F+- and F0-centers under external effects (due to the liberation of the pyroelectric charge and subsequent relaxation of these centers into the simple oxygen vacancies after the actions termination. The initial sample’s state is electroneutrality one. F-center formation leads to the violation of the original sample’s electroneutrality, and generates DC electric field into the sample. Relaxation of F-centers is accompanied by decreasing of electric field, induced by them, and dielectric constant relaxation as consequent effect.

  14. Study of conduction mechanisms and relaxation processes in NiCl2-PVA composites

    International Nuclear Information System (INIS)

    Basha, A.F.; Amin, M.; Abdel Samad, H.A.

    1985-07-01

    Electric conduction measurements were made at different temperatures and fields on thin films NiCl 2 -PVA composites prepared by casting. The conduction is assumed to be generally ionic in nature and polarization contribution is suggested to operate mainly at higher temperatures. Space-charge limited conduction and relaxation phenomena have been observed. The obtained results made it possible to determine a complete set of conduction parameters including carrier mobility, carrier concentration, traps density, Fermi energy, activation energy, etc. (author)

  15. QM/MM studies on the excited-state relaxation mechanism of a semisynthetic dTPT3 base.

    Science.gov (United States)

    Guo, Wei-Wei; Zhang, Teng-Shuo; Fang, Wei-Hai; Cui, Ganglong

    2018-02-14

    Semisynthetic alphabets can potentially increase the genetic information stored in DNA through the formation of unusual base pairs. Recent experiments have shown that near-visible-light irradiation of the dTPT3 chromophore could lead to the formation of a reactive triplet state and of singlet oxygen in high quantum yields. However, the detailed excited-state relaxation paths that populate the lowest triplet state are unclear. Herein, we have for the first time employed the QM(MS-CASPT2//CASSCF)/MM method to explore the spectroscopic properties and excited-state relaxation mechanism of the aqueous dTPT3 chromophore. On the basis of the results, we have found that (1) the S 2 ( 1 ππ*) state of dTPT3 is the initially populated excited singlet state upon near-visible light irradiation; and (2) there are two efficient relaxation pathways to populate the lowest triplet state, i.e. T 1 ( 3 ππ*). In the first one, the S 2 ( 1 ππ*) system first decays to the S 1 ( 1 nπ*) state near the S 2 /S 1 conical intersection, which is followed by an efficient S 1 → T 1 intersystem crossing process at the S 1 /T 1 crossing point; in the second one, an efficient S 2 → T 2 intersystem crossing takes place first, and then, the T 2 ( 3 nπ*) system hops to the T 1 ( 3 ππ*) state through an internal conversion process at the T 2 /T 1 conical intersection. Moreover, an S 2 /S 1 /T 2 intersection region is found to play a vital role in the excited-state relaxation. These new mechanistic insights help in understanding the photophysics and photochemistry of unusual base pairs.

  16. Relaxation of mechanical stresses in Si-Ge/Si structures implanted by carbon ions. Study with optical methods

    International Nuclear Information System (INIS)

    Klyuj, M.Yi.

    1998-01-01

    Optical properties of Si-Ge/Si structures implanted by carbon ions with the energy of 20 keV and at the doses of 5 centre dot 10 15 - 1- 16 cm -2 are studied by spectro ellipsometry and Raman scattering techniques. From the comparison of experimental data with the results of theoretical calculations, it is shown that, as a result of implantation, a partial relaxation of mechanical stresses in the Si 1-x Ge x film due to introduction of carbon atoms with a small covalent radius into the Si-Ge lattice takes place. An elevated implantation temperature allows one to maintain a high structural perfection of the implanted film

  17. Assessment of mechanical strain in the intact plantar fascia.

    Science.gov (United States)

    Clark, Ross A; Franklyn-Miller, Andrew; Falvey, Eanna; Bryant, Adam L; Bartold, Simon; McCrory, Paul

    2009-09-01

    A method of measuring tri-axial plantar fascia strain that is minimally affected by external compressive force has not previously been reported. The purpose of this study was to assess the use of micro-strain gauges to examine strain in the different axes of the plantar fascia. Two intact limbs from a thawed, fresh-frozen cadaver were dissected, and a combination of five linear and one three-way rosette gauges were attached to the fascia of the foot and ankle. Strain was assessed during two trials, both consisting of an identical controlled, loaded dorsiflexion. An ICC analysis of the results revealed that the majority of gauge placement sites produced reliable measures (ICC>0.75). Strain mapping of the plantar fascia indicates that the majority of the strain is centrally longitudinal, which provides supportive evidence for finite element model analysis. Although micro-strain gauges do possess the limitation of calibration difficulty, they provide a repeatable measure of fascial strain and may provide benefits in situations that require tri-axial assessment or external compression.

  18. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry.

    Science.gov (United States)

    Silber, David; Kowalski, Piotr M; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof

    2016-09-30

    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO 2 (110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO 2 (110) surface.

  19. Stress relaxation in viscous soft spheres.

    Science.gov (United States)

    Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P

    2017-10-04

    We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.

  20. Mechanical properties of biaxially strained poly(L-lactide) tubes: Strain rate and temperature dependence

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard

    2017-01-01

    Poly(l-lactide) (PLLA) is a bioabsorbable polymer with high stiffness and strength compared to the other commercially available bioabsorbable polymers. The properties of PLLA can be improved by straining, causing deformation-mediated molecular orientation. PLLA tubes were biaxially strained above...

  1. Lattice strain in irradiated materials unveils a prevalent defect evolution mechanism

    Science.gov (United States)

    Debelle, Aurélien; Crocombette, Jean-Paul; Boulle, Alexandre; Chartier, Alain; Jourdan, Thomas; Pellegrino, Stéphanie; Bachiller-Perea, Diana; Carpentier, Denise; Channagiri, Jayanth; Nguyen, Tien-Hien; Garrido, Frédérico; Thomé, Lionel

    2018-01-01

    Modification of materials using ion beams has become a widespread route to improve or design materials for advanced applications, from ion doping for microelectronic devices to emulation of nuclear reactor environments. Yet, despite decades of studies, major issues regarding ion/solid interactions are not solved, one of them being the lattice-strain development process in irradiated crystals. In this work, we address this question using a consistent approach that combines x-ray diffraction (XRD) measurements with both molecular dynamics (MD) and rate equation cluster dynamics (RECD) simulations. We investigate four distinct materials that differ notably in terms of crystalline structure and nature of the atomic bonding. We demonstrate that these materials exhibit a common behavior with respect to the strain development process. In fact, a strain build-up followed by a strain relaxation is observed in the four investigated cases. The strain variation is unambiguously ascribed to a change in the defect configuration, as revealed by MD simulations. Strain development is due to the clustering of interstitial defects into dislocation loops, while the strain release is associated with the disappearance of these loops through their integration into a network of dislocation lines. RECD calculations of strain depth profiles, which are in agreement with experimental data, indicate that the driving force for the change in the defect nature is the defect clustering process. This study paves the way for quantitative predictions of the microstructure changes in irradiated materials.

  2. Left Atrial Mechanical Function and Global Strain in Hypertrophic Cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Kyung-Jin Kim

    Full Text Available Atrial fibrillation is the most common arrhythmia and is associated with adverse outcomes in hypertrophic cardiomyopathy (HCM. Although left atrial (LA remodeling and dysfunction are known to associate with the development of atrial fibrillation in HCM, the changes of the LA in HCM patients remain unclear. This study aimed to evaluate the changes in LA size and mechanical function in HCM patients compared to control subjects and to determine the characteristics of HCM associated with LA remodeling and dysfunction.Seventy-nine HCM patients (mean age, 54 ± 11 years; 76% were men were compared to 79 age- and sex-matched controls (mean age, 54 ± 11 years; 76% were men and 20 young healthy controls (mean age, 33 ± 5 years; 45% were men. The LA diameter, volume, and mechanical function, including global strain (ε, were evaluated by 2D-speckle tracking echocardiography. The phenotype of HCM, maximal left ventricular (LV wall thickness, LV mass, and presence and extent of late gadolinium enhancement (LGE were evaluated with cardiac magnetic resonance imaging.HCM patients showed increased LA volume index, impaired reservoir function, and decreased LA ε compared to the control subjects. When we divided the HCM group according to a maximal LA volume index (LAVImax of 38.7 ml/m2 or LA ε of 21%, no significant differences in the HCM phenotype and maximal LV wall thickness were observed for patients with LAVImax >38.7 ml/m2 or LA ε ≤21%. Conversely, the LV mass index was significantly higher both in patients with maximal LA volume index >38.7 ml/m2 and with LA ε ≤21% and was independently associated with LAVImax and LA ε. Although the LGE extent was increased in patients with LA ε ≤21%, it was not independently associated with either LAVImax or LA ε.HCM patients showed progressed LA remodeling and dysfunction; the determinant of LA remodeling and dysfunction was LV mass index rather than LV myocardial fibrosis by LGE-magnetic resonance

  3. Mechanical strength model for plastic bonded granular materials at high strain rates and large strains

    International Nuclear Information System (INIS)

    Browning, R.V.; Scammon, R.J.

    1998-01-01

    Modeling impact events on systems containing plastic bonded explosive materials requires accurate models for stress evolution at high strain rates out to large strains. For example, in the Steven test geometry reactions occur after strains of 0.5 or more are reached for PBX-9501. The morphology of this class of materials and properties of the constituents are briefly described. We then review the viscoelastic behavior observed at small strains for this class of material, and evaluate large strain models used for granular materials such as cap models. Dilatation under shearing deformations of the PBX is experimentally observed and is one of the key features modeled in cap style plasticity theories, together with bulk plastic flow at high pressures. We propose a model that combines viscoelastic behavior at small strains but adds intergranular stresses at larger strains. A procedure using numerical simulations and comparisons with results from flyer plate tests and low rate uniaxial stress tests is used to develop a rough set of constants for PBX-9501. Comparisons with the high rate flyer plate tests demonstrate that the observed characteristic behavior is captured by this viscoelastic based model. copyright 1998 American Institute of Physics

  4. Enhanced thermo-mechanical performance and strain-induced ...

    Indian Academy of Sciences (India)

    gap compared with pure TiO2, which can be attributed to the strain within the nanocomposite, thereby affecting .... TGA is an analytical technique used to determine the thermal ..... Program through the National Research Foundation of.

  5. Reheat cracking of austenitic stainless steels - pre-strain effect on intergranular damage; Fissuration en relaxation des aciers inoxydables austenitiques - influence de l'ecrouissage sur l'endommagement intergranulaire

    Energy Technology Data Exchange (ETDEWEB)

    Auzoux, Q

    2004-01-01

    Welding process induces strain in 316 stainless steel affected zones. Their microstructure was reproduce by rolling of three different steels (316L, 316L(N) et 316H). Traction, creep and relaxation tests were performed at 550 deg C and 600 deg C on smooth, notched and pre-cracked specimens. Pre-strain by rolling increases the hardness and the creep resistance because of the high dislocation density but decreases ductility because of the fast development of intergranular damage. This embrittlement leads to crack propagation during relaxation tests on pre-strained steels without distinction in respect to their carbon or nitrogen content. A new intergranular damage model was built using local micro-cracks measurements and finite elements analysis. Pre-strain effect and stress triaxiality ratio effect are reproduced by the modelling so that the reheat cracking risk near welds can now be estimated. (author)

  6. Structure and strain relaxation effects of defects in InxGa1−xN epilayers

    International Nuclear Information System (INIS)

    Rhode, S. L.; Fu, W. Y.; Massabuau, F. C.-P.; Kappers, M. J.; McAleese, C.; Oehler, F.; Humphreys, C. J.; Sahonta, S.-L.; Moram, M. A.; Dusane, R. O.

    2014-01-01

    The formation of trench defects is observed in 160 nm-thick In x Ga 1−x N epilayers with x ≤ 0.20, grown on GaN on (0001) sapphire substrates using metalorganic vapour phase epitaxy. The trench defect density increases with increasing indium content, and high resolution transmission electron microscopy shows an identical structure to those observed previously in InGaN quantum wells, comprising meandering stacking mismatch boundaries connected to an I 1 -type basal plane stacking fault. These defects do not appear to relieve in-plane compressive strain. Other horizontal sub-interface defects are also observed within the GaN pseudosubstrate layer of these samples and are found to be pre-existing threading dislocations which form half-loops by bending into the basal plane, and not basal plane stacking faults, as previously reported by other groups. The origins of these defects are discussed and are likely to originate from a combination of the small in-plane misorientation of the sapphire substrate and the thermal mismatch strain between the GaN and InGaN layers grown at different temperatures.

  7. Effect of extensional cyclic strain on the mechanical and physico-mechanical properties of PVC-NBR/graphite composites

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available The variation of electrical resistivity as will as the mechanical properties of PVC (polyvinylchloride-NBR (acrylonitrile butadiene rubber based conductive composites filled with different concentrations of graphite were studied. These samples were studied as function of the constant deformation fatigue test. When the specimen was subjected to a large number of rapidly repeating strain cycles, and different strain amplitudes, the conductivity, σ(T, shows an initial rapid fall followed by dynamic equilibrium. Increasing the number of cycles and strain amplitudes, the conductivity remains almost constant over the temperature range 30–140°C. The equilibrium state between destruction and reconstruction of graphite particles has been detected for all strains of certain values of strain cycles (1000, 2000, 3000, and 4000 cycles for 30% strain amplitude. A preliminary study was done to optimize the possibility to use Conductive Polymer Composites (CPC as a strain sensor and to evaluate its performance by an intrinsic physico-mechanical modification measurement. The electromechanical characterization was performed to demonstrate the adaptability and the correct functioning of the sensor as a strain gauge on the fabric. The coefficient of strain sensitivity (K was measured for 50 phr graphite/PVCNBR vulcanized at 3000 number of strain cycles and 30% strain amplitude. There was a broad maximum of K, with a peak value of 82, which was much higher, compared to conventional wire resistors. A slight hysteresis was observed at unloading due to plasticity of the matrix. A good correlation exists between mechanical and electrical response to the strain sensitivity. Mechanical reinforcement was in accordance with the Quemada equation [1] and Guth model [2] attested to good particle-matrix adhesion. It was found that the viscous component of deformation gradually disappeared and the hardening occurred with increasing strain cycles. The modulus, fracture

  8. Mechanical disequilibria in two-phase flow models: approaches by relaxation and by a reduced model

    International Nuclear Information System (INIS)

    Labois, M.

    2008-10-01

    This thesis deals with hyperbolic models for the simulation of compressible two-phase flows, to find alternatives to the classical bi-fluid model. We first establish a hierarchy of two-phase flow models, obtained according to equilibrium hypothesis between the physical variables of each phase. The use of Chapman-Enskog expansions enables us to link the different existing models to each other. Moreover, models that take into account small physical unbalances are obtained by means of expansion to the order one. The second part of this thesis focuses on the simulation of flows featuring velocity unbalances and pressure balances, in two different ways. First, a two-velocity two-pressure model is used, where non-instantaneous velocity and pressure relaxations are applied so that a balancing of these variables is obtained. A new one-velocity one-pressure dissipative model is then proposed, where the arising of second-order terms enables us to take into account unbalances between the phase velocities. We develop a numerical method based on a fractional step approach for this model. (author)

  9. Study of the dislocation mechanism responsible for the Bordoni relaxation in aluminum by the two-wave acoustic coupling method

    Science.gov (United States)

    Bujard, M.; Gremaud, G.; Benoit, W.

    1987-10-01

    The most realistic model for the interpretation of the Bordoni relaxation observed by internal friction experiments is the mechanism of kink pair formation (KPF) on the dislocations. However, according to this model, high values of the critical resolved shear stress should also be measured at low temperature in face-centered-cubic (fcc) metals, but this has never been observed. Using the newly developed two-wave acoustic coupling method, we have studied the reality of the KPF model as an explanation for the Bordoni relaxation in aluminum. The results are in very good agreement with the predictions of the KPF model and thus confirm this model. On the other hand, experimental evidence that the kink mobility is very high in aluminum have been found. Therefore, the diffusion time of the kinks is negligibly small for the KPF process in fcc metals. Values of the internal stress field in cold-worked samples have also been obtained using the two-wave acoustic coupling approach. A description of the experimental method and the theoretical approach for the interpretation of the results will also be given in this paper.

  10. Influence of mechanical strain on magnetic characteristics of spin valves

    International Nuclear Information System (INIS)

    Ac, V; Anwarzai, B; Luby, S; Majkova, E

    2008-01-01

    Giant magnetoresistance (GMR) of Co and Fe-Co based e-beam evaporated spin valves with Cu and Au spacers was studied. The effect of strain on samples, which is detrimental in standard GMR sensors, was measured in a bending configuration. The different dependences of coercivity H c and magnetic field H ip in the point of inflection of MR loops vs. strain were found. For sample with Co/Au/Co core, H c , H ip increase with increasing compressive stress, whereas for sample with FeCo/Cu/Co core they increase with tensile stress. The highest relative change of MR ratio vs. bending in the strain interval ± 300 x 10 -6 is 1-2 % of the basic magnetoresistance and, practically, it does not influence the SV output

  11. Mechanical characterization of rocks at high strain rate

    Directory of Open Access Journals (Sweden)

    Konstantinov A.

    2012-08-01

    Full Text Available The paper presents the dynamic characterization in tension and compression of three rocks, Carrara marble, Onsernone gneiss and Peccia Marble, at high strain-rates. Two versions of a Split Hopkinson Bar have been used. The version for direct tension tests is installed at the DynaMat Laboratory of the University of Applied Sciences of Southern Switzerland, while the traditional version in compression is installed at the Laboratory of Dynamic Investigation of Materials of Lobachevsky State University. Results of the tests show a significantly strain-rate sensitive behaviour, exhibiting dynamic strength increasing with strain-rate. The experimental research has been developed in the frame of the Swiss-Russian Joint Research Program.

  12. Measurement of the uniaxial mechanical properties of rat skin using different stress-strain definitions.

    Science.gov (United States)

    Karimi, A; Navidbakhsh, M

    2015-05-01

    The mechanical properties of skin tissue may vary according to the anatomical locations of a body. There are different stress-strain definitions to measure the mechanical properties of skin tissue. However, there is no agreement as to which stress-strain definition should be implemented to measure the mechanical properties of skin at different anatomical locations. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are employed to determine the mechanical properties of skin tissue at back and abdomen locations of a rat body. The back and abdomen skins of eight rats are excised and subjected to a series of tensile tests. The elastic modulus, maximum stress, and strain of skin tissues are measured using three stress definitions and four strain definitions. The results show that the effect of varying the stress definition on the maximum stress measurements of the back skin is significant but not when calculating the elastic modulus and maximum strain. No significant effects are observed on the elastic modulus, maximum stress, and strain measurements of abdomen skin by varying the stress definition. In the true stress-strain diagram, the maximum stress (20%), and elastic modulus (35%) of back skin are significantly higher than that of abdomen skin. The true stress-strain definition is favored to measure the mechanical properties of skin tissue since it gives more accurate measurements of the skin's response using the instantaneous values. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Influence of Nanodisperse Metal Fillers on the Viscoelastic Properties and Processes of Mechanical Relaxation of Polymer Systems

    Science.gov (United States)

    Kolupav, B. B.; Kolupaev, B. S.; Levchuk, V. V.; Maksimtsev, Yu. R.; Sidletskii, V. A.

    2017-05-01

    The results of research into the viscoelastic properties and processes of mechanical relaxation of polyvinylchloride (PVC) containing Cu nanoparticles obtained by means of electroerosion crushing and electrohydraulic destruction of agglomerates of disperse Cu in the presence of an ultrasonic field are presented. It is shown that, in the case of longitudinal shear deformation at a frequency of 0.4 × 106 s-1 over a wide range of temperatures and content of ingredients, viscoelastic phenomena depending on structural changes in the PVC system occur. An analysis of quantitative results of the elastic and viscoelastic deformation of a body is carried out taking into account the energy and entropy components of interaction of the polymer and filler at their interface.

  14. Influence of SiO{sub 2} on conduction and relaxation mechanism of Li{sup +} ions in binary network former lead silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Navneet [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India); Ahlawat, Neetu, E-mail: neetugju@yahoo.co.in [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Aghamkar, Praveen [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India); Agarwal, Ashish; Sanghi, Sujata; Sindhu, Monica [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India)

    2013-04-01

    Ion conducting glasses having composition 30Li{sub 2}O·(70−x)PbO·xSiO{sub 2} were prepared by the normal melt quench technique. The compositional variations in density, molar volume and glass transition temperature confirm the dual role of PbO acting as a network modifying oxide as well as a network forming oxide. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in the frequency range from 1 Hz to 7 MHz and in a temperature range below glass transition temperature. The ac and dc conductivities, activation energy of the dc conductivity and relaxation frequency were extracted from the impedance spectra. Similar values of activation energy for dc conduction and for conductivity relaxation time indicate that the ions have to overcome the same energy barrier while conducting and relaxing. The increase in dc conductivity for silica rich compositions is attributed to the presence of mixed former effect in the studied glasses. The study of conductivity spectra reveals a transition from non-random to random hopping motion of lithium ions on successive replacement of PbO by SiO{sub 2} in glass matrix. The conduction and relaxation mechanism in the studied glasses are well explained with the concept of mismatch and relaxation (CMR) model.

  15. Quantitative Study of Longitudinal Relaxation (T 1) Contrast Mechanisms in Brain MRI

    Science.gov (United States)

    Jiang, Xu

    Longitudinal relaxation (T1) contrast in MRI is important for studying brain morphology and is widely used in clinical applications. Although MRI only detects signals from water hydrogen ( 1H) protons (WPs), T1 contrast is known to be influenced by other species of 1H protons, including those in macromolecules (MPs), such as lipids and proteins, through magnetization transfer (MT) between WPs and MPs. This complicates the use and quantification of T1 contrast for studying the underlying tissue composition and the physiology of the brain. MT contributes to T1 contrast to an extent that is generally dependent on MT kinetics, as well as the concentration and NMR spectral properties of MPs. However, the MP spectral properties and MT kinetics are both difficult to measure directly, as the signal from MPs is generally invisible to MRI. Therefore, to investigate MT kinetics and further quantify T1 contrast, we first developed a reliable way to indirectly measure the MP fraction and their exchange rate with WPs, with minimal dependence on the spectral properties of MPs. For this purpose, we used brief, highpower radiofrequency (RF) NMR excitation pulses to almost completely saturate the magnetization of MPs. Based on this, both MT kinetics and the contribution of MPs to T1 contrast through MT were studied. The thus obtained knowledge allowed us to subsequently infer the spectral properties of MPs by applying low-power, frequencyselective off-resonance RF pulses and measuring the offset-frequency dependent effect of MPs on the WP MRI signal. A two-pool exchange model was used in both cases to account for direct effects of the RF pulse on WP magnetization. Consistent with earlier works using MRI at low-field and post-mortem analysis of brain tissue, our novel measurement approach found that MPs constitute an up to 27% fraction of the total 1H protons in human brain white matter, and their spectrum follows a super-Lorentzian line with a T2 of 9.6+/-0.6 mus and a resonance

  16. Elastically strained and relaxed La0.67Ca0.33MnO3 films grown on lanthanum aluminate substrates with different orientations

    Science.gov (United States)

    Boikov, Yu. A.; Serenkov, I. T.; Sakharov, V. I.; Claeson, T.

    2016-12-01

    Structure of 40-nm thick La0.67Ca0.33MnO3 (LCMO) films grown by laser evaporation on (001) and (110) LaAlO3 (LAO) substrates has been investigated using the methods of medium-energy ion scattering and X-ray diffraction. The grown manganite layers are under lateral biaxial compressive mechanical stresses. When (110)LAO wafers are used as the substrates, stresses relax to a great extent; the relaxation is accompanied by the formation of defects in a (3-4)-nm thick manganite-film interlayer adjacent to the LCMO-(110)LAO interface. When studying the structure of the grown layers, their electro- and magnetotransport parameters have been measured. The electroresistance of the LCMO films grown on the substrates of both types reached a maximum at temperature T M of about 250 K. At temperatures close to T M magnetoresistance of the LCMO/(110)LAO films exceeds that of the LCMO/(001)LAO films by 20-30%; however, the situation is inverse at low temperatures ( T < 150 K). At T < T M , the magnetotransport in the grown manganite films significantly depends on the spin ordering in ferromagnetic domains, which increase with a decrease in temperature.

  17. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13

    Science.gov (United States)

    Zeng, Yan; Zuo, Peng-peng; Wu, Xiao-chun; Xia, Shu-wen

    2017-09-01

    Isothermal fatigue (IF) tests were performed on H13 tool steel subjected to three different mechanical strain amplitudes at a constant temperature to determine the effects of mechanical strain amplitude on the microstructure of the steel samples. The samples' extent of damage after IF tests was compared by observation of their cracks and calculation of their damage parameters. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to observe the microstructure of the samples. Cracks were observed to initiate at the surface because the strains and stresses there were the largest during thermal cycling. Mechanical strain accelerated the damage and softening of the steel. A larger mechanical strain caused greater deformation of the steel, which made the precipitated carbides easier to gather and grow along the deformation direction, possibly resulting in softening of the material or the initiation of cracks.

  18. Strain cupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator

    OpenAIRE

    Teissier, J.; Barfuss, A.; Appel, P.; Neu, E.; Maletinsky, P.

    2014-01-01

    We report on single electronic spins coupled to the motion of mechanical resonators by a novel mechanism based on crystal strain. Our device consists of single-crystal diamond cantilevers with embedded nitrogen-vacancy center spins. Using optically detected electron spin resonance, we determine the unknown spin-strain coupling constants and demonstrate that our system resides well within the resolved sideband regime. We realize coupling strengths exceeding 10 MHz under mechanical driving and ...

  19. Relaxation of Anisotropic Glasses

    DEFF Research Database (Denmark)

    Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar

    2004-01-01

    . When the load was removed at room temperature a permanent optical anisotropy (birefringence) was observed only perpendicular to cylinder axis and the pressure direction indicating complete elimination of thermal stresses. Relaxation of structural anisotropy was studied from reheating experiments using...... the energy release, thermo-mechanical and optical relaxation behaviour are drawn....

  20. Phosphorene under strain:electronic, mechanical and piezoelectric responses

    Science.gov (United States)

    Drissi, L. B.; Sadki, S.; Sadki, K.

    2018-01-01

    Structural, electronic, elastic and piezoelectric properties of pure phosphorene under in-plane strain are investigated using first-principles calculations based on density functional theory. The two critical yielding points are determined along armchair and zigzag directions. It is shown that the buckling, the band gap and the charge transfer can be controlled under strains. A semiconductor to metallic transition is observed in metastable region. Polar plots of Young's modulus, Poisson ratio, sound velocities and Debye temperature exhibit evident anisotropic feature of phosphorene and indicate auxetic behavior for some angles θ. Our calculations show also that phosphorene has both in-plane and out-of-plane piezoelectric responses comparable to known 2D materials. The findings of this work reveal the great potential of pure phosphorene in nanomechanical applications.

  1. Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process

    Science.gov (United States)

    Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.

    2018-06-01

    A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.

  2. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.

    Science.gov (United States)

    Hu, Ting; Han, Yang; Dong, Jinming

    2014-11-14

    The mechanical and electronic properties of both the monolayer and bilayer phosphorenes under either isotropic or uniaxial strain have been systematically investigated using first-principles calculations. It is interesting to find that: 1) Under a large enough isotropic tensile strain, the monolayer phosphorene would lose its pucker structure and transform into a flat hexagonal plane, while two inner sublayers of the bilayer phosphorene could be bonded due to its interlayer distance contraction. 2) Under the uniaxial tensile strain along a zigzag direction, the pucker distance of each layer in the bilayer phosphorene can exhibit a specific negative Poisson's ratio. 3) The electronic properties of both the monolayer and bilayer phosphorenes are sensitive to the magnitude and direction of the applied strains. Their band gaps decrease more rapidly under isotropic compressive strain than under uniaxial strain. Also, their direct-indirect band gap transitions happen at the larger isotropic tensile strains compared with that under uniaxial strain. 4) Under the isotropic compressive strain, the bilayer phosphorene exhibits a transition from a direct-gap semiconductor to a metal. In contrast, the monolayer phosphorene initially has the direct-indirect transition and then transitions to a metal. However, under isotropic tensile strain, both the bilayer and monolayer phosphorene show the direct-indirect transition and, finally, the transition to a metal. Our numerical results may open new potential applications of phosphorene in nanoelectronics and nanomechanical devices by external isotropic strain or uniaxial strain along different directions.

  3. Effects of the strain relaxation of an AlGaN barrier layer induced by various cap layers on the transport properties in AlGaN/GaN heterostructures

    International Nuclear Information System (INIS)

    Liu Zi-Yang; Zhang Jin-Cheng; Duan Huan-Tao; Xue Jun-Shuai; Lin Zhi-Yu; Ma Jun-Cai; Xue Xiao-Yong; Hao Yue

    2011-01-01

    The strain relaxation of an AlGaN barrier layer may be influenced by a thin cap layer above, and affects the transport properties of AlGaN/GaN heterostructures. Compared with the slight strain relaxation found in AlGaN barrier layer without cap layer, it is found that a thin cap layer can induce considerable changes of strain state in the AlGaN barrier layer. The degree of relaxation of the AlGaN layer significantly influences the transport properties of the two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructures. It is observed that electron mobility decreases with the increasing degree of relaxation of the AlGaN barrier, which is believed to be the main cause of the deterioration of crystalline quality and morphology on the AlGaN/GaN interface. On the other hand, both GaN and AlN cap layers lead to a decrease in 2DEG density. The reduction of 2DEG caused by the GaN cap layer may be attributed to the additional negative polarization charges formed at the interface between GaN and AlGaN, while the reduction of the piezoelectric effect in the AlGaN layer results in the decrease of 2DEG density in the case of AlN cap layer. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Strain coupling between nitrogen vacancy centers and the mechanical motion of a diamond optomechanical crystal resonator

    Science.gov (United States)

    Cady, J. V.; Lee, K. W.; Ovartchaiyapong, P.; Bleszynski Jayich, A. C.

    Several experiments have recently demonstrated coupling between nitrogen vacancy (NV) centers in diamond and mechanical resonators via crystal strain. In the strong coupling regime, such devices could realize applications critical to emerging quantum technologies, including phonon-mediated spin-spin interactions and mechanical cooling with the NV center1. An outstanding challenge for these devices is generating higher strain coupling in high frequency devices while maintaining the excellent coherence properties of the NV center and high mechanical quality factors. As a step toward these objectives, we demonstrate single-crystal diamond optomechanical crystal resonators with embedded NV centers. These devices host highly-confined GHz-scale mechanical modes that are isolated from mechanical clamping losses and generate strain profiles that allow for large strain coupling to NV centers far from noise-inducing surfaces.

  5. A quantum mechanical alternative to the Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids.

    Science.gov (United States)

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-11-21

    The theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups have recently been given a consistent quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate (i.e., coherence-damping) processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in the condensed phase can retain quantum character over much broader temperature range than is commonly thought.

  6. Quantum mechanical alternative to Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids

    KAUST Repository

    Bernatowicz, Piotr

    2015-10-01

    Theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups has recently been given a consistently quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate, i.e., coherence-damping processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in condensed phase can retain quantum character over much broad temperature range than is commonly thought.

  7. Relaxation cracking in the process industry, an underestimated problem

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)

    1998-12-31

    Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.

  8. Relaxation cracking in the process industry, an underestimated problem

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)

    1999-12-31

    Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.

  9. A probabilistic mechanism hidden behind the universal power law for dielectric relaxation. 2 - Discussion of the response function

    International Nuclear Information System (INIS)

    Weron, K.

    1991-08-01

    This paper is a continuation of our previous work, where the new probabilistic model based directly on the reaction picture of relaxation was introduced and a general relaxation equation was derived. Here we show the universal character of distributions of damping rates and waiting times used in this model. Moreover, we discuss in detail a physical significance of the response function derived as a solution of the general relaxation equation. (author). 23 refs, 4 figs

  10. Deformation mechanisms of bent Si nanowires governed by the sign and magnitude of strain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lihua, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Materials Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Kong, Deli; Xin, Tianjiao; Shu, Xinyu; Zheng, Kun; Xiao, Lirong; Sha, Xuechao; Lu, Yan; Han, Xiaodong, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Zhang, Ze [Department of Materials Science, Zhejiang University, Hangzhou 310008 (China); Zou, Jin, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Materials Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072 (Australia)

    2016-04-11

    In this study, the deformation mechanisms of bent Si nanowires are investigated at the atomic scale with bending strain up to 12.8%. The sign and magnitude of the applied strain are found to govern their deformation mechanisms, in which the dislocation types (full or partial dislocations) can be affected by the sign (tensile or compressive) and magnitude of the applied strain. In the early stages of bending, plastic deformation is controlled by 60° full dislocations. As the bending increases, Lomer dislocations can be frequently observed. When the strain increases to a significant level, 90° partial dislocations induced from the tensile surfaces of the bent nanowires are observed. This study provides a deeper understanding of the effect of the sign and magnitude of the bending strain on the deformation mechanisms in bent Si nanowires.

  11. The Mechanism for Type I Interferon Induction by Mycobacterium tuberculosis is Bacterial Strain-Dependent.

    Directory of Open Access Journals (Sweden)

    Kirsten E Wiens

    2016-08-01

    Full Text Available Type I interferons (including IFNαβ are innate cytokines that may contribute to pathogenesis during Mycobacterium tuberculosis (Mtb infection. To induce IFNβ, Mtb must gain access to the host cytosol and trigger stimulator of interferon genes (STING signaling. A recently proposed model suggests that Mtb triggers STING signaling through bacterial DNA binding cyclic GMP-AMP synthase (cGAS in the cytosol. The aim of this study was to test the generalizability of this model using phylogenetically distinct strains of the Mtb complex (MTBC. We infected bone marrow derived macrophages with strains from MTBC Lineages 2, 4 and 6. We found that the Lineage 6 strain induced less IFNβ, and that the Lineage 2 strain induced more IFNβ, than the Lineage 4 strain. The strains did not differ in their access to the host cytosol and IFNβ induction by each strain required both STING and cGAS. We also found that the three strains shed similar amounts of bacterial DNA. Interestingly, we found that the Lineage 6 strain was associated with less mitochondrial stress and less mitochondrial DNA (mtDNA in the cytosol compared with the Lineage 4 strain. Treating macrophages with a mitochondria-specific antioxidant reduced cytosolic mtDNA and inhibited IFNβ induction by the Lineage 2 and 4 strains. We also found that the Lineage 2 strain did not induce more mitochondrial stress than the Lineage 4 strain, suggesting that additional pathways contribute to higher IFNβ induction. These results indicate that the mechanism for IFNβ by Mtb is more complex than the established model suggests. We show that mitochondrial dynamics and mtDNA contribute to IFNβ induction by Mtb. Moreover, we show that the contribution of mtDNA to the IFNβ response varies by MTBC strain and that additional mechanisms exist for Mtb to induce IFNβ.

  12. Mechanical stresses and strains in superconducting dipole magnets for high energy accelerators

    International Nuclear Information System (INIS)

    Greben, L.I.; Mironov, E.S.; Moustafin, H.H.

    1979-01-01

    Stress and strain distributions in superconducting dipole magnets were investigated numerically. A finite element computer program was developed to calculate stresses and displacements due to thermal stress, electromagnetic forces and prestressing of structural elements. Real mechanical and thermal properties of superconducting dipole elements are taken into account. Numerical results of stress and strain patterns in dipole magnets are presented

  13. On the Effects of Thermal History on the Development and Relaxation of Thermo-Mechanical Stress in Cryopreservation.

    Science.gov (United States)

    Eisenberg, David P; Steif, Paul S; Rabin, Yoed

    2014-01-01

    This study investigates the effects of the thermal protocol on the development and relaxation of thermo-mechanical stress in cryopreservation by means of glass formation, also known as vitrification. The cryopreserved medium is modeled as a homogeneous viscoelastic domain, constrained within either a stiff cylindrical container or a highly compliant bag. Annealing effects during the cooling phase of the cryopreservation protocol are analyzed. Results demonstrate that an intermediate temperature-hold period can significantly reduce the maximum tensile stress, thereby decreasing the potential for structural damage. It is also demonstrated that annealing at temperatures close to glass transition significantly weakens the dependency of thermo-mechanical stress on the cooling rate. Furthermore, a slower initial rewarming rate after cryogenic storage may drastically reduce the maximum tensile stress in the material, which supports previous experimental observations on the likelihood of fracture at this stage. This study discusses the dependency of the various stress components on the storage temperature. Finally, it is demonstrated that the stiffness of the container wall can affect the location of maximum stress, with implications on the development of cryopreservation protocols.

  14. Strain-rate dependent plasticity in thermo-mechanical transient analysis

    International Nuclear Information System (INIS)

    Rashid, Y.R.; Sharabi, M.N.

    1980-01-01

    The thermo-mechanical transient behavior of fuel element cladding and other reactor components is generally governed by the strain-rate properties of the material. Relevant constitutive modeling requires extensive material data in the form of strain-rate response as function of true-stress, temperature, time and environmental conditions, which can then be fitted within a theoretical framework of an inelastic constitutive model. In this paper, we present a constitutive formulation that deals continuously with the entire strain-rate range and has the desirable advantage of utilizing existing material data. The derivation makes use of strain-rate sensitive stress-strain curve and strain-rate dependent yield surface. By postulating a strain-rate dependent on Mises yield function and a strain-rate dependent kinematic hardening rule, we are able to derive incremental stress-strain relations that describe the strain-rate behavior in the entire deformation range spanning high strain-rate plasticity and creep. The model is sufficiently general as to apply to any materials and loading histories for which data is available. (orig.)

  15. Mechanisms of large strain, high strain rate plastic flow in the explosively driven collapse of Ni-Al laminate cylinders

    International Nuclear Information System (INIS)

    Olney, K L; Chiu, P H; Nesterenko, V F; Higgins, A; Serge, M; Weihs, T P; Fritz, G; Stover, A; Benson, D J

    2014-01-01

    Ni-Al laminates have shown promise as reactive materials due to their high energy release through intermetallic reaction. In addition to the traditional ignition methods, the reaction may be initiated in hot spots that can be created during mechanical loading. The explosively driven thick walled cylinder (TWC) technique was performed on two Ni-Al laminates composed of thin foil layers with different mesostructues: concentric and corrugated. These experiments were conducted to examine how these materials accommodate large plastic strain under high strain rates. Finite element simulations of these specimens with mesostuctures digitized from the experimental samples were conducted to provide insight into the mesoscale mechanisms of plastic flow. The dependence of dynamic behaviour on mesostructure may be used to tailor the hot spot formation and therefore the reactivity of the material system.

  16. The time-local view of nonequilibrium statistical mechanics. I. Linear theory of transport and relaxation

    Science.gov (United States)

    der, R.

    1987-01-01

    The various approaches to nonequilibrium statistical mechanics may be subdivided into convolution and convolutionless (time-local) ones. While the former, put forward by Zwanzig, Mori, and others, are used most commonly, the latter are less well developed, but have proven very useful in recent applications. The aim of the present series of papers is to develop the time-local picture (TLP) of nonequilibrium statistical mechanics on a new footing and to consider its physical implications for topics such as the formulation of irreversible thermodynamics. The most natural approach to TLP is seen to derive from the Fourier-Laplace transformwidetilde{C}(z)) of pertinent time correlation functions, which on the physical sheet typically displays an essential singularity at z=∞ and a number of macroscopic and microscopic poles in the lower half-plane corresponding to long- and short-lived modes, respectively, the former giving rise to the autonomous macrodynamics, whereas the latter are interpreted as doorway modes mediating the transfer of information from relevant to irrelevant channels. Possible implications of this doorway mode concept for socalled extended irreversible thermodynamics are briefly discussed. The pole structure is used for deriving new kinds of generalized Green-Kubo relations expressing macroscopic quantities, transport coefficients, e.g., by contour integrals over current-current correlation functions obeying Hamiltonian dynamics, the contour integration replacing projection. The conventional Green-Kubo relations valid for conserved quantities only are rederived for illustration. Moreover,widetilde{C}(z) may be expressed by a Laurent series expansion in positive and negative powers of z, from which a rigorous, general, and straightforward method is developed for extracting all macroscopic quantities from so-called secularly divergent expansions ofwidetilde{C}(z) as obtained from the application of conventional many-body techniques to the calculation

  17. Differential saturation study of radial and angular modulation mechanisms of electron spin--lattice relaxation for trapped hydrogen atoms in sulfuric acid glasses. [X radiation

    Energy Technology Data Exchange (ETDEWEB)

    Plonka, A; Kevan, L

    1976-11-01

    A differential ESR saturation study of allowed transitions and forbidden proton spin-flip satellite transitions for trapped hydrogen atoms in sulfuric acid glasses indicates that angular modulation dominates the spin-lattice relaxation mechanisms and suggests that the modulation arises from motion of the H atom.

  18. Improving sensitivity of the polyurethane/CNT laminate strain sensor by controlled mechanical preload

    International Nuclear Information System (INIS)

    Slobodian, Petr; Olejnik, Robert; Matyas, Jiri; Babar, Dipak Gorakh

    2016-01-01

    This article describes strain detection potential of polyurethane/CNT layered composite and further possible enhance of its sensitivity to strain, expressed by value of gauge factor, GF, employing its controlled mechanical preload. In course of its fabrication a non-woven polyurethane membrane made by electro spinning was used as filtering membrane for CNT aqueous dispersion. Final CNT polyurethane laminate composite is prepared by compression molding. Produced polyurethane/CNT composite laminate is electrically conductive and high elastic. Its elongation leads to change of its macroscopic electrical resistance. Changes in resistance are further reversible, reproducible and can monitor deformation in real time. Gauge factor reaches very high values around 8 for strain reaching 3.5% comparing with conventional metallic strain gauges. Finally, controlled mechanical preload significantly increases value of GF. For example for value of 8.1% of preload value of GF reaches 23.3 for strain 3.5%. (paper)

  19. Changes in diffusion properties of biological tissues associated with mechanical strain

    International Nuclear Information System (INIS)

    Tanaka, Kenichiro; Imae, T.; Mima, Kazuo; Sekino, Masaki; Ohsaki, Hiroyuki; Ueno, Shogo

    2007-01-01

    Mechanical strain in biological tissues causes a change in the diffusion properties of water molecules. This paper proposes a method of estimating mechanical strain in biological tissues using diffusion magnetic resonance imaging (MRI). Measurements were carried out on uncompressed and compressed chicken skeletal muscles. A theoretical model of the diffusion of water molecules in muscle fibers was derived based on Tanner's equation. Diameter of the muscle fibers was estimated by fitting the model equation to the measured signals. Changes in the mean diffusivity (MD), the fractional anisotropy (FA), and diameter of the muscle fiber did not have any statistical significance. The intracellular diffusion coefficient (D int ) was changed by mechanical strain (p<.05). This method has potential applications in the quantitative evaluation of strain in biological tissues, a though it poses several technical challenges. (author)

  20. Strain energy storage and dissipation rate in active cell mechanics

    Science.gov (United States)

    Agosti, A.; Ambrosi, D.; Turzi, S.

    2018-05-01

    When living cells are observed at rest on a flat substrate, they can typically exhibit a rounded (symmetric) or an elongated (polarized) shape. Although the cells are apparently at rest, the active stress generated by the molecular motors continuously stretches and drifts the actin network, the cytoskeleton of the cell. In this paper we theoretically compare the energy stored and dissipated in this active system in two geometric configurations of interest: symmetric and polarized. We find that the stored energy is larger for a radially symmetric cell at low activation regime, while the polar configuration has larger strain energy when the active stress is beyond a critical threshold. Conversely, the dissipation of energy in a symmetric cell is always larger than that of a nonsymmetric one. By a combination of symmetry arguments and competition between surface and bulk stress, we argue that radial symmetry is an energetically expensive metastable state that provides access to an infinite number of lower-energy states, the polarized configurations.

  1. Single-molecule supercoil-relaxation assay as a screening tool to determine the mechanism and efficacy of human topoisomerase IB inhibitors

    Science.gov (United States)

    Seol, Yeonee; Zhang, Hongliang; Agama, Keli; Lorence, Nicholas; Pommier, Yves; Neuman, Keir C.

    2015-01-01

    Human nuclear type IB topoisomerase (Top1) inhibitors are widely used and powerful anti-cancer agents. In this study, we introduce and validate a single-molecule supercoil relaxation assay as a molecular pharmacology tool for characterizing therapeutically relevant Top1 inhibitors. Using this assay, we determined the effects on Top1 supercoil relaxation activity of four Top1 inhibitors; three clinically relevant: camptothecin, LMP-400, LMP-776 (both indenoisoquinoline derivatives), and one natural product in preclinical development, lamellarin-D. Our results demonstrate that Top1 inhibitors have two distinct effects on Top1 activity: a decrease in supercoil relaxation rate and an increase in religation inhibition. The type and magnitude of the inhibition mode depend both on the specific inhibitor and on the topology of the DNA substrate. In general, the efficacy of inhibition is significantly higher with supercoiled than with relaxed DNA substrates. Comparing single-molecule inhibition with cell growth inhibition (IC50) measurements showed a correlation between the binding time of the Top1 inhibitors and their cytotoxic efficacy, independent of the mode of inhibition. This study demonstrates that the single-molecule supercoil relaxation assay is a sensitive method to elucidate the detailed mechanisms of Top1 inhibitors and is relevant for the cellular efficacy of Top1 inhibitors. PMID:26351326

  2. The ent-15α-Acetoxykaur-16-en-19-oic Acid Relaxes Rat Artery Mesenteric Superior via Endothelium-Dependent and Endothelium-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Êurica Adélia Nogueira Ribeiro

    2012-01-01

    Full Text Available The objective of the study was to investigate the mechanism of the relaxant activity of the ent-15α-acetoxykaur-16-en-19-oic acid (KA-acetoxy. In rat mesenteric artery rings, KA-acetoxy induced a concentration-dependent relaxation in vessels precontracted with phenylephrine. In the absence of endothelium, the vasorelaxation was significantly shifted to the right without reduction of the maximum effect. Endothelium-dependent relaxation was significantly attenuated by pretreatment with L-NAME, an inhibitor of the NO-synthase (NOS, indomethacin, an inhibitor of the cyclooxygenase, L-NAME + indomethacin, atropine, a nonselective antagonist of the muscarinic receptors, ODQ, selective inhibitor of the guanylyl cyclase enzyme, or hydroxocobalamin, a nitric oxide scavenger. The relaxation was completely reversed in the presence of L-NAME + 1 mM L-arginine or L-arginine, an NO precursor. Diterpene-induced relaxation was not affected by TEA, a nonselective inhibitor of K+ channels. The KA-acetoxy antagonized CaCl2-induced contractions in a concentration-dependent manner and also inhibited an 80 mM KCl-induced contraction. The KA-acetoxy did not interfere with Ca2+ release from intracellular stores. The vasorelaxant induced by KA-acetoxy seems to involve the inhibition of the Ca2+ influx and also, at least in part, by endothelial muscarinic receptors activation, NO and PGI2 release.

  3. Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests

    Science.gov (United States)

    Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.

    2018-02-01

    During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.

  4. Ion transport restriction in mechanically strained separator membranes

    Science.gov (United States)

    Cannarella, John; Arnold, Craig B.

    2013-03-01

    We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.

  5. Dynamic tensile behaviour and deformational mechanism of C5191 phosphor bronze under high strain rates deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dao-chun [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Taizhou Vocational & Technical College, Taizhou 318000 (China); Chen, Ming-he, E-mail: meemhchen@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Lei; Cheng, Hu [College of Mechanical Engineering, Taizhou University, Taizhou 318000 (China)

    2016-01-01

    High speed stamping process is used to high strength and high electrical conductivity phosphor bronze with extremely high strain rates more than 10{sup 3} s{sup −1}. This study on the dynamic tensile behaviour and deformational mechanism is to optimise the high speed stamping processes and improve geometrical precision in finished products. Thus, the tensile properties and deformation behaviour of C5191 phosphor bronze under quasi-static tensile condition at a strain rate of 0.001 s{sup −1} by electronic universal testing machine, and dynamic tensile condition at strain rate of 500, 1000 and 1500 s{sup −1} by split Hopkinson tensile bar (SHTB) apparatus were studied. The effects of strain rate and the deformation mechanism were investigated by means of SEM and TEM. The results showed that the yield strength and tensile strength of C5191 phosphor bronze under high strain rates deformation increased by 32.77% and 11.07% respectively compared with quasi-static condition, the strain hardening index increases from 0.075 to 0.251, and the strength of the material strain rates sensitivity index change from 0.005 to 0.022, which presented a clear sensitive to strain rates. Therefore, it is claimed that the dominant deformation mechanism was changed by the dislocation motion under different strain rates, and the ability of plastic deformation of C5191 phosphor bronze increased due to the number of movable dislocations increased significantly, started multi-line slip, and the soft effect of adiabatic temperature rise at the strain rate ranging from 500 to 1500 s{sup −1}.

  6. Cross-resistance of bisultap resistant strain of Nilaparvata lugens and its biochemical mechanism.

    Science.gov (United States)

    Ling, Shanfeng; Zhang, Runjie

    2011-02-01

    The resistant (R) strain of the planthopper Nilaparvata lugens (Stål) selected for bisultap resistance displayed 7.7-fold resistance to bisultap and also had cross-resistance to nereistoxin (monosultap, thiocyclam, and cartap), chlorpyrifos, dimethoate, and malathion but no cross-resistance to buprofezin, imidacloprid, and fipronil. To find out the biochemical mechanism of resistance to bisultap, biochemical assay was done. The results showed that cytochrome P450 monooxygenases (P450) activity in R strain was 2.71-fold that in susceptible strain (S strain), in which the changed activity for general esterase (EST) was 1.91 and for glutathione S-transferases only 1.32. Piperonyl butoxide (PBO) could significantly inhibit P450 activity (percentage of inhibition [PI]: 37.31%) in the R strain, with ESTs PI = 16.04% by triphenyl phosphate (TPP). The results also demonstrated that diethyl maleate had no synergism with bisultap. However, PBO displayed significant synergism in three different strains, and the synergism increased with resistance (S strain 1.42, Lab strain, 2.24 and R strain, 3.23). TPP also showed synergism for three strains, especially in R strain (synergistic ratio = 2.47). An in vitro biochemical study and in vivo synergistic study indicated that P450 might be play important role in the biochemical mechanism of bisultap resistance and that esterase might be the important factor of bisultap resistance. Acetylcholinesterase (AChE) insensitivity play important role in bisultap resistance. We suggest that buprofezin, imidacloprid, and fipronil could be used in resistance management programs for N. lugens via alternation and rotation with bisultap.

  7. Cyclic mechanical behavior of 316L: Uniaxial LCF and strain-controlled ratcheting tests

    International Nuclear Information System (INIS)

    Facheris, G.; Janssens, K.G.F.

    2013-01-01

    Highlights: ► Characterization of cyclic plastic deformation behavior of plate and tubular 316L. ► Strain-controlled ratcheting response between room temperature and 200 °C. ► Isotropic cyclic hardening is dependent on the yield criterion used. ► Ratcheting induced hardening mostly affects the kinematic hardening component. ► Ratcheting induced hardening is related to the mean strain and the ratcheting rate. -- Abstract: With the purpose of analyzing the fatigue behavior under loading conditions relevant for the primary cooling circuit of a light water nuclear reactor, a set of uniaxial low cycle fatigue and strain-controlled ratcheting tests (also named ‘cyclic tension tests’) has been performed at room temperature and at 200 °C on specimens manufactured from two different batches of stainless steel grade 316L. The experiments have been repeated varying strain amplitude, cyclic ratcheting rate and ratcheting direction in order to investigate the influence on the cyclic deformation behavior. In strain-controlled ratcheting tests, the stress response is found to be a superposition of two hardening mechanisms: the first one due to the zero mean strain cycling and the second one linked with the monotonic drifting of mean plastic strain. An approach is proposed to distinguish the effect of each mechanism and the influence of the test parameters on the hardening mechanisms is discussed

  8. One and two-phonon processes of the spin-flip relaxation in quantum dots: Spin-phonon coupling mechanism

    Science.gov (United States)

    Wang, Zi-Wu; Li, Shu-Shen

    2012-07-01

    We investigate the spin-flip relaxation in quantum dots using a non-radiation transition approach based on the descriptions for the electron-phonon deformation potential and Fröhlich interaction in the Pavlov-Firsov spin-phonon Hamiltonian. We give the comparisons of the electron relaxations with and without spin-flip assisted by one and two-phonon processes. Calculations are performed for the dependence of the relaxation time on the external magnetic field, the temperature and the energy separation between the Zeeman sublevels of the ground and first-excited state. We find that the electron relaxation time of the spin-flip process is more longer by three orders of magnitudes than that of no spin-flip process.

  9. Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, I. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)], E-mail: Ivan.Nikitin@infineon.com; Besel, M. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)

    2008-09-15

    Mechanical surface treatments such as deep rolling are known to affect the near-surface microstructure and induce, e.g. residual stresses and/or increase the surface hardness. It is well known that, e.g. compressive residual stress states usually increase the lifetime under fatigue loading. The stress relaxation behaviour and the stability of the residual stress during fatigue loading depend on the mechanical surface treatment method. In this paper three different surface treatments are used and their effects on the low cycle fatigue behaviour of austenitic stainless steel (AISI 304) and ferritic-pearlitic steel (SAE 1045) are investigated. X-ray diffraction is applied for the non-destructive evaluation of the stress state and the microstructure. It is found that consecutive deep rolling and annealing as well as high temperature deep rolling produce more stable near-surface stress states than conventional deep rolling at room temperature. The plastic strain amplitudes during fatigue loading are measured and it is shown that they correlate well with the induced residual stress and its relaxation, respectively. Furthermore, Coffin-Manson plots are presented which clearly show the correlation between the plastic strain amplitude and the fatigue lifetime.

  10. In situ X-ray micro-CT characterization of chemo-mechanical relaxations during Sn lithiation

    Science.gov (United States)

    Gonzalez, Joseph F.; Antartis, Dimitrios A.; Chasiotis, Ioannis; Dillon, Shen J.; Lambros, John

    2018-03-01

    Sn has been proposed for use as a high capacity anode material. Because of its ductile metallic nature, Sn may exhibit unique stress evolution during lithiation. Here, 2D radiography and 3D tomography are employed to visualize the evolution of geometry, internal structure, alloying, and damage during lithiation, delithiation, and rest of Sn wires with micron scale diameters. Lithiation proceeds isotropically, resulting in geometric and dimensional changes after 25% of total lithiation when the tensile stresses are sufficiently high to exceed the flow stress of the unlithiated Sn core and cause elongation and diameter increase. Damage occurs at later stages in the form of cracks terminating at the wire surface and voids forming in the unlithiated core. Notably, significant fragmentation occurs during delithiation which, due to void formation that accommodates the resulting stresses, does not measurably alter the wire cross-section and length. The distinguishing feature of the chemo-mechanics of Sn compared to Si or Ge is the pronounced creep rate at applied strain rates as high as 10-6 s-1, which promotes large strains in the core, eventually leading to void nucleation in the unlithiated core during lithiation, and more importantly, continues driving the deformation of the anode while at rest.

  11. Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials

    International Nuclear Information System (INIS)

    Pantzas, K.; Abid, M.; Voss, P.L.; Ougazzaden, A.; Patriarche, G.; Orsal, G.; Gautier, S.; Moudakir, T.; Gorge, V.; Djebbour, Z.

    2012-01-01

    In this paper we report on a spontaneous 2D/3D transition observed in InGaN alloys after 60 nm of growth. This transition is responsible for the formation of a stack of distinct InGaN layers. The driving mechanism is shown to be lateral fluctuations of the indium composition, that arise to accommodate the increasing strain energy of the InGaN layer. Three distinct stages of growth have been identified. First, a homogeneous, 2D InGaN layer forms, pseudomorphically strained on the underlying GaN. Then, at around 30 nm large lateral fluctuations of the indium composition are observed and a second pseudomorphic layer, composed of indium-rich and indium-poor clusters, is formed. Finally induces a 2D/3D transition at 60 nm and a 3D InGaN layer is formed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Spin-polarization dependent carrier recombination dynamics and spin relaxation mechanism in asymmetrically doped (110) n-GaAs quantum wells

    Science.gov (United States)

    Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu

    2018-05-01

    Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.

  13. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator

    OpenAIRE

    Ovartchaiyapong, Preeti; Lee, Kenneth W.; Myers, Bryan A.; Jayich, Ania C. Bleszynski

    2014-01-01

    The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy center spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain inte...

  14. Dissolving mechanism of strain P17 on insoluble phosphorus of yellow-brown soil

    Directory of Open Access Journals (Sweden)

    Zhong Chuan-qing

    2014-09-01

    Full Text Available Strain P17 was a bacterial strain identified as Bacillus megaterium isolated from ground accumulating phosphate rock powder. The fermentation broth of strain P17 and the yellow-brown soil from Nanjing Agricultural University garden were collected to conduct this study. The simulation of fixed insoluble phosphorous forms after applying calcium superphosphate into yellow-brown soil was performed in pots, while available P and total P of soil were extremely positive correlative with those of groundwater. Then the dissolving effect of strain P17 on insoluble P of yellow-brown soil was studied. Results showed that Bacillus megaterium strain P17 had notable solubilizing effect on insoluble phosphates formed when too much water-soluble phosphorous fertilizer used. During 100 days after inoculation, strain P17 was dominant. Until the 120th day, compared with water addition, available P of strain P17 inoculation treated soil increased by 3 times with calcium superphosphate addition. Besides available P, pH, activity of acid and alkaline phosphatase and population of P-solubilizing microbes were detected respectively. P-solubilizing mechanism of P-solubilizing bacteria strain P17 seems to be a synergetic effect of pH decrease, organic acids, phosphatase, etc.

  15. Effects of different magnitudes of mechanical strain on Osteoblasts in vitro

    International Nuclear Information System (INIS)

    Tang Lin; Lin Zhu; Li Yongming

    2006-01-01

    In addition to systemic and local factors, mechanical strain plays a crucial role in bone remodeling during growth, development, and fracture healing, and especially in orthodontic tooth movement. Although many papers have been published on the effects of mechanical stress on osteoblasts or osteoblastic cells, little is known about the effects of different magnitudes of mechanical strain on such cells. In the present study, we investigated how different magnitudes of cyclic tensile strain affected osteoblasts. MC3T3-E1 osteoblastic cells were subjected to 0%, 6%, 12% or 18% elongation for 24 h using a Flexercell Strain Unit, and then the mRNA and protein expressions of osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) were examined. The results showed that cyclic tensile strain induced a magnitude-dependent increase (0%, 6%, 12%, and 18%) in OPG synthesis and a concomitant decrease in RANKL mRNA expression and sRANKL release from the osteoblasts. Furthermore, the induction of OPG mRNA expression by stretching was inhibited by indomethacin or genistein, and the stretch-induced reduction of RANKL mRNA was inhibited by PD098059. These results indicate that different magnitudes of cyclic tensile strain influence the biological behavior of osteoblasts, which profoundly affects bone remodeling

  16. Strain Rate and Anisotropic Microstructure Dependent Mechanical Behaviors of Silkworm Cocoon Shells.

    Directory of Open Access Journals (Sweden)

    Jun Xu

    Full Text Available Silkworm cocoons are multi-layered composite structures comprised of high strength silk fiber and sericin, and their mechanical properties have been naturally selected to protect pupas during metamorphosis from various types of external attacks. The present study attempts to gain a comprehensive understanding of the mechanical properties of cocoon shell materials from wild silkworm species Antheraea pernyi under dynamic loading rates. Five dynamic strain rates from 0.00625 s-1 to 12.5 s-1 are tested to show the strain rate sensitivity of the cocoon shell material. In the meantime, the anisotropy of the cocoon shell is considered and the cocoon shell specimens are cut along 0°, 45° and 90° orientation to the short axis of cocoons. Typical mechanical properties including Young's modulus, yield strength, ultimate strength and ultimate strain are extracted and analyzed from the stress-strain curves. Furthermore, the fracture morphologies of the cocoon shell specimens are observed under scanning electron microscopy to help understand the relationship between the mechanical properties and the microstructures of the cocoon material. A discussion on the dynamic strain rate effect on the mechanical properties of cocoon shell material is followed by fitting our experimental results to two previous models, and the effect could be well explained. We also compare natural and dried cocoon materials for the dynamic strain rate effect and interestingly the dried cocoon shells show better overall mechanical properties. This study provides a different perspective on the mechanical properties of cocoon material as a composite material, and provides some insight for bio-inspired engineering materials.

  17. Growth and characterization of highly tensile strained Ge{sub 1−x}Sn{sub x} formed on relaxed In{sub y}Ga{sub 1−y}P buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; D' Costa, Vijay Richard; Dong, Yuan; Liang, Gengchiau; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Loke, Wan Khai; Yoon, Soon Fatt [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Yin, Tingting; Shen, Zexiang [School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Zhang, Zheng; Pan, Jisheng [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2016-03-28

    Ge{sub 0.94}Sn{sub 0.06} films with high tensile strain were grown on strain-relaxed In{sub y}Ga{sub 1−y}P virtual substrates using solid-source molecular beam epitaxy. The in-plane tensile strain in the Ge{sub 0.94}Sn{sub 0.06} film was varied by changing the In mole fraction in In{sub x}Ga{sub 1−x}P buffer layer. The tensile strained Ge{sub 0.94}Sn{sub 0.06} films were investigated by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. An in-plane tensile strain of up to 1% in the Ge{sub 0.94}Sn{sub 0.06} was measured, which is much higher than that achieved using other buffer systems. Controlled thermal anneal experiment demonstrated that the strain was not relaxed for temperatures up to 500 °C. The band alignment of the tensile strained Ge{sub 0.94}Sn{sub 0.06} on In{sub 0.77}Ga{sub 0.23}P was obtained by high resolution x-ray photoelectron spectroscopy. The Ge{sub 0.94}Sn{sub 0.06}/In{sub 0.77}Ga{sub 0.23}P interface was found to be of the type I band alignment, with a valence band offset of 0.31 ± 0.12 eV and a conduction band offset of 0.74 ± 0.12 eV.

  18. High Resolution Transmission Electron Microscope Observation of Zero-Strain Deformation Twinning Mechanisms in Ag

    Science.gov (United States)

    Liu, L.; Wang, J.; Gong, S. K.; Mao, S. X.

    2011-04-01

    We have observed a new deformation-twinning mechanism using the high resolution transmission electron microscope in polycrystalline Ag films, zero-strain twinning via nucleation, and the migration of a Σ3{112} incoherent twin boundary (ITB). This twinning mechanism produces a near zero macroscopic strain because the net Burgers vectors either equal zero or are equivalent to a Shockley partial dislocation. This observation provides new insight into the understanding of deformation twinning and confirms a previous hypothesis: detwinning could be accomplished via the nucleation and migration of Σ3{112} ITBs. The zero-strain twinning mechanism may be unique to low staking fault energy metals with implications for their deformation behavior.

  19. Single-molecule magnetism in three related {Co(III)2Dy(III)2}-acetylacetonate complexes with multiple relaxation mechanisms.

    Science.gov (United States)

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2013-06-17

    Three new heterometallic complexes with formulas of [Dy(III)2Co(III)2(OMe)2(teaH)2(acac)4(NO3)2] (1), [Dy(III)2Co(III)2(OH)2(teaH)2(acac)4(NO3)2]·4H2O (2), and [Dy(III)2Co(III)2(OMe)2(mdea)2(acac)4(NO3)2] (3) were characterized by single-crystal X-ray diffraction and by dc and ac magnetic susceptibility measurements. All three complexes have an identical "butterfly"-type metallic core that consists of two Dy(III) ions occupying the "body" position and two diamagnetic low-spin Co(III) ions occupying the outer "wing-tips". Each complex displays single-molecule magnet (SMM) behavior in zero applied magnetic field, with thermally activated anisotropy barriers of 27, 28, and 38 K above 7.5 K for 1-3, respectively, as well as observing a temperature-independent mechanism of relaxation below 5 K for 1 and 2 and at 3 K for 3, indicating fast quantum tunneling of magnetization (QTM). A second, faster thermally activated relaxation mechanism may also be active under a zero applied dc field as derived from the Cole-Cole data. Interestingly, these complexes demonstrate further relaxation modes that are strongly dependent upon the application of a static dc magnetic field. Dilution experiments that were performed on 1, in the {Y(III)2Co(III)2} diamagnetic analog, show that the slow magnetic relaxation is of a single-ion origin, but it was found that the neighboring ion also plays an important role in the overall relaxation dynamics.

  20. Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa.

    Science.gov (United States)

    Fournier, Damien; Richardot, Charlotte; Müller, Emeline; Robert-Nicoud, Marjorie; Llanes, Catherine; Plésiat, Patrick; Jeannot, Katy

    2013-08-01

    Pseudomonas aeruginosa can become resistant to carbapenems by both intrinsic (mutation-driven) and transferable (β-lactamase-based) mechanisms. Knowledge of the prevalence of these various mechanisms is important in intensive care units (ICUs) in order to define optimal prevention and therapeutic strategies. A total of 109 imipenem-non-susceptible (MIC >4 mg/L) strains of P. aeruginosa were collected in June 2010 from the ICUs of 26 French public hospitals. Their resistance mechanisms were characterized by phenotypic, enzymatic, western blotting and molecular methods. Single or associated imipenem resistance mechanisms were identified among the 109 strains. Seven isolates (6.4%) were found to produce a metallo-β-lactamase (one VIM-1, four VIM-2, one VIM-4 and one IMP-29). Porin OprD was lost in 94 (86.2%) strains as a result of mutations or gene disruption by various insertion sequences (ISPa1635, ISPa1328, IS911, ISPs1, IS51, IS222 and ISPa41). Thirteen other strains were shown to be regulatory mutants in which down-regulation of oprD was coupled with overexpressed efflux pumps CzcCBA (n = 1), MexXY (n = 9) and MexEF-OprN (n = 3). The lack of OprD was due to disruption of the oprD promoter by ISPsy2 in one strain and alteration of the porin signal sequence in another. Imipenem resistance in ICU P. aeruginosa strains may result from multiple mechanisms involving metallo-β-lactamase gene acquisition and genetic events (mutations and ISs) inactivating oprD, turning down its expression while increasing efflux activities or preventing insertion of porin OprD in the outer membrane. This diversity of mechanisms allows P. aeruginosa, more than any other nosocomial pathogen, to rapidly adapt to carbapenems in ICUs.

  1. Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction

    KAUST Repository

    Cheng, Yingchun

    2012-10-01

    The structural and mechanical properties of graphene nanoribbons (GNRs) under uniaxial tensile strain are studied by density functional theory. The ideal strength of a zigzag GNR (120 GPa) is close to that of pristine graphene. However, for a GNR with both edges reconstructed to pentagon–heptagon pairs (from hexagon–hexagon pairs) it decreases to 94 GPa and the maximum tensile strain is reduced to 15%. Our results constitute a comprehensive picture of the edge structure effect on the mechanical properties of GNRs.

  2. Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction

    KAUST Repository

    Cheng, Yingchun; Schwingenschlö gl, Udo; Zhu, Zhiyong

    2012-01-01

    The structural and mechanical properties of graphene nanoribbons (GNRs) under uniaxial tensile strain are studied by density functional theory. The ideal strength of a zigzag GNR (120 GPa) is close to that of pristine graphene. However, for a GNR with both edges reconstructed to pentagon–heptagon pairs (from hexagon–hexagon pairs) it decreases to 94 GPa and the maximum tensile strain is reduced to 15%. Our results constitute a comprehensive picture of the edge structure effect on the mechanical properties of GNRs.

  3. The importance of the strain rate and creep on the stress corrosion cracking mechanisms and models

    International Nuclear Information System (INIS)

    Aly, Omar F.; Mattar Neto, Miguel; Schvartzman, Monica M.A.M.

    2011-01-01

    Stress corrosion cracking is a nuclear, power, petrochemical, and other industries equipment and components (like pressure vessels, nozzles, tubes, accessories) life degradation mode, involving fragile fracture. The stress corrosion cracking failures can produce serious accidents, and incidents which can put on risk the safety, reliability, and efficiency of many plants. These failures are of very complex prediction. The stress corrosion cracking mechanisms are based on three kinds of factors: microstructural, mechanical and environmental. Concerning the mechanical factors, various authors prefer to consider the crack tip strain rate rather than stress, as a decisive factor which contributes to the process: this parameter is directly influenced by the creep strain rate of the material. Based on two KAPL-Knolls Atomic Power Laboratory experimental studies in SSRT (slow strain rate test) and CL (constant load) test, for prediction of primary water stress corrosion cracking in nickel based alloys, it has done a data compilation of the film rupture mechanism parameters, for modeling PWSCC of Alloy 600 and discussed the importance of the strain rate and the creep on the stress corrosion cracking mechanisms and models. As derived from this study, a simple theoretical model is proposed, and it is showed that the crack growth rate estimated with Brazilian tests results with Alloy 600 in SSRT, are according with the KAPL ones and other published literature. (author)

  4. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    Science.gov (United States)

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  5. Interrelation of creep and relaxation: a modeling approach for ligaments.

    Science.gov (United States)

    Lakes, R S; Vanderby, R

    1999-12-01

    Experimental data (Thornton et al., 1997) show that relaxation proceeds more rapidly (a greater slope on a log-log scale) than creep in ligament, a fact not explained by linear viscoelasticity. An interrelation between creep and relaxation is therefore developed for ligaments based on a single-integral nonlinear superposition model. This interrelation differs from the convolution relation obtained by Laplace transforms for linear materials. We demonstrate via continuum concepts of nonlinear viscoelasticity that such a difference in rate between creep and relaxation phenomenologically occurs when the nonlinearity is of a strain-stiffening type, i.e., the stress-strain curve is concave up as observed in ligament. We also show that it is inconsistent to assume a Fung-type constitutive law (Fung, 1972) for both creep and relaxation. Using the published data of Thornton et al. (1997), the nonlinear interrelation developed herein predicts creep behavior from relaxation data well (R > or = 0.998). Although data are limited and the causal mechanisms associated with viscoelastic tissue behavior are complex, continuum concepts demonstrated here appear capable of interrelating creep and relaxation with fidelity.

  6. Dislocation-mediated strain hardening in tungsten: Thermo-mechanical plasticity theory and experimental validation

    Science.gov (United States)

    Terentyev, Dmitry; Xiao, Xiazi; Dubinko, A.; Bakaeva, A.; Duan, Huiling

    2015-12-01

    A self-consistent thermo-mechanical model to study the strain-hardening behavior of polycrystalline tungsten was developed and validated by a dedicated experimental route. Dislocation-dislocation multiplication and storage, as well dislocation-grain boundary (GB) pinning were the major mechanisms underlying the evolution of plastic deformation, thus providing a link between the strain hardening behavior and material's microstructure. The microstructure of the polycrystalline tungsten samples has been thoroughly investigated by scanning and electron microscopy. The model was applied to compute stress-strain loading curves of commercial tungsten grades, in the as-received and as-annealed states, in the temperature range of 500-1000 °C. Fitting the model to the independent experimental results obtained using a single crystal and as-received polycrystalline tungsten, the model demonstrated its capability to predict the deformation behavior of as-annealed samples in a wide temperature range and applied strain. The relevance of the dislocation-mediated plasticity mechanisms used in the model have been validated using transmission electron microscopy examination of the samples deformed up to different amounts of strain. On the basis of the experimental validation, the limitations of the model are determined and discussed.

  7. Mechanism of fast lattice diffusion of hydrogen in palladium: Interplay of quantum fluctuations and lattice strain

    Science.gov (United States)

    Kimizuka, Hajime; Ogata, Shigenobu; Shiga, Motoyuki

    2018-01-01

    Understanding the underlying mechanism of the nanostructure-mediated high diffusivity of H in Pd is of recent scientific interest and also crucial for industrial applications. Here, we present a decisive scenario explaining the emergence of the fast lattice-diffusion mode of interstitial H in face-centered cubic Pd, based on the quantum mechanical natures of both electrons and nuclei under finite strains. Ab initio path-integral molecular dynamics was applied to predict the temperature- and strain-dependent free energy profiles for H migration in Pd over a temperature range of 150-600 K and under hydrostatic tensile strains of 0.0%-2.4%; such strain conditions are likely to occur in real systems, especially around the elastic fields induced by nanostructured defects. The simulated results revealed that, for preferential H location at octahedral sites, as in unstrained Pd, the activation barrier for H migration (Q ) was drastically increased with decreasing temperature owing to nuclear quantum effects. In contrast, as tetrahedral sites increased in stability with lattice expansion, nuclear quantum effects became less prominent and ceased impeding H migration. This implies that the nature of the diffusion mechanism gradually changes from quantum- to classical-like as the strain is increased. For H atoms in Pd at the hydrostatic strain of ˜2.4 % , we determined that the mechanism promoted fast lattice diffusion (Q =0.11 eV) of approximately 20 times the rate of conventional H diffusion (Q =0.23 eV) in unstrained Pd at a room temperature of 300 K.

  8. 3D mechanical stratigraphy of a deformed multi-layer: Linking sedimentary architecture and strain partitioning

    Science.gov (United States)

    Cawood, Adam J.; Bond, Clare E.

    2018-01-01

    Stratigraphic influence on structural style and strain distribution in deformed sedimentary sequences is well established, in models of 2D mechanical stratigraphy. In this study we attempt to refine existing models of stratigraphic-structure interaction by examining outcrop scale 3D variations in sedimentary architecture and the effects on subsequent deformation. At Monkstone Point, Pembrokeshire, SW Wales, digital mapping and virtual scanline data from a high resolution virtual outcrop have been combined with field observations, sedimentary logs and thin section analysis. Results show that significant variation in strain partitioning is controlled by changes, at a scale of tens of metres, in sedimentary architecture within Upper Carboniferous fluvio-deltaic deposits. Coupled vs uncoupled deformation of the sequence is defined by the composition and lateral continuity of mechanical units and unit interfaces. Where the sedimentary sequence is characterized by gradational changes in composition and grain size, we find that deformation structures are best characterized by patterns of distributed strain. In contrast, distinct compositional changes vertically and in laterally equivalent deposits results in highly partitioned deformation and strain. The mechanical stratigraphy of the study area is inherently 3D in nature, due to lateral and vertical compositional variability. Consideration should be given to 3D variations in mechanical stratigraphy, such as those outlined here, when predicting subsurface deformation in multi-layers.

  9. Ac conductivity and relaxation mechanism in Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A K; Barik, Subrat K [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721 302 (India); Choudhary, R N.P. , [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721 302 (India); Mahapatra, P K [Department of Physics, Vidyasagar University, Midnapore 721 102 (India)

    2009-06-24

    The ac conductivity and relaxation mechanism in Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} ceramics have been investigated systematically. A high-temperature solid-state reaction technique was used to synthesize the compound. The formation of the compound was checked by an X-ray diffraction (XRD) technique. The dielectric permittivity and the loss tangent of the sample were measured in a frequency range from 1 kHz to 1 MHz at different temperatures (30-500 deg. C). A study on dielectric properties reveals the electrical relaxation phenomenon occurs in the material. The activation energy was calculated from the temperature variation of dc conductivity. Studies of frequency and temperature dependence of ac conductivity of the compound suggest that conduction process in the material is thermally activated.

  10. micro-mechanical experimental investigation and modelling of strain and damage of argillaceous rocks under combined hydric and mechanical loads

    International Nuclear Information System (INIS)

    Wang, L.

    2012-01-01

    The hydro-mechanical behavior of argillaceous rocks, which are possible host rocks for underground radioactive nuclear waste storage, is investigated by means of micro-mechanical experimental investigations and modellings. Strain fields at the micrometric scale of the composite structure of this rock, are measured by the combination of environmental scanning electron microscopy, in situ testing and digital image correlation technique. The evolution of argillaceous rocks under pure hydric loading is first investigated. The strain field is strongly heterogeneous and manifests anisotropy. The observed nonlinear deformation at high relative humidity (RH) is related not only to damage, but also to the nonlinear swelling of the clay mineral itself, controlled by different local mechanisms depending on RH. Irreversible deformations are observed during hydric cycles, as well as a network of microcracks located in the bulk of the clay matrix and/or at the inclusion-matrix interface. Second, the local deformation field of the material under combined hydric and mechanical loadings is quantified. Three types of deformation bands are evidenced under mechanical loading, either normal to stress direction (compaction), parallel (microcracking) or inclined (shear). Moreover, they are strongly controlled by the water content of the material: shear bands are in particular prone to appear at high RH states. In view of understanding the mechanical interactions a local scale, the material is modeled as a composite made of non-swelling elastic inclusions embedded in an elastic swelling clay matrix. The internal stress field induced by swelling strain incompatibilities between inclusions and matrix, as well as the overall deformation, is numerically computed at equilibrium but also during the transient stage associated with a moisture gradient. An analytical micro-mechanical model based on Eshelby's solution is proposed. In addition, 2D finite element computations are performed. Results

  11. Inverse methods for the mechanical characterization of materials at high strain rates

    Directory of Open Access Journals (Sweden)

    Casas-Rodriguez J.P.

    2012-08-01

    Full Text Available Mechanical material characterization represents a research challenge. Furthermore, special attention is directed to material characterization at high strain rates as the mechanical properties of some materials are influenced by the rate of loading. Diverse experimental techniques at high strain rates are available, such as the drop-test, the Taylor impact test or the Split Hopkinson pressure bar among others. However, the determination of the material parameters associated to a given mathematical constitutive model from the experimental data is a complex and indirect problem. This paper presents a material characterization methodology to determine the material parameters of a given material constitutive model from a given high strain rate experiment. The characterization methodology is based on an inverse technique in which an inverse problem is formulated and solved as an optimization procedure. The input of the optimization procedure is the characteristic signal from the high strain rate experiment. The output of the procedure is the optimum set of material parameters determined by fitting a numerical simulation to the high strain rate experimental signal.

  12. Mechanically Strain-Induced Modification of Selenium Powders in the Amorphization Process

    International Nuclear Information System (INIS)

    Fuse, Makoto; Shirakawa, Yoshiyuki; Shimosaka, Atsuko; Hidaka, Jusuke

    2003-01-01

    For the fabrication of particles designed in the nanoscale structure, or the nanostructural modification of particles using mechanical grinding process, selenium powders ground by a planetary ball mill at various rotational speeds have been investigated. Structural analyses, such as particle size distributions, crystallite sizes, lattice strains and nearest neighbour distances were performed using X-ray diffraction, scanning electron microscopy and dynamical light scattering.By grinding powder particles became spherical composites consisting of nanocrystalline and amorphous phase, and had a distribution with the average size of 2.7 μm. Integral intensities of diffraction peaks of annealed crystal selenium decreased with increasing grinding time, and these peaks broadened due to lattice strains and reducing crystallite size during the grinding. The ground powder at 200 rpm did not have the lattice strain and showed amorphization for the present grinding periods. It indicates that the amorphization of Se by grinding accompanies the lattice strain, and the lattice strain arises from a larger energy concerning intermolecular interaction. In this process, the impact energy is spent on thermal and structural changes according to energy accumulation in macroscopic (the particle size distribution) and microscopic (the crystallite size and the lattice strain) range

  13. Inelastic structural design approach using their relaxation locus

    International Nuclear Information System (INIS)

    Kasahara, Naoto

    2000-08-01

    Elevated temperature structural design codes pay attention to strain concentration at structural discontinuities due to creep and plasticity, since it causes to enlarge creep-fatigue damage of materials. One of the difficulties to predict strain concentration is its dependency on loading, constitutive equations, and relaxation time. This study investigated fundamental mechanism of strain concentration and its main factors. The results revealed that strain concentration was caused from strain redistribution between elastic and inelastic region, which can be quantified by the characteristics of structural compliance. Characteristic of compliance is controlled by elastic region in structures and is insensitive to constitutive equations. It means that inelastic analysis is easily applied to get compliance characteristics. By utilizing this fact, simplified inelastic analysis method was proposed based on characteristics of compliance change for prediction of strain concentration. (author)

  14. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18.

    Directory of Open Access Journals (Sweden)

    Stephen D Bentley

    2007-02-01

    Full Text Available The bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an

  15. Model and prediction of stress relaxation of polyurethane fiber

    Science.gov (United States)

    You, Gexin; Wang, Chunyan; Mei, Shuqin; Yang, Bo; Zhou, Xiuwen

    2018-03-01

    In this study, the effect of small strain (less than 10%) on hydrogen bond (H-bond) and crystallinity of dry-spun polyurethane fiber was investigated with fourier transform infrared spectroscopy and x-ray diffractometer, respectively. The results showed that the H-bond of hard segments hardly broke and its degree of crystallinity scarcely varied below strain of 10%. The fiber stress relaxation behavior at 25 °C under small strain was researched using dynamic mechanical analyzer. The stress relaxation modulus constitutive equation was obtained by transforming the non-linear relationship between stress and time into the linear relationship between stress and strain. The stress relaxation modulus master curve at 25 °C was established in terms of short-term stress relaxation tests at elevated temperatures (35 °C, 45 °C, 65 °C and 75 °C) according to time-temperature superposition principle (TTS) to predict long-term behavior within 353 year.

  16. Proteomic Profiling of Mesenchymal Stem Cell Responses to Mechanical Strain and TGF-B1

    Energy Technology Data Exchange (ETDEWEB)

    Kurpinski, Kyle; Chu, Julia; Wang, Daojing; Li, Song

    2009-10-12

    Mesenchymal stem cells (MSCs) are a potential source of smooth muscle cells (SMCs) for constructing tissue-engineered vascular grafts. However, the details of how specific combinations of vascular microenvironmental factors regulate MSCs are not well understood. Previous studies have suggested that both mechanical stimulation with uniaxial cyclic strain and chemical stimulation with transforming growth factor {beta}1 (TGF-{beta}1) can induce smooth muscle markers in MSCs. In this study, we investigated the combined effects of uniaxial cyclic strain and TGF-{beta}1 stimulation on MSCs. By using a proteomic analysis, we found differential regulation of several proteins and genes, such as the up-regulation of TGF-{beta}1-induced protein ig-h3 (BGH3) protein levels by TGF-{beta}1 and up-regulation of calponin 3 protein level by cyclic strain. At the gene expression level, BGH3 was induced by TGF-{beta}1, but calponin 3 was not significantly regulated by mechanical strain or TGF-{beta}1, which was in contrast to the synergistic up-regulation of calponin 1 gene expression by cyclic strain and TGF-{beta}1. Further experiments with cycloheximide treatment suggested that the up-regulation of calponin 3 by cyclic strain was at post-transcriptional level. The results in this study suggest that both mechanical stimulation and TGF-{beta}1 signaling play unique and important roles in the regulation of MSCs at both transcriptional and post-transcriptional levels, and that a precise combination of microenvironmental cues may promote MSC differentiation.

  17. Relaxation System

    Science.gov (United States)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  18. Library sequencing strategies for comparative analysis of stress resistance mechanisms in Escherichia coli strains

    DEFF Research Database (Denmark)

    Lennen, Rebecca; Bonde, Ida; Koza, Anna

    2014-01-01

    and subjected to growth selections. Following selection, the locations of all insertions in the population are counted and can be compared between a control and a target condition, enabling the identification of genes that are both conditionally essential and conditionally detrimental. We have exploited Tn....... Tn-Seq revealed many differences and similarities in resistance mechanisms at the genetic level across strains, allowing correlations to be made with growth phenotypes. Cross-strain comparisons of conditionally essential genes and their relative essentiality also suggest a large degree of variation...

  19. Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions

    Science.gov (United States)

    Herrmann, Christoph; Schoof, Ephraim; Schneider, Daniel; Schwab, Felix; Reiter, Andreas; Selzer, Michael; Nestler, Britta

    2018-04-01

    We introduce a small strain elasto-plastic multiphase-field model according to the mechanical jump conditions. A rate-independent J_2 -plasticity model with linear isotropic hardening and without kinematic hardening is applied exemplary. Generally, any physically nonlinear mechanical model is compatible with the subsequently presented procedure. In contrast to models with interpolated material parameters, the proposed model is able to apply different nonlinear mechanical constitutive equations for each phase separately. The Hadamard compatibility condition and the static force balance are employed as homogenization approaches to calculate the phase-inherent stresses and strains. Several verification cases are discussed. The applicability of the proposed model is demonstrated by simulations of the martensitic transformation and quantitative parameters.

  20. Strain localisation in mechanically layered rocks beneath detachment zones: insights from numerical modelling

    Directory of Open Access Journals (Sweden)

    L. Le Pourhiet

    2013-04-01

    Full Text Available We have designed a series of fully dynamic numerical simulations aimed at assessing how the orientation of mechanical layering in rocks controls the orientation of shear bands and the depth of penetration of strain in the footwall of detachment zones. Two parametric studies are presented. In the first one, the influence of stratification orientation on the occurrence and mode of strain localisation is tested by varying initial dip of inherited layering in the footwall with regard to the orientation of simple shear applied at the rigid boundary simulating a rigid hanging wall, all scaling and rheological parameter kept constant. It appears that when Mohr–Coulomb plasticity is being used, shear bands are found to localise only when the layering is being stretched. This corresponds to early deformational stages for inital layering dipping in the same direction as the shear is applied, and to later stages for intial layering dipping towards the opposite direction of shear. In all the cases, localisation of the strain after only γ=1 requires plastic yielding to be activated in the strong layer. The second parametric study shows that results are length-scale independent and that orientation of shear bands is not sensitive to the viscosity contrast or the strain rate. However, decreasing or increasing strain rate is shown to reduce the capacity of the shear zone to localise strain. In the later case, the strain pattern resembles a mylonitic band but the rheology is shown to be effectively linear. Based on the results, a conceptual model for strain localisation under detachment faults is presented. In the early stages, strain localisation occurs at slow rates by viscous shear instabilities but as the layered media is exhumed, the temperature drops and the strong layers start yielding plastically, forming shear bands and localising strain at the top of the shear zone. Once strain localisation has occured, the deformation in the shear band becomes

  1. Dielectric relaxations and conduction mechanisms in polyether-clay composite polymer electrolytes under high carbon dioxide pressure.

    Science.gov (United States)

    Kitajima, Shunsuke; Bertasi, Federico; Vezzù, Keti; Negro, Enrico; Tominaga, Yoichi; Di Noto, Vito

    2013-10-21

    The composite material P(EO/EM)-Sa consisting of synthetic saponite (Sa) dispersed in poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) is studied by "in situ" measurements using broadband electrical spectroscopy (BES) under pressurized CO2 to characterize the dynamic behavior of conductivity and the dielectric relaxations of the ion host polymer matrix. It is revealed that there are three dielectric relaxation processes associated with: (I) the dipolar motions in the short oxyethylene side chains of P(EO/EM) (β); and (II) the segmental motion of the main chains comprising the polyether components (αfast, αslow). αslow is attributed to the slow α-relaxation of P(EO/EM) macromolecules, which is hindered by the strong coordination interactions with the ions. Two conduction processes are observed, σDC and σID, which are attributed, respectively, to the bulk conductivity and the interdomain conductivity. The temperature dependence of conductivity and relaxation processes reveals that αfast and αslow are strongly correlated with σDC and σID. The "in situ" BES measurements under pressurized CO2 indicate a fast decrease in σDC at the initial CO2 treatment time resulting from the decrease in the concentration of polyether-M(n+) complexes, which is driven by the CO2 permeation. The relaxation frequency (fR) of αslow at the initial CO2 treatment time increases and shows a steep rise with time with the same behavior of the αfast mode. It is demonstrated that the interactions between polyether chains of P(EO/EM) and cations in the polymer electrolyte layers embedded in Sa are probably weakened by the low permittivity of CO2 (ε = 1.08). Thus, the formation of ion pairs in the polymer electrolyte domains of P(EO/EM)-Sa occurs, with a corresponding reduction in the concentration of ion carriers.

  2. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Rie [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Akimoto, Takayuki, E-mail: akimoto@m.u-tokyo.ac.jp [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Hong, Zhang [Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Ushida, Takashi [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan)

    2012-08-15

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in response to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: Black-Right-Pointing-Pointer The expression of Nanog, which is an essential regulator of 'stemness' was reduced during embryonic stem (ES) cell differentiation. Black-Right-Pointing-Pointer Cyclic mechanical strain attenuated the reduction of Nanog expression. Black-Right-Pointing-Pointer Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.

  3. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Horiuchi, Rie; Akimoto, Takayuki; Hong, Zhang; Ushida, Takashi

    2012-01-01

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in response to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: ► The expression of Nanog, which is an essential regulator of “stemness” was reduced during embryonic stem (ES) cell differentiation. ► Cyclic mechanical strain attenuated the reduction of Nanog expression. ► Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.

  4. Mechanism of action of relaxant effect of Agastache mexicana ssp.mexicana essential oil in guinea-pig trachea smooth muscle.

    Science.gov (United States)

    Navarrete, Andrés; Ávila-Rosas, Natalia; Majín-León, Mateo; Balderas-López, José Luis; Alfaro-Romero, Alejandro; Tavares-Carvalho, José Carlos

    2017-12-01

    Agastache mexicana ssp. mexicana (Kunth) Lint & Epling (Lamiaceae), popularly known as 'toronjil morado', is used in Mexican traditional medicine for the treatment of several diseases such as hypertension, anxiety and respiratory disorders. This study investigates the relaxant action mechanism of A. mexicana ssp. mexicana essential oil (AMEO) in guinea-pig isolated trachea model. AMEO was analyzed by GC/MS. The relaxant effect of AMEO (5-50 μg/mL) was tested in guinea-pig trachea pre-contracted with carbachol (3 × 10  -   6  M) or histamine (3 × 10  -   5  M) in the presence or absence of glibenclamide (10  -   5  M), propranolol (3 × 10  -   6  M) or 2',5'-dideoxyadenosine (10  -   5  M). The antagonist effect of AMEO (10-300 μg/mL) against contractions elicited by carbachol (10  -   15 -10  -   3  M), histamine (10  -   15 -10  -   3  M) or calcium (10-300 μg/mL) was evaluated. Essential oil composition was estragole, d-limonene and linalyl anthranilate. AMEO relaxed the carbachol (EC 50  =   18.25 ± 1.03 μg/mL) and histamine (EC 50  =   13.3 ± 1.02 μg/mL)-induced contractions. The relaxant effect of AMEO was not modified by the presence of propranolol, glibenclamide or 2',5'-dideoxyadenosine, suggesting that effect of AMEO is not related to β 2 -adrenergic receptors, ATP-sensitive potassium channels or adenylate cyclase activation. AMEO was more potent to antagonize histamine (pA 2 ' = -1.507 ± 0.122) than carbachol (pA 2 ' = -2.180 ± 0.357). Also, AMEO antagonized the calcium chloride-induced contractions. The results suggest that relaxant effect of AMEO might be due to blockade of calcium influx in guinea-pig trachea smooth muscle. It is possible that estragole and d-limonene could contribute majority in the relaxant effect of AMEO.

  5. Strain rate effects on mechanical properties in tension of aluminium alloys used in armour applications

    Science.gov (United States)

    Cadoni, E.; Dotta, M.; Forni, D.; Bianchi, S.; Kaufmann, H.

    2012-08-01

    The mechanical properties in tension of two aluminium alloys (AA5059-H131 and AA7039-T651) used in armour applications were determined from tests carried out over a wide range of strain-rates on round specimens. The experimental research was developed in the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The target strain rates were set at the following four levels: 10-3, 30, 300 and 1000s-1. The quasi-static tests were performed with a universal electromechanical machine, whereas a hydro-pneumatic machine and a Split Hopkinson Tensile Bar apparatus were used for medium and high strain-rates respectively. The required parameters by the Johnson-Cook constitutive law were also determined.

  6. Effects of mechanical strain on optical properties of ZnO nanowire

    Directory of Open Access Journals (Sweden)

    Ali Vazinishayan

    2018-02-01

    Full Text Available The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM software package ABAQUS and three-dimensional (3D finite-difference time-domain (FDTD methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  7. Effects of mechanical strain on optical properties of ZnO nanowire

    Science.gov (United States)

    Vazinishayan, Ali; Lambada, Dasaradha Rao; Yang, Shuming; Zhang, Guofeng; Cheng, Biyao; Woldu, Yonas Tesfaye; Shafique, Shareen; Wang, Yiming; Anastase, Ndahimana

    2018-02-01

    The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW) before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM) software package ABAQUS and three-dimensional (3D) finite-difference time-domain (FDTD) methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  8. Effect of strain rate on the mechanical properties of a gum metal with various microstructures

    International Nuclear Information System (INIS)

    Liu, Silu; Pan, Z.L.; Zhao, Y.H.; Topping, T.; Valiev, R.Z.; Liao, X.Z.; Lavernia, E.J.; Zhu, Y.T.; Wei, Q.

    2017-01-01

    In this work, a bulk gum metal (GM) was fabricated via arc melting from high purity powders. The ingots were first extruded using a conventional route followed by equal channel angular pressing (ECAP). The mechanical behavior of the extruded GM and ECAP-processed GM was studied under both quasi-static and high strain rate compression conditions to evaluate the influence of strain rate. In addition, the associated mechanical anisotropy, or the lack thereof, was investigated through loading in different orientations with respect to the extrusion or ECAP direction. Precipitous stress drops were observed under dynamic compression of both extruded and ECAP-processed GM specimens when loading perpendicular to the extrusion direction. Adiabatic shear banding (ASB) was found to be associated with the precipitous stress drops on the dynamic stress-strain curves. The details of the ASBs were characterized by optical and scanning electron microscopy, with emphasis on electron backscattered diffraction (EBSD). The mechanisms responsible for the formation of ASB were examined both from thermal softening and geometrical softening perspectives. Significant microstructure refinement within ASBs was established, and a possible grain refinement mechanism was proposed.

  9. Strained Si engineering for nanoscale MOSFETs

    International Nuclear Information System (INIS)

    Park, Jea-Gun; Lee, Gon-Sub; Kim, Tae-Hyun; Hong, Seuck-Hoon; Kim, Seong-Je; Song, Jin-Hwan; Shim, Tae-Hun

    2006-01-01

    We have revealed a strain relaxation mechanism for strained Si grown on a relaxed SiGe-on-insulator structure fabricated by the bonding, dislocation sink, or condensation method. Strain relaxation for both the bonding and dislocation sink methods was achieved by grading the Ge concentration; in contrast, the relaxation for the condensation method was achieved through Ge atom condensation during oxidation. In addition, we estimated the surface roughness and threading-dislocation pit density for relaxed SiGe layer fabricated by the bonding, dislocation sink, or condensation method. The surface roughness and threading-dislocation pit density for the bonding, dislocation sink, and condensation methods were 2.45, 0.46, and 0.40 nm and 5.0 x 10 3 , 9 x 10 3 , and 0, respectively. In terms of quality and cost-effectiveness, the condensation method was superior to the bonding and dislocation sink methods for forming strained Si on a relaxed SiGe-on-insulator structure

  10. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    Science.gov (United States)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  11. Mechanisms of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, T.L.; Zhang, X.; Knapp, R.M.; McInerney, M.J.; Sharma, P.K.; Jackson, B.E.

    1995-12-31

    Core displacement experiments at elevated pressures were conducted to determine whether microbial processes are effective under conditions that simulate those found in an actual oil reservoir. The in-situ growth of Clostridium acetobutylicum and Bacillus strain JF-2 resulted in the recovery of residual oil. About 21 and 23% of the residual oil was recovered by C. acetobutylicum and Bacillus strain JF-2, respectively. Flooding cores with cell-free culture fluids of C. acetobutylicum with and without the addition of 50 mM acetone and 100 mM butanol did not result in the recovery of residual oil. Mathematical simulations showed that the amount of gas produced by the clostridial fermentation was not showed that the amount of gas produced by the clostridial fermentation was not sufficient to recover residual oil. Oil recovery by Bacillus strain JF-2 was highly correlated to surfactant production. A biosurfactant-deficient mutant of strain JF-2 was not capable of recovering residual oil. These data show that surfactant production is an important mechanism for microbially enhanced oil recovery. The mechanism for oil recovery by C. acetobutylicum is not understood at this time, but the production of acids, solvents, or gases alone cannot explain the observed increases in oil recovery by this organism.

  12. Effect of Strengthening Mechanism on Strain-Rate Related Tensile Properties of Low-Carbon Sheet Steels for Automotive Application

    Science.gov (United States)

    Das, Anindya; Biswas, Pinaki; Tarafder, S.; Chakrabarti, D.; Sivaprasad, S.

    2018-05-01

    In order to ensure crash resistance of the steels used in automotive components, the ensile deformation behavior needs to be studied and predicted not only under quasi-static condition, but also under dynamic loading rates. In the present study, tensile tests have been performed on four different automobile grade sheet steels, namely interstitial free steel, dual-phase 600 and 800, and a carbon manganese steel over the strain rate regime of 0.001-800/s. Apart from the variation in strength (which always increased with strain rate), the effect of strengthening mechanism on strain rate sensitivity and strain hardening behavior has been evaluated. Strain rate sensitivity was found to increase at high-strain rate regime for all the steels. Contribution of solid solution hardening on strain rate sensitivity at lower plastic strains was found to be higher compared to dislocation strengthening and second-phase hardening. However, precipitation hardening coupled with solid solution hardening produced the highest strain rate sensitivity, in C-Mn-440 steel at high strain rates. Different strain-rate-sensitive models which take into account the change in yield stress and strain hardening behavior with strain rate for ductile materials were used to predict the flow behavior of these sheet steels at strain rates up to 800/s.

  13. Mechanical properties of novel forms of graphyne under strain: A density functional theory study

    Science.gov (United States)

    Majidi, Roya

    2017-06-01

    The mechanical properties of two forms of graphyne sheets named α-graphyne and α2-graphyne under uniaxial and biaxial strains were studied. In-plane stiffness, bulk modulus, and shear modulus were calculated based on density functional theory. The in-plane stiffness, bulk modulus, and shear modulus of α2-graphyne were found to be larger than that of α-graphyne. The maximum values of supported uniaxial and biaxial strains before failure were determined. The α-graphyne was entered into the plastic region with the higher magnitude of tension in comparison to α2-graphyne. The mechanical properties of α-graphyne family revealed that these forms of graphyne are proper materials for use in nanomechanical applications.

  14. Survey on the phage resistance mechanisms displayed by a dairy Lactobacillus helveticus strain.

    Science.gov (United States)

    Zago, Miriam; Orrù, Luigi; Rossetti, Lia; Lamontanara, Antonella; Fornasari, Maria Emanuela; Bonvini, Barbara; Meucci, Aurora; Carminati, Domenico; Cattivelli, Luigi; Giraffa, Giorgio

    2017-09-01

    In this study the presence and functionality of phage defence mechanisms in Lactobacillus helveticus ATCC 10386, a strain of dairy origin which is sensitive to ΦLh56, were investigated. After exposure of ATCC 10386 to ΦLh56, the whole-genome sequences of ATCC 10386 and of a phage-resistant derivative (LhM3) were compared. LhM3 showed deletions in the S-layer protein and a higher expression of the genes involved in the restriction/modification (R/M) system. Genetic data were substantiated by measurements of bacteriophage adsorption rates, efficiency of plaquing, cell wall protein size and by gene expression analysis. In LhM3 two phage resistance mechanisms, the inhibition of phage adsorption and the upregulation of Type I R/M genes, take place and explain its resistance to ΦLh56. Although present in both ATCC 10386 and LhM3 genomes, the CRISPR machinery did not seem to play a role in the phage resistance of LhM3. Overall, the natural selection of phage resistant strains resulted successful in detecting variants carrying multiple phage defence mechanisms in L. helveticus. The concurrent presence of multiple phage-resistance systems should provide starter strains with increased fitness and robustness in dairy ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  16. Effect of strain rate on the mechanical properties of magnesium alloy AMX602

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J. [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States); Kondoh, K. [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Jones, T.L. [WMRD, US Army Research Laboratory, 4600 Deer Creek Loop, MD 21005-5069 (United States); Mathaudhu, S.N. [Department of Mechanical Engineering, University of California Riverside, Riverside, CA 92521 (United States); Kecskes, L.J. [WMRD, US Army Research Laboratory, 4600 Deer Creek Loop, MD 21005-5069 (United States); Wei, Q., E-mail: qwei@uncc.edu [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States)

    2016-01-01

    In the present work, the effect of strain rate on the mechanical properties, particularly the plastic deformation behavior of a magnesium alloy, AMX602 (Mg–6%Al–0.5%Mn–2%Ca; all wt%), fabricated by powder metallurgy, has been investigated under both quasi-static (strain rate 1×10{sup −3} s{sup −1}) and dynamic (strain rate 4×10{sup 3} s{sup −1}) compressive loading. The alloyed powder was extruded at three different temperatures. The microstructure of the alloy was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that AMX602 exhibits an impressive mechanical behavior but with a slight anisotropy along different directions in both strength and compressive ductility (or malleability). The strength was found to be nearly independent of the extrusion temperature, particularly, under dynamic loading. Nanoindentation strain rate jump test reveals a strain rate sensitivity of ~0.018 to ~0.015, depending on the extrusion temperature. Sub-micrometer-scale particles of the intermetallic compound Al{sub 2}Ca were found with sizes ranging from ~100 nm to ~1.0 μm. These intermetallic particles are believed to have precipitated out during the extrusion process. They contribute to the formation of the ultrafine equiaxed grains which, in turn, help to improve the strength of the alloy by acting as barriers to dislocation motion. Adiabatic shear bands (ASBs) were observed in the dynamically loaded samples, the propagation of which eventually leads to final fracture of the specimens.

  17. High-strain-induced deformation mechanisms in block-graft and multigraft copolymers

    KAUST Repository

    Schlegel, Ralf

    2011-12-13

    The molecular orientation behavior and structural changes of morphology at high strains for multigraft and block-graft copolymers based on polystyrene (PS) and polyisoprene (PI) were investigated during uniaxial monotonic loading via FT-IR and synchrotron SAXS. Results from FT-IR revealed specific orientations of PS and PI segments depending on molecular architecture and on the morphology, while structural investigations revealed a typical decrease in long-range order with increasing strain. This decrease was interpreted as strain-induced dissolution of the glassy blocks in the soft matrix, which is assumed to affect an additional enthalpic contribution (strain-induced mixing of polymer chains) and stronger retracting forces of the network chains during elongation. Our interpretation is supported by FT-IR measurements showing similar orientation of rubbery and glassy segments up to high strains. It also points to highly deformable PS domains. By synchrotron SAXS, we observed in the neo-Hookean region an approach of glassy domains, while at higher elongations the intensity of the primary reflection peak was significantly decreasing. The latter clearly verifies the assumption that the glassy chains are pulled out from the domains and are partly mixed in the PI matrix. Results obtained by applying models of rubber elasticity to stress-strain and hysteresis data revealed similar correlations between the softening behavior and molecular and morphological parameters. Further, an influence of the network modality was observed (random grafted branches). For sphere forming multigraft copolymers the domain functionality was found to be less important to achieve improved mechanical properties but rather size and distribution of the domains. © 2011 American Chemical Society.

  18. Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system.

    Science.gov (United States)

    Yeo, I; de Assis, P-L; Gloppe, A; Dupont-Ferrier, E; Verlot, P; Malik, N S; Dupuy, E; Claudon, J; Gérard, J-M; Auffèves, A; Nogues, G; Seidelin, S; Poizat, J-Ph; Arcizet, O; Richard, M

    2014-02-01

    Recent progress in nanotechnology has allowed the fabrication of new hybrid systems in which a single two-level system is coupled to a mechanical nanoresonator. In such systems the quantum nature of a macroscopic degree of freedom can be revealed and manipulated. This opens up appealing perspectives for quantum information technologies, and for the exploration of the quantum-classical boundary. Here we present the experimental realization of a monolithic solid-state hybrid system governed by material strain: a quantum dot is embedded within a nanowire that features discrete mechanical resonances corresponding to flexural vibration modes. Mechanical vibrations result in a time-varying strain field that modulates the quantum dot transition energy. This approach simultaneously offers a large light-extraction efficiency and a large exciton-phonon coupling strength g0. By means of optical and mechanical spectroscopy, we find that g0/2 π is nearly as large as the mechanical frequency, a criterion that defines the ultrastrong coupling regime.

  19. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs.

    Directory of Open Access Journals (Sweden)

    Nicky de Jonge

    Full Text Available AIMS: Tissue engineering is an innovative method to restore cardiovascular tissue function by implanting either an in vitro cultured tissue or a degradable, mechanically functional scaffold that gradually transforms into a living neo-tissue by recruiting tissue forming cells at the site of implantation. Circulating endothelial colony forming cells (ECFCs are capable of differentiating into endothelial cells as well as a mesenchymal ECM-producing phenotype, undergoing Endothelial-to-Mesenchymal-transition (EndoMT. We investigated the potential of ECFCs to produce and organize ECM under the influence of static and cyclic mechanical strain, as well as stimulation with transforming growth factor β1 (TGFβ1. METHODS AND RESULTS: A fibrin-based 3D tissue model was used to simulate neo-tissue formation. Extracellular matrix organization was monitored using confocal laser-scanning microscopy. ECFCs produced collagen and also elastin, but did not form an organized matrix, except when cultured with TGFβ1 under static strain. Here, collagen was aligned more parallel to the strain direction, similar to Human Vena Saphena Cell-seeded controls. Priming ECFC with TGFβ1 before exposing them to strain led to more homogenous matrix production. CONCLUSIONS: Biochemical and mechanical cues can induce extracellular matrix formation by ECFCs in tissue models that mimic early tissue formation. Our findings suggest that priming with bioactives may be required to optimize neo-tissue development with ECFCs and has important consequences for the timing of stimuli applied to scaffold designs for both in vitro and in situ cardiovascular tissue engineering. The results obtained with ECFCs differ from those obtained with other cell sources, such as vena saphena-derived myofibroblasts, underlining the need for experimental models like ours to test novel cell sources for cardiovascular tissue engineering.

  20. Mechanical properties of seabed deposits of sand with strain history caused by waves

    International Nuclear Information System (INIS)

    Nishi, Koichi; Kanatani, Mamoru

    1989-01-01

    The research project on floating nuclear power plants, which was taken up as one of new siting technologies for the future, has been advanced by the Central Research Institute of Electric Power Industry. In this case, it is very important to cope with the stability problems of breakwaters, revetments, artificial islands and the foundation of mooring against strong earthquake motion and storm wave force. Accordingly it is necessary to evaluate accurately the stability, and to sufficiently understand the mechanical properties of seabed as the foundation ground of these offshore structures. Since seabed has the inherent strain history induced by the action of wave force, it is important to take such characteristics into account in the evaluation of the mechanical properties. In this report, the experimental results about the effect of the strain history on the strength-deformation properties of sand deposited on seabed are described, in order to contribute to the establishment of the method for precisely evaluating the properties of seabed. The computation method for shearing strain history in seabed and the method of estimating the strength-deformation characteristics of seabed are reported. (K.I.)

  1. Prediction of thermal and mechanical stress-strain responses of TMC's subjected to complex TMF histories

    Science.gov (United States)

    Johnson, W. S.; Mirdamadi, M.

    1994-01-01

    This paper presents an experimental and analytical evaluation of cross-plied laminates of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced with continuous silicon-carbide fibers (SCS-6) subjected to a complex TMF loading profile. Thermomechanical fatigue test techniques were developed to conduct a simulation of a generic hypersonic flight profile. A micromechanical analysis was used. The analysis predicts the stress-strain response of the laminate and of the constituents in each ply during thermal and mechanical cycling by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature-dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate the fiber-matrix interface failures. Excellent correlation was found between measured and predicted laminate stress-strain response due to generic hypersonic flight profile when fiber debonding was modeled.

  2. Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Enlai; Xie, Bo [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); Xu, Zhiping, E-mail: xuzp@tsinghua.edu.cn [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-01-07

    Two-dimensional silica is of rising interests not only for its practical applications as insulating layers in nanoelectronics, but also as a model material to understand crystals and glasses. In this study, we examine structural and electronic properties of hexagonal and haeckelite phases of silica bilayers by performing first-principles calculations. We find that the corner-sharing SiO{sub 4} tetrahedrons in these two phases are locally similar. The robustness and resilience of these tetrahedrons under mechanical perturbation allow effective strain engineering of the electronic structures with band gaps covering a very wide range, from of that for insulators, to wide-, and even narrow-gap semiconductors. These findings suggest that the flexible 2D silica holds great promises in developing nanoelectronic devices with strain-tunable performance, and lay the ground for the understanding of crystalline and vitreous phases in 2D, where bilayer silica provides an ideal test-bed.

  3. A coupled model of transport-reaction-mechanics with trapping. Part I - Small strain analysis

    Science.gov (United States)

    Salvadori, A.; McMeeking, R.; Grazioli, D.; Magri, M.

    2018-05-01

    A fully coupled model for mass and heat transport, mechanics, and chemical reactions with trapping is proposed. It is rooted in non-equilibrium rational thermodynamics and assumes that displacements and strains are small. Balance laws for mass, linear and angular momentum, energy, and entropy are stated. Thermodynamic restrictions are identified, based on an additive strain decomposition and on the definition of the Helmholtz free energy. Constitutive theory and chemical kinetics are studied in order to finally write the governing equations for the multi-physics problem. The field equations are solved numerically with the finite element method, stemming from a three-fields variational formulation. Three case-studies on vacancies redistribution in metals, hydrogen embrittlement, and the charge-discharge of active particles in Li-ion batteries demonstrate the features and the potential of the proposed model.

  4. A study of microindentation hardness tests by mechanism-based strain gradient plasticity

    International Nuclear Information System (INIS)

    Huang, Y.; Xue, Z.; Gao, H.; Nix, W. D.; Xia, Z. C.

    2000-01-01

    We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model. In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society

  5. Mechanical transfer of ZnO nanowires for a flexible and conformal piezotronic strain sensor

    Science.gov (United States)

    Jenkins, Kory; Yang, Rusen

    2017-07-01

    We demonstrate a truly conformal and flexible piezotronic strain sensor using zinc oxide (ZnO) nanowires. Well-aligned, vertical ZnO nanowires are grown by chemical vapor deposition on a silicon wafer with a hydrothermally grown ZnO seed layer. The nanowires are infiltrated with polydimethylsiloxane and mechanically transferred from the silicon substrate. Plasma etching exposes the top surface of the nanowires before deposition of a gold (Au) top electrode. The bottom electrode is formed by silver paint which also adheres the sensor to the measured structure. To demonstrate the sensor’s ability to conform to complex surfaces, a stepped shaft with a shoulder fillet is used. The sensor is attached to the shoulder fillet of the stepped shaft, conforming to both the circumference of the shaft, and the radius of the fillet. A periodic bending displacement is applied to the end of the shaft. The strain induces a piezoelectric potential in the ZnO nanowires which controls the barrier height and conductivity at the gold/ZnO interface, by what is known as the piezotronic effect. The conductivity change is measured for periodically applied strains. The nonlinear current-voltage (I-V) response of the device is due to the Schottky contact between the ZnO nanowires and gold electrode. The geometry of the stepped shaft corresponds to a known stress concentration factor, and the strain experienced by the shaft is estimated with a COMSOL FEA study. The conformal nature of the strain sensor makes it suitable for structural monitoring applications involving complex geometries and stress concentrators.

  6. Strain relaxation during solid-phase epitaxial crystallisation of Ge{sub x}Si{sub 1-x} alloy layers with depth dependent G{sub e} compositions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Wahchung; Elliman, R G; Kringhoj, P [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1994-12-31

    The solid-phase epitaxial crystallisation of depth dependent Ge{sub x}Si{sub lx} alloy layers produced by implanting Ge into Si substrates was studied. In-situ monitoring was done using time-resolved reflectivity (TRR) whilst post-anneal defect structures were characterised by Rutherford backscattering and channeling spectrometry (RBS-C) and transmission electron microscopy (TEM). Particular attention was directed at Ge concentrations above the critical concentration for the growth of fully strained layers. Strain relief is shown to be correlated with a sudden reduction in crystallisation velocity caused by roughening of the crystalline/amorphous interface. 11 refs., 1 tab., 2 figs.

  7. Strain relaxation during solid-phase epitaxial crystallisation of Ge{sub x}Si{sub 1-x} alloy layers with depth dependent G{sub e} compositions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Wahchung; Elliman, R.G.; Kringhoj, P. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1993-12-31

    The solid-phase epitaxial crystallisation of depth dependent Ge{sub x}Si{sub lx} alloy layers produced by implanting Ge into Si substrates was studied. In-situ monitoring was done using time-resolved reflectivity (TRR) whilst post-anneal defect structures were characterised by Rutherford backscattering and channeling spectrometry (RBS-C) and transmission electron microscopy (TEM). Particular attention was directed at Ge concentrations above the critical concentration for the growth of fully strained layers. Strain relief is shown to be correlated with a sudden reduction in crystallisation velocity caused by roughening of the crystalline/amorphous interface. 11 refs., 1 tab., 2 figs.

  8. Strain concentration at structural discontinuities and its quantification by elastic follow-up parameter

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Takasho, Hideki

    1998-12-01

    Elevated temperature structural design codes pay attention to strain concentration at structural discontinuities due to creep and plasticity, since it causes to enlarge creep-fatigue damage of material. One of the difficulties to predict strain concentration is its dependency on loading, constitutive equations, and relaxation time. This study investigated fundamental mechanism of strain concentration and its main factors. It was clarified that strain concentration was caused from strain redistribution between elastic and inelastic regions, which can be quantified by the elastic follow-up parameter. As a function of inelastic strain, the elastic follow-up parameter can describe variation of strain concentration during incremental loading and relaxation process, caused by transition of strain distribution from peak strain concentration to secondary stress redistribution. Structures have their own elastic follow-up characteristics as a function of inelastic strain, which is insensitive to constitutive equations. It means that application of inelastic analysis is not difficult to obtain elastic follow-up characteristics. (author)

  9. Extracellular matrix metabolism disorder induced by mechanical strain on human parametrial ligament fibroblasts.

    Science.gov (United States)

    Min, Jie; Li, Bingshu; Liu, Cheng; Guo, Wenjun; Hong, Shasha; Tang, Jianming; Hong, Li

    2017-05-01

    Pelvic organ prolapse (POP) is a global health problem that may seriously impact the quality of life of the sufferer. The present study aimed to investigate the potential mechanisms underlying alterations in extracellular matrix (ECM) metabolism in the pathogenesis of POP, by investigating the expression of ECM components in human parametrial ligament fibroblasts (hPLFs) subject to various mechanical strain loads. Fibroblasts derived from parametrial ligaments were cultured from patients with POP and without malignant tumors, who underwent vaginal hysterectomy surgery. Fibroblasts at generations 3‑6 of exponential phase cells were selected, and a four‑point bending device was used for 0, 1,333 or 5,333 µ mechanical loading of cells at 0.5 Hz for 4 h. mRNA and protein expression levels of collagen type I α 1 chain (COL1A1), collagen type III α 1 chain (COL3A1), elastin, matrix metalloproteinase (MMP) ‑2 and ‑9, and transforming growth factor (TGF)‑β1 were detected by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. Under increased mechanical strain (5,333 µ), mRNA and protein expression levels of COL1A1, COL3A1 elastin and TGF‑β1 decreased, particularly COL1A1; however, mRNA and protein expression levels of MMP‑2 and ‑9 were significantly increased, compared with the control group (0 µ strain). Following 1,333 µ mechanical strain, mRNA and protein expression levels of COL1A1, COL3A1 elastin and MMP‑2 increased, and MMP‑9 decreased, whereas no significant differences were observed in TGF‑β1 mRNA and protein expression levels. In conclusion, ECM alterations may be involved in pathogenesis of POP, with decreased synthesis and increased degradation of collagen and elastin. Furthermore, the TGF‑β1 signaling pathway may serve an important role in this process and thus may supply a new target and strategy for understanding the etiology and therapy of POP.

  10. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma.

  11. Mechanical strain can switch the sign of quantum capacitance from positive to negative.

    Science.gov (United States)

    Hanlumyuang, Yuranan; Li, Xiaobao; Sharma, Pradeep

    2014-11-14

    Quantum capacitance is a fundamental quantity that can directly reveal many-body interactions among electrons and is expected to play a critical role in nanoelectronics. One of the many tantalizing recent physical revelations about quantum capacitance is that it can possess a negative value, hence allowing for the possibility of enhancing the overall capacitance in some particular material systems beyond the scaling predicted by classical electrostatics. Using detailed quantum mechanical simulations, we found an intriguing result that mechanical strains can tune both signs and values of quantum capacitance. We used a small coaxially gated carbon nanotube as a paradigmatical capacitor system and showed that, for the range of mechanical strain considered, quantum capacitance can be adjusted from very large positive to very large negative values (in the order of plus/minus hundreds of attofarads), compared to the corresponding classical geometric value (0.31035 aF). This finding opens novel avenues in designing quantum capacitance for applications in nanosensors, energy storage, and nanoelectronics.

  12. Morphology and formation mechanism in precipitation of calcite induced by Curvibacter lanceolatus strain HJ-1

    Science.gov (United States)

    Zhang, Chonghong; Li, Fuchun; Lv, Jiejie

    2017-11-01

    Precipitation of calcium carbobate induced by microbial activities is common occurrence in controlled solution, but the formation mechanism and morphology in precipitation of calcite in solution systems is unclear, and the role of microbes is disputed. Here, culture experiment was performed for 50 days using the Curvibacter lanceolatus strain HJ-1 in a M2 culture medium, and the phase composition and morphology of the precipitates were characterized by the X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) techniques. We show that the precipitation processes in our experiment lead to unusual morphologies of crystals corresponding to different growth stages, and the morphologies of the precipitated crystal aggregates ranging from the main rod-, cross-, star-, cauliflower-like morphologies to spherulitic structure. The complex and unusual morphologies of the precipitated calcite by strain HJ-1 may provide a reference point for better understanding the biomineralization mechanism of calcite, moreover, morphological transition of minerals revealed that the multi-ply crystals-aggregation mechanism for calcite growth in crystallisation media.

  13. Resistance Status and Resistance Mechanisms in a Strain of Aedes aegypti (Diptera: Culicidae) From Puerto Rico.

    Science.gov (United States)

    Estep, Alden S; Sanscrainte, Neil D; Waits, Christy M; Louton, Jessica E; Becnel, James J

    2017-11-07

    Puerto Rico (PR) has a long history of vector-borne disease and insecticide-resistant Aedes aegypti (L.). Defining contributing mechanisms behind phenotypic resistance is critical for effective vector control intervention. However, previous studies from PR have each focused on only one mechanism of pyrethroid resistance. This study examines the contribution of P450-mediated enzymatic detoxification and sodium channel target site changes to the overall resistance phenotype of Ae. aegypti collected from San Juan, PR, in 2012. Screening of a panel of toxicants found broad resistance relative to the lab susceptible Orlando (ORL1952) strain. We identified significant resistance to representative Type I, Type II, and nonester pyrethroids, a sodium channel blocker, and a sodium channel blocking inhibitor, all of which interact with the sodium channel. Testing of fipronil, a chloride channel agonist, also showed low but significant levels of resistance. In contrast, the PR and ORL1952 strains were equally susceptible to chlorfenapyr, which has been suggested as an alternative public health insecticide. Molecular characterization of the strain indicated that two common sodium channel mutations were fixed in the population. Topical bioassay with piperonyl butoxide (PBO) indicated cytochrome P450-mediated detoxification accounts for approximately half of the resistance profile. Transcript expression screening of cytochrome P450s and glutathione-S-transferases identified the presence of overexpressed transcripts. This study of Puerto Rican Ae. aegypti with significant contributions from both genetic changes and enzymatic detoxification highlights the necessity of monitoring for resistance but also defining the multiple resistance mechanisms to inform effective mosquito control. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  14. Critical thickness for strain relaxation of Ge{sub 1−x}Sn{sub x} (x ≤ 0.17) grown by molecular beam epitaxy on Ge(001)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhou, Qian; Dong, Yuan; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2015-06-08

    We investigated the critical thickness (h{sub c}) for plastic relaxation of Ge{sub 1−x}Sn{sub x} grown by molecular beam epitaxy. Ge{sub 1−x}Sn{sub x} films with various Sn mole fraction x (x ≤ 0.17) and different thicknesses were grown on Ge(001). The strain relaxation of Ge{sub 1−x}Sn{sub x} films and the h{sub c} were investigated by high-resolution x-ray diffraction and reciprocal space mapping. It demonstrates that the measured h{sub c} values of Ge{sub 1−x}Sn{sub x} layers are as much as an order of magnitude larger than that predicted by the Matthews and Blakeslee (M-B) model. The People and Bean (P-B) model was also used to predict the h{sub c} values in Ge{sub 1−x}Sn{sub x}/Ge system. The measured h{sub c} values for various Sn content follow the trend, but slightly larger than that predicted by the P-B model.

  15. Three-dimensional elastic--plastic stress and strain analyses for fracture mechanics: complex geometries

    International Nuclear Information System (INIS)

    Bellucci, H.J.

    1975-11-01

    The report describes the continuation of research into capability for three-dimensional elastic-plastic stress and strain analysis for fracture mechanics. A computer program, MARC-3D, has been completed and was used to analyze a cylindrical pressure vessel with a nozzle insert. A method for generating crack tip elements was developed and a model was created for a cylindrical pressure vessel with a nozzle and an imbedded flaw at the inside nozzle corner. The MARC-3D program was again used to analyze this flawed model. Documentation for the use of the MARC-3D computer program has been included as an appendix

  16. Experimental characterization and modelling of UO2 mechanical behaviour at high temperatures and high strain rates

    International Nuclear Information System (INIS)

    Salvo, Maxime

    2014-01-01

    The aim of this work is to characterize and model the mechanical behavior of uranium dioxide (UO 2 ) during a Reactivity Initiated Accident (RIA). The fuel loading during a RIA is characterized by high strain rates (up to 1/s) and high temperatures (1000 C - 2500 C). Two types of UO 2 pellets (commercial and high density) were therefore tested in compression with prescribed displacement rates (0.1 to 100 mm/min corresponding to strain rates of 10 -4 - 10 -1 /s) and temperatures (1100 C - 1350 C - 1550 C et 1700 C). Experimental results (geometry, yield stress and microstructure) allowed us to define a hyperbolic sine creep law and a Drucker-Prager criterion with associated plasticity, in order to model grain boundaries fragmentation at the macroscopic scale. Finite Element Simulations of these tests and of more than 200 creep tests were used to assess the model response to a wide range of temperatures (1100 C - 1700 C) and strain rates (10 -9 /s - 10 -1 /s). Finally, a constitutive law called L3F was developed for UO 2 by adding to the previous model irradiation creep and tensile macroscopic cracking. The L3F law was then introduced in the 1.5D scheme of the fuel performance code ALCYONE-RIA to simulate the REP-Na tests performed in the experimental reactor CABRI. Simulation results are in good agreement with post tests examinations. (author) [fr

  17. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric

    DEFF Research Database (Denmark)

    Walker, Julian; Simons, Hugh; Alikin, Denis O

    2016-01-01

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroe......Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb......)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its...... realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced...

  18. Relaxation from particle production

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Marques-Tavares, Gustavo [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States)

    2016-12-20

    We consider using particle production as a friction force by which to implement a “Relaxion” solution to the electroweak hierarchy problem. Using this approach, we are able to avoid superplanckian field excursions and avoid any conflict with the strong CP problem. The relaxation mechanism can work before, during or after inflation allowing for inflationary dynamics to play an important role or to be completely decoupled.

  19. Tests on mechanical behavior of 304 L stainless steel under constant stress associated with cyclic strain

    International Nuclear Information System (INIS)

    Lebey, J.; Roche, R.

    1979-01-01

    Mechanical analyses of structures, to be efficient, must incorporate materials behavior data. Among the mechanisms liable to cause collapse, progressive distortion (or ratcheting) has been the subject of only a few basic experiments, most of the investigations being theoretical. In order to get meaningful results to characterize materials behavior, an experimental study on ratcheting of austenitic steels has been undertaken at the C.E.A. This paper gives the first results of tests at room temperature on thin tubes of 304L steel submitted to an axial constant stress (primary stress) to which is added a cyclic shearing strain (secondary stress). The tests cover a large combination of the two loading modes. The main results consist of curves of cumulative iso-deformation in the primary and secondary stress field (Bree type diagrams). Results are given for plastic deformations ranging from 0.1 to 2.5% up to N=100 cycles

  20. Strain rate effects on the mechanical properties and fracture mode of skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Michael; Tovar, Nick; Yoo, Daniel [Biomaterials and Biomimetics, New York University College of Dentistry (United States); Sobieraj, Micheal [Orthopedic Surgery, Hospital for Joint Diseases (United States); Gupta, Nikhil [Mechanical and Aerospace Engineering, NYU-Poly (United States); Branski, Ryan C. [Dept of Otolaryngology, New York University School of Medicine (United States); Coelho, Paulo G., E-mail: pc92@nyu.edu [Biomaterials and Biomimetics, New York University College of Dentistry (United States)

    2014-06-01

    The present study aimed to characterize the mechanical response of beagle sartorius muscle fibers under strain rates that increase logarithmically (0.1 mm/min, 1 mm/min and 10 mm/min), and provide an analysis of the fracture patterns of these tissues via scanning electron microscopy (SEM). Muscle tissue from dogs' sartorius was excised and test specimens were sectioned with a lancet into sections with nominal length, width, and thickness of 7, 2.5 and 0.6 mm, respectively. Trimming of the tissue was done so that the loading would be parallel to the direction of the muscle fiber. Samples were immediately tested following excision and failures were observed under the SEM. No statistically significant difference was observed in strength between the 0.1 mm/min (2.560 ± 0.37 MPa) and the 1 mm/min (2.702 ± 0.55 MPa) groups. However, the 10 mm/min group (1.545 ± 0.50 MPa) had a statistically significant lower strength than both the 1 mm/min group and the 0.1 mm/min group with p < 0.01 in both cases. At the 0.1 mm/min rate the primary fracture mechanism was that of a shear mode failure of the endomysium with a significant relative motion between fibers. At 1 mm/min this continues to be the predominant failure mode. At the 10 mm/min strain rate there is a significant change in the fracture pattern relative to other strain rates, where little to no evidence of endomysial shear failure nor of significant motion between fibers was detected.

  1. VUV treatment combined with mechanical strain of stretchable polymer foils resulting in cell alignment

    Energy Technology Data Exchange (ETDEWEB)

    Barb, R.-A. [Institute of Applied Physics, Johannes Kepler University Linz (Austria); Magnus, B. [Innovacell Biotechnologie AG, Innsbruck (Austria); Innerbichler, S. [Innerbichler GmbH, Breitenbach am Inn (Austria); Greunz, T. [CDL-MS-MACH, Johannes Kepler University Linz (Austria); Wiesbauer, M. [Institute of Applied Physics, Johannes Kepler University Linz (Austria); Marksteiner, R. [Innovacell Biotechnologie AG, Innsbruck (Austria); Stifter, D. [CDL-MS-MACH, Johannes Kepler University Linz (Austria); Heitz, J., E-mail: johannes.heitz@jku.at [Institute of Applied Physics, Johannes Kepler University Linz (Austria)

    2015-01-15

    Highlights: • Elastic polyurethane (PU) foils were exposed to the vacuum-UV in reactive atmosphere. • The photomodification resulted in improved cytocompatibilty. • Parallel microgrooves formed on the irradiated PU surfaces after strong elongation. • Cells seeded onto microgrooves aligned their shapes in the direction of the grooves. • Elongation occurred also for cells on PU subjected to cyclic mechanical stretching. - Abstract: Cell-alignment along a defined direction can have a direct effect on the cell functionality and differentiation. Oriented micro- or nanotopographic structures on cell culture substrates can induce cell-alignment. Surface chemistry, wettability, and stiffness of the substrate are also important material features as they strongly influence the cell–substrate interactions. For improved bio-compatibility, highly elastic polyurethane (PU) foils were exposed to the vacuum-UV (VUV) light of a Xe{sub 2}{sup *} excimer lamp at 172 nm in a nitrogen containing atmosphere (N{sub 2} or NH{sub 3}). The irradiation resulted in a change in the chemical surface composition. Additionally, the formation of regular parallel microgrooves was observed on the irradiated surfaces after strong uni-axial deformation (i.e., more than about 50% strain) of the photo-modified PU foils. Cell seeding experiments demonstrated that the VUV modified polymer foils strongly enhance cell adhesion and proliferation. Cells seeded onto microgrooves aligned their shapes and elongated in the direction of the grooves. A similar effect was observed for cells seeded on photo-modified PU foils subjected to cyclic mechanical stretching at lower strain levels (i.e., typically 10% strain) without groove-formation. The cells had also here an elongated shape, however they not always align in a defined direction relative to the stretching.

  2. Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions

    Science.gov (United States)

    Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta

    2018-03-01

    Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.

  3. A Comparison of Quantum and Molecular Mechanical Methods to Estimate Strain Energy in Druglike Fragments.

    Science.gov (United States)

    Sellers, Benjamin D; James, Natalie C; Gobbi, Alberto

    2017-06-26

    Reducing internal strain energy in small molecules is critical for designing potent drugs. Quantum mechanical (QM) and molecular mechanical (MM) methods are often used to estimate these energies. In an effort to determine which methods offer an optimal balance in accuracy and performance, we have carried out torsion scan analyses on 62 fragments. We compared nine QM and four MM methods to reference energies calculated at a higher level of theory: CCSD(T)/CBS single point energies (coupled cluster with single, double, and perturbative triple excitations at the complete basis set limit) calculated on optimized geometries using MP2/6-311+G**. The results show that both the more recent MP2.X perturbation method as well as MP2/CBS perform quite well. In addition, combining a Hartree-Fock geometry optimization with a MP2/CBS single point energy calculation offers a fast and accurate compromise when dispersion is not a key energy component. Among MM methods, the OPLS3 force field accurately reproduces CCSD(T)/CBS torsion energies on more test cases than the MMFF94s or Amber12:EHT force fields, which struggle with aryl-amide and aryl-aryl torsions. Using experimental conformations from the Cambridge Structural Database, we highlight three example structures for which OPLS3 significantly overestimates the strain. The energies and conformations presented should enable scientists to estimate the expected error for the methods described and we hope will spur further research into QM and MM methods.

  4. Analysis and experimental study on the strain transfer mechanism of an embedded basalt fiber-encapsulated fiber Bragg grating sensor

    Science.gov (United States)

    Zhang, Zhenglin; Wang, Yuan; Sun, Yangyang; Zhang, Qinghua; You, Zewei; Huang, Xiaodi

    2017-01-01

    The precision of the encapsulated fiber optic sensor embedded into a host suffers from the influences of encapsulating materials. Furthermore, an interface transfer effect of strain sensing exists. This study uses an embedded basalt fiber-encapsulated fiber Bragg grating (FBG) sensor as the research object to derive an expression in a multilayer interface strain transfer coefficient by considering the mechanical properties of the host material. The direct impact of the host material on the strain transfer at an embedded multipoint continuous FBG (i.e., multiple gratings written on a single optical fiber) monitoring strain sensor, which was self-developed and encapsulated with basalt fiber, is studied to present the strain transfer coefficients corresponding to the positions of various gratings. The strain transfer coefficients of the sensor are analyzed based on the experiments designed for this study. The error of the experimental results is ˜2 μɛ when the strain is at 60 μɛ and below. Moreover, the measured curves almost completely coincide with the theoretical curves. The changes in the internal strain field inside the embedded structure of the basalt fiber-encapsulated FBG strain sensor could be easily monitored. Hence, important references are provided to measure the internal stress strain of the sensor.

  5. High Strain Rate Deformation Mechanisms of Body Centered Cubic Material Subjected to Impact Loading

    Science.gov (United States)

    Visser, William

    Low carbon steel is the most common grade of structural steel used; it has carbon content of 0.05% to 0.25% and very low content of alloying elements. It is produced in great quantities and provides material properties that are acceptable for many engineering applications, particularly in the construction industry in which low carbon steel is widely used as the strengthening phase in civil structures. The overall goal of this dissertation was to investigate the deformation response of A572 grade 50 steel when subjected to impact loading. This steel has a 0.23% by weight carbon content and has less than 2% additional alloying elements. The deformation mechanisms of this steel under shock loading conditions include both dislocation motion and twin formation. The goal of this work was achieved by performing experimental, analytical and numerical research in three integrated tasks. The first is to determine the relationship between the evolution of deformation twins and the impact pressure. Secondly, a stress criterion for twin nucleation during high strain rate loading was developed which can account for the strain history or initial dislocation density. Lastly, a method was applied for separating the effects of dislocations and twins generated by shock loading in order to determine their role in controlling the flow stress of the material. In this regard, the contents of this work have been categorically organized. First, the active mechanisms in body centered cubic (BCC) low carbon steel during shock loading have been determined as being a composed of the competing mechanisms of dislocations and deformation twins. This has been determined through a series of shock loading tests of the as-received steel. The shock loading tests were done by plate impact experiments at several impact pressures ranging from 2GPa up to 13GPa using a single stage light gas gun. A relationship between twin volume fraction and impact pressure was determined and an analytical model was

  6. Structure and strain relaxation effects of defects in In{sub x}Ga{sub 1–x}N epilayers

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, S. L., E-mail: sr583@cam.ac.uk; Fu, W. Y.; Massabuau, F. C.-P.; Kappers, M. J.; McAleese, C.; Oehler, F.; Humphreys, C. J.; Sahonta, S.-L. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Moram, M. A. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Dusane, R. O. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2014-09-14

    The formation of trench defects is observed in 160 nm-thick In{sub x}Ga{sub 1–x}N epilayers with x≤0.20, grown on GaN on (0001) sapphire substrates using metalorganic vapour phase epitaxy. The trench defect density increases with increasing indium content, and high resolution transmission electron microscopy shows an identical structure to those observed previously in InGaN quantum wells, comprising meandering stacking mismatch boundaries connected to an I₁-type basal plane stacking fault. These defects do not appear to relieve in-plane compressive strain. Other horizontal sub-interface defects are also observed within the GaN pseudosubstrate layer of these samples and are found to be pre-existing threading dislocations which form half-loops by bending into the basal plane, and not basal plane stacking faults, as previously reported by other groups. The origins of these defects are discussed and are likely to originate from a combination of the small in-plane misorientation of the sapphire substrate and the thermal mismatch strain between the GaN and InGaN layers grown at different temperatures.

  7. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  8. Relaxation effects in ferrous complexes

    International Nuclear Information System (INIS)

    Nicolini, C.; Mathieu, J.P.; Chappert, J.

    1976-01-01

    The slow relaxation mechanism of the Fe 2+ ion in the tri-fluorinated TF(acac) and hexafluorinated HF(acac) complexes of Fe(II) acetylacetonate was investigated. The 300K and 77K Moessbauer spectra for TF(acac) consist in a slightly asymmetric quadrupole doublet. On the contrary, at 4.2K the higher energy line is strongly widened; that is typical of a slowing down in the electron relaxation frequency [fr

  9. Experiments in paramagnetic relaxation

    International Nuclear Information System (INIS)

    Lijphart, E.E.

    1976-01-01

    This thesis presents two attempts to improve the resolving power of the relaxation measurement technique. The first attempt reconsiders the old technique of steady state saturation. When used in conjunction with the pulse technique, it offers the possibility of obtaining additional information about the system in which all-time derivatives are zero; in addition, non-linear effects may be distinguished from each other. The second attempt involved a systematic study of only one system: Cu in the Tutton salts (K and Rb). The systematic approach, the high accuracy of the measurement and the sheer amount of experimental data for varying temperature, magnetic field and concentration made it possible in this case to separate the prevailing relaxation mechanisms reliably

  10. Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures [Thermo-mechanical modeling of laser-induced structural relaxation and deformation of SiO2 glass

    Energy Technology Data Exchange (ETDEWEB)

    Vignes, Ryan M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Soules, Thomas F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Stolken, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Settgast, Randolph R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Elhadj, Selim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Matthews, Manyalibo J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Mauro, J.

    2012-12-17

    In a fully coupled thermomechanical model of the nanoscale deformation in amorphous SiO2 due to laser heating is presented. Direct measurement of the transient, nonuniform temperature profiles was used to first validate a nonlinear thermal transport model. Densification due to structural relaxation above the glass transition point was modeled using the Tool-Narayanaswamy (TN) formulation for the evolution of structural relaxation times and fictive temperature. TN relaxation parameters were derived from spatially resolved confocal Raman scattering measurements of Si–O–Si stretching mode frequencies. These thermal and microstructural data were used to simulate fictive temperatures which are shown to scale nearly linearly with density, consistent with previous measurements from Shelby et al. Volumetric relaxation coupled with thermal expansion occurring in the liquid-like and solid-like glassy states lead to residual stresses and permanent deformation which could be quantified. But, experimental surface deformation profiles between 1700 and 2000 K could only be reconciled with our simulation by assuming a roughly 2 × larger liquid thermal expansion for a-SiO2 with a temperature of maximum density ~150 K higher than previously estimated by Bruckner et al. Calculated stress fields agreed well with recent laser-induced critical fracture measurements, demonstrating accurate material response prediction under processing conditions of practical interest.

  11. Effect of strain rate and temperature on mechanical properties of selected building Polish steels

    Directory of Open Access Journals (Sweden)

    Moćko Wojciech

    2015-01-01

    Full Text Available Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.

  12. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed

    DEFF Research Database (Denmark)

    Kamikawa, Naoya; Huang, Xiaoxu; Tsuji, Nobuhiro

    2009-01-01

    Samples of pure aluminium (99.99%) have been produced by accumulative roll-bonding to a large strain followed by a heat treatment, where a two-step annealing process has been used to produce samples with large variations in structural parameters such as boundary spacing, misorientation angle...... and dislocation density. These parameters have been quantified by a structural analysis applying transmission electron microscopy and electron backscatter diffraction, and the mechanical properties have been determined by tensile testing at room temperature. Strength–structure relationships have been analysed...... based on the operation of two strengthening mechanisms—grain boundary and dislocation strengthening—and good agreement with experiments has been found for the deformed sample. However, for samples where the density of dislocation sources has been reduced significantly by annealing, an additional...

  13. High strain rate mechanical response of buttress-grooved tensile specimens which have undergone environmental exposure

    International Nuclear Information System (INIS)

    Weirick, L.J.

    1976-07-01

    The purpose of the corrosion compatibility program was to identify the effect of corrosion on the mechanical performance of the buttress-grooved section of the 105-mm penetrator, a section which must sustain a load during launch. It is important that the environment not deteriorate the mechanical integrity of these grooves during long-term storage. Both coated and uncoated test specimens which simulate both geometrical shape and residual stress patterns were exposed to corrosive environments of moist air, distilled water, and salt water. Some of these tests also incorporated the galvanic coupling caused by the aluminum sabot. After exposure to the corrosive environments, the specimens were pulled on a high strain rate tensile machine which simulated launch conditions. Results show that the galvanic coupling due to the aluminum sabot caused no deterioration of mechanical properties. Results do indicate that the coating applied caused a significant reduction in the fracture load. There was a dichotomy in the results as affected by the environment. Uncoated test specimens showed no change in fracture load with increasing severity of corrosion environment, whereas the coated specimens indicated a trend of decreasing load-bearing ability with increasing corrosion

  14. Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields

    Science.gov (United States)

    Smirnov, I. N.; Speranskiy, A. A.

    2015-11-01

    It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.

  15. Mechanical analysis of the strains generated by water tension in plant stems. Part II: strains in wood and bark and apparent compliance.

    Science.gov (United States)

    Alméras, Tancrède

    2008-10-01

    Tree stems shrink in diameter during the day and swell during the night in response to changes in water tension in the xylem. Stem shrinkage can easily be measured in a nondestructive way, to derive continuous information about tree water status. The relationship between the strain and the change in water tension can be evaluated by empirical calibrations, or can be related to the structure of the plant. A mechanical analysis was performed to make this relationship explicit. The stem is modeled as a cylinder made of multiple layers of tissues, including heartwood, sapwood, and inner and outer bark. The effect of changes in water tension on the apparent strain at the surface of a tissue is quantified as a function of parameters defining stem anatomy and the mechanical properties of the tissues. Various possible applications in the context of tree physiology are suggested.

  16. Sandpile model for relaxation in complex systems

    International Nuclear Information System (INIS)

    Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.

    1997-10-01

    The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)

  17. Insights on the virulence mechanisms of European Edwardsiella tarda strains isolated from turbot

    Directory of Open Access Journals (Sweden)

    Nuria Castro Iglesias

    2014-06-01

    Full Text Available Edwardsiella tarda is a common inhabitant of diverse ecological niches as well as a common guest of a high variety of animals including fish, reptiles, amphibians, chickens and other warm-blooded animals as humans. With regard to the aquatic environments, E. tarda has been described as the causative agent of infections in more than 20 fish species including some important fish species in aquaculture industry. Several potential pathogenic properties have been suggested to contribute to the infection process of E. tarda, which include adhesins, Type III and Type VI secretion system, and ability to survive and replicate in phagocytes, among others. Identification of these virulence-related genes is essential for understanding the pathogenesis of the species. Since E. tarda causes great losses in the Chinese aquaculture, great efforts have been recently devoted to study the pathogenicity mechanism of E. tarda in Asian countries. However, all these studies were conducted employing Asian isolates. Being E. tarda a pathogen of great economical concern in European turbot aquaculture and since the high intraspecific variability of E. tarda is well known, it becomes evident that additional pathogenicity studies conducted with non-Asiatic strains are needed. Enzymes such as chondroitinase are believed to play an important role in the pathogenicity of bacteria that cause infections (Tam et al., 1982. Chondroitinase activity was proposed to be one virulence contributor in Edwardsiella spp. and mediates the cartilage degradation in the chronic “hole-in-the-head” lesion. In Gram-negative bacteria, the most intensively studied quorum sensing systems rely on the use of N-acylhomoserine lactones (AHLs, which production is common among marine and fish pathogenic Proteobacteria, controlling the expression of key virulence factors. In the case of E. tarda, strain NUF251 from diseased flounder had the ability to produce two kinds of AHL molecules. It is likely

  18. Demonstration of a chamber for strain mapping of steel specimens under mechanical load in a hydrogen environment by synchrotron radiation

    Science.gov (United States)

    Connolly, Matthew; Park, Jun-Sang; Bradley, Peter; Lauria, Damian; Slifka, Andrew; Drexler, Elizabeth

    2018-06-01

    We demonstrate a hydrogen gas chamber suitable for lattice strain measurements and capturing radiographs of a steel specimen under a mechanical load using high energy synchrotron x-rays. The chamber is suitable for static and cyclic mechanical loading. Experiments were conducted at the 1-ID-E end station of the Advanced Photon Source, Argonne National Laboratory. Diffraction patterns show a high signal-to-noise ratio suitable for lattice strain measurements for the specimen and with minimal scattering and overlap from the gas chamber manufactured from aluminum. In situ radiographs of a specimen in the hydrogen chamber show the ability to track a growing crack and to map the lattice strain around the crack with high spatial and strain resolution.

  19. Determination of strain concentration by microfluorescent densitometry of X-ray topography: a bridge between microfracture and continuum mechanics

    International Nuclear Information System (INIS)

    Kalman, Z.H.; Chaudhuri, J.; Weng, G.J.; Weissmann, S.

    1980-01-01

    The strain distribution in the vicinity of the notches of a double-notched, elastically bent silicon crystal was determined by measuring the diffracted X-ray intensities. The measurements were carried out on traverse-oscillation topographs of a crystal section extending through both notches. Strain distributions were determined by measuring the local densities of silver deposits (measurements of 'opacities') with a scanning electron microscope. It was shown that both the density range and spatial resolution of X-ray densitometry were larger by an order of magnitude than those of optical densitometry. The strain concentration factors associated with the notches were measured experimentally and calculated by continuum mechanics. The results were in satisfactory agreement. Also, the experimentally found rise of strains, to a maximum in the critical area adjacent to the notch root, followed the trend predicted by continuum mechanics. (Auth.)

  20. Electron spin-lattice relaxation mechanisms of radiation produced trapped electrons and hydrogen atoms in aqueous and organic glassy matrices. Modulation of electron nuclear dipolar interaction by tunnelling modes in a glassy matrix. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, M K; Kevan, L [Wayne State Univ., Detroit, Mich. (USA). Dept. of Chemistry

    1977-01-01

    The spin lattice relaxation of trapped electrons in aqueous and organic glasses and trapped hydrogen atoms in phosphoric acid glass has been directly studied as a function of temperature by the saturation recovery method. Below 50 to 100 K, the major spin lattice relaxation mechanism involves modulation of the electron nuclear dipolar (END) interaction with nuclei in the radical's environment by tunnelling of those nuclei between two or more positions. This relaxation mechanism occurs with high efficiency and has a characteristic linear temperature dependence. The tunnelling nuclei around trapped electrons do not seem to involve the nearest neighbor nuclei which are oriented by the electron in the process of solvation. Instead the tunnelling nuclei typically appear to be next nearest neighbors to the trapped electron. The identities of the tunnelling nuclei have been deduced by isotopic substitution and are attributed to: Na in 10 mol dm/sup -3/ NaOH aqueous glass, ethyl protons in ethanol glass, methyl protons in methanol glass and methyl protons in MTHF glass. For trapped hydrogen atoms in phosphoric acid, the phosphorus nuclei appear to be the effective tunnelling nuclei. Below approximately 10 K the spin lattice relaxation is dominated by a temperature independent cross relaxation term for H atoms in phosphoric acid glass and for electrons in 10 mol dm/sup -3/ NaOH aqueous glass, but not for electrons in organic glasses. This is compared with recent electron-electron double resonance studies of cross relaxation in these glasses. The spin lattice relaxation of O/sup -/ formed in 10 mol dm/sup -3/ NaOH aqueous glass was also studied and found to be mainly dominated by a Raman process with an effective Debye temperature of about 100 K.

  1. XRD analysis of strained Ge-SiGe heterostructures on relaxed SiGe graded buffers grown by hybrid epitaxy on Si(0 0 1) substrates

    International Nuclear Information System (INIS)

    Franco, N.; Barradas, N.P.; Alves, E.; Vallera, A.M.; Morris, R.J.H.; Mironov, O.A.; Parker, E.H.C.

    2005-01-01

    Ge/Si 1-x Ge x inverted modulation doped heterostructures with Ge channel thickness of 16 and 20 nm were grown by a method of hybrid epitaxy followed by ex situ annealing at 650 deg. C for p-HMOS application. The thicker layers of the virtual substrate (6000 nm graded SiGe up to x = 0.6 and 1000 nm uniform composition with x = 0.6) were produced by ultrahigh vacuum chemical vapor deposition (UHV-CVD) while the thinner, Si(2 nm)-SiGe(20 nm)-Ge-SiGe(15 nm + 5 nm B-doped + 20 nm) active layers were grown by low temperature solid-source (LT-SS) MBE at T = 350 deg. C. As-grown and annealed samples were measured by X-ray diffraction (XRD). Reciprocal space maps (RSMs) allowed us to determine non-destructively the precise composition (∼1%) and strain of the Ge channel, along with similar information regarding the other layers that made up the whole structure. Layer thickness was determined with complementary high-resolution Rutherford backscattering (RBS) experiments

  2. The mechanical behavior of metal alloys with grain size distribution in a wide range of strain rates

    Science.gov (United States)

    Skripnyak, V. A.; Skripnyak, V. V.; Skripnyak, E. G.

    2017-12-01

    The paper discusses a multiscale simulation approach for the construction of grain structure of metals and alloys, providing high tensile strength with ductility. This work compares the mechanical behavior of light alloys and the influence of the grain size distribution in a wide range of strain rates. The influence of the grain size distribution on the inelastic deformation and fracture of aluminium and magnesium alloys is investigated by computer simulations in a wide range of strain rates. It is shown that the yield stress depends on the logarithm of the normalized strain rate for light alloys with a bimodal grain distribution and coarse-grained structure.

  3. Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism

    Science.gov (United States)

    Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin

    2018-02-01

    The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.

  4. Characterization of high-strain rate mechanical behavior of AZ31 magnesium alloy using 3D digital image correlation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli; Xu, Hanbing; Erdman, Donald L.; Starbuck, Michael J.; Simunovic, Srdjan [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2011-10-15

    Characterization of the material mechanical behavior at sub-Hopkinson regime (0.1 to 1 000 s{sup -1}) is very challenging due to instrumentation limitations and the complexity of data analysis involved in dynamic loading. In this study, AZ31 magnesium alloy sheet specimens are tested using a custom designed servo-hydraulic machine in tension at nominal strain rates up to 1 000 s{sup -1}. In order to resolve strain measurement artifacts, the specimen displacement is measured using 3D Digital Image correlation instead from actuator motion. The total strain is measured up to {approx} 30%, which is far beyond the measurable range of electric resistance strain gages. Stresses are calculated based on the elastic strains in the tab of a standard dog-bone shaped specimen. Using this technique, the stresses measured for strain rates of 100 s{sup -1} and lower show little or no noise comparing to load cell signals. When the strain rates are higher than 250 s{sup -1}, the noises and oscillations in the stress measurements are significantly decreased from {approx} 250 to 50 MPa. Overall, it is found that there are no significant differences in the elongation, although the material exhibits slight work hardening when the strain rate is increased from 1 to 100 s{sup -1}. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Dynamics of relaxed inflation

    Science.gov (United States)

    Tangarife, Walter; Tobioka, Kohsaku; Ubaldi, Lorenzo; Volansky, Tomer

    2018-02-01

    The cosmological relaxation of the electroweak scale has been proposed as a mechanism to address the hierarchy problem of the Standard Model. A field, the relaxion, rolls down its potential and, in doing so, scans the squared mass parameter of the Higgs, relaxing it to a parametrically small value. In this work, we promote the relaxion to an inflaton. We couple it to Abelian gauge bosons, thereby introducing the necessary dissipation mechanism which slows down the field in the last stages. We describe a novel reheating mechanism, which relies on the gauge-boson production leading to strong electro-magnetic fields, and proceeds via the vacuum production of electron-positron pairs through the Schwinger effect. We refer to this mechanism as Schwinger reheating. We discuss the cosmological dynamics of the model and the phenomenological constraints from CMB and other experiments. We find that a cutoff close to the Planck scale may be achieved. In its minimal form, the model does not generate sufficient curvature perturbations and additional ingredients, such as a curvaton field, are needed.

  6. Mechanical strain modulates age-related changes in the proliferation and differentiation of mouse adipose-derived stromal cells

    Directory of Open Access Journals (Sweden)

    Chiang Wen-Sheng

    2010-03-01

    Full Text Available Abstract Background Previous studies on the effects of aging in human and mouse mesenchymal stem cells suggest that a decline in the number and differentiation potential of stem cells may contribute to aging and aging-related diseases. In this report, we used stromal cells isolated from adipose tissue (ADSCs of young (8-10 weeks, adult (5 months, and old (21 months mice to test the hypothesis that mechanical loading modifies aging-related changes in the self-renewal and osteogenic and adipogenic differentiation potential of these cells. Results We show that aging significantly reduced the proliferation and increased the adipogenesis of ADSCs, while the osteogenic potential is not significantly reduced by aging. Mechanical loading (10% cyclic stretching, 0.5 Hz, 48 h increased the subsequent proliferation of ADSCs from mice of all ages. Although the number of osteogenic colonies with calcium deposition was increased in ADSCs subjected to pre-strain, it resulted from an increase in colony number rather than from an increase in osteogenic potential after strain. Pre-strain significantly reduced the number of oil droplets and the expression of adipogenic marker genes in adult and old ADSCs. Simultaneously subjecting ADSCs to mechanical loading and adipogenic induction resulted in a stronger inhibition of adipogenesis than that caused by pre-strain. The reduction of adipogenesis by mechanical strain was loading-magnitude dependent: loading with 2% strain only resulted in a partial inhibition, and loading with 0.5% strain could not inhibit adipogenesis in ADSCs. Conclusions We demonstrate that mechanical stretching counteracts the loss of self-renewal in aging ADSCs by enhancing their proliferation and, at the same time, reduces the heightened adipogenesis of old cells. These findings are important for the further study of stem cell control and treatment for a variety of aging related diseases.

  7. Baryogenesis via Elementary Goldstone Higgs Relaxation

    DEFF Research Database (Denmark)

    Gertov, Helene; Pearce, Lauren; Sannino, Francesco

    2016-01-01

    We extend the relaxation mechanism to the Elementary Goldstone Higgs framework. Besides studying the allowed parameter space of the theory we add the minimal ingredients needed for the framework to be phenomenologically viable. The very nature of the extended Higgs sector allows to consider very ...... but radiatively generated, it is possible to generate the observed matter-antimatter asymmetry via the relaxation mechanism....

  8. Enhancing the humidity sensitivity of Ga2O3 /SnO2 core/shell microribbon by applying mechanical strain and its application as a flexible strain sensor.

    Science.gov (United States)

    Liu, Kewei; Sakurai, Makoto; Aono, Masakazu

    2012-12-07

    The humidity sensitivity of a single β-Ga(2) O(3) /amorphous SnO(2) core/shell microribbon on a flexible substrate is enhanced by the application of tensile strain and increases linearly with the strain. The strain-induced enhancement originates from the increase in the effective surface area where water molecules are adsorbed. This strain dependence of humidity sensitivity can be used to monitor the external strain. The strain sensing of the microribbon device under various amounts of mechanical loading shows excellent reliability and reproducibility with a gauge factor of -41. The flexible device has high potential to detect both humidity and strain at room temperature. These findings and the mechanism involved are expected to pave the way for new flexible strain and multifunctional sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Degradation mechanism of Nb3Sn composite wires under tensile strain at 4.2 K

    International Nuclear Information System (INIS)

    Luhman, T.; Suenaga, M.; Welch, D.O.; Kaiho, K.

    1978-01-01

    Bronze-processed Nb 3 Sn composite wire conductors exhibit changes in their superconducting parameters when strained in tension. This paper describes a detailed study of the effect of strain on critical current and an analysis by optical and SEM techniques of crack formation in the Nb 3 Sn layer under strain. The effect of strain history on both reversible and irreversible changes in critical current and the roles of differential thermal contraction induced residual strains and of Nb 3 Sn cracking are discussed

  10. Mechanism of protection of transepithelial barrier function by Lactobacillus salivarius: strain dependence and attenuation by bacteriocin production.

    Science.gov (United States)

    Miyauchi, Eiji; O'Callaghan, John; Buttó, Ludovica F; Hurley, Gráinne; Melgar, Silvia; Tanabe, Soichi; Shanahan, Fergus; Nally, Kenneth; O'Toole, Paul W

    2012-11-01

    Enhanced barrier function is one mechanism whereby commensals and probiotic bacteria limit translocation of foreign antigens or pathogens in the gut. However, barrier protection is not exhibited by all probiotic or commensals and the strain-specific molecules involved remain to be clarified. We evaluated the effects of 33 individual Lactobacillus salivarius strains on the hydrogen peroxide (H(2)O(2))-induced barrier impairment in human epithelial Caco-2 cells. These strains showed markedly different effects on H(2)O(2)-induced reduction in transepithelial resistance (TER). The effective strains such as UCC118 and CCUG38008 attenuated H(2)O(2)-induced disassembly and relocalization of tight junction proteins, but the ineffective strain AH43324 did not. Strains UCC118 and CCUG38008 induced phosphorylation of extracellular signal-regulated kinase (ERK) in Caco-2 cells, and the ERK inhibitor U0126 attenuated the barrier-protecting effect of these strains. In contrast, the AH43324 strain induced phosphorylation of Akt and p38, which was associated with an absence of a protective effect. Global transcriptome analysis of UCC118 and AH43324 revealed that some genes in a bacteriocin gene cluster were upregulated in AH43324 under TER assay conditions. A bacteriocin-negative UCC118 mutant displayed significantly greater suppressive effect on H(2)O(2)-induced reduction in TER compared with wild-type UCC118. The wild-type strain augmented H(2)O(2)-induced phosphorylation of Akt and p38, whereas a bacteriocin-negative UCC118 mutant did not. These observations indicate that L. salivarius strains are widely divergent in their capacity for barrier protection, and this is underpinned by differences in the activation of intracellular signaling pathways. Furthermore, bacteriocin production appears to have an attenuating influence on lactobacillus-mediated barrier protection.

  11. Relationship between β-relaxation and structural stability of lysozyme: Microscopic insight on thermostabilization mechanism by trehalose from Raman spectroscopy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hédoux, Alain, E-mail: alain.hedoux@univ-lille1.fr; Paccou, Laurent; Guinet, Yannick [Université Lille Nord de France, F-59000 Lille France, USTL UMET UMR 8207 F-59655 Villeneuve d’Ascq (France)

    2014-06-14

    Raman investigations were carried out in the low-frequency and amide I regions on lysozyme aqueous solutions in absence and presence of trehalose. Raman spectroscopy gives the unique opportunity to analyze the protein and solvent dynamics in the low-frequency range while monitoring the unfolding process by capturing the spectrum of the amide I band. From the analysis of the quasielastic intensity, a dynamic change is firstly observed in a highly hydrated protein, around 70 °C, and interpreted in relation with the denaturation mechanism of the protein. The use of heavy water and partly deuterated trehalose gives clear information on protein–trehalose interactions in the native state of lysozyme (at room temperature) and during the thermal denaturation process of lysozyme. At room temperature, it was found that trehalose is preferentially excluded from the protein surface, and has a main effect on the tetrahedral local order of water molecules corresponding to a stiffening of the H-bond network in the solvent. The consequence is a significant reduction of the amplitude of fast relaxational motions, inducing a less marked dynamic transition shifted toward the high temperatures. Upon heating, interaction between trehalose and lysozyme is detected during the solvent penetration within the protein, i.e., while the native globular state softens into a molten globule (MG) state. Addition of trehalose reduces the protein flexibility in the MG state, improving the structural stability of the protein, and inhibiting the protein aggregation.

  12. Effect of tensile pre-strain at different orientation on martensitic transformation and mechanical properties of 316L stainless steel

    Science.gov (United States)

    Wibowo, F.; Zulfi, F. R.; Korda, A. A.

    2017-01-01

    Deformation induced martensite was studied in 316L stainless steel through tensile pre-strain deformation in the rolling direction (RD) and perpendicular to the rolling direction (LT) at various %pre-strain. The experiment was carried out at various given %pre-strain, which were 0%, 4.6%, 12%, 17.4%, and 25.2% for the RD, whereas for LT were 0%, 4.6%, 12%, 18%, and 26% for LT. Changes in the microstructure and mechanical properties were observed using optical microscope, tensile testing, hardness testing, and X-ray diffraction (XRD) analysis. The experimental results showed that the volume fraction of martensite was increased as the %pre-strain increased. In the same level of deformation by tensile pre-strain, the volume of martensite for RD was higher than that with LT direction. The ultimate tensile strength (UTS), yield strength (YS), and hardness of the steel were increased proportionally with the increases in %pre-strain, while the value of elongation and toughness were decreased with the increases in %pre-strain.

  13. Complementary Mechanisms for Degradation of Inulin-Type Fructans and Arabinoxylan Oligosaccharides among Bifidobacterial Strains Suggest Bacterial Cooperation.

    Science.gov (United States)

    Rivière, Audrey; Selak, Marija; Geirnaert, Annelies; Van den Abbeele, Pieter; De Vuyst, Luc

    2018-05-01

    Inulin-type fructans (ITF) and arabinoxylan oligosaccharides (AXOS) are broken down to different extents by various bifidobacterial strains present in the human colon. To date, phenotypic heterogeneity in the consumption of these complex oligosaccharides at the strain level remains poorly studied. To examine mechanistic variations in ITF and AXOS constituent preferences present in one individual, ITF and AXOS consumption by bifidobacterial strains isolated from the simulator of the human intestinal microbial ecosystem (SHIME) after inoculation with feces from one healthy individual was investigated. Among the 18 strains identified, four species-independent clusters displaying different ITF and AXOS degradation mechanisms and preferences were found. Bifidobacterium bifidum B46 showed limited growth on all substrates, whereas B. longum B24 and B. longum B18 could grow better on short-chain-length fractions of fructooligosaccharides (FOS) than on fructose. B. longum B24 could cleave arabinose substituents of AXOS extracellularly, without using the AXOS-derived xylose backbones, whereas B. longum B18 was able to consume oligosaccharides (up to xylotetraose) preferentially and consumed AXOS to a limited extent. B. adolescentis B72 degraded all fractions of FOS simultaneously, partially degraded inulin, and could use xylose backbones longer than xylotetraose extracellularly. The strain-specific degradation mechanisms were suggested to be complementary and indicated resource partitioning. Specialization in the degradation of complex carbohydrates by bifidobacteria present on the individual level could have in vivo implications for the successful implementation of ITF and AXOS, aiming at bifidogenic and/or butyrogenic effects. Finally, this work shows the importance of taking microbial strain-level differences into account in gut microbiota research. IMPORTANCE It is well known that bifidobacteria degrade undigestible complex polysaccharides, such as ITF and AXOS, in the

  14. What is the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus pneumoniae?

    Science.gov (United States)

    Colijn, Caroline; Cohen, Ted; Fraser, Christophe; Hanage, William; Goldstein, Edward; Givon-Lavi, Noga; Dagan, Ron; Lipsitch, Marc

    2010-01-01

    The rise of antimicrobial resistance in many pathogens presents a major challenge to the treatment and control of infectious diseases. Furthermore, the observation that drug-resistant strains have risen to substantial prevalence but have not replaced drug-susceptible strains despite continuing (and even growing) selective pressure by antimicrobial use presents an important problem for those who study the dynamics of infectious diseases. While simple competition models predict the exclusion of one strain in favour of whichever is ‘fitter’, or has a higher reproduction number, we argue that in the case of Streptococcus pneumoniae there has been persistent coexistence of drug-sensitive and drug-resistant strains, with neither approaching 100 per cent prevalence. We have previously proposed that models seeking to understand the origins of coexistence should not incorporate implicit mechanisms that build in stable coexistence ‘for free’. Here, we construct a series of such ‘structurally neutral’ models that incorporate various features of bacterial spread and host heterogeneity that have been proposed as mechanisms that may promote coexistence. We ask to what extent coexistence is a typical outcome in each. We find that while coexistence is possible in each of the models we consider, it is relatively rare, with two exceptions: (i) allowing simultaneous dual transmission of sensitive and resistant strains lets coexistence become a typical outcome, as does (ii) modelling each strain as competing more strongly with itself than with the other strain, i.e. self-immunity greater than cross-immunity. We conclude that while treatment and contact heterogeneity can promote coexistence to some extent, the in-host interactions between strains, particularly the interplay between coinfection, multiple infection and immunity, play a crucial role in the long-term population dynamics of pathogens with drug resistance. PMID:19940002

  15. The Effects of Shear Strain, Fabric, and Porosity Evolution on Elastic and Mechanical Properties of Clay-Rich Fault Gouge

    Science.gov (United States)

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Marone, C.

    2017-12-01

    Ultrasonic/seismic waves are widely used for probing fault zone elastic and mechanical properties (gouge composition, frictional strength, density) and elastic properties (Vp, Vs, bulk and shear moduli), as it can provide insight into key processes and fault properties during shearing. These include fabric and force chain formation, porosity evolution, and fault zone stiffness, which are in turn factors in fault slip, damage, and healing. We report on a suite of direct shear experiments on synthetic fault gouge composed of 50% smectite /50% quartz at a normal stress of 25 MPa, in which we use ultrasonic wave transmission to continuously monitor compressional and shear wave velocities (Vp, Vs) up to shear strains of 25, while simultaneously measuring friction and monitoring the evolution of density and porosity. We find that wavespeeds vary with shear strain, due to fabric development and the evolution of density and porosity. The coefficient of friction peaks at μ .47 at a shear strain of .5 - 1, decreases to a steady state value of μ .43 by shear strains of 4.5- 6 and then remains rather constant to shear strains of 6 - 25, consistent with previous work. Density increases rapidly from 1.78 g/cm3 to 1.83 g/cm3 at shear strains from 0-2 (porosity decreases from 33% to 25% over that range), and then more gradually increases to a density of 2.08 g/cm3 (porosity of 21%) at a shear strain of 25. Vp increases from 2400 m/s to 2900 m/s during the onset of shear until a shear strain of 3, and then decreases to 2400-2500 by shear strain of 7-9. At shear strains above 9, Vp slowly increases as the layer becomes denser and less porous. We interpret the co-evolving changes in friction, porosity, and elastic moduli/wavespeed to reflect fabric development and alignment of clay particles as a function of shearing. More specifically, the decrease in Vp at a shear strain of 3 reflects the clay particles gradually aligning. Once the particles are aligned, the gradual increase of

  16. Relaxation Mechanisms of 5-Azacytosine.

    Science.gov (United States)

    Giussani, Angelo; Merchán, Manuela; Gobbo, João Paulo; Borin, Antonio Carlos

    2014-09-09

    The photophysics and deactivation pathways of the noncanonical 5-azacytosine nucleobase were studied using the CASPT2//CASSCF protocol. One of the most significant differences with respect to the parent molecule cytosine is the presence of a dark (1)(nNπ*) excited state placed energetically below the bright excited state (1)(ππ*) at the Franck-Condon region. The main photoresponse of the system is a presumably efficient radiationless decay back to the original ground state, mediated by two accessible conical intersections involving a population transfer from the (1)(ππ*) and the (1)(nNπ*) states to the ground state. Therefore, a minor contribution of the triplet states in the photophysics of the system is expected, despite the presence of a deactivation path leading to the lowest (3)(ππ*) triplet state. The global scenario on the photophysics and photochemistry of the 5-azacytosine system gathered on theoretical grounds is consistent with the available experimental data, taking especially into account the low values of the singlet-triplet intersystem crossing and fluorescence quantum yields observed.

  17. Unveiling the biotransformation mechanism of indole in a Cupriavidus sp. strain.

    Science.gov (United States)

    Qu, Yuanyuan; Ma, Qiao; Liu, Ziyan; Wang, Weiwei; Tang, Hongzhi; Zhou, Jiti; Xu, Ping

    2017-12-01

    Indole, an important signaling molecule as well as a typical N-heterocyclic aromatic pollutant, is widespread in nature. However, the biotransformation mechanisms of indole are still poorly studied. Here, we sought to unlock the genetic determinants of indole biotransformation in strain Cupriavidus sp. SHE based on genomics, proteomics and functional studies. A total of 177 proteins were notably altered (118 up- and 59 downregulated) in cells grown in indole mineral salt medium when compared with that in sodium citrate medium. RT-qPCR and gene knockout assays demonstrated that an indole oxygenase gene cluster was responsible for the indole upstream metabolism. A functional indole oxygenase, termed IndA, was identified in the cluster, and its catalytic efficiency was higher than those of previously reported indole oxidation enzymes. Furthermore, the indole downstream metabolism was found to proceed via the atypical CoA-thioester pathway rather than conventional gentisate and salicylate pathways. This unusual pathway was catalyzed by a conserved 2-aminobenzoyl-CoA gene cluster, among which the 2-aminobenzoyl-CoA ligase initiated anthranilate transformation. This study unveils the genetic determinants of indole biotransformation and will provide new insights into our understanding of indole biodegradation in natural environments and its functional studies. © 2017 John Wiley & Sons Ltd.

  18. A further insight into the mechanism of Ag + biosorption by Lactobacillus sp. strain A09

    Science.gov (United States)

    Lin, Zhongyu; Zhou, Chaohui; Wu, Jianming; Zhou, Jianzhang; Wang, Lin

    2005-04-01

    The mechanism of Ag + biosorption by resting cell of Lactobacillus sp. strain A09 has been further investigated at the molecular level using spectroscopic techniques. The values of estimated equilibrium constants, rate constants, half-life periods and apparent enthalpies of the binding reaction were calculated via the determination of Ag + adsorbed by the biomass using atomic absorption spectrophotometry (AAS). The reductive ratio of the Ag + to Ag 0 by the A09 biomass was examined by X-ray photoelectron spectroscopy (XPS). Analysis for sulfur and nitrogen atomic contents in dry powder of the biomass with EA-1110 elemental analysis (EA) showed that amino acid residues retaining the reductive property of Ag + to Ag 0 are very small quantity, whereas glucose content in the hydrolysates of the biomass analyzed by ultraviolet-visible spectrophotometry (UV-vis) indicated that the amount of reducing sugars in the biomass is much larger than 2.71%. The fourier transform infrared (FTIR) spectrophotometry on blank and silver-loaded biomass demonstrated that the chemical functional group such as the free aldehyde group of the hemiacetalic hydroxyl group from reducing sugars, i.e. the hydrolysates of the polysaccharides from the cell wall plays a leading role in serving as the electron donor for reducing the Ag + to Ag 0. This result was further supported by characterizations on the interaction of the Ag + with glucose using X-ray powder diffractometry (XRD) and FTIR spectroscopy.

  19. Quantum mechanical alternative to Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids

    KAUST Repository

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-01-01

    Theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum

  20. Maximising electro-mechanical response by minimising grain-scale strain heterogeneity in phase-change actuator ceramics

    DEFF Research Database (Denmark)

    Oddershede, Jette; Hossain, Mohammad Jahangir; Daniels, John E.

    2016-01-01

    Phase-change actuator ceramics directly couple electrical and mechanical energies through an electric-field-induced phase transformation. These materials are promising for the replacement of the most common electro-mechanical ceramic, lead zirconate titanate, which has environmental concerns. Here......, we show that by compositional modification, we reduce the grain-scale heterogeneity of the electro-mechanical response by 40%. In the materials investigated, this leads to an increase in the achievable electric-field-induced strain of the bulk ceramic of 45%. Compositions of (100-x)Bi0.5Na0.5TiO3-(x...... heterogeneity can be achieved by precise control of the lattice distortions and orientation distributions of the induced phases. The current results can be used to guide the design of next generation high-strain electro-mechanical ceramic actuator materials....

  1. Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees.

    Science.gov (United States)

    Oshone, Rediet; Ngom, Mariama; Chu, Feixia; Mansour, Samira; Sy, Mame Ourèye; Champion, Antony; Tisa, Louis S

    2017-08-18

    Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the

  2. Strain-accelerated dynamics of soft colloidal glasses

    KAUST Repository

    Agarwal, Praveen

    2011-04-11

    We have investigated strain-accelerated dynamics of soft glasses theoretically and experimentally. Mechanical rheology measurements performed on a variety of systems reveal evidence for the speeding-up of relaxation at modest shear strains in both step and oscillatory shear flows. Using the soft glassy rheology (SGR) model framework, we show that the observed behavior is a fundamental, but heretofore unexplored attribute of soft glasses. © 2011 American Physical Society.

  3. Validation of a physical activity questionnaire to measure the effect of mechanical strain on bone mass.

    Science.gov (United States)

    Kemper, Han C G; Bakker, I; Twisk, J W R; van Mechelen, W

    2002-05-01

    Most of the questionnaires available to estimate the daily physical activity levels of humans are based on measuring the intensity of these activities as multiples of resting metabolic rate (METs). Metabolic intensity of physical activities is the most important component for evaluating effects on cardiopulmonary fitness. However, animal studies have indicated that for effects on bone mass the intensity in terms of energy expenditure (metabolic component) of physical activities is less important than the intensity of mechanical strain in terms of the forces by the skeletal muscles and/or the ground reaction forces. The physical activity questionnaire (PAQ) used in the Amsterdam Growth and Health Longitudinal Study (AGAHLS) was applied to investigate the long-term effects of habitual physical activity patterns during youth on health and fitness in later adulthood. The PAQ estimates both the metabolic components of physical activities (METPA) and the mechanical components of physical activities (MECHPA). Longitudinal measurements of METPA and MECHPA were made in a young population of males and females ranging in age from 13 to 32 years. This enabled evaluation of the differential effects of physical activities during adolescence (13-16 years), young adulthood (21-28 years), and the total period of 15 years (age 13-28 years) on bone mineral density (BMD) of the lumbar spine, as measured by dual-energy X-ray absorptiometry (DXA) in males (n = 139) and females (n = 163) at a mean age of 32 years. The PAQ used in the AGAHLS during adolescence (13-16 years) and young adulthood (21-28 years) has the ability to measure the physical activity patterns of both genders, which are important for the development of bone mass at the adult age. MECHPA is more important than METPA. The highest coefficient of 0.33 (p PAQ was established by comparing PAQ scores during four annual measurements in 200 boys and girls with two other objective measures of physical activity: movement

  4. Experimental Evolution of Diverse Strains as a Method for the Determination of Biochemical Mechanisms of Action for Novel Pyrrolizidinone Antibiotics.

    Science.gov (United States)

    Beabout, Kathryn; McCurry, Megan D; Mehta, Heer; Shah, Akshay A; Pulukuri, Kiran Kumar; Rigol, Stephan; Wang, Yanping; Nicolaou, K C; Shamoo, Yousif

    2017-11-10

    The continuing rise of multidrug resistant pathogens has made it clear that in the absence of new antibiotics we are moving toward a "postantibiotic" world, in which even routine infections will become increasingly untreatable. There is a clear need for the development of new antibiotics with truly novel mechanisms of action to combat multidrug resistant pathogens. Experimental evolution to resistance can be a useful tactic for the characterization of the biochemical mechanism of action for antibiotics of interest. Herein, we demonstrate that the use of a diverse panel of strains with well-annotated reference genomes improves the success of using experimental evolution to characterize the mechanism of action of a novel pyrrolizidinone antibiotic analog. Importantly, we used experimental evolution under conditions that favor strongly polymorphic populations to adapt a panel of three substantially different Gram-positive species (lab strain Bacillus subtilis and clinical strains methicillin-resistant Staphylococcus aureus MRSA131 and Enterococcus faecalis S613) to produce a sufficiently diverse set of evolutionary outcomes. Comparative whole genome sequencing (WGS) between the susceptible starting strain and the resistant strains was then used to identify the genetic changes within each species in response to the pyrrolizidinone. Taken together, the adaptive response across a range of organisms allowed us to develop a readily testable hypothesis for the mechanism of action of the CJ-16 264 analog. In conjunction with mitochondrial inhibition studies, we were able to elucidate that this novel pyrrolizidinone antibiotic is an electron transport chain (ETC) inhibitor. By studying evolution to resistance in a panel of different species of bacteria, we have developed an enhanced method for the characterization of new lead compounds for the discovery of new mechanisms of action.

  5. Screening of Lactobacillus strains for their ability to bind benzo(a)pyrene and the mechanism of the process.

    Science.gov (United States)

    Zhao, Hongfei; Zhou, Fang; Qi, Yeqiong; Dziugan, Piotr; Bai, Fengling; Walczak, Piotr; Zhang, Bolin

    2013-09-01

    In order to investigate the binding ability of Lactobacillus strains to Benzo(a)pyrene (BaP), 15 strains were analysed. L. plantarum CICC 22135 and L. pentosus CICC 23163 exhibited high efficiency in removing BaP from aqueous medium; the binding rates were 66.76% and 64.31%, respectively. This process was affected by temperature, incubation time and pH, and cell viability was not necessary for the binding ability. Additionally, both strains, especially strain CICC 23163 showed high specificity in binding BaP. The cell-BaP complexes were stable in aqueous medium. The mechanism of binding was investigated by examining the binding ability of different components of the microorganism cells. The results revealed that peptidoglycans played an important role in binding BaP and its structural integrity was required. Consequently, we proposed that the mechanism of this process was a physisorption and peptidoglycan was the main binding site. These two strains may be used for dietary detoxification in human diet and animal feed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. High resolution electron back-scatter diffraction analysis of thermally and mechanically induced strains near carbide inclusions in a superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Karamched, Phani S., E-mail: phani.karamched@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2011-01-15

    Cross-correlation-based analysis of electron back-scatter diffraction (EBSD) patterns has been used to obtain high angular resolution maps of lattice rotations and elastic strains near carbides in a directionally solidified superalloy MAR-M-002. Lattice curvatures were determined from the EBSD measurements and used to estimate the distribution of geometrically necessary dislocations (GNDs) induced by the deformation. Significant strains were induced by thermal treatment due to the lower thermal expansion coefficient of the carbide inclusions compared to that of the matrix. In addition to elastic strains the mismatch was sufficient to have induced localized plastic deformation in the matrix leading to a GND density of 3 x 10{sup 13} m{sup -2} in regions around the carbide. Three-point bending was then used to impose strain levels within the range {+-}12% across the height of the bend bar. EBSD lattice curvature measurements were then made at both carbide-containing and carbide-free regions at different heights across the bar. The average GND density increases with the magnitude of the imposed strain (both in tension and compression), and is markedly higher near the carbides particles. The higher GND densities near the carbides (order of 10{sup 14} m{sup -2}) are generated by the large strain gradients produced around the plastically rigid inclusion during mechanical deformation with some minor contribution from the pre-existing residual deformation caused by the thermal mismatch between carbide and nickel matrix.

  7. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf

    2010-01-01

    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...... and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find...

  8. Thermal stress relaxation in magnesium composites during thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Trojanova, Z.; Lukac, P. (Karlova Univ., Prague (Czech Republic)); Kiehn, J.; Kainer, K.U.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany))

    1998-01-01

    It has been shown that the internal friction of Mg - Saffil metal matrix composites can be influenced by thermal stresses, if MMCc are submitted to thermal cycling between room temperature and an upper temperature of cycling. These stresses can be accommodated by generation and motion of dislocations giving the formation of the microplastic zones. The thermal stress relaxation depends on the upper temperature of cycling, the volume fraction of reinforcement and the matrix composition and can result in plastic deformation and strain hardening of the matrix without applied stress. The internal friction measurements can be used for non destructive investigation of processes which influence the mechanical properties. (orig.)

  9. The mechanism of critical strain and serration type of the serrated flow in Mg–Nd–Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.H. [The Group of Magnesium Alloys and Their Applications, Institute of Metal Research Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016 (China); School of Materials Science and Engineering, Shenyang Ligong University, 6 Nanpingzhong Road, Shenyang 110159 (China); Wu, D., E-mail: dwu@imr.ac.cn [The Group of Magnesium Alloys and Their Applications, Institute of Metal Research Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016 (China); Shah, S.S.A. [The Group of Magnesium Alloys and Their Applications, Institute of Metal Research Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016 (China); Chen, R.S., E-mail: rschen@imr.ac.cn [The Group of Magnesium Alloys and Their Applications, Institute of Metal Research Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016 (China); Lou, C.S. [School of Materials Science and Engineering, Shenyang Ligong University, 6 Nanpingzhong Road, Shenyang 110159 (China)

    2016-01-01

    In present research the serrated flow has been observed successfully after a critical amount of strain. Two relationships between the critical strain and temperature i.e. normal and inverse, corresponding to each serration type were studied. In order to investigate systematically the onset of serrated flow and serration type in NZ31 alloy, samples in solutionized condition were tensile tested at the temperature ranging from 100 °C to 300 °C with the strain rate ranging from 1×10{sup −4} s{sup −1} to 1×10{sup −2} s{sup −1}. Results showed that normal critical strain appeared with type A and B serrated flow at temperature from 150°C to 250 °C, and inverse critical strain appeared with type C at temperature from 275 °C to 300 °C. Through analyzing the mechanism of three serration types, we found that the production of serration required improvement in diffusion for solute atoms for pinning process at low temperature, and enhance the moving ability of dislocations for unpinning process at high temperature, which need the assistance of the strain and stress respectively. So, in this work, the critical strain for pinning and the critical stress for unpinning processes were defined, which give a better explanation to the variation tendency of two definitions in accordance with temperature. Furthermore, this relationship results in the critical strain for onset of serrated flow changing from normal to inverse and corresponding different serrations.

  10. Plasmon field enhancement oscillations induced by strain-mediated coupling between a quantum dot and mechanical oscillator.

    Science.gov (United States)

    He, Yong

    2017-06-23

    We utilize the surface plasmon field of a metal nanoparticle (MNP) to show strain-mediated coupling in a quantum dot-mechanical resonator hybrid system including a quantum dot (QD) embedded within a conical nanowire (NW) and a MNP in the presence of an external field. Based on the numerical solutions of the master equation, we find that a slow oscillation, originating from the strain-mediated coupling between the QD and the NW, appears in the time evolution of the plasmon field enhancement. The results show that the period (about [Formula: see text]) of the slow oscillation is equal to that of the mechanical resonator of NW, which suggests that the time-resolved measurement of the plasmon field enhancement can be easily achieved based on the current experimental conditions. Its amplitude increases with the increasing strain-mediated coupling strength, and under certain conditions there is a linear relationship between them. The slow oscillation of the plasmon field enhancement provides valuable tools for measurements of the mechanical frequency and the strain-mediated coupling strength.

  11. Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model.

    Science.gov (United States)

    Zhang, Wei; Chen, Jialin; Backman, Ludvig J; Malm, Adam D; Danielson, Patrik

    2017-03-01

    The optimal functionality of the native corneal stroma is mainly dependent on the well-ordered arrangement of extracellular matrix (ECM) and the pressurized structure. In order to develop an in vitro corneal model, it is crucial to mimic the in vivo microenvironment of the cornea. In this study, the influence of surface topography and mechanical strain on keratocyte phenotype and ECM formation within a biomimetic 3D corneal model is studied. By modifying the surface topography of materials, it is found that patterned silk fibroin film with 600 grooves mm -1 optimally supports cell alignment and ECM arrangement. Furthermore, treatment with 3% dome-shaped mechanical strain, which resembles the shape and mechanics of native cornea, significantly enhances the expression of keratocyte markers as compared to flat-shaped strain. Accordingly, a biomimetic 3D corneal model, in the form of a collagen-modified, silk fibroin-patterned construct subjected to 3% dome-shaped strain, is created. Compared to traditional 2D cultures, it supports a significantly higher expression of keratocyte and ECM markers, and in conclusion better maintains keratocyte phenotype, alignment, and fusiform cell shape. Therefore, the novel biomimetic 3D corneal model developed in this study serves as a useful in vitro 3D culture model to improve current 2D cultures for corneal studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dendrochronology of Strain-Relaxed Islands

    International Nuclear Information System (INIS)

    Merdzhanova, T.; Kiravittaya, S.; Rastelli, A.; Stoffel, M.; Denker, U.; Schmidt, O.G.

    2006-01-01

    We report on the observation and study of tree-ring structures below dislocated SiGe islands (superdomes) grown on Si(001) substrates. Analogous to the study of tree rings (dendrochronology), these footprints enable us to gain unambiguous information on the growth and evolution of superdomes and their neighboring islands. The temperature dependence of the critical volume for dislocation introduction is measured and related to the composition of the islands. We show clearly that island coalescence is the dominant pathway towards dislocation nucleation at low temperatures, while at higher temperatures anomalous coarsening is effective and leads to the formation of a depletion region around superdomes

  13. Dendrochronology of strain-relaxed islands.

    Science.gov (United States)

    Merdzhanova, T; Kiravittaya, S; Rastelli, A; Stoffel, M; Denker, U; Schmidt, O G

    2006-06-09

    We report on the observation and study of tree-ring structures below dislocated SiGe islands (superdomes) grown on Si(001) substrates. Analogous to the study of tree rings (dendrochronology), these footprints enable us to gain unambiguous information on the growth and evolution of superdomes and their neighboring islands. The temperature dependence of the critical volume for dislocation introduction is measured and related to the composition of the islands. We show clearly that island coalescence is the dominant pathway towards dislocation nucleation at low temperatures, while at higher temperatures anomalous coarsening is effective and leads to the formation of a depletion region around superdomes.

  14. Mechanical stability of the cell nucleus: roles played by the cytoskeleton in nuclear deformation and strain recovery.

    Science.gov (United States)

    Wang, Xian; Liu, Haijiao; Zhu, Min; Cao, Changhong; Xu, Zhensong; Tsatskis, Yonit; Lau, Kimberly; Kuok, Chikin; Filleter, Tobin; McNeill, Helen; Simmons, Craig A; Hopyan, Sevan; Sun, Yu

    2018-05-18

    Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformation increases the risk of disrupting the nuclear envelope's integrity and causing DNA damage. Mechanical stability of the nucleus defines its capability of maintaining nuclear shape by minimizing nuclear deformation and recovering strain when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin. © 2018. Published by The Company of Biologists Ltd.

  15. Breathing and Relaxation

    Science.gov (United States)

    ... Find a Doctor Relaxation is the absence of tension in muscle groups and a minimum or absence ... Drill Meditation Progressive Muscle Relaxation Minimizing Shortness of Breath Visualization This information has been approved by Shelby ...

  16. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.

    Directory of Open Access Journals (Sweden)

    Maryna Perepelyuk

    Full Text Available Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.

  17. Do mechanical strain and TNF-α interact to amplify pro-inflammatory cytokine production in human annulus fibrosus cells?

    Science.gov (United States)

    Likhitpanichkul, Morakot; Torre, Olivia M; Gruen, Jadry; Walter, Benjamin A; Hecht, Andrew C; Iatridis, James C

    2016-05-03

    During intervertebral disc (IVD) injury and degeneration, annulus fibrosus (AF) cells experience large mechanical strains in a pro-inflammatory milieu. We hypothesized that TNF-α, an initiator of IVD inflammation, modifies AF cell mechanobiology via cytoskeletal changes, and interacts with mechanical strain to enhance pro-inflammatory cytokine production. Human AF cells (N=5, Thompson grades 2-4) were stretched uniaxially on collagen-I coated chambers to 0%, 5% (physiological) or 15% (pathologic) strains at 0.5Hz for 24h under hypoxic conditions with or without TNF-α (10ng/mL). AF cells were treated with anti-TNF-α and anti-IL-6. ELISA assessed IL-1β, IL-6, and IL-8 production and immunocytochemistry measured F-actin, vinculin and α-tubulin in AF cells. TNF-α significantly increased AF cell pro-inflammatory cytokine production compared to basal conditions (IL-1β:2.0±1.4-84.0±77.3, IL-6:10.6±9.9-280.9±214.1, IL-8:23.9±26.0-5125.1±4170.8pg/ml for basal and TNF-α treatment, respectively) as expected, but mechanical strain did not. Pathologic strain in combination with TNF-α increased IL-1β, and IL-8 but not IL-6 production of AF cells. TNF-α treatment altered F-actin and α-tubulin in AF cells, suggestive of altered cytoskeletal stiffness. Anti-TNF-α (infliximab) significantly inhibited pro-inflammatory cytokine production while anti-IL-6 (atlizumab) did not. In conclusion, TNF-α altered AF cell mechanobiology with cytoskeletal remodeling that potentially sensitized AF cells to mechanical strain and increased TNF-α-induced pro-inflammatory cytokine production. Results suggest an interaction between TNF-α and mechanical strain and future mechanistic studies are required to validate these observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Microstructure and strain rate effects on the mechanical behavior of particle reinforced epoxy-based reactive materials

    Science.gov (United States)

    White, Bradley William

    The effects of reactive metal particles on the microstructure and mechanical properties of epoxy-based composites is investigated in this work. Particle reinforced polymer composites show promise as structural energetic materials that can provide structural strength while simultaneously being capable of releasing large amounts of chemical energy through highly exothermic reactions occurring between the particles and with the matrix. This advanced class of materials is advantageous due to the decreased amount of high density inert casings needed for typical energetic materials and for their ability to increase payload expectancy and decrease collateral damage. Structural energetic materials can be comprised of reactive particles that undergo thermite or intermetallic reactions. In this work nickel (Ni) and aluminum (Al) particles were chosen as reinforcing constituents due to their well characterized mechanical and energetic properties. Although, the reactivity of nickel and aluminum is well characterized, the effects of their particle size, volume fractions, and spatial distribution on the mechanical behavior of the epoxy matrix and composite, across a large range of strain rates, are not well understood. To examine these effects castings of epoxy reinforced with 20--40 vol.% Al and 0--10 vol.% Ni were prepared, while varying the aluminum nominal particle size from 5 to 50 mum and holding the nickel nominal particle size constant at 50 mum. Through these variations eight composite materials were produced, possessing unique microstructures exhibiting different particle spatial distributions and constituent makeup. In order to correlate the microstructure to the constitutive response of the composites, techniques such as nearest-neighbor distances, and multiscale analysis of area fractions (MSAAF) were used to quantitatively characterize the microstructures. The composites were investigated under quasi-static and dynamic compressive loading conditions to characterize

  19. Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process

    Energy Technology Data Exchange (ETDEWEB)

    Fattah-alhosseini, A. [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Imantalab, O., E-mail: o.imantalab@gmail.com [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Mazaheri, Y. [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Keshavarz, M.K. [Department of Engineering Physics, Polytechnique Montreal, Montreal (Canada)

    2016-01-05

    In this study, the microstructural evolution, mechanical properties, and strain hardening behavior of commercial pure copper processed by the accumulative roll bonding (ARB) were investigated. Transmission electron microscopy (TEM) micrographs and atomic force microscopy (AFM) images indicated that with increasing the number of ARB cycles, the grain size of samples decreased. An Ultrafine grained (UFG) structure with an average grain size of about 200 nm was achieved after four cycles of ARB. The yield and ultimate tensile strength of pure copper with the UFG microstructure was reached about 360 MPa and 396 MPa (about 400% and 100% higher than that of the annealed state), respectively. All ARB-processed copper samples showed lower strain hardening exponent in comparison with the annealed state. Moreover, the strain hardening rate increased with increasing ARB cycles up to 3 cycles and then decreased.

  20. Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process

    International Nuclear Information System (INIS)

    Fattah-alhosseini, A.; Imantalab, O.; Mazaheri, Y.; Keshavarz, M.K.

    2016-01-01

    In this study, the microstructural evolution, mechanical properties, and strain hardening behavior of commercial pure copper processed by the accumulative roll bonding (ARB) were investigated. Transmission electron microscopy (TEM) micrographs and atomic force microscopy (AFM) images indicated that with increasing the number of ARB cycles, the grain size of samples decreased. An Ultrafine grained (UFG) structure with an average grain size of about 200 nm was achieved after four cycles of ARB. The yield and ultimate tensile strength of pure copper with the UFG microstructure was reached about 360 MPa and 396 MPa (about 400% and 100% higher than that of the annealed state), respectively. All ARB-processed copper samples showed lower strain hardening exponent in comparison with the annealed state. Moreover, the strain hardening rate increased with increasing ARB cycles up to 3 cycles and then decreased.

  1. The Effects of Various Running Inclines on Three-Segment Foot Mechanics and Plantar Fascia Strain

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan

    2014-12-01

    Full Text Available Purpose. There has yet to be a combined analysis of three-dimensional multi-segment foot kinematics and plantar fascia strain in running gait at various degrees of inclination. The aim of the current study was therefore to investigate the above during treadmill running at different inclines (0°, 5°, 10° and 15°. Methods. Twelve male participants ran at 4.0 m · s-1 in the four different inclinations. Three-dimensional kinematics of the foot segments and plantar fascia strain were quantified for each incline and contrasted using one-way repeated measures ANOVA. Results and conclusions. The results showed that plantar fascia strain increased significantly as a function of running incline. Given the projected association between plantar fascia strain and the aetiology of injury, inclined running may be associated with a greater incidence of injury to the plantar fascia.

  2. Help yourself: the mechanisms through which a self-leadership intervention influences strain.

    Science.gov (United States)

    Unsworth, Kerrie L; Mason, Claire M

    2012-04-01

    This research reports on two field studies which demonstrate that self-leadership training decreases strain via increases in self-efficacy and positive affect. The first, an experimental study, found that strain was reduced in the randomly assigned training group, but not in the control group. The second was a longitudinal study and supported the hypotheses that self-efficacy and positive affect mediated the effect of self-leadership training on strain. Our findings extend both self-leadership and stress management literatures by providing a theoretical framework within which the effects of self-leadership on strain can be understood. Practically speaking, our findings suggest that self-leadership training offers an individual-level preventive approach to stress management. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  3. Molecular Genetic Studies of Bone Mechanical Strain and of Pedigrees with Very High Bone Density

    National Research Council Canada - National Science Library

    Mohan, Subburaman

    2007-01-01

    .... Two hypotheses have been proposed: I) Quantitative trait loci analysis using the four point bending technique in two strains of mice exhibiting extreme differences in loading response will lead to identification of chromosomal locations...

  4. Molecular Genetic Studies of Bone Mechanical Strain and of Pedigrees with Very High Bone Density

    National Research Council Canada - National Science Library

    Mohan, Subburaman

    2005-01-01

    .... Two hypotheses have been proposed:1) Ouantitative trait loci analysis using the four point bending technique in two strains of mice exhibiting extreme differences in loading response will lead to identification of chromosomal locations...

  5. Observation of a new dynamic recovery mechanism in the high strain regime

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels; Huang, Xiaoxu

    2014-01-01

    Plastic deformation of metals refines the microstructure and increases the strength through work hardening, but this effect of deformation is counterbalanced by dynamic recovery. After deformation to large strains, the microstructure typically shows a lamellar morphology, with finely spaced...

  6. Energy-efficient strain gauges for the wireless condition monitoring systems in mechanical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, Michael; Fellner, Thomas; Zeiser, Roderich; Wilde, Juergen [Freiburg Univ. (Germany). Dept. for Microsystems Engineering (IMTEK)

    2012-07-01

    This work focuses on the development of novel strain gauges, which are suited for the operation in autonomous wireless condition monitoring systems. For this purpose, capacitive as well as highly resistive strain gauges were designed and fabricated. The C- and R-sensors were utilised in combination with demonstration circuits, which integrate the circuits for instrumentation, A/D-conversion and furthermore comprise a microcontroller with a wireless transceiver system, all on a small separate printed wiring board. (orig.)

  7. Genome Sequence of Bacillus endophyticus and Analysis of Its Companion Mechanism in the Ketogulonigenium vulgare-Bacillus Strain Consortium.

    Directory of Open Access Journals (Sweden)

    Nan Jia

    Full Text Available Bacillus strains have been widely used as the companion strain of Ketogulonigenium vulgare in the process of vitamin C fermentation. Different Bacillus strains generate different effects on the growth of K. vulgare and ultimately influence the productivity. First, we identified that Bacillus endophyticus Hbe603 was an appropriate strain to cooperate with K. vulgare and the product conversion rate exceeded 90% in industrial vitamin C fermentation. Here, we report the genome sequencing of the B. endophyticus Hbe603 industrial companion strain and speculate its possible advantage in the consortium. The circular chromosome of B. endophyticus Hbe603 has a size of 4.87 Mb with GC content of 36.64% and has the highest similarity with that of Bacillus megaterium among all the bacteria with complete genomes. By comparing the distribution of COGs with that of Bacillus thuringiensis, Bacillus cereus and B. megaterium, B. endophyticus has less genes related to cell envelope biogenesis and signal transduction mechanisms, and more genes related to carbohydrate transport and metabolism, energy production and conversion, as well as lipid transport and metabolism. Genome-based functional studies revealed the specific capability of B. endophyticus in sporulation, transcription regulation, environmental resistance, membrane transportation, extracellular proteins and nutrients synthesis, which would be beneficial for K. vulgare. In particular, B. endophyticus lacks the Rap-Phr signal cascade system and, in part, spore coat related proteins. In addition, it has specific pathways for vitamin B12 synthesis and sorbitol metabolism. The genome analysis of the industrial B. endophyticus will help us understand its cooperative mechanism in the K. vulgare-Bacillus strain consortium to improve the fermentation of vitamin C.

  8. Mechanical response of AA7075 aluminum alloy over a wide range of temperatures and strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Cassada, W.A. [Reynolds Metals Co., Chester, VA (United States). Corp. Res. and Dev.; Cady, C.M.; Gray, G.T. III

    2000-07-01

    The influence of temperature and strain rate on the flow stress and work hardening rate of a 7075 aluminum alloy was studied under compressive loading over the temperature range from 23 C to 470 C, and strain rates from 0.001 s{sup -1} and 2100 s{sup -1}. While the temperature dependence of the flow stress was found to be most significant at temperatures below 300 C, the strain rate dependence of the flow stress was found to be pronounced at temperatures above 23 C. Concurrently, the work hardening rate decreases significantly with increasing temperature between 23 C and 300 C and increases slightly at higher temperatures. The minimum work hardening rate is observed to occur at temperatures between 200 C and 300 C and shift to higher temperatures with increasing strain rate. A negative strain rate dependence of work hardening rate was observed at 23 C, although a positive strain rate dependence of work hardening rate occurs at higher temperatures. Analysis of the experimental data revealed three deformation regimes. (orig.)

  9. Mechanical properties of Bi,Pb(2223) single filaments and Ic(ε) behaviour in longitudinally strained tapes

    International Nuclear Information System (INIS)

    Passerini, Reynald; Dhalle, Marc; Seeber, Bernd; Fluekiger, Rene

    2002-01-01

    The Young's modulus and fracture stress of isolated Bi,Pb(2223) filaments were deduced from three-point bending tests performed at different stages of the tapes preparation. These results were introduced in the model describing the evolution of critical current of tapes submitted to a longitudinal strain in view to predict their irreversible strain limit ε irr . These calculated irreversible strain limits were compared to measured values, taken from a set of tapes made with different filling factors and composite matrices. This experiment shows that the predicted irreversible strain limits correspond to the measured ones. Presenting the I c behaviour of highly stressed tapes in a magnetic field, we discuss the evolution of the ratio I strong c0 /I c0 versus strain. This value, representative of the fraction of the critical current attributed to strongly connected grains, increases significantly during the crack formation regime at ε > ε irr . This indicates that mechanically weak links correspond to electromagnetically weak ones. This result is further confirmed by comparing the modulus of rupture obtained in single filaments extracted from tapes with different I c values

  10. Evolution of carbon distribution and mechanical properties during the static strain ageing of heavily drawn pearlitic steel wires

    International Nuclear Information System (INIS)

    Lamontagne, A.; Massardier, V.; Sauvage, X.; Kléber, X.; Mari, D.

    2016-01-01

    The static strain ageing of heavily cold-drawn pearlitic steel wires was investigated using both global techniques and local techniques (Atom Probe Tomography (APT)), in order to highlight how the cold-drawn destabilized microstructure returns to a more stable state during post-drawing treatments between 20 °C and 150 °C. The global techniques (thermoelectric power, differential scanning calorimetry) clearly showed that ageing occurs in three successive ageing stages and is due to a redistribution of the carbon atoms coming from the strain-induced cementite dissolution. The first ageing stage was unambiguously attributed to the carbon segregation to the defects, while the second and third stages were interpreted as being due to the precipitation of intermediate carbides (2nd stage) and cementite (3rd stage). The true strain was not found to significantly affect the ageing kinetics and mechanisms but appeared to play a role in the amount of carbon atoms involved in the different ageing stages. APT analyses confirmed that ageing is governed by the carbon depletion of strain-induced supersaturated ferrite. The strengthening mechanisms associated with the different ageing stages were also discussed.

  11. Strain and mechanical properties of the VCM multilayer sheet and their composites using the digital speckle correlation method.

    Science.gov (United States)

    Zhang, Dehai; Xie, Guizhong; Li, Yanqin; Liu, Jianxiu

    2015-09-01

    The digital speckle correlation method (DSCM) is introduced to solve the challenging problems in the related geometric measurement. Theoretical calculations of strain are deduced using the DSCM. Corresponding strains along x and y directions are obtained from uniaxial tension experiments and digital speckle measurements, using the VCM nondeep drawing multilayer sheet, the VCM deep-drawing multilayer sheet, clad films, nondeep drawing substrate, and deep-drawing substrate sheet as the targeted experimental objects. The results show that the maximum strains along the x direction of the VCM nondeep drawing multilayer sheet, the VCM deep-drawing multilayer sheet, clad film, nondeep drawing substrate, and deep-drawing substrate sheet are 68.473%, 48.632%, 91.632%, 50.784% and 40.068%, respectively, while the maximum strains along the y direction are -2.657%, -15.381%, 2.826%, -9.780% and -7.783%, respectively. The mechanical properties of the VCM multilayer sheet are between those of the substrate and clad film, while mechanical properties of the VCM deep-drawing multilayer sheet are superior to those of the VCM nondeep drawing multi-layer sheet.

  12. Mechanical disequilibria in two-phase flow models: approaches by relaxation and by a reduced model; Modelisation des desequilibres mecaniques dans les ecoulements diphasiques: approches par relaxation et par modele reduit

    Energy Technology Data Exchange (ETDEWEB)

    Labois, M

    2008-10-15

    This thesis deals with hyperbolic models for the simulation of compressible two-phase flows, to find alternatives to the classical bi-fluid model. We first establish a hierarchy of two-phase flow models, obtained according to equilibrium hypothesis between the physical variables of each phase. The use of Chapman-Enskog expansions enables us to link the different existing models to each other. Moreover, models that take into account small physical unbalances are obtained by means of expansion to the order one. The second part of this thesis focuses on the simulation of flows featuring velocity unbalances and pressure balances, in two different ways. First, a two-velocity two-pressure model is used, where non-instantaneous velocity and pressure relaxations are applied so that a balancing of these variables is obtained. A new one-velocity one-pressure dissipative model is then proposed, where the arising of second-order terms enables us to take into account unbalances between the phase velocities. We develop a numerical method based on a fractional step approach for this model. (author)

  13. Rock mechanics observations pertinent to the rheology of the continental lithosphere and the localization of strain along shear zones

    Science.gov (United States)

    Kirby, S.H.

    1985-01-01

    Emphasized in this paper are the deformation processes and rheologies of rocks at high temperatures and high effective pressures, conditions that are presumably appropriate to the lower crust and upper mantle in continental collision zones. Much recent progress has been made in understanding the flexure of the oceanic lithosphere using rock-mechanics-based yield criteria for the inelastic deformations at the top and base. At mid-plate depths, stresses are likely to be supported elastically because bending strains and elastic stresses are low. The collisional tectonic regime, however, is far more complex because very large permanent strains are sustained at mid-plate depths and this requires us to include the broad transition between brittle and ductile flow. Moreover, important changes in the ductile flow mechanisms occur at the intermediate temperatures found at mid-plate depths. Two specific contributions of laboratory rock rheology research are considered in this paper. First, the high-temperature steady-state flow mechanisms and rheology of mafic and ultramafic rocks are reviewed with special emphasis on olivine and crystalline rocks. Rock strength decreases very markedly with increases in temperature and it is the onset of flow by high temperature ductile mechanisms that defines the base of the lithosphere. The thickness of the continental lithosphere can therefore be defined by the depth to a particular isotherm Tc above which (at geologic strain rates) the high-temperature ductile strength falls below some arbitrary strength isobar (e.g., 100 MPa). For olivine Tc is about 700??-800??C but for other crustal silicates, Tc may be as low as 400??-600??C, suggesting that substantial decoupling may take place within thick continental crust and that strength may increase with depth at the Moho, as suggested by a number of workers on independent grounds. Put another way, the Moho is a rheological discontinuity. A second class of laboratory observations pertains to

  14. Multiscale approach to mechanical behavior of polymeric nanocomposites: an application of T1.rho.(13C) relaxation experiments at variable spin-locking fields

    Czech Academy of Sciences Publication Activity Database

    Kotek, Jiří; Brus, Jiří

    2014-01-01

    Roč. 59, č. 9 (2014), s. 662-666 ISSN 0032-2725 R&D Projects: GA ČR(CZ) GA13-29009S Institutional support: RVO:61389013 Keywords : polyamide 6 * nanocomposite * T1ρ(13C) relaxation Subject RIV: JI - Composite Materials Impact factor: 0.633, year: 2014

  15. Microstructure and Strain Rate Effects on the Mechanical Behavior of Particle Reinforced Epoxy-Based Reactive Materials

    Science.gov (United States)

    2011-12-01

    particles using positron annihilation lifetime spectroscopy (PALS). They found that the free volume of the matrix was dependent on the volume fraction...mechanical analysis and positron annihilation lifetime spectroscopy ,” Polymer International, vol. 51, pp. 1277–1284, 2002. [35] G. W. Brassell and K. B...use as structural materials in applications at high rates of strain. These types of com- posites are very complex due to their heterogeneous

  16. New insights into virulence mechanisms of rice pathogen Acidovorax avenae subsp. avenae strain RS-1 following exposure to ?-lactam antibiotics

    OpenAIRE

    Li, Bin; Ge, Mengyu; Zhang, Yang; Wang, Li; Ibrahim, Muhammad; Wang, Yanli; Sun, Guochang; Chen, Gongyou

    2016-01-01

    Recent research has shown that pathogen virulence can be altered by exposure to antibiotics, even when the growth rate is unaffected. Investigating this phenomenon provides new insights into understanding the virulence mechanisms of bacterial pathogens. This study investigates the phenotypic and transcriptomic responses of the rice pathogenic bacterium Acidovorax avenae subsp. avenae (Aaa) strain RS-1 to ?-lactam antibiotics especially Ampicillin (Amp). Our results indicate that exposure to A...

  17. Uniaxial Drawing of Graphene-PVA Nanocomposites: Improvement in Mechanical Characteristics via Strain-Induced Exfoliation of Graphene

    OpenAIRE

    Jan, Rahim; Habib, Amir; Akram, Muhammad Aftab; Zia, Tanveer-ul-Haq; Khan, Ahmad Nawaz

    2016-01-01

    Polyvinyl alcohol (PVA)-stabilized graphene nanosheets (GNS) of lateral dimension (L) ~1??m are obtained via liquid phase exfoliation technique to prepare its composites in the PVA matrix. These composites show low levels of reinforcements due to poor alignment of GNS within the matrix as predicted by the modified Halpin-Tsai model. Drawing these composites up to 200?% strain, a significant improvement in mechanical properties is observed. Maximum values for Young?s modulus and strength are ~...

  18. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    Olofsson, Jakob; Svensson, Ingvar L

    2012-01-01

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to affect solidification and microstructure formation throughout the component and cause local variations in mechanical behavior as well as residual stresses. Though residual stresses are known to be an important factor in the mechanical behavior of the component, the importance of local mechanical behavior is not well established and the material is typically considered homogeneous throughout the component. This paper deals with the influence of solidification and solid state transformation on microstructure formation and the effect of local microstructure variations on the mechanical behavior of the cast component in service. The current work aims to investigate the coupling between simulation of solidification, microstructure and local variations in mechanical behavior and stress-strain simulation. This is done by performing several simulations of a ductile iron component using a recently developed simulation strategy, a closed chain of simulations for cast components, able to predict and describe the local variations in not only elastic but also plastic behavior throughout the component by using microstructural parameters determined by simulations of microstructural evolution in the component during the casting process. In addition the residual stresses are considered. The results show that the FEM simulation results are significantly affected by including microstructure based mechanical behavior. When the applied load is low and the component is subjected to stress levels

  19. Effects of Strain Rate and Temperature on the Mechanical Properties of Medium Manganese Steels

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Radhakanta [Colorado School of Mines, Golden, CO (United States); Matlock, David K [Colorado School of Mines, Golden, CO (United States); Speer, John G [Colorado School of Mines, Golden, CO (United States); De Moor, Emmanuel [Colorado School of Mines, Golden, CO (United States)

    2016-11-16

    The effects of temperature (-60 to 100 °C) and strain rate (0.002 to 0.2 s-1) on the properties of Al-alloyed 7 and 10 wt-% Mn steels containing 34.8 and 57.3 vol-% austenite respectively were evaluated by tensile tests in isothermal liquid baths. The tensile strengths of both medium Mn steels increased with a decrease in temperature owing to the decreased austenite stability with a decrease in temperature. At lower temperatures the strength of the 10MnAl steel was highest, a consequence of the higher strain hardening rate caused by more austenite transformation to martensite with deformation. The resulting properties are assessed with a consideration of the effects of strain rate and deformation on adiabatic heating which was observed to be as high as 95o C.

  20. The mechanical response of a PBX and binder: combining results across the strain-rate and frequency domains

    International Nuclear Information System (INIS)

    Drodge, D R; Williamson, D M; Palmer, S J P; Proud, W G; Govier, R K

    2010-01-01

    The mechanical response of a polymer bonded explosive (PBX) has been measured using a Split Hopkinson Pressure Bar at a strain-rate of 2000 s -1 , across a range of temperatures from 173 to 333 K, with the aim of observing its behaviour in the glassy regime. The yield stresses increased monotonically with decreasing temperature and no plateau was found. The failure mechanism was found to transition from shear-banding with crystal debonding fracture to brittle failure with some evidence of crystal fracture. Similar experiments were performed on samples of its nitrocellulose-based binder material, at a strain-rate of 3000 s -1 across a temperature range 173-273 K. The failure stresses of the binder approach that of the composite at temperatures near -70 0 C. The elastic moduli were estimated from post-equilibrium regions of the stress-strain curves, and compared with those obtained for the composite using 5 MHz ultrasonic sound-speed measurement, and powder dynamic mechanical analysis measurements and quasi-static behaviour reported in a previous paper. The moduli were plotted on a common frequency axis: a temperature shift was applied to collapse the curves, which agreed with the Cox-Merz rule.

  1. Mechanical Characterization of Immature Porcine Brainstem in Tension at Dynamic Strain Rates.

    Science.gov (United States)

    Zhao, Hui; Yin, Zhiyong; Li, Kui; Liao, Zhikang; Xiang, Hongyi; Zhu, Feng

    2016-01-21

    Many brain injury cases involve pediatric road traffic accidents, and among these, brainstem injury causes disastrous outcomes. A thorough understanding of the tensile characterization of immature brainstem tissue is crucial in modeling traumatic brain injury sustained by children, but limited experimental data in tension is available for the immature brain tissue at dynamic strain rates. We harvested brainstem tissue from immature pigs (about 4 weeks old, and at a developmental stage similar to that of human toddlers) as a byproduct from a local slaughter house and very carefully prepared the samples. Tensile tests were performed on specimens at dynamic strain rates of 2/s, 20/s, and 100/s using a biological material instrument. The constitutive models, Fung, Ogden, Gent, and exponential function, for immature brainstem tissue material property were developed for the recorded experimental data using OriginPro 8.0 software. The t test was performed for infinitesimal shear modules. The curves of stress-versus-stretch ratio were convex in shape, and inflection points were found in all the test groups at the strain of about 2.5%. The average Lagrange stress of the immature brainstem specimen at the 30% strain at the strain rates of 2, 20, and 100/s was 273±114, 515±107, and 1121±197 Pa, respectively. The adjusted R-Square (R2) of Fung, Ogden, Gent, and exponential model was 0.820≤R2≤0.933, 0.774≤R2≤0.940, 0.650≤R2≤0.922, and 0.852≤R2≤0.981, respectively. The infinitesimal shear modulus of the strain energy functions showed a significant association with the strain rate (pmaterial in dynamic tensile tests, and the tissue becomes stiffer with increased strain rate. The reported results may be useful in the study of brain injuries in children who sustain injuries in road traffic accidents. Further research in more detail should be performed in the future.

  2. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam [Indian Institute of Science, Department of Aerospace Engineering (India); Raha, S. [Indian Institute of Science, Department of Computational and Data Sciences (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Indian Institute of Science, Department of Aerospace Engineering (India)

    2017-02-15

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  3. AC loss characteristics of Bi2223/Ag sheathed tape wires subjected to mechanical strains and stresses

    International Nuclear Information System (INIS)

    Tsukamoto, Osami; Li, Z

    2007-01-01

    The influence of uniaxial tensile stress-strain on the AC loss characteristics of multifilamentary Bi2223/Ag sheathed tape wires was investigated. The uniaxial tensile stress-strain was applied to the sample wire in liquid nitrogen at atmospheric pressure, and the AC losses (transport, magnetization and total losses) were measured by an electric method. Two kinds of wire, oxide-dispersion strengthened Ag-alloy sheathed and Ag-alloy sheathed wires, were tested. The stress-strain curves of the tested wires were divided in three regions, i.e. elastic deformation, continuous plastic deformation and serrated-like plastic deformation regions, though the ranges of those regions were different for different kinds of wire. In the elastic and continuous plastic regions, the stress-strain curve was smooth and continuous, and in the serrated-like plastic region, the curve was rough. In the serrated-like plastic region, the wires kept elongating, while increase of the tensile stress was suspended. Dependences of the critical currents on the stress-strain were generally as follows. While decreases of the wire critical currents were in the range of less than 4% of the original values of the no-stress condition, the critical currents of the wires were reversible, that is, the critical currents recovered the original values at zero stress when the stress were released, regardless of whether the wires were in the elastic or continuous plastic region. In the continuous plastic region, the critical currents decreased up to 10%-15% of the original values and the critical currents were irreversible when the degradations of the critical currents exceeded about 4%. In the serrated-like plastic regions, the critical currents were more severely degraded. The AC loss characteristics of the wires are different in those regions. In the elastic and continuous plastic regions, the absolute values of AC losses were dependent on the stress-strain. However, the dependences of those normalized

  4. A model considering mechanical anisotropy of magnetic-field-induced superelastic strain in magnetic shape memory alloys

    International Nuclear Information System (INIS)

    Zhu, Yuping; Yu, Kai

    2013-01-01

    Highlights: ► The model analyzes mechanical anisotropy of magnetic shape memory alloy. ► The numerical evaluation of Eshelby tensor of shape memory alloy is obtained. ► Interaction energy of magnetic shape memory alloy is analyzed. - Abstract: Under applied mechanical load and magnetic field, a micromechanics-based thermodynamic model taking account of mechanical anisotropy of magnetic shape memory alloys (MSMAs) is developed in this work. Considering the crystallographic and magnetic microstructure, the internal state variables are chosen and the model can capture the magnetic shape memory effect caused by the martensitic variant reorientation process. It is assumed that the Gibbs free energy is consisted of the mechanical potential energy of anisotropic matrix, the Zeeman energy and the magnetocrystalline anisotropy energy in the model. In terms of the balance between the thermodynamic driving force derived from the reduction of Gibbs free energy and the resistive force for the variant reorientation, the kinetic equation is established and the Eshelby tensor of anisotropic MSMAs is then obtained by using numerical evaluation. At last, the effects of the anisotropy on interaction energy and macroscopic strain are discussed. The assumption of isotropy tends to underestimate interaction energy and macroscopic strain. The results considering mechanical anisotropy are in good agreement with the experimental data.

  5. Analytic examination of mechanism for compressive residual stress introduction with low plastic strain using peening

    International Nuclear Information System (INIS)

    Ishibashi, Ryo; Hato, Hisamitsu; Miyazaki, Katsumasa; Yoshikubo, Fujio

    2016-01-01

    Our goal for this study was to understand the cause of the differences in surface properties between surfaces processed using water jet peening (WJP) and shot peening (SP) and to examine the compressive residual stress introduction process with low plastic strain using SP. The dynamic behaviors of stress and strain in surfaces during these processes were analyzed through elasto-plastic calculations using a finite-element method program, and the calculated results were compared with measured results obtained through experiments. Media impacting a surface results in a difference in the hardness and microstructure of the processed surface. During SP, a shot deforms the surface locally with stress concentration in the early stages of the impact, while shock waves deform the surface evenly throughout the wave passage across the surface during WJP. A shot with a larger diameter creates a larger impact area on the surface during shot impact. Thus, SP with a large-diameter shot suppresses the stress concentration under the same kinetic energy condition. As the shot diameter increases, the equivalent plastic strain decreases. On the other hand, the shot is subject to size restriction since the calculated results indicate the compressive residual stress at the surface decreased and occasionally became almost zero as the shot diameter increased. Thus, compressive residual stress introduction with low plastic strain by using SP is considered achievable by using shots with a large diameter and choosing the appropriate peening conditions. (author)

  6. A strain of Serratia marcescens pathogenic for larvae of Lymantria dispar: Infectivity and mechanisms of pathogenicity

    Science.gov (United States)

    J.D. Podgwaite; B.J. Cosenza

    1976-01-01

    The ED50 of a strain of Serratia marcescens for microinjected instar III and IV gypsy moth larvae was 7.5 and 14.5 viable cells, respectively. Percentage and rate of mortality were found to be highly variable among replicates of the same instar and between instars in free-feeding bioassays. Mortality in second instar larvae...

  7. The mechanism of Lactobacillus strains for their ability to remove fumonisins B1 and B2.

    Science.gov (United States)

    Zhao, Hongfei; Wang, Xiao; Zhang, Junwen; Zhang, Jun; Zhang, Bolin

    2016-11-01

    Two Lactobacillus strains, L. plantarum B7 and L. pentosus X8, exhibited high efficiency in removing fumonisins (FB1 and FB2) from aqueous medium. 52.9% FB1 and 85.2% FB2 were bound by L. plantarum B7, and 58.0% FB1 and 86.5% FB2 by L. pentosus X8, respectively. Temperature, incubation time, and pH affected the binding ability of two strains. Cell viability was not necessary for the binding ability. The various components of cell wall were determined for their ability to absorb FBS. The results revealed that the intact peptidoglycans exhibited the greatest capacity in binding FBs. Especially the better structural integrity of the peptidoglycans the more FBs was bound. Thus, the absorption of two bacterial cells to FBs is proposed to be a physical process, and peptidoglycans should be the main binding site. Additionally, Caco-2 cell lines were used to evaluate the ability of the two strains to reduce the damage of FBs in vitro. Caco-2 cell's death was reduced after the cell lines were subjected to both viable and non-viable L. pentosus X8, respectively. The two Lactobacillus strains might be used as a biological detoxification for the removal of FBs from diet and feed in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Impact of repeated uniaxial mechanical strain on flexible a-IGZO thin film transistors with symmetric and asymmetric structures

    Science.gov (United States)

    Liao, Po-Yung; Chang, Ting-Chang; Su, Wan-Ching; Chen, Bo-Wei; Chen, Li-Hui; Hsieh, Tien-Yu; Yang, Chung-Yi; Chang, Kuan-Chang; Zhang, Sheng-Dong; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan

    2017-06-01

    This letter investigates repeated uniaxial mechanical stress-induced degradation behavior in flexible amorphous In-Ga-Zn-O thin-film transistors (TFTs) of different geometric structures. Two types of via-contact structure TFTs are investigated: symmetrical and UI structure (TFTs with I- and U-shaped asymmetric electrodes). After repeated mechanical stress, I-V curves for the symmetrical structure show a significant negative threshold voltage (VT) shift, due to mechanical stress-induced oxygen vacancy generation. However, degradation in the UI structure TFTs after stress is a negative VT shift along with the parasitic transistor characteristic in the forward-operation mode, with this hump not evident in the reverse-operation mode. This asymmetrical degradation is clarified by the mechanical strain simulation of the UI TFTs.

  9. Influence of Positive End-Expiratory Pressure on Myocardial Strain Assessed by Speckle Tracking Echocardiography in Mechanically Ventilated Patients

    Directory of Open Access Journals (Sweden)

    Federico Franchi

    2013-01-01

    Full Text Available Purpose. The effects of mechanical ventilation (MV on speckle tracking echocardiography- (STE-derived variables are not elucidated. The aim of the study was to evaluate the effects of positive end-expiratory pressure (PEEP ventilation on 4-chamber longitudinal strain (LS analysis by STE. Methods. We studied 20 patients admitted to a mixed intensive care unit who required intubation for MV and PEEP titration due to hypoxia. STE was performed at three times: (T1 PEEP = 5 cmH2O; (T2 PEEP = 10 cmH2O; and (T3 PEEP = 15 cmH2O. STE analysis was performed offline using a dedicated software (XStrain MyLab 70 Xvision, Esaote. Results. Left peak atrial-longitudinal strain (LS was significantly reduced from T1 to T2 and from T2 to T3 (. Right peak atrial-LS and right ventricular-LS showed a significant reduction only at T3 (. Left ventricular-LS did not change significantly during titration of PEEP. Cardiac chambers’ volumes showed a significant reduction at higher levels of PEEP (. Conclusions. We demonstrated for the first time that incremental PEEP affects myocardial strain values obtained with STE in intubated critically ill patients. Whenever performing STE in mechanically ventilated patients, care must be taken when PEEP is higher than 10 cmH2O to avoid misinterpreting data and making erroneous decisions.

  10. Models for multiple relaxation processes in collagen fiber

    Indian Academy of Sciences (India)

    ... originate from stress strain induced changes in hydrogen bond network whereas the other seems to be more strongly coupled to salt like bridges and electrostatic interactions. Urea alters the activation energy for one relaxation step while pH and solvent dielectric constant alter the relaxation behavior one set of processes.

  11. The mechanical behaviour of NBR/FEF under compressive cyclic stress strain

    Science.gov (United States)

    Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.

    2006-06-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  12. The mechanical behaviour of NBR/FEF under compressive cyclic stress-strain

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, W E [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); El-Eraki, M H I [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); El-Lawindy, A M Y [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); Hassan, H H [Faculty of Science, Physics Department, Cairo University, Giza (Egypt)

    2006-06-07

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  13. The mechanical behaviour of NBR/FEF under compressive cyclic stress-strain

    International Nuclear Information System (INIS)

    Mahmoud, W E; El-Eraki, M H I; El-Lawindy, A M Y; Hassan, H H

    2006-01-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue

  14. Mechanical dispersion and global longitudinal strain by speckle tracking echocardiography: Predictors of appropriate implantable cardioverter defibrillator therapy in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Candan, Ozkan; Gecmen, Cetin; Bayam, Emrah; Guner, Ahmet; Celik, Mehmet; Doğan, Cem

    2017-06-01

    In this study, we investigated whether mechanical dispersion which reflects electrical abnormality and other echocardiographic and clinic parameters predict appropriate ICD shock in patients undergone ICD implantation for hypertrophic cardiomyopathy. Sixty-three patients who received ICD implantation for primary or secondary prevention were included in the study. Patients' clinical, electrocardiographic, 2D classic, and speckle tracking echocardiographic data were collected. Mechanical dispersion was defined as the standard deviation of time to peak negative strain in 18 left ventricular segments. Appropriate ICD therapy was defined as cardioversion or defibrillation due to ventricular tachycardia or fibrillation. Patients were divided into two groups as occurrence or the absence of appropriate ICD therapy. A total of 17 (26.9%) patients were observed to have an appropriate ICD therapy during follow-up periods. In patients who performed appropriate ICD therapy, a larger left atrial volume index, higher sudden cardiac death (SCD)-Risk Score, longer mechanical dispersion, and decreased global longitudinal peak strain (GLPS) were observed. In multivariate logistic regression analysis, including (GLPS, mechanical dispersion, LAVi, and SCD-Risk Score) was used to determine independent predictors of occurrence of appropriate ICD therapy during the follow-up. Mechanical dispersion, GLPS, and SCD-Risk Score were found to be independent predictors of occurrence of appropriate ICD therapy. Mechanical dispersion, GLPS, and SCD-Risk Score were found to be predictive for appropriate ICD therapy in patients receiving ICD implantation. Readily measurable mechanical dispersion and GLPS could be helpful to distinguish patients at high risk who could optimally benefit from ICD therapy. © 2017, Wiley Periodicals, Inc.

  15. Uniaxial Drawing of Graphene-PVA Nanocomposites: Improvement in Mechanical Characteristics via Strain-Induced Exfoliation of Graphene

    Science.gov (United States)

    Jan, Rahim; Habib, Amir; Akram, Muhammad Aftab; Zia, Tanveer-ul-Haq; Khan, Ahmad Nawaz

    2016-08-01

    Polyvinyl alcohol (PVA)-stabilized graphene nanosheets (GNS) of lateral dimension ( L) ~1 μm are obtained via liquid phase exfoliation technique to prepare its composites in the PVA matrix. These composites show low levels of reinforcements due to poor alignment of GNS within the matrix as predicted by the modified Halpin-Tsai model. Drawing these composites up to 200 % strain, a significant improvement in mechanical properties is observed. Maximum values for Young's modulus and strength are ~×4 and ~×2 higher respectively than that of neat PVA. Moreover, the rate of increase of the modulus with GNS volume fraction is up to 700 GPa, higher than the values predicted using the Halpin-Tsai theory. However, alignment along with strain-induced de-aggregation of GNS within composites accounts well for the obtained results as confirmed by X-ray diffraction (XRD) characterization.

  16. Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials

    DEFF Research Database (Denmark)

    Leal-Junior, A.; Frizera, A.; Pontes, M. J.

    2018-01-01

    This paper presents a dynamic mechanical analysis (DMA) of polymer optical fibers (POFs) to obtain their Young modulus with respect to the variation of strain, temperature, humidity and frequency. The POFs tested are made of polymethyl methacrylate (PMMA), Topas grade 5013, Zeonex 480R...... and Polycarbonate (PC). In addition, a step index POF with a core composed of Topas 5013 and cladding of Zeonex 480R is also analyzed. Results show a tradeoffbetween the different fibers for different applications, where the Zeonex fiber shows the lowest Young modulus among the ones tested, which makes it suitable...... for high-sensitivity strain sensing applications. In addition, the fibers with Topas in their composition presented low temperature and humidity sensitivity, whereas PMMA fibers presented the highest Young modulus variation with different frequencies. The results presented here provide guidelines...

  17. A comprehensive study of piezomagnetic response in CrPS4 monolayer: mechanical, electronic properties and magnetic ordering under strains

    Science.gov (United States)

    Joe, Minwoong; Lee, Hosik; Menderes Alyörük, M.; Lee, Jinhwan; Youb Kim, Sung; Lee, Changgu; Lee, Jun Hee

    2017-10-01

    We performed first-principles calculations to investigate the magnetic, mechanical and electronic properties of the tetrachalcogenide CrPS4. Although bulk CrPS4 has been shown to exhibit a low-dimensional antiferromagnetic (AFM) ground state where ferromagnetic (FM) Cr-chains are coupled antiferromagnetically, our calculations indicated that the monolayer can be transformed to an FM material by applying a uniaxial tensile strain of  ⩾4% along the FM Cr-chain direction. The AFM-to-FM transition is explained to be driven by an increase of the exchange interaction induced by a decrease in the distance between the FM Cr-chains. A huge nonlinear piezomagnetism was predicted at the strain-induced magnetic phase boundary. Our study provides insight about rational design of single-layer magnetic materials for a wide range of spintronic devices and energy applications.

  18. Temperature-strain rate dependence of mechanical properties of a beryllium of the DShG-200 brand

    International Nuclear Information System (INIS)

    Khomutov, A.M.; Gorokhov, V.A.; Mikhailov, V.S.; Nikolaev, G.N.; Timofeev, R.Yu.; Chernov, V.M.

    2000-01-01

    Beryllium preforms of the DShG-200 brand of improved quality were manufactured by the method of a powder metallurgy and the mechanical tests on tension in longitudinal and transversal directions in temperature range 20-600 C and strain rates of 0,02 - 20 mm/min were held. It was shown, that at an alteration of strain rate within the indicated limits the values of stresses of flow and of the relative elongation can vary by several times. Comparison testing for tension by the Russian and American procedures (GOST and ASTM) was made. The obtained results can be beneficial at calculations of thermal stresses originating in fusion reactors (FR). (orig.)

  19. Fast Estimation of Strains for Cross-Beams Six-Axis Force/Torque Sensors by Mechanical Modeling

    Directory of Open Access Journals (Sweden)

    Junqing Ma

    2013-05-01

    Full Text Available Strain distributions are crucial criteria of cross-beams six-axis force/torque sensors. The conventional method for calculating the criteria is to utilize Finite Element Analysis (FEA to get numerical solutions. This paper aims to obtain analytical solutions of strains under the effect of external force/torque in each dimension. Genetic mechanical models for cross-beams six-axis force/torque sensors are proposed, in which deformable cross elastic beams and compliant beams are modeled as quasi-static Timoshenko beam. A detailed description of model assumptions, model idealizations, application scope and model establishment is presented. The results are validated by both numerical FEA simulations and calibration experiments, and test results are found to be compatible with each other for a wide range of geometric properties. The proposed analytical solutions are demonstrated to be an accurate estimation algorithm with higher efficiency.

  20. Stress relaxation under cyclic electron irradiation

    International Nuclear Information System (INIS)

    Bystrov, L.N.; Reznitskij, M.E.

    1990-01-01

    The kinetics of deformation process in a relaxating sample under 2 MeV electron cyclic irradiation was studied experimentally. The Al-Mg alloys with controllable and different (in dislocation density precipitate presence and their character) structure were used in experiments. It was established that after the beam was switched on the deformation rate increased sharply and then, during prolonged irradiation, in a gradual manner. After the switching-off the relaxation rate decreases by jumps up to values close to extrapolated rates of pre-radiation relaxation. The exhibition of these effects with radiation switching-off and switchin-on is dependent on the initial rate of thermal relaxation, the test temperature, the preliminary cold deformation and the dominating deformation dislocation mechanism. The preliminary cold deformation and test temperature elevation slightly decrease the effect of instantaneous relaxation acceleration with the irradiation switch-on. 17 refs., 5 figs

  1. Vibrational and Rotational Energy Relaxation in Liquids

    DEFF Research Database (Denmark)

    Petersen, Jakob

    Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...

  2. Cross-relaxation solid state lasers

    International Nuclear Information System (INIS)

    Antipenko, B.M.

    1989-01-01

    Cross-relaxation functional diagrams provide a high quantum efficiency for pumping bands of solid state laser media and a low waste heat. A large number of the cross-relaxation mechanisms for decay rare earth excited states in crystals have been investigated. These investigations have been a starting-point for development of the cross-relaxation solid state lasers. For example, the cross-relaxation interactions, have been used for the laser action development of LiYF 4 :Gd-Tb. These interactions are important elements of the functional diagrams of the 2 μm Ho-doped media sensitized with Er and Tm and the 3 μm Er-doped media. Recently, new efficient 2 μm laser media with cross-relaxation pumping diagrams have been developed. Physical aspects of these media are the subject of this paper. A new concept of the Er-doped medium, sensitized with Yb, is illustrated

  3. Relaxation properties in classical diamagnetism

    Science.gov (United States)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  4. Study of the strain's mechanism of deep argillaceous rocks: interest of microstructure and petro-physical analysis

    International Nuclear Information System (INIS)

    Gasc-Barbier, M.

    2002-09-01

    This study was carried out in order to better understand the behaviour of deep argillaceous rocks and in particular those chosen by ANDRA to build an underground laboratory to study the feasibility to set up an underground storage for highly radioactive wastes. We have studied experimentally different mechanisms (chemo-mechanical and hygro-mechanical coupling and creep behaviour) that could lead to macroscopic strain so as to attempt to characterize them from a microstructural point of view, Hence we have implemented innovative experimental tests such as the conception of a triaxial cell where fluids can circulate or the use of mercury porosimetry on dry or wet samples. We have thus been able to show the importance of the clay-calcite relation in the argillite studied both from the chemical point of view (chemical balance dominated by calcite) and from a structural point of view (micro-fissuration seems to take place preferentially at the grain / clayey material interface). (author)

  5. Relaxation characteristics of hastelloy X

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    1980-02-01

    Relaxation diagrams of Hastelloy X (relaxation curves, relaxation design diagrams, etc.) were generated from the creep constitutive equation of Hastelloy X, using inelastic stress analysis code TEPICC-J. These data are in good agreement with experimental relaxation data of ORNL-5479. Three typical inelastic stress analyses were performed for various relaxation behaviors of the high-temperature structures. An attempt was also made to predict these relaxation behaviors by the relaxation curves. (author)

  6. Stacking faults and mechanisms strain-induced transformations of hcp metals (Ti, Mg) during mechanical activation in liquid hydrocarbons

    Science.gov (United States)

    Lubnin, A. N.; Dorofeev, G. A.; Nikonova, R. M.; Mukhgalin, V. V.; Lad'yanov, V. I.

    2017-11-01

    The evolution of the structure and substructure of metals Ti and Mg with hexagonal close-packed (hcp) lattice is studied during their mechanical activation in a planetary ball mill in liquid hydrocarbons (toluene, n-heptane) and with additions of carbon materials (graphite, fullerite, nanotubes) by X-ray diffraction, scanning electron microscopy, and chemical analysis. The temperature behavior and hydrogen-accumulating properties of mechanocomposites are studied. During mechanical activation of Ti and Mg, liquid hydrocarbons decay, metastable nanocrystalline titanium carbohydride Ti(C,H) x and magnesium hydride β-MgH2 are formed, respectively. The Ti(C,H) x and MgH2 formation mechanisms during mechanical activation are deformation ones and are associated with stacking faults accumulation, and the formation of face-centered cubic (fcc) packing of atoms. Metastable Ti(C,H)x decays at a temperature of 550°C, the partial reverse transformation fcc → hcp occurs. The crystalline defect accumulation (nanograin boundaries, stacking faults), hydrocarbon destruction, and mechanocomposite formation leads to the enhancement of subsequent magnesium hydrogenation in the Sieverts reactor.

  7. TEACHING NEUROMUSCULAR RELAXATION.

    Science.gov (United States)

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  8. Relaxation techniques for stress

    Science.gov (United States)

    ... raise your heart rate. This is called the stress response. Relaxation techniques can help your body relax and lower your blood pressure ... also many other types of breathing techniques you can learn. In many cases, you do not need much ... including those that cause stress. Meditation has been practiced for thousands of years, ...

  9. Molecular Mechanisms of Attenuation of the Sabin Strain of Poliovirus Type 3

    OpenAIRE

    Guest, Stephen; Pilipenko, Evgeny; Sharma, Kamal; Chumakov, Konstantin; Roos, Raymond P.

    2004-01-01

    Mutations critical for the central nervous system (CNS) attenuation of the Sabin vaccine strains of poliovirus (PV) are located within the viral internal ribosome entry site (IRES). We examined the interaction of the IRESs of PV type 3 (PV3) and Sabin type 3 (Sabin3) with polypyrimidine tract-binding protein (PTB) and a neural cell-specific homologue, nPTB. PTB and nPTB were found to bind to a site directly adjacent to the attenuating mutation, and binding at this site was less efficient on t...

  10. Actin and microtubule networks contribute differently to cell response for small and large strains

    Science.gov (United States)

    Kubitschke, H.; Schnauss, J.; Nnetu, K. D.; Warmt, E.; Stange, R.; Kaes, J.

    2017-09-01

    Cytoskeletal filaments provide cells with mechanical stability and organization. The main key players are actin filaments and microtubules governing a cell’s response to mechanical stimuli. We investigated the specific influences of these crucial components by deforming MCF-7 epithelial cells at small (≤5% deformation) and large strains (>5% deformation). To understand specific contributions of actin filaments and microtubules, we systematically studied cellular responses after treatment with cytoskeleton influencing drugs. Quantification with the microfluidic optical stretcher allowed capturing the relative deformation and relaxation of cells under different conditions. We separated distinctive deformational and relaxational contributions to cell mechanics for actin and microtubule networks for two orders of magnitude of drug dosages. Disrupting actin filaments via latrunculin A, for instance, revealed a strain-independent softening. Stabilizing these filaments by treatment with jasplakinolide yielded cell softening for small strains but showed no significant change at large strains. In contrast, cells treated with nocodazole to disrupt microtubules displayed a softening at large strains but remained unchanged at small strains. Stabilizing microtubules within the cells via paclitaxel revealed no significant changes for deformations at small strains, but concentration-dependent impact at large strains. This suggests that for suspended cells, the actin cortex is probed at small strains, while at larger strains; the whole cell is probed with a significant contribution from the microtubules.

  11. Endothelial relaxation mechanisms and nitrative stress are partly restored by Vitamin D3 therapy in a rat model of polycystic ovary syndrome.

    Science.gov (United States)

    Masszi, Gabriella; Benko, Rita; Csibi, Noemi; Horvath, Eszter M; Tokes, Anna-Maria; Novak, Agnes; Beres, Nora Judit; Tarszabo, Robert; Buday, Anna; Repas, Csaba; Bekesi, Gabor; Patocs, Attila; Nadasy, Gyorgy L; Hamar, Peter; Benyo, Zoltan; Varbiro, Szabolcs

    2013-08-06

    In polycystic ovary syndrome (PCOS), metabolic and cardiovascular dysfunction is related to hyperandrogenic status and insulin resistance, however, Vitamin D3 has a beneficial effect partly due to its anti-oxidant capacity. Nitrative stress is a major factor in the development of cardiovascular dysfunction and insulin resistance in various diseases. Our aim was to determine the effects of vitamin D3 in a rat model of PCOS, particularly the pathogenic role of nitrative stress. Female Wistar rats weighing 100-140g were administered vehicle (C), dihydrotestosterone (DHT) or dihydrotestosterone plus vitamin D3 (DHT+D) (n=10 per group). On the 10th week, acetylcholine (Ach) induced relaxation ability of the isolated thoracic aorta rings was determined. In order to examine the possible role of endothelial nitric oxide synthase (eNOS) and cyclooxygenase-2 (COX-2) pathways in the impaired endothelial function, immunohistochemical labeling of aortas with anti-eNOS and anti-COX-2 antibodies was performed. Leukocyte smears, aorta and ovary tissue sections were also immunostained with anti-nitrotyrosine antibody to determine nitrative stress. Relaxation ability of aorta was reduced in group DHT, and vitamin D3 partly restored Ach induced relaxation. eNOS labeling was significantly lower in DHT rats compared to the other two groups, however COX-2 staining showed an increment. Nitrative stress showed a significant increase in response to dihydrotestosterone, while vitamin D3 treatment, in case of the ovaries, was able to reverse this effect. Nitrative stress may play a role in the pathogenesis of PCOS and in the development of the therapeutic effect of vitamin D3. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Investigation of strain heterogeneities by laser scanning extensometry in strain ageing materials: application to zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Graff, S.; Forest, S.; Strudel, J.L. [Centre des Materiaux / UMR 7633, Ecole des Mines de Paris / CNRS, BP 87, 91003 Evry (France); Dierke, H.; Neuhauser, H. [Institut fur Physik der Kondensierten Materie, 38106 Braunschweig (Germany); Prioul, C. [MSSMAT, Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry (France); Bechade, J.L. [SRMA, CEA Saclay, 91191 Gif sur Yvette (France)

    2005-07-01

    Laser scanning extensometry was used to detect and characterize propagating plastic instabilities such as the Luders bands at the millimeter scale. Spatio-temporal plastic heterogeneities are due to either static or dynamic strain ageing (SSA and DSA) phenomena. Regarding zirconium alloys, different type of heterogeneities were observed: their features strongly depended on mechanical test conditions. In one case, they appeared to be non propagating but preserved along the stress-strain curve and were associated with SSA effects such as stress peaks after relaxation periods or after unloading steps with waiting times. In other case, they appeared as non propagating but were not associated with SSA effects. (authors)

  13. Investigation of strain heterogeneities by laser scanning extensometry in strain ageing materials: application to zirconium alloys

    International Nuclear Information System (INIS)

    Graff, S.; Forest, S.; Strudel, J.L.; Dierke, H.; Neuhauser, H.; Prioul, C.; Bechade, J.L.

    2005-01-01

    Laser scanning extensometry was used to detect and characterize propagating plastic instabilities such as the Luders bands at the millimeter scale. Spatio-temporal plastic heterogeneities are due to either static or dynamic strain ageing (SSA and DSA) phenomena. Regarding zirconium alloys, different type of heterogeneities were observed: their features strongly depended on mechanical test conditions. In one case, they appeared to be non propagating but preserved along the stress-strain curve and were associated with SSA effects such as stress peaks after relaxation periods or after unloading steps with waiting times. In other case, they appeared as non propagating but were not associated with SSA effects. (authors)

  14. ON MODELLING OF MICROSTRUCTURE FORMATION, LOCAL MECHANICAL PROPERTIES AND STRESS – STRAIN DEVELOPMENT IN ALUMINIUM CASTINGS

    DEFF Research Database (Denmark)

    Svensson, Ingvar; Seifeddine, Salem; Kotas, Petr

    2009-01-01

    , related to mechanical properties as elastic modulus, yield stress, ultimate strength and elongation. In the present work, a test case of a complex casting in an aluminium alloy is considered including simulation of the entire casting process with focus on of microstructure formation, related to mechanical...

  15. CONDENSED MATTER: STRUCTURE, MECHANICAL, AND THERMAL PROPERTIES: Observation of β-Relaxation in Sub-Tg Isothermally Annealed Al-Based Metallic Glasses

    Science.gov (United States)

    Yang, Hong-Wang; Tong, Wei-Ping; Zhao, Xiang; Zuo, Liang; Wang, Jian-Qiang

    2008-09-01

    Al85 Ni5 Y8 C02 and Al 85 Ni5 Y6 C02 Fe2 metallic glasses are fabricated by melt spinning. A kink or a small exothermic peak is observed for both the samples isothermally annealed at sub-glass transition temperatures. Temperature modulated differential scanning calorimetry (TMDSC) data disapprove amorphous phase separation. The activation energies derived from Kissinger plots of the exothermic process on DSC curve around glass transition temperature are consistent with those of β -relaxation of metallic glasses.

  16. Mechanism of Biosorption of Nickel Ions from Polluted Effluent by Bacillus sp. Strain MGL-75

    Directory of Open Access Journals (Sweden)

    Salman Ahmadi Asbchin

    2013-08-01

    Full Text Available The aim of this work was to investigate Bacillus sp. strain MGL-75 as biosorbent, for the fixation of Ni ion in batch reactor. Pollution of the environment by toxic metals is a major environmental concern. In a first step, biosorption kinetics and isotherms have been performed at pH 7. The equilibrium time was about 5 min and the adsorption equilibrium data were well described by the Langmuir`s equation. The point of zero net proton charge (PZNPC was found close to pH 5.7. Using the single extrapolation method, three kinds of acidic functional groups with three intrinsic pka were determined at 4.4, 6.9 and 11.2. The maximum capacity has been extrapolated to 0/52 mmol/g. Finally the effect of autoclave, 2, 4 Dinitrophenol (DNF and Na-Azid (NaN3, and the effect of pH values, were studied. These results indicated that the Bacillus sp. strain MGL-75 is an excellent candidate for use in reactor to remove Nickel ions from polluted aqueous effluents.

  17. Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure

    Science.gov (United States)

    Fey, Tobias; Eichhorn, Franziska; Han, Guifang; Ebert, Kathrin; Wegener, Moritz; Roosen, Andreas; Kakimoto, Ken-ichi; Greil, Peter

    2016-01-01

    A two-dimensional auxetic lattice structure was fabricated from a PZT piezoceramic. Tape casted and sintered sheets with a thickness of 530 μm were laser cut into inverted honeycomb lattice structure with re-entrant cell geometry (θ = -25°) and poling direction oriented perpendicular to the lattice plane. The in-plane strain response upon applying an uniaxial compression load as well as an electric field perpendicular to the lattice plane were analyzed by a 2D image data detection analysis. The auxetic lattice structure exhibits orthotropic deformation behavior with a negative in-plane Poisson’s ratio of -2.05. Compared to PZT bulk material the piezoelectric auxetic lattice revealed a strain amplification by a factor of 30-70. Effective transversal coupling coefficients {{d}al}31 of the PZT lattice exceeding 4 × 103 pm V-1 were determined which result in an effective hydrostatic coefficient {{d}al}h 66 times larger than that of bulk PZT.

  18. An in situ thermo-mechanical rig for lattice strain measurement during creep using neutron diffraction

    Science.gov (United States)

    Wang, Y. Q.; Kabra, S.; Zhang, S. Y.; Truman, C. E.; Smith, D. J.

    2018-05-01

    A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.

  19. Precipitation under cyclic strain in solution-treated Al4wt%Cu I: mechanical behavior

    Energy Technology Data Exchange (ETDEWEB)

    Farrow, Adam M [Los Alamos National Laboratory; Laird, Campbell [UNIV OF PENNSYLVANIA

    2008-01-01

    Solution-treated AL-4wt%Cu was strain-cycled at ambient temperature and above, and the precipitation and deformation behaviors investigated by TEM. Anomalously rapid growth of precipitates appears to have been facilitated by a vacancy super-saturation generated by cyclic strain and the presence of a continually refreshed dislocation density to provide heterogeneous nucleation sites. Texture effects as characterized by Orientation Imaging Microscopy appear to be responsible for latent hardening in specimens tested at room temperature, with increasing temperatures leading to a gradual hardening throughout life due to precipitation. Specimens exhibiting rapid precipitation hardening appear to show a greater effect of texture due to the increased stress required to cut precipitates in specimens machined from rolled plate at an angle corresponding to a lower average Schmid factor. The accelerated formation of grain boundary precipitates appears to be partially responsible for rapid inter-granular fatigue failure at elevated temperatures, producing fatigue striations and ductile dimples coexistent on the fracture surface.

  20. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    Science.gov (United States)

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  1. Effect of Particle Size on Mechanical Properties of Sawdust-High Density Polyethylene Composites under Various Strain Rates

    Directory of Open Access Journals (Sweden)

    Haliza Jaya

    2016-06-01

    Full Text Available There is a need to understand the effect of wood particle size, as it affects the characteristics of wood-based composites. This study considers the effect of wood particle size relative to the dynamic behavior of wood composites. The compression Split Hopkinson Pressure Bar (SHPB was introduced to execute dynamic compression testing at the strain rate of 650 s-1, 900 s-1, and 1100 s-1, whereas a conventional universal testing machine (UTM was used to perform static compression testing at the strain rate of 0.1 s-1, 0.01 s-1, and 0.001 s-1 for four different particle sizes (63 µm, 125 µm, 250 µm, and 500 µm. The results showed that mechanical properties of composites were positively affected by the particle sizes, where the smallest particle size gave the highest values compared to the others. Moreover, the particle size also affected the rate sensitivity and the thermal activation volume of sawdust/HDPE, where smaller particles resulted in lower rate sensitivity. For the post-damage analysis, the applied strain rates influenced deformation behavior differently for all particle sizes of the specimens. In a fractographic analysis under dynamic loading, the composites with large particles experienced severe catastrophic deformation and damages compared to the smaller particles.

  2. The effect of dispersoids on the grain refinement mechanisms during deformation of aluminium alloys to ultra-high strains

    International Nuclear Information System (INIS)

    Apps, P.J.; Berta, M.; Prangnell, P.B.

    2005-01-01

    The effect of fine dispersoids on the mechanisms and rate of grain refinement has been investigated during the severe deformation of a model aluminium alloy. A binary Al-0.2Sc alloy, containing coherent Al 3 Sc dispersoids, of ∼20 nm in diameter and ∼100 nm spacing, has been deformed by equal channel angular extrusion to an effective strain of ten. The resulting deformation structures were quantitatively analysed using high-resolution electron backscattered diffraction orientation mapping, and the results have been compared to those obtained from a single-phase Al-0.13Mg alloy, deformed under identical conditions. The presence of fine, non-shearable, dispersoids has been found to homogenise slip, retard the formation of a cellular substructure and inhibit the formation of microshear bands during deformation. These factors combine to reduce the rate of high-angle grain boundary generation at low to medium strains and, hence, retard the formation of a submicron grain structure to higher strains during severe deformation

  3. Structural relaxation and crystallisation of bulk metallic glasses Zr41Ti14Cu12.5Ni10-xBe22.5Fex (x = 0 or 2) studied by mechanical spectroscopy

    International Nuclear Information System (INIS)

    Wang, Q.; Pelletier, J.M.; Dong, Y.D.; Ji, Y.F.

    2004-01-01

    The measurements of the internal friction and dynamic shear modulus as well as differential scanning calorimetry have been performed in order to investigate the structural relaxation and crystallization of Zr 41 Ti 14 Cu 12.5 Ni 10-x Be 22.5 Fe x (x=0 or 2) bulk metallic glasses. It is found that the glass transition is retarded and the thermal stability of supercooled liquid is increased by the Fe addition. The experimental results are well analyzed using a physical model, which can characterize atomic mobility and mechanical response of disordered condensed materials

  4. Mapping of Mechanical Strains and Stresses around Quiescent Engineered Three-Dimensional Epithelial Tissues

    Science.gov (United States)

    Gjorevski, Nikolce; Nelson, Celeste M.

    2012-01-01

    Understanding how physical signals guide biological processes requires qualitative and quantitative knowledge of the mechanical forces generated and sensed by cells in a physiologically realistic three-dimensional (3D) context. Here, we used computational modeling and engineered epithelial tissues of precise geometry to define the experimental parameters that are required to measure directly the mechanical stress profile of 3D tissues embedded within native type I collagen. We found that to calculate the stresses accurately in these settings, we had to account for mechanical heterogeneities within the matrix, which we visualized and quantified using confocal reflectance and atomic force microscopy. Using this technique, we were able to obtain traction forces at the epithelium-matrix interface, and to resolve and quantify patterns of mechanical stress throughout the surrounding matrix. We discovered that whereas single cells generate tension by contracting and pulling on the matrix, the contraction of multicellular tissues can also push against the matrix, causing emergent compression. Furthermore, tissue geometry defines the spatial distribution of mechanical stress across the epithelium, which communicates mechanically over distances spanning hundreds of micrometers. Spatially resolved mechanical maps can provide insight into the types and magnitudes of physical parameters that are sensed and interpreted by multicellular tissues during normal and pathological processes. PMID:22828342

  5. An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds.

    Science.gov (United States)

    Laznik, Z; Trdan, S

    2013-07-01

    Entomopathogenic nematodes (EPNs) respond to a variety of stimuli when foraging. In a laboratory investigation, we tested the chemotactic responses of 8 EPN strains (Steinernema and Heterorhabditis) to three mechanically damaged maize root compounds (linalool, α-caryophyllene and β-caryophyllene). We hypothesized that the EPN directional response to the tested volatile compounds would vary among the species and volatile compound and may be related to foraging strategies. The nematodes with an intermediate foraging strategy (Steinernema feltiae) proved to be less active in their movement toward volatile compounds in a comparison with the ambushers (Steinernema carpocapsae) and cruisers (Steinernema kraussei and Heterorhabditis bacteriophora); β-caryophyllene was found to be the most attractive substance in our experiment. The results of our investigation showed that the cruisers were more attracted to β-caryophyllene than the ambushers and intermediates. The foraging strategy did not affect the movement of the IJs toward the other tested volatile compounds or the control. Our results suggest that the response to different volatile cues is more a strain-specific characteristic than a different host-searching strategy. Only S. carpocapsae strain B49 displayed an attraction to linalool, whereas S. kraussei showed a retarded reaction to β-caryophyllene and α-caryophyllene in our experiment. The EPN strains showed only a weak attraction to α-caryophyllene, suggesting that this volatile compound could not have an important role in the orientation of IJs to the damaged roots of maize plants. These results expand our knowledge of volatile compounds as the cues that may be used by EPNs for finding hosts or other aspects of navigation in the soil. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Characterization of the mechanical behavior and pathophysiological state of abdominal aortic aneurysms based on 4D ultrasound strain imaging

    Science.gov (United States)

    Wittek, Andreas; Blase, Christopher; Derwich, Wojciech; Schmitz-Rixen, Thomas; Fritzen, Claus-Peter

    2017-06-01

    Abdominal aortic aneurysms (AAA) are a degenerative disease of the human aortic wall that may lead to weakening and eventually rupture of the wall with high mortality rates. Since the currently established criterion for surgical or endovascular treatment of the disease is imprecise in the individual case and treatment is not free of complications, the need for additional patient-individual biomarkers for short-term AAA rupture risk as basis for improved clinical decision making. Time resolved 3D ultrasound combined with speckle tracking algorithms is a novel non-invasive medical imaging technique that provides full-field displacement and strain measurements of aortic and aneurysmal wall motion. This is patient-individual information that has not been used so far to assess wall strength and rupture risk. The current study uses simple statistical indices of the heterogeneous spatial distribution of in-plane strain components as biomarkers for the pathological state of the aortic and aneurysmal wall. The pathophysiological rationale behind this approach are the known changes in microstructural composition of the aortic wall with progression of AAA development that results in increased stiffening and heterogeneity of the walls mechanical properties and in decreased wall strength. In a comparative analysis of the aortic wall motion of young volunteers without known cardiovascular diseases, aged arteriosclerotic patients without AAA, and AAA patients, mean values of all in-plane strain components were significantly reduced, and the heterogeneity of circumferential strain was significantly increased in the AAA group compared to both other groups. The capacity of the proposed method to differentiate between wall motion of aged, arteriosclerotic patients and AAA patients is a promising step towards a new method for in vivo assessment of AAA wall strength or stratification of AAA rupture risk as basis for improved clinical decision making on surgical or endovascular

  7. Mechanisms of tolerance and high degradation capacity of the herbicide mesotrione by Escherichia coli strain DH5-α.

    Directory of Open Access Journals (Sweden)

    Luiz R Olchanheski

    Full Text Available The intensive use of agrochemicals has played an important role in increasing agricultural production. One of the impacts of agrochemical use has been changes in population structure of soil microbiota. The aim of this work was to analyze the adaptive strategies that bacteria use to overcome oxidative stress caused by mesotrione, which inhibits 4-hydroxyphenylpyruvate dioxygenase. We also examined antioxidative stress systems, saturation changes of lipid membranes, and the capacity of bacteria to degrade mesotrione. Escherichia coli DH5-á was chosen as a non-environmental strain, which is already a model bacterium for studying metabolism and adaptation. The results showed that this bacterium was able to tolerate high doses of the herbicide (10× field rate, and completely degraded mesotrione after 3 h of exposure, as determined by a High Performance Liquid Chromatography. Growth rates in the presence of mesotrione were lower than in the control, prior to the period of degradation, showing toxic effects of this herbicide on bacterial cells. Changes in the saturation of the membrane lipids reduced the damage caused by reactive oxygen species and possibly hindered the entry of xenobiotics in the cell, while activating glutathione-S-transferase enzyme in the antioxidant system and in the metabolizing process of the herbicide. Considering that E. coli DH5-α is a non-environmental strain and it had no previous contact with mesotrione, the defense system found in this strain could be considered non-specific. This bacterium system response may be a general adaptation mechanism by which bacterial strains resist to damage from the presence of herbicides in agricultural soils.

  8. [Isolation of a carbapenem-resistant K1 serotype Klebsiella pneumonia strain and the study of resistance mechanism].

    Science.gov (United States)

    Zhang, Rong; Wang, Xuan; Lü, Jianxin

    2014-12-16

    To study the virulence and mechanism of carbapenem resistance of a clinical isolate of carbapenem-resistant K1 serotype Klebsiella pneumonia strain. Identification of isolate was carried out with VITEK-2 compact system. Antimicrobial susceptibility was determined by E-test; Metallo β-lactamases and carbapenemases screening were conducted by imipenem-EDTA double disc synergy test and modified Hodge test, respectively.Specific polymerehse chain reaction (PCR) and DNA sequencing were preformed to detect the virulence genes including K1, K2, K5, K20, K54, K57, magA, rmpA, wcaG and a series of β-lactamase resistence genes. Conjunction experiment was also performed. The plasmids of transconjugants were submitted to PCR-based replicon typing (PBRT) method. Molecular typing was performed by multilocus sequence typing (MLST). Antimicrobial susceptibility testing revealed that the Klebsiella pneumonia strain was resistant to most of the antibiotics used in clinic. Phynotype confirmary rest revealed the production of carbapanemases, while Metallo β-lactamases were negative; PCR and DNA sequencing confirmed the isolate was positive for blaKPC-2, blaCTX-M-15, blaTEM-1, blaSHV-1 and virulence genes K1, magA, rmpA, wcaG simultaneously; blaKPC-2 was transferred from donor to Escherichia EC600 by conjunction experiment, while no virulence genes were found in the transconjugants. PBRT revealed that Frep plasmid was found in transconjugants. MLST analysis revealed that this strain belonged to ST23. K1 serotype Klebsiella pneumonia strain carries virulence genes and carbapenem resistance gene blaKPC-2, noteworthily the carbapenem resistance genes can be transferred through horizontal transmission on plasmids.

  9. Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery

    Directory of Open Access Journals (Sweden)

    Kevin J. Maloney

    2013-08-01

    Full Text Available Ordered periodic microlattices with densities from 0.5 mg/cm3 to 500 mg/cm3 are fabricated by depositing various thin film materials (Au, Cu, Ni, SiO2, poly(C8H4F4 onto sacrificial polymer lattice templates. Young's modulus and strength are measured in compression and the density scaling is determined. At low relative densities, recovery from compressive strains of 50% and higher is observed, independent of lattice material. An analytical model is shown to accurately predict the transition between recoverable “pseudo-superelastic” and irrecoverable plastic deformation for all constituent materials. These materials are of interest for energy storage applications, deployable structures, and for acoustic, shock, and vibration damping.

  10. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors

    International Nuclear Information System (INIS)

    Llordes, Anna; Palau, A.; Gazquez, J.; Coll, M.; Vlad, R.; Pomar, A.; Arbiol, Jordi; Guzman, Roger; Ye, S.; Rouco, V.; Sandiumenge, Felip; Ricart, Susagna; Puig, Teresa; Varela del Arco, Maria; Chataigner, D.; Vanacken, J.; Gutierrez, J.; Moschalkov, V.; Deutscher, G.; Magen Dominguez, Cesar; Obradors, Xavier

    2012-01-01

    Boosting large-scale superconductor applications require nanostructured conductors with artificial pinning centres immobilizing quantized vortices at high temperature and magnetic fields. Here we demonstrate a highly effective mechanism of artificial pinning centers in solution-derived high-temperature superconductor nanocomposites through generation of nanostrained regions where Cooper pair formation is suppressed. The nanostrained regions identified from transmission electron microscopy devise a very high concentration of partial dislocations associated with intergrowths generated between the randomly oriented nanodots and the epitaxial YBa 2 Cu 3 O 7 matrix. Consequently, an outstanding vortex-pinning enhancement correlated to the nanostrain is demonstrated for four types of randomly oriented nanodot, and a unique evolution towards an isotropic vortex-pinning behaviour, even in the effective anisotropy, is achieved as the nanostrain turns isotropic. We suggest a new vortex-pinning mechanism based on the bond-contraction pairing model, where pair formation is quenched under tensile strain, forming new and effective core-pinning regions.

  11. Reheat cracking in austenitic stainless steels; Fissuration en relaxation des aciers inoxydables austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Auzoux, Q.; Allais, L. [CEA Saclay, Dept. des Materiaux pour le Nucleaire, DMN, 91 - Gif sur Yvette (France); Pineau, A.; Gourgues, A.F. [Centre des Materiaux Pierre-Marie Fourt UMR CNRS 7633, 91 - Evry (France)

    2002-07-01

    Intergranular cracking can occur in heat-affected zones (HAZs) of austenitic stainless steel welded joints when reheated in the temperature range from 500 to 700 deg C. At this temperature, residual stresses due to welding relax by creep flow. HAZ may not sustain this small strain if its microstructure has been sufficiently altered during welding. In order to precise which particular microstructure alteration causes such an intergranular embrittlement, type 316L(N) HAZs were examined by transmission electron microscopy. A marked increase in the dislocation density, due to plastic strain during the welding process, was revealed, which caused an increase in Vickers hardness. Type 316L(N) HAZ were then simulated by the following thermal-mechanical process: annealing treatment and work hardening (pre-strain). Creep rupture tests on smooth specimens were also carried out at 600 deg C on both base metal and simulated HAZ. Pre-straining increased creep strength but reduced ductility. Slow strain rate tests on CT specimens confirmed this trend as well as did relaxation tests on CT specimens, which led to intergranular crack propagation in the pre-strained material only. Metallography and fractography showed no qualitative difference between base metal and HAZs in the creep cavitation around intergranular carbides. Although quantitative study of damage development is not achieved yet, experiments suggest that uniaxial creep strain smaller than one percent could lead to cavity nucleation when the material is pre-strained. Pre-strain as well as stress triaxiality reduce therefore creep ductility and enhance the reheat cracking risk. (authors)

  12. The cochaperone BAG3 coordinates protein synthesis and autophagy under mechanical strain through spatial regulation of mTORC1.

    Science.gov (United States)

    Kathage, Barbara; Gehlert, Sebastian; Ulbricht, Anna; Lüdecke, Laura; Tapia, Victor E; Orfanos, Zacharias; Wenzel, Daniela; Bloch, Wilhelm; Volkmer, Rudolf; Fleischmann, Bernd K; Fürst, Dieter O; Höhfeld, Jörg

    2017-01-01

    The cochaperone BAG3 is a central protein homeostasis factor in mechanically strained mammalian cells. It mediates the degradation of unfolded and damaged forms of the actin-crosslinker filamin through chaperone-assisted selective autophagy (CASA). In addition, BAG3 stimulates filamin transcription in order to compensate autophagic disposal and to maintain the actin cytoskeleton under strain. Here we demonstrate that BAG3 coordinates protein synthesis and autophagy through spatial regulation of the mammalian target of rapamycin complex 1 (mTORC1). The cochaperone utilizes its WW domain to contact a proline-rich motif in the tuberous sclerosis protein TSC1 that functions as an mTORC1 inhibitor in association with TSC2. Interaction with BAG3 results in a recruitment of TSC complexes to actin stress fibers, where the complexes act on a subpopulation of mTOR-positive vesicles associated with the cytoskeleton. Local inhibition of mTORC1 is essential to initiate autophagy at sites of filamin unfolding and damage. At the same time, BAG3-mediated sequestration of TSC1/TSC2 relieves mTORC1 inhibition in the remaining cytoplasm, which stimulates protein translation. In human muscle, an exercise-induced association of TSC1 with the cytoskeleton coincides with mTORC1 activation in the cytoplasm. The spatial regulation of mTORC1 exerted by BAG3 apparently provides the basis for a simultaneous induction of autophagy and protein synthesis to maintain the proteome under mechanical strain. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    Science.gov (United States)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems {010} and {110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system {001} and rotation axis [010]. The slip system {110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of

  14. Long term strain behavior of PMMA based polymer optical fibers

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Nielsen, Kristian; Woyessa, Getinet

    2015-01-01

    We are reporting on the viscoelasticity of PMMA based Fiber Bragg Grating (FBG) strain sensors when exposed to repeated sequences of long term strain and relaxation with various duty-cycles. In terms of the FBG wavelength and how it follows the strain cycle, we have shown that in the small strain...... regime (up to 1%) an elastic-dominated fast relaxing range, which is followed by a mainly viscous relaxation, depends both on the strain level and on the strain duration. For a small ratio of the strain-relax durations, this fast relaxation range stays almost the same. However, with increasing strain...... duration, for the same relaxation time, this range will be shortened, which might influence the sensing capabilities of the fiber sensor....

  15. Cells as strain-cued automata

    Science.gov (United States)

    Cox, Brian N.; Snead, Malcolm L.

    2016-02-01

    homogeneous populations and network formation by invaders, morphological outcomes are governed by the ratio of the rates of two competing time dependent processes, one a migration velocity and the other a relaxation velocity related to the propagation of strain information. Relaxation velocities are approximately constant for different species and organs, whereas cell migration rates vary by three orders of magnitude. We conjecture that developmental processes use rapid cell migration to achieve certain outcomes, and slow migration to achieve others. We infer from analysis of host relaxation during network formation that a transition exists in the mechanical response of a host cell from animate to inanimate behavior when its strain changes at a rate that exceeds 10-4-10-3 s-1. The transition has previously been observed in experiments conducted in vitro.

  16. The relaxation time approximation

    International Nuclear Information System (INIS)

    Gairola, R.P.; Indu, B.D.

    1991-01-01

    A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs

  17. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang; Liu, Taixiang; Liao, G J; Lubineau, Gilles

    2017-01-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  18. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang

    2017-09-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  19. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation.

    Science.gov (United States)

    Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich

    2016-12-01

    Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Mapping of strain mechanisms in barium titanate by three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Majkut, Marta

    This thesis presents an in-situ three-dimensional study of the grain-scale response of a prototypical piezoelectric ceramic, barium titanate (BT), to an exernally applied electric field. Piezoceramics take advantage of the coupling of electrical and mechanical energies for use in sensors and actu......This thesis presents an in-situ three-dimensional study of the grain-scale response of a prototypical piezoelectric ceramic, barium titanate (BT), to an exernally applied electric field. Piezoceramics take advantage of the coupling of electrical and mechanical energies for use in sensors...

  1. High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel

    Science.gov (United States)

    Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu

    2018-05-01

    India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent (n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume (V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

  2. SPRING Project on Mechanical Energy on Demand from High Strain Actuators

    Science.gov (United States)

    2009-09-02

    containing N-heterocycles and acidic functional groups Operation of a PEMFC under essentially water-free conditions involves a different mechanism...Temperature-Polymer Electrolyte Membrane-Fuel Cell (HT- PEMFC ) Based on Functionalized Polysiloxanes. Fuel Cells. (2007), 1, 40–6. 14. Woudenberg, R.C

  3. Multi-scale mechanics of traumatic brain injury : predicting axonal strains from head loads

    NARCIS (Netherlands)

    Cloots, R.J.H.; Dommelen, van J.A.W.; Kleiven, S.; Geers, M.G.D.

    2013-01-01

    The length scales involved in the development of diffuse axonal injury typically range from the head level (i.e., mechanical loading) to the cellular level. The parts of the brain that are vulnerable to this type of injury are mainly the brainstem and the corpus callosum, which are regions with

  4. Muon spin relaxation in ferromagnets. Pt. 1

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Karlsson, E.B.

    1991-04-01

    Expressions for the dipolar and hyperfine contributions to the relaxation rate of muons implanted in a ferromagnet are presented and analysed using the Heisenberg model of spin-waves including dipolar and Zeeman energies. Calculations for EuO indicate that relaxation is likely to be dominated by the hyperfine mechanism, even if the ratio of the hyperfine and dipolar coupling constants is small. The hyperfine mechanism is sensitive to the dipolar energy of the atomic spins, whereas the dipolar mechanisms depend essentially on the exchange energy. For both mechanisms there is an almost quadratic dependence on temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave difference events from the Raman-type relaxation processes. (author)

  5. [A study of the mechanisms of probiotic effect of Bacillus subtilis 8130 strain].

    Science.gov (United States)

    Ushakova, N A; Kotenkova, E V; Kozlova, A A; Nifatov, A V

    2006-01-01

    The wild-type Bacillus subtilis strain 8130 secreted metabolites that stimulated two to three times the growth of the test cultures of lactic acid bacteria. It exhibited endoglucanase activity that depended on the composition of nutrient medium. The addition of the product of two-stage culturing of B. subtilis 8130 to the diet of pigs (0.2% of fodder weight) made it possible to increase the daily weight gain by 19% and decrease the consumption of mixed fodder by 10%. Digestion of protein, fat, and other organic compounds increased by 3-4% and cellulose by 12%. It was shown that B. subtilis 8130 is a probiotic with targeted action stimulating digestion (primarily the digestion of cellulose). The enrichment of a dry-beer pellet with the product of solid-phase fermentation by bacillus (1 x 10(8) cells per gram dry pellet) allowed the pellet to entered into the diet of a calf (6% of the weight of fodder with probiotic), causing additional weight gain by 12% and a 10% economy of fodder consumption.

  6. Influence of Rapid Freeze-Thaw Cycling on the Mechanical Properties of Sustainable Strain-Hardening Cement Composite (2SHCC

    Directory of Open Access Journals (Sweden)

    Seok-Joon Jang

    2014-02-01

    Full Text Available This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components—silica sand, cement, and polyvinyl alcohol (PVA fibers—in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior.

  7. A comparative study on the uniaxial mechanical properties of the umbilical vein and umbilical artery using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-12-01

    The umbilical cord is part of the fetus and generally includes one umbilical vein (UV) and two umbilical arteries (UAs). As the saphenous vein and UV are the most commonly used veins for the coronary artery disease treatment as a coronary artery bypass graft (CABG), understating the mechanical properties of UV has a key asset in its performance for CABG. However, there is not only a lack of knowledge on the mechanical properties of UV and UA but there is no agreement as to which stress-strain definition should be implemented to measure their mechanical properties. In this study, the UV and UA samples were removed after caesarean from eight individuals and subjected to a series of tensile testing. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were employed to determine the linear mechanical properties of UVs and UAs. The nonlinear mechanical behavior of UV/UA was computationally investigated using hyperelastic material models, such as Ogden and Mooney-Rivlin. The results showed that the effect of varying the stress definition on the maximum stress measurements of the UV/UA is significant but not when calculating the elastic modulus. In the true stress-strain diagram, the maximum strain of UV was 92 % higher, while the elastic modulus and maximum stress were 162 and 42 % lower than that of UA. The Mooney-Rivlin material model was designated to represent the nonlinear mechanical behavior of the UV and UA under uniaxial loading.

  8. Genomic sequencing of a strain of Acinetobacter baumannii and potential mechanisms to antibiotics resistance.

    Science.gov (United States)

    Zhao, Lei; Li, Hongru; Zhu, Ziwen; Wakefield, Mark R; Fang, Yujiang; Ye, Ying

    2017-06-01

    Acinetobacter baumannii has been becoming a great challenge to clinicians due to their resistance to almost all available antibiotics. In this study, we sequenced the genome from a multiple antibiotics resistant Acinetobacter baumannii stain which was named A. baumannii-1isolated from China by SMRT sequencing technology to explore its potential mechanisms to antibiotic resistance. We found that several mechanisms might contribute to the antibiotic resistance of Acinetobacter baumannii. Specifically, we found that SNP in genes associated with nucleotide excision repair and ABC transporter might contribute to its resistance to multiple antibiotics; we also found that specific genes associated with bacterial DNA integration and recombination, DNA-mediated transposition and response to antibiotics might contribute to its resistance to multiple antibiotics; Furthermore, specific genes associated with penicillin and cephalosporin biosynthetic pathway and specific genes associated with CHDL and MBL β-lactamase genes might contribute to its resistance to multiple antibiotics. Thus, the detailed mechanisms by which Acinetobacter baumannii show extensive resistance to multiple antibiotics are very complicated. Such a study might be helpful to develop new strategies to control Acinetobacter baumannii infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Towards quantification of butadiene content in styrene-butadiene block copolymers and their blends with general purpose polystyrene (GPPS) and the relation between mechanical properties and NMR relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Nikolaus [BASF Aktiengesellschaft, GKP/P-G 201, D-67056 Ludwigshafen (Germany)], E-mail: nikolaus.nestle@basf.com; Heckmann, Walter; Steininger, Helmut; Knoll, Konrad [BASF Aktiengesellschaft, GKP/P-G 201, D-67056 Ludwigshafen (Germany)

    2007-11-26

    The properties of styrene-butadiene-styrene (SBS) block copolymers do not only depend on the butadiene content and the degree of polymerisation but also on their chain architecture. In this contribution we present the results of a low-field time domain (TD) NMR study in which the transverse relaxation behaviour of different SBS block copolymers was analysed and correlated with findings from mechanical testing on pure and blended materials and transmission electron microscopy data which provide information on the microphase separation. The results indicate that while a straightforward determination of the butadiene content as in blended materials like ABS is not possible for these materials, the TD-NMR results correlate quite well with the mechanical performance of blends from SBS block copolymers with general purpose polystyrene (GPPS), i.e. industrial grade homopolymer polystyrene. Temperature-dependent experiments on pure and blended materials revealed a slight reduction in the softening temperature of the GPPS fraction in the blends.

  10. First-principles study of size-, surface- and mechanical strain-dependent electronic properties of wurtzite and zinc-blende InSb nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong [School of Mathematics, Physics and Energy Engineering, Hunan Institute of Technology, Hengyang 421002 (China); Xie, Zhong-Xiang, E-mail: xiezxhu@163.com [School of Mathematics, Physics and Energy Engineering, Hunan Institute of Technology, Hengyang 421002 (China); Yu, Xia; Wang, Hai-Bin; Deng, Yuan-Xiang [School of Mathematics, Physics and Energy Engineering, Hunan Institute of Technology, Hengyang 421002 (China); Ning, Feng, E-mail: fning@gxtc.edu.cn [College of Physics and Electronic Engineering, Guangxi Teachers Education University, Nanning 530001 (China)

    2016-08-06

    Using first-principle calculations with density functional theory, we investigated the modification of electronic properties in zinc-blende (ZB) and wurtzite (WZ) InSb nanowires (NWs) grown along the [111] and [0001] directions for different size, different surface coverage and different mechanical strain. The results show that before the surface passivation, ZBNWs and WZNWs exhibit the metallic character and the semiconductor character, respectively. WZNWs show a crossover from a direct to an indirect as diameter decreases. After the surface passivation, both ZBNWs and WZNWs are found to be direct-gap character. The electronic band structure shows a significant response to changes in surface passivation with pseudo hydrogen and halogen. The band structure with mechanical strain is strongly dependent on the crystal orientation and the NW diameter. In ZBNWs, compressive strain induces the indirect band gap character, whereas tensile strain can not form it. WZNWs have various strain dependence in that both compressive and tensile strain make InSb show a direct band gap character. A brief analysis of these results is given. - Highlights: • InSb nanowires with different surfaces can show the different band structures. • Band gap magnitude of InSb nanowires depends on the suppression of surface states. • Different types of mechanical strains show the different effect on the band structure of the InSb nanowires.

  11. A new method for studying the structure relaxation of amorphous matters

    International Nuclear Information System (INIS)

    Cao Xiaowen

    1989-11-01

    A new method for studying the structure relaxation of amorphous matters by Hall effect is proposed. The structure relaxation of the metal-type amorphous InSb has been experimentally studied. The experimental results show that this method is highly sensitive to the structure relaxation, and the mechanism of structure relaxation can be observed

  12. Arresting relaxation in Pickering Emulsions

    Science.gov (United States)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  13. Induction of Osmoadaptive Mechanisms and Modulation of Cellular Physiology Help Bacillus licheniformis Strain SSA 61 Adapt to Salt Stress

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sangeeta; Aggarwal, Chetana; Thakur, Jyoti Kumar; Bandeppa, G. S.; Khan, Md. Aslam; Pearson, Lauren M.; Babnigg, Gyorgy; Giometti, Carol S.; Joachimiak, Andrzej

    2015-01-06

    Bacillus licheniformis strain SSA 61, originally isolated from Sambhar salt lake, was observed to grow even in the presence of 25 % salt stress. Osmoadaptive mechanisms of this halotolerant B. licheniformis strain SSA 61, for long-term survival and growth under salt stress, were determined. Proline was the preferentially accumulated compatible osmolyte. There was also increased accumulation of antioxidants ascorbic acid and glutathione. Among the different antioxidative enzymes assayed, superoxide dismutase played the most crucial role in defense against salt-induced stress in the organism. Adaptation to stress by the organism involved modulation of cellular physiology at various levels. There was enhanced expression of known proteins playing essential roles in stress adaptation, such as chaperones DnaK and GroEL, and general stress protein YfkM and polynucleotide phosphorylase/polyadenylase. Proteins involved in amino acid biosynthetic pathway, ribosome structure, and peptide elongation were also overexpressed. Salt stress-induced modulation of expression of enzymes involved in carbon metabolism was observed. There was up-regulation of a number of enzymes involved in generation of NADH and NADPH, indicating increased cellular demand for both energy and reducing power.

  14. Numerical simulation of the mechanical behavior of ultrafine- and coarse-grained Zr-Nb alloys over a wide range of strain rates

    Science.gov (United States)

    Serbenta, V. A.; Skripnyak, N. V.; Skripnyak, V. A.; Skripnyak, E. G.

    2017-12-01

    This paper presents the results on the development of theoretical methods of evaluation and prediction of mechanical properties of Zr-Nb alloys over a range of strain rates from 10-3 to 103 s-1. The mechanical behavior of coarse- and ultrafine-grained Zr-1Nb (E110) was investigated numerically. The ranges of strain rates and temperatures in which the mechanical behavior of Zr-1Nb alloy can be described using modified models of Johnson-Cook and Zerilli-Armstrong were defined. The results can be used in engineering analysis of designed technical systems for nuclear reactors.

  15. On the Volterra integral equation relating creep and relaxation

    International Nuclear Information System (INIS)

    Anderssen, R S; De Hoog, F R; Davies, A R

    2008-01-01

    The evolving stress–strain response of a material to an applied deformation is causal. If the current response depends on the earlier history of the stress–strain dynamics of the material (i.e. the material has memory), then Volterra integral equations become the natural framework within which to model the response. For viscoelastic materials, when the response is linear, the dual linear Boltzmann causal integral equations are the appropriate model. The choice of one rather than the other depends on whether the applied deformation is a stress or a strain, and the associated response is, respectively, a creep or a relaxation. The duality between creep and relaxation is known explicitly and is referred to as the 'interconversion equation'. Rheologically, its importance relates to the fact that it allows the creep to be determined from knowledge of the relaxation and vice versa. Computationally, it has been known for some time that the recovery of the relaxation from the creep is more problematic than the creep from the relaxation. Recent research, using discrete models for the creep and relaxation, has confirmed that this is an essential feature of interconversion. In this paper, the corresponding result is generalized for continuous models of the creep and relaxation

  16. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review.

    Science.gov (United States)

    Suriyanto; Ng, E Y K; Kumar, S D

    2017-03-23

    Current clinically accepted technologies for cancer treatment still have limitations which lead to the exploration of new therapeutic methods. Since the past few decades, the hyperthermia treatment has attracted the attention of investigators owing to its strong biological rationales in applying hyperthermia as a cancer treatment modality. Advancement of nanotechnology offers a potential new heating method for hyperthermia by using nanoparticles which is termed as magnetic fluid hyperthermia (MFH). In MFH, superparamagnetic nanoparticles dissipate heat through Néelian and Brownian relaxation in the presence of an alternating magnetic field. The heating power of these particles is dependent on particle properties and treatment settings. A number of pre-clinical and clinical trials were performed to test the feasibility of this novel treatment modality. There are still issues yet to be solved for the successful transition of this technology from bench to bedside. These issues include the planning, execution, monitoring and optimization of treatment. The modeling and simulation play crucial roles in solving some of these issues. Thus, this review paper provides a basic understanding of the fundamental and rationales of hyperthermia and recent development in the modeling and simulation applied to depict the heat generation and transfer phenomena in the MFH.

  17. Whole Genome Sequencing of Mycobacterium africanum Strains from Mali Provides Insights into the Mechanisms of Geographic Restriction.

    Science.gov (United States)

    Winglee, Kathryn; Manson McGuire, Abigail; Maiga, Mamoudou; Abeel, Thomas; Shea, Terrance; Desjardins, Christopher A; Diarra, Bassirou; Baya, Bocar; Sanogo, Moumine; Diallo, Souleymane; Earl, Ashlee M; Bishai, William R

    2016-01-01

    Mycobacterium africanum, made up of lineages 5 and 6 within the Mycobacterium tuberculosis complex (MTC), causes up to half of all tuberculosis cases in West Africa, but is rarely found outside of this region. The reasons for this geographical restriction remain unknown. Possible reasons include a geographically restricted animal reservoir, a unique preference for hosts of West African ethnicity, and an inability to compete with other lineages outside of West Africa. These latter two hypotheses could be caused by loss of fitness or altered interactions with the host immune system. We sequenced 92 MTC clinical isolates from Mali, including two lineage 5 and 24 lineage 6 strains. Our genome sequencing assembly, alignment, phylogeny and average nucleotide identity analyses enabled us to identify features that typify lineages 5 and 6 and made clear that these lineages do not constitute a distinct species within the MTC. We found that in Mali, lineage 6 and lineage 4 strains have similar levels of diversity and evolve drug resistance through similar mechanisms. In the process, we identified a putative novel streptomycin resistance mutation. In addition, we found evidence of person-to-person transmission of lineage 6 isolates and showed that lineage 6 is not enriched for mutations in virulence-associated genes. This is the largest collection of lineage 5 and 6 whole genome sequences to date, and our assembly and alignment data provide valuable insights into what distinguishes these lineages from other MTC lineages. Lineages 5 and 6 do not appear to be geographically restricted due to an inability to transmit between West African hosts or to an elevated number of mutations in virulence-associated genes. However, lineage-specific mutations, such as mutations in cell wall structure, secretion systems and cofactor biosynthesis, provide alternative mechanisms that may lead to host specificity.

  18. Effect of Cooling Mode on Microstructure and Mechanical Properties of Pipeline Steel for Strain Based Design and Research on its Deformation Mechanism

    Science.gov (United States)

    Hesong, Zhang; Yonglin, Kang

    With the rapid development of oil and gas industry long distance pipelines inevitably pass through regions with complex geological activities. In order to avoid large deformation the pipelines must be designed based on strain criteria. In this paper the alloy system of X80 high deformability pipeline steel was designed which was 0.25%Mo-0.05%C-1.75%Mn. The effect of controlled cooling process on microstructure and mechanical properties of X80 high deformability pipeline steel were systematically investigated. Through the two-stage controlled cooling process the microstructure of the X80 high deformability pipeline steel were ferrite, bainite and M/A island. There were two kinds of ferrite which were polygonal ferrite (PF) and quasi-polygonal ferrite (QF). The bainite was granular bainite ferrite (GF). Along with the decrease of the start cooling temperature, the volume fraction of ferrite and M/A both increased, the yield ratio (Y/T) decreased, the uniform elongation (uEl) increased firstly with the content of ferrite increased but then decreased with the content and size of M/A increased. When the finish cooling temperature decreasing, the size of M/A became finer. As the start cooling temperature was 690 °C and the finish cooling temperature was 450 °C the volume fraction of ferrite was 23%, the size of ferrite grain was 5μm, the size of M/A island was below 1μm and the structure uniformity was the best. The deformation mechanism of X80 high deformability pipeline steel was analyzed. The best way to improve the work hardening rate was reducing the size of M/A islands on the premise of a certain volume fraction. The decreasing path of instantaneous strain hardening index (n*-value) showed three stages in the deformation process. The n*-value kept stable in the second stage, the reason was that the retained austenite transformed into martensite and the phase transition improved the strain hardening ability of the microstructure. This phenomenon was called

  19. Mechanical Stimulation of Adipose-Derived Stem Cells for Functional Tissue Engineering of the Musculoskeletal System via Cyclic Hydrostatic Pressure, Simulated Microgravity, and Cyclic Tensile Strain.

    Science.gov (United States)

    Nordberg, Rachel C; Bodle, Josie C; Loboa, Elizabeth G

    2018-01-01

    It is critical that human adipose stem cell (hASC) tissue-engineering therapies possess appropriate mechanical properties in order to restore function of the load bearing tissues of the musculoskeletal system. In an effort to elucidate the hASC response to mechanical stimulation and develop mechanically robust tissue engineered constructs, recent research has utilized a variety of mechanical loading paradigms including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter describes methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.

  20. Effects of strain rate and temperature on the mechanical behavior of carbon black reinforced elastomers based on butyl rubber and high molecular weight polyethylene

    Science.gov (United States)

    Hussein, M.

    2018-06-01

    The influence of the mechanical property and morphology of different blend ratio of Butyl rubber (IIR)/high molecular weight polyethylene (PE) by temperature and strain rate are performed. Special attention has been considered to a ductile-brittle transition that is known to occur at around 60 °C. The idea is to explain the unexpected phenomenon of brittleness which directly related to all tensile mechanical properties such as the strength of blends, modulus of elasticity of filled and unfilled IIR-polyethylene blends. In particular, the initial Young's modulus, tensile strength and strain at failure exhibit similar dependency on strain rate and temperature. These quantities lowered and increased with an increment of temperature, whereas the increased with increasing of strain rate. Furthermore, the tensile strength and strain at failure decreases for all temperatures range with the increase of PE content in the blend, except Young's modulus in reverse. The strain rate sensitivity index parameter of the examined polymeric materials is consistent with the micro-mechanisms of deformation and the behavior was well described by an Eyring relationship leading to an activation volume of ∼1 nm3, except for the highest value of unfilled IIR ∼8.45 nm3.

  1. Virulence factors and mechanisms of antimicrobial resistance in Shigella strains from periurban areas of Lima (Peru).

    Science.gov (United States)

    Lluque, Angela; Mosquito, Susan; Gomes, Cláudia; Riveros, Maribel; Durand, David; Tilley, Drake H; Bernal, María; Prada, Ana; Ochoa, Theresa J; Ruiz, Joaquim

    2015-01-01

    The study was aimed to describe the serotype, mechanisms of antimicrobial resistance, and virulence determinants in Shigella spp. isolated from Peruvian children. Eighty three Shigella spp. were serogrouped and serotyped being established the antibiotic susceptibility. The presence of 12 virulence factors (VF) and integrase 1 and 2, along with commonly found antibiotic resistance genes was established by PCR. S. flexneri was the most relevant serogroup (55 isolates, 66%), with serotype 2a most frequently detected (27 of 55, 49%), followed by S. boydii and S. sonnei at 12 isolates each (14%) and S. dysenteriae (four isolates, 5%). Fifty isolates (60%) were multi-drug resistant (MDR) including 100% of S. sonnei and 64% of S. flexneri. Resistance levels were high to trimethoprim-sulfamethoxazole (86%), tetracycline (74%), ampicillin (67%), and chloramphenicol (65%). Six isolates showed decreased azithromycin susceptibility. No isolate was resistant to nalidixic acid, ciprofloxacin, nitrofurantoin, or ceftriaxone. The most frequent resistance genes were sul2 (95%), tet(B) (92%), cat (80%), dfrA1 (47%), blaOXA-1like (40%), with intl1 and intl2 detected in 51 and 52% of the isolates, respectively. Thirty-one different VF profiles were observed, being the ipaH (100%), sen (77%), virA and icsA (75%) genes the most frequently found. Differences in the prevalence of VF were observed between species with S. flexneri isolates, particularly serotype 2a, possessing high numbers of VF. In conclusion, this study highlights the high heterogeneity of Shigella VF and resistance genes, and prevalence of MDR organisms within this geographic region. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Strain engineering on electronic structure and carrier mobility in monolayer GeP3

    Science.gov (United States)

    Zeng, Bowen; Long, Mengqiu; Zhang, Xiaojiao; Dong, Yulan; Li, Mingjun; Yi, Yougen; Duan, Haiming

    2018-06-01

    Using density functional theory coupled with the Boltzmann transport equation with relaxation time approximation, we have studied the strain effect on the electronic structure and carrier mobility of two-dimensional monolayer GeP3. We find that the energies of valence band maximum and conduction band minimum are nearly linearly shifted with a biaxial strain in the range of  ‑4% to 6%, and the band structure experiences a remarkable transition from semiconductor to metal with the appropriate compression (‑5% strain). Under biaxial strain, the mobility of the electron and hole in monolayer GeP3 reduces and increases by more than one order of magnitude, respectively. It is suggested that it is possible to perform successive transitions from an n-type semiconductor (‑4% strain) to a good performance p-semiconductor (+6% strain) by applying strain in monolayer GeP3, which is potentially useful for flexible electronics and nanosized mechanical sensors.

  3. A 1D thermomechanical network transition constitutive model coupled with multiple structural relaxation for shape memory polymers

    Science.gov (United States)

    Zeng, Hao; Xie, Zhimin; Gu, Jianping; Sun, Huiyu

    2018-03-01

    A new thermomechanical network transition constitutive model is proposed in the study to describe the viscoelastic behavior of shape memory polymers (SMPs). Based on the microstructure of semi-crystalline SMPs, a new simplified transformation equation is proposed to describe the transform of transient networks. And the generalized fractional Maxwell model is introduced in the paper to estimate the temperature-dependent storage modulus. In addition, a neo-KAHR theory with multiple discrete relaxation processes is put forward to study the structural relaxation of the nonlinear thermal strain in cooling/heating processes. The evolution equations of the time- and temperature-dependent stress and strain response are developed. In the model, the thermodynamical and mechanical characteristics of SMPs in the typical thermomechanical cycle are described clearly and the irreversible deformation is studied in detail. Finally, the typical thermomechanical cycles are simulated using the present constitutive model, and the simulation results agree well with the experimental results.

  4. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses.

    Science.gov (United States)

    Fernandez-Garcia, Maria Dolores; Meertens, Laurent; Chazal, Maxime; Hafirassou, Mohamed Lamine; Dejarnac, Ophélie; Zamborlini, Alessia; Despres, Philippe; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Jouvenet, Nolwenn; Amara, Ali

    2016-02-09

    The live attenuated yellow fever virus (YFV) vaccine 17D stands as a "gold standard" for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation. The yellow fever virus (YFV) vaccine 17D is one of the safest and most effective live virus vaccines ever developed. The molecular determinants for virulence attenuation and immunogenicity of 17D are poorly understood. 17D was generated by serially passaging the virulent Asibi strain in vertebrate tissues. Here we examined the entry mechanisms engaged by YFV Asibi and the 17D vaccine. We found the two viruses use different entry

  5. Research on low strain magnetic mechanical hysteresis damping performance of Fe-15Cr-3Mo-0.5Si alloy

    International Nuclear Information System (INIS)

    Wang, Hui; Huang, Huawei; Hong, Xiaofeng; Yin, Changgeng; Huang, Zhaohua; Chen, Le

    2015-01-01

    Highlights: • Heat treatment system has a great effect on the alloy damping performance. • Damping performance does not improve monotonously with temperature. • Furnace cooling is higher than that of alloy after air cooling. • There is an optimum annealing temperature and grain size to obtain high damping. - Abstract: This paper studies the preparation of Fe-15Cr-3Mo-0.5Si alloy by using vacuum induction melting furnace and vacuum annealing furnace, the damping performance of which in different heat treatment states is tested with dynamic mechanical thermal analyzer (DMA). Through microstructure observation with metallographic microscope (OM), grain boundary observation with scanning electron microscopy (SEM), phase structure analysis with X-ray diffraction (XRD) and internal stress of S-B model analysis, the effect law of annealing temperature, types of cooling, holding time and grain sizes on the damping performance of alloy and the related mechanism can be concluded as follows. The annealing temperature and grain sizes have a significant impact on the damping strain amplitude as well as the magnetic and mechanical damping performance of this ferromagnetic alloy. Proper annealing temperature and grain size is the necessary condition to get high damping performance of the alloy. It is not conducive to improvement of the damping performance if the annealing temperature is too high or too low and the grain size is too small or too large. For Fe-15Cr-3Mo-0.5Si alloy, within the range of the low strain amplitude, alloy damping performance does not improve monotonously with the increase of the annealing temperature and grain size. The maximum value appears at the annealing temperature of 1100 °C/1 h with the grain size of about 300 μm. At high annealing temperature of 1100 °C, the damping performance of alloy in the slow cooling furnace is higher than that with air cooling treatment. The extension or shortening of the holding time, to a certain extent

  6. Research on low strain magnetic mechanical hysteresis damping performance of Fe-15Cr-3Mo-0.5Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui, E-mail: qinghe5525@163.com; Huang, Huawei; Hong, Xiaofeng; Yin, Changgeng; Huang, Zhaohua; Chen, Le

    2015-02-15

    Highlights: • Heat treatment system has a great effect on the alloy damping performance. • Damping performance does not improve monotonously with temperature. • Furnace cooling is higher than that of alloy after air cooling. • There is an optimum annealing temperature and grain size to obtain high damping. - Abstract: This paper studies the preparation of Fe-15Cr-3Mo-0.5Si alloy by using vacuum induction melting furnace and vacuum annealing furnace, the damping performance of which in different heat treatment states is tested with dynamic mechanical thermal analyzer (DMA). Through microstructure observation with metallographic microscope (OM), grain boundary observation with scanning electron microscopy (SEM), phase structure analysis with X-ray diffraction (XRD) and internal stress of S-B model analysis, the effect law of annealing temperature, types of cooling, holding time and grain sizes on the damping performance of alloy and the related mechanism can be concluded as follows. The annealing temperature and grain sizes have a significant impact on the damping strain amplitude as well as the magnetic and mechanical damping performance of this ferromagnetic alloy. Proper annealing temperature and grain size is the necessary condition to get high damping performance of the alloy. It is not conducive to improvement of the damping performance if the annealing temperature is too high or too low and the grain size is too small or too large. For Fe-15Cr-3Mo-0.5Si alloy, within the range of the low strain amplitude, alloy damping performance does not improve monotonously with the increase of the annealing temperature and grain size. The maximum value appears at the annealing temperature of 1100 °C/1 h with the grain size of about 300 μm. At high annealing temperature of 1100 °C, the damping performance of alloy in the slow cooling furnace is higher than that with air cooling treatment. The extension or shortening of the holding time, to a certain extent

  7. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    Science.gov (United States)

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (α EST and β EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs.

  8. Characterization and mechanism of anti-Aeromonas salmonicida activity of a marine probiotic strain, Bacillus velezensis V4.

    Science.gov (United States)

    Gao, Xi-Yan; Liu, Ying; Miao, Li-Li; Li, Er-Wei; Sun, Guo-Xiang; Liu, Ying; Liu, Zhi-Pei

    2017-05-01

    The bacterium Aeromonas salmonicida is the causative agent of furunculosis, a systemic, ubiquitous disease of fish in the salmon family, characterized by high mortality and morbidity. Probiotics are a promising approach for prevention of furunculosis in aquaculture. A bacterial strain with anti-A. salmonicida properties, Bacillus velezensis V4, was isolated and the mechanisms underlying these properties were investigated. Anti-A. salmonicida compounds present in cell-free supernatant of V4 were purified and structurally identified as members of the iturin, macrolactin, and difficidin groups. The compounds contributed jointly to inhibition of A. salmonicida, and the diversity of the compounds was related to the versatility of their mode of action. Addition of the compounds to A. salmonicida cell suspensions reduced cell density. Analyses by confocal microscopy and scanning electron microscopy revealed cell membrane disruption, deletion of cellular content, and cell lysis of A. salmonicida. The V4 genome was sequenced, and gene clusters involved in synthesis of anti-Aeromonas compounds were detected and identified. A possible probiotic effect on growth performance of Oncorhynchus mykiss (rainbow trout) was investigated by addition of 0, 1, and 3 % (v/w) V4. Relative to control, mortality was reduced 27.25 % in the 1 % addition group and 81.86 % in the 3 % addition group. Feed coefficient ratio was reduced 19.49 % and weight gain ratio was increased 71.22 % in the 1 % addition group. Our findings demonstrate that V4 is an effective probiotic strain in O. mykiss and has clear potential for both control of furunculosis and growth promotion of aquaculture animals.

  9. Microstructure, cold workability and strain hardening behavior of trimodaled AA 6061-TiO2 nanocomposite prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Sivaprasad, K.; Narayanasamy, R.

    2011-01-01

    Highlights: → Trimodaled composites consisting of UFG and CG matrix phases and ceramic phase were produced successfully. → Cold deformation behavior was investigated. → The 15% CG trimodaled composite yielded a high compressive strength of 935 MPa. → The 30% CG composite exhibited higher ductility while maintaining strength and toughness. - Abstract: In the present work, the improvement of compressive ductility while maintaining high strength and toughness for nanocrystalline materials by cold upsetting (incremental loads) of bulk trimodaled composite was studied. Mechanically alloyed nanocrystalline (NC) AA 6061 alloy powders reinforced with nano TiO 2 were blended with 0, 5, 10, 15, 20, 25, and 30 wt.% coarse grain (CG) elemental powders related to AA 6061 alloy composition to produce trimodal microstructure. The synthesized composite preforms were characterized by optical microscope, scanning electron microscope, transmission electron microscope and X-ray diffraction. The room temperature compressive deformation behavior was evaluated under triaxial stress state condition. With increasing percentage of CG phase in the nanocomposite, the gradual improvement in compressive ductility was observed at the cost of a small amount of strength but it favored the ease of deformation. The 15% CG trimodal composite exhibited an extremely high compressive strength of 935 MPa due to non-coalescence of individual CG particles and effective load transfer occurred in multi scale microstructures. But the 30% CG trimodal composite showed an incremental compressive ductility of around 16% while sacrificing a small amount of strength (845 MPa) and this composite displayed improved toughness (area under true effective stress and true effective strain curve) of over 600% than nanocomposite (0% CG). Also, the percentage cold workability of 30% CG composite was six times higher than that of 0% CG composite. Hence, the 30% CG trimodal composite was observed to be the good one as

  10. Elucidation of thermal hydraulic mixing mechanism in a mixing tee area with a 90-degree bend upstream and development of thermal-striping relaxation and control methods

    International Nuclear Information System (INIS)

    Sugawara, Yoshimasa; Yuki, Kazuhisa; Hashizume, Hidetoshi; Tanaka, Masa-aki; Muramatsu, Toshiharu

    2004-10-01

    In the region where two fluids with different temperatures mix, unstable fluid mixing like thermal striping occurs accompanying with unsteady temperature fluctuation of fluid. This temperature fluctuation is transported toward the surrounding area and becomes an important factor that induces thermal fatigue of structural materials, which sometimes results in crack generation of them. In fast breeder reactors that utilize liquid sodium as a coolant, the fluid temperature fluctuation could be easier to conduct toward the structural materials due to its high thermal conductivity, so that careful consideration for the thermal fatigue is required. In particular, since the low frequency band of temperature fluctuation strongly affects the thermal fatigue, evaluation and development of the relaxation and control methods for it become important issues. In this study, non-isothermal fluid mixing experiments in a T-junction area with a 90-degree bend upstream were carried out to estimate the fluid-temperature fluctuation in the vicinity of wall. The temperature fluctuations for various flow mixing conditions were measured, changing a velocity ratio and a pipe diameter ratio of a main pipe to a branch pipe to quantitatively evaluate the effect of a secondary flow on the temperature fluctuation. In addition, by analyzing both the visualization data taken by a PIV system and the temperature fluctuation data, it was attempted to construct a prediction formula for the temperature fluctuation. Our findings are summarized below. (1) Classifying the flow mixing pattern of jet flow running out from the branch pipe makes it possible to predict the maximum temperature fluctuation in the mixing area with higher accuracy by using the flow velocity ratio (0.2 -0.06 (d/D) 0.22 . Re-attachment Flow - deflecting Flow: Max(ΔTrms*)=0.64(v/V) -0.92 (d/D) 1.11 . (2) Prediction formulas for the maximum temperature fluctuation in the case of the curvature ratio of 1.0 are also constructed as

  11. Relaxation of the magnetization in magnetic molecules

    Science.gov (United States)

    Carretta, S.; Bianchi, A.; Liviotti, E.; Santini, P.; Amoretti, G.

    2006-04-01

    Several mechanisms characterize the relaxation dynamics in magnetic molecules. We investigate two of them, spin-lattice coupling and incoherent quantum tunneling. The effect of the phonon heat bath is studied by analyzing the exponential time decay of the autocorrelation of the magnetization. We show that in ferromagnetic (Cu6) and antiferromagnetic (Fe6) molecular rings this decay is characterized by a single characteristic time. At very low temperature, relaxation through incoherent quantum tunneling may occur in nanomagnets such as Fe8 or Ni4. The mixing between levels with different values of the total spin (S mixing) greatly influences this mechanism. In particular, we demonstrate that a fourth-order anisotropy term O44, required to interpret experimental electron paramagnetic resonance and relaxation data in Ni4, naturally arises when S mixing is considered in calculations.

  12. Prediction of intragranular strains in metallic polycrystals with a two-level homogenisation approach: Influence of dislocation microstructure on the mechanical behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Gloaguen, D. [GeM, Institut de Recherche en Genie Civil et Mecanique, Universite de Nantes, Ecole Centrale de Nantes, CNRS UMR 6183, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire (France); Francois, M. [Laboratoire des Systemes Mecaniques et d' Ingenierie Simultanee (LASMIS FRE CNRS 2719), Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes cedex (France)

    2006-06-15

    A two-level homogenisation approach is applied to the micro-mechanical modelling of the elasto-plasticity of polycrystalline materials during various strain-path changes. The model is tested by simulating the development of intragranular strains during different complex loads. Mechanical tests measurements are used as a reference in order to validate the model. The anisotropy of plastic deformation in relation to the evolution of the dislocation structure is analysed. The results demonstrate the relevance of this approach for FCC polycrystals. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Antifungal mechanism of the combination of Cinnamomum verum and Pelargonium graveolens essential oils with fluconazole against pathogenic Candida strains.

    Science.gov (United States)

    Essid, Rym; Hammami, Majdi; Gharbi, Dorra; Karkouch, Ines; Hamouda, Thouraya Ben; Elkahoui, Salem; Limam, Ferid; Tabbene, Olfa

    2017-09-01

    The present study aimed to investigate the anti-Candida activity of ten essential oils (EOs) and to evaluate their potential synergism with conventional drugs. The effect on secreted aspartic protease (SAP) activity and the mechanism of action were also explored. The antifungal properties of essential oils were investigated using standard micro-broth dilution assay. Only Cinnamomum verum, Thymus capitatus, Syzygium aromaticum, and Pelargonium graveolens exhibited a broad spectrum of activity against a variety of pathogenic Candida strains. Chemical composition of active essential oils was performed by gas chromatography-mass spectrometry (GC-MS). Synergistic effect was observed with the combinations C. verum/fluconazole and P. graveolens/fluconazole, with FIC value 0.37. Investigation of the mechanism of action revealed that C. verum EO reduced the quantity of ergosterol to 83%. A total inhibition was observed for the combination C. verum/fluconazole. However, P. graveolens EO may disturb the permeability barrier of the fungal cell wall. An increase of MIC values of P. graveolens EO and the combination with fluconazole was observed with osmoprotectants (sorbitol and PEG6000). Furthermore, the combination with fluconazole may affect ergosterol biosynthesis and disturb fatty acid homeostasis in C. albicans cells as the quantity of ergosterol and oleic acid was reduced to 52.33 and 72%, respectively. The combination of P. graveolens and C. verum EOs with fluconazole inhibited 78.31 and 64.72% SAP activity, respectively. To our knowledge, this is the first report underlying the mechanism of action and the inhibitory effect of SAP activity of essential oils in synergy with fluconazole. Naturally occurring phytochemicals C. verum and P. graveolens could be effective candidate to enhance the efficacy of fluconazole-based therapy of C. albicans infections.

  14. Elasto-plastic bond mechanics of embedded fiber optic sensors in concrete under uniaxial tension with strain localization

    Science.gov (United States)

    Li, Qingbin; Li, Guang; Wang, Guanglun

    2003-12-01

    Brittleness of the glass core inside fiber optic sensors limits their practical usage, and therefore they are coated with low-modulus softer protective materials. Protective coatings absorb a portion of the strain, and hence part of the structural strain is sensed. The study reported here corrects for this error through development of a theoretical model to account for the loss of strain in the protective coating of optical fibers. The model considers the coating as an elasto-plastic material and formulates strain transfer coefficients for elastic, elasto-plastic and strain localization phases of coating deformations in strain localization in concrete. The theoretical findings were verified through laboratory experimentation. The experimental program involved fabrication of interferometric optical fiber sensors, embedding within mortar samples and tensile tests in a closed-loop servo-hydraulic testing machine. The elasto-plastic strain transfer coefficients were employed for correction of optical fiber sensor data and results were compared with those of conventional extensometers.

  15. Relaxed Binaural LCMV Beamforming

    NARCIS (Netherlands)

    Koutrouvelis, A.; Hendriks, R.C.; Heusdens, R.; Jensen, Jesper Rindom

    2017-01-01

    In this paper, we propose a new binaural beamforming technique, which can be seen as a relaxation of the linearly constrained minimum variance (LCMV) framework. The proposed method can achieve simultaneous noise reduction and exact binaural cue preservation of the target source, similar to the

  16. Relaxation of Thick-Walled Cylinders and Spheres

    DEFF Research Database (Denmark)

    Saabye Ottosen, N.

    1982-01-01

    Using the nonlinear creep law proposed by Soderberg, (1936) closed-form solutions are derived for the relaxation of incompressible thick-walled spheres and cylinders in plane strain. These solutions involve series expressions which, however, converge very quickly. By simply ignoring these series...... expressions, extremely simple approximate solutions are obtained. Despite their simplicity these approximations possess an accuracy that is superior to approximations currently in use. Finally, several physical aspects related to the relaxation of cylinders and spheres are discussed...

  17. Evaluation of stress-strain for characterization of the rheological behavior of alginate and carrageenan gels

    Directory of Open Access Journals (Sweden)

    E.J. Mammarella

    2002-12-01

    Full Text Available The stress-strain of samples deformed until failure and the relaxation response after 50% deformation of the initial height under constant stress were obtained. Uniaxial compression and stress-relaxation tests enabled satisfactory differentiation of the mechanical resistance of gels with different alginate and carrageenan concentrations. Higher values for initial force at the beginning of the relaxation test were associated with higher calcium uptake by the gels. An increment of failure stress during the uniaxial compression tests for higher concentration of calcium in the gel structure was also observed. The maximum amount of cation uptake was higher than the theoretical value for saturation of all the carboxylic groups available in alginate molecules due to structural rearrangements. Stress-relaxation tests indicated that the residual stress of the gel increased with kappa-carrageenan concentration.

  18. Stress Relaxation Effects in TiNi SMA During Superelastic Deformation: Experiment and Constitutive Model

    Science.gov (United States)

    Pieczyska, Elżbieta A.; Kowalewski, Zbigniew L.; Dunić, Vladimir Lj.

    2017-12-01

    This paper presents an investigation of thermomechanical effects related to the phenomena of stress relaxation occurring in TiNi SMA subjected to modified program of displacement-controlled tension. The deformation data were taken from testing machine, whereas the temperature changes accompanying the exothermic/endothermic martensite forward/reverse transformation were measured by infrared camera. At the advanced stages of the transformations, the strain was kept constant for a few minutes and the SMA load and temperature were recorded continuously. As a consequence, the stress and temperature changed significantly during the loading stops. A large stress drop, caused by the transformation, was observed during the relaxation stage in both courses of the SMA loading and unloading. Moreover, the non-uniform temperature distribution, reflecting macroscopically inhomogeneous transformation, lapsed while the strain was kept constant, yet restarted at the end of the relaxation stop and developed at the reloading stage. Along with the experimental results, the mechanical and thermal responses induced by the transformation were obtained by 3D coupled thermomechanical numerical analysis, realized in partitioned approach. Latent heat production was correlated with an amount of the martensitic volume fraction. The stress and temperature drops recorded during the experiment were satisfactorily reproduced by the model proposed for the SMA thermomechanical coupling.

  19. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel

    Science.gov (United States)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.

    2018-01-01

    Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).

  20. Phase formation and strain relaxation of Ga2O3 on c-plane and a-plane sapphire substrates as studied by synchrotron-based x-ray diffraction

    Science.gov (United States)

    Cheng, Zongzhe; Hanke, Michael; Vogt, Patrick; Bierwagen, Oliver; Trampert, Achim

    2017-10-01

    Heteroepitaxial Ga2O3 was deposited on c-plane and a-plane oriented sapphire by plasma-assisted molecular beam epitaxy and probed by ex-situ and in-situ synchrotron-based x-ray diffraction. The investigation on c-plane sapphire determined a critical thickness of around 33 Å, at which the monoclinic β-phase forms on top of the hexagonal α-phase. A 143 Å thick single phase α-Ga2O3 was observed on a-plane sapphire, much thicker than the α-Ga2O3 on c-plane sapphire. The α-Ga2O3 relaxed very fast in the first 30 Å in both out-of-plane and in-plane directions as measured by the in-situ study.

  1. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    International Nuclear Information System (INIS)

    Scalerandi, M; Delsanto, P P; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model

  2. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    CERN Document Server

    Scalerandi, M; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model.

  3. A Microstructural Study of Load Distribution in Cartilage: A Comparison of Stress Relaxation versus Creep Loading

    Directory of Open Access Journals (Sweden)

    Ashvin Thambyah

    2015-01-01

    Full Text Available The compressive response of articular cartilage has been extensively investigated and most studies have focussed largely on the directly loaded matrix. However, especially in relation to the tissue microstructure, less is known about load distribution mechanisms operating outside the directly loaded region. We have addressed this issue by using channel indentation and DIC microscopy techniques that provide visualisation of the matrix microstructural response across the regions of both direct and nondirect loading. We hypothesise that, by comparing the microstructural response following stress relaxation and creep compression, new insights can be revealed concerning the complex mechanisms of load bearing. Our results indicate that, with stress relaxation, the initial mode of stress decay appears to primarily involve relaxation of the surface layer. In the creep loading protocol, the main mode of stress release is a lateral distribution of load via the mid matrix. While these two modes of stress redistribution have a complex relationship with the zonally differentiated tissue microstructure and the depth of strain, four mechanostructural mechanisms are proposed to describe succinctly the load responses observed.

  4. Quantization by stochastic relaxation processes and supersymmetry

    International Nuclear Information System (INIS)

    Kirschner, R.

    1984-01-01

    We show the supersymmetry mechanism resposible for the quantization by stochastic relaxation processes and for the effective cancellation of the additional time dimension against the two Grassmann dimensions. We give a non-perturbative proof of the validity of this quantization procedure. (author)

  5. Stress relaxation experiments on a lamellar polystyrene-polyisoprene diblock copolymer melt

    DEFF Research Database (Denmark)

    Holmqvist, P.; Castelletto, V.; Hamley, I.W.

    2001-01-01

    The non-linear rheology of the lamellar phase of a polystyrene-polyisoprene diblock copolymer is studied by oscillatory shear experiments. The relaxation of the shear modulus, G(t, gamma) is studied as a function of strain amplitude, gamma, up to large amplitude strains, gamma = 100%. The decay...... of G(t, gamma) is analysed using the model-independent CONTIN inverse Laplace transform algorithm to obtain a series of relaxation times, which reveals multiple relaxation processes. The timescale for the fastest relaxation processes is compared to those previously observed for diblock copolymer melts...... via dynamic light scattering experiments. The slowest relaxation process may be related to the shear-induced orientation of the lamellae. It is shown that time-strain separability G(t, gamma)= G(t)h(gamma) can be applied, and the damping function h(gamma) is consistent with a strongly strain...

  6. Modelling of Mechanical Behavior at High Strain Rate of Ti-6al-4v Manufactured By Means of Direct Metal Laser Sintering Technique

    Science.gov (United States)

    Iannitti, Gianluca; Bonora, Nicola; Gentile, Domenico; Ruggiero, Andrew; Testa, Gabriel; Gubbioni, Simone

    2017-06-01

    In this work, the mechanical behavior of Ti-6Al-4V obtained by additive manufacturing technique was investigated, also considering the build direction. Dog-bone shaped specimens and Taylor cylinders were machined from rods manufactured by means of the EOSSINT M2 80 machine, based on Direct Metal Laser Sintering technique. Tensile tests were performed at strain rate ranging from 5E-4 s-1 to 1000 s-1 using an Instron electromechanical machine for quasistatic tests and a Direct-Tension Split Hopkinson Bar for dynamic tests. The mechanical strength of the material was described by a Johnson-Cook model modified to account for stress saturation occurring at high strain. Taylor cylinder tests and their corresponding numerical simulations were carried out in order to validate the constitutive model under a complex deformation path, high strain rates, and high temperatures.

  7. Finite Element Modeling of Dieless Tube Drawing of Strain Rate Sensitive Material with Coupled Thermo-Mechanical Analysis

    Science.gov (United States)

    Furushima, Tsuyoshi; Sakai, Takashi; Manabe, Ken-ichi

    2004-06-01

    Dieless drawing is a unique deformation process without conventional dies, which can achieve a great reduction of wire and tube metals in single pass by means of local heating and cooling approach. In this study, for microtube forming, the dieless drawing process applying superplastic behavior was analyzed by finite element method (FEM) in order to clarify the effect of dieless tube drawing conditions such as tensile speed, moving speed of heating and cooling system, and material properties on deformation behavior of the tube. In the calculation, the material properties were dealt in a special subroutine, whose constitutive equation was defined as σ = Kɛnɛ˙m, and was linked to the solver. A coupled thermo-mechanical analysis was performed for the dieless tube drawing using the FEM. In the thermal analysis of dieless tube drawing, heat transfer was introduced to calculate the heat flux between heating coil and tube surface, and heat conduction in a tube. The influence of dieless tube drawing conditions on deformation behavior was clarified. As a result, for the strain rate sensitive material, the maximum reduction of area and the minimum outer diameter in single pass attain to 90.9% and 2.56mm, respectively. From the result, it is concluded that the dieless tube drawing is essential to produce an extrafine microtube by reason of keeping cylindrical tube diameter ratio constant with extremely high reduction.

  8. The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains

    International Nuclear Information System (INIS)

    Pan, Xiaohong; Chen, Zhi; Chen, Fanbing; Cheng, Yangjian; Lin, Zhang; Guan, Xiong

    2015-01-01

    Highlights: • Indigenous B. thuringiensis exhibited highly accumulation ability to U(VI) in the absence of additional nutrients. • The amorphous uranium compound would transformed into crystalline nano-uramphite by B. thuringiensis. • The chemical nature of formed U-species were monitored. • The cell-free extracts of B. thuringiensis had better uranium-immobilization ability than its cell debris. • Provided the understanding of the uranium transformation mechanism. - Abstract: The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains was investigated in the present work. Our data showed that the bacteria isolated from uranium mine possessed highly accumulation ability to U(VI), and the maximum accumulation capacity was around 400 mg U/g biomass (dry weight). X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) analyzes indicated that the U(VI) was adsorbed on the bacterial surface firstly through coordinating with phosphate, −CH 2 and amide groups, and then needle-like amorphous uranium compounds were formed. With the extension of time, the extracellular crystalline substances were disappeared, but some particles were appeared in the intracellular region, and these particles were characterized as tetragonal-uramphite. Moreover, the disrupted experiment indicated that the cell-free extracts had better uranium-immobilization ability than cell debris. Our findings provided the understanding of the uranium transformation process from amorphous uranium to crystalline uramphite, which would be useful in the regulation of uranium