WorldWideScience

Sample records for strain method measurement

  1. Apparatus and Method for Measuring Strain in Optical Fibers using Rayleigh Scatter

    Science.gov (United States)

    Froggatt, Mark E. (Inventor); Moore, Jason P. (Inventor)

    2003-01-01

    An apparatus and method for measuring strain in an optical fiber using the spectral shift of Rayleigh scattered light. The interference pattern produced by an air gap reflector and backscattered radiation is measured. Using Fourier Transforms, the spectrum of any section of fiber can be extracted. Cross correlation with an unstrained measurement produces a correlation peak. The location of the correlation peak indicates the strain level in the selected portion of optical fiber.

  2. Method for independent strain and temperature measurement in polymeric tensile test specimen using embedded FBG sensors

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; McGugan, Malcolm; Mikkelsen, Lars Pilgaard

    2016-01-01

    A novel method to obtain independent strain and temperature measurements using embedded Fibre Bragg Grating (FBG) in polymeric tensile test specimens is presented in this paper. The FBG strain and temperature cross-sensitivity was decoupled using two single mode FBG sensors, which were embedded...... of temperature, from 40 C to -10 C. The consistency of the expected theoretical results with the calibration procedure and the experimental validation shows that this proposed method is applicable to measure accurate strain and temperature in polymers during static or fatigue tensile testing. Two different...

  3. A three-dimensional strain measurement method in elastic transparent materials using tomographic particle image velocimetry

    Science.gov (United States)

    Suzuki, Sara; Aoyama, Yusuke; Umezu, Mitsuo

    2017-01-01

    Background The mechanical interaction between blood vessels and medical devices can induce strains in these vessels. Measuring and understanding these strains is necessary to identify the causes of vascular complications. This study develops a method to measure the three-dimensional (3D) distribution of strain using tomographic particle image velocimetry (Tomo-PIV) and compares the measurement accuracy with the gauge strain in tensile tests. Methods and findings The test system for measuring 3D strain distribution consists of two cameras, a laser, a universal testing machine, an acrylic chamber with a glycerol water solution for adjusting the refractive index with the silicone, and dumbbell-shaped specimens mixed with fluorescent tracer particles. 3D images of the particles were reconstructed from 2D images using a multiplicative algebraic reconstruction technique (MART) and motion tracking enhancement. Distributions of the 3D displacements were calculated using a digital volume correlation. To evaluate the accuracy of the measurement method in terms of particle density and interrogation voxel size, the gauge strain and one of the two cameras for Tomo-PIV were used as a video-extensometer in the tensile test. The results show that the optimal particle density and interrogation voxel size are 0.014 particles per pixel and 40 × 40 × 40 voxels with a 75% overlap. The maximum measurement error was maintained at less than 2.5% in the 4-mm-wide region of the specimen. Conclusions We successfully developed a method to experimentally measure 3D strain distribution in an elastic silicone material using Tomo-PIV and fluorescent particles. To the best of our knowledge, this is the first report that applies Tomo-PIV to investigate 3D strain measurements in elastic materials with large deformation and validates the measurement accuracy. PMID:28910397

  4. Method for measuring local strains in polycrystals using EBSD or KOSSEL

    Energy Technology Data Exchange (ETDEWEB)

    Wege, Stefan; Wendrock, Horst; Eckert, Juergen [IFW Dresden, Institute for Complex Materials, Dresden (Germany)

    2011-07-01

    Lattice parameters and orientation at any point of the surface of individual crystallites can be calculated from X-ray (KOSSEL technique) or electron backscatter diffraction patterns (EBSD). A method for high accurate determination relative error 5.10{sup -5} of all of the 6 lattice parameters of a crystallite from a single KOSSEL-Pattern was developed. The comparison of this precisely measured parameters with the well-known parameters of the unconstrained crystal without internal strain leads to the local strain and, subsequently to the residual stress of third order. The detection of EBSD-pattern is much faster than for KOSSEL-pattern for a comparable signal to noise ratio. Furthermore, the local resolution is increased for electron diffraction method. In this presentation we describe a new method to calculate orientation and strain of crystallites in polycrystals using EBSD-patterns. One references crystal per sample is needed. The analysis is based on measuring points of the band edge by calculating profiles perpendicular to band edges. The method allows to calculate the full strain tensor (despite isotropic strain) and the orientation of the crystals. The method was applied to an arbitrary test sample with known strain. First result leads to the assumption that the accuracy of the method is around 2.5.10{sup -4}. Further test of the method has to follow and an automatization of the creation and analysis of profiles is needed.

  5. Direct Strain Tensor Approximation for Full-Field Strain Measurement Methods

    Science.gov (United States)

    2013-01-01

    DC, USA 2Code 6394 Computational Multiphysics Systems Laboratory, Center of Computational Material Science, Naval Research Laboratory, Washington DC... Shearography [16–18] and Moiré interferometry [19, 20] that exploit implicit differentiations of the displacement fields, com- pute only a subset of the strain...Michopoulos, Code 6394 Computational Multiphysics Systems Laboratory, Center of Computational Material Science, Naval Research Laboratory, Washington DC

  6. Method for independent strain and temperature measurement in polymeric tensile test specimen using embedded FBG sensors

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; McGugan, Malcolm; Mikkelsen, Lars Pilgaard

    2016-01-01

    A novel method to obtain independent strain and temperature measurements using embedded Fibre Bragg Grating (FBG) in polymeric tensile test specimens is presented in this paper. The FBG strain and temperature cross-sensitivity was decoupled using two single mode FBG sensors, which were embedded...... in the specimen material with a certain angle between them. It is demonstrated that, during temperature variation, both FBG sensors show the same signal response. However, for any applied load the signal response is different, which is caused by the different levels of strain acting in each sensor. Equations...... calibration procedure (temperature and strain) was performed to this material-sensor pair, where a calibration error temperature test case, where multiple two loading/strain stages of ε = 0.30% and ε = 0.50% were applied during a continuous variation...

  7. Strain and mechanical behavior measurements of soft tissues with digital speckle method.

    Science.gov (United States)

    Zhang, J; Jin, G C; Meng, L B; Jian, L H; Wang, A Y; Lu, S B

    2005-01-01

    Soft tissues of the body are composite, typically being made up of collagen and elastin fibers with high water contents. The strain measurement in soft tissues has proven to be a difficult task. The digital speckle method, combined with the image processing technique, has many advantages such as full field, noncontact, and real time. We focus on the use of an improved digital speckle correlation method (DSCM) and time-sequence electric speckle pattern interferometry (TSESPI) to noninvasively obtain continual strain measurements on cartilage and vessel tissues. Monoaxial tensile experiments are well designed and performed under constant temperature and the necessary humidity with smart sensors. Mechanical behaviors such as the tensile modulus and Poisson ratio of specimens are extracted based on the deformation information. A comparison of the advantages and the disadvantages of these techniques as well as some problems concerning strain measurements in soft tissues are also discussed. 2005 Society of Photo-Optical Instrumentation Engineers.

  8. Combined full field stress and strain measurement methods for granular materials

    Directory of Open Access Journals (Sweden)

    Broere W.

    2010-06-01

    Full Text Available The current paper re-introduces the photoelastic measurement method in experimental geomechanics. A full-field phase stepping polariscope suitable for geomechanical model tests has been developed. Additional constraints on the measurement and mechanical setup arising from geomechanical test conditions are outlined as well as the opportunity to measure the displacement fields in the sample with digital image correlation. The capability of the current setup in retrieving the stress and strain field in a granular material is demonstrated.

  9. Strain measurement based battery testing

    Science.gov (United States)

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  10. Stress measurement with differential strain analysis method in WFSD-1 hole

    Science.gov (United States)

    Peng, H.; Ma, X.; Jiang, J.; Li, Z.; Bai, J.

    2012-12-01

    Through the high pressure vessel to exert confining pressure on the directional test samples of the different depth, differential strain analysis (DSA) is that observe reclosing crack due to expansion of the loss previously formation stress, and determine the size and direction of the principal stress by differential strain analysis crack in closure process. Its advantages are not from drilling depth limit, high efficiency and low cost. The technology is one of main means about core In-situ stress measurements in the Wenchuan Earthquake Fault Science Drilling Project (WFSD). WFSD-1 drilling is in the Peng-Guan complex rocks of the Yingxiu-Beichuan fault. Seismic fault's interface is at the 590 m place. Bottom of the hole is in Triassic metamorphic sand shale in 1201.15 m. In order to further understanding the earthquake rupture mechanism and developing regularity, we first determine the in-situ stress spatial distribution. Therefore, we develop of the in-situ stress test work by DSA technology in the WFSD-1 drilling. Through DSA test in the WFSD-1 borehole core, we gain successfully the in-situ stress in Yingxiu-Beichuan fault after Wenchuan earthquake ( Fig.1). DSA experiment measured the maximum level principal stress direction of the 12 group that is NE330.58°. The maximum principal stress is 7.1 ~ 69.1MPa. The maximum and minimum principal stress ratio close very much to 2.0, belong to the high stress state in thrust faults.

  11. Investigation of Electronic Devices for Strain Measurement

    Directory of Open Access Journals (Sweden)

    Ričardas Masiulionis

    2011-08-01

    Full Text Available Importance of strain measuring for safety of buildings is shown. The strain monitoring should be one of the buildings security systems. Often used balanced and non-balanced Wheatstone bridge strain measurement methods are analyzed. The Wheatstone bridge method with feedback is improved. A new method based on small resistance changes by the digital balancing currents is presented. Computer and experimental models of measurement are investigated. The received results confirm theoretical assumptions.Article in Lithuanian

  12. [Clinical and experimental studies on gastrointestinal motility following total colectomy: direct measurement (strain gauge force transducer method, barium method) and indirect measurement (hydrogen breath test, acetaminophen method)].

    Science.gov (United States)

    Kayama, H; Koh, K

    1991-04-01

    In a clinical study, we examined the clinical assessment of bowel function and lactulose hydrogen breath test in 14 patients after total colectomy. All patients within one year after ileostomy closure had 'poor' function and showed no increase of hydrogen breath gas concentration. 10 of 12 patients more than one year showed increase of hydrogen breath gas concentration, and 8 of them had 'fair' function. The oro-neorectal transit time (ONTT) in 'poor' group was shorter than in 'fair' group and control (p less than 0.05). The increase of hydrogen breath gas suggests changes of bacterial flora and colonization of the remained ileum. In an experimental study, we performed subtotal colectomy with the J-pouch reservoir in 11 dogs. We examined ONTT with barium method, gastric emptying with acetaminophen method, and gastrointestinal motility with strain gauge force transducers. Although ONTT at one month after operation had been shorter than control, ONTT at 3 and 6 months became longer than at one month. The gastric emptying after subtotal colectomy was significantly slower than control. Although the propagation velocity of interdigestive migrating complex (IMC) in the jejunum and ileum at 2 weeks had been faster than control, the velocity at 4 weeks and 3 months became slower than at 2 weeks. The frequency of IMC and prolonged propagated contraction in the J-pouch reservoir decreased. The specimen of J-pouch reservoir resected at 6 months showed villous atrophy, crypt elongation, decrease of muscle layers thickness and disappearance of solitary follicles. Therefore, the suppressed motility in each sites of the gastrointestinal tract, increase of anaerobic and colonization of the ileum implied 'adaptation' after total colectomy.

  13. Measurement of Plastic Stress and Strain for Analytical Method Verification (MSFC Center Director's Discretionary Fund Project No. 93-08)

    Science.gov (United States)

    Price, J. M.; Steeve, B. E.; Swanson, G. R.

    1999-01-01

    The analytical prediction of stress, strain, and fatigue life at locations experiencing local plasticity is full of uncertainties. Much of this uncertainty arises from the material models and their use in the numerical techniques used to solve plasticity problems. Experimental measurements of actual plastic strains would allow the validity of these models and solutions to be tested. This memorandum describes how experimental plastic residual strain measurements were used to verify the results of a thermally induced plastic fatigue failure analysis of a space shuttle main engine fuel pump component.

  14. Uniaxial Compressive Strength and Fracture Mode of Lake Ice at Moderate Strain Rates Based on a Digital Speckle Correlation Method for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2017-05-01

    Full Text Available Better understanding of the complex mechanical properties of ice is the foundation to predict the ice fail process and avoid potential ice threats. In the present study, uniaxial compressive strength and fracture mode of natural lake ice are investigated over moderate strain-rate range of 0.4–10 s−1 at −5 °C and −10 °C. The digital speckle correlation method (DSCM is used for deformation measurement through constructing artificial speckle on ice sample surface in advance, and two dynamic load cells are employed to measure the dynamic load for monitoring the equilibrium of two ends’ forces under high-speed loading. The relationships between uniaxial compressive strength and strain-rate, temperature, loading direction, and air porosity are investigated, and the fracture mode of ice at moderate rates is also discussed. The experimental results show that there exists a significant difference between true strain-rate and nominal strain-rate derived from actuator displacement under dynamic loading conditions. Over the employed strain-rate range, the dynamic uniaxial compressive strength of lake ice shows positive strain-rate sensitivity and decreases with increasing temperature. Ice obtains greater strength values when it is with lower air porosity and loaded vertically. The fracture mode of ice seems to be a combination of splitting failure and crushing failure.

  15. Design procedures for Strain Hardening Cement Composites (SHCC) and measurement of their shear properties by mechanical and 2-D Digital Image Correlation (DIC) method

    Science.gov (United States)

    Aswani, Karan

    The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in Arizona State University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property of moment-curvature response for SHCC was used to derive the relationship between applied load and deflection in a two-step process involving the limit state analysis and kinematically admissible displacements. For application of SHCC in structures such as shear walls, tensile and shear properties are necessary for design. Lot of research has already been done to study the tensile properties and therefore shear property study was undertaken to prepare a design guide. Shear response of textile reinforced concrete was investigated based on picture frame shear test method. The effects of orientation, volume of cement paste per layer, planar cross-section and volume fraction of textiles were investigated. Pultrusion was used for the production of textile reinforced concrete. It is an automated set-up with low equipment cost which provides uniform production and smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement technique of digital image correlation (DIC) was used to conduct the image analysis on the shear samples by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-field strain distribution, displacement and strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and gave a relation between shear angle and shear strain.

  16. Full-Field Reconstruction of Structural Deformations and Loads from Measured Strain Data on a Wing Using the Inverse Finite Element Method

    Science.gov (United States)

    Miller, Eric J.; Manalo, Russel; Tessler, Alexander

    2016-01-01

    A study was undertaken to investigate the measurement of wing deformation and internal loads using measured strain data. Future aerospace vehicle research depends on the ability to accurately measure the deformation and internal loads during ground testing and in flight. The approach uses the inverse Finite Element Method (iFEM). The iFEM is a robust, computationally efficient method that is well suited for real-time measurement of real-time structural deformation and loads. The method has been validated in previous work, but has yet to be applied to a large-scale test article. This work is in preparation for an upcoming loads test of a half-span test wing in the Flight Loads Laboratory at the National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California). The method has been implemented into an efficient MATLAB® (The MathWorks, Inc., Natick, Massachusetts) code for testing different sensor configurations. This report discusses formulation and implementation along with the preliminary results from a representative aerospace structure. The end goal is to investigate the modeling and sensor placement approach so that the best practices can be applied to future aerospace projects.

  17. From Measurements Errors to a New Strain Gauge Design

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Zike, Sanita; Salviato, Marco

    2015-01-01

    Significant over-prediction of the material stiffness in the order of 1-10% for polymer based composites has been experimentally observed and numerical determined when using strain gauges for strain measurements instead of non-contact methods such as digital image correlation or less stiff methods...

  18. Development of a Standard Methodology for the Quantitative Measurement of Steel Phase Transformation Kinetics and Dilation Strains Using Dilatometric Methods, QMST (TRP 0015)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Manish Metha; Dr. Tom Oakwood

    2004-04-28

    The purpose of this collaborative project was to develop a standard practice for obtaining and archiving quantitative steel transformation kinetic data and thermal strain data. Two families of dilatometric equipment were employed to develop this standard practice for testing bar product steels. These include high-speed quenching and deformation dilatometers and Gleeble{reg_sign} thermomechanical simulation instruments. Standard measurement, data interpretation and data reporting methods were developed and defined by the cross-industry QMST Consortium members consisting of steel-manufacturers, forgers, heat-treaters, modelers, automotive and heavy vehicle OEMs along with team expert technologists from the National Labs and academia. The team designed phase transformation experiments on two selected steel grades to validate the standard practices--a medium carbon grade SAE 1050 and an alloy steel SAE 8620. A final standard practice document was developed based on the two dilatometry methods, and was submitted to and approved by ASTM (available as A1033-04). The standard practice specifies a method for measuring austenite transformation under no elastic stress or plastic deformation. These methods will be an enabler for the development and electronic archiving of a quantitative database for process modeling using computer simulation software, and will greatly assist endusers in developing accurate process and product simulations during the thermo-mechanical processing of bar and rod product steels.

  19. Shear modulus reconstruction by ultrasonically measured strain ratio.

    Science.gov (United States)

    Sumi, Chikayoshi; Matsuzawa, Hidenori

    2007-12-01

    In addition to a description of our three previously developed one-dimensional (1D) methods from the viewpoint of shear modulus reconstruction using the strain ratio, two new methods for stabilizing the 1D methods are described, together with their limitations. As confirmed using human in vivo breast tissues, method 1 for evaluating the strain ratio itself is useful when the measurement accuracy of the strain distribution is high. However, because tissues having high shear moduli, such as scirrhous carcinoma, often form singular points/regions, both methods 2 and 3 using the strain ratio (initial estimate) and a regularization method are effective for realizing a unique, stable, useful shear modulus reconstruction. Because method 3 carries out implicit integration only at singular points/regions, whereas method 2 carries out implicit integration throughout the region of interest (ROI), the smaller number of singular points enables more rapid shear modulus reconstruction by method 3 than by method 2. Like method 1, method 3 is also useful when the measurement accuracy of the strain distribution is high. However, when evaluating strain distribution in an ROI with a high spatial resolution to obtain a shear modulus reconstruction having a high spatial resolution, shear modulus reconstructions obtained by methods 1, 2, and 3 often become laterally unstable due to the instability and low accuracy of the strains in the reference regions (reference strains), i.e., regularization in methods 2 and 3 cannot reduce the instability in the initial estimate. To cope with this instability, (i) the reconstruction obtained by calculating the strain ratio should be low-pass filtered; for breast tissues, in particular, the reconstruction of the inverse shear modulus should be low-pass filtered, not the reconstruction of the shear modulus. (ii) Otherwise, when using homogeneous regions as a reference, such as a block of reference material, fatty tissue, or parenchyma, evaluation of

  20. Fibre-Optic Strain Measurement For Structural Integrity Monitoring

    NARCIS (Netherlands)

    Bruinsma, A.J.A.; Zuylen, P. van; Lamberts, C.W.; Krijger, A.J.T. de

    1984-01-01

    A method is demonstrated for monitoring the structural integrity of large structures, using an optical fibre. The strain distribution along the structure is monitored by measuring the attentuation of light along the length of the fibre.

  1. Intermediate strain rate testing methodologies and full-field optical strain measurement techniques for composite materials characterisation

    OpenAIRE

    Longana, M.L.

    2014-01-01

    Two optical full-field strain measurement techniques, Digital Image Correlation and the Grid Method, are applied to characterise the strain-rate dependent constitutive behaviour of composite materials. Optical strain measurement techniques based on full-field images are well established for material characterisation in the quasi-static strain rate region, however in this work they are developed to study the material behaviour at intermediate strain rates, which is relatively unexplored. For t...

  2. Magnetic Implosion for Novel Strength Measurements at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Preston, D.L.; Bartsch, R.R.; Bowers, R.L.; Holtkamp, D.; Wright, B.L.

    1998-10-19

    Recently Lee and Preston have proposed to use magnetic implosions as a new method for measuring material strength in a regime of large strains and high strain rates inaccessible to previously established techniques. By its shockless nature, this method avoids the intrinsic difficulties associated with an earlier approach using high explosives. The authors illustrate how the stress-strain relation for an imploding liner can be obtained by measuring the velocity and temperature history of its inner surface. They discuss the physical requirements that lead us to a composite liner design applicable to different test materials, and also compare the code-simulated prediction with the measured data for the high strain-rate experiments conducted recently at LANL. Finally, they present a novel diagnostic scheme that will enable us to remove the background in the pyrometric measurement through data reduction.

  3. Measuring strength at ultrahigh strain rates.

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Tracy John

    2010-03-01

    The strain rate sensitivity of materials is measured through a combination of quasistatic, Hopkinson bar, and pressure-shear experiments. The pressure-shear technique has largely been limited to strain rates of order 1E6 1/s. Recent advances in laser and magnetically driven ramp loading have made it possible to achieve significantly higher rates, 1E5-1E8 1/s, under uniaxial strain compression. Strength in these experiments can be calculated by comparing the loading response to the hydrostatic (pressure-density) response of the material for the same density and temperature [Fowles, 1961]. This must be done accounting for the heating due to plastic work in the experiments. Experimental uniaxial strain data for aluminum for strain rates up to 1E8 1/s are examined and compared with existing data. The results are consistent with conventional views of the strain rate sensitivity of aluminum. However, when one considers the higher mean stress (pressure) present in the uniaxial strain experiments and, to a lesser extent, the pressure-shear experiments, one finds the material remains rate insensitive to about 1E7 1/s, two orders of magnitude higher than previously thought. Important caveats about determining strength in this manner will be discussed, and recommendations for future work will be made.

  4. Global longitudinal strain: a useful everyday measurement?

    Directory of Open Access Journals (Sweden)

    A King

    2016-10-01

    Full Text Available Herceptin (Trastuzumab is a widely used and effective drug for the treatment of Her2+ breast cancer but its cardiotoxic side effects require regular monitoring by echocardiography. A 10% reduction in left ventricular ejection fraction can lead to suspension of treatment and therefore has significant implications for patient prognosis in terms of cardiac and cancer outcomes. Assessment of LV function by conventional 2D biplane method of discs (2DEF has limitations in accuracy and reproducibility. Global longitudinal strain (GLS is becoming more widely available and user friendly. It has been shown to demonstrate myocardial damage earlier in treatment than 2DEF, allowing the option of pharmacological intervention at a pre-clinical stage and preventing the interruption of Herceptin. This study compares the reproducibility of GLS with that of 2DEF in a routine clinical environment. Fifty echocardiograms performed on female patients undergoing Herceptin treatment were used to measure both 2DEF and GLS within the recommended standard appointment time of 40 min. The data were re-measured (blind by the same operator a minimum of 14 days later to determine intra-operator variation. These data were also measured by a second operator (blind, to assess inter-operator variation. Analysis by direct comparison, intra-class correlation (ICC, coefficient of variation (CV and Bland–Altman plots demonstrated that GLS is a more reproducible measurement than 2DEF. This is important to prevent clinical decisions being erroneously based on variation in operator measurement. The investigation also shows that with advances in machine software this is a practical addition to routine assessment rather than merely a research tool.

  5. Visual Measurement of Suture Strain for Robotic Surgery

    Directory of Open Access Journals (Sweden)

    John Martell

    2011-01-01

    Full Text Available Minimally invasive surgical procedures offer advantages of smaller incisions, decreased hospital length of stay, and rapid postoperative recovery to the patient. Surgical robots improve access and visualization intraoperatively and have expanded the indications for minimally invasive procedures. A limitation of the DaVinci surgical robot is a lack of sensory feedback to the operative surgeon. Experienced robotic surgeons use visual interpretation of tissue and suture deformation as a surrogate for tactile feedback. A difficulty encountered during robotic surgery is maintaining adequate suture tension while tying knots or following a running anastomotic suture. Displaying suture strain in real time has potential to decrease the learning curve and improve the performance and safety of robotic surgical procedures. Conventional strain measurement methods involve installation of complex sensors on the robotic instruments. This paper presents a noninvasive video processing-based method to determine strain in surgical sutures. The method accurately calculates strain in suture by processing video from the existing surgical camera, making implementation uncomplicated. The video analysis method was developed and validated using video of suture strain standards on a servohydraulic testing system. The video-based suture strain algorithm is shown capable of measuring suture strains of 0.2% with subpixel resolution and proven reliability under various conditions.

  6. Visual measurement of suture strain for robotic surgery.

    Science.gov (United States)

    Martell, John; Elmer, Thomas; Gopalsami, Nachappa; Park, Young Soo

    2011-01-01

    Minimally invasive surgical procedures offer advantages of smaller incisions, decreased hospital length of stay, and rapid postoperative recovery to the patient. Surgical robots improve access and visualization intraoperatively and have expanded the indications for minimally invasive procedures. A limitation of the DaVinci surgical robot is a lack of sensory feedback to the operative surgeon. Experienced robotic surgeons use visual interpretation of tissue and suture deformation as a surrogate for tactile feedback. A difficulty encountered during robotic surgery is maintaining adequate suture tension while tying knots or following a running anastomotic suture. Displaying suture strain in real time has potential to decrease the learning curve and improve the performance and safety of robotic surgical procedures. Conventional strain measurement methods involve installation of complex sensors on the robotic instruments. This paper presents a noninvasive video processing-based method to determine strain in surgical sutures. The method accurately calculates strain in suture by processing video from the existing surgical camera, making implementation uncomplicated. The video analysis method was developed and validated using video of suture strain standards on a servohydraulic testing system. The video-based suture strain algorithm is shown capable of measuring suture strains of 0.2% with subpixel resolution and proven reliability under various conditions.

  7. Strain measurement within a single-lap joint using embedded strain gages

    Science.gov (United States)

    Tuttle, M. E.; Barthelemy, B. M.; Brinson, H. F.

    1984-01-01

    An experimental method used to measure the in-plane normal-axial strains produced within a single-lap joint is described in which a resistance-foil strain gage is embedded within the joint prior to curing of the adhesive. Nominal dimensions of the titanium Ti-6-4 adherends were 0.13 x 2.5 x 12.7 cm and an overlap of 2.5 cm was used. The joint was bonded with FM-300 structural adhesive. The average ultimate shear strength of the gaged specimens and control specimens was 16.1 MPa and 14.1 MPa. A significant advantage of the proposed method is that strains internal to the joint are measured, rather than strains at an external edge. The presence of the gage was found to be not detrimental to bond performance.

  8. Pipeline blockage location by strain measurement using an ROV

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.M.

    1995-12-31

    The paper describes an ROV based inspection method for locating a blockage in a marine pipeline. The method measures changes in the hoop strain in the pipe corresponding to changes in the internal fluid pressure. The device (patent applied for), converts radial extension or compression of the pipe into axial compression or tension respectively of a load cell. It allows the use of a high sensitivity axial strain sensing element to measure the hoop strain in the pipe. By pressurizing the pipe at positions upstream and downstream of the blockage and measuring the resulting hoop strain, the boundaries of the blockage can be accurately defined. The device can be installed and recovered by ROV, the signals being relayed to the surface via the ROV`s umbilical. The method has been used successfully to locate and define the extent of a blockage in a deepwater oil flowline running from a satellite well system to a production platform, allowing the planning of effective remedial action. The results of the strain measurements were found to be fully consistent with the contents of the pipe determined by subsequent sectioning. Key features of the hoop strain device include rugged design, high sensitivity, ease of attachment and recovery by ROV with the need for minimal cleaning and for access only to a sector of the pipe, typically {1/4} the circumference.

  9. Improved Hardware for Higher Spatial Resolution Strain-ENCoded (SENC) Breast MRI for Strain Measurements

    Science.gov (United States)

    Harouni, Ahmed A.; Hossain, Jakir; Jacobs, Michael A.; Osman, Nael F.

    2012-01-01

    Introduction Early detection of breast lesions using mammography has resulted in lower mortality-rates. However, some breast lesions are mammography occult and magnetic resonance imaging (MRI) is recommended, but has lower specificity. It is possible to achieve higher specificity by using Strain-ENCoded (SENC) MRI and/or magnetic resonance elastography(MRE). SENC breast MRI can measure the strain properties of breast tissue. Similarly, MRE is used to measure elasticity (i.e., shear stiffness) of different tissue compositions interrogating the tissue mechanical properties. Reports have shown that malignant tumors are 3–13 times stiffer than normal tissue and benign tumors. Methods We have developed a Strain-ENCoded (SENC) breast hardware device capable of periodically compressing the breast, thus allowing for longer scanning time and measuring the strain characteristics of breast tissue. This hardware enabled us to use SENC MRI with high spatial resolution (1×1×5mm3) instead of Fast SENC(FSENC). Simple controls and multiple safety measures were added to ensure accurate, repeatable and safe in-vivo experiments. Results Phantom experiments showed that SENC breast MRI has higher SNR and CNR than FSENC under different scanning resolutions. Finally, the SENC breast device reproducibility measurements resulted in a difference of less than one mm with a 1% strain difference. Conclusion SENC breast MR images have higher SNR and CNR than FSENC images. Thus, combining SENC breast strain measurements with diagnostic breast MRI to differentiate benign from malignant lesions could potentially increase the specificity of diagnosis in the clinical setting. PMID:21440464

  10. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of an Inflatable Module

    Science.gov (United States)

    Valle, Gerard D.; Selig, Molly; Litteken, Doug; Oliveras, Ovidio

    2012-01-01

    This paper documents the integration of a large hatch penetration into an inflatable module. This paper also documents the comparison of analytical load predictions with measured results utilizing strain measurement. Strain was measured by utilizing photogrammetric measurement and through measurement obtained from strain gages mounted to selected clevises that interface with the structural webbings. Bench testing showed good correlation between strain measurement obtained from an extensometer and photogrammetric measurement especially after the fabric has transitioned through the low load/high strain region of the curve. Test results for the full-scale torus showed mixed results in the lower load and thus lower strain regions. Overall strain, and thus load, measured by strain gages and photogrammetry tracked fairly well with analytical predictions. Methods and areas of improvements are discussed.

  11. Optical sensor for measuring humidity, strain and temperature

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to an optical sensor (100) adapted to measure at least three physical parameters, said optical sensor comprising a polymer-based optical waveguide structure comprising a first Bragg grating structure (101) being adapted to provide information about a first, a second...... relates to a method for measuring the first, the second and the third physical parameter. Preferably, the first, the second and the third physical parameter, are humidity, strain and temperature, respectively....

  12. Preliminary Results of Stress Measurement Using Drill Cores of TCDP Hole-A: an Application of Anelastic Strain Recovery Method to Three-Dimensional In-Situ Stress Determination

    Directory of Open Access Journals (Sweden)

    Weiren Lin En-Chao Yeh1

    2007-01-01

    Full Text Available In order to understand the feature of rock stress change at different depths above, within, and beneath the Chelungpu fault after the Chi-Chi earthquake, we employed a core-based stress measurement method, anelastic strain recovery (ASR technique to determine both the orientations and magnitudes of present three-dimensional principal rock stresses using drill core samples retrieved from Taiwan Chelungpu-fault Drilling Project (TCDP main Hole-A. The core samples used were taken from three depths; and their lithology were sandstone at depths of 592 and 1755 m and siltstone at 1112 m. The anelastic strains of the specimens in nine directions, including six independent directions, were measured after its in-situ stress was released. Acquired anelastic strains were of high quality and reached several hundred microstrains, which is sufficiently high for the accuracy of the measurement system used. Thus, the strain data could be used for three dimensional analysis resulting in the determination of orientations and the estimation of magnitudes of the principal in-situ stresses. Preliminary stress measurement results showed that the orientations of principal stresses changed between the shallower depth above the fault and the deeper depth beneath it, that is, the present stress distribution in the TCDP hole might be influenced by the Chelungpu fault rupture. At the same time, anelastic strain recovery measurement is well suited for the task of directly determining the orientations of principal in-situ stresses and to estimate the magnitude of stresses at large/great depth.

  13. Noise-Measuring Method

    DEFF Research Database (Denmark)

    Diamond, J. M.

    1965-01-01

    A noise-measuring method based on the use of a calibrated noise generator and an output meter with a special scale is described. The method eliminates the effect of noise contributions occurring in the circuits following the device under test.......A noise-measuring method based on the use of a calibrated noise generator and an output meter with a special scale is described. The method eliminates the effect of noise contributions occurring in the circuits following the device under test....

  14. Measuring autogenous strain of concrete with corrugated moulds

    DEFF Research Database (Denmark)

    Tian, Qian; Jensen, Ole Mejlhede

    2008-01-01

    A reliable technique to quantify autogenous strain is a prerequisite to numerical modeling in stress calculations for high performance concrete. The introducing of a special kind of corrugated tube mould helps to transforming volume strain measurement into liner strain measurement in horizontal...

  15. Measuring techniques for autogenous strain of cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2007-01-01

    Volumetric measurement of autogenous strain is frequently performed by placing the fresh cement paste in a rubber membrane submerged in water. The volume change of the cement paste is measured by the amount of water displaced by the submerged sample. Volumetric and linear measurements of autogenous...... of the volumetric method. Water absorption is driven by a lowering of the water activity in the cement paste due to dissolved salts in the pore fluid and to self-desiccation. From the moment of casting, significant water uptake was registered in all experiments. This water uptake influenced the volumetric...... on the same cement pastes....

  16. Measuring techniques for autogenous strain of cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2006-01-01

    Volumetric measurement of autogenous strain is frequently performed by placing the fresh cement paste in a rubber membrane submerged in water. The volume change of the cement paste is measured by the amount of water displaced by the submerged sample. Volumetric and linear measurements of autogenous...... of the volumetric method. Water absorption is driven by a lowering of the water activity in the cement paste due to dissolved salts in the pore fluid and to self-desiccation. From the moment of casting, significant water uptake was registered in all experiments. This water uptake influenced the volumetric...... on the same cement pastes....

  17. Strain measurement in concrete using embedded carbon roving-based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Quadflieg, Till; Gries, Thomas [RWTH Aachen Univ. (Germany). Inst. fuer Textiltechnik (ITA); Stolyarov, Oleg [St. Petersburg Polytechnic Univ. (Russian Federation)

    2016-11-01

    This paper presents the results of the application of carbon rovings as strain sensors for measuring the strain in concrete. In this work, three types of electrically conductive carbon roving with different characteristics were used. The possibility of using carbon rovings as a strain sensor is demonstrated via measurements in tensile and four point bending tests. The experimental setups and methods for measuring the electrical resistance of carbon roving in the roving and concrete are described. The results of the characterization of the electrical behavior as a function of strain of carbon rovings and concrete are presented and discussed. The obtained results indicate that the strain range of carbon rovings optimally corresponds to the strain range of concrete. This characteristic behavior makes the carbon rovings well suited for the use as strain sensors. A good correlation has been found between the electrical resistance-strain curve of the carbon roving and the measurements in the concrete.

  18. The measurement of the modal strain fields using digital shearography

    National Research Council Canada - National Science Library

    Lopes, H; Ribeiro, J.E; Vaz, M; Gomes, J.M

    2010-01-01

    This work presents a Michelson shearography interferometer configuration associated with stroboscopic double illumination technique for the measurement of modal rotation fields and their strain fields...

  19. Non-contact strain measurement in the mouse forearm loading model using digital image correlation (DIC).

    Science.gov (United States)

    Begonia, Mark T; Dallas, Mark; Vizcarra, Bruno; Liu, Ying; Johnson, Mark L; Thiagarajan, Ganesh

    2015-12-01

    This study investigates the use of a non-contact method known as digital image correlation (DIC) to measure strains in the mouse forearm during axial compressive loading. A two camera system was adapted to analyze the medial and lateral forearm displacements simultaneously, and the derived DIC strain measurements were compared to strain gage readings from both the ulna and radius. Factors such as region-of-interest (ROI) location, lens magnification, noise, and out-of-plane motion were examined to determine their influence on the DIC strain measurements. We confirmed that our DIC system can differentiate ROI locations since it detected higher average strains in the ulna compared to the radius and detected compressive strains on medial bone surfaces vs. tensile strains on lateral bone surfaces. Interestingly, the DIC method also captured heterogeneity in surface strain fields which are not detectable by strain gage based methods. A separate analysis of the noise intrinsic to the DIC system also revealed that the noise constituted less than 4.5% of all DIC strain measurements. Furthermore, finite element (FE) simulations of the forearm showed that out-of-plane motion was not a significant factor that influenced DIC measurements. Finally, we observed that average DIC strain measurements can be up to 1.5-2 times greater than average strain gage readings on the medial bone surfaces. These findings suggest that strain experienced in the mouse forearm model by loading is better captured through DIC as opposed to strain gages, which as a result of being glued to the bone surface artificially stiffen the bone and lead to an underestimation of the strain response. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of Inflatable Modules

    Science.gov (United States)

    Mohammed, Anil

    2011-01-01

    This paper focuses on integrating a large hatch penetration into inflatable modules of various constructions. This paper also compares load predictions with test measurements. The strain was measured by utilizing photogrammetric methods and strain gages mounted to select clevises that interface with the structural webbings. Bench testing showed good correlation between strain data collected from an extensometer and photogrammetric measurements, even when the material transitioned from the low load to high load strain region of the curve. The full-scale torus design module showed mixed results as well in the lower load and high strain regions. After thorough analysis of photogrammetric measurements, strain gage measurements, and predicted load, the photogrammetric measurements seem to be off by a factor of two.

  1. Strain measurement on a compact nuclear reactor steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Scaldaferri, Denis Henrique Bianchi; Gomes, Paulo de Tarso Vida; Mansur, Tanius Rodrigues, E-mail: dhbs@cdtn.b, E-mail: gomespt@cdtn.b, E-mail: tanius@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Pozzo, Renato del, E-mail: delpozzo@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil); Mola, Jairo [Unitecnica Engenharia, Sao Paulo, SP (Brazil)

    2011-07-01

    This work presents the strain measurement procedures applied to a compact nuclear reactor steam generator, during a hydrostatic test, using strain gage technology. The test was divided in two steps: primary side test and secondary side test. In the primary side test twelve points for strain measurement using rectangular rosettes, three points (two external and one internal) for temperature measurement using special strain gages and one point for pressure measurement using a pressure transducer were monitored. In the secondary side test 18 points for strain measurement using rectangular rosettes, four points (two external and two internal) for temperature measurement using special strain gages and one point for pressure measurement using a pressure transducer were monitored. The measurement points on both internal and external pressurizer walls were established from pre-calculated stress distribution by means of numerical approach (finite elements modeling). Strain values using a quarter Wheatstone bridge circuit were obtained. Stress values, from experimental strain were determined, and to numerical calculation results were compared. (author)

  2. From measurements errors to a new strain gauge design for composite materials

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Salviato, Marco; Gili, Jacopo

    2015-01-01

    Significant over-prediction of the material stiffness in the order of 1-10% for polymer based composites has been experimentally observed and numerical determined when using strain gauges for strain measurements instead of non-contact methods such as digital image correlation or less stiff methods...

  3. Entamoeba histolytica: correlation of assessment methods to measure erythrocyte digestion, and effect of cysteine proteinases inhibitors in HM-1:IMSS and HK-9:NIH strains.

    Science.gov (United States)

    Mora-Galindo, Juan; Anaya-Velázquez, Fernando; Ramírez-Romo, Susana; González-Robles, Arturo

    2004-01-01

    Entamoeba histolytica trophozoites are able to degrade human erythrocytes; the loss of erythrocyte cellular matrix and degradation of plasma membrane were observed, along with the decrease in the average size of digestive vacuoles. Ninety-six percent of hemoglobin ingested was hydrolyzed by trophozoites within 3h, as evidenced by electrophoresis. Accordingly, X-ray spectroscopy revealed the presence of iron inside vacuoles after erythrophagocytosis, the concentration of which decreased to control levels in a similar period. Quantification of erythrocyte digestion at the early and late periods was determined by a spectrophotometric procedure, with t(1/2)=1.67 h and 35-min for HM-1:IMSS and HK-9:NIH trophozoites, respectively. In the latter, activity was due to the combined action of intracellular enzymatic activity and exocytosis. E-64c and leupeptin totally inhibited erythrocyte digestion within a 3-h period, thereafter hydrolysis took place at lower rate. Our results suggest that erythrocyte digestion in E. histolytica proceeds in different ways in these two amebic strains, and can be blocked by proteinase inhibitors.

  4. Principles and Application of Polyimide Fiber Bragg Gratings for Surface Strain Measurement

    Directory of Open Access Journals (Sweden)

    Yangyang Sun

    2017-09-01

    Full Text Available Although theoretical investigation has demonstrated that fewer strain transfer layers imply a greater strain transfer ratio, as well as increased accuracy, most researchers are still focused on investigating encapsulated Fiber Bragg gratings (FBGs in surface strain measurements. This is because, in a traditional view, bare FBGs are too fragile to be mounted on the substrate for measuring surface strain. Polyimide FBGs may provide a better balance point between accuracy and protection. A new method to measure surface strain with polyimide fiber Bragg gratings is proposed. Bare polyimide FBGs have a polyimide coating, but like regular non-coated FBGs. This gives polyimide FBGs a higher strain transfer ratio and response frequency. Bare polyimide FBGs can be considered as uncoated FBGs. The coupling of the matrix material of polyimide FBGs is improved as compared to FBGs without coating. In order to verify the capacity for surface strain measurement, polyimide FBGs are mounted to obtain the surface strain of a concrete specimen with SM130-700 interrogator from Micron Optics Incorporation (MOI with a sampling frequency maximum of 2000 Hz. The experiment demonstrates that polyimide FBGs work well even in dynamic surface strain measurements such as explosion measurement. Validation experiment in this paper also proposed that fewer strain transfer layers can increase dynamic response frequency and coupling between FBG and substrate.

  5. Measurement of multidimensional strain fields using fiber grating sensors for structural monitoring

    Science.gov (United States)

    Udd, Eric; Schulz, Whitten L.; Seim, John M.

    1999-12-01

    For many structural applications it is highly desirable to be able to measure two or more axes of strain at a single point. In many cases one dimensional strain measurements may be insufficient to fully characterize events or lead to erroneous predictions. This paper will provide an overview of the use of multi-axis fiber grating strain sensors to perform structural diagnostics. Examples of usage of multi-axis fiber grating strain sensors in a smart bearing cell for damage assessment of bridges and for adhesive joints associated with aircraft will be given as illustrations of these methods.

  6. Simultaneous distributed measurements of temperature and strain using spontaneous Raman and Brillouin scattering

    Science.gov (United States)

    Alahbabi, M. N.; Cho, Y. T.; Newson, Trevor P.

    2004-06-01

    We report on a novel method for simultaneous distributed measurement of the temperature and strain in an optical fiber based on spatially resolving the anti-Stokes signals of both the spontaneous Raman and Brillouin backscattered signals.

  7. Local, atomic-level elastic strain measurements of metallic glass thin films by electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ebner, C. [Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Sarkar, R. [Department of Materials Science and Engineering, School for Engineering of Matter Transport and Energy, Arizona State University, Tempe 85287 (United States); Rajagopalan, J. [Department of Materials Science and Engineering, School for Engineering of Matter Transport and Energy, Arizona State University, Tempe 85287 (United States); Department of Mechanical and Aerospace Engineering, School for Engineering of Matter Transport and Energy, Arizona State University, Tempe 85287 (United States); Rentenberger, C., E-mail: christian.rentenberger@univie.ac.at [Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria)

    2016-06-15

    A novel technique is used to measure the atomic-level elastic strain tensor of amorphous materials by tracking geometric changes of the first diffuse ring of selected area electron diffraction patterns (SAD). An automatic procedure, which includes locating the centre and fitting an ellipse to the diffuse ring with sub-pixel precision is developed for extracting the 2-dimensional strain tensor from the SAD patterns. Using this technique, atomic-level principal strains from micrometre-sized regions of freestanding amorphous Ti{sub 0.45}Al{sub 0.55} thin films were measured during in-situ TEM tensile deformation. The thin films were deformed using MEMS based testing stages that allow simultaneous measurement of the macroscopic stress and strain. The calculated atomic-level principal strains show a linear dependence on the applied stress, and good correspondence with the measured macroscopic strains. The calculated Poisson’s ratio of 0.23 is reasonable for brittle metallic glasses. The technique yields a strain accuracy of about 1×10{sup −4} and shows the potential to obtain localized strain profiles/maps of amorphous thin film samples. - Highlights: • A TEM method to measure elastic strain in metallic glass films is proposed. • Method is based on tracking geometric changes in TEM diffraction patterns. • An automatic procedure is developed for extracting the local strain tensor. • Atomic-level strain in amorphous TiAl film was analysed during in-situ deformation. • Capability of the method to obtain micrometer scale strain profiles/maps is shown.

  8. X-Ray Topographic Measurements of Strain Fields.

    Science.gov (United States)

    1983-08-01

    Measurements of Strain Fields 6. PERFORMING ORG. REPORT NUMDER 17. AUTHOR(.) S. CONTRACT OR GRANT NUMSER(a) S.R. Stock, Haydn Chen and H.K. Birnbaum USN...STRAIN FIELDS S.R. Stock, Haydn Chen and H.K. Birnbaum University of Illinois at Urbana-Champaign Department of Metallurgy and Mining Eng. Urbana, IL...any purpose of the U.S. government is permitted. 88 09 07 18. - " mIII X-RAY TOPOGRAPHIC MEASUREMENT OF STRAIN FIELDS S.R. Stock*, Haydn Chen and H.K

  9. Pipeline Bending Strain Measurement and Compensation Technology Based on Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-01-01

    Full Text Available The bending strain of long distance oil and gas pipelines may lead to instability of the pipeline and failure of materials, which seriously deteriorates the transportation security of oil and gas. To locate the position of the bending strain for maintenance, an Inertial Measurement Unit (IMU is usually adopted in a Pipeline Inspection Gauge (PIG. The attitude data of the IMU is usually acquired to calculate the bending strain in the pipe. However, because of the vibrations in the pipeline and other system noises, the resulting bending strain calculations may be incorrect. To improve the measurement precision, a method, based on wavelet neural network, was proposed. To test the proposed method experimentally, a PIG with the proposed method is used to detect a straight pipeline. It can be obtained that the proposed method has a better repeatability and convergence than the original method. Furthermore, the new method is more accurate than the original method and the accuracy of bending strain is raised by about 23% compared to original method. This paper provides a novel method for precisely inspecting bending strain of long distance oil and gas pipelines and lays a foundation for improving the precision of inspection of bending strain of long distance oil and gas pipelines.

  10. Differentiation of mycoplasma gallisepticum strains using molecular methods.

    Science.gov (United States)

    Biró, Judit; Erdei, Noémi; Székely, Ibolya; Stipkovits, L

    2006-12-01

    Increasing use of Mycoplasma gallisepticum (MG) live vaccines has led to a need for the differentiation of MG strains. The MG strains MK-7, MS-16, S6, FS-9 and R strains and the MG live vaccine strain F were compared by random amplification of polymorphic DNA (RAPD) in this study. Using RAPD, different patterns were found among the MG strains. In addition to this, we examined the differentiating potential of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) primers targeted at the crmA, crmB, crmC, gapA, mgc2 and pvpA genes encoding cytadherence-related surface proteins. These proteins may take part in the pathogenesis of MG-induced disease. Differentiation of strain F is based on the identification of restriction enzyme sites in the PCR amplicons. Using HphI enzyme, crmC PCR amplicons produced different RFLP patterns. Digestion of amplicons of gapA-specific PCR with MboI enzyme also produced distinct patterns. Differences were observed among strains R and F by digestion of mgc2 PCR amplicons with HaelIl and VspI enzymes and digestion of pvpA PCR amplicons with AccI, PvulI and ScrFI endonucleases. This method can be used for the rapid differentiation of vaccine strain from wild strains. Differentiation of MG strains is a great advantage for diagnosticians or practitioners and it is useful for epidemiological studies.

  11. Ultrasound Strain Measurements for Evaluating Local Pulmonary Ventilation

    Science.gov (United States)

    Rubin, Jonathan M.; Horowitz, Jeffrey C.; Sisson, Thomas H.; Kim, Kang; Ortiz, Luis A.; Hamilton, James D.

    2015-01-01

    Local lung function is difficult to evaluate, because most lung function estimates are either global in nature, e.g. pulmonary function tests, or require equipment that cannot be used at a patient's bedside, such as computed tomograms. Yet, local function measurements would be highly desirable for many reasons. In a recent publication [1], we were able to track displacements of the lung surface during breathing. We have now extended these results to measuring lung strains during respiration as a means of assessing local lung ventilation. We studied two normal human volunteers and 12 mice with either normal lung function or experimentally induced pulmonary fibrosis. The difference in strains between the control, normal mice and those with pulmonary fibrosis was significant (p < 0.02), while the strains measured in the human volunteers closely matched linear strains predicted from the literature. Ultrasonography may be able to assess local lung ventilation. PMID:26635917

  12. Multi-fiber strains measured by micro-Raman spectroscopy: Principles and experiments

    Science.gov (United States)

    Lei, Zhenkun; Wang, Yunfeng; Qin, Fuyong; Qiu, Wei; Bai, Ruixiang; Chen, Xiaogang

    2016-02-01

    Based on widely used axial strain measurement method of Kevlar single fiber, an original theoretical model and measurement principle of application of micro-Raman spectroscopy to multi-fiber strains in a fiber bundle were established. The relationship between the nominal Raman shift of fiber bundle and the multi-fiber strains was deduced. The proposed principle for multi-fiber strains measurement is consistent with two special cases: single fiber deformation and multi-fiber deformation under equal strain. It is found experimentally that the distribution of Raman scattering intensity of a Kevlar 49 fiber as a function of distance between a fiber and the laser spot center follows a Gaussian function. Combining the Raman-shift/strain relationship of the Kevlar 49 single fiber and the uniaxial tension measured by micro-Raman spectroscopy, the Raman shift as a function of strain was obtained. Then the Raman peak at 1610 cm-1 for the Kevlar 49 fiber was fitted to a Lorentzian function and the FWHM showed a quadratic increase with the fiber strain. Finally, a dual-fiber tensile experiment was performed to verify the adequacy of the Raman technique for the measurement of multi-fiber strains.

  13. Precise measurement of local strain fields with energy-unfiltered convergent-beam electron diffraction.

    Science.gov (United States)

    Yamazaki, Takashi; Isaka, Tomoko; Kuramochi, Koji; Hashimoto, Iwao; Watanabe, Kazuto

    2006-05-01

    A simple and robust method to precisely determine local strain fields using energy-unfiltered convergent-beam electron diffraction is presented. This method involves the subtraction of background intensity, the extraction of higher-order Laue-zone lines by tracing using a Radon transformation and a system of analytical strain determination without the need for an optimization routine such as chi2-based minimization. As an example, the measurement of residual strain in a silicon-on-insulator wafer is demonstrated. It is found from micro-Raman spectroscopy analysis that, at the nanometre scale, this measurement succeeds with an accuracy of 0.06%.

  14. Standard guide for high-temperature static strain measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This guide covers the selection and application of strain gages for the measurement of static strain up to and including the temperature range from 425 to 650°C (800 to 1200°F). This guide reflects some current state-of-the-art techniques in high temperature strain measurement, and will be expanded and updated as new technology develops. 1.2 This practice assumes that the user is familiar with the use of bonded strain gages and associated signal conditioning and instrumentation as discussed in Refs. (1) and (2). The strain measuring systems described are those that have proven effective in the temperature range of interest and were available at the time of issue of this practice. It is not the intent of this practice to limit the user to one of the gage types described nor is it the intent to specify the type of system to be used for a specific application. However, in using any strain measuring system including those described, the proposer must be able to demonstrate the capability of the proposed sy...

  15. Method for bacteriophage isolation against target Campylobacter strains

    National Research Council Canada - National Science Library

    Carvalho, C; Susano, M; Fernandes, E; Santos, S; Gannon, B; Nicolau, A; Gibbs, P; Teixeira, P; Azeredo, J

    2010-01-01

    .... This work focuses on the isolation of Campylobacter coli lytic bacteriophages (phages) against target C. coli strains. A method involving the enrichment of free-range chicken samples in a broth containing the target C...

  16. Measurements on thermal expansion with strain gauge; yugami geji wo mochiita gokuteion netsubochoritsu no keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T.; Sato, A. [National Research Inst. for Metals, Tokyo (Japan); Arai, O.; Okuda, Y. [Tokyo Inst. of Tech., Tokyo (Japan)

    1999-11-10

    As the part of very low temperature thermophysical property measurement technique standardization by the intelligent basis promotion system, very low temperature coefficient of thermal expansion measurement method using the strain gauge was examined. Here, DyVO4 that that it has the unique temperature dependency as a sample for the test at 20K or less was expected was taken up. The strain gauge, which constituted bridge circuit using strain sensor of 4 used by fatigue test of very low temperature, was produced, and the measurement of coefficient of thermal expansion was tried. (NEDO)

  17. Photonic Crystal Fiber Sensors for Strain and Temperature Measurement

    OpenAIRE

    Jian Ju; Wei Jin

    2009-01-01

    This paper discusses the applications of photonic crystal fibers (PCFs) for strain and temperature measurement. Long-period grating sensors and in-fiber modal interferometric sensors are described and compared with their conventional single-mode counterparts. The strain sensitivities of the air-silica PCF sensors are comparable or higher than those implemented in conventional single-mode fibers but the temperature sensitivities of the PCF sensors are much lower.

  18. Photonic Crystal Fiber Sensors for Strain and Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Jian Ju

    2009-01-01

    Full Text Available This paper discusses the applications of photonic crystal fibers (PCFs for strain and temperature measurement. Long-period grating sensors and in-fiber modal interferometric sensors are described and compared with their conventional single-mode counterparts. The strain sensitivities of the air-silica PCF sensors are comparable or higher than those implemented in conventional single-mode fibers but the temperature sensitivities of the PCF sensors are much lower.

  19. Engineering related neutron diffraction measurements probing strains, texture and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Bjorn [Los Alamos National Laboratory; Brown, Donald W [Los Alamos National Laboratory; Tome, Carlos N [Los Alamos National Laboratory; Balogh, Levente [Los Alamos National Laboratory; Vogel, Sven C [Los Alamos National Laboratory

    2010-01-01

    Neutron diffraction has been used for engineering applications for nearly three decades. The basis of the technique is powder diffraction following Bragg's Law. From the measured diffraction patterns information about internal, or residual, strain can be deduced from the peak positions, texture information can be extracted from the peak intensities, and finally the peak widths can provide information about the microstructure, e.g. dislocation densities and grain sizes. The strains are measured directly from changes in lattice parameters, however, in many cases it is non-trivial to determine macroscopic values of stress or strain from the measured data. The effects of intergranular strains must be considered, and combining the neutron diffraction measurements with polycrystal deformation modeling has proven invaluable in determining the overall stress and strain values of interest in designing and dimensioning engineering components. Furthelmore, the combined use of measurements and modeling has provided a tool for elucidating basic material properties, such as critical resolved shear stresses for the active deformation modes and their evolution as a function of applied deformation.

  20. A Fatigue Life Prediction Method Based on Strain Intensity Factor.

    Science.gov (United States)

    Zhang, Wei; Liu, Huili; Wang, Qiang; He, Jingjing

    2017-06-22

    In this paper, a strain-intensity-factor-based method is proposed to calculate the fatigue crack growth under the fully reversed loading condition. A theoretical analysis is conducted in detail to demonstrate that the strain intensity factor is likely to be a better driving parameter correlated with the fatigue crack growth rate than the stress intensity factor (SIF), especially for some metallic materials (such as 316 austenitic stainless steel) in the low cycle fatigue region with negative stress ratios R (typically R = -1). For fully reversed cyclic loading, the constitutive relation between stress and strain should follow the cyclic stress-strain curve rather than the monotonic one (it is a nonlinear function even within the elastic region). Based on that, a transformation algorithm between the SIF and the strain intensity factor is developed, and the fatigue crack growth rate testing data of 316 austenitic stainless steel and AZ31 magnesium alloy are employed to validate the proposed model. It is clearly observed that the scatter band width of crack growth rate vs. strain intensity factor is narrower than that vs. the SIF for different load ranges (which indicates that the strain intensity factor is a better parameter than the stress intensity factor under the fully reversed load condition). It is also shown that the crack growth rate is not uniquely determined by the SIF range even under the same R, but is also influenced by the maximum loading. Additionally, the fatigue life data (strain-life curve) of smooth cylindrical specimens are also used for further comparison, where a modified Paris equation and the equivalent initial flaw size (EIFS) are involved. The results of the proposed method have a better agreement with the experimental data compared to the stress intensity factor based method. Overall, the strain intensity factor method shows a fairly good ability in calculating the fatigue crack propagation, especially for the fully reversed cyclic loading

  1. Evaluation of Strain Measurement Devices for Inflatable Structures

    Science.gov (United States)

    Litteken, Doug

    2017-01-01

    Inflatable structures provide a significant volume savings for future NASA deep space missions. The complexity of these structures, however, provides difficulty for engineers in designing, analyzing, and testing. Common strain measurement systems for metallic parts cannot be used directly on fabrics. New technologies must be developed and tested to accurately measure the strain of inflatable structures. This paper documents the testing of six candidate strain measurement devices for use on fabrics. The resistance devices tested showed significant hysteresis during creep and cyclic testing. The capacitive device, however, showed excellent results and little-to-no hysteresis. Because of this issue, only two out of the six proposed devices will continue in development. The resulting data and lessons learned from this effort provides direction for continued work to produce a structural health monitoring system for inflatable habitats.

  2. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering

    Science.gov (United States)

    Alahbabi, M. N.; Cho, Y. T.; Newson, T. P.

    2005-06-01

    We report on a novel method for simultaneous distributed measurement of temperature and strain based on spatially resolving both spontaneous Raman and Brillouin backscattered anti-Stokes signals. The magnitude of the intensity of the anti-Stokes Raman signal permits the determination of the temperature. The Brillouin frequency shift is dependent on both the temperature and the strain of the fiber; once the temperature has been determined from the Raman signal, the strain can then be computed from the frequency measurement of the Brillouin signal.

  3. Strain measurements in thermally grown alumina scales using ruby fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Veal, B.W.; Natesan, K.; Koshelev, I.; Grimsditch, M. [Argonne National Lab., IL (United States); Renusch, D. [Argonne National Lab., IL (United States)]/[Western Michigan Univ., Kalamazoo, MI (United States); Hou, P.Y. [Lawrence Berkeley Lab., CA (United States)

    1996-12-31

    We have measured strains in alumina scales thermally grown on Fe-Cr- Al alloys by exploiting the strain dependence of the ruby luminescence line. Measurements were done on Fe-5Cr-28Al and Fe-18Cr-10Al (at.%, bal. Fe) oxidized between 300-1300 C with periodic cycling to room temperature. Significantly different levels of strain buildup were observed in scales on these alloys. Results on similar alloys containing a dilute reactive element (Zr or Hf) are also presented. We observe that scales on alloys containing a reactive element (RE) can support higher strains than scales on RE-free alloys. With the luminescence technique, strain relief associated with spallation thresholds is readily observed. In early stage oxidation, the evolution of transition phases is monitored using Raman and fluorescence spectroscopies. The fluorescence technique also provides a sensitive probe of early stage formation of {alpha}-Al{sub 2}O{sub 3}. It appears that, in presence of Cr{sub 2}O{sub 3} or Fe{sub 2}O{sub 3}, the {alpha}-alumina phase can form at anomalously low temperatures.

  4. Internal strain measurement using pulsed neutron diffraction at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Goldstone, J.A.; Bourke, M.A.M.; Shi, N. [Los Alamos National Lab., NM (United States). Manuel Lujan Jr. Neutron Scattering Center

    1994-12-01

    The presence of residual stress in engineering components can effect their mechanical properties and structural integrity. Neutron diffraction in the only technique that can make nondestructive measurements in the interior of components. By recording the change in crystalline lattice spacings, elastic strains can be measured for individual lattice reflections. Using a pulsed neutron source, all lattice reflections are recorded in each measurement, which allows for easy examination of heterogeneous materials such as metal matrix composites. Measurements made at the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) demonstrate the potential at pulsed sources for in-situ stress measurements at ambient and elevated temperatures.

  5. Photothermal Measurement of Optical Surface Absorption Using Strain Transducers.

    Science.gov (United States)

    1981-09-15

    Bayles of the Material Science and Technology Division for lending us the strain gauge. IN’. References 1. M. Hass, J.W. Davisson , H.B. Rosenstock, and J...Babiskin, "Measurement of Very Low Absorp- tion Coefficients by Laser Calorimetry", Applied Optics 14, 1128-30 (1975). 2. M. Hass and J. Davisson

  6. Fatigue crack identification method based on strain amplitude changing

    Science.gov (United States)

    Guo, Tiancai; Gao, Jun; Wang, Yonghong; Xu, Youliang

    2017-09-01

    Aiming at the difficulties in identifying the location and time of crack initiation in the castings of helicopter transmission system during fatigue tests, by introducing the classification diagnostic criteria of similar failure mode to find out the similarity of fatigue crack initiation among castings, an engineering method and quantitative criterion for detecting fatigue cracks based on strain amplitude changing is proposed. This method is applied on the fatigue test of a gearbox housing, whose results indicates: during the fatigue test, the system alarms when SC strain meter reaches the quantitative criterion. The afterwards check shows that a fatigue crack less than 5mm is found at the corresponding location of SC strain meter. The test result proves that the method can provide accurate test data for strength life analysis.

  7. The measurement of the modal strain fields using digital shearography

    Directory of Open Access Journals (Sweden)

    Gomes J.M.

    2010-06-01

    Full Text Available This work presents a Michelson shearography interferometer configuration associated with stroboscopic double illumination technique for the measurement of modal rotation fields and their strain fields on a clamped circular aluminium plate. The speckle pattern is frozen by the synchronization between the LASER illumination and the modal vibration of the object. The quantitative evaluation is performed for each digital shearogram using a time modulation technique. The setup of double illumination LASER with out-of-plane opposite sensitivity allows the two phase maps measurement of the modal spatial gradient. The modal rotation and strain fields are extracted by the combination of this two digital phase maps. Image processing techniques are applied on the phase maps to obtain full-field measurements using a dedicated post-processing algorithm. Finally, is presented a comparison between the experimental measurement and the numerical solution.

  8. Analytical stiffness matrices with Green-Lagrange strain measure

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2005-01-01

    a solution based on Green-Lagrange strain measure. The approach is especially useful in design optimization, because analytical sensitivity analysis then can be performed. The case of a three node triangular ring element for axisymmetric analysis involves small modifications and extension to four node......Separating the dependence on material and stress/strain state from the dependence on initial geometry, we obtain analytical secant and tangent stiffness matrices. For the case of a linear displacement triangle with uniform thickness and uniform constitutive behaviour closed-form results are listed...

  9. X-Ray-Scattering Measurements Of Strain In PEEK

    Science.gov (United States)

    Cebe, Peggy; Lowry, Lynn E.; Chung, Shirley Y.; Yavrouian, Andre H.; Gupta, Amitava

    1988-01-01

    Internal stress relieved by heating above glass-transition temperature. Report describes wide-angle x-ray scattering and differential scanning calorimetry of specimens of poly(etheretherketone) having undergone various thermal treatments. Wide-angle x-ray scattering particularly useful in determining distances between atoms, crystallinity, and related microstructurally generated phenomena, as thermal expansion and strain. Calorimetric measurements aid interpretation of scattering measurements by enabling correlation with thermal effects.

  10. Improved hardware for higher spatial resolution strain-encoded (SENC) breast MRI for strain measurements.

    Science.gov (United States)

    Harouni, Ahmed A; Hossain, Jakir; Jacobs, Michael A; Osman, Nael F

    2011-06-01

    Early detection of breast lesions using mammography has resulted in lower mortality rates. However, some breast lesions are mammography occult, and magnetic resonance imaging (MRI) is recommended, but it has lower specificity. It is possible to achieve higher specificity by using strain-encoded (SENC) MRI and/or magnetic resonance elastography. SENC breast MRI can measure the strain properties of breast tissue. Similarly, magnetic resonance elastography is used to measure the elasticity (ie, shear stiffness) of different tissue compositions interrogating the tissue mechanical properties. Reports have shown that malignant tumors are three to 13 times stiffer than normal tissue and benign tumors. The investigators have developed a SENC breast hardware device capable of periodically compressing the breast, thus allowing for longer scanning time and measuring the strain characteristics of breast tissue. This hardware enables the use of SENC MRI with high spatial resolution (1 × 1 × 5 mm(3)) instead of fast SENC imaging. Simple controls and multiple safety measures were added to ensure accurate, repeatable, and safe in vivo experiments. Phantom experiments showed that SENC breast MRI has higher signal-to-noise ratio and contrast-to-noise ratio than fast SENC imaging under different scanning resolutions. Finally, the SENC breast device reproducibility measurements resulted in a difference of breast magnetic resonance images have higher signal-to-noise ratio and contrast-to-noise ratios than fast SENC images. Thus, combining SENC breast strain measurements with diagnostic breast MRI to differentiate benign from malignant lesions could potentially increase the specificity of diagnosis in the clinical setting. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  11. Interpretation of Strain Measurements on Nuclear Pressure Vessels

    DEFF Research Database (Denmark)

    Andersen, Svend Ib Smidt; Engbæk, Preben

    1980-01-01

    Selected results from strain measurements on four nuclear pressure vessels are presented and discussed. The measurements were made in several different regions of the vessels: transition zones in vessel heads, flanges and bottom parts, nozzles, internal vessel structure and flange bolts. The resu......Selected results from strain measurements on four nuclear pressure vessels are presented and discussed. The measurements were made in several different regions of the vessels: transition zones in vessel heads, flanges and bottom parts, nozzles, internal vessel structure and flange bolts....... The results presented are based on data obtained by approximately 700 strain-gauges, and a comprehensive knowledge of the quality obtained by such measurements is established. It is shown that a thorough control procedure before and after the test as well as a detailed knowledge of the behaviour of the signal...... from the individual gauges during the test is necessary. If this is omitted, it can be extremely difficult to distinguish between the real structural behaviour and a malfunctioning of a specific gauge installation. In general, most of the measuring results exhibit a very linear behaviour...

  12. Application of a type of strain block FBG sensor for strain measurements of squeezing rock in a deep-buried tunnel

    Science.gov (United States)

    Wu, Guojun; Chen, Weizhong; Dai, Yonghao; Yang, Jianping; Tan, Xianjun; Tian, Hongming

    2017-11-01

    Tunneling in squeezing rock often encounters large deformation, which threatens the safety and stability of tunnel support during tunnel construction. In this work, to acquire a greater amount of strain sensor data to fully understand the stress/strain state of surrounding rock during tunnel excavation, a special type of strain block with fiber Bragg grating (FBG) sensors has been introduced, which is characterized by three groups of FBG strain rosettes adhered to three adjacent surfaces of the block, respectively, and each strain rosette distributed in the form of a 0°-45°-90° arrangement. Applying this type of FBG strain block sensor to a deep-buried tunnel in squeezing rock, six strain components in one strain block (representative of strain state of a point in rock) could be obtained with the processing method. The monitoring results can reflect the effect of tunnel excavation due to abrupt changes of strain monitored in rock, and were verified as being in reasonable agreement with numerical simulation. Therefore, the strain block with FBG sensors can be applicable in measuring strains in squeezing rock.

  13. Dynamical effects in strain measurements by dark-field electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Javon, E. [CEMES-CNRS and Université de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France); EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Lubk, A. [CEMES-CNRS and Université de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France); EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Institute of Structure Physics, Technische Universität Dresden, 01062 Dresden (Germany); Cours, R. [CEMES-CNRS and Université de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France); Reboh, S. [CEMES-CNRS and Université de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France); CEA, LETI, Minatec Campus, 17 rue de Martyrs, 38054 Grenoble (France); Cherkashin, N.; Houdellier, F.; Gatel, C.; Hÿtch, M.J. [CEMES-CNRS and Université de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France)

    2014-12-15

    Here, we study the effect of dynamic scattering on the projected geometric phase and strain maps reconstructed using dark-field electron holography (DFEH) for non-uniformly strained crystals. The investigated structure consists of a {SiGe/Si} superlattice grown on a (001)-Si substrate. The three-dimensional strain field within the thin TEM lamella is modelled by the finite element method. The observed projected strain is simulated in two ways by multiplying the strain at each depth in the crystal by a weighting function determined from a recently developed analytical two-beam dynamical theory, and by simply taking the average value. We demonstrate that the experimental results need to be understood in terms of the dynamical theory and good agreement is found between the experimental and simulated results. Discrepancies do remain for certain cases and are likely to be from an imprecision in the actual two-beam diffraction conditions, notably the deviation parameter, and points to limitations in the 2-beam approximation. Finally, a route towards a 3D reconstruction of strain fields is proposed. - Highlights: • We explain DFEH strain map thanks to a recent theoretical development. • The projection measured by DFEH is a weighted average of the strain along the e-beam. • The weighting function depends on diffracted beam, thickness and sample orientation. • The weighting functions were included in FEM simulation and compared to DFEH results. • Kinematic conditions avoid the dynamical effects and lead to the average strain value.

  14. Electron microscopy by specimen design: application to strain measurements.

    Science.gov (United States)

    Cherkashin, Nikolay; Denneulin, Thibaud; Hÿtch, Martin J

    2017-09-29

    A bewildering number of techniques have been developed for transmission electron microscopy (TEM), involving the use of ever more complex combinations of lens configurations, apertures and detector geometries. In parallel, the developments in the field of ion beam instruments have modernized sample preparation and enabled the preparation of various types of materials. However, the desired final specimen geometry is always almost the same: a thin foil of uniform thickness. Here we will show that judicious design of specimen geometry can make all the difference and that experiments can be carried out on the most basic electron microscope and in the usual imaging modes. We propose two sample preparation methods that allow the formation of controlled moiré patterns for general monocrystalline structures in cross-section and at specific sites. We developed moiré image treatment algorithms using an absolute correction of projection lens distortions of a TEM that allows strain measurements and mapping with a nanometer resolution and 10-4 precision. Imaging and diffraction techniques in other fields may in turn benefit from this technique in perspective.

  15. Automated methods of corrosion measurement

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Reeve, John Ch

    1997-01-01

    Measurements of corrosion rates and other parameters connected with corrosion processes are important, first as indicators of the corrosion resistance of metallic materials and second because such measurements are based on general and fundamental physical, chemical, and electrochemical relations....... Hence improvements and innovations in methods applied in corrosion research are likeliy to benefit basic disciplines as well. A method for corrosion measurements can only provide reliable data if the beckground of the method is fully understood. Failure of a method to give correct data indicates a need...... to revise assumptions regarding the basis of the method, which sometimes leads to the discovery of as-yet unnoticed phenomena. The present selection of automated methods for corrosion measurements is not motivated simply by the fact that a certain measurement can be performed automatically. Automation...

  16. X-ray microbeam fluorescence and strain measurements during electromigration

    Science.gov (United States)

    Kao, Hsien-Kang (Michael)

    2000-10-01

    composition in the 200 mum-long, 10 mum-wide, 0.5 mum-thick passivated Al(Cu) conductor lines were measured for several electromigration testing conditions, and the evolution profiles could be simulated based on the proposed one dimensional continuum model with phenomenological flux equations and a finite difference calculation method. From the steady state profile, the apparent: effective charge Z*Cu of Cu in Al(Cu) was determined to be -8.6 +/- 0.6. The evolution of Cu concentration profiles could be manipulated by controlling the direction and magnitude of the current flow at different temperatures. The effective grain boundary diflusivity D DeffCu was determined by fitting the time dependent experimental Cu concentration profiles. The results show Arrhenius behavior of DeffCu=Doexp -QkT for T = 275°C-325°C with Do = 10-(2.3 +/- 1.6) cm2/sec and Q = 0.76 +/- 0.19 eV. Real-time electromigration-induced strains normal to the sample surface, monitored by x-ray microbeam diffraction, showed that linear strain profile developed within 60% of the conductor line from the cathode end after about 9 hrs of electromigration with 1.5 x 105 A/cm 2 at 300°C. This corresponds to 3MPa/mum equibiaxial stress. From the Cu profile measured at the same time, the critical Cu concentration for significantly slowing down Al grain boundary diffusion is estimated to be ˜0.15 at.%. These data also confirm that downstream Cu transport is accompanied by a counter flow of Al in the upstream direction.

  17. Development of shearography for surface strain measurement of non planar objects

    Energy Technology Data Exchange (ETDEWEB)

    Groves, Roger Michael

    2001-07-01

    The subject of this thesis is the development of optical instrumentation for surface strain measurement of non-planar objects. The speckle interferometry technique of shearography is used to perform quantitative measurements of surface strain on non-planar objects and to compensate these measurements for the errors that are due to the shape and slope of the object. Shearography is an optical technique that is usually used for defect location and for qualitative strain characterisation. In this thesis a multi-component shearography system is described that can measure the six components of displacement gradient. From these measurements the surface strain can be fully characterised. For non-planar objects an error is introduced into the displacement gradient measurement due to the variation of the sensitivity vector across the field of view and the variation in the magnitude of applied shear due to the curvature of the object surface. To correct for these errors requires a knowledge of the slope and shape of the object. Shearography may also be used to measure object slope and shape by a source displacement technique. Therefore slope, shape and surface strain may be measured using the same optical system. The thesis describes a method of multiplexing the shear direction using polarisation switching, a method of measuring the source position using shadow Moire and the shearography source displacement technique for measuring the surface slope and shape of objects. The multi-component shearography system is used to perform measurements of the six components of surface strain, on an industrial component, with a correction applied for errors due to the shape and slope of the object. (author)

  18. Dynamic strain measurement of hydraulic system pipeline using fibre Bragg grating sensors

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-04-01

    Full Text Available Fatigue failure is a serious problem in hydraulic piping systems installed in the machinery and equipment working in harsh operational conditions. To alleviate this problem, health monitoring of pipes can be conducted by measuring and analysing vibration-induced strain. Fibre Bragg grating is considered as a promising sensing approach for dynamic load monitoring. In this article, dynamic strain measurements based on fibre Bragg grating sensors for small-bore metal pipes have been investigated. The quasi-distributed strain sensing of fibre Bragg grating sensors is introduced. Two comparison experiments were carried out under vibration and impact loads among the methods of electrical strain gauge, piezoelectric accelerometer and fibre Bragg grating sensor. Experimental results indicate that fibre Bragg grating sensor possesses an outstanding ability to resist electromagnetic interference compared with strain gauge. The natural frequency measurement results, captured by fibre Bragg grating sensor, agree well with the modal analysis results obtained from finite element analysis. In addition, the attached fibre Bragg grating sensor brings a smaller impact on the dynamic characteristics of the measured pipe than the accelerometer due to its small size and lightweight. Fibre Bragg grating sensors have great potential for the quasi-distributed measurement of dynamic strain for the dynamic characteristic research and health monitoring of hydraulic system pipeline.

  19. Measurement of in-plane strain with dual beam spatial phase-shift digital shearography

    Science.gov (United States)

    Xie, Xin; Chen, Xu; Li, Junrui; Wang, Yonghong; Yang, Lianxiang

    2015-11-01

    Full-field in-plane strain measurement under dynamic loading by digital shearography remains a big challenge in practice. A phase measurement for in-plane strain information within one time frame has to be achieved to solve this problem. This paper presents a dual beam spatial phase-shift digital shearography system with the capacity to measure phase distribution corresponding to in-plane strain information within a single time frame. Two laser beams with different wavelengths are symmetrically arranged to illuminate the object under test, and two cameras with corresponding filters, which enable simultaneous recording of two shearograms, are utilized for data acquisition. The phase information from the recorded shearograms, which corresponds to the in-plane strain, is evaluated by the spatial phase-shift method. The spatial phase-shift shearography system realizes a measurement of the in-plane strain through the introduction of the spatial phase-shift technique, using one frame after the loading and one frame before loading. This paper presents the theory of the spatial phase-shift digital shearography for in-plane strain measurement and its derivation, experimental results, and the technique’s potential.

  20. Ultrasound 2D strain measurement for arm lymphedema using deformable registration: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Yang

    Full Text Available Lymphedema, a swelling of the extremity, is a debilitating morbidity of cancer treatment. Current clinical evaluation of lymphedema is often based on medical history and physical examinations, which is subjective. In this paper, the authors report an objective, quantitative 2D strain imaging approach using a hybrid deformable registration to measure soft-tissue stiffness and assess the severity of lymphedema.The authors have developed a new 2D strain imaging method using registration of pre- and post-compression ultrasound B-mode images, which combines the statistical intensity- and structure-based similarity measures using normalized mutual information (NMI metric and normalized sum-of-squared-differences (NSSD, with an affine-based global and B-spline-based local transformation model. This 2D strain method was tested through a series of experiments using elastography phantom under various pressures. Clinical feasibility was tested with four participants: two patients with arm lymphedema following breast-cancer radiotherapy and two healthy volunteers.The phantom experiments have shown that the proposed registration-based strain method significantly increased the signal-to-noise and contrast-to-noise ratio under various pressures as compared with the commonly used cross-correlation-based elastography method. In the pilot study, the strain images were successfully generated for all participants. The averaged strain values of the lymphedema affected arms were much higher than those of the normal arms.The authors have developed a deformable registration-based 2D strain method for the evaluation of arm lymphedema. The initial findings are encouraging and a large clinical study is warranted to further evaluate this 2D ultrasound strain imaging technology.

  1. Strain Measurements of Chondrules and Refraction Inclusion in Allende

    Science.gov (United States)

    Tait, Alastair W.; Fisher, Kent R.; Simon, Justin I.

    2013-01-01

    This study uses traditional strain measurement techniques, combined with X-ray computerized tomography (CT), to evaluate petrographic evidence in the Allende CV3 chondrite for preferred orientation and to measure strain in three dimensions. The existence of petrofabrics and lineations was first observed in carbonaceous meteorites in the 1960's. Yet, fifty years later only a few studies have reported that meteorites record such features. Impacts are often cited as the mechanism for this feature, although plastic deformation from overburden and nebular imbrication have also been proposed. Previous work conducted on the Leoville CV3 and the Parnallee LL3 chondrites, exhibited a minimum uniaxial shortening of 33% and 21%, respectively. Petrofabrics in Allende CV3 have been looked at before; previous workers using Electron Back Scatter Diffraction (EBSD) found a major-axis alignment of olivine inside dark inclusions and an "augen"-like preferred orientation of olivine grains around more competent chondrules

  2. Reliability Assessment for PSC Box-Girder Bridges Based on SHM Strain Measurements

    Directory of Open Access Journals (Sweden)

    Chuang Chen

    2017-01-01

    Full Text Available A reliability assessment method for prestressed concrete (PSC continuous box-girder bridges based on structural health monitoring (SHM strain measurements was proposed. First, due to the fact that measured strain was compositive and the variation periods of its components were different, a series of limit state equations under normal use limit state were given. Then, a linear fitting method was used to determine the relationship between the ambient temperature and the measured strain, which was aimed at extracting the vehicle load effect and the temperature load effect from the measured strain. Finally, according to the equivalent normalization method, the load effects unsatisfying the normal distribution by probability density function fitting were transformed, and the daily failure probabilities of monitored positions were calculated for evaluating the safety state of the girder. The results show that (1 the top plate of the box girder is more sensitive than the bottom plate to the high temperature, (2 the daily and seasonal strain variations induced by uniform temperature reveal an inconsistent tendency to the seasonal variation for mid-span cross sections, and (3 the generalized extreme value distribution is recommended for temperature gradient stress and vehicle induced stress fitting for box-girder bridges.

  3. Intelligent tires for improved tire safety using wireless strain measurement

    Science.gov (United States)

    Matsuzaki, Ryosuke; Todoroki, Akira

    2008-03-01

    From a traffic safety point-of-view, there is an urgent need for intelligent tires as a warning system for road conditions, for optimized braking control on poor road surfaces and as a tire fault detection system. Intelligent tires, equipped with sensors for monitoring applied strain, are effective in improving reliability and control systems such as anti-lock braking systems (ABSs). In previous studies, we developed a direct tire deformation or strain measurement system with sufficiently low stiffness and high elongation for practical use, and a wireless communication system between tires and vehicle that operates without a battery. The present study investigates the application of strain data for an optimized braking control and road condition warning system. The relationships between strain sensor outputs and tire mechanical parameters, including braking torque, effective radius and contact patch length, are calculated using finite element analysis. Finally, we suggested the possibility of optimized braking control and road condition warning systems. Optimized braking control can be achieved by keeping the slip ratio constant. The road condition warning would be actuated if the recorded friction coefficient at a certain slip ratio is lower than a 'safe' reference value.

  4. Listeria monocytogenes: Strain Heterogeneity, Methods, and Challenges of Subtyping.

    Science.gov (United States)

    Nyarko, Esmond B; Donnelly, Catherine W

    2015-12-01

    Listeria monocytogenes is a food-borne bacterial pathogen that is associated with 20% to 30% case fatality rate. L. monocytogenes is a genetically heterogeneous species, with a small fraction of strains (serotypes 1/2a, 1/2b, 4b) implicated in human listeriosis. Monitoring and source tracking of L. monocytogenes involve the use of subtyping methods, with the performance of genetic-based methods found to be superior to phenotypic-based ones. Various methods have been used to subtype L. monocytogenes isolates, with the pulsed-field gel electrophoresis (PFGE) being the gold standard. Although PFGE has had a massive impact on food safety through the establishment of the PulseNet, there is no doubt that whole genome sequence (WGS) typing is accurate, has a discriminatory power superior to any known method, and allows genome-wide differences between strains to be quantified through the comparison of nucleotide sequences. This review focuses on the different techniques that have been used to type L. monocytogenes strains, their performance challenges, and the tremendous impact WGS typing could have on the food safety landscape. © 2015 Institute of Food Technologists®

  5. Optical fiber sensors for measurement strain and vibration

    Science.gov (United States)

    Mikel, Bretislav; Helan, Radek; Buchta, Zdenek; Holík, Milan; Jelinek, Michal; Cip, Ondrej

    2015-01-01

    We present optical fiber sensors to measurement strain and vibration. The sensors are based on fiber Bragg gratings (FBG). We prepared construction of strain sensors with respect to its implementation on the outer surface of concrete structures and with compensation of potential temperature drifts. These sensors are projected with look forward to maximal elongation and strength which can be applied to the sensor. Each sensor contains two optical fibers with FBGs. One FBG is glued into the sensor in points of fixation which are in the line with mounting holes. This FBG is prestressed to half of measurement range, than the stretching and pressing can be measured simultaneously by one FBG. The second FBG is placed inside the sensor without fixation to measure temperature drifts. The sensor can be used to structure health monitoring. The sensors to measurement vibration are based on tilted fiber Bragg grating (TFBG) with fiber taper. The sensor uses the TFBG as a cladding modes reflector and fiber taper as a bend-sensitive recoupling member. The lower cladding modes (ghost), reflected from TFBG, is recoupled back into the fiber core via tapered fiber section. We focused on optimization of TFBG tilt angle to reach maximum reflection of the ghost and taper parameters. In this article we present complete set-up, optical and mechanical parameters of both types of sensors.

  6. Ductile strain rates measurements reveal continental crust long-term deformation modes

    Science.gov (United States)

    Boutonnet, E.; Leloup, P. H.; Sassier, C.; Gardien, V.; Ricard, Y.

    2012-04-01

    Any discussion on the long-term crustal rheology is hindered by our poor knowledge of deformation rates in the deep crust. These rates have only been estimated to be ≤10-15 and ≥10-13 s-1 in the "stable" and highly deforming zones respectively, and measured in a few peculiar cases. Because quartz ribbons are ubiquitous in continental shear zones, the quartz-strain-rate-metry (QRS) method, based on experimentally calibrated quartz piezometers and ductile flow laws, could provide deformation rates measurements in many geological contexts. However, the results are highly sensitive on the deformation temperature that is difficult to measure. Furthermore, results vary by three orders of magnitude depending on the chosen piezometer and rheological law. If recent technical progress allow measuring more precisely the deformation temperature, it is still not clear what is the most accurate piezometer - rheological law association. We solved that dilemma by comparing strain rates measured by the QRS method with a reference one measured with another method on the same outcrop of the Ailao Shan - Red River (ASRR) shear zone. At site C1, by combining dating of syntectonic dykes and measurements of their deformation, the strain rate is calculated between 3 and 4 x10-14 s-1 between 29 to 22 Ma, (Sassier et al., JGR, 2009). Quartz ribbons sampled in site C1 show large grains recrystallized by grain boundary migration (GBM), themselves recrystallized at lower temperature by sub-grain rotation (SGR). The mean recrystallized quartz grain size for the SGR event range between 74.0 and 79.3 μm. The associated stresses, measured with Shimizu (JSG, 2008) piezometer, range between 35.2 and 38.1 MPa. Conditions of deformation of P≈ 1.5 kbar and T≈ 430°C were inferred by combining several thermobarometers on quartz, such as TitaniQ, fluid inclusions microthermometry and crystallographic fabrics. The calculated strain rate with five flow laws and three piezometers range between 3

  7. Variation of strain rate sensitivity index of a superplastic aluminum alloy in different testing methods

    Science.gov (United States)

    Majidi, Omid; Jahazi, Mohammad; Bombardier, Nicolas; Samuel, Ehab

    2017-10-01

    The strain rate sensitivity index, m-value, is being applied as a common tool to evaluate the impact of the strain rate on the viscoplastic behaviour of materials. The m-value, as a constant number, has been frequently taken into consideration for modeling material behaviour in the numerical simulation of superplastic forming processes. However, the impact of the testing variables on the measured m-values has not been investigated comprehensively. In this study, the m-value for a superplastic grade of an aluminum alloy (i.e., AA5083) has been investigated. The conditions and the parameters that influence the strain rate sensitivity for the material are compared with three different testing methods, i.e., monotonic uniaxial tension test, strain rate jump test and stress relaxation test. All tests were conducted at elevated temperature (470°C) and at strain rates up to 0.1 s-1. The results show that the m-value is not constant and is highly dependent on the applied strain rate, strain level and testing method.

  8. Standard Test Method for Autogenous Strain of Cement Paste and Mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Lura, Pietro; Goodwin, Fred

    This test method measures the bulk strain of a sealed cement paste or mortar specimen, including those containing admixtures, various supplementary cementitious materials (SCM), and other fine materials, at constant temperature and not subjected to external forces, from the time of final setting ...

  9. Verification of finite element analysis of fixed partial denture with in vitro electronic strain measurement.

    Science.gov (United States)

    Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui

    2016-01-01

    The purpose of the study was to verify the finite element analysis model of three-unite fixed partial denture with in vitro electronic strain analysis and analyze clinical situation with the verified model. First, strain gauges were attached to the critical areas of a three-unit fixed partial denture. Strain values were measured under 300 N load perpendicular to the occlusal plane. Secondly, a three-dimensional finite element model in accordance with the electronic strain analysis experiment was constructed from the scanning data. And the strain values obtained by finite element analysis and in vitro measurements were compared. Finally, the clinical destruction of the fixed partial denture was evaluated with the verified finite element analysis model. There was a mutual agreement and consistency between the finite element analysis results and experimental data. The finite element analysis revealed that failure will occur in the veneer layer on buccal surface of the connector under occlusal force of 570 N. The results indicate that the electronic strain analysis is an appropriate and cost saving method to verify the finite element model. The veneer layer on buccal surface of the connector is the weakest area in the fixed partial denture. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. An Approach for the Dynamic Measurement of Ring Gear Strains of Planetary Gearboxes Using Fiber Bragg Gratings.

    Science.gov (United States)

    Niu, Hang; Zhang, Xiaodong; Hou, Chenggang

    2017-12-16

    The strain of the ring gear can reflect the dynamic characteristics of planetary gearboxes directly, which makes it an ideal signal to monitor the health condition of the gearbox. To overcome the disadvantages of traditional methods, a new approach for the dynamic measurement of ring gear strains using fiber Bragg gratings (FBGs) is proposed in this paper. Firstly, the installation of FBGs is determined according to the analysis for the strain distribution of the ring gear. Secondly, the parameters of the FBG are determined in consideration of the accuracy and sensitivity of the measurement as well as the size of the ring gear. The strain measured by the FBG is then simulated under non-uniform strain field conditions. Thirdly, a dynamic measurement system is built and tested. Finally, the strains of the ring gear are measured in a planetary gearbox under normal and faulty conditions. The experimental results showed good agreement with the theoretical results in values, trends, and the fault features can be seen from the time domain of the measured strain signal, which proves that the proposed method is feasible for the measurement of the ring gear strains of planetary gearboxes.

  11. Novel image analysis methods for quantification of in situ 3-D tendon cell and matrix strain.

    Science.gov (United States)

    Fung, Ashley K; Paredes, J J; Andarawis-Puri, Nelly

    2018-01-23

    Macroscopic tendon loads modulate the cellular microenvironment leading to biological outcomes such as degeneration or repair. Previous studies have shown that damage accumulation and the phases of tendon healing are marked by significant changes in the extracellular matrix, but it remains unknown how mechanical forces of the extracellular matrix are translated to mechanotransduction pathways that ultimately drive the biological response. Our overarching hypothesis is that the unique relationship between extracellular matrix strain and cell deformation will dictate biological outcomes, prompting the need for quantitative methods to characterize the local strain environment. While 2-D methods have successfully calculated matrix strain and cell deformation, 3-D methods are necessary to capture the increased complexity that can arise due to high levels of anisotropy and out-of-plane motion, particularly in the disorganized, highly cellular, injured state. In this study, we validated the use of digital volume correlation methods to quantify 3-D matrix strain using images of naïve tendon cells, the collagen fiber matrix, and injured tendon cells. Additionally, naïve tendon cell images were used to develop novel methods for 3-D cell deformation and 3-D cell-matrix strain, which is defined as a quantitative measure of the relationship between matrix strain and cell deformation. The results support that these methods can be used to detect strains with high accuracy and can be further extended to an in vivo setting for observing temporal changes in cell and matrix mechanics during degeneration and healing. Copyright © 2017. Published by Elsevier Ltd.

  12. Evaluation of Pressure Pain Threshold as a Measure of Perceived Stress and High Job Strain

    DEFF Research Database (Denmark)

    Hven, Lisbeth; Frost, Poul; Bonde, Jens Peter Ellekilde

    2017-01-01

    OBJECTIVE: To investigate whether pressure pain threshold (PPT), determined by pressure algometry, can be used as an objective measure of perceived stress and job strain. METHODS: We used cross-sectional base line data collected during 1994 to 1995 within the Project on Research and Intervention...... in Monotonous work (PRIM), which included 3123 employees from a variety of Danish companies. Questionnaire data included 18 items on stress symptoms, 23 items from the Karasek scale on job strain, and information on discomfort in specified anatomical regions was also collected. Clinical examinations included...... pressure pain algometry measurements of PPT on the trapezius and supraspinatus muscles and the tibia. Associations of stress symptoms and job strain with PPT of each site was analyzed for men and women separately with adjustment for age body mass index, and discomfort in the anatomical region closest...

  13. Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement.

    Science.gov (United States)

    Kang, Zexin; Wen, Xiaodong; Li, Chao; Sun, Jiang; Wang, Jing; Jian, Shuisheng

    2014-04-20

    A novel all-fiber sensing configuration for simultaneous measurements of temperature and strain based on the up-taper Mach-Zehnder interferometer (MZI) with an in-line embedded fiber Bragg grating (FBG) is proposed and experimentally demonstrated. This configuration consists of two up-tapers fabricated by an excessive fusion splicing method and a short segment of inscribed FBG. Due to the different responses of the up-taper MZI and the FBG to the uniform variation of temperature and strain, the simultaneous measurement for these two variables could be achieved by real-time monitoring the transmission spectrum. For 0.01 nm wavelength resolution, a resolution of 0.311°C in temperature can be achieved, and the average strain resolution is 10.07 με.

  14. Plate-scale measurement of interseismic strain from Sentinel-1

    Science.gov (United States)

    Walters, R. J.; Gonzalez, P. J.; Hatton, E. L.; Hooper, A. J.; Wright, T. J.

    2016-12-01

    The measurement of interseismic crustal deformation at high spatial resolution, with high accuracy and over large geographical areas is critical both for furthering our understanding of the mechanics of continental deformation and for improving forecasts of earthquake hazard, but to-date has been hampered by the limitations of current geodetic datasets. However, the launch of the European Space Agency's new pair of Sentinel-1 radar satellites, with a regular 24 day minimum revisit interval over global tectonic belts, is set to overcome these limitations, enabling global, high-resolution, high-accuracy measurements of crustal velocities from Interferometric Synthetic Aperture Radar (InSAR). Here we make the first demonstration of Sentinel-1's ability to measure interseismic deformation at the tectonic-plate scale. We use the first 2 years of data from the Sentinel-1 mission to measure crustal velocity for a 400,000 km2 area of Turkey, including the majority of the Anatolian microplate and most of the onshore North and East Anatolian Faults (NAF and EAF). We map the westwards motion of Anatolia relative to Eurasia, and the associated strain accumulation along the NAF and EAF, at high spatial resolution. We also use these results as an opportunity to assess the future capability of Sentinel-1 for measuring interseismic deformation. We analyse how the accuracy of our crustal velocity measurements have increased over the last 2 years, and show that this agrees well with theoretical estimates of the temporal evolution of our measurement uncertainties. We use this to predict that for the 100 km lengthscales important for measuring interseismic deformation, uncertainty on InSAR line-of-sight velocities will reach 2 mm/yr within the next year, which is equivalent accuracy to past InSAR studies for this region, and will then rapidly surpass the accuracy that has been possible with previous InSAR datasets. Finally, based on these results, we estimate global detection

  15. Diagnosis of solid breast lesions by elastography 5-point score and strain ratio method

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qiao Ling, E-mail: imagingzhaoql@126.com [Department of Ultrasound, the First Affiliated Hospital, Medical College of Xi' an Jiaotong University, Xi' an Yanta West Road No. 277, Shaanxi 710061 (China); Ruan, Li Tao, E-mail: ruanlitao@163.com [Department of Ultrasound, the First Affiliated Hospital, Medical College of Xi' an Jiaotong University, Xi' an Yanta West Road No. 277, Shaanxi 710061 (China); Zhang, Hua, E-mail: Zhanghua54322@163.com [Department of Ultrasound, the First Affiliated Hospital, Medical College of Xi' an Jiaotong University, Xi' an Yanta West Road No. 277, Shaanxi 710061 (China); Yin, Yi Min, E-mail: yymxbh@yahoo.cn [Department of Ultrasound, the First Affiliated Hospital, Medical College of Xi' an Jiaotong University, Xi' an Yanta West Road No. 277, Shaanxi 710061 (China); Duan, Shao Xue, E-mail: doujiaoyueer@163.com [Department of Ultrasound, the First Affiliated Hospital, Medical College of Xi' an Jiaotong University, Xi' an Yanta West Road No. 277, Shaanxi 710061 (China)

    2012-11-15

    Purpose: To compare the diagnostic performance of 5-point scoring system and strain ratio by sonoelastography in the assessment of solid breast lesions. Material and methods: One hundred and eighty-seven solid masses in 155 patients were scanned by two-dimensional ultrasonography and sonoelastography. Elasticity scores were determined with a 5-point scoring method, and the strain ratio was based on the comparison of the average strain measured in the lesion with the adjacent breast tissue in the same depth. Pathological results were taken as gold standards to compare the diagnostic efficacy of two methods with clinical diagnostic test and receiver operating characteristic (ROC) curves. Results: Among 187 lesions, 130 were benign and 57 were malignant. The mean scores (1.62 {+-} 0.69 vs 4.07 {+-} 0.26, P < 0.05) and strain ratios (2.06 {+-} 1.27 vs 6.66 {+-} 4.62, P < 0.05) were significantly higher of malignant than benign lesions. The area under the curve for the 5-point scoring system and for strain ratio-based elastographic analysis was 0.892 and 0.909, respectively (P > 0.05). For 5-point scoring, sonoelastography had 84.2% sensitivity, 84.6% specificity, 84.5% accuracy, 70.6% positive predictive value and 92.4% negative predictive value. When a cutoff point of 3.06 was used, sensitivity, specificity, accuracy, positive and negative predictive values were 87.7%, 88.5%, 88.2%, 76.9% and 94.3%, respectively for the strain ratio (P > 0.05). Conclusions: The 5-point scoring system and strain ratio has similar diagnostic performance, and the strain ratio could be more objective to differentiate the masses when those masses were difficult to be judged by using 5-point scoring system in sonoelastographic images.

  16. Strain Measurements of Composite Laminates with Embedded Fibre Bragg Gratings: Criticism and Opportunities for Research

    Directory of Open Access Journals (Sweden)

    Joris Degrieck

    2010-12-01

    Full Text Available Embedded optical fibre sensors are considered for structural health monitoring purposes in numerous applications. In fibre reinforced plastics, embedded fibre Bragg gratings are found to be one of the most popular and reliable solutions for strain monitoring. Despite of their growing popularity, users should keep in mind their shortcomings, many of which are associated with the embedding process. This review paper starts with an overview of some of the technical issues to be considered when embedding fibre optics in fibrous composite materials. Next, a monitoring scheme is introduced which shows the different steps necessary to relate the output of an embedded FBG to the strain of the structure in which it is embedded. Each step of the process has already been addressed separately in literature without considering the complete cycle, from embedding of the sensor to the internal strain measurement of the structure. This review paper summarizes the work reported in literature and tries to fit it into the big picture of internal strain measurements with embedded fibre Bragg gratings. The last part of the paper focuses on temperature compensation methods which should not be ignored in terms of in-situ measurement of strains with fibre Bragg gratings. Throughout the paper criticism is given where appropriate, which should be regarded as opportunities for future research.

  17. Measurements on thermal expansion with strain gauge 2; Yugami geji wo mochiita gokuteion netsu bochoritsu no keisoku 2

    Energy Technology Data Exchange (ETDEWEB)

    Arai, O.; Numazawa, T.; Sato, A. [National Research Inst. of Metals, Tokyo (Japan); Okuda, Y. [Tokyo Inst. of Tech., Tokyo (Japan)

    2000-05-29

    As the part of very low temperature thermophysical property measurement technique standardization by the intelligent basis promotion system, it examined very low temperature coefficient of linear expansion measurement method using the strain gauge. It produced the clip, which constituted the bridge circuit using strain sensor of 4 used by fatigue test of very low temperature, and it tried the measurement of convenient and quick coefficient of linear expansion from low temperature over high temperature. (NEDO)

  18. Standard test methods for performance characteristics of metallic bonded resistance strain gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 The purpose of this standard is to provide uniform test methods for the determination of strain gauge performance characteristics. Suggested testing equipment designs are included. 1.2 Test Methods E 251 describes methods and procedures for determining five strain gauge parameters: Section Part I—General Requirements 7 Part II—Resistance at a Reference Temperature 8 Part III—Gauge Factor at a Reference Temperature 9 Part IV—Temperature Coefficient of Gauge Factor\t10 Part V—Transverse Sensitivity\t11 Part VI—Thermal Output\t12 1.3 Strain gauges are very sensitive devices with essentially infinite resolution. Their response to strain, however, is low and great care must be exercised in their use. The performance characteristics identified by these test methods must be known to an acceptable accuracy to obtain meaningful results in field applications. 1.3.1 Strain gauge resistance is used to balance instrumentation circuits and to provide a reference value for measurements since all data are...

  19. A general procedure for estimating dynamic displacements using strain measurements and operational modal analysis

    DEFF Research Database (Denmark)

    Skafte, Anders; Aenlle, Manuel L.; Brincker, Rune

    2016-01-01

    and used in health monitoring algorithms. But the use of accelerometers is not suitable for all structures. Structures like wind turbine blades and wings on airplanes can be exposed to lightning, which can cause the measurement systems to fail. Structures like these are often equipped with fiber sensors...... measuring the in-plane deformation. This paper proposes a method in which the displacement mode shapes and responses can be predicted using only strain measurements. The method relies on the newly discovered principle of local correspondence, which states that each experimental mode can be expressed...

  20. Nonstandard Methods in Measure Theory

    Directory of Open Access Journals (Sweden)

    Grigore Ciurea

    2014-01-01

    to the study of the extension of vector measures. Applications of our results lead to simple new proofs for theorems of classical measure theory. The novelty lies in the use of the principle of extension by continuity (for which we give a nonstandard proof to obtain in an unified way some notable theorems which have been obtained by Fox, Brooks, Ohba, Diestel, and others. The methods of proof are quite different from those used by previous authors, and most of them are realized by means of nonstandard analysis.

  1. Increasing Accuracy of Tissue Shear Modulus Reconstruction Using Ultrasonic Strain Tensor Measurement

    Science.gov (United States)

    Sumi, C.

    Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).

  2. Soil Stress-Strain Behavior: Measurement, Modeling and Analysis

    CERN Document Server

    Ling, Hoe I; Leshchinsky, Dov; Koseki, Junichi; A Collection of Papers of the Geotechnical Symposium in Rome

    2007-01-01

    This book is an outgrowth of the proceedings for the Geotechnical Symposium in Roma, which was held on March 16 and 17, 2006 in Rome, Italy. The Symposium was organized to celebrate the 60th birthday of Prof. Tatsuoka as well as honoring his research achievement. The publications are focused on the recent developments in the stress-strain behavior of geomaterials, with an emphasis on laboratory measurements, soil constitutive modeling and behavior of soil structures (such as reinforced soils, piles and slopes). The latest advancement in the field, such as the rate effect and dynamic behavior of both clay and sand, behavior of modified soils and soil mixtures, and soil liquefaction are addressed. A special keynote paper by Prof. Tatsuoka is included with three other keynote papers (presented by Prof. Lo Presti, Prof. Di Benedetto, and Prof. Shibuya).

  3. Stress-Strain Measurements of Semi-Aquatic Snake Lenses

    Science.gov (United States)

    Lama, Nisha; Norwood, David, , Dr.; Fontenot, Cliff, , Dr.; Wallace, Addison; Koduri, Mahitha; Allain, Rhett, , Dr.

    It is of interest to understand the mechanism by which semi-aquatic maintain visual acuity when moving from land to underwater. Toward that end, we are interested in the mechanical properties of snake lenses and how this might affect the ability of snakes to deform the lens and thus alter the lens power. In this presentation, we will present data taken with a force sensor and a rotary motion sensor to measure, in one shot, force versus displacement, from which we estimate mechanical properties of stress and strain of the eye lens of a water snake. We will compare the results from lenses freshly removed from snake to those that have been stored. More importantly though, we will compare results from one species of semi-aquatic snakes to the other species of interest

  4. Wear Monitoring in Turning Operations Using Vibration and Strain Measurements

    Science.gov (United States)

    Scheffer, C.; Heyns, P. S.

    2001-11-01

    For the efficient and reliable operation of automated machining processes, the implementation of suitable tool condition monitoring (TCM) strategy is required. Various monitoring systems, utilising sophisticated signal processing techniques, have been widely researched for a number of different processes. Most monitoring systems developed up to date employ force, acoustic emission and vibration, or a combination of these and other techniques with a sensor integration strategy. With this work, the implementation of a monitoring system utilising simultaneous vibration and strain measurements on the tool tip, is investigated for the wear of synthetic diamond tools which are specifically used for the manufacturing of aluminium pistons. Contrary to many of the earlier investigations, this work was conducted in a manufacturing environment, with the associated constraints such as the impracticality of direct measurement of the wear. Data from the manufacturing process was recorded with two piezoelectric strain sensors and an accelerometer, each coupled to a DSPT Siglab analyser. A large number of features indicative of tool wear were automatically extracted from different parts of the original signals. These included features from the time and frequency domains, time-series model coefficients (as features) and features extracted from wavelet packet analysis. A correlation coefficient approach was used to automatically select the best features indicative of the progressive wear of the diamond tools. The self-organising map (SOM) was employed to identify the tool state. The SOM is a type of neural network based on unsupervised learning. A near 100% correct classification of the tool wear data was obtained by training the SOM with two independent data sets, and testing it with a third independent data set.

  5. Using of Strain-Sounterstrain method in the physical therapy of patients with myofascial pain syndrome of lumbosacral spine segment.

    Directory of Open Access Journals (Sweden)

    Lytovka M.V.

    2011-07-01

    Full Text Available The article examines the influence of physiotherapy measures on sacrolumbal myofascial pain syndrome management in combination with Strain-Counterstrain method. Two groups of patients aged 35-55 years old took part in the experiment with 10 people in each group. In the experimental group besides classical methods of physiotherapy Strain-Counterstrain method was used. It proved to be efficient and appropriate for acute pain management during the first days of therapy.

  6. Research on strain and temperature measurement of OPGW based on BOTDR

    Science.gov (United States)

    Lv, Anqiang; Li, Yongqian; Li, Jing

    2013-12-01

    OPGW(Optical Fiber Composite Overhead Ground Wire) is an important part of high voltage transmission lines with characteristics of wide distribution and long distance. It is difficult for routine inspection and status detection by traditional method. So, it is necessary to monitoring the status of OPGW using distributed optical fiber strain and temperature measurement device. In this paper, the strain and temperature calibration experiment of composite optical fiber in OPGW was completed using BOTDR( Brillouin Optical Time Domain Reflectometry). The difference of Brillouin frequency shift coefficients to strain and temperature and initial frequency shifts between different optical fibers were compared. The method to accurately locate connections was provided using distributed Brillouin frequency shift curves. The status monitoring for running OPGW was realized and the data was analyzed. Results indicate that, the frequency shift coefficients to strain and temperature of single mode fibers in one OPGW are almost the same, which are 0.05MHz/μɛ and 1.05MHz/°C, but the initial frequency shifts are different with 20MHz range. The Brillouin frequency shifts at fiber connections in change obviously, which can serve as locating basis for connections. The topography, span, mark-height and climate affect the strain and temperature distribution of OPGW.

  7. Reproducible strain measurement in electronic devices by applying integer multiple to scanning grating in scanning moiré fringe imaging

    Directory of Open Access Journals (Sweden)

    Suhyun Kim

    2014-10-01

    Full Text Available Scanning moiré fringe (SMF imaging by high-angle annular dark field scanning transmission electron microscopy was used to measure the strain field in the channel of a transistor with a CoSi2 source and drain. Nanometer-scale SMFs were formed with a scanning grating size of ds at integer multiples of the Si crystal lattice spacing dl (ds ∼ ndl, n = 2, 3, 4, 5. The moiré fringe formula was modified to establish a method for quantifying strain measurement. We showed that strain fields in a transistor measured by SMF images were reproducible with an accuracy of 0.02%.

  8. Strain, biochemistry, and cultivation-dependent measurement variability of algal biomass composition.

    Science.gov (United States)

    Laurens, Lieve M L; Van Wychen, Stefanie; McAllister, Jordan P; Arrowsmith, Sarah; Dempster, Thomas A; McGowen, John; Pienkos, Philip T

    2014-05-01

    Accurate compositional analysis in biofuel feedstocks is imperative; the yields of individual components can define the economics of an entire process. In the nascent industry of algal biofuels and bioproducts, analytical methods that have been deemed acceptable for decades are suddenly critical for commercialization. We tackled the question of how the strain and biochemical makeup of algal cells affect chemical measurements. We selected a set of six procedures (two each for lipids, protein, and carbohydrates): three rapid fingerprinting methods and three advanced chromatography-based methods. All methods were used to measure the composition of 100 samples from three strains: Scenedesmus sp., Chlorella sp., and Nannochloropsis sp. The data presented point not only to species-specific discrepancies but also to cell biochemistry-related discrepancies. There are cases where two respective methods agree but the differences are often significant with over- or underestimation of up to 90%, likely due to chemical interferences with the rapid spectrophotometric measurements. We provide background on the chemistry of interfering reactions for the fingerprinting methods and conclude that for accurate compositional analysis of algae and process and mass balance closure, emphasis should be placed on unambiguous characterization using methods where individual components are measured independently. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. A general procedure for estimating dynamic displacements using strain measurements and operational modal analysis

    Science.gov (United States)

    Skafte, Anders; Aenlle, Manuel L.; Brincker, Rune

    2016-02-01

    Measurement systems are being installed in more and more civil structures with the purpose of monitoring the general dynamic behavior of the structure. The instrumentation is typically done with accelerometers, where experimental frequencies and mode shapes can be identified using modal analysis and used in health monitoring algorithms. But the use of accelerometers is not suitable for all structures. Structures like wind turbine blades and wings on airplanes can be exposed to lightning, which can cause the measurement systems to fail. Structures like these are often equipped with fiber sensors measuring the in-plane deformation. This paper proposes a method in which the displacement mode shapes and responses can be predicted using only strain measurements. The method relies on the newly discovered principle of local correspondence, which states that each experimental mode can be expressed as a unique subset of finite element modes. In this paper the technique is further developed to predict the mode shapes in different states of the structure. Once an estimate of the modes is found, responses can be predicted using the superposition of the modal coordinates weighted by the mode shapes. The method is validated with experimental tests on a scaled model of a two-span bridge installed with strain gauges. Random load was applied to simulate a civil structure under operating condition, and strain mode shapes were identified using operational modal analysis.

  10. Alcohol Dehydrogenase of Bacillus strain for Measuring Alcohol Electrochemically

    Science.gov (United States)

    Iswantini, D.; Nurhidayat, N.; Ferit, H.

    2017-03-01

    Alcohol dehydrogenase (ADH) was applied to produce alcohol biosensor. The enzyme was collected from cultured Bacillus sp. in solid media. From 6 tested isolates, bacteria from fermented rice grain (TST.A) showed the highest oxidation current which was further applied as the bioreceptor. Various ethanol concentrations was measured based on the increase of maximum oxidation current value. However, a reduction value was happened when the ethanol concentration was higher than 5%. Comparing the result of spectrophotometry measurement, R2 value obtained from the biosensor measurement method was higher. The new proposed method resulted a wider detection range, from 0.1-5% of ethanol concentration. The result showed that biosensor method has big potency to be used as alcohol detector in foods or bevearages.

  11. Method for measuring surface temperature

    Science.gov (United States)

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  12. Accuracy of surface strain measurements from transmission electron microscopy images of nanoparticles

    DEFF Research Database (Denmark)

    Madsen, Jacob; Liu, Pei; Wagner, Jakob Birkedal

    2017-01-01

    Strain analysis from high-resolution transmission electron microscopy (HRTEM) images offers a convenient tool for measuring strain in materials at the atomic scale. In this paper we present a theoretical study of the precision and accuracy of surface strain measurements directly from aberration-c...

  13. Computational methods in metabolic engineering for strain design.

    Science.gov (United States)

    Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L

    2015-08-01

    Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Reliable strain measurement in transistor arrays by robust scanning transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Suhyun Kim

    2013-09-01

    Full Text Available Accurate measurement of the strain field in the channels of transistor arrays is critical for strain engineering in modern electronic devices. We applied atomic-resolution high-angle annular dark-field scanning transmission electron microscopy to quantitative measurement of the strain field in transistor arrays. The quantitative strain profile over 20 transistors was obtained with high reliability and a precision of 0.1%. The strain field was found to form homogeneously in the channels of the transistor arrays. Furthermore, strain relaxation due to the thin foil effect was quantitatively investigated for thicknesses of 35 to 275 nm.

  15. Borehole Strain Measurements on Volcanoes: Insights from Montserrat and Hekla

    Science.gov (United States)

    Linde, A. T.; Sacks, S. I.

    2010-12-01

    In Fall 2000 we reported that data from Sacks-Evertson borehole strainmeters allowed a short term (~20 minutes) warning of an eruption of Hekla, Iceland, in 2000 and showed clear changes before an eruption of Izu-Oshima, Japan, in 1986. In 2002-2003 (CALIPSO program) we installed a small net of strainmeters near Montserrat’s Soufriere Hills Volcano, an active andesitic dome building volcano. We have sites in Long Valley and Hawaii (with USGS); at Vesuvius, Campi Flegrei area, Stromboli and (planned) Etna (with Italian colleagues). Gladwin strainmeters have been installed at Yellowstone and Mt. St. Helens (PBO). Our recent volcano research efforts have been on Montserrat and Hekla. Analyses of a very large dome collapse (Montserrat) in July 2003 (Voight et al, 2006) and an explosion in March 2004 (Linde et al., 2010) reveal a reservoir at about 5 km with a NW-SE trending dike extending from the reservoir to about 1.5 km from the surface. A number of explosions require only a narrow conduit (15 m radius) that extends from the top of the dike to the surface (Voight et al. 2010); others have a different strain signature and require deeper sources. A 1 month long clear strain excursion required an additional contribution from a reservoir at about 11 km (Hautmann et al. in prep). Many small signals with similar strain change patterns take place over much shorter time scales (2 - 20 mins) are presumably due to gas transfer. We now realize, from the 2000 eruption of Hekla, that the magma geometry is quite different from that in all earlier models. The reservoir is about 11 km deep but the dike that breaks the surface in Hekla's characteristic fissure eruption does not extend to the reservoir as had been thought; but to no more than about 1 km. Although undetectable by any available surface measurements, there must be a conduit to connect the reservoir to the dike. In Sturkell et al. (in prep) we propose that this conduit is now sufficiently large in diameter to remain

  16. Dynamic measurement of surface strain distribution on the foot during walking.

    Science.gov (United States)

    Ito, Kohta; Maeda, Kosuke; Fujiwara, Ikumi; Hosoda, Koh; Nagura, Takeo; Lee, Taeyong; Ogihara, Naomichi

    2017-05-01

    To clarify the mechanism underlying the development of foot disorders such as diabetic ulcers and deformities, it is important to understand how the foot surface elongates and contracts during gait. Such information is also helpful for improving the prevention and treatment of foot disorders. We therefore measured temporal changes in the strain distribution on the foot surface during human walking. Five adult male participants walked across a glass platform placed over an angled mirror set in a wooden walkway at a self-selected speed and the dorsolateral and plantar surfaces of the foot were filmed using two pairs of synchronized high-speed cameras. Three-dimensional (3D) digital image correlation was used to quantify the spatial strain distribution on the foot surface with respect to that during quiet standing. Using the proposed method, we observed the 3D patterns of foot surface strain distribution during walking. Large strain was generated around the ball on the plantar surface of the foot throughout the entire stance phase, due to the windlass mechanism. The dorsal surface around the cuboid was stretched in the late stance phase, possibly due to lateral protruding movement of the cuboid. It may be possible to use this technique to non-invasively estimate movements of the foot bones under the skin using the surface strain distribution. The proposed technique may be an effective tool with which to analyze foot deformation in the fields of diabetology, clinical orthopedics, and ergonomics. Copyright © 2017. Published by Elsevier Ltd.

  17. Bubble measuring instrument and method

    Science.gov (United States)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  18. The use of pulsed neutron diffraction to measure strain in composites

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, M.A.M.; Goldstone, J.A.; Shi, N.; Gray, G.T. III [Los Alamos National Lab., NM (United States); James, M.R. [Rockwell Intl., Thousand Oaks, CA (United States). Science Center; Todd, R.I. [Oxford Univ. (United Kingdom)

    1994-03-01

    Neutron diffraction is a technique for measuring strain in crystalline materials. It is non destructive, phase discriminatory and more penetrating than X rays. Pulsed neutron sources (in contrast with steady state reactor sources) are particularly appropriate for examining heterogeneous materials or for recording the polycrystalline response of all lattice reflections. Several different aspects of composite behavior can be characterized and examples are given of residual strain measurements, strain relaxation during heating, applied loading, and determination of the strain distribution function.

  19. Cervical vertebral strain measurements under axial and eccentric loading.

    Science.gov (United States)

    Pintar, F A; Yoganandan, N; Pesigan, M; Reinartz, J; Sances, A; Cusick, J F

    1995-11-01

    The mid to lower cervical spine is a common site for compression related injury. In the present study, we determined the patterns of localized strain distribution in the anterior aspect of the vertebral body and in the lateral masses of lower cervical three-segment units. Miniature strain gages were mounted to human cadaveric vertebrae. Each preparation was line-loaded using a knife-edge oriented in the coronal plane that was moved incrementally from anterior to posterior to induce compression-flexion or compression-extension loading. Uniform compressive loading and failure runs were also conducted. Failure tests indicated strain shifting to "restabilize" the preparation after failure of a component. Under these various compressive loading vectors, the location which resulted in the least amount of deformation for a given force application (i.e., stiffest axis) was quantified to be in the region between 0.5- 1.0 cm anterior to the posterior longitudinal ligament. The location in which line-loading produced no rotation (i.e., balance point) was in this region; it was also close to where the vertebral body strains change from compressive to tensile. Strain values from line loading in this region produced similar strains as recorded under uniform compressive loading, and this was also the region of minimum strain. The region of minimum strain was also more pronounced under higher magnitudes of loading, suggesting that as the maximum load carrying capacity is reached the stiffest axis becomes more well defined.

  20. Geobacter strains that use alternate organic compounds, methods of making, and methods of use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R; Summers, Zarath Morgan; Haveman, Shelley Annette; Izallalen, Mounir

    2013-12-03

    In preferred embodiments, the present invention provides new isolated strains of Geobacter species that are capable of using a carbon source that is selected from C.sub.3 to C.sub.12 organic compounds selected from pyruvate or metabolic precursors of pyruvate as an electron donor in metabolism and in subsequent energy production. In other aspects, other preferred embodiments of the present invention include methods of making such strains and methods of using such strains. In general, the wild type strain of the microorganisms has been shown to be unable to use these C.sub.3 to C.sub.12 organic compounds as electron donors in metabolic steps such as the reduction of metallic ions. The inventive strains of microorganisms are useful improving bioremediation applications, including in situ bioremediation (including uranium bioremediation and halogenated solvent bioremediation), microbial fuel cells, power generation from small and large-scale waste facilities (e.g., biomass waste from dairy, agriculture, food processing, brewery, or vintner industries, etc.) using microbial fuel cells, and other applications of microbial fuel cells, including, but not limited to, improved electrical power supplies for environmental sensors, electronic sensors, and electric vehicles.

  1. Research of strain distribution and strain rate change in the fracture surroundings by the videoextensometric methode

    Directory of Open Access Journals (Sweden)

    M. Mihaliková

    2010-07-01

    Full Text Available The paper deals with the strain distribution and the strain rate of material in the surroundings of its fracture. Three steels applied in the automotive industry (DP - dual phase steel, microalloyed steel HR 45 and IF - interstitial free steel were used as the experimental material. The videoextensometric technique was used for sensing with CCD camera and computer. During the test, software records the coordinates of the centres of gravity of individual points, from which the respective strain values are then obtained. For individual steel grades, strain field maps in the fracture surroundings were plotted. The change in the strain rate in the fracture surroundings and at places more distant from the fracture was observed.

  2. Seafloor geodesy: Measuring surface deformation and strain-build up

    Science.gov (United States)

    Kopp, Heidrun; Lange, Dietrich; Hannemann, Katrin; Petersen, Florian

    2017-04-01

    Seafloor deformation is intrinsically related to tectonic processes, which potentially may evolve into geohazards, including earthquakes and tsunamis. The nascent scientific field of seafloor geodesy provides a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The measurements extract information on stress and elastic strain stored in the oceanic crust. Horizontal seafloor displacement can be obtained by acoustic/GPS combination to provide absolute positioning or by long-term acoustic telemetry between different beacons fixed on the seafloor. The GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array uses acoustic telemetry for relative positioning at mm-scale resolution. The transponders within an array intercommunicate via acoustic signals for a period of up to 3.5 years. The seafloor acoustic transponders are mounted on 4 m high tripod steel frames to ensure clear line-of-sight between the stations. The transponders also include high-precision pressure sensors to monitor vertical movements and dual-axis inclinometers in order to measure their level as well as any tilt of the seafloor. Sound velocity sensor measurements are used to correct for water sound speed variations. A further component of the network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), which monitors system health and is able to upload the seafloor data to the sea surface and to transfer it via satellite. The GeoSEA array is capable of both continuously monitoring horizontal and vertical ground displacement rates along submarine fault zones and characterizing their behavior (locked or aseismically creeping). Seafloor transponders are currently installed along the Siliviri segment of the North Anatolian Fault offshore Istanbul for measurements of strain build-up along the fault. The first 18 month of baseline ranging were analyzed by a joint-least square inversion

  3. Soil Strain Measurements on Misers Bluff. Phase II.

    Science.gov (United States)

    1979-04-30

    Stress 20 9 Two Strain Gages at 600 During Recovery. The Tilt is Toward 1800 21 10 Air Blast Wave Form at 1800 and 6 M from Center Over Strain Gage...STRAIN GAGES AT 600 DURING RECOVERY, THE TILT IS TOWARD 1800. 21 SECTION IV RESULTS OF TEST 2 When the charges were detonated, the predicted pressure...Caution should be used with these data because it is not clear that the gage canister and soil are moving together while the soil is overexpanded . At

  4. What do we currently know from in vivo bone strain measurements in humans?

    Science.gov (United States)

    Yang, P F; Brüggemann, G-P; Rittweger, J

    2011-03-01

    Bone strains are the most important factors for osteogenic adaptive responses. During the past decades, scientists have been trying to describe the relationship between bone strain and bone osteogenic responses quantitatively. However, only a few studies have examined bone strains under physiological condition in humans, owing to technical difficulty and ethical restrictions. The present paper reviews previous work on in vivo bone strain measurements in humans, and the various methodologies adopted in these measurements are discussed. Several proposals are made for future work to improve our understanding of the human musculoskeletal system. Literature suggests that strains and strain patterns vary systematically in response to different locomotive activities, foot wear, and even different venues. The principal compressive, tension and engineering shear strain, compressive strain rate and shear strain rate in the tibia during running seem to be higher than those during walking. The high impact exercises, such as zig-zag hopping and basketball rebounding induced greater principal strains and strain rates in the tibia than normal activities. Also, evidence suggests an increase of tibia strain and strain rate after muscle fatigue, which strongly supports the opinion that muscle contractions play a role on the alteration of bone strain patterns.

  5. Molecular Methods Used for the Identification of Potentially Probiotic Lactobacillus reuteri Strains

    Directory of Open Access Journals (Sweden)

    Agnes Weiss

    2005-01-01

    Full Text Available Forty potentially probiotic Lactobacillus strains as well as reference strains of different genera were grown under standardised conditions. Cell masses were harvested and DNA was isolated. For identification, all strains were subjected to genus-specific polymerase chain reaction (PCR, and the affiliation with the genus Lactobacillus was confirmed for all isolates. Using two species-specific primer-pairs for Lactobacillus reuteri, specific amplicons were observed for eight of the forty investigated strains. For differentiation, these eight strains as well as the reference strains of the species L. reuteri and closely related species were subjected to randomly amplified polymorphic DNA (RAPD-PCR using fourteen arbitrary primers. Two selected strains as well as probiotic and common reference strains were further investigated applying pulsed field gel electrophoresis (PFGE. With the latter two methods, individual profiles were found for most strains, but no difference between probiotic and common strains could be made out.

  6. A Electronic Speckle Pattern Interferometry for Surface Strain Measurements of a Three-Dimensional Object

    Science.gov (United States)

    Chitsaz, Bijan

    The objective of this research was to develop a method for calculating the strain field in three-dimensional objects using electronic speckle pattern interferometry. Two interferometers were utilized for three-dimensional displacement field measurements, and derivation of their optical phase difference relationships are detailed. It was shown that the optical phase difference is dependent on the illumination angle(s) and the wavelength of the illuminating laser. The overall optical system arrangement designed for the three -dimensional displacement field measurements is presented. The Cartesian coordinate displacement components, u, v, or w, at any point on the viewing surface of an object were interpolated by fitting curves through displacement values represented by the fringe centers. The gradients of the displacement curves along the axial and tangential directions were used for strain measurements. A circular cross-section cantilever beam subjected to an eccentric compressive load with known displacement characteristics was used for calibration purposes. The strain fields at a point on the surface of the beam subjected to three different loads were calculated. The reproducibility of the ESPI system was examined by conducting three identical experiments on the cylinder. Each set included assembling and disassembling of the model, disturbing and readjusting of the optical components, and repetitive loading and unloading of the model. The percent difference and standard deviation based on strain values which were obtained from these experiments were calculated and tabulated and compared to theoretical calculations based on beam theory. The system is reported to be highly reproducible with a maximum percent error of 8.2% associated with epsilon_{ theta z}.. The newly developed system was also applied to testing of a human femur with and without femoral prosthesis implantation. The effects of two types of hip implants (press-fit and cemented) on the surface strain

  7. Intelligent tires for improved tire safety based on strain measurements

    Science.gov (United States)

    Matsuzaki, Ryosuke; Todoroki, Akira

    2009-03-01

    Intelligent tires, equipped with sensors for monitoring applied strain, are effective in improving reliability and control systems such as anti-lock braking systems (ABSs). However, since a conventional foil strain gage has high stiffness, it causes the analyzed region to behave unnaturally. The present study proposes a novel rubber-based strain sensor fabricated using photolithography. The rubber base has the same mechanical properties as the tire surface; thereby the sensor does not interfere with the tire deformation and can accurately monitor the behavior of the tire. We also investigate the application of strain data for an optimized braking control and road condition warning system. Finally, we suggested the possibility of optimized braking control and road condition warning systems. Optimized braking control can be achieved by keeping the slip ratio constant. The road condition warning would be actuated if the recorded friction coefficient at a certain slip ratio is lower than a 'safe' reference value.

  8. Automated Methods Of Corrosion Measurements

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; Andersen, Jens Enevold Thaulov; Reeve, John Ch

    1997-01-01

    The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell.......The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell....

  9. Force measurement using strain-gauge balance in a shock tunnel with long test duration.

    Science.gov (United States)

    Wang, Yunpeng; Liu, Yunfeng; Luo, Changtong; Jiang, Zonglin

    2016-05-01

    Force tests were conducted at the long-duration-test shock tunnel JF12, which has been designed and built in the Institute of Mechanics, Chinese Academy of Sciences. The performance tests demonstrated that this facility is capable of reproducing a flow of dry air at Mach numbers from 5 to 9 at more than 100 ms test duration. Therefore, the traditional internal strain-gauge balance was considered for the force tests use in this large impulse facility. However, when the force tests are conducted in a shock tunnel, the inertial forces lead to low-frequency vibrations of the test model and its motion cannot be addressed through digital filtering because a sufficient number of cycles cannot be found during a shock tunnel run. The post-processing of the balance signal thus becomes extremely difficult when an averaging method is employed. Therefore, the force measurement encounters many problems in an impulse facility, particularly for large and heavy models. The objective of the present study is to develop pulse-type sting balance by using a strain-gauge sensor that can be applied in the force measurement of 100 ms test time, especially for the force test of the large-scale model. Different structures of the S-series (i.e., sting shaped balances) strain-gauge balance are proposed and designed, and the measuring elements are further optimized to overcome the difficulties encountered during the measurement of aerodynamic force in a shock tunnel. In addition, the force tests were conducted using two large-scale test models in JF12 and the S-series strain-gauge balances show good performance in the force measurements during the 100 ms test time.

  10. Development of shearography for surface strain measurement of non-planar objects

    OpenAIRE

    Groves, Roger M.

    2001-01-01

    The subject of this thesis is the development of optical instrumentation for surface strain measurement of non-planar objects. The speckle interferometry technique of shearography is used to perform quantitative measurements of surface strain on nonplanar objects and to compensate these measurements for the errors that are due to the shape and slope of the object. Shearography is an optical technique that is usually used for defect location and for qualitative strain charact...

  11. Structural Health Monitoring Using High-Density Fiber Optic Strain Sensor and Inverse Finite Element Methods

    Science.gov (United States)

    Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.

    2005-01-01

    In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article

  12. Strain measurement in helium implanted polycristal using image analysis in laue Micro X-ray diffraction patterns

    OpenAIRE

    IBRAHIM, Marcelle; CASTELLIER, Etienne; Palancher, Hervé; RICHARD, Axel; Goudeau, P.; Bornert, Michel; Care, Sabine

    2013-01-01

    In order to study the long term behaviour of used nuclear fuel, UO2 polycrystalline samples were implanted by Helium ions. The thin implanted layer, close to the sample surface, is elastically stressed. X-ray micro-diffraction (X- XRD) can be used to measure the induced strain on about 700 different grains of the polycrystal. Image analysis on the Laue diffraction patterns is required for an accurate strain estimation. Three methods to interpret the Laue pattern are developped in this study. ...

  13. Structural health monitoring of cylindrical bodies under impulsive hydrodynamic loading by distributed FBG strain measurements

    Science.gov (United States)

    Fanelli, Pierluigi; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano

    2017-02-01

    Various mechanical, ocean, aerospace and civil engineering problems involve solid bodies impacting the water surface and often result in complex coupled dynamics, characterized by impulsive loading conditions, high amplitude vibrations and large local deformations. Monitoring in such problems for purposes such as remaining fatigue life estimation and real time damage detection is a technical and scientific challenge of primary concern in this context. Open issues include the need for developing distributed sensing systems able to operate at very high acquisition frequencies, to be utilized to study rapidly varying strain fields, with high resolution and very low noise, while scientific challenges mostly relate to the definition of appropriate signal processing and modeling tools enabling the extraction of useful information from distributed sensing signals. Building on previous work by some of the authors, we propose an enhanced method for real time deformed shape reconstruction using distributed FBG strain measurements in curved bodies subjected to impulsive loading and we establish a new framework for applying this method for structural health monitoring purposes, as the main focus of the work. Experiments are carried out on a cylinder impacting the water at various speeds, proving improved performance in displacement reconstruction of the enhanced method compared to its previous version. A numerical study is then carried out considering the same physical problem with different delamination damages affecting the body. The potential for detecting, localizing and quantifying this damage using the reconstruction algorithm is thoroughly investigated. Overall, the results presented in the paper show the potential of distributed FBG strain measurements for real time structural health monitoring of curved bodies under impulsive hydrodynamic loading, defining damage sensitive features in terms of strain or displacement reconstruction errors at selected locations along

  14. Internal displacement and strain measurement using digital volume correlation: a least-squares framework

    Science.gov (United States)

    Pan, Bing; Wu, Dafang; Wang, Zhaoyang

    2012-04-01

    As a novel tool for quantitative 3D internal deformation measurement throughout the interior of a material or tissue, digital volume correlation (DVC) has increasingly gained attention and application in the fields of experimental mechanics, material research and biomedical engineering. However, the practical implementation of DVC involves important challenges such as implementation complexity, calculation accuracy and computational efficiency. In this paper, a least-squares framework is presented for 3D internal displacement and strain field measurement using DVC. The proposed DVC combines a practical linear-intensity-change model with an easy-to-implement iterative least-squares (ILS) algorithm to retrieve 3D internal displacement vector field with sub-voxel accuracy. Because the linear-intensity-change model is capable of accounting for both the possible intensity changes and the relative geometric transform of the target subvolume, the presented DVC thus provides the highest sub-voxel registration accuracy and widest applicability. Furthermore, as the ILS algorithm uses only first-order spatial derivatives of the deformed volumetric image, the developed DVC thus significantly reduces computational complexity. To further extract 3D strain distributions from the 3D discrete displacement vectors obtained by the ILS algorithm, the presented DVC employs a pointwise least-squares algorithm to estimate the strain components for each measurement point. Computer-simulated volume images with controlled displacements are employed to investigate the performance of the proposed DVC method in terms of mean bias error and standard deviation error. Results reveal that the present technique is capable of providing accurate measurements in an easy-to-implement manner, and can be applied to practical 3D internal displacement and strain calculation.

  15. Standard test method for plane-strain (Chevron-Notch) fracture toughness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This test method covers the determination of plane-strain (chevron-notch) fracture toughnesses, KIv or KIvM, of metallic materials. Fracture toughness by this method is relative to a slowly advancing steady state crack initiated at a chevron-shaped notch, and propagating in a chevron-shaped ligament (Fig. 1). Some metallic materials, when tested by this method, exhibit a sporadic crack growth in which the crack front remains nearly stationary until a critical load is reached. The crack then becomes unstable and suddenly advances at high speed to the next arrest point. For these materials, this test method covers the determination of the plane-strain fracture toughness, KIvj or KIvM, relative to the crack at the points of instability. Note 1—One difference between this test method and Test Method E 399 (which measures KIc) is that Test Method E 399 centers attention on the start of crack extension from a fatigue precrack. This test method makes use of either a steady state slowly propagating crack, or a...

  16. Testing the association between psychosocial job strain and adverse birth outcomes - design and methods

    Directory of Open Access Journals (Sweden)

    Thulstrup Ane M

    2011-04-01

    Full Text Available Abstract Background A number of studies have examined the effects of prenatal exposure to stress on birth outcomes but few have specifically focused on psychosocial job strain. In the present protocol, we aim to examine if work characterised by high demands and low control, during pregnancy, is associated with the risk of giving birth to a child born preterm or small for gestational age. Methods and design We will use the Danish National Birth Cohort where 100.000 children are included at baseline. In the present study 49,340 pregnancies will be included. Multinomial logistic regression will be applied to estimate odds ratios for the outcomes: preterm; full term but small for gestational age; full term but large for gestational age, as a function of job-strain (high strain, active and passive versus low strain. In the analysis we control for maternal age, Body Mass Index, parity, exercise, smoking, alcohol use, coffee consumption, type of work (manual versus non-manual, maternal serious disease and parents' heights as well as gestational age at interview. Discussion The prospective nature of the design and the high number of participants strengthen the study. The large statistical power allows for interpretable results regardless of whether or not the hypotheses are confirmed. This is, however, not a controlled study since all kinds of 'natural' interventions takes place throughout pregnancy (e.g. work absence, medical treatment and job-redesign. The analysis will be performed from a public health perspective. From this perspective, we are not primarily interested in the effect of job strain per se but if there is residual effect of job strain after naturally occurring preventive measures have been taken.

  17. Measurement of the uniaxial mechanical properties of rat skin using different stress-strain definitions.

    Science.gov (United States)

    Karimi, A; Navidbakhsh, M

    2015-05-01

    The mechanical properties of skin tissue may vary according to the anatomical locations of a body. There are different stress-strain definitions to measure the mechanical properties of skin tissue. However, there is no agreement as to which stress-strain definition should be implemented to measure the mechanical properties of skin at different anatomical locations. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are employed to determine the mechanical properties of skin tissue at back and abdomen locations of a rat body. The back and abdomen skins of eight rats are excised and subjected to a series of tensile tests. The elastic modulus, maximum stress, and strain of skin tissues are measured using three stress definitions and four strain definitions. The results show that the effect of varying the stress definition on the maximum stress measurements of the back skin is significant but not when calculating the elastic modulus and maximum strain. No significant effects are observed on the elastic modulus, maximum stress, and strain measurements of abdomen skin by varying the stress definition. In the true stress-strain diagram, the maximum stress (20%), and elastic modulus (35%) of back skin are significantly higher than that of abdomen skin. The true stress-strain definition is favored to measure the mechanical properties of skin tissue since it gives more accurate measurements of the skin's response using the instantaneous values. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Optical Method for Detecting Displacements and Strains at Ultra-High Temperatures During Thermo-Mechanical Testing

    Science.gov (United States)

    Smith, Russell W. (Inventor); Rivers, H. Kevin (Inventor); Sikora, Joseph G. (Inventor); Roth, Mark C. (Inventor); Johnston, William M. (Inventor)

    2016-01-01

    An ultra-high temperature optical method incorporates speckle optics for sensing displacement and strain measurements well above conventional measurement techniques. High temperature pattern materials are used which can endure experimental high temperature environments while simultaneously having a minimum optical aberration. A purge medium is used to reduce or eliminate optical distortions and to reduce, and/or eliminate oxidation of the target specimen.

  19. Multi-point strain measurement using Fabry-Perot interferometer consisting of low-reflective fiber Bragg grating

    Science.gov (United States)

    Wada, Atsushi; Tanaka, Satoshi; Takahashi, Nobuaki

    2017-11-01

    A novel simultaneous multi-point strain sensing system based on fiber Bragg grating (FBG) is proposed. In conventional FBG based multi-point sensing systems, the number of measurement points is limited by various factors. For example, in a method based on the wavelength division multiplexing method (WDM), there is a trade-off between the number of the points and dynamic range of measurement. And in a method based on the time division multiplexing (TDM), there is a trade-off between the number of the points and measurement time. The proposed sensing system has a capability of multi-point measurement with high dynamic range and short measurement time. A Fabry-Perot interferometer consisting of low-reflective FBG (FBG-FPI) is introduced as a sensor head. The reflection spectrum from an array of the FBG-FPIs is analyzed using Fourier transform. An experimental demonstration of multipoint strain measurement is reported.

  20. Enhanced Strain Measurement Range of an FBG Sensor Embedded in Seven-Wire Steel Strands

    Directory of Open Access Journals (Sweden)

    Jae-Min Kim

    2017-07-01

    Full Text Available FBG sensors offer many advantages, such as a lack of sensitivity to electromagnetic waves, small size, high durability, and high sensitivity. However, their maximum strain measurement range is lower than the yield strain range (about 1.0% of steel strands when embedded in steel strands. This study proposes a new FBG sensing technique in which an FBG sensor is recoated with polyimide and protected by a polyimide tube in an effort to enhance the maximum strain measurement range of FBG sensors embedded in strands. The validation test results showed that the proposed FBG sensing technique has a maximum strain measurement range of 1.73% on average, which is 1.73 times higher than the yield strain of the strands. It was confirmed that recoating the FBG sensor with polyimide and protecting the FBG sensor using a polyimide tube could effectively enhance the maximum strain measurement range of FBG sensors embedded in strands.

  1. Hybrid fiber optic interferometers for temperature and strain measurements

    Science.gov (United States)

    Wu, Tianyin; Quan, Wenwen; Shao, Laipeng; Lu, Hanglin; Du, Jing; Hu, Junhui

    2017-10-01

    The hybrid fiber optic interferometers are proposed and experimentally demonstrated. In our schemes, the hybrid fiber optic interferometers are constructed by single mode-multimode-polarization maintaining-single mode optical fiber (SMPS) structure and a Sagnac loop. The temperature and strain characteristics of the hybrid interferometers are studied in experiment, and the sensitivities depending on the length of polarization maintaining optical fiber (PMF) and multimode optical fiber (MMF) are detailedly investigated in experiment. The experimental results have demonstrated that the PMF and MMF lengths have low affect on the strain sensitivity but has great influence on the temperature sensitivity. The achieved strain sensitivity is 37.2pm/μɛ for 10cm PMF and 12cm MMF. The achieved strain sensitivity is 38.0pm/μɛ for 12cm PMF when the length of MMF is fixed at 15cm, and is 37.2 pm/μɛ for 12cm MMF when the length of PMF is fixed at 10cm. The obtained temperature sensitivities is 1.723nm/°C when the length of MPF is 8cm with the fixed length of 15cm MMF, and the obtained temperature sensitivities reach 1.848nm/℃when the length of MMF is 12cm with the fixed length of 10cm PMF.

  2. Strain measurements of a fiber loop rosette using high spatial resolution Rayleigh scatter distributed sensing

    Science.gov (United States)

    Gifford, Dawn K.; Sang, Alex K.; Kreger, Steven T.; Froggatt, Mark E.

    2010-09-01

    Strain is measured with high spatial resolution on fiber loops bonded to a metal test sample to form a fiber rosette. Strain measurements are made using an Optical Backscatter Reflectometer to detect changes in the phase of the Rayleigh Scatter of the fiber with 160 μm spatial resolution along the length of the fiber. Using this experimental set-up, applied strain levels as well as the axis along which the loads are applied are measured. Thermal gradients are also detected. The high spatial resolution and strain sensitivity of this technique enable highly functional fiber rosettes formed of small diameter loops of standard low-bend-loss optical fiber.

  3. Strain, Attribution, and Traffic Delinquency among Young Drivers: Measuring and Testing General Strain Theory in the Context of Driving

    Science.gov (United States)

    Ellwanger, Steven J.

    2007-01-01

    This article enhances our knowledge of general strain theory (GST) by applying it to the context of traffic delinquency. It does so by first describing and confirming the development of a social-psychological measure allowing for a test of GST. Structural regression analysis is subsequently employed to test the theory within this context across a…

  4. A new design for simultaneous temperature and strain measurement with spontaneous Raman and Brillouin scattering

    Science.gov (United States)

    Chen, Fuchang; Chen, Bai; Lin, Zunqi

    2010-11-01

    We design a new system for simultaneous distributed measurement of temperature and strain based on both spontaneous Raman and Brillouin backscattered signals. The Raman signal can determine the temperature. Although the Brillouin frequency shift is dependent on both temperature and strain of fiber, once the temperature is determined from the Raman signal, the strain can then be computed from the frequency measurement of the Brillouin signal.

  5. Reliability of transcutaneous measurement of renal function in various strains of conscious mice.

    Directory of Open Access Journals (Sweden)

    Daniel Schock-Kusch

    Full Text Available Measuring renal function in laboratory animals using blood and/or urine sampling is not only labor-intensive but puts also a strain on the animal. Several approaches for fluorescence based transcutaneous measurement of the glomerular filtration rate (GFR in laboratory animals have been developed. They allow the measurement of GFR based on the elimination kinetics of fluorescent exogenous markers. None of the studies dealt with the reproducibility of the measurements in the same animals. Therefore, the reproducibility of a transcutaneous GFR assessment method was investigated using the fluorescent renal marker FITC-Sinistrin in conscious mice in the present study. We performed two transcutaneous GFR measurements within three days in five groups of mice (Balb/c, C57BL/6, SV129, NMRI at 3-4 months of age, and a group of 24 months old C57BL/6. Data were evaluated regarding day-to-day reproducibility as well as intra- and inter-strain variability of GFR and the impact of age on these parameters. No significant differences between the two subsequent GFR measurements were detected. Fastest elimination for FITC-Sinistrin was detected in Balb/c with significant differences to C57BL/6 and SV129 mice. GFR decreased significantly with age in C57BL/6 mice. Evaluation of GFR in cohorts of young and old C57BL/6 mice from the same supplier showed high consistency of GFR values between groups. Our study shows that the investigated technique is a highly reproducible and reliable method for repeated GFR measurements in conscious mice. This gentle method is easily used even in old mice and can be used to monitor the age-related decline in GFR.

  6. Development of a pattern to measure multiscale deformation and strain distribution via in situ FE-SEM observations.

    Science.gov (United States)

    Tanaka, Y; Naito, K; Kishimoto, S; Kagawa, Y

    2011-03-18

    We investigated a method for measuring deformation and strain distribution in a multiscale range from nanometers to millimeters via in situ FE-SEM observations. A multiscale pattern composed of a grid as well as random and nanocluster patterns was developed to measure the localized deformation at the specimen surface. Our in situ observations of a carbon fiber-reinforced polymer matrix composite with a hierarchical microstructure subjected to loading were conducted to identify local deformation behaviors at various boundaries. We measured and analyzed the multiscale deformation and strain localizations during various stages of loading.

  7. Longitudinal force measurement in continuous welded rail with bi-directional FBG strain sensors

    Science.gov (United States)

    Wang, Ping; Xie, Kaize; Shao, Liyang; Yan, Lianshan; Xu, Jingmang; Chen, Rong

    2016-01-01

    In this work, a new method has been proposed to accurately determine longitudinal force measurement in continuous welded rail (CWR) with bi-directional fiber Bragg grating (B-FBGs) strain sensors (vertically and longitudinally installed according to the axis of rail). The response of B-FBGs has been theoretically analyzed by binding on CWR under different restrained conditions, where the coefficient of strain sensitivity of FBG is calibrated by its temperature sensitivity. Then the proposed sensor structure has been installed at two elaborately selected points on the subgrade on a Chinese high-speed railway in field. The experiment lasts for about 23 h. During the experiment, the rail temperature varied by about 7.8 °C and the differentials of relative value of wavelength change of B-FBGs of two points were 1.7850 × 10-5 and 1.4969 × 10-5. The maximum difference between the experimental and theoretical results is 13.8 kN. The experimental results agree with the theoretical analysis very well. To guarantee the measurement accuracy of over 95%, the ratio of strain sensitivity coefficients of two FBG sensors of B-FBGs structure at one test point shall be within 0.78 ˜ 1.22.

  8. Dynamic Inertia Measurement Method Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Critically important inertia measurements are complex and expensive to obtain due to the extensive fixturing and custom instrumentation of conventional...

  9. Characterization of coating processes in Moiré Diffraction Gratings for strain measurements

    Science.gov (United States)

    Eduardo Ribeiro, João; Lopes, Hernani; Paulo Carmo, João

    2013-04-01

    This paper analyses the influence of the coating process in the optical efficiency of replicated Moiré Diffraction Gratings (MDGs), which are applied on real field applications for measuring both the surface displacements and strains. The Moiré diffraction technique is an experimental full-field, non-contact and high resolution optical method, which can reveal to be very useful in extreme harsh environments. The optical efficiency of the replicated MDGs plays an important role in the quality of the experimental measurements. Two processes were used to obtain the metallic coatings: sputtering and aluminum vaporization. A good coatings quality with high optical efficiency was achieved for both processes (e.g., 17%-28%). However, for the replicated gratings a slight decrease in the optical efficiency was found (e.g., 14%-21%). The MDGs were successfully used for the experimental measurements of displacement and strains in a single lap joint. The measurements also showed that high quality of measurements allowed the identification of unbounded regions.

  10. Rotavirus A genotype G1P[8]: a novel method to distinguish wild-type strains from the Rotarix® vaccine strain

    Directory of Open Access Journals (Sweden)

    Tatiana L Rose

    2010-12-01

    Full Text Available Rotaviruses are important enteric pathogens for humans and animals. Group A rotaviruses (RV-A are the most common agents of severe gastroenteritis in infants and young children and vaccination is the most effective method to reduce RV-A-associated diseases. G1P[8], the most prevalent RV-A genotype worldwide, is included in the RV-A vaccine Rotarix®. The discrimination between wild-type G1P[8] and vaccine G1P[8] strains is an important topic in the study of RV-A epidemiology to manage outbreaks and to define control measures for vaccinated children. In this study, we developed a novel method to segregate the wild-type and vaccine strains using restriction endonucleases. The dsRNA from the Rotarix® vaccine was sequenced and the NSP3 gene was selected as the target gene. The vaccine strain has a restriction pattern that is different than that of wild-type RV-A G1P[8] isolates after digestion with the restriction endonuclease BspHI. This pattern could be used as a marker for the differentiation of wild-type G1P[8] strains from the vaccine strain.

  11. An octahedral shear strain-based measure of SNR for 3D MR elastography

    Energy Technology Data Exchange (ETDEWEB)

    McGarry, M D J; Perrinez, P R; Pattison, A J; Weaver, J B; Paulsen, K D [Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 (United States); Van Houten, E E W, E-mail: matthew.d.mcgarry@dartmouth.edu [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand)

    2011-07-07

    A signal-to-noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for magnetic resonance elastography (MRE), where motion-based SNR measures are commonly used. The shear strain, {gamma}, is directly related to the shear modulus, {mu}, through the definition of shear stress, {tau} = {mu}{gamma}. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and the human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects. (note)

  12. An octahedral shear strain-based measure of SNR for 3D MR elastography

    Science.gov (United States)

    McGarry, M. D. J.; Van Houten, E. E. W.; Perriñez, P. R.; Pattison, A. J.; Weaver, J. B.; Paulsen, K. D.

    2011-07-01

    A signal-to-noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for magnetic resonance elastography (MRE), where motion-based SNR measures are commonly used. The shear strain, γ, is directly related to the shear modulus, μ, through the definition of shear stress, τ = μγ. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and the human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects.

  13. Simultaneous measurement of dynamic strain and temperature distribution using high birefringence PANDA fiber Bragg grating

    Science.gov (United States)

    Zhu, Mengshi; Murayama, Hideaki

    2017-04-01

    New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.

  14. Low level TOC measurement method

    Science.gov (United States)

    Ekechukwu, Amy A.

    2001-01-01

    A method for the determination of total organic carbon in an aqueous sample by trapping the organic matter on a sorbent which is carbon free and analyzing the sorbent by combustion and determination of total CO.sub.2 by IR.

  15. Automated Methods of Corrosion Measurements

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    1997-01-01

    electrochemical measurements as well as elemental analysis look very promising for elucidating corrosion reaction mechanisms. The study of initial surface reactions at the atomic or submicron level is becoming an important field of research in the understanding of corrosion processes. At present, mainly two...... scanning microscope techniques are employed investigating corrosion processes, and usually in situ: in situ scanning tunneling microscopy (in situ STM) and in situ scanning force microscopy (in situ AFM). It is these techniques to which attention is directed here....

  16. Simultaneous strain and temperature measurement using a single fiber Bragg grating embedded in a composite laminate

    Science.gov (United States)

    Singh, A. K.; Berggren, S.; Zhu, Y.; Han, M.; Huang, H.

    2017-11-01

    This paper presents a fiber Bragg gating (FBG) sensor that can be surface mounted for simultaneous strain and temperature measurements. By embedding a conventional FBG sensor in a composite laminate, local birefringence is introduced, which causes the bandwidth of the FBG spectrum to vary with strain as well as temperature. As such, temperature and strain can be simultaneously determined from two FBG spectral parameters, i.e. the spectral bandwidth and the Bragg wavelength. Techniques for improving the spectrum of the FBG-composite sensor and for inversely determining the strain and temperature from the measured FBG spectral parameters are discussed. Thermal–mechanical testing of the FBG-composite sensor was carried out to validate the sensor performance. The measurement errors, within one standard deviation, for the strain and temperature measurements were found to be ±62 με and ±1.94 °C, respectively.

  17. Measurement of residual strains in boron-epoxy and glass-epoxy laminates

    Science.gov (United States)

    Daniel, I. M.; Liber, T.; Chamis, C. C.

    1975-01-01

    Embedded-strain-gage techniques were developed and used for measuring strains in composite angle-ply laminates during curing and thermal cycling. The specimens were 2.54 by 22.9 cm eight-ply boron-epoxy and S-glass-epoxy laminates. Unidirectional specimens were used for control purposes. Strain readings were corrected for the purely thermal output of the gages obtained from an instrument quartz reference specimen. The strains measured during the cooling part of the curing cycle were in agreement with those recorded during subsequent thermal cycling, indicating that residual stresses induced during curing are primarily caused by differential thermal expansions of the various plies. Restraint strains were computed for the 0-deg and 45-deg plies of the angle-ply laminates tested, and the residual stresses obtained using the anisotropic constitutive relations and taking into account the temperature dependence of stiffnesses and strains.

  18. Methods for measurement of durability parameters

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1996-01-01

    Present selected methods for measurement of durabilty parameters relating to chlorides, corrosion, moisture and freeze-thaw, primarly on concrete. Advantages and drawbacks of the different methods are included.......Present selected methods for measurement of durabilty parameters relating to chlorides, corrosion, moisture and freeze-thaw, primarly on concrete. Advantages and drawbacks of the different methods are included....

  19. Design and Testing of the Strain Transducer for Measuring Deformations of Pipelines Operating in the Mining-deformable Ground Environment

    Directory of Open Access Journals (Sweden)

    Gawedzki Waclaw

    2015-10-01

    Full Text Available Design and laboratory test results of the strain transducer intended for monitoring and assessing stress states of pipelines sited in mining areas are presented in this paper. This transducer allows measuring strains of pipelines subjected to external forces - being the mining operations effect. Pipeline strains can have a direct influence on a tightness loss and penetration of the transported fluid into the environment. The original strain gauge transducer was proposed for performing measurements of strains. It allows measuring circumferential strains and determining the value and direction of the main longitudinal strain. This strain is determined on the basis of measuring component longitudinal strains originating from axial forces and the resultant bending moment. The main purpose of investigations was the experimental verification of the possibility of applying the strain transducer for measuring strains of polyethylene pipelines. The obtained results of the transducer subjected to influences of tensile and compression forces are presented and tests of relaxation properties of polyethylene are performed.

  20. Review of the Strain Modulation Methods Used in Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Kuo Li

    2016-01-01

    Full Text Available Fiber Bragg grating (FBG is inherently sensitive to temperature and strain. By modulating FBG’s strain, various FBG sensors have been developed, such as sensors with enhanced or reduced temperature sensitivity, strain/displacement sensors, inclinometers, accelerometers, pressure meters, and magnetic field meters. This paper reviews the strain modulation methods used in these FBG sensors and categorizes them according to whether the strain of an FBG is changed evenly. Then, those even-strain-change methods are subcategorized into (1 attaching/embedding an FBG throughout to a base and (2 fixing the two ends of an FBG and (2.1 changing the distance between the two ends or (2.2 bending the FBG by applying a transverse force at the middle of the FBG. This review shows that the methods of “fixing the two ends” are prominent because of the advantages of large tunability and frequency modulation.

  1. Surface strain measurement using pulsed laser shearography with fibre-optic imaging bundles

    OpenAIRE

    Francis, Daniel

    2008-01-01

    This thesis describes the development of a shearography instrument for the quantitative measurement of surface strain on dynamic test objects. Shearography is a non-contact, full-field interferometric speckle technique used for the measurement of displacement gradient. It is often used in industry for qualitative inspection of industrial components. To fully characterize the surface strain, a total of six components of displacement gradient are required. These can be measured u...

  2. Simultaneous independent distributed strain and temperature measurements over 15 km using spontaneous Brillouin scattering

    Science.gov (United States)

    Kee, Huai H.; Lees, Gareth P.; Newson, Trevor P.

    2000-08-01

    Long range simultaneous distributed strain and temperature sensors have many applications for measurements in the power and oil industries and also for structural monitoring. We present an efficient technique to measure both the intensity and frequency shift at every point along the sensitive fiber with a low loss filtering device utilizing two in-fiber Mach-Zehnder interferometers. From these two measurements, it is possible to compute accurately the strain and temperature profile.

  3. Analysis of a strain rate field in cold formed material using the visioplasticity method

    Directory of Open Access Journals (Sweden)

    L. Gusel

    2009-04-01

    Full Text Available In this paper the visioplasticity method is used to find the complete velocity and strain rate distributions from the experimental data, using the finite-difference method. The data about values of strain rates in plastic region of the material is very important for calculating stresses and the prediction of product quality. Specimens of copper alloy were extruded with different lubricants and different coefficients of friction and then the strain rate distributions were analysed and compared. Significant differences in velocity and strain rate distributions were obtained in some regions at the exit of the deformed zone.

  4. Usefulness of ultrasonic strain measurement-based shear modulus reconstruction for diagnosis and thermal treatment.

    Science.gov (United States)

    Sumi, Chikayoshi

    2005-10-01

    We previously reported an ultrasonic strain measurement-based one-dimensional (1-D) shear modulus reconstruction technique using a regularization method for differential diagnosis of malignancies on human superficial tissues (e.g., breast tissues). Here, ultrasonic strain measurement-based 2-D and 3-D shear modulus reconstruction techniques are described, and the 1-D technique is reviewed and subsequently applied to various human in vivo tissues, including deeply situated tissues (e.g., liver). Because soft tissues are deformed in 3-D space by externally situated arbitrary mechanical sources, the accuracy of the low-dimensional (i.e., 1-D or 2-D) reconstructions is lower to that of 3-D reconstruction due to occurrence of erroneous reconstruction artifacts (i.e., the reconstructed modulus is different than reality). These artifacts are confirmed on simulated inhomogeneous cubic phantoms containing a spherical homogenous inclusion using numerically calculated deformation data. The superiority of quasi-real-time imaging of the shear modulus is then demonstrated by comparing it with conventional B-mode imaging and strain imaging from the standpoints of monitoring the effectiveness of minimally invasive thermal therapy as well as differential diagnosis. Because the 2-D and 3-D techniques require special ultrasonic (US) equipment, the 1-D technique using conventional US imaging equipment is used, even though erroneous artifacts will occur. Specifically, the 1-D technique is applied as a diagnostic tool for differentiating malignancies in human in vivo liver and breast tissue, and a monitoring technique for determining the effectiveness of interstitial electromagnetic wave (micro and rf) thermal therapy on human in vivo liver and calf in vitro liver. Even when using the 1-D technique, reconstructed shear moduli were confirmed to be a suitable measure for monitoring thermal treatment as well as differential diagnosis. These results are encouraging in that they will promote

  5. Evaluation method for ductile crack propagation in pre-strained plates; Yohizumizai no ensei kiretsu denpa hyokaho

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Y.; Murakawa, H. [Osaka Univ., Osaka (Japan). Welding Research Inst.; Tanigawa, M. [Hitachi Zosen Corp., Osaka (Japan)

    1996-12-31

    In order to investigate an effect of the plastic deformation, which was generated on ship side outer platings subjected to collision load before crack initiation, on the crack propagation behavior, crack propagation experiments using pre-strained specimens and simulation analysis by means of FEM method were carried out, to discuss about the practical simulation analysis method. As a result of the crack propagation experiments using pre-strained center notched plate specimens, a phenomenon where the crack is apt to propagate due to the pre-strains was confirmed, and measured data of crack tip opening angles were obtained. A method was proposed, in which the critical crack tip opening angle values are corrected by considering the difference between the crack shapes obtained from the FEM analysis model and actually measured, and its effectiveness was confirmed. The finite element size effect was also examined. A method using an equivalent plastic strain as the crack propagation condition was shown to determine the relationship between the element size and the critical value of equivalent plastic strain. 5 refs., 21 figs., 4 tabs.

  6. The external and internal measurement impact on shear modulus distribution within cyclic small strains in triaxal studies into cohesive soil

    Directory of Open Access Journals (Sweden)

    Jastrzebska M.

    2010-06-01

    Full Text Available The paper deals with comparison of tangent shear moduli Gs of kaolin from Tułowice obtained from cyclic triaxial tests on the basis of external and internal reading in the small strains range (10-5÷10-3. The tests were carried out on a modernised test bed, enabling full saturation of specimens using the back pressure method as well as a precise internal measurement of strains by means of contactless microdisplacements sensors. The value of linearity factor L is one of adopted quality criteria for two measuring methods. Maintaining a constant deformation rate the influence of various cyclic process parameters (deviator stress amplitude – constant or variable; high or low; initial level of stress and strain, at which the unloading and reloading cycles were started; overconsolidation ratio OCR as well as cycles’ number and arrangement on the "shear modulus – axial strain" characteristic was studied. The obtained values of Gint and Gext (or Lint and Lext clearly show an underestimation (even 5 times of Gs value within the range 10-5÷10-3 when using an external measurement. In addition, the differences between Gint and Gext, which develop differently depending on specified cyclic process parameters, gradually decrease with increasing axial strains.

  7. Earth Strain Measurements with a Laser Interferometer: An 800-meter Michelson interferometer monitors the earth's strain field on the surface of the ground.

    Science.gov (United States)

    Berger, J; Lovberg, R H

    1970-10-16

    The development of the laser as a source of coherent optical radiation has permitted the application of interferometric techniques to the problem of earth strain measurement. By use of this technology, an 800-meter laser strain meter has been developed which operates above the surface of the ground. The instrument has a strain least count of 10(-10), requires no calibration, and has a flat and linear response from zero frequency to 1 megahertz. The linearity and large dynamic range of the laser strain meter offer unprecedented versatility in the recording of seismic strains associated with earthquakes and nuclear blasts. The extremely wide bandwidth opens new areas of the strain spectrum to investigation. A key to the understanding of the state of stress of the earth and the association phenomona of tectonic activity and earthquakes is a knowledge of the spatial distribution of the earth strain. Measurements of secular strain and earth tides indicate that, even at these long periods, surface strain measurements are valid representations of earth strain at depth. The LSM thus provides a means of making crustal strain measurements at points selected for maximum geophysical interest and ultimately allow the mapping of strain field distributions.

  8. Methods for High Power EM Pulse Measurement

    Directory of Open Access Journals (Sweden)

    P. Fiala

    2006-12-01

    Full Text Available There are some suitable methods for the measurement of ultra-short solitary electromagnetic pulses that can be generated by high power pulsed generators. The measurement methods properties have to correspond to the fact whether we want to measure pulses of voltage, current or free-space electromagnetic wave. The need for specific measurement methods occurred by the development of high power microwave pulse generator. Applicable methods are presented in this paper. The method utilizing Faraday's induction law allows the measurement of generated current. For the same purpose the magneto-optic method can be utilized, with its advantages. For measurement of output microwave pulse of the generator the calorimetric method was designed and realized.

  9. Digital speckle-based stereo microscope strain measurement system for sheet metal forming by hydraulic bulge tests

    Science.gov (United States)

    Ren, Maodong; Liang, Jin; Wang, Lizhong; Wei, Bin

    2015-09-01

    A digital speckle based stereo microscope strain measurement system is developed to investigate the forming limit diagram (FLD) of miniature sheet metal under hydraulic bulge testing conditions. A stochastic speckle pattern is sprayed on the surface of the tested metal before forming. A series of images are recorded by two cameras mounted on a binocular stereo microscope during the hydroforming process. The critical major and minor strains are then calculated and plotted to construct the forming limit curve. The key technologies applied in the system are discussed in detail, including stereo microscope calibration and large deformation strain filed determination. First, considering complex optical paths and high magnification of the stereo microscope, an accurate combined distortion correction model is proposed to optimize the intrinsic and extrinsic parameters of the stereo microscope. Then, to solve the problem of strain measurement of the tested metal in large deformation situation, a large deformation measurement scheme based on deformation continuity of adjacent images is proposed. And an algorithm of limit strain determination based on spline model is proposed to calculate the critical strains at the onset of plastic instability. Finally, with our self-developed stereo microscope imaging system and sheet metal hydraulic bulging setup, FLD determination tests are conducted to validate the performance of the system. And the measured FLD is compared with the simulation results that predicted by the finite element method. The simulation and experimental results confirm that the proposed system is feasible to measure the full-field strain during the whole bulging processes and provides a better solution for forming limit diagram prediction.

  10. Co-evolution of strain design methods based on flux balance and elementary mode analysis

    DEFF Research Database (Denmark)

    Machado, Daniel; Herrgard, Markus

    2015-01-01

    More than a decade ago, the first genome-scale metabolic models for two of the most relevant microbes for biotechnology applications, Escherichia coli and Saccaromyces cerevisiae, were published. Shortly after followed the publication of OptKnock, the first strain design method using bilevel...... optimization to couple cellular growth with the production of a target product. This initiated the development of a family of strain design methods based on the concept of flux balance analysis. Another family of strain design methods, based on the concept of elementary mode analysis, has also been growing....... Although the computation of elementary modes is hindered by computational complexity, recent breakthroughs have allowed applying elementary mode analysis at the genome scale. Here we review and compare strain design methods and look back at the last 10 years of in silico strain design with constraint-based...

  11. A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Khoo Sze-Wei

    2016-09-01

    Full Text Available Among the full-field optical measurement methods, the Digital Image Correlation (DIC is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.

  12. Ultrasonic Derivative Measurements of Bone Strain During Exercise Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations, Inc., in collaboration with the SUNY Stony Brook, proposes to extend ultrasonic pulsed phase locked loop (PPLL) derivative measurements to the...

  13. Transient and microscale deformations and strains measured under exogenous loading by noninvasive magnetic resonance.

    Directory of Open Access Journals (Sweden)

    Deva D Chan

    Full Text Available Characterization of spatiotemporal deformation dynamics and material properties requires non-destructive methods to visualize mechanics of materials and biological tissues. Displacement-encoded magnetic resonance imaging (MRI has emerged as a noninvasive and non-destructive technique used to quantify deformation and strains. However, the techniques are not yet applicable to a broad range of materials and load-bearing tissues. In this paper, we visualize transient and internal material deformation through the novel synchrony of external mechanical loading with rapid displacement-encoded MRI. We achieved deformation measurements in silicone gel materials with a spatial resolution of 100 µm and a temporal resolution (of 2.25 ms, set by the repetition time (TR of the rapid MRI acquisition. Displacement and strain precisions after smoothing were 11 µm and 0.1%, respectively, approaching cellular length scales. Short (1/2 TR echo times enabled visualization of in situ deformation in a human tibiofemoral joint, inclusive of multiple variable T(2 biomaterials. Moreover, the MRI acquisitions achieved a fivefold improvement in imaging time over previous technology, setting the stage for mechanical imaging in vivo. Our results provide a general approach for noninvasive and non-destructive measurement, at high spatial and temporal resolution, of the dynamic mechanical response of a broad range of load-bearing materials and biological tissues.

  14. Strain Sensors, Methods of Making Same, and Applications of Same

    Science.gov (United States)

    Biris, Alexandru S. (Inventor); Trigwell, Steven (Inventor); Hatfield, Walter (Inventor)

    2015-01-01

    In one aspect, the present invention relates to a layered structure usable in a strain sensor. In one embodiment, the layered structure has a substrate with a first surface and an opposite, second surface defining a body portion therebetween; and a film of carbon nanotubes deposited on the first surface of the substrate, wherein the film of carbon nanotubes is conductive and characterized with an electrical resistance. In one embodiment, the carbon nanotubes are aligned in a preferential direction. In one embodiment, the carbon nanotubes are formed in a yarn such that any mechanical stress increases their electrical response. In one embodiment, the carbon nanotubes are incorporated into a polymeric scaffold that is attached to the surface of the substrate. In one embodiment, the surfaces of the carbon nanotubes are functionalized such that its electrical conductivity is increased.

  15. Strain sensors, methods of making same, and applications of same

    Science.gov (United States)

    Biris, Alexandru S.; Trigwell, Steven; Hatfield, Walter

    2015-06-30

    In one aspect, the present invention relates to a layered structure usable in a strain sensor. In one embodiment, the layered structure has a substrate with a first surface and an opposite, second surface defining a body portion therebetween; and a film of carbon nanotubes deposited on the first surface of the substrate, wherein the film of carbon nanotubes is conductive and characterized with an electrical resistance. In one embodiment, the carbon nanotubes are aligned in a preferential direction. In one embodiment, the carbon nanotubes are formed in a yarn such that any mechanical stress increases their electrical response. In one embodiment, the carbon nanotubes are incorporated into a polymeric scaffold that is attached to the surface of the substrate. In one embodiment, the surfaces of the carbon nanotubes are functionalized such that its electrical conductivity is increased.

  16. Optical strain measurements and its finite element analysis of cold ...

    African Journals Online (AJOL)

    Machine vision system) was proposed for the analysis of flow behaviour of pure aluminium as a function of friction, aspect ratio and specimen geometry. Implementation of this new method reduced the extent of experimentation. Eight standard ...

  17. Measurement of muscle architecture concurrently with muscle hardness using ultrasound strain elastography.

    Science.gov (United States)

    Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Takahashi, Hideyuki

    2014-09-01

    The B-mode ultrasound image that can measure muscle architecture is displayed side by side with the ultrasound strain elastogram that can assess muscle hardness. Consequently, muscle architecture can be measured concurrently with muscle hardness using ultrasound strain elastography. To demonstrate the measurement of muscle architecture concurrently with muscle hardness using ultrasound strain elastography. Concurrent measurements of muscle architectural parameters (muscle thickness, pennation angle, and fascicle length) and muscle hardness of the medial gastrocnemius were performed with ultrasound strain elastography. Separate measurements of the muscle architectural parameters were also performed for use as reference values for the concurrent measurements. Both types of measurements were performed twice at 20° dorsiflexion, neutral position, and 30° plantar flexion. Coefficients of variance of the muscle architectural parameters obtained from the concurrent measurements (≤7.6%) were significantly higher than those obtained from the separate measurements (≤2.4%) (all P  0.05). The use of ultrasound strain elastography for the concurrent measurement of muscle architecture and muscle hardness is feasible. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Self-Evaluation of PANDA-FBG Based Sensing System for Dynamic Distributed Strain and Temperature Measurement.

    Science.gov (United States)

    Zhu, Mengshi; Murayama, Hideaki; Wada, Daichi

    2017-10-12

    A novel method is introduced in this work for effectively evaluating the performance of the PANDA type polarization-maintaining fiber Bragg grating (PANDA-FBG) distributed dynamic strain and temperature sensing system. Conventionally, the errors during the measurement are unknown or evaluated by using other sensors such as strain gauge and thermocouples. This will make the sensing system complicated and decrease the efficiency since more than one kind of sensor is applied for the same measurand. In this study, we used the approximately constant ratio of primary errors in strain and temperature measurement and realized the self-evaluation of the sensing system, which can significantly enhance the applicability, as well as the reliability in strategy making.

  19. Self-Evaluation of PANDA-FBG Based Sensing System for Dynamic Distributed Strain and Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Mengshi Zhu

    2017-10-01

    Full Text Available A novel method is introduced in this work for effectively evaluating the performance of the PANDA type polarization-maintaining fiber Bragg grating (PANDA-FBG distributed dynamic strain and temperature sensing system. Conventionally, the errors during the measurement are unknown or evaluated by using other sensors such as strain gauge and thermocouples. This will make the sensing system complicated and decrease the efficiency since more than one kind of sensor is applied for the same measurand. In this study, we used the approximately constant ratio of primary errors in strain and temperature measurement and realized the self-evaluation of the sensing system, which can significantly enhance the applicability, as well as the reliability in strategy making.

  20. Fiber Strain Measurement for Wide Region Quasidistributed Sensing by Optical Correlation Sensor with Region Separation Techniques

    Directory of Open Access Journals (Sweden)

    Xunjian Xu

    2010-01-01

    Full Text Available The useful application of optical pulse correlation sensor for wide region quasidistributed fiber strain measurement is investigated. Using region separation techniques of wavelength multiplexing with FBGs and time multiplexing with intensity partial reflectors, the sensor measures the correlations between reference pulses and monitoring pulses from several cascadable selected sensing regions. This novel sensing system can select the regions and obtain the distributed strain information in any desired sensing region.

  1. Strain measurement from 3D micro-CT images of a breast-mimicking phantom.

    Science.gov (United States)

    Lee, Soo Yeol; Kim, Gyu Won; Han, Byung Hee; Cho, Min Hyoung

    2011-03-01

    Strain distribution in compressed tissues gives information about elasticity of the tissues. We have measured strain from two sets of 3D micro-CT images of a breast-mimicking phantom; one obtained without compressing the phantom and the other with compressing it. To measure strain, we first calculated compression-induced displacements of high-intensity feature patterns in the image. In measuring displacement of a pixel of interest, we searched the pixel in the compressed-phantom image, whose surrounding resembles the uncompressed-phantom image most closely, using the image correlation technique. From the displacement data, we calculated average strain at a region of interest. With the calculated average strains, we could distinguish the hard inclusion in the phantom which was not distinguishable from the background body of the phantom in the ordinary micro-CT images. The calculated strains account for stiffness of the tissue of interest, one of the important parameters for diagnosing malignant tissues. We present experimental results of the displacement and strain measurement along with FEM analysis results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Determination of Modulus of Elasticity and Shear Modulus by the Measurement of Relative Strains

    Science.gov (United States)

    Labašová, Eva

    2016-12-01

    This contribution is focused on determining the material properties (Young modulus and shear modulus) of the testing samples. The theoretical basis for determining material properties are the knowledge of linear elasticity and strength. The starting points are dependencies among the modulus of elasticity, shear modulus, normal stress and relative strain. The relative strains of the testing samples were obtained by measuring predefined load conditions using a strain-gauge bridge and the universal measurement system Quantum X MX 840. The integration of these tasks into the teaching process enhances practical and intellectual skills of students at secondary level technical universities.

  3. Determination of Modulus of Elasticity and Shear Modulus by the Measurement of Relative Strains

    Directory of Open Access Journals (Sweden)

    Labašová Eva

    2016-12-01

    Full Text Available This contribution is focused on determining the material properties (Young modulus and shear modulus of the testing samples. The theoretical basis for determining material properties are the knowledge of linear elasticity and strength. The starting points are dependencies among the modulus of elasticity, shear modulus, normal stress and relative strain. The relative strains of the testing samples were obtained by measuring predefined load conditions using a strain-gauge bridge and the universal measurement system Quantum X MX 840. The integration of these tasks into the teaching process enhances practical and intellectual skills of students at secondary level technical universities.

  4. Stress/strain Modelling of Casting Processes in the Framework of the Control-Volume Method

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Thorborg, Jesper; Andersen, Søren

    1998-01-01

    for fast, flexible, multidimensional numerical methods is obvious. The basis of the deformation and stress/strain calculation is a transient heat transfer analysis including solidification. This paper presents an approach where the stress/strain and the heat transfer analysis uses the same computational...

  5. Thermoresistive Strain Sensor and Positioning Method for Roll-to-Roll Processes

    Directory of Open Access Journals (Sweden)

    Kuan-Hsun Liao

    2014-05-01

    Full Text Available This study uses the Joule heating effect-generated temperature difference to monitor in real-time and localize both compressive and tensile strains for the polymer substrates used in the roll-to-roll process. A serpentine gold (Au line was patterned on a polyethylenenaphthalate (PEN substrate to form the strain sensor based on thermoresistive behavior. This strain sensor was then subjected to either current or voltage to induce the Joule heating effect on the Au resistor. An infrared (IR detector was used to monitor the strain-induced temperature difference on the Au and PEN surfaces and the minimal detectable bending radius was 0.9 mm with a gauge factor (GF of 1.46. The proposed design eliminates the judgment ambiguity from conventional resistive strain sensors where resistance is the only physical quantity monitored. This study precisely and successfully indicated the local strain quantitatively and qualitatively with complete simulations and measurements.

  6. Measurement Uncertainty Analysis of the Strain Gauge Based Stabilographic Platform

    Directory of Open Access Journals (Sweden)

    Walendziuk Wojciech

    2014-08-01

    Full Text Available The present article describes constructing a stabilographic platform which records a standing patient’s deflection from their point of balance. The constructed device is composed of a toughen glass slab propped with 4 force sensors. Power transducers are connected to the measurement system based on a 24-bit ADC transducer which acquires slight body movements of a patient. The data is then transferred to the computer in real time and data analysis is conducted. The article explains the principle of operation as well as the algorithm of measurement uncertainty for the COP (Centre of Pressure surface (x, y.

  7. Application of fiber Bragg grating sensors to real-time strain measurement of cryogenic tanks

    Science.gov (United States)

    Takeda, Nobuo; Mizutani, Tadahito; Hayashi, Kentaro; Okabe, Yoji

    2003-08-01

    Although many researches of strain measurement using fiber Bragg grating (FBG) sensors were conducted, there were few applications of FBG sensors to spacecraft in operation. It is very significant to develop an onboard system for the real-time strain measurement during the flight operation. In the present research, the real-time strain measurement of a composite liquid hydrogen (LH2) tank, which consisted of CFRP and aluminum liner, was attempted. Adhesive property of the FBG sensors was investigated first of all. As a result, UV coated FBG sensors and polyurethane adhesive were adopted. Then, reflection spectra from FBG sensors were measured through the tensile test at liquid helium (LHe) temperature. Since the center wavelength shifted in proportion to the applied strain, the FBG sensor was suitable as a precise strain sensor even at LHe temperature. Next, the development of an onboard FBG demodulator was discussed. This onboard demodulator was designed for weight saving to be mounted on a reusable rocket vehicle test (RVT) operated by the Institute of Space and Astronautical Science (ISAS). FBG sensors were bonded on the surface of the composite LH2 tank for the RVT. Then, strain measurement using the onboard demodulator was conducted through the cryogenic pressure test of the tank and compared with the result measured using the optical spectrum analyzer (OSA).

  8. Welding deformation analysis based on improved equivalent strain method considering the effect of temperature gradients

    Directory of Open Access Journals (Sweden)

    Tae-Jun Kim

    2015-01-01

    Full Text Available In the present study, the existing equivalent stain method is improved to make up for its weaknesses. The improved inherent strain model is built considering more sophisticated three dimensional constraints which are embodied by six cubic elements attached on three sides of a core cubic element. From a few case studies, it is found that the inherent strain is mainly affected by the changes in restraints induced by changes of temperature-dependent material properties of the restraining elements. On the other hand, the degree of restraints is identified to be little influential to the inherent strain. Thus, the effect of temperature gradients over plate thickness and plate transverse direction normal to welding is reflected in the calculation of the inherent strain chart. The welding deformation can be calculated by an elastic FE analysis using the inherent strain values taken from the inherent strain chart.

  9. Measurement method of reverberation field reciprocity parameter

    Directory of Open Access Journals (Sweden)

    SUN Jundong

    2017-08-01

    Full Text Available This paper presents a method for measuring the reciprocity parameter based on the free field. It is able to achieve accurate measurement of the reverberation constant in a narrow band. The method uses the same transmitting and receiving system, and keeps the same set of parameters to measure the open circuit voltage output under different frequencies in a free field. The open circuit output voltage is measured through average technology in the reverberation control region, then the reverberation radius is calculated and the reciprocity constant obtained. This method uses a single frequency signal and the spatial averaging technique. It is simple, convenient and not suitable for complex measuring instruments. The validity of the method is verified by comparing the measured results with the reverberation time measurement.

  10. Fatigue Life Prediction of High Modulus Asphalt Concrete Based on the Local Stress-Strain Method

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2017-03-01

    Full Text Available Previously published studies have proposed fatigue life prediction models for dense graded asphalt pavement based on flexural fatigue test. This study focused on the fatigue life prediction of High Modulus Asphalt Concrete (HMAC pavement using the local strain-stress method and direct tension fatigue test. First, the direct tension fatigue test at various strain levels was conducted on HMAC prism samples cut from plate specimens. Afterwards, their true stress-strain loop curves were obtained and modified to develop the strain-fatigue life equation. Then the nominal strain of HMAC course determined using finite element method was converted into local strain using the Neuber method. Finally, based on the established fatigue equation and converted local strain, a method to predict the pavement fatigue crack initiation life was proposed and the fatigue life of a typical HMAC overlay pavement which runs a risk of bottom-up cracking was predicted and validated. Results show that the proposed method was able to produce satisfactory crack initiation life.

  11. Measurement methods of ultrasonic transducer sensitivity.

    Science.gov (United States)

    Xiao, Dingguo; Fan, Qiong; Xu, Chunguang; Zhang, Xiuhua

    2016-05-01

    Sensitivity is an important parameter to describe the electro-acoustic energy conversion efficiency of ultrasonic transducer. In this paper, the definition of sensitivity and reciprocity of ultrasonic transducer is studied. The frequency response function of a transducer is the spectrum of its sensitivity, which reflects the response sensitivity of the transducer for input signals at different frequencies. Four common methods which are used to measure the disc-vibrator transducer sensitivity are discussed in current investigation. The reciprocity method and the pulse-echo method are based on the reciprocity of the transducer. In the laser vibrometer method measurement, the normal velocity on the transducer radiating surface is directly measured by a laser vibrometer. In the measurement process of the hydrophone method, a calibrated hydrophone is used to measure the transmitted field. The validity of these methods is checked by experimental test. All of the four methods described are sufficiently accurate for transducer sensitivity measurement, while each method has its advantages and limitations. In practical applications, the appropriate method to measure transducer sensitivity should be selected based on actual conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Whole-field thickness strain measurement using multiple camera digital image correlation system

    Science.gov (United States)

    Li, Junrui; Xie, Xin; Yang, Guobiao; Zhang, Boyang; Siebert, Thorsten; Yang, Lianxiang.

    2017-03-01

    Three Dimensional digital image correlation(3D-DIC) has been widely used by industry, especially for strain measurement. The traditional 3D-DIC system can accurately obtain the whole-field 3D deformation. However, the conventional 3D-DIC system can only acquire the displacement field on a single surface, thus lacking information in the depth direction. Therefore, the strain in the thickness direction cannot be measured. In recent years, multiple camera DIC (multi-camera DIC) systems have become a new research topic, which provides much more measurement possibility compared to the conventional 3D-DIC system. In this paper, a multi-camera DIC system used to measure the whole-field thickness strain is introduced in detail. Four cameras are used in the system. two of them are placed at the front side of the object, and the other two cameras are placed at the back side. Each pair of cameras constitutes a sub stereo-vision system and measures the whole-field 3D deformation on one side of the object. A special calibration plate is used to calibrate the system, and the information from these two subsystems is linked by the calibration result. Whole-field thickness strain can be measured using the information obtained from both sides of the object. Additionally, the major and minor strain on the object surface are obtained simultaneously, and a whole-field quasi 3D strain history is acquired. The theory derivation for the system, experimental process, and application of determining the thinning strain limit based on the obtained whole-field thickness strain history are introduced in detail.

  13. Quantitative ultrasound method for assessing stress-strain properties and the cross-sectional area of Achilles tendon

    Science.gov (United States)

    Du, Yi-Chun; Chen, Yung-Fu; Li, Chien-Ming; Lin, Chia-Hung; Yang, Chia-En; Wu, Jian-Xing; Chen, Tainsong

    2013-12-01

    The Achilles tendon is one of the most commonly observed tendons injured with a variety of causes, such as trauma, overuse and degeneration, in the human body. Rupture and tendinosis are relatively common for this strong tendon. Stress-strain properties and shape change are important biomechanical properties of the tendon to assess surgical repair or healing progress. Currently, there are rather limited non-invasive methods available for precisely quantifying the in vivo biomechanical properties of the tendons. The aim of this study was to apply quantitative ultrasound (QUS) methods, including ultrasonic attenuation and speed of sound (SOS), to investigate porcine tendons in different stress-strain conditions. In order to find a reliable method to evaluate the change of tendon shape, ultrasound measurement was also utilized for measuring tendon thickness and compared with the change in tendon cross-sectional area under different stress. A total of 15 porcine tendons of hind trotters were examined. The test results show that the attenuation and broadband ultrasound attenuation decreased and the SOS increased by a smaller magnitude as the uniaxial loading of the stress-strain upon tendons increased. Furthermore, the tendon thickness measured with the ultrasound method was significantly correlated with tendon cross-sectional area (Pearson coefficient = 0.86). These results also indicate that attenuation of QUS and ultrasonic thickness measurement are reliable and potential parameters for assessing biomechanical properties of tendons. Further investigations are needed to warrant the application of the proposed method in a clinical setting.

  14. An occlusion insensitive adaptive focus measurement method.

    Science.gov (United States)

    Aydin, Tarkan; Akgul, Yusuf S

    2010-06-21

    This paper proposes a new focus measurement method for Depth From Focus to recover depth of scenes. The method employs an all-focused image of the scene to address the focus measure ambiguity problem of the existing focus measures in the presence of occlusions. Depth discontinuities are handled effectively by using adaptively shaped and weighted support windows. The size of the support window can be increased conveniently for more robust depth estimation without introducing any window size related Depth From Focus problems. The experiments on the real and synthetically refocused images show that the introduced focus measurement method works effectively and efficiently in real world applications.

  15. Identification of strain-rate and thermal sensitive material model with an inverse method

    CERN Document Server

    Peroni, L; Peroni, M

    2010-01-01

    This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strain-rates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields) or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena). Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, an...

  16. Detection of Dekkera-Brettanomyces strains in sherry by a nested PCR method.

    Science.gov (United States)

    Ibeas, J I; Lozano, I; Perdigones, F; Jimenez, J

    1996-01-01

    Brettanomyces sp. and its ascosporogenous sexual state, Dekkera sp., have been well documented as spoilage microorganisms, usually associated with barrel-aged red wines. In this report, we describe the genetic characterization, on the basis of DNA content per cell, electrophoretic karyotyping, and mitochondrial DNA restriction patterns, of a Dekkera yeast strain isolated from sherries and of a number of other Brettanomyces and Dekkera strains. By using a genomic DNA fragment of the isolated Dekkera strain, we developed a two-step PCR method which directs the specific amplification of target DNA from this strain and from other Brettanomyces-Dekkera strains. The method efficiently amplified the target DNA from intact cells, obviating DNA isolation, and yielded a detection limit of fewer than 10 yeast cells in contaminated samples of sherry. PMID:8975627

  17. Synchrotron measurements of local microstructure and residual strains in ductile cast iron

    Science.gov (United States)

    Zhang, Y. B.; Andriollo, T.; Fæster, S.; Liu, W.; Sturlason, A.; Barabash, R.

    2017-07-01

    The local microstructure and distribution of thermally induced residual strains in ferrite matrix grains around an individual spherical graphite nodule in ductile cast iron (DCI) were measured using a synchrotron X-ray micro-diffraction technique. It is found that the matrix grains are deformed, containing dislocations and dislocation boundaries. Each of the residual strain components in the matrix grains exhibits a complex pattern along the circumferential direction of the nodule. Along the radial direction of the nodule, strain gradients from the interface to the grain interior are seen for some strain components, but only in some matrix grains. The observed residual strain patterns have been analysed by finite element modelling, and a comparison between the simulation and experiments is given. The present study of local residual stress by both experimental characterization and simulation provide much needed information for understanding the mechanical properties of DCI, and represent an important contribution for the microstructural design of new DCI materials.

  18. Standard test method for determining residual stresses by the hole-drilling strain-gage method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 Residual Stress Determination: 1.1.1 This test method specifies a hole-drilling procedure for determining residual stress profiles near the surface of an isotropic linearly elastic material. The test method is applicable to residual stress profile determinations where in-plane stress gradients are small. The stresses may remain approximately constant with depth (“uniform” stresses) or they may vary significantly with depth (“non-uniform” stresses). The measured workpiece may be “thin” with thickness much less than the diameter of the drilled hole or “thick” with thickness much greater than the diameter of the drilled hole. Only uniform stress measurements are specified for thin workpieces, while both uniform and non-uniform stress measurements are specified for thick workpieces. 1.2 Stress Measurement Range: 1.2.1 The hole-drilling method can identify in-plane residual stresses near the measured surface of the workpiece material. The method gives localized measurements that indicate the...

  19. Ultrasonic Measurement of Transient Change in Stress-Strain Property of Radial Arterial Wall Caused by Endothelium-Dependent Vasodilation

    Science.gov (United States)

    Ikeshita, Kazuki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    The endothelial dysfunction is considered to be an initial step of atherosclerosis. Additionally, it was reported that the smooth muscle, which constructs the media of the artery, changes its characteristics owing to atherosclerosis. Therefore, it is essential to develop a method for assessing the regional endothelial function and mechanical property of the arterial wall. There is a conventional technique of measuring the transient change in the diameter of the brachial artery caused by flow-mediated dilation (FMD) after the release of avascularization. For more sensitive and regional evaluation, we developed a method of measuring the change in the elasticity of the radial artery due to FMD. In this study, the transient change in the mechanical property of the arterial wall was further revealed by measuring the stress-strain relationship during each heartbeat. The minute change in the thickness (strain) of the radial arterial wall during a cardiac cycle was measured by the phased tracking method, together with the waveform of blood pressure which was continuously measured with a sphygmometer at the radial artery. The transient change in stress-strain relationship during a cardiac cycle was obtained from the measured changes in wall thickness and blood pressure to show the transient change in instantaneous viscoelasticity. From the in vivo experimental results, the stress-strain relationship shows the hysteresis loop. The slope of the loop decreased owing to FMD, which shows that the elastic modulus decreased, and the increasing area of the loop depends on the ratio of the loss modulus (depends on viscosity) to the elastic modulus when the Voigt model is assumed. These results show a potential of the proposed method for the thorough analysis of the transient change in viscoelasticity due to FMD.

  20. Contemporary methods of body composition measurement

    DEFF Research Database (Denmark)

    Fosbøl, Marie Ø; Zerahn, Bo

    2015-01-01

    Reliable and valid body composition assessment is important in both clinical and research settings. A multitude of methods and techniques for body composition measurement exist, all with inherent problems, whether in measurement methodology or in the assumptions upon which they are based....... This review is focused on currently applied methods for in vivo measurement of body composition, including densitometry, bioimpedance analysis, dual-energy X-ray absorptiometry, computed tomography (CT), magnetic resonance techniques and anthropometry. Multicompartment models including quantification of trace...

  1. Measuring method for optical fibre sensors

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Fluitman, J.H.J.

    1984-01-01

    A new measuring method for the signal amplitude in intensity modulating fibre optic sensors is described. A reference signal is generated in the time domain. The method is insensitive for the sensitivity fluctuations of the light transmitter and the light receiver. The method is experimentally

  2. Hybrid MEFPI/FBG sensor for simultaneous measurement of strain and magnetic field

    Science.gov (United States)

    Chen, Mao-qing; Zhao, Yong; Lv, Ri-qing; Xia, Feng

    2017-12-01

    A hybrid fiber-optic sensor consisting of a micro extrinsic Fabry-Perot Interferometer (MEFPI) and an etched fiber Bragg grating (FBG) is proposed, which can measure strain and magnetic field simultaneously. The etched FBG is sealed in a capillary with ferrofluids to detect the surrounding magnetic field. FBG with small diameter will be more sensitive to magnetic field is confirmed by simulation results. The MEFPI sensor that is prepared through welding a short section of hollow-core fiber (HCF) with single-mode fiber (SMF) is effective for strain detection. The experiment shows that strain and magnetic field can be successfully simultaneously detected based on hybrid MEFPI/FBG sensor. The sensitivities of the strain and magnetic field intensity are measured to be up to 1.41 pm/με and 5.11 pm/mT respectively. There is a negligible effect on each other, hence simultaneously measuring strain and magnetic field is feasible. It is anticipated that such easy preparation, compact and low-cost fiber-optic sensors for simultaneous measurement of strain and magnetic field could find important applications in practice.

  3. In vivo measurement of localized tibiofemoral cartilage strains in response to dynamic activity.

    Science.gov (United States)

    Sutter, E Grant; Widmyer, Margaret R; Utturkar, Gangadhar M; Spritzer, Charles E; Garrett, William E; DeFrate, Louis E

    2015-02-01

    Altered local mechanical loading may disrupt normal cartilage homeostasis and play a role in the progression of osteoarthritis. Currently, there are limited data quantifying local cartilage strains in response to dynamic activity in normal or injured knees. To directly measure local tibiofemoral cartilage strains in response to a dynamic hopping activity in normal healthy knees. We hypothesized that local regions of cartilage will exhibit significant compressive strains in response to hopping, while overall compartmental averages may not. Controlled laboratory study. Both knees of 8 healthy subjects underwent magnetic resonance imaging before and immediately after a dynamic hopping activity. Images were segmented and then used to create 3-dimensional surface models of bone and cartilage. These pre- and postactivity models were then registered using an iterative closest point technique to enable site-specific measurements of cartilage strain (defined as the normalized change in cartilage thickness before and after activity) on the femur and tibia. Significant strains were observed in both the medial and lateral tibial cartilage, with each compartment averaging a decrease of 5%. However, these strains varied with location within each compartment, reaching a maximum compressive strain of 8% on the medial plateau and 7% on the lateral plateau. No significant averaged compartmental strains were observed in the medial or lateral femoral cartilage. However, local regions of the medial and lateral femoral cartilage experienced significant compressive strains, reaching maximums of 6% and 3%, respectively. Local regions of both the femur and tibia experienced significant cartilage strains as a result of dynamic activity. An understanding of changes in cartilage strain distributions may help to elucidate the biomechanical factors contributing to cartilage degeneration after joint injury. Site-specific measurements of in vivo cartilage strains are important because altered

  4. Comparison of detection methods for extended-spectrum beta-lactamases in Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Ewelina Kałużna

    2014-06-01

    Full Text Available Introduction: Detection of extended-spectrum beta-lactamases (ESBLs could be a major challenge for microbiologists – the difficulties arise mainly from the phenotypic differences among strains.Materials and Methods: Evaluation of ESBLs was performed on 42 strains of E. coli by: 1 DDST on MHA, 2 DDST on MHA with cloxacillin, 3 CT on MHA, according to CLSI, 4 CT on MHA with cloxacillin, 5 Etest ESBL (AB Biodisk, 6 CHROMagarTM ESBL (GRASO, 7 ChromID® ESBL (bioMérieux, and 8 automatic system VITEK2 ESBL test (bioMérieux.Result: Positive results were obtained for 20 strains using method 1, for 18 strains using method 2, 17 by method 3, 14 by method 4, 11 by method 5, 39 by method 6, 40 by method 7, and 15 by method 8. Using Etest ESBL 6.0 non-determinable results were obtained. The most consistent results were obtained when comparing the results of method 3 with results of method 2 (97.6%, and comparing the results obtained using methods 3 and 8 (95.2%.Conclusions: Based on our study we conclude that the chromogenic media can only be used as a screening method for the detection of ESBLs in E. coli rods. Etest is less useful compared to other phenotype methods, due to the impossibility of obtaining results for all the tested strains. Adding cloxacillin to MHA does not increase the frequency of detection of ESBLs in E. coli strains. DDST seems to be the most reliable among phenotypic methods for the detection of ESBLs in E. coli rods.

  5. Pyrococcus furiosus strains and methods of using same

    Energy Technology Data Exchange (ETDEWEB)

    Lipscomb, Gina L; Farkas, Joel Andrew; Adams, Michael W. W.; Westpheling, Janet

    2015-01-06

    Provided herein are methods for transforming a Pyrococcus furiosus with a polynucleotide. In one embodiment, the method includes contacting a P. furiosus with a polynucleotide under conditions suitable for uptake of the polynucleotide by the P. furiosus, and identifying transformants at a frequency of, for instance, at least 10.sup.3 transformants per microgram DNA. Also provided are isolated Pyrococcus furiosus having the characteristics of Pyrococcus furiosus COM1, and plasmids that include an origin of replication that functions in a Pyrococcus furiosus. The plasmid is stable in a recipient P. furiosus without selection for more than 100 generations and is structurally unchanged after replication in P. furiosus for more than 100 generations.

  6. A two-step optical flow method for strain estimation in elastography: Simulation and phantom study.

    Science.gov (United States)

    Pan, Xiaochang; Gao, Jing; Tao, Shengzhen; Liu, Ke; Bai, Jing; Luo, Jianwen

    2014-04-01

    Optical flow (OF) method has been used in ultrasound elastography to estimate the strain distribution in tissues. However the bias of strain estimation by OF has previously been shown to be close to 20%. The objective in this paper is to improve the performance of OF-based strain estimation, a two-step OF method with a local warping technique is proposed in this paper. The local warping technique effectively decreases the decorrelation of the signals, and hence improves the performance of strain estimation. Simulations on both homogeneous and heterogeneous models with different strains are performed. Experiments on a heterogeneous tissue-mimicking phantom are also carried out. Simulation results of the homogeneous model show that the two-step OF method reduces the bias of strain estimation from 23.77% to 1.65%, and reduces the standard deviation of strain estimation from 2.9×10(-3) to 0.47×10(-3). Simulation results of the heterogeneous model shows that the signals-to-noise ratio (SNRe) of strain estimation is improved by 2.1 and 5.3dB in the inclusion and background, respectively, and the contrast-to-noise ratio (CNRe) is improved by 6.8dB. Finally, results of phantom experiments show that, by using the proposed method, the SNRe is increased by 4.0dB and 8.9dB in the inclusion and background, respectively, while the CNRe is increased by 13.1dB. The proposed two-step OF method is thus demonstrated capable of improving the performance of strain estimation in OF-based elastography. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A fiber optic buckle transducer for measurement of in vitro tendon strain

    Science.gov (United States)

    Roriz, Paulo; Ramos, António; Marques, Manuel B.; Simões, José A.; Frazão, Orlando

    2015-09-01

    The purpose of the present study is to present a prototype of a fiber optic based buckle transducer suitable for measuring strain caused by stretching of a tendon. The device has an E-shape and its central arm is instrumented with a fiber Bragg grating (FBG) sensor. The tendon adjusts to the E-form in a fashion that when it is stretched the central arm bends causing a shift of the Bragg's wavelength (λB) that is proportional to the amount of strain. This prototype is presented as an alternative to conventional strain gauge (SG) buckle transducers.

  8. Dynamic Strain Measured by Mach-Zehnder Interferometric Optical Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Shiuh-Chuan Her

    2012-03-01

    Full Text Available Optical fibers possess many advantages such as small size, light weight and immunity to electro-magnetic interference that meet the sensing requirements to a large extent. In this investigation, a Mach-Zehnder interferometric optical fiber sensor is used to measure the dynamic strain of a vibrating cantilever beam. A 3 × 3 coupler is employed to demodulate the phase shift of the Mach-Zehnder interferometer. The dynamic strain of a cantilever beam subjected to base excitation is determined by the optical fiber sensor. The experimental results are validated with the strain gauge.

  9. Error analysis of cine phase contrast MRI velocity measurements used for strain calculation.

    Science.gov (United States)

    Jensen, Elisabeth R; Morrow, Duane A; Felmlee, Joel P; Odegard, Gregory M; Kaufman, Kenton R

    2015-01-02

    Cine Phase Contrast (CPC) MRI offers unique insight into localized skeletal muscle behavior by providing the ability to quantify muscle strain distribution during cyclic motion. Muscle strain is obtained by temporally integrating and spatially differentiating CPC-encoded velocity. The aim of this study was to quantify CPC measurement accuracy and precision and to describe error propagation into displacement and strain. Using an MRI-compatible jig to move a B-gel phantom within a 1.5 T MRI bore, CPC-encoded velocities were collected. The three orthogonal encoding gradients (through plane, frequency, and phase) were evaluated independently in post-processing. Two systematic error types were corrected: eddy current-induced bias and calibration-type error. Measurement accuracy and precision were quantified before and after removal of systematic error. Through plane- and frequency-encoded data accuracy were within 0.4 mm/s after removal of systematic error - a 70% improvement over the raw data. Corrected phase-encoded data accuracy was within 1.3 mm/s. Measured random error was between 1 to 1.4 mm/s, which followed the theoretical prediction. Propagation of random measurement error into displacement and strain was found to depend on the number of tracked time segments, time segment duration, mesh size, and dimensional order. To verify this, theoretical predictions were compared to experimentally calculated displacement and strain error. For the parameters tested, experimental and theoretical results aligned well. Random strain error approximately halved with a two-fold mesh size increase, as predicted. Displacement and strain accuracy were within 2.6 mm and 3.3%, respectively. These results can be used to predict the accuracy and precision of displacement and strain in user-specific applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Real-Time Dynamic Impact Strain Deformation Measurements of Transparent Poly(urethane urea) Materials

    Science.gov (United States)

    2010-09-01

    strain hardening, which is validated by the real-time 3D strain evolution measurements via digital photogrammetry . These efforts are a part of an... photogrammetry 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 24 19a. NAME OF RESPONSIBLE PERSON Jian H...shields or lenses, structure adhesives, foams, composite structures, and films for structural retrofit. Transparent poly(urethane urea) (PUU) materials

  11. Neutron-diffraction measurement of the evolution of strain for non-uniform plastic deformation

    CERN Document Server

    Rogge, R B; Boyce, D

    2002-01-01

    Neutrons are particularly adept for the validation of modeling predictions of stress and strain. In recent years, there has been a significant effort to model the evolution of both the macroscopic stresses and the intergranular stress during plastic deformation. These have had broad implications with regard to understanding the evolution of residual stress and to diffraction-based measurements of strain. Generally the modeling and associated measurements have been performed for simple uniaxial tension, leaving questions with regard to plastic deformation under multi-axial stress and non-uniform stress. Extensive measurements of the strain profile across a plastic hinge for each of a series of loading and unloading cycles to progressively higher degrees of plastic deformation are presented. These measurements are used to assess multiple-length-scale finite-element modeling (FEM) of the plastic hinge, in which the elements will range in size from single crystallites (as used in successful simulations of uniaxia...

  12. Reproducibility of myocardial strain and left ventricular twist measured using complementary spatial modulation of magnetization.

    Science.gov (United States)

    Swoboda, Peter P; Larghat, Abdulghani; Zaman, Arshad; Fairbairn, Timothy A; Motwani, Manish; Greenwood, John P; Plein, Sven

    2014-04-01

    To establish the reproducibility of complementary spatial modulation of magnetization (CSPAMM) tagged cardiovascular MR (CMR) data in normal volunteers. Twelve healthy volunteers underwent CMR studies on two separate occasions using an identical CSPAMM pulse sequence with images acquired in three short axis slices. Data were analyzed by two independent observers using harmonic phase analysis (HARP). Lagrangian circumferential and radial strain, rotation, and left ventricular twist were calculated. The intraobserver reproducibility of circumferential strain (CoV [coefficient of variation] 1.5-4.3%) and LV twist (CoV 1.2-4.4%) was better than radial strain (CoV 10.6-14.8%). For interobserver reproducibility, circumferential strain (CoV 3.5-6.2%) and LV twist (CoV 3.5-7.2%) were more reproducible than radial strain (CoV 11.8-21.8%). Interstudy reproducibility of circumferential strain (CoV 3.7-5.5%) and LV twist (CoV 9.8-12.2%) were good but radial strain (CoV 13.8-23.4%) but showed poorer interstudy reproducibility. Sample size calculations suggested 20 or fewer subjects are needed to detect a 10% change in circumferential strain (power 90%; α error 0.05), whereas for twist, 66 subjects would be required. In normal volunteers, the intraobserver, interobserver, and interstudy reproducibility of circumferential strain and LV twist measured from CSPAMM tagged CMR data are good, but are less so for radial strain. Copyright © 2013 Wiley Periodicals, Inc.

  13. A novel and rapid method for obtaining high titre intact prion strains from mammalian brain

    Science.gov (United States)

    Wenborn, Adam; Terry, Cassandra; Gros, Nathalie; Joiner, Susan; D’Castro, Laura; Panico, Silvia; Sells, Jessica; Cronier, Sabrina; Linehan, Jacqueline M.; Brandner, Sebastian; Saibil, Helen R.; Collinge, John; Wadsworth, Jonathan D. F.

    2015-01-01

    Mammalian prions exist as multiple strains which produce characteristic and highly reproducible phenotypes in defined hosts. How this strain diversity is encoded by a protein-only agent remains one of the most interesting and challenging questions in biology with wide relevance to understanding other diseases involving the aggregation or polymerisation of misfolded host proteins. Progress in understanding mammalian prion strains has however been severely limited by the complexity and variability of the methods used for their isolation from infected tissue and no high resolution structures have yet been reported. Using high-throughput cell-based prion bioassay to re-examine prion purification from first principles we now report the isolation of prion strains to exceptional levels of purity from small quantities of infected brain and demonstrate faithful retention of biological and biochemical strain properties. The method’s effectiveness and simplicity should facilitate its wide application and expedite structural studies of prions. PMID:25950908

  14. The Definition Method and Optimization of Atomic Strain Tensors for Nuclear Power Engineering Materials

    Directory of Open Access Journals (Sweden)

    Xiangguo Zeng

    2016-01-01

    Full Text Available A common measure of deformation between atomic scale simulations and the continuum framework is provided and the strain tensors for multiscale simulations are defined in this paper. In order to compute the deformation gradient of any atom m, the weight function is proposed to eliminate the different contributions within the neighbor atoms which have different distances to atom m, and the weighted least squares error optimization model is established to seek the optimal coefficients of the weight function and the optimal local deformation gradient of each atom. The optimization model involves more than 9 parameters. To guarantee the reliability of subsequent parameters identification result and lighten the calculation workload of parameters identification, an overall analysis method of parameter sensitivity and an advanced genetic algorithm are also developed.

  15. Strain typing methods and molecular epidemiology of Pneumocystis pneumonia

    DEFF Research Database (Denmark)

    Beard, Charles Ben; Roux, Patricia; Nevez, Gilles

    2004-01-01

    Pneumocystis pneumonia (PCP) caused by the opportunistic fungal agent Pneumocystis jirovecii (formerly P. carinii) continues to cause illness and death in HIV-infected patients. In the absence of a culture system to isolate and maintain live organisms, efforts to type and characterize the organism...... have relied on polymerase chain reaction-based approaches. Studies using these methods have improved understanding of PCP epidemiology, shedding light on sources of infection, transmission patterns, and potential emergence of antimicrobial resistance. One concern, however, is the lack of guidance...

  16. The measurement of digital systolic blood pressure by strain gauge technique

    DEFF Research Database (Denmark)

    Nielsen, P E; Bell, G; Lassen, N A

    1972-01-01

    The systolic blood pressure on the finger, toe, and ankle has been measured by a strain gauge technique in 10 normal subjects aged 17-31 years and 14 normal subjects aged 43-57 years. The standard deviation in repeated measurements lies between 2 and 6 mm Hg. The finger pressure in the younger gr...

  17. Methods to measure tax evasion: a review

    National Research Council Canada - National Science Library

    Hugo A Macías Cardona; Luis Fernando Agudelo Henao; Mario Ricardo López Ramírez

    2007-01-01

    .... Methods to measure tax evasion: a review. Semest. Econ. [online]. 2007, vol.10, n.20, pp. 67-85. ISSN 0120-6346. Fiscal deficit in Colombia makes it necessary to establish alternatives different to those implying expense control...

  18. A rapid minor groove binder PCR method for distinguishing the vaccine strain Brucella abortus 104M.

    Science.gov (United States)

    Nan, Wenlong; Qin, Lide; Wang, Yong; Zhang, Yueyong; Tan, Pengfei; Chen, Yuqi; Mao, Kairong; Chen, Yiping

    2018-01-24

    Brucellosis is a widespread zoonotic disease caused by Gram-negative Brucella bacteria. Immunisation with attenuated vaccine is an effective method of prevention, but it can interfere with diagnosis. Live, attenuated Brucella abortus strain 104M has been used for the prevention of human brucellosis in China since 1965. However, at present, no fast and reliable method exists that can distinguish this strain from field strains. Single nucleotide polymorphism (SNP)-based assays offer a new approach for such discrimination. SNP-based minor groove binder (MGB) and Cycleave assays have been used for rapid identification of four Brucella vaccine strains (B. abortus strains S19, A19 and RB51, and B. melitensis Rev1). The main objective of this study was to develop a PCR assay for rapid and specific detection of strain 104M. We developed a SNP-based MGB PCR assay that could successfully distinguish strain 104M from 18 representative strains of Brucella (B. abortus biovars 1, 2, 3, 4, 5, 6, 7 and 9, B. melitensis biovars 1, 2 and 3, B. suis biovars 1, 2, 3 and 4, B. canis, B. neotomae, and B. ovis), four Brucella vaccine strains (A19, S19, S2, M5), and 55 Brucella clinical field strains. The assay gave a negative reaction with four non-Brucella species (Escherichia coli, Pasteurella multocida, Streptococcus suis and Pseudomonas aeruginosa). The minimum sensitivity of the assay, evaluated using 10-fold dilutions of chromosomal DNA, was 220 fg for the 104M strain and 76 fg for the single non-104M Brucella strain tested (B. abortus A19). The assay was also reproducible (intra- and inter-assay coefficients of variation = 0.006-0.022 and 0.012-0.044, respectively). A SNP-based MGB PCR assay was developed that could straightforwardly and unambiguously distinguish B. abortus vaccine strain 104M from non-104M Brucella strains. Compared to the classical isolation and identification approaches of bacteriology, this real-time PCR assay has substantial advantages in terms of

  19. Methods and frameworks for crosscultural measurement.

    Science.gov (United States)

    Johnson, Timothy P

    2006-11-01

    There is little agreement regarding best practices for constructing and assessing the quality of crosscultural measures. This paper discusses several topics that are relevant to further progress in this area: 1) a lack of consensus regarding conceptualizations of equivalence; 2) emphasis on shared methods versus shared meaning; and 3) the application of cultural theories to measurement problems. Future progress in crosscultural measurement will benefit from continued exploration of these issues.

  20. Optical Strain and Crack-Detection Measurements on a Rotating Disk

    Science.gov (United States)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle M.; Fralick, Gustave

    2013-01-01

    The development of techniques for the in-situ measurement and structural health monitoring of the rotating components in gas turbine engines is of major interest to NASA. As part of this on-going effort, several experiments have been undertaken to develop methods for detecting cracks and measuring strain on rotating turbine engine like disks. Previous methods investigated have included the use of blade tip clearance sensors to detect the presence of cracks by monitoring the change in measured blade tip clearance and analyzing the combined disk-rotor system's vibration response. More recently, an experiment utilizing a novel optical Moiré based concept has been conducted on a subscale turbine engine disk to demonstrate a potential strain measurement and crack detection technique. Moiré patterns result from the overlap of two repetitive patterns with slightly different spacing. When this technique is applied to a rotating disk, it has the potential to allow for the detection of very small changes in spacing and radial growth in a rotating disk due to a flaw such as a crack. This investigation was a continuation of previous efforts undertaken in 2011 to 2012 to validate this optical concept. The initial demonstration attempted on a subscale turbine engine disk was inconclusive due to the minimal radial growth experienced by the disk during operation. For the present experiment a new subscale Aluminum disk was fabricated and improvements were made to the experimental setup to better demonstrate the technique. A circular reference pattern was laser etched onto a subscale engine disk and the disk was operated at speeds up to 12 000 rpm as a means of optically monitoring the Moiré created by the shift in patterns created by the radial growth due the presence of the simulated crack. Testing was first accomplished on a clean defect free disk as a means of acquiring baseline reference data. A notch was then machined in to the disk to simulate a crack and testing was

  1. Surface strain measurement of rotating objects using shearography instrumentation based on fibre-optic imaging bundles

    Science.gov (United States)

    Francis, D.; James, S. W.; Tatam, R. P.

    2008-04-01

    Quantitative, full-field surface strain measurement is achievable using shearography instrumentation that employs at least three measurement channels. The system presented here possesses four measurement channels consisting of four views of the object. Images from the four views are ported to the shearing interferometer using fibre-optic imaging bundles. The use of fibre-optic imaging bundles simplifies the experimental arrangement considerably, allowing full-field surface strain measurements to be made using just one CCD camera and one shearing interferometer. Simultaneous capture of data from the four measurement channels using a pulsed laser source allows the measurement of surface strain on dynamic objects. In this paper the use of the instrument to make measurements of the surface strain profile of a PTFE plate rotating at 600 rpm is described. The use of the spatial carrier technique allows the deformation induced phase variation to be calculated across the field of view from just two images recorded from the object on subsequent rotations.

  2. Center Impedance Method for Damping Measurement

    Directory of Open Access Journals (Sweden)

    D. Malogi

    2009-01-01

    Full Text Available Damping materials are used extensively for reduction of vibration and noise. These damping materials have viscoelastic characteristics and are used by automotive and other industries. Testing of these materials is important in order to predict their performance and traditionally the damping properties are measured by the Oberst method. This paper discusses an alternate method called the Center Impedance method where force and response are measured directly and the damping properties are obtained. The Center Impedance method is easy to use requiring only standard vibration equipment for excitation, namely, shaker, and is easy to control the experiment for repeatability. Results of beams tested by both Oberst and Center Impedance methods are presented in order to validate this test method.

  3. Evaluating Interpolation Methods for Velocity and Strain Rate in the Western United States

    Science.gov (United States)

    Rand, D. S.; McCaffrey, R.; Rudolph, M. L.; King, R. W.

    2016-12-01

    We calculate horizontal strain rates in the Western United States using a geodetic Global Positioning System network of 1,742 stations. Three dimensional velocity vectors in the North American reference frame for GPS stations are based on data beginning in 1993 and reveal, among other features, large-scale clockwise rotation. We explore multiple interpolation techniques (linear, polynomial, and spline methods) to estimate velocity gradients along the Earth's surface. Using these interpolation techniques, we calculate strain rates from the velocity gradients and make a detailed comparison of the strengths and limitations of each method. We analyze the calculated velocity and strain rate fields with detailed attention to ongoing post-seismic deformation related to the 1872 North Cascades earthquake and strain in the fore arc across the Puget Sound area based on GPS observations made there by us in 2016.

  4. Refractive index measurement based on confocal method

    Science.gov (United States)

    An, Zhe; Xu, XiPing; Yang, JinHua; Qiao, Yang; Liu, Yang

    2017-10-01

    The development of transparent materials is closed to optoelectronic technology. It plays an increasingly important role in various fields. It is not only widely used in optical lens, optical element, optical fiber grating, optoelectronics, but also widely used in the building material, pharmaceutical industry with vessel, aircraft windshield and daily wear glasses.Regard of solving the problem of refractive index measurement in optical transparent materials. We proposed that using the polychromatic confocal method to measuring the refractive index of transparent materials. In this article, we describes the principle of polychromatic confocal method for measuring the refractive index of glass,and sketched the optical system and its optimization. Then we establish the measurement model of the refractive index, and set up the experimental system. In this way, the refractive index of the glass has been calibrated for refractive index experiment. Due to the error in the experimental process, we manipulated the experiment data to compensate the refractive index measurement formula. The experiment taking the quartz glass for instance. The measurement accuracy of the refractive index of the glass is +/-1.8×10-5. This method is more practical and accurate, especially suitable for non-contact measurement occasions, which environmental requirements is not high. Environmental requirements are not high, the ordinary glass production line up to the ambient temperature can be fully adapted. There is no need for the color of the measured object that you can measure the white and a variety of colored glass.

  5. Material permeance measurement system and method

    Science.gov (United States)

    Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN

    2012-05-08

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  6. Comparison of strain measurement in the mouse forearm using subject-specific finite element models, strain gaging, and digital image correlation.

    Science.gov (United States)

    Begonia, Mark; Dallas, Mark; Johnson, Mark L; Thiagarajan, Ganesh

    2017-08-01

    Mechanical loading in bone leads to the activation of bone-forming pathways that are most likely associated with a minimum strain threshold being experienced by the osteocyte. To investigate the correlation between cellular response and mechanical stimuli, researchers must develop accurate ways to measure/compute strain both externally on the bone surface and internally at the osteocyte level. This study investigates the use of finite element (FE) models to compute bone surface strains on the mouse forearm. Strains from three FE models were compared to data collected experimentally through strain gaging and digital image correlation (DIC). Each FE model was assigned subject-specific bone properties and consisted of one-dimensional springs representing the interosseous membrane. After three-point bending was performed on the ulnae and radii, moment of inertia was determined from microCT analysis of the bone region between the supports and then used along with standard beam analyses to calculate the Young's modulus. Non-contact strain measurements from DIC were determined to be more suitable for validating numerical results than experimental data obtained through conventional strain gaging. When comparing strain responses in the three ulnae, we observed a 3-14% difference between numerical and DIC strains while the strain gage values were 37-56% lower than numerical values. This study demonstrates a computational approach for capturing bone surface strains in the mouse forearm. Ultimately, strains from these macroscale models can be used as inputs for microscale and nanoscale FE models designed to analyze strains directly in the osteocyte lacunae.

  7. Absolute method of measuring magnetic susceptibility

    Science.gov (United States)

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  8. INTERVERTEBRAL SIZE MEASUREMENT WITH ANTHROPOMETRIC METHOD

    Directory of Open Access Journals (Sweden)

    Zmago Turk

    2004-04-01

    Full Text Available Background. There is a positive correlation between the size of intervertebral disc (IVD and the incidence of Low Back Pain (LBP. Columbini evaluated the size of IVD anthropometricaly but how this measurement correlates with radiologic measurements of IVD square size is steel unknown.Objective. The aim of the study was to search for non-invasive method and cheap and fast evaluation of IVD size with the modification of Columbini’s antropometric formula.Materials and methods. The measurements (anthropometrics, X-ray, CT with range of interest measurement [ROI] were done on 40 bus-drivers. The realibility test was done on 65 bus-drivers.Results. CT measurement of the size of the intervertebral disc was done using ROI (Range of Interest. Using the statistical analysis based on linear regression, correlation, curve fitting and realibility the author made the modification of Columbini’s formula. The incidence of Low Back Pain was statistically significantly higher in people with smaller IVD, particularly in men.Conclusions. With the Columbini’s method of anthropometric measurement of the size of IVD modified by Turk it is possible to make the right measurement prognosis in 89% of cases. Consequently, there is no need to use invasive and costly diagnostic radiologic methods.

  9. COMPANY PERFORMANCE MEASUREMENT AND REPORTING METHODS

    Directory of Open Access Journals (Sweden)

    Nicu Ioana Elena

    2012-12-01

    Full Text Available One of the priorities of economic research has been and remains the re-evaluation of the notion of performance and especially exploring and finding some indicators that would reflect as accurately as possible the subtleties of the economic entity. The main purpose of this paper is to highlight the main company performance measurement and reporting methods. Performance is a concept that raises many question marks concerning the most accurate or the best method of reporting the performance at the company level. The research methodology has aimed at studying the Romanian and foreign specialized literature dealing with the analyzed field, studying magazines specialized on company performance measurement. If the financial performance measurement indicators are considered to offer an accurate image of the situation of the company, the modern approach through non-financial indicators offers a new perspective upon performance measurement, which is based on simplicity. In conclusion, after the theoretical study, I have noticed that the methods of performance measurement, reporting and interpretation are various, the opinions regarding the best performance measurement methods are contradictive and the companies prefer resorting to financial indicators that still play a more important role in the consolidation of the company performance measurement than the non-financial indicators do.

  10. Measuring elevated intracranial pressure through noninvasive methods

    DEFF Research Database (Denmark)

    Kristiansson, Helena; Nissborg, Emelie; Bartek, Jiri

    2013-01-01

    techniques available. Several methods for noninvasive measuring of elevated ICP have been proposed: radiologic methods including computed tomography and magnetic resonance imaging, transcranial Doppler, electroencephalography power spectrum analysis, and the audiological and ophthalmological techniques......Elevated intracranial pressure (ICP) is an important cause of secondary brain injury, and a measurement of ICP is often of crucial value in neurosurgical and neurological patients. The gold standard for ICP monitoring is through an intraventricular catheter, but this invasive technique...... is associated with certain risks. Intraparenchymal ICP monitoring methods are considered to be a safer alternative but can, in certain conditions, be imprecise due to zero drift and still require an invasive procedure. An accurate noninvasive method to measure elevated ICP would therefore be desirable...

  11. Development of shearography for surface strain measurement of non planar objects

    CERN Document Server

    Groves, R M

    2001-01-01

    The subject of this thesis is the development of optical instrumentation for surface strain measurement of non-planar objects. The speckle interferometry technique of shearography is used to perform quantitative measurements of surface strain on non-planar objects and to compensate these measurements for the errors that are due to the shape and slope of the object. Shearography is an optical technique that is usually used for defect location and for qualitative strain characterisation. In this thesis a multi-component shearography system is described that can measure the six components of displacement gradient. From these measurements the surface strain can be fully characterised. For non-planar objects an error is introduced into the displacement gradient measurement due to the variation of the sensitivity vector across the field of view and the variation in the magnitude of applied shear due to the curvature of the object surface. To correct for these errors requires a knowledge of the slope and shape of th...

  12. Wide-range dynamic strain measurements based on K-BOTDA and frequency-agile technique

    Science.gov (United States)

    Zhou, Dengwang; Dong, Yongkang; Wang, Benzhang; Zhang, Hongying; Lu, Zhiwei

    2017-04-01

    We propose and demonstrate a novel fast Brillouin optical time-domain analysis system using the coefficient K spectrum which is defined as the ratio of phase-shift and gain of Brillouin amplification, where K features linear response, immune to the variation of pump power and a wide measure range. For a 30ns-square pump pulse, the frequency span of K spectrum can reach up to 200MHz. In dynamic strain experiment, a multi-slope assisted K-BOTDA with the measured strain of 5358.3μɛ and the vibration frequency of 6.01Hz and 12.05Hz are demonstrated.

  13. Distributed Strain Measurement along a Concrete Beam via Stimulated Brillouin Scattering in Optical Fibers

    Directory of Open Access Journals (Sweden)

    Romeo Bernini

    2011-01-01

    Full Text Available The structural strain measurement of tension and compression in a 4 m long concrete beam was demonstrated with a distributed fiber-optic sensor portable system based on Brillouin scattering. Strain measurements provided by the fiber-optic sensor permitted to detect the formation of a crack in the beam resulting from the external applied load. The sensor system is valuable for structural monitoring applications, enabling the long-term performance and health of structures to be efficiently monitored.

  14. Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells

    Science.gov (United States)

    Zile, M. R.; Cowles, M. K.; Buckley, J. M.; Richardson, K.; Cowles, B. A.; Baicu, C. F.; Cooper G, I. V.; Gharpuray, V.

    1998-01-01

    Diastolic dysfunction is an important cause of congestive heart failure; however, the basic mechanisms causing diastolic congestive heart failure are not fully understood, especially the role of the cardiac muscle cell, or cardiocyte, in this process. Before the role of the cardiocyte in this pathophysiology can be defined, methods for measuring cardiocyte constitutive properties must be developed and validated. Thus this study was designed to evaluate a new method to characterize cardiocyte constitutive properties, the gel stretch method. Cardiocytes were isolated enzymatically from normal feline hearts and embedded in a 2% agarose gel containing HEPES-Krebs buffer and laminin. This gel was cast in a shape that allowed it to be placed in a stretching device. The ends of the gel were held between a movable roller and fixed plates that acted as mandibles. Distance between the right and left mandibles was increased using a stepper motor system. The force applied to the gel was measured by a force transducer. The resultant cardiocyte strain was determined by imaging the cells with a microscope, capturing the images with a CCD camera, and measuring cardiocyte and sarcomere length changes. Cardiocyte stress was characterized with a finite-element method. These measurements of cardiocyte stress and strain were used to determine cardiocyte stiffness. Two variables affecting cardiocyte stiffness were measured, the passive elastic spring and viscous damping. The passive spring was assessed by increasing the force on the gel at 1 g/min, modeling the resultant stress vs. strain relationship as an exponential [sigma = A/k(ekepsilon - 1)]. In normal cardiocytes, A = 23.0 kN/m2 and k = 16. Viscous damping was assessed by examining the loop area between the stress vs. strain relationship during 1 g/min increases and decreases in force. Normal cardiocytes had a finite loop area = 1.39 kN/m2, indicating the presence of viscous damping. Thus the gel stretch method provided accurate

  15. Passive wireless strain measurement based upon the Villari effect and giant magnetoresistance

    Science.gov (United States)

    Windl, Roman; Bruckner, Florian; Abert, Claas; Huber, Christian; Vogler, Christoph; Huber, Thomas; Oezelt, Harald; Suess, Dieter

    2016-12-01

    A passive wireless radio frequency-identification (RFID) stress/strain sensor is presented. Stress is transformed into a change of magnetic field by utilizing an amorphous metal ribbon. This magnetic field change is measured by a giant magnetoresistance magnetic field sensor and converted into a digital value with a RFID chip for wireless access. Standard metal foil strain gauges have a gauge factor GF from around 2 to 5 and suffer from the disadvantage of a physically connected power supply and measurement equipment. For the presented sensor, a strain range of -10 μm/m to 190 μm/m results in a linear sensor response, a gauge factor of GF ≈ 245, and a detectivity of 4.10 nm/m 1/√{Hz } . The detectivity of the presented sensor is similar to the detectivity of a reference metal foil strain gauge. Due to low power consumption and easy signal analysis, this sensor is well suited for long term strain measurement inside closed spaces. RFID adds features like multiple tag detection, wireless passive operation and a user data storage.

  16. Comparison of ACL strain estimated via a data-driven model with in vitro measurements.

    Science.gov (United States)

    Weinhandl, Joshua T; Hoch, Matthew C; Bawab, Sebastian Y; Ringleb, Stacie I

    2016-11-01

    Computer modeling and simulation techniques have been increasingly used to investigate anterior cruciate ligament (ACL) loading during dynamic activities in an attempt to improve our understanding of injury mechanisms and development of injury prevention programs. However, the accuracy of many of these models remains unknown and thus the purpose of this study was to compare estimates of ACL strain from a previously developed three-dimensional, data-driven model with those obtained via in vitro measurements. ACL strain was measured as the knee was cycled from approximately 10° to 120° of flexion at 20 deg s(-1) with static loads of 100, 50, and 50 N applied to the quadriceps, biceps femoris and medial hamstrings (semimembranosus and semitendinosus) tendons, respectively. A two segment, five-degree-of-freedom musculoskeletal knee model was then scaled to match the cadaver's anthropometry and in silico ACL strains were then determined based on the knee joint kinematics and moments of force. Maximum and minimum ACL strains estimated in silico were within 0.2 and 0.42% of that measured in vitro, respectively. Additionally, the model estimated ACL strain with a bias (mean difference) of -0.03% and dynamic accuracy (rms error) of 0.36% across the flexion-extension cycle. These preliminary results suggest that the proposed model was capable of estimating ACL strains during a simple flexion-extension cycle. Future studies should validate the model under more dynamic conditions with variable muscle loading. This model could then be used to estimate ACL strains during dynamic sporting activities where ACL injuries are more common.

  17. Engineered high expansion glass-ceramics having near linear thermal strain and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu; Rodriguez, Mark A.; Lyon, Nathanael L.

    2018-01-30

    The present invention relates to glass-ceramic compositions, as well as methods for forming such composition. In particular, the compositions include various polymorphs of silica that provide beneficial thermal expansion characteristics (e.g., a near linear thermal strain). Also described are methods of forming such compositions, as well as connectors including hermetic seals containing such compositions.

  18. Vibration based structural health monitoring in fibre reinforced composites employing the modal strain energy method

    NARCIS (Netherlands)

    Loendersloot, Richard; Ooijevaar, T.H.; Warnet, Laurent; Akkerman, Remko; de Boer, Andries; Meguid, S.A.; Gomes, J.F.S.

    2009-01-01

    The feasibility of a vibration based damage identification method is investigated. The Modal Strain Energy method is applied to a T–beam structure. The dynamic response of an intact structure and a damaged, delaminated structure is analysed employing a commercially available Finite Element package.

  19. The simultaneous measurement of temperature and mean strain based on the distorted spectra of half-encapsulated fiber Bragg gratings using improved particle swarm optimization

    Science.gov (United States)

    Wang, Zheng-fang; Wang, Jing; Sui, Qing-mei; Jia, Lei

    2017-06-01

    A half-encapsulated FBG is capable of simultaneously measuring temperature and strain. However, spectrum distortion, which may be induced by overlapping or non-uniform strains, may hinder the adoption of this technique. In order to resolve this issue, an improved particle swarm optimization (IPSO) based spectra reconstructing method has been adopted in this study to estimate the temperature and mean strain according to the distorted spectrum. Also, a dynamic adaptive inertia weight adjusting strategy based on the swarm success rate has been adopted to improve the algorithm. To validate the method, a total of 48 scenarios of distorted spectra have been simulated, and the temperature and mean strain estimated by IPSO have been compared with the genetic algorithm and linearly-declined PSO. The simulation results indicated that the IPSO based reconstructing method provided a higher accuracy. Additionally, the feasibility of the proposed method has been experimentally verified using a strain tunable apparatus within a measurable temperature environment. The experimental results demonstrated that the half-encapsulated FBG with an IPSO based spectra reconstructing method was applicable for the simultaneous measurement of temperature and mean strain, even when the spectrum was distorted.

  20. A combined experiment with simulation approach to calibrated 3D strain measurement using shearography

    Science.gov (United States)

    Goto, D."nis T.; Groves, Roger M.

    2010-09-01

    This paper is concerned with the development of a calibrated 3D shearography strain measurement instrument, calibrated iteratively, using a combined mechanical-optical model and specially designed test objects. The test objects are a cylinder loaded by internal pressure and a flat plate under axial load. Finite element models of the samples, combined with optical models of the shearography system, allow phase maps to be simulated for subsequent comparison with experimental phase maps from the shearography instrument. The algorithm to extract the strain maps from the phase maps includes an error compensation for in-plane strains on curved surfaces, measurement channel redundancy, variations in the shear magnitude due to object shape and the optical characteristics of the imaging system. The improvement introduced by the error compensation techniques is verified by the opto-mechanical simulation and its effect is demonstrated experimentally on maps of displacement gradient.

  1. Measurement of the high-temperature strain of UHTC materials using chemical composition gratings

    Science.gov (United States)

    Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, F.; Huo, Shiyu

    2016-05-01

    This paper proposes a simple bonding and measuring technique to realise silica-based chemical composition gratings’ (CCGs) high temperature applications on hot structures. We describe a series of experiments on CCGs to measure the thermal and mechanical response characteristics of ultra-high temperature ceramic (UHTC) materials when the maximum temperature is above 1000 °C. Response characteristics are obtained at the heating and cooling stages. Results show that the wavelength response of the CCGs bonded on the UHTC plate increases non-linearly with increasing temperatures, but decreases almost linearly with decreasing temperatures. The temperature-dependent strain transfer coefficients are calculated theoretically and experimentally; results show that the values of strain transfer coefficients below 1000 °C are significantly affected by the thermal expansion coefficient of the substrate material and the interface. The strain transfer coefficient value tends to vary slowly between 0.616 and 0.626 above 700 °C.

  2. On the Methods to Measure Powder Flow.

    Science.gov (United States)

    Tan, Geoffrey; Morton, David A V; Larson, Ian

    2015-01-01

    The flow of powders can often play a critical role in the manufacturing of pharmaceutical products. Many of these processes require good, consistent and predictable flow of powders to ensure continuous production of pharmaceutical dosages and to ensure their quality. Therefore, the flow of powders is of paramount importance to the pharmaceutical industry and thus the measuring and evaluating of powder flow is of utmost importance. At present, there are numerous methods in which the flow of powders can be measured. However, due to the complex and environment-dependent nature of powders, no one method exists that is capable of providing a complete picture of the behaviour of powders under dynamic conditions. Some of the most commonly applied methods to measure the flow of powders include: density indices, such as the Carr index and Hausner ratio, powder avalanching, the angle of repose (AOR), flow through an orifice, powder rheometry and shear cell testing.

  3. Measuring systolic ankle and toe pressure using the strain gauge technique--a comparison study between mercury and indium-gallium strain gauges

    DEFF Research Database (Denmark)

    Broholm, Rikke; Wiinberg, Niels; Simonsen, Lene

    2014-01-01

    BACKGROUND: Measurement of the ankle and toe pressures are often performed using a plethysmograph, compression cuffs and a strain gauge. Usually, the strain gauge contains mercury but other alternatives exist. From 2014, the mercury-containing strain gauge will no longer be available...... ankle and toe pressures volunteered for the study. Ankle and toe pressures were measured twice with the mercury and the indium-gallium strain gauge in random order. Comparison of the correlation between the mean pressure using the mercury and the indium-gallium device and the difference between the two...... devices was performed for both toe and ankle level. RESULTS: A total of 53 patients were included (36 male). Mean age was 69 (range, 45-92 years). Mean pressures at toe and ankle level with the mercury and the indium-gallium strain gauges were 77 (range, 0-180) mm Hg and 113 (range, 15-190) mm Hg...

  4. Methods and Devices used to Measure Friction

    DEFF Research Database (Denmark)

    Jeswiet, Jack; Arentoft, Mogens; Henningsen, Poul

    2004-01-01

    . To gain a good understanding of the mechanisms at the interface and to be able to verify the friction and tribology models that exist, friction sensors are needed. Designing sensors to measure friction-stress in metal working has been pursued by many researchers. This paper surveys methods, which have...... been tried in the past and discusses some of the recent sensor designs, which can now be used to measure Friction in both production situations and for research purposes....

  5. Three methods to measure RH bond energies

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, J. [Argonne National Lab., IL (United States); Ellison, G.B. [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry; Gutman, D. [Catholic Univ. of America, Washington, DC (United States). Dept. of Chemistry

    1993-03-21

    In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies.

  6. Measuring systolic ankle and toe pressure using the strain gauge technique--a comparison study between mercury and indium-gallium strain gauges.

    Science.gov (United States)

    Broholm, Rikke; Wiinberg, Niels; Simonsen, Lene

    2014-09-01

    Measurement of the ankle and toe pressures are often performed using a plethysmograph, compression cuffs and a strain gauge. Usually, the strain gauge contains mercury but other alternatives exist. From 2014, the mercury-containing strain gauge will no longer be available in the European Union. The aim of this study was to compare an indium-gallium strain gauge to the established mercury-containing strain gauge. Consecutive patients referred to the Department of Clinical Physiology and Nuclear Medicine at Bispebjerg and Frederiksberg Hospitals for measurements of systolic ankle and toe pressures volunteered for the study. Ankle and toe pressures were measured twice with the mercury and the indium-gallium strain gauge in random order. Comparison of the correlation between the mean pressure using the mercury and the indium-gallium device and the difference between the two devices was performed for both toe and ankle level. A total of 53 patients were included (36 male). Mean age was 69 (range, 45-92 years). Mean pressures at toe and ankle level with the mercury and the indium-gallium strain gauges were 77 (range, 0-180) mm Hg and 113 (range, 15-190) mm Hg, respectively. Comparison between the mercury and the indium-gallium strain gauge showed a difference in toe blood pressure values of - 0.7 mm Hg (SD: 7.0). At the ankle level, a difference of 2.0 mm Hg (SD: 8.6) was found. The two different devices agree sufficiently in the measurements of systolic ankle and toe pressure for the indium-gallium strain gauge to replace the mercury strain gauge.

  7. A combined experimental with simulation approach to calibrated 3D strain measurement using shearography

    NARCIS (Netherlands)

    Goto, D.T.; Groves, R.M.

    2010-01-01

    This paper is concerned with the development of a calibrated 3D shearography strain measurement instrument, calibrated iteratively, using a combined mechanical-optical model and specially designed test objects. The test objects are a cylinder loaded by internal pressure and a flat plate under axial

  8. Simultaneous coherent imaging and strain measurement using coupled photorefractive holography and shearography.

    Science.gov (United States)

    Rosso, Vanessa; Béland, Rémy; Renotte, Yvon; Habraken, Serge; Lion, Yves; Charette, Paul

    2008-04-15

    By coupling photorefractive holography with speckle shearography, it is possible to simultaneously perform both coherent imaging and strain measurement. Use of the photorefractive effect, which is insensitive to incoherently scattered light, is a significant advantage in coherent imaging as described. Experimental results obtained from a centrally loaded steel plate are presented.

  9. Synchrotron measurements of local microstructure and residual strains in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren

    2017-01-01

    The local microstructure and distribution of thermally induced residual strains in ferrite matrix grains around an individual spherical graphite nodule in ductile cast iron (DCI) were measured using a synchrotron X-ray micro-diffraction technique. It is found that the matrix grains are deformed...

  10. Blood pressure measurement of all five fingers by strain gauge plethysmography

    DEFF Research Database (Denmark)

    Hirai, M; Nielsen, S L; Lassen, N A

    1976-01-01

    The aim of the present paper was to study the methodological problems involved in measuring systolic blood pressure in all five fingers by the strain gauge technique. In 24 normal subjects, blood pressure at the proximal phalanx of finger I and both at the proximal and the intermediate phalanx of...

  11. Measurements of translation, rotation and strain: new approaches to seismic processing and inversion

    NARCIS (Netherlands)

    Bernauer, M.; Fichtner, A.; Igel, H.

    2012-01-01

    We propose a novel approach to seismic tomography based on the joint processing of translation, strain and rotation measurements. Our concept is based on the apparent S and P velocities, defined as the ratios of displacement velocity and rotation amplitude, and displacement velocity and

  12. Simultaneous Strain and Temperature Measurement Using a Single Fiber Bragg Grating Coated with a Thermochromic Material

    Science.gov (United States)

    2017-03-27

    submitted a second journal manuscript; 7) Presented the research results at two conferences (i.e. 2016 ASME SMASIS conference and 2017 SPIE Smart...for the simultaneous measurement of strain and temperature”, the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems

  13. Method of superconducting joint and its measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Gon; Lee, Ho Jin; Hong, Gye Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-04-01

    The development of joint techniques for superconducting wires is essential to fabricate the high quality superconducting magnet. In this report, the various joining methods and their measuring techniques were reviewed. In order to fabricate a precise superconducting magnet, joining and measuring experiment by using the field decay technique carried out. The contact resistance of coupled specimens with joint was measured as 3.0 x 10{sup -15} ohm at 1 Tesla which is lower than that of the real operating condition of MRI magnet. It is expected that these data can be used to design and fabricate the superconducting magnets successfully. (Author) 12 refs., 20 figs., 2 tabs.

  14. Strain and mechanical properties of the VCM multilayer sheet and their composites using the digital speckle correlation method.

    Science.gov (United States)

    Zhang, Dehai; Xie, Guizhong; Li, Yanqin; Liu, Jianxiu

    2015-09-01

    The digital speckle correlation method (DSCM) is introduced to solve the challenging problems in the related geometric measurement. Theoretical calculations of strain are deduced using the DSCM. Corresponding strains along x and y directions are obtained from uniaxial tension experiments and digital speckle measurements, using the VCM nondeep drawing multilayer sheet, the VCM deep-drawing multilayer sheet, clad films, nondeep drawing substrate, and deep-drawing substrate sheet as the targeted experimental objects. The results show that the maximum strains along the x direction of the VCM nondeep drawing multilayer sheet, the VCM deep-drawing multilayer sheet, clad film, nondeep drawing substrate, and deep-drawing substrate sheet are 68.473%, 48.632%, 91.632%, 50.784% and 40.068%, respectively, while the maximum strains along the y direction are -2.657%, -15.381%, 2.826%, -9.780% and -7.783%, respectively. The mechanical properties of the VCM multilayer sheet are between those of the substrate and clad film, while mechanical properties of the VCM deep-drawing multilayer sheet are superior to those of the VCM nondeep drawing multi-layer sheet.

  15. Molecular typing of uropathogenic E. coli strains by the ERIC-PCR method.

    Science.gov (United States)

    Ardakani, Maryam Afkhami; Ranjbar, Reza

    2016-04-01

    Escherichia coli (E. coli) is the most common cause of urinary infections in hospitals. The aim of this study was to evaluate the ERIC-PCR method for molecular typing of uropathogenic E. coli strains isolated from hospitalized patients. In a cross sectional study, 98 E. coli samples were collected from urine samples taken from patients admitted to Baqiyatallah Hospital from June 2014 to January 2015. The disk agar diffusion method was used to determine antibiotic sensitivity. DNA proliferation based on repetitive intergenic consensus was used to classify the E. coli strains. The products of proliferation were electrophoresed on 1.5% agarose gel, and their dendrograms were drawn. The data were analyzed by online Insillico software. The method used in this research proliferated numerous bands (4-17 bands), ranging from 100 to 3000 base pairs. The detected strains were classified into six clusters (E1-E6) with 70% similarity between them. In this study, uropathogenic E. coli strains belonged to different genotypic clusters. It was found that ERIC-PCR had good differentiation power for molecular typing of uropathogenic E. coli strains isolated from the patients in the study.

  16. Quantification of the spatial strain distribution of scoliosis using a thin-plate spline method.

    Science.gov (United States)

    Kiriyama, Yoshimori; Watanabe, Kota; Matsumoto, Morio; Toyama, Yoshiaki; Nagura, Takeo

    2014-01-03

    The objective of this study was to quantify the three-dimensional spatial strain distribution of a scoliotic spine by nonhomogeneous transformation without using a statistically averaged reference spine. The shape of the scoliotic spine was determined from computed tomography images from a female patient with adolescent idiopathic scoliosis. The shape of the scoliotic spine was enclosed in a rectangular grid, and symmetrized using a thin-plate spline method according to the node positions of the grid. The node positions of the grid were determined by numerical optimization to satisfy symmetry. The obtained symmetric spinal shape was enclosed within a new rectangular grid and distorted back to the original scoliotic shape using a thin-plate spline method. The distorted grid was compared to the rectangular grid that surrounded the symmetrical spine. Cobb's angle was reduced from 35° in the scoliotic spine to 7° in the symmetrized spine, and the scoliotic shape was almost fully symmetrized. The scoliotic spine showed a complex Green-Lagrange strain distribution in three dimensions. The vertical and transverse compressive/tensile strains in the frontal plane were consistent with the major scoliotic deformation. The compressive, tensile and shear strains on the convex side of the apical vertebra were opposite to those on the concave side. These results indicate that the proposed method can be used to quantify the three-dimensional spatial strain distribution of a scoliotic spine, and may be useful in quantifying the deformity of scoliosis. © 2013 Elsevier Ltd. All rights reserved.

  17. Identification of strain-rate and thermal sensitive material model with an inverse method

    Science.gov (United States)

    Peroni, L.; Scapin, M.; Peroni, M.

    2010-06-01

    This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strainrates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields) or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena). Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, anyway it allows to precisely identify the parameters of different material models. This could provide great advantages when high reliability of the material behaviour is necessary. Applicability of this method is particularly indicated for special applications in the field of aerospace engineering, ballistic, crashworthiness studies or particle accelerator technologies, where materials could be submitted to strong plastic deformations at high-strain rate in a wide range of temperature. Thermal softening effect has been investigated in a temperature range between 20°C and 1000°C.

  18. Dynamic measurement of inside strain distributions in adhesively bonded joints by embedded fiber Bragg grating sensor

    Science.gov (United States)

    Murayama, Hideaki; Ning, Xiaoguang; Kageyama, Kazuro; Wada, Daichi; Igawa, Hirotaka

    2014-05-01

    Long-length fiber Bragg grating (FBG) with the length of about 100 mm was embedded onto the surface of a carbon fiber reinforced plastics (CFRP) substrate and two CFRP adherends were joined by adhesive to form an adhesive bonded single-lap joint. The joint was subjected to 0.5 Hz cyclic tensile load and longitudinal strain distributions along FBG were measured at 5 Hz by the fiber-optic distributed sensing system based on optical frequency domain reflectometry (OFDR). We could successfully monitor the strain distributions accurately with high spatial resolution of around 1 mm.

  19. 3D strain map of axially loaded mouse tibia: a numerical analysis validated by experimental measurements.

    Science.gov (United States)

    Stadelmann, Vincent A; Hocke, Jean; Verhelle, Jensen; Forster, Vincent; Merlini, Francesco; Terrier, Alexandre; Pioletti, Dominique P

    2009-02-01

    A combined experimental/numerical study was performed to calculate the 3D octahedral shear strain map in a mouse tibia loaded axially. This study is motivated by the fact that the bone remodelling analysis, in this in vivo mouse model should be performed at the zone of highest mechanical stimulus to maximise the measured effects. Accordingly, it is proposed that quantification of bone remodelling should be performed at the tibial crest and at the distal diaphysis. The numerical model could also be used to furnish a more subtle analysis as a precise correlation between local strain and local biological response can be obtained with the experimentally validated numerical model.

  20. Videodensitometric Methods for Cardiac Output Measurements

    Directory of Open Access Journals (Sweden)

    Massimo Mischi

    2003-04-01

    Full Text Available Cardiac output is often measured by indicator dilution techniques, usually based on dye or cold saline injections. Developments of more stable ultrasound contrast agents (UCA are leading to new noninvasive indicator dilution methods. However, several problems concerning the interpretation of dilution curves as detected by ultrasound transducers have arisen. This paper presents a method for blood flow measurements based on UCA dilution. Dilution curves are determined by real-time densitometric analysis of the video output of an ultrasound scanner and are automatically fitted by the Local Density Random Walk model. A new fitting algorithm based on multiple linear regression is developed. Calibration, that is, the relation between videodensity and UCA concentration, is modelled by in vitro experimentation. The flow measurement system is validated by in vitro perfusion of SonoVue contrast agent. The results show an accurate dilution curve fit and flow estimation with determination coefficient larger than 0.95 and 0.99, respectively.

  1. A method for measuring team skills.

    Science.gov (United States)

    Annett, J; Cunningham, D; Mathias-Jones, P

    2000-08-01

    A method for identifying and measuring team skills, specifying team training objectives and the objective assessment of team performance is described. First, a theoretical model of team performance is outlined and then a version of Hierarchical Task Analysis specially adapted to analysing team tasks is described. The two are then combined into an event-related measurement scheme, which provides a set of objective criteria by which key team skills can be assessed. The method is illustrated by an example from a basic Anti-Submarine Warfare training exercise which forms part of the Principal Warfare Officer's course at the Royal Naval School of Maritime Operations. The potential of the method is discussed, including the opportunities it may provide for the standardization of team performance assessment and in the use of new technology in the partial automation of shore-based and ship-board team training.

  2. Bayesian methods for measures of agreement

    CERN Document Server

    Broemeling, Lyle D

    2009-01-01

    Using WinBUGS to implement Bayesian inferences of estimation and testing hypotheses, Bayesian Methods for Measures of Agreement presents useful methods for the design and analysis of agreement studies. It focuses on agreement among the various players in the diagnostic process.The author employs a Bayesian approach to provide statistical inferences based on various models of intra- and interrater agreement. He presents many examples that illustrate the Bayesian mode of reasoning and explains elements of a Bayesian application, including prior information, experimental information, the likelihood function, posterior distribution, and predictive distribution. The appendices provide the necessary theoretical foundation to understand Bayesian methods as well as introduce the fundamentals of programming and executing the WinBUGS software.Taking a Bayesian approach to inference, this hands-on book explores numerous measures of agreement, including the Kappa coefficient, the G coefficient, and intraclass correlation...

  3. A Novel Fiber Bragg Grating Based Sensing Methodology for Direct Measurement of Surface Strain on Body Muscles during Physical Exercises

    Science.gov (United States)

    Prasad Arudi Subbarao, Guru; Subbaramajois Narasipur, Omkar; Kalegowda, Anand; Asokan, Sundarrajan

    2012-07-01

    The present work proposes a new sensing methodology, which uses Fiber Bragg Gratings (FBGs) to measure in vivo the surface strain and strain rate on calf muscles while performing certain exercises. Two simple exercises, namely ankle dorsi-flexion and ankle plantar-flexion, have been considered and the strain induced on the medial head of the gastrocnemius muscle while performing these exercises has been monitored. The real time strain generated has been recorded and the results are compared with those obtained using a commercial Color Doppler Ultrasound (CDU) system. It is found that the proposed sensing methodology is promising for surface strain measurements in biomechanical applications.

  4. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    Science.gov (United States)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  5. Method for Manufacturing Bulk Metallic Glass-Based Strain Wave Gear Components

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Wilcox, Brian H. (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention implement bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a method of fabricating a strain wave gear includes: shaping a BMG-based material using a mold in conjunction with one of a thermoplastic forming technique and a casting technique; where the BMG-based material is shaped into one of: a wave generator plug, an inner race, an outer race, a rolling element, a flexspline, a flexspline without a set of gear teeth, a circular spline, a circular spline without a set of gear teeth, a set of gear teeth to be incorporated within a flexspline, and a set of gear teeth to be incorporated within a circular spline.

  6. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering.

    Science.gov (United States)

    Ryu, Young Shin; Biswas, Rajesh Kumar; Shin, Kwangsu; Parisutham, Vinuselvi; Kim, Suk Min; Lee, Sung Kuk

    2014-01-01

    Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the λ Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.

  7. Developing methods and strains for genetic studies in the Saccharomyces bayanus var. uvarum species.

    Science.gov (United States)

    Talarek, Nicolas; Louis, Edward J; Cullin, Christophe; Aigle, Michel

    2004-10-30

    For years, Saccharomyces cerevisiae has been used as a model organism to gain insight into complex biological processes. The study of closely related yeast species may be critical for understanding the molecular mechanism of evolution. Among those species, S. bayanus var. uvarum could be particularly pertinent because of the availability of its genome sequence. However, to date, in that species genetic studies are problematical due to the lack of standard strains collection and genetic methods. Here, we have developed heterothallic S. bayanus var. uvarum strains and obtained stable haploid strains. We further used UV-induced mutation and gene disruption to create a collection of auxotrophic derivatives. Finally, we have elaborated or improved methods to cultivate cells, obtain zygotes and spores and to transform this species. All these tools can now be used by the scientific community to study the biology of this species. copyright 2004 John Wiley & Sons, Ltd.

  8. Multi-wavelengths shearography for NDT and strain measurements; Mehrwellenlaengen-Scherografie fuer die zerstoerungsfreie Pruefung und Dehnungsmessung

    Energy Technology Data Exchange (ETDEWEB)

    Hack, E. [EMPA - Eidgenoessische Materialpruefungs- und Forschungsanstalt Duebendorf (Germany)

    2002-10-01

    Non-destructive testing and the measurement of strain are key techniques in material characterisation and structural testing. By using laser-based imaging techniques such as shearography the whole-field displacements of an object surface can be visualised. A multi-wavelengths shearographic sensor with switchable shear directions was developed to measure planar strain distributions. In this paper we describe the experimental set-up and give examples of in-plane strain measurements during tensile testing. The comparison with strain gage measurements and an application to NDT are discussed. (orig.)

  9. Ultrafast high strain rate acoustic wave measurements at high static pressure in a diamond anvil cell

    Science.gov (United States)

    Armstrong, Michael R.; Crowhurst, Jonathan C.; Reed, Evan J.; Zaug, Joseph M.

    2009-02-01

    We describe experiments demonstrating the generation of ultrafast, high strain rate acoustic waves in a precompressed transparent medium at static pressure up to 24 GPa. We also observe shock waves in precompressed aluminum with transient pressures above 40 GPa under precompression. Using ultrafast interferometry, we determine parameters such as the shock pressure and acoustic wave velocity using multiple and single shot methods. These methods form the basis for material experiments under extreme conditions which are challenging to access using other techniques.

  10. Dynamic strain measurements of marine propellers under non-uniform inflow

    Science.gov (United States)

    Tian, Jin; Croaker, Paul; Zhang, Zhiyi; Hua, Hongxing

    2016-09-01

    An experimental investigation was conducted to determine the dynamic strain characteristics of marine propellers under non-uniform inflow. Two 7-bladed highly skewed model propellers of identical geometries, but different elastic characteristics were tested at various rotational speeds and free stream velocities in the water tunnel. Two kinds of wire mesh wake screens located 400mm upstream of the propeller plane were used to generate four-cycle and six-cycle inflows. A laser doppler velocimetry (LDV) system located 100mm downstream of the wake screen plane was used to measure the axial velocity distributions produced by the wake screens. Strain gauges were bonded onto the propeller blades in different positions. A customized underwater data acquisition system which can record data off-line was used to record the dynamic strain. The results show that the frequency properties of the blade dynamic strain are determined by the harmonics of the inflow and that the stiffness of the propeller has an essential effect on the dynamic strain amplitudes.

  11. The application of strain field intensity method in the steel bridge fatigue life evaluation

    Science.gov (United States)

    Zhao, Xuefeng; Wang, Yanhong; Cui, Yanjun; Cao, Kaisheng

    2012-04-01

    Asce's survey shows that 80%--90% bridge damage were associated with fatigue and fracture problems. With the operation of vehicle weight and traffic volume increases constantly, the fatigue of welded steel bridge is becoming more and more serious in recent years. A large number of studies show that most prone to fatigue damage of steel bridge is part of the welding position. Thus, it's important to find a more precise method to assess the fatigue life of steel bridge. Three kinds of fatigue analysis method is commonly used in engineering practice, such as nominal stress method, the local stress strain method and field intensity method. The first two methods frequently used for fatigue life assessment of steel bridge, but field intensity method uses less ,and it widely used in fatigue life assessment of aerospace and mechanical. Nominal stress method and the local stress strain method in engineering has been widely applied, but not considering stress gradient and multiaxial stress effects, the accuracy of calculation stability is relatively poor, so it's difficult to fully explain the fatigue damage mechanism. Therefore, it used strain field intensity method to evaluate the fatigue life of steel bridge. The fatigue life research of the steel bridge based on the strain field method and the fatigue life of the I-section plate girder was analyzed. Using Ansys on the elastoplastic finite element analysis determined the dangerous part of the structure and got the stress-strain history of the dangerous point. At the same time, in order to divide the unit more elaborate introduced the sub-structure technology. Finally, it applies K.N. Smith damage equation to calculate the fatigue life of the dangerous point. In order to better simulating the actual welding defects, it dug a small hole in the welding parts. It dug different holds from different view in the welding parts and plused the same load to calculate its fatigue life. Comparing the results found that the welding

  12. Systems and Methods for Implementing Bulk Metallic Glass-Based Strain Wave Gears and Strain Wave Gear Components

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Wilcox, Brian (Inventor)

    2016-01-01

    Bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a strain wave gear includes: a wave generator; a flexspline that itself includes a first set of gear teeth; and a circular spline that itself includes a second set of gear teeth; where at least one of the wave generator, the flexspline, and the circular spline, includes a bulk metallic glass-based material.

  13. Modified AC Wheatstone Bridge Network for Accurate Measurement of Pressure Using Strain Gauge Type Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Subrata CHATTOPADHYAY

    2012-01-01

    Full Text Available In order to achieve high quality of products at lesser cost, accurate measurement of different process variables is of vital importance in any industry. There are different well-established techniques of measurement and control instrumentations of these variables. In the resistive transducer like strain gauge, the small resistance generally changes linearly with a process variable like pressure but their measurement by usual AC Wheatstone bridge circuit may suffer from errors due to the effect of stray capacitance between bridge nodal points and ground and stray inductance on the strain gauge grid respectively. Though the conventional Wagner-Earth technique may be used to reduced the error but not suitable for continuous measurement. In the present paper, a modified operational amplifier based AC Wheatstone bridge measurement technique has been proposed in which the effect of stray capacitance and inductance is minimized. This bridge performance has been studied experimentally with the strain gauge type pressure transducer. The linear characteristics over a wide range of pressure with good repeatability, linearity and variable sensitivity have been described.

  14. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  15. Quality and characteristics of fermented ginseng seed oil based on bacterial strain and extraction method.

    Science.gov (United States)

    Lee, Myung-Hee; Rhee, Young-Kyoung; Choi, Sang-Yoon; Cho, Chang-Won; Hong, Hee-Do; Kim, Kyung-Tack

    2017-07-01

    In this study, the fermentation of ginseng seeds was hypothesized to produce useful physiologically-active substances, similar to that observed for fermented ginseng root. Ginseng seed was fermented using Bacillus, Pediococcus, and Lactobacillus strains to extract ginseng seed oil, and the extraction yield, color, and quantity of phenolic compounds, fatty acids, and phytosterol were then analyzed. The ginseng seed was fermented inoculating 1% of each strain on sterilized ginseng seeds and incubating the seeds at 30°C for 24 h. Oil was extracted from the fermented ginseng seeds using compression extraction, solvent extraction, and supercritical fluid extraction. The color of the fermented ginseng seed oil did not differ greatly according to the fermentation or extraction method. The highest phenolic compound content recovered with the use of supercritical fluid extraction combined with fermentation using the Bacillus subtilis Korea Food Research Institute (KFRI) 1127 strain. The fatty acid composition did not differ greatly according to fermentation strain and extraction method. The phytosterol content of ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method was highest at 983.58 mg/100 g. Therefore, our results suggested that the ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method can yield a higher content of bioactive ingredients, such as phenolics, and phytosterols, without impacting the color or fatty acid composition of the product.

  16. Elasto-plastic strain analysis by a semi-analytical method

    Indian Academy of Sciences (India)

    Keywords. Non-uniform taper bar; rotating disk; elasto-plastic strain analysis; loaded natural frequency. Abstract. The aim of this paper is to develop a simulation model of large deformation problems following a semi-analytical method, incorporating the complications of geometric and material non-linearity in the formulation.

  17. A coupled subsample displacement estimation method for ultrasound-based strain elastography

    Science.gov (United States)

    Jiang, Jingfeng; Hall, Timothy J.

    2015-11-01

    Obtaining accurate displacement estimates along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for several clinical applications such as shear strain imaging, modulus reconstruction and temperature imaging, where a full description of the two or three-dimensional (2D/3D) deformation field is required. In this study we propose an improved speckle tracking algorithm where axial and lateral motion estimations are simultaneously performed to enhance motion tracking accuracy. More specifically, using conventional ultrasound echo data, this algorithm first finds an iso-contour in the vicinity of the peak correlation between two segments of the pre- and post-deformation ultrasound radiofrequency echo data. The algorithm then attempts to find the center of the iso-contour of the correlation function that corresponds to the unknown (sub-sample) motion vector between these two segments of echo data. This algorithm has been tested using computer-simulated data, studies with a tissue-mimicking phantom, and in vivo breast lesion data. Computer simulation results show that the method improves the accuracy of both lateral and axial tracking. Such improvements are more significant when the deformation is small or along the lateral direction. Results from the tissue-mimicking phantom study are consistent with findings observed in computer simulations. Using in vivo breast lesion data we found that, compared to the 2D quadratic subsample displacement estimation methods, higher quality axial strain and shear strain images (e.g. 18.6% improvement in contrast-to-noise ratio for shear strain images) can be obtained for large deformations (up to 5% frame-to-frame and 15% local strains) in a multi-compression technique. Our initial results demonstrated that this conceptually and computationally simple method could improve the image quality of ultrasound-based strain elastography with current clinical equipment.

  18. Strain ratio measurement of femoral cartilage by real-time elastosonography: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Ipek, Ali; Unal, Ozlem; Kartal, Merve Gulbiz; Arslan, Halil [Yildirim Beyazit University, Department of Radiology, Faculty of Medicine, Ataturk Training and Research Hospital, Ankara (Turkey); Isik, Cetin; Bozkurt, Murat [Yildirim Beyazit University, Department of Orthopedics, Faculty of Medicine, Ataturk Training and Research Hospital, Ankara (Turkey)

    2015-04-01

    The purpose of this study was to evaluate strain ratio measurement of femoral cartilage using real-time elastosonography. Twenty-five patients with femoral cartilage pathology on MRI (study group) were prospectively compared with 25 subjects with normal findings on MRI (control group) using real-time elastosonography. Strain ratio measurements of pathologic and normal cartilage were performed and compared, both within the study group and between the two groups. Elastosonography colour-scale coding showed a colour change from blue to red in pathologic cartilage and only blue colour-coding in normal cartilage. In the study group, the median strain ratio was higher in pathologic cartilage areas compared to normal areas (median, 1.49 [interquartile range, 0.80-2.53] vs. median, 0.01 [interquartile range, 0.01-0.01], p < 0.001, respectively). The median strain ratio of the control group was 0.01 (interquartile range, 0.01-0.01), and there was no significant difference compared to normal areas of the study group. There was, however, a significant difference between the control group cartilage and pathologic cartilage of the study group (p < 0.001). Elastosonography may be an effective, easily accessible, and relatively simple tool to demonstrate pathologic cartilage and to differentiate it from normal cartilage in the absence of advanced imaging facility such as MRI. (orig.)

  19. Measurement of distributed strain and temperature based on higher order and higher mode Bragg conditions

    Science.gov (United States)

    Sirkis, James S. (Inventor); Sivanesan, Ponniah (Inventor); Venkat, Venki S. (Inventor)

    2001-01-01

    A Bragg grating sensor for measuring distributed strain and temperature at the same time comprises an optical fiber having a single mode operating wavelength region and below a cutoff wavelength of the fiber having a multimode operating wavelength region. A saturated, higher order Bragg grating having first and second order Bragg conditions is fabricated in the optical fiber. The first order of Bragg resonance wavelength of the Bragg grating is within the single mode operating wavelength region of the optical fiber and the second order of Bragg resonance wavelength is below the cutoff wavelength of the fiber within the multimode operating wavelength region. The reflectivities of the saturated Bragg grating at the first and second order Bragg conditions are less than two orders of magnitude of one another. In use, the first and second order Bragg conditions are simultaneously created in the sensor at the respective wavelengths and a signal from the sensor is demodulated with respect to each of the wavelengths corresponding to the first and second order Bragg conditions. Two Bragg conditions have different responsivities to strain and temperature, thus allowing two equations for axial strain and temperature to be found in terms of the measure shifts in the primary and second order Bragg wavelengths. This system of equations can be solved for strain and temperature.

  20. Temperature and strain measurements in concrete using micro-structure optical fiber sensors

    Energy Technology Data Exchange (ETDEWEB)

    Areias, Lou [EURIDICE/SCK - CEN, Mol (Belgium); Vrije Univ. Brussels (Belgium); Geernaert, Thomas; Sulejmani, Sanne [Vrije Univ. Brussels (Belgium); and others

    2015-07-01

    A recent test carried out to evaluate the construction feasibility of the Belgian supercontainer concept incorporated several types of state-of-the-art sensors and innovative monitoring techniques, including the use of different types of optical fiber sensors. One of these is a relatively new type of sensor developed by the Brussels Photonics Team (B-PHOT) of the Vrije Universiteit Brussel. The sensor uses highly birefringent microstructured optical fibers equipped with fiber Bragg gratings (MOFBGs) sensors. They were embedded in a carbon-fiber reinforced composite plate to provide protection against the concrete's highly alkaline environment, facilitate installation in the concrete mould and allow the transfer of strain onto the fiber. The double reflection spectrum of the MOFBGs allows monitoring strain and temperature simultaneously. This paper presents results of temperature and strain measurements obtained with MOFBG sensors during a {sup 1}/{sub 2}-scale test performed in 2013. The results compare well with similar measurements obtained using conventional thermocouples and vibrating wire strain gauges.

  1. Merenje torzionih oscilacija pomoću mernih traka / Measurement of torsional vibrations by using strain gages

    Directory of Open Access Journals (Sweden)

    Dragan Trifković

    2005-05-01

    Full Text Available U ovom radu prikazan je metod merenja torzionih oscilacija mehaničkih sistema na osnovu merenja torzionog napona pomoću mernih traka. Ovaj metod naročito je pogodan za proveru nivoa naprezanja elemenata sistema, koji prenose promenljive obrtne momente i torziono osciluju. Osim toga, mogu se određivati i kritične brzine obrtanja elemenata sistema, pri kojima se javljaju rezonantna naprezanja i otkazi sistema, kao što su: pojačana buka, trošenje zupčanika, zamor materijala, oštećenja i lomovi vratila, spojnica i si. Predložen je merni lanac u kojem centralno mesto zauzima suvremeni mobilni merni sistem Spider 8, koji omogućava merenje, obradu i prikaz rezultata pomoću računara. / In this work the measuring method of torsion vibrations is presented according to the measurement of torsion stress using strain gages. This method is particularly suitable in checking the system elements strain level that transfers changeable torsion moments and oscillate torsionally. Besides that, the system elements critical velocity rotation can be estimated, folio-wed by the resonant strain and problems in the function of that system such as: amplified noise, -wearing-out of gears, fatigue crack, damage and break of shafts and junctions etc. The measuring chain is proposed in -which the central part is a contemporary mobile system Spider 8, -which enables measurement, processing and displays measured results on a computer.

  2. Forearm blood flow measurements using computerized R-wave triggered strain-gauge venous occlusion plethysmography: unilateral vs. bilateral measurements.

    Science.gov (United States)

    Kamper, A M; de Craen, A J; Blauw, G J

    2001-09-01

    The human forearm is a well established model to study local vascular reactivity in humans in vivo, using strain-gauge venous occlusion plethysmography to measure blood flow and changes in blood flow in the forearm. To reduce the intra-individual variability of the forearm blood flow (FBF), it has been advocated that simultaneous measurements of contralateral forearm blood flow is obligatory. Therefore, the use of the calculated forearm ratio (FR) is recommended instead of using the actual FBF. In the present study we compared the intra-individual variability of forearm blood flow measurements and the forearm ratio, by using computerized R-wave triggered strain-gauge venous occlusion plethysmography, to test if bilateral expression of measurements is better than unilateral. Results were obtained in eight volunteers. Intra-arterial infused sodium nitroprusside induced a dose dependent increase in forearm blood flow and a dose dependent increase in the calculated forearm ratio. Intra-arterial infused norepinephrine induced a dose dependent decrease in forearm blood flow and a dose dependent decrease in the calculated forearm ratio. The differences between the variation coefficients of the forearm blood flow measurements and the calculated forearm ratio were different. These results support our hypothesis that by using a computerized, R-wave triggered system for unilateral forearm blood flow measurement is a more reliable outcome than the calculated forearm ratio derived from bilateral measurements.

  3. Feasibility of Left Ventricular Global Longitudinal Strain Measurements from Contrast-Enhanced Echocardiographic Images.

    Science.gov (United States)

    Medvedofsky, Diego; Lang, Roberto M; Kruse, Eric; Guile, Brittney; Weinert, Lynn; Ciszek, Boguslawa; Jacobson, Zachary; Negron, Jacqueline; Volpato, Valentina; Prado, Aldo; Patel, Amit R; Mor-Avi, Victor

    2017-11-23

    Although left ventricular global longitudinal strain (GLS) is an index of systolic function recommended by the guidelines, poor image quality may hamper strain measurements. While contrast agents are commonly used to improve endocardial visualization, no commercial speckle-tracking software is able to measure strain in contrast-enhanced images. This study aimed to test the accuracy of speckle-tracking software when applied to contrast-enhanced images in patients with suboptimal image quality. We studied patients with a wide range of GLS values who underwent transthoracic echocardiography. Protocol 1 included 44 patients whose images justified use of contrast but still allowed noncontrast speckle-tracking echocardiography (STE), which was judged as accurate and used as a reference. Protocol 2 included 20 patients with poor image quality that precluded noncontrast STE; cardiac magnetic resonance- (CMR-) derived strain was used as the reference instead. Half the manufacturer recommended dose of a commercial contrast agent (Definity/Optison/Lumason) was used to provide partial contrast enhancement. Higher than normal mechanical indices (0.6-0.7) and lowest frequency range for maximal penetration settings were used for imaging. GLS was measured (Epsilon) with and without contrast-enhanced images and by CMR-derived feature tracking (TomTec). Comparisons included linear regression and Bland-Altman analyses. The contrast STE analysis failed in 4/64 patients (6%). Manual corrections were needed to optimize tracking with contrast in all patients. GLS measurements were in good agreement between contrast and noncontrast images (r = 0.85; mean GLS in the contrast images, -12.9% ± 4.7%; bias, 0.34% ± 2.4%). Good agreement was also noted between contrast STE- and CMR-derived strain (r = 0.83; mean, GLS -13.5% ± 4.0%; bias, 0.72% ± 2.5%). We found that GLS measurements from contrast-enhanced images are feasible and accurate in most patients, even in those with poor

  4. Geobacter strains that use alternate organic compounds, methods of making, and methods of use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R.; Summers, Zarath Morgan; Haveman, Shelley Annette; Izallalen, Mounir

    2016-03-01

    In preferred embodiments, the present invention provides new isolated strains of a Geobacter species that are capable of using a carbon source that is selected from C.sub.3 to C.sub.12 organic compounds selected from pyruvate or metabolic precursors of pyruvate as an electron donor in metabolism and in subsequent energy production. The wild type strain of the microorganisms has been shown to be unable to use these C.sub.3 to C.sub.12 organic compounds as electron donors. The inventive strains of microorganisms are useful for improving bioremediation applications, including in situ bioremediation (including uranium bioremediation and halogenated solvent bioremediation), microbial fuel cells, power generation from small and large-scale waste facilities (e.g., biomass waste from dairy, agriculture, food processing, brewery, or vintner industries, etc.) using microbial fuel cells, and other applications of microbial fuel cells, including, but not limited to, improved electrical power supplies for environmental sensors, electronic devices, and electric vehicles.

  5. A comparison of pumping speed measurement methods

    CERN Document Server

    Denison, D R

    1974-01-01

    A comparison of pumping speed measurement method was made using three types of apparatus. These were: (i) the Fischer-Mommsen system, developed at CERN in which the gas flow rate is measured by the pressure drop across an orifice of known conductance at the test vessel inlet and the pressure gauge is arrayed to serve as a molecular flux transducer, (ii) the three gauge system used by some pump manufacturers in which the gas flow rate is determined by measuring the pressure drop across a long tube whose conductance is calculated from its dimensions and (iii) the constant pressure/pipette system in which the time is measured to evacuate a known quantity of gas. A sputter-ion pump with Ti and Ta cathodes and 32 Penning cells was used as the test pump. The Fischer and Mommsen and pipette procedures gave good agreement for the pumping speeds of N/sub 2/ (within 1%) but allowance had to be made for mass discrimination in the gas flow through an orifice when air was pumped. The three gauge method consistently gave a...

  6. Simultaneous dual directional strain measurement using spatial phase-shift digital shearography

    Science.gov (United States)

    Wang, Yonghong; Gao, Xinya; Xie, Xin; Wu, Sijing; Liu, Yingxue; Yang, Lianxiang

    2016-12-01

    This paper presents a Dual Directional Sheared Spatial Phase-Shift Digital Shearography (DDS-SPS-DS) system for simultaneous measurement of strains/displacement derivative in two directions. Two Michelson Interferometers are used as the shearing device to create two shearograms, one in the x-shearing direction and one in the y-shearing direction, which are recorded by a single CCD camera. Two lasers with different wavelengths are used for illumination, and corresponding band pass filters are applied in front of each Michelson Interferometer to avoid cross-interference between the two shearing direction channels. Two perpendicular shearing directions in the two measurement channels introduce two different spatial frequency carriers whose spectrums are orientated in different directions after Fourier Transform. Phase maps of the recorded two shearograms can be obtained by applying a windowed inverse Fourier transform, which enables simultaneous measurement of dual directional strains/displacement derivatives. The new system is well suited for nondestructive testing and strain measurement with a continuous or dynamic load. The capability of the dual directional spatial phase-shift digital shearography system is described by theoretical discussions as well as experiments.

  7. Evaluation of a New Entomopathogenic Strain of Beauveria bassiana and a New Field Delivery Method against Solenopsis invicta.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available Solenopsis invicta Buren is one of the most important pests in China, and control measures are mainly based on the use of synthetic pesticides, which may be inadequate and unsustainable. Hence, there is a growing interest in developing biological control alternatives for managing S. invicta, such as the use of entomopathogenic fungi. To facilitate the commercialization of entomopathogenic fungi against S. invicta, 10 Beauveria bassiana isolates originating from different hosts were tested for virulence in laboratory bioassays, and the most pathogenic strain, ZGNKY-5, was tested in field studies using an improved pathogen delivery system. The cumulative mortality rate reached 93.40% at 1×108 mL-1 conidia after 504 h. The germination and invasion of the spores were observed under a scanning electron microscope, and several conidia adhered to the cuticle of S. invicta after 2 h. Furthermore, the germ tubes of the conidia oriented toward the cuticle after 48 h, and the mycelium colonized the entire body after 96 h. Based on the efficacy observed in the laboratory trials, further experiments were performed with ZGNKY-5 strain to evaluate its utility in an injection control technology against S. invicta in the field. We found that three dosage treatments of ZGNKY-5 strain (500 mL, 750 mL, and 1,000 mL per nest had significant control effects. Our results show that this strain of Beauveria bassiana and our control method were effective against S. invicta in both laboratory and field settings.

  8. A new 2D-based method for myocardial velocity strain and strain rate quantification in a normal adult and paediatric population: assessment of reference values

    Directory of Open Access Journals (Sweden)

    Arcidiacono C

    2009-02-01

    Full Text Available Abstract Background Recent advances in technology have provided the opportunity for off-line analysis of digital video-clips of two-dimensional (2-D echocardiographic images. Commercially available software that follows the motion of cardiac structures during cardiac cycle computes both regional and global velocity, strain, and strain rate (SR. The present study aims to evaluate the clinical applicability of the software based on the tracking algorithm feature (studied for cardiology purposes and to derive the reference values for longitudinal and circumferential strain and SR of the left ventricle in a normal population of children and young adults. Methods 45 healthy volunteers (30 adults: 19 male, 11 female, mean age 37 ± 6 years; 15 children: 8 male, 7 female, mean age 8 ± 2 years underwent transthoracic echocardiographic examination; 2D cine-loops recordings of apical 4-four 4-chamber (4C and 2-chamber (2C views and short axis views were stored for off-line analysis. Computer analyses were performed using specific software relying on the algorithm of optical flow analysis, specifically designed to track the endocardial border, installed on a Windows™ based computer workstation. Inter and intra-observer variability was assessed. Results The feasibility of measurements obtained with tissue tracking system was higher in apical view (100% for systolic events; 64% for diastolic events than in short axis view (70% for systolic events; 52% for diastolic events. Longitudinal systolic velocity decreased from base to apex in all subjects (5.22 ± 1.01 vs. 1.20 ± 0.88; p Values of global systolic SR, both longitudinal and circumferential, were significantly higher in children than in adults (-1.3 ± 0.2, vs. -1.11 ± 0.2, p = 0.006; -1.9 ± 0.6 vs. -1.6 ± 0.5, p = 0.0265, respectively. No significant differences in longitudinal and circumferential systolic velocities were identified for any segment when comparing adults with children. Conclusion

  9. Dimensionless Analysis of Segmented Constrained Layer Damping Treatments with Modal Strain Energy Method

    Directory of Open Access Journals (Sweden)

    Shitao Tian

    2016-01-01

    Full Text Available Constrained layer damping treatments promise to be an effective method to control vibration in flexible structures. Cutting both the constraining layer and the viscoelastic layer, which leads to segmentation, increases the damping efficiency. However, this approach is not always effective. A parametric study was carried out using modal strain energy method to explore interaction between segmentation and design parameters, including geometry parameters and material properties. A finite element model capable of handling treatments with extremely thin viscoelastic layer was developed based on interlaminar continuous shear stress theories. Using the developed method, influence of placing cuts and change in design parameters on the shear strain field inside the viscoelastic layer was analyzed, since most design parameters act on the damping efficiency through their influence on the shear strain field. Furthermore, optimal cut arrangements were obtained by adopting a genetic algorithm. Subject to a weight limitation, symmetric and asymmetric configurations were compared. It was shown that symmetric configurations always presented higher damping. Segmentation was found to be suitable for treatments with relatively thin viscoelastic layer. Provided that optimal viscoelastic layer thickness was selected, placing cuts would only be applicable to treatments with low shear strain level inside the viscoelastic layer.

  10. Measurement of bone elasticity in the lab with ultrasound: problems, methods and open questions

    OpenAIRE

    GRIMAL, Quentin; Laugier, Pascal

    2012-01-01

    International audience; Cortical bone has anisotropic elastic properties determined by the microstructure and the quality of the mineralized collagen matrix. Knowledge of the stiffness coefficients is an issue for phenotyping, analyzing the biomechanical response to local strains or assessment of novel quantitative ultrasound (QUS) methods. Precise measurement methods which can be used routinely are still demanded. Since the work of Lang in the 60's, US methods have been popular to measure bo...

  11. Probe-based real-time PCR method for multilocus melt typing of Xylella fastidiosa strains.

    Science.gov (United States)

    Brady, Jeff A; Faske, Jennifer B; Ator, Rebecca A; Castañeda-Gill, Jessica M; Mitchell, Forrest L

    2012-04-01

    Epidemiological studies of Pierce's disease (PD) can be confounded by a lack of taxonomic detail on the bacterial causative agent, Xylella fastidiosa (Xf). PD in grape is caused by strains of Xylella fastidiosa subsp. fastidiosa, but is not caused by other subspecies of Xf that typically colonize plants other than grape. Detection assays using ELISA and qPCR are effective at detecting and quantifying Xf presence or absence, but offer no information on Xf subspecies or strain identity. Surveying insects or host plants for Xf by current ELISA or qPCR methods provides only presence/absence and quantity information for any and all Xf subspecies, potentially leading to false assessments of disease threat. This study uses a series of adjacent-hybridizing DNA melt analysis probes that are capable of efficiently discriminating Xf subspecies and strain relationships in rapid real-time PCR reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Drift-eliminating method of intensity demodulation on a chirped fiber grating strain sensor.

    Science.gov (United States)

    Pan, Jianjun; Li, Weilai; Liu, Jie

    2014-05-01

    It is quite possible to detect the strain of a sample based on a chirped fiber grating (CFG) sensor, which has a wider bandwidth of light signal than a fiber Bragg grating. Usually, environmental factors play negative roles in the process of intensity demodulation. A drift-eliminating method of CFG intensity demodulation has been created and tested in our lab. Three CFG sensors were involved in this research. Two of them with close wavelength bands connected in series were used as a strain sensing unit; the third one was used as a referencing grating working within the reflective wavelength spectrum of the other two. It is shown that the signal ratio of the sensing unit and the referencing grating is a linear function of the loading strain. The linearity is as high as 99.79%.

  13. Prediction of Ultimate Strain and Strength of FRP-Confined Concrete Cylinders Using Soft Computing Methods

    Directory of Open Access Journals (Sweden)

    Iman Mansouri

    2017-07-01

    Full Text Available This paper investigates the effectiveness of four different soft computing methods, namely radial basis neural network (RBNN, adaptive neuro fuzzy inference system (ANFIS with subtractive clustering (ANFIS-SC, ANFIS with fuzzy c-means clustering (ANFIS-FCM and M5 model tree (M5Tree, for predicting the ultimate strength and strain of concrete cylinders confined with fiber-reinforced polymer (FRP sheets. The models were compared according to the root mean square error (RMSE, mean absolute relative error (MARE and determination coefficient (R2 criteria. Similar accuracy was obtained by RBNN and ANFIS-FCM, and they provided better estimates in modeling ultimate strength of confined concrete. The ANFIS-SC, however, performed slightly better than the RBNN and ANFIS-FCM in estimating ultimate strain of confined concrete, and M5Tree provided the worst strength and strain estimates. Finally, the effects of strain ratio and the confinement stiffness ratio on strength and strain were investigated, and the confinement stiffness ratio was shown to be more effective.

  14. Strain measurement by cardiovascular magnetic resonance in pediatric cancer survivors: validation of feature tracking against harmonic phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jimmy C. [C.S. Mott Children' s Hospital, University of Michigan Congenital Heart Center, Ann Arbor, MI (United States); University of Michigan, Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, Ann Arbor, MI (United States); University of Michigan, Department of Radiology, Section of Pediatric Radiology, Ann Arbor, MI (United States); Connelly, James A. [University of Michigan, Department of Pediatrics and Communicable Diseases, Division of Hematology-Oncology, Ann Arbor, MI (United States); Zhao, Lili [University of Michigan, Department of Biostatistics, Ann Arbor, MI (United States); Agarwal, Prachi P. [University of Michigan, Department of Radiology, Division of Cardiothoracic Radiology, Ann Arbor, MI (United States); Dorfman, Adam L. [University of Michigan, Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, Ann Arbor, MI (United States); University of Michigan, Department of Radiology, Section of Pediatric Radiology, Ann Arbor, MI (United States)

    2014-09-15

    Left ventricular strain may be a more sensitive marker of left ventricular dysfunction than ejection fraction in pediatric cancer survivors after anthracycline therapy, but there is limited validation of strain measurement by feature tracking on cardiovascular magnetic resonance (MR) images. To compare left ventricular circumferential and radial strain by feature tracking vs. harmonic phase imaging analysis (HARP) in pediatric cancer survivors. Twenty-six patients (20.2 ± 5.6 years old) underwent cardiovascular MR at least 5 years after completing anthracycline therapy. Circumferential and radial strain were measured at the base, midventricle and apex from short-axis myocardial tagged images by HARP, and from steady-state free precession images by feature tracking. Left ventricular ejection fraction more closely correlated with global circumferential strain by feature tracking (r = -0.63, P = 0.0005) than by HARP (r = -0.39, P = 0.05). Midventricular circumferential strain did not significantly differ by feature tracking or HARP (-20.8 ± 3.4 vs. -19.5 ± 2.5, P = 0.07), with acceptable limits of agreement. Midventricular circumferential strain by feature tracking strongly correlated with global circumferential strain by feature tracking (r = 0.87, P < 0.0001). Radial strain by feature tracking had poor agreement with HARP, particularly at higher values of radial strain. Intraobserver and interobserver reproducibility was excellent for feature tracking circumferential strain, but reproducibility was poor for feature tracking radial strain. Midventricular circumferential strain by feature tracking is a reliable and reproducible measure of myocardial deformation in patients status post anthracycline therapy, while radial strain measurements are unreliable. Further studies are necessary to evaluate potential relation to long-term outcomes. (orig.)

  15. Variability and Reproducibility of Segmental Longitudinal Strain Measurement: A Report From the EACVI-ASE Strain Standardization Task Force.

    Science.gov (United States)

    Mirea, Oana; Pagourelias, Efstathios D; Duchenne, Jurgen; Bogaert, Jan; Thomas, James D; Badano, Luigi P; Voigt, Jens-Uwe

    2018-01-01

    In this study, we compared left ventricular (LV) segmental strain measurements obtained with different ultrasound machines and post-processing software packages. Global longitudinal strain (GLS) has proven to be a reproducible and valuable tool in clinical practice. Data about the reproducibility and intervendor differences of segmental strain measurements, however, are missing. We included 63 volunteers with cardiac magnetic resonance-proven infarct scar with segmental LV function ranging from normal to severely impaired. Each subject was examined within 2 h by a single expert sonographer with machines from multiple vendors. All 3 apical views were acquired twice to determine the test-retest and the intervendor variability. Segmental longitudinal peak systolic, end-systolic, and post-systolic strain were measured using 7 vendor-specific systems (Hitachi, Tokyo, Japan; Esaote, Florence, Italy; GE Vingmed Ultrasound, Horten, Norway; Philips, Andover, Massachusetts; Samsung, Seoul, South Korea; Siemens, Mountain View, California; and Toshiba, Otawara, Japan) and 2 independent software packages (Epsilon, Ann Arbor, Michigan; and TOMTEC, Unterschleissheim, Germany) and compared among vendors. Image quality and tracking feasibility differed among vendors (analysis of variance, p variability on top of the known intervendor bias. The fidelity of different software to follow segmental function varies considerably. We conclude that single segmental strain values should be used with caution in the clinic. Segmental strain pattern analysis might be a more robust alternative. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  16. Multiwavelength shearography for quantitative measurements of two-dimensional strain distributions.

    Science.gov (United States)

    Kästle, R; Hack, E; Sennhauser, U

    1999-01-01

    We report on the development of a multiwavelength speckle pattern shearing interferometer for the determination of two-dimensional strain distributions. This system is based on simultaneous illumination of the object with three diode lasers that emit at different wavelengths between 800 and 850 nm. Wavelength separation and image acquisition were performed with a special optical arrangement, including narrow-bandpass filters and three black-and-white cameras. The shearographic camera with a variable shearing element, in combination with the appropriate illumination geometry, permitted us to isolate all six displacement derivatives from phase-stepped fringe patterns. The optical system and the measurement procedure were validated with two different experiments. First, the shearographic sensor head was used for the determination of in-plane displacements, and, second, in-plane strain distributions of an aluminum block caused by temperature expansion were measured.

  17. Strain measurements using Fiber Bragg Grating sensors in Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Daniela ENCIU

    2017-06-01

    Full Text Available The paper presents some results obtained within a project of the “NUCLEU” Program financed by the Ministry of Research and Innovation-ANCS. The project supposes, among others, the design and the realization of a demonstrator for strain and stress measurements made with Fiber Bragg Gratings optical sensors. The paper details the construction of the demonstrator. The strain measurements induced in a cantilevered aluminum plate are compared with the analytical values provided by a mathematical model, and with the numerical values obtained by FEM analysis. The consistency of these comparative data indicates the achievement within the project of a level of competence necessary for later use of FBG sensors in the applicative researches involving the aerospace structures monitoring.

  18. Direct measurement of conformational strain energy in protofilaments curling outward from disassembling microtubule tips.

    Science.gov (United States)

    Driver, Jonathan W; Geyer, Elisabeth A; Bailey, Megan E; Rice, Luke M; Asbury, Charles L

    2017-06-19

    Disassembling microtubules can generate movement independently of motor enzymes, especially at kinetochores where they drive chromosome motility. A popular explanation is the 'conformational wave' model, in which protofilaments pull on the kinetochore as they curl outward from a disassembling tip. But whether protofilaments can work efficiently via this spring-like mechanism has been unclear. By modifying a previous assay to use recombinant tubulin and feedback-controlled laser trapping, we directly demonstrate the spring-like elasticity of curling protofilaments. Measuring their mechanical work output suggests they carry ~25% of the energy of GTP hydrolysis as bending strain, enabling them to drive movement with efficiency similar to conventional motors. Surprisingly, a β-tubulin mutant that dramatically slows disassembly has no effect on work output, indicating an uncoupling of disassembly speed from protofilament strain. These results show the wave mechanism can make a major contribution to kinetochore motility and establish a direct approach for measuring tubulin mechano-chemistry.

  19. A combined experimental with simulation approach to calibrated 3D strain measurement using shearography

    OpenAIRE

    Goto, D.T.; Groves, R.M.

    2010-01-01

    This paper is concerned with the development of a calibrated 3D shearography strain measurement instrument, calibrated iteratively, using a combined mechanical-optical model and specially designed test objects. The test objects are a cylinder loaded by internal pressure and a flat plate under axial load. Finite element models of the samples, combined with optical models of the shearography system, allow phase maps to be simulated for subsequent comparison with experimental phase maps from the...

  20. Coherent detection of spontaneous Brillouin scattering combined with Raman amplification for long range distributed temperature and strain measurements

    Science.gov (United States)

    Alahbabi, M. N.; Cho, Y. T.; Newson, T. P.

    2005-05-01

    Brillouin intensity and frequency measurements achieved temperature and strain to be unambiguously resolved with resolutions of 3.5°C and 85 μɛ at 50km. Frequency only measurements, achieved temperature or strain resolution of 1.7°C and 35 μɛ at 100km.

  1. Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2013-01-01

    1.1 This test method covers the determination of fracture toughness (KIc) of metallic materials under predominantly linear-elastic, plane-strain conditions using fatigue precracked specimens having a thickness of 1.6 mm (0.063 in.) or greater subjected to slowly, or in special (elective) cases rapidly, increasing crack-displacement force. Details of test apparatus, specimen configuration, and experimental procedure are given in the Annexes. Note 1—Plane-strain fracture toughness tests of thinner materials that are sufficiently brittle (see 7.1) can be made using other types of specimens (1). There is no standard test method for such thin materials. 1.2 This test method is divided into two parts. The first part gives general recommendations and requirements for KIc testing. The second part consists of Annexes that give specific information on displacement gage and loading fixture design, special requirements for individual specimen configurations, and detailed procedures for fatigue precracking. Additional a...

  2. Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of fracture toughness (KIc) of metallic materials under predominantly linear-elastic, plane-strain conditions using fatigue precracked specimens having a thickness of 1.6 mm (0.063 in.) or greater subjected to slowly, or in special (elective) cases rapidly, increasing crack-displacement force. Details of test apparatus, specimen configuration, and experimental procedure are given in the Annexes. Note 1—Plane-strain fracture toughness tests of thinner materials that are sufficiently brittle (see 7.1) can be made using other types of specimens (1). There is no standard test method for such thin materials. 1.2 This test method is divided into two parts. The first part gives general recommendations and requirements for KIc testing. The second part consists of Annexes that give specific information on displacement gage and loading fixture design, special requirements for individual specimen configurations, and detailed procedures for fatigue precracking. Additional a...

  3. Evaluation of the dynamic behavior of a Pelton runner based on strain gauge measurements

    Science.gov (United States)

    Mack, Reiner; Probst, Christian

    2016-11-01

    A reliable mechanical design of Pelton runners is very important in the layout of new installations and modernizations. Especially in horizontal machines, where the housing is not embedded into concrete, a rupture of a runner bucket can have severe consequences. Even if a crack in the runner is detected on time, the outage time that follows the malfunction of the runner is shortening the return of investment. It is a fact that stresses caused by the runner rotation and the jet forces are superposed by high frequent dynamic stresses. In case of resonance it even can be the dominating effect that is limiting the lifetime of a runner. Therefore a clear understanding of the dynamic mechanisms is essential for a safe runner design. This paper describes the evaluation of the dynamic behavior of a Pelton runner installed in a model turbine based on strain gauge measurements. Equipped with strain gauges at the root area of the buckets, the time responses of the strains under the influence of various operational parameters were measured. As a result basic theories for the jet bucket excitation were verified and the influence of the water mass was detected by evaluating the frequency shift in case of resonance. Furthermore, the influence of the individual bucket masses onto the dynamic behaviour for different mode shapes got measured.

  4. Spherical Nanoindentation Stress-Strain Measurements of BOR-60 14YWT-NFA1 Irradiated Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carvajal Nunez, Ursula [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Krumwiede, David [Univ. of California, Berkeley, CA (United States); Saleh, Tarik A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hosemann, Peter [Univ. of California, Berkeley, CA (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    Spherical nanoindentation stress-strain protocols were applied to characterize unirradiated and fast neutron irradiated nanostructured ferritic alloy (NFA) 14YWT and compared against Berkovich nanohardness and available tensile data. The predicted uniaxial yield strength from spherical, 100 and 5 micron radii, indentation yield strength measurements was 1100-1400 MPa which compares well with the predictions from Berkovich nanohardness, 1200 MPa, and available tensile data, ~1100 MPa. However, spherical indentation measurements predict an increase in the uniaxial yield strength of ~1 GPa while Berkovich nanohardness measurements predict an increase of only ~250 MPa. No tensile data exists on the irradiated condition. It is believed the difference in the predicted uniaxial yield strength between spherical and Berkovich nanoindentation are due to a low number of tests on the irradiated sample combined with the significant heterogeneity in the microstructure, the differences in sensitivity to sample preparation on the irradiated sample between the two indentation protocols , and/or in how strain localizes under the indenter with the possibility of dislocation channeling under Berkovich hardness indents leading to strain softening. Nanoindentation capabilities to test neutron irradiated samples in a radiological area were realized.

  5. Full-field dynamic deformation and strain measurements using high-speed digital cameras

    Science.gov (United States)

    Schmidt, Timothy E.; Tyson, John; Galanulis, Konstantin; Revilock, Duane M.; Melis, Matthew E.

    2005-03-01

    Digital cameras are rapidly supplanting film, even for very high speed and ultra high-speed applications. The benefits of these cameras, particularly CMOS versions, are well appreciated. This paper describes how a pair of synchronized digital high-speed cameras can provide full-field dynamic deformation, shape and strain information, through a process known as 3D image correlation photogrammetry. The data is equivalent to thousands of non-contact x-y-z extensometers and strain rosettes, as well as instant non-contact CMM shape measurement. A typical data acquisition rate is 27,000 frames per second, with displacement accuracy on the order of 25-50 microns, and strain accuracy of 250-500 microstrain. High-speed 3D image correlation is being used extensively at the NASA Glenn Ballistic Impact Research Lab, in support of Return to Flight activities. This leading edge work is playing an important role in validating and iterating LS-DYNA models of foam impact on reinforced carbon-carbon, including orbiter wing panel tests. The technique has also been applied to air blast effect studies and Kevlar ballistic impact testing. In these cases, full-field and time history analysis revealed the complexity of the dynamic buckling, including multiple lobes of out-of-plane and in-plane displacements, strain maxima shifts, and damping over time.

  6. Evaluation of Methods for Estimation of Cyclic Stress-Strain Parameters from Monotonic Properties of Steels

    Directory of Open Access Journals (Sweden)

    Tea Marohnić

    2017-01-01

    Full Text Available Most existing methods for estimation of cyclic yield stress and cyclic Ramberg-Osgood stress-strain parameters of steels from their monotonic properties were developed on relatively modest number of material datasets and without considerations of the particularities of different steel subgroups formed according to their chemical composition (unalloyed, low-alloy, and high-alloy steels or delivery, i.e., testing condition. Furthermore, some methods were evaluated using the same datasets that were used for their development. In this paper, a comprehensive statistical analysis and evaluation of existing estimation methods were performed using an independent set of experimental material data compriseding 116 steels. Results of performed statistical analyses reveal that statistically significant differences exist among unalloyed, low-alloy, and high-alloy steels regarding their cyclic yield stress and cyclic Ramberg-Osgood stress-strain parameters. Therefore, estimation methods were evaluated separately for mentioned steel subgroups in order to more precisely determine their applicability for the estimation of cyclic behavior of steels belonging to individual subgroups. Evaluations revealed that considering all steels as a single group results in averaging and that subgroups should be treated independently. Based on results of performed statistical analysis, guidelines are provided for identification and selection of suitable methods to be applied for the estimation of cyclic stress-strain parameters of steels.

  7. Validation of a novel sequential cultivation method for the production of enzymatic cocktails from Trichoderma strains.

    Science.gov (United States)

    Florencio, C; Cunha, F M; Badino, A C; Farinas, C S

    2015-02-01

    The development of new cost-effective bioprocesses for the production of cellulolytic enzymes is needed in order to ensure that the conversion of biomass becomes economically viable. The aim of this study was to determine whether a novel sequential solid-state and submerged fermentation method (SF) could be validated for different strains of the Trichoderma genus. Cultivation of the Trichoderma reesei Rut-C30 reference strain under SF using sugarcane bagasse as substrate was shown to be favorable for endoglucanase (EGase) production, resulting in up to 4.2-fold improvement compared with conventional submerged fermentation. Characterization of the enzymes in terms of the optimum pH and temperature for EGase activity and comparison of the hydrolysis profiles obtained using a synthetic substrate did not reveal any qualitative differences among the different cultivation conditions investigated. However, the thermostability of the EGase was influenced by the type of carbon source and cultivation system. All three strains of Trichoderma tested (T. reesei Rut-C30, Trichoderma harzianum, and Trichoderma sp INPA 666) achieved higher enzymatic productivity when cultivated under SF, hence validating the proposed SF method for use with different Trichoderma strains. The results suggest that this bioprocess configuration is a very promising development for the cellulosic biofuels industry.

  8. Thermal property measurement of thin fibers by complementary methods

    Science.gov (United States)

    Munro, Troy Robert

    To improve measurement reliability and repeatability and resolve the orders of magnitude discrepancy between the two different measurements (via reduced model transient electrothermal and lock-in IR thermography), this dissertation details the development of three complementary methods to accurately measure the thermal properties of the natural and synthetic Nephila (N.) clavipes spider dragline fibers. The thermal conductivity and diffusivity of the dragline silk of the (N.) clavipes spider has been characterized by one research group to be 151-416 W m-1 K-1 and 6.4-12.3 x 10-5 m2 s -1, respectively, for samples with low to high strains (zero to 19.7%). Thermal diffusivity of the dragline silk of a different spider species, Araneus diadematus, has been determined by another research group as 2 x 10-7 m2 s-1 for un-stretched silk. This dissertation seeks to resolve this discrepancy by three complementary methods. The methods detailed are the transient electrothermal technique (in both reduced and full model versions), the 3o method (for both current and voltage sources), and the non-contact, photothermal, quantum-dot spectral shape-based fluorescence thermometry method. These methods were also validated with electrically conductive and non-conductive fibers. The resulting thermal conductivity of the dragline silk is 1.2 W m-1 K-1, the thermal diffusivity is 6 x 10-7 m2 s -1 and the volumetric heat capacity is 2000 kJ m-3 K-1, with an uncertainty of about 12% for each property.

  9. Measuring scholarly impact methods and practice

    CERN Document Server

    Rousseau, Ronald; Wolfram, Dietmar

    2014-01-01

    This book is an authoritative handbook of current topics, technologies and methodological approaches that may be used for the study of scholarly impact. The included methods cover a range of fields such as statistical sciences, scientific visualization, network analysis, text mining, and information retrieval. The techniques and tools enable researchers to investigate metric phenomena and to assess scholarly impact in new ways. Each chapter offers an introduction to the selected topic and outlines how the topic, technology or methodological approach may be applied to metrics-related research. Comprehensive and up-to-date, Measuring Scholarly Impact: Methods and Practice is designed for researchers and scholars interested in informetrics, scientometrics, and text mining. The hands-on perspective is also beneficial to advanced-level students in fields from computer science and statistics to information science.

  10. Low cost subpixel method for vibration measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, Belen [Department of Civil Engineering, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Espinosa, Julian; Perez, Jorge; Acevedo, Pablo; Mas, David [Inst. of Physics Applied to the Sciences and Technologies, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Roig, Ana B. [Department of Optics, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain)

    2014-05-27

    Traditional vibration measurement methods are based on devices that acquire local data by direct contact (accelerometers, GPS) or by laser beams (Doppler vibrometers). Our proposal uses video processing to obtain the vibration frequency directly from the scene, without the need of auxiliary targets or devices. Our video-vibrometer can obtain the vibration frequency at any point in the scene and can be implemented with low-cost devices, such as commercial cameras. Here we present the underlying theory and some experiments that support our technique.

  11. Gravimetric capillary method for kinematic viscosity measurements

    Science.gov (United States)

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing

    1992-01-01

    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  12. Method of measuring metal coating adhesion

    Science.gov (United States)

    Roper, J.R.

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  13. Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration

    Science.gov (United States)

    Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi

    2016-09-01

    In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.

  14. Testing the association between psychosocial job strain and adverse birth outcomes--design and methods.

    Science.gov (United States)

    Larsen, Ann D; Hannerz, Harald; Obel, Carsten; Thulstrup, Ane M; Bonde, Jens P; Hougaard, Karin S

    2011-04-21

    A number of studies have examined the effects of prenatal exposure to stress on birth outcomes but few have specifically focused on psychosocial job strain. In the present protocol, we aim to examine if work characterised by high demands and low control, during pregnancy, is associated with the risk of giving birth to a child born preterm or small for gestational age. We will use the Danish National Birth Cohort where 100.000 children are included at baseline. In the present study 49,340 pregnancies will be included. Multinomial logistic regression will be applied to estimate odds ratios for the outcomes: preterm; full term but small for gestational age; full term but large for gestational age, as a function of job-strain (high strain, active and passive versus low strain). In the analysis we control for maternal age, Body Mass Index, parity, exercise, smoking, alcohol use, coffee consumption, type of work (manual versus non-manual), maternal serious disease and parents' heights as well as gestational age at interview. The prospective nature of the design and the high number of participants strengthen the study. The large statistical power allows for interpretable results regardless of whether or not the hypotheses are confirmed. This is, however, not a controlled study since all kinds of 'natural' interventions takes place throughout pregnancy (e.g. work absence, medical treatment and job-redesign). The analysis will be performed from a public health perspective. From this perspective, we are not primarily interested in the effect of job strain per se but if there is residual effect of job strain after naturally occurring preventive measures have been taken.

  15. Evaluation of Pressure Pain Threshold as a Measure of Perceived Stress and High Job Strain.

    Science.gov (United States)

    Hven, Lisbeth; Frost, Poul; Bonde, Jens Peter Ellekilde

    2017-01-01

    To investigate whether pressure pain threshold (PPT), determined by pressure algometry, can be used as an objective measure of perceived stress and job strain. We used cross-sectional base line data collected during 1994 to 1995 within the Project on Research and Intervention in Monotonous work (PRIM), which included 3123 employees from a variety of Danish companies. Questionnaire data included 18 items on stress symptoms, 23 items from the Karasek scale on job strain, and information on discomfort in specified anatomical regions was also collected. Clinical examinations included pressure pain algometry measurements of PPT on the trapezius and supraspinatus muscles and the tibia. Associations of stress symptoms and job strain with PPT of each site was analyzed for men and women separately with adjustment for age body mass index, and discomfort in the anatomical region closest to the point of pressure algometry using multivariable linear regression. We found significant inverse associations between perceived stress and PPT in both genders in models adjusting for age and body mass index: the higher level of perceived stress, the lower the threshold. For job strain, associations were weaker and only present in men. In men all associations were attenuated when adjusting for reported discomfort in regions close to the site of pressure algometry. The distributions of PPT among stressed and non-stressed persons were strongly overlapping. Despite significant associations between perceived stress and PPT, the discriminative capability of PPT to distinguish individuals with and without stress is low. PPT measured by pressure algometry seems not applicable as a diagnostic tool of a state of mental stress.

  16. Portable method of measuring gaseous acetone concentrations.

    Science.gov (United States)

    Worrall, Adam D; Bernstein, Jonathan A; Angelopoulos, Anastasios P

    2013-08-15

    Measurement of acetone in human breath samples has been previously shown to provide significant non-invasive diagnostic insight into the control of a patient's diabetic condition. In patients with diabetes mellitus, the body produces excess amounts of ketones such as acetone, which are then exhaled during respiration. Using various breath analysis methods has allowed for the accurate determination of acetone concentrations in exhaled breath. However, many of these methods require instrumentation and pre-concentration steps not suitable for point-of-care use. We have found that by immobilizing resorcinol reagent into a perfluorosulfonic acid polymer membrane, a controlled organic synthesis reaction occurs with acetone in a dry carrier gas. The immobilized, highly selective product of this reaction (a flavan) is found to produce a visible spectrum color change which could measure acetone concentrations to less than ppm. We here demonstrate how this approach can be used to produce a portable optical sensing device for real-time, non-invasive acetone analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements.

    Science.gov (United States)

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-03-22

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface.

  18. The strain field in northwestern Greece and the Ionian Islands: results inferred from GPS measurements

    Science.gov (United States)

    Kahle, Hans-Gert; Müller, Max V.; Geiger, Alain; Danuser, Gaudenz; Mueller, Stephan; Veis, George; Billiris, Harris; Paradissis, Demitris

    1995-09-01

    Recent crustal movements detected by the analysis of repeated satellite geodetic measurements reflect the ongoing geodynamic processes in the Alpine-Mediterranean area. Superimposed on the large-scale counterclockwise rotation of the African plate, complex dynamic processes are affecting the lithospheric fragments between the African and Eurasian plates. Key features to better understand the driving forces and associated seismic activity in the Africa/Eurasia collision zone are the Calabrian and Hellenic arcs. In this paper geodynamic investigations along the West Hellenic arc are discussed. They are based on two epochs (1989 and 1993) of satellite geodetic measurements carried out using the US Global Positioning System (GPS). The results are presented in terms of relative displacements and strain rates. Within the time span of 4 years southwestern Greece has moved to the southwest relative to southeastern Italy by an average of 120 mm, increasing from 80 mm at Lefkada, in the center of the Ionian Islands, to 160 mm at the Peloponnesus. The maximum strain rate is 0.18 μstrain/a located in the vicinity of Lefkada, where anomalously high earthquake activity is observed. The data provide strong evidence for dextral strike-slip motion on the order of 25 mm/a along the Kephalonia Fault Zone (KFZ). The deformation field of the KFZ is interpreted as a transition zone between the kinematics of the Apulian platform and the West Hellenic fold and thrust belts.

  19. Telerobotic system performance measurement: motivation and methods

    Science.gov (United States)

    Kondraske, George V.; Khoury, George J.

    1992-11-01

    Telerobotic systems (TRSs) and shared teleautonomous systems result from the integration of multiple sophisticated modules. Procedures used in systems integration design decision-making of such systems are frequently ad hoc compared to more quantitative and systematic methods employed elsewhere in engineering. Experimental findings associated with verification and validation (V&V) are often application-specific. Furthermore, models and measurement strategies do not exist which allow prediction of overall TRS performance in a given task based on knowledge of the performance characteristics of individual subsystems. This paper introduces the use of general systems performance theory (GSPT), developed by the senior author to help resolve similar problems in human performance, as a basis for: (1) measurement of overall TRS performance (viewing all system components, including the operator, as a single entity); (2) task decomposition; (3) development of a generic TRS model; and (4) the characterization of performance of subsystems comprising the generic model. GSPT uses a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented in the context of a distributed telerobotics network (Universities Space Automation and Robotics Consortium) as a testbed. Insight into the design of test protocols which elicit application-independent data (i.e., multi-purpose or reusable) is described. Although the work is motivated by space automation and robotics challenges, it is considered to be applicable to telerobotic systems in general.

  20. Method and apparatus for optical temperature measurement

    Science.gov (United States)

    O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

    1994-09-20

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

  1. Neutron diffraction measurements and modeling of residual strains in metal matrix composites

    Science.gov (United States)

    Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.

    1996-01-01

    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  2. Coupled stress-strain and electrical resistivity measurements on copper based shape memory single crystals

    Directory of Open Access Journals (Sweden)

    Gonzalez Cezar Henrique

    2004-01-01

    Full Text Available Recently, electrical resistivity (ER measurements have been done during some thermomechanical tests in copper based shape memory alloys (SMA's. In this work, single crystals of Cu-based SMA's have been studied at different temperatures to analyse the relationship between stress (s and ER changes as a function of the strain (e. A good consistency between ER change values is observed in different experiments: thermal martensitic transformation, stress induced martensitic transformation and stress induced reorientation of martensite variants. During stress induced martensitic transformation (superelastic behaviour and stress induced reorientation of martensite variants, a linear relationship is obtained between ER and strain as well as the absence of hys teresis. In conclusion, the present results show a direct evidence of martensite electrical resistivity anisotropy.

  3. Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2017-12-01

    Full Text Available Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction has been developed based on the studies of electrical conductivity and magnetoresistance of silicon and germanium microcrystals in the temperature range 4.2—70 K, strain ±1.5*10–3 rel.un. and magnetic fields of 0—14 T. The feature of the sensitive element is the using of the p- and n-type conductivity germanium microcrystals as mechanical and magnetic field sensors, respectively, and the p-type silicon microcrystal — as temperature sensor. That allows providing the compensation of temperature influence on piezoresistance and on sensitivity to the magnetic field.

  4. Cardiac magnetic resonance feature tracking: a novel method to assess myocardial strain. Comparison with echocardiographic speckle tracking in healthy volunteers and in patients with left ventricular hypertrophy.

    Science.gov (United States)

    Orwat, Stefan; Kempny, Aleksander; Diller, Gerhard-Paul; Bauerschmitz, Pia; Bunck, Alexander Ch; Maintz, David; Radke, Robert M; Baumgartner, Helmut

    2014-01-01

    Left ventricular longitudinal strain (LV-LS) and strain rate (SR) are sensitive markers of early systolic dysfunction. To evaluate the feasibility of a novel, cardiac magnetic resonance (CMR) based method known as feature tracking (FT) for the assessment of strain and SR, and to compare the CMR based results to those obtained on standard transthoracic echocardiography (TTE) in healthy volunteers and in patients with left ventricular hypertrophy cardiomyopathy (HCM). Overall, 20 healthy volunteers (ten male, mean age 24 ± 3 years) and 20 consecutive patients with HCM (12 male, mean age 47 ± 19 years) were included. Longitudinal and circumferential strain and SR of the left ventricle were measured on CMR at 1.5 Tesla and TTE and interobserver variability was assessed. FT measurements were feasible in all subjects. A good agreement between global LV-LS measured on CMR (controls: 20.8 ± 3.0; HCM: 17.6 ± 3.8) and TTE (controls: 19.4 ± 2.1; HCM: 16.6 ± 2.9) was found, while the agreement was worse for circumferential strain and all SR measurements. For the left and right ventricles, interobserver reproducibility was higher for strain measurements compared to SR. Coefficients of variation were lowest for LV-LS (13.2%) by CMR. FT analysis is a novel CMR based method for the analysis of myocardial strain and SR that is simple and correlates well with the echocardiographic measurements. Since CMR is unaffected by inadequate acoustic windows, FT may represent an attractive alternative to echocardiography in assessing the increasingly important parameters of myocardial deformation.

  5. The method for potato root system measurements

    Directory of Open Access Journals (Sweden)

    Anna Głuska

    2013-12-01

    Full Text Available Extracting of a root system from the soil without losses is the main difficulty in investigations of the potato root system. In the years 1992-1998 at The Potato Research Institute, Jadwisin (Poland an original method for potato root system investigation was developed.A special pot (40 cm in diameter, 100 cm high made of zinc coated steel sheet 0,8 mm was constructed. This device may be opened lengthwise to obtain the whole intact root system of potato plant. Soil profile in the pot is formed in 10 horizontal layers separated by circles made of plastic mesh which enable distinguishing of roots related to certain soil horizons. The method described makes possible (in a relatively easy way taking measurements of weight and length of roots in every 10-cm layer of soil up to depth of 1 meter, so as to assess: the weight of fresh and/or dry matter and length of the whole potato plant root system and its distribution in the soil profile. This method might be useful also for investigation of root systems of another species.

  6. Experimental and modeling study on increasing accuracy of strain measurement by ion beam analysis in SiGe strained layer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Michael S. [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Wijesundera, Dharshana [Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX 77204 (United States); Thompson, Phillip E. [Code 6812, Naval Research Laboratory, Washington, DC 20375 (United States); Wang, Xuemei; Chu, Wei-Kan [Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX 77204 (United States); Shao, Lin, E-mail: lshao@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States)

    2014-08-01

    We have used Rutherford backscattering spectrometry to characterize Si/ε-Si{sub 0.8}Ge{sub 0.2}/Si strained-layer heterogeneous epitaxial structures. Two-dimensional yield mapping of backscattered 2 MeV He atoms as a function of tilting angles around off-normal 〈1 1 0〉 axis are obtained. For Si/Si{sub 0.8}Ge{sub 0.2}/Si with buried strained layer, we observe distortion of (1 1 0) planar minimum in yield mapping from Ge. The distortion features slightly decreasing angular offsets with decreasing tilting away from 〈1 1 0〉 axis. Our finding suggests that strain measurements using one dimensional angular scan within or close to (1 0 0) plane will lead to strain underestimation. A two dimensional yield mapping is preferred over one dimensional angular scan for high accuracy in strain measurements, so the angular off-set can be measured in a region free of distortion. The experimental observations are in good agreement with our modeling prediction.

  7. A method to determine the strain and the nucleation sites of stacked nano-objects

    Energy Technology Data Exchange (ETDEWEB)

    Molina Rubio, Sergio I [ORNL; Varela del Arco, Maria [ORNL; Ben, Teresa [Universidad de Cadiz, Spain; Sales Lerida, David [ORNL; Pizarro, Joaquin [Universidad de Cadiz, Spain; Galindo, Pedro [Universidad de Cadiz, Spain; Fuster, David [Instituto de Microelectronica de Madrid (CNM, CSIC); Gonzalez, Yolanda [Instituto de Microelectronica de Madrid (CNM, CSIC); Gonzalez, Luisa [Instituto de Microelectronica de Madrid (CNM, CSIC); Pennycook, Stephen J [ORNL

    2008-01-01

    We determine the compositional distribution with atomic column resolution in a horizontal nanowire from the analysis of aberration-corrected high resolution Z-contrast images. The strain field in a layer capping the analysed nanowire is determined by anisotropic elastic theory from the resulting compositional map. The reported method allows preferential nucleation sites for epitaxial nano-objects to be predicted with high spatial resolution, as required for accurate tuning of desired optical properties.

  8. Finite-Strain Fractional-Order Viscoelastic (FOV) Material Models and Numerical Methods for Solving Them

    Science.gov (United States)

    Freed, Alan D.; Diethelm, Kai; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Fraction-order viscoelastic (FOV) material models have been proposed and studied in 1D since the 1930's, and were extended into three dimensions in the 1970's under the assumption of infinitesimal straining. It was not until 1997 that Drozdov introduced the first finite-strain FOV constitutive equations. In our presentation, we shall continue in this tradition by extending the standard, FOV, fluid and solid, material models introduced in 1971 by Caputo and Mainardi into 3D constitutive formula applicable for finite-strain analyses. To achieve this, we generalize both the convected and co-rotational derivatives of tensor fields to fractional order. This is accomplished by defining them first as body tensor fields and then mapping them into space as objective Cartesian tensor fields. Constitutive equations are constructed using both variants for fractional rate, and their responses are contrasted in simple shear. After five years of research and development, we now possess a basic suite of numerical tools necessary to study finite-strain FOV constitutive equations and their iterative refinement into a mature collection of material models. Numerical methods still need to be developed for efficiently solving fraction al-order integrals, derivatives, and differential equations in a finite element setting where such constitutive formulae would need to be solved at each Gauss point in each element of a finite model, which can number into the millions in today's analysis.

  9. A method of determining nonlinear large strain consolidation parameters of dredged clays

    Directory of Open Access Journals (Sweden)

    Yu-peng Cao

    2014-04-01

    Full Text Available A method of obtaining the large strain consolidation parameters of dredged clays considering the influence of the initial water content is investigated in this study. According to the test results of remolded clays with high initial water contents reported by Hong et al. (2010, a relationship between the void ratio (e and effective stress (σ' is established. Furthermore, based on the available permeability data from the literature, a new relationship between the permeability coefficient (k and the ratio (e/eL of the void ratio to the void ratio at the liquid limit (eL is proposed. The new proposed expression considering the initial water content improves the e−k equation established by Nagaraj et al. (1994. Finally, the influence of the initial void ratio and effective stress on the large strain consolidation coefficient g(e defined by Gibson et al. (1981 and k/(1+e in large strain analysis is discussed. The results show that, under a constant effective stress, the value of k/(1+e increases with the initial void ratio. The large strain consolidation coefficient shows the law of segmentation change, which decreases with the increase of the effective stress when the effective stress is less than the remolded yield stress, but increases rapidly with the effective stress when the effective stress is larger than the remolded yield stress.

  10. Development of an experimentally supported evaluation method for optimization and characterization of strain transfer of surface-applied Fibre Bragg Gratings (FBG); Entwicklung eines experimentell gestuetzten Bewertungsverfahrens zur Optimierung und Charakterisierung der Dehnungsuebertragung oberflaechenapplizierter Faser-Bragg-Gitter-Sensoren

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, Vivien Gisela

    2010-05-01

    Fibre Bragg Gratings (FBG) as strain sensors are implemented in those areas, where conventional electrical strain gauges reach their limits (for example in areas of high voltage, strong electro-magnetic fields, medical technology, safety relevant and radiation-exposed areas). Subject of this work is the surface application and the qualification of these sensors as strain sensors on different materials. A certified and proven method of application for surface mounted sensors is not known yet. The determination of the strain transfer and the definition of a strain transfer factor out of the relation between the Bragg wavelength change and the strain of the specimen have not yet been validated experimentally with an independent validation method. The development of an experimental methodology using a physically independent optical reference method for the determination of the strain transfer between the specimen and the FBG strain sensor is the main focus of this work. The influencing parameters on the strain distribution have been quantified experimentally and the change in Bragg wavelength has been investigated in relation to the strain measured by strain gauges. The material properties of the adhesives have been partly investigated. On the basis of these experiments a testing facility for surface applied FBG strain sensors has been developed. The functionality of the experimental methodology for the determination of the strain factor has been shown. The characterisation of the testing facility and the validity of FBG strain sensors through the experimental methodology inhere developed have been started. For the case of the strain determination in wind turbine rotor blades specially adapted FBG patches have been developed and qualified. An integration technique for FBG strain sensors into the rotor blade has been developed as well. As a first step of standardizing this measurement technique a national standard has been developed under the contribution of the author

  11. Inference of antibiotic resistance and virulence among diverse group A Streptococcus strains using emm sequencing and multilocus genotyping methods.

    Directory of Open Access Journals (Sweden)

    David Metzgar

    Full Text Available BACKGROUND: Group A Streptococcus pyogenes (GAS exhibits a high degree of clinically relevant phenotypic diversity. Strains vary widely in terms of antibiotic resistance (AbR, clinical severity, and transmission rate. Currently, strain identification is achieved by emm typing (direct sequencing of the genomic segment coding for the antigenic portion of the M protein or by multilocus genotyping methods. Phenotype analysis, including critical AbR typing, is generally achieved by much slower and more laborious direct culture-based methods. METHODOLOGY/PRINCIPAL FINDINGS: We compare genotype identification (by emm typing and PCR/ESI-MS with directly measured phenotypes (AbR and outbreak associations for 802 clinical isolates of GAS collected from symptomatic patients over a period of 6 years at 10 military facilities in the United States. All independent strain characterization methods are highly correlated. This shows that recombination, horizontal transfer, and other forms of reassortment are rare in GAS insofar as housekeeping genes, primary virulence and antibiotic resistance determinants, and the emm gene are concerned. Therefore, genotyping methods offer an efficient way to predict emm type and the associated AbR and virulence phenotypes. CONCLUSIONS/SIGNIFICANCE: The data presented here, combined with much historical data, suggest that emm typing assays and faster molecular methods that infer emm type from genomic signatures could be used to efficiently infer critical phenotypic characteristics based on robust genotype: phenotype correlations. This, in turn, would enable faster and better-targeted responses during identified outbreaks of constitutively resistant or particularly virulent emm types.

  12. High Throughput Method for Analysis of Repeat Number for 28 Phase Variable Loci of Campylobacter jejuni Strain NCTC11168.

    Directory of Open Access Journals (Sweden)

    Lea Lango-Scholey

    Full Text Available Mutations in simple sequence repeat tracts are a major mechanism of phase variation in several bacterial species including Campylobacter jejuni. Changes in repeat number of tracts located within the reading frame can produce a high frequency of reversible switches in gene expression between ON and OFF states. The genome of C. jejuni strain NCTC11168 contains 29 loci with polyG/polyC tracts of seven or more repeats. This protocol outlines a method-the 28-locus-CJ11168 PV-analysis assay-for rapidly determining ON/OFF states of 28 of these phase-variable loci in a large number of individual colonies from C. jejuni strain NCTC11168. The method combines a series of multiplex PCR assays with a fragment analysis assay and automated extraction of fragment length, repeat number and expression state. This high throughput, multiplex assay has utility for detecting shifts in phase variation states within and between populations over time and for exploring the effects of phase variation on adaptation to differing selective pressures. Application of this method to analysis of the 28 polyG/polyC tracts in 90 C. jejuni colonies detected a 2.5-fold increase in slippage products as tracts lengthened from G8 to G11 but no difference between tracts of similar length indicating that flanking sequence does not influence slippage rates. Comparison of this observed slippage to previously measured mutation rates for G8 and G11 tracts in C. jejuni indicates that PCR amplification of a DNA sample will over-estimate phase variation frequencies by 20-35-fold. An important output of the 28-locus-CJ11168 PV-analysis assay is combinatorial expression states that cannot be determined by other methods. This method can be adapted to analysis of phase variation in other C. jejuni strains and in a diverse range of bacterial species.

  13. Measuring ambiguity in HLA typing methods.

    Directory of Open Access Journals (Sweden)

    Vanja Paunić

    Full Text Available In hematopoietic stem cell transplantation, donor selection is based primarily on matching donor and patient HLA genes. These genes are highly polymorphic and their typing can result in exact allele assignment at each gene (the resolution at which patients and donors are matched, but it can also result in a set of ambiguous assignments, depending on the typing methodology used. To facilitate rapid identification of matched donors, registries employ statistical algorithms to infer HLA alleles from ambiguous genotypes. Linkage disequilibrium information encapsulated in haplotype frequencies is used to facilitate prediction of the most likely haplotype assignment. An HLA typing with less ambiguity produces fewer high-probability haplotypes and a more reliable prediction. We estimated ambiguity for several HLA typing methods across four continental populations using an information theory-based measure, Shannon's entropy. We used allele and haplotype frequencies to calculate entropy for different sets of 1,000 subjects with simulated HLA typing. Using allele frequencies we calculated an average entropy in Caucasians of 1.65 for serology, 1.06 for allele family level, 0.49 for a 2002-era SSO kit, and 0.076 for single-pass SBT. When using haplotype frequencies in entropy calculations, we found average entropies of 0.72 for serology, 0.73 for allele family level, 0.05 for SSO, and 0.002 for single-pass SBT. Application of haplotype frequencies further reduces HLA typing ambiguity. We also estimated expected confirmatory typing mismatch rates for simulated subjects. In a hypothetical registry with all donors typed using the same method, the entropy values based on haplotype frequencies correspond to confirmatory typing mismatch rates of 1.31% for SSO versus only 0.08% for SBT. Intermediate-resolution single-pass SBT contains the least ambiguity of the methods we evaluated and therefore the most certainty in allele prediction. The presented measure

  14. Comparison of Resistant and Susceptible Strains of Trichomons vaginalis to Metronidazole Using PCR Method

    Directory of Open Access Journals (Sweden)

    M Fallah

    2012-09-01

    Full Text Available Background: Metronidazole is drug of choice recommended by WHO for treatment of trichomoniasis, however, some reports claims drug resistance in Trichomonas vaginalis isolates recently. The objective of this study was to determine the minimum lethal concentration (MLC of metronidazole in resistant and sensitive strains, as well as genetic patterns of these stains by PCR method. Methods: From February 2006 to March 2007, in a cross sectional study, clinical and wet mount examination of vaginal smear along with culture were performed on 683 women attending to public and private outpatient clinics in Hamadan. Trichomoniasis marked based on major clinical symptoms. Diagnosis confirmed using wet mount microscopically and culture in Diamond medium. A serial concentration of metronidazole was provided and all isolated Trichomonas strains (resistant and sensitive tested by standard method. Finally, all sensitive and resistant strains examined by PCR technique. Results: Only 15/683, (2.2% of patients clinically diagnosed trichomonal vaginitis were positive for T. vaginalis by wet smear and culture. The minimum lethal concentration (MLC for clinically sensitive isolates was 25 µg/ml; however, this concentration for resistant isolates was 200 µg/ml after 24 h and 100 µg/ml after 50 h. The results of PCR examination of DNA from sensitive and resistant isolates had same pattern. The lanes appeared by two primers were 98 bp and 261 bp for both clinically sensitive and resistant strains. Conclusion: Resistance to metronidazole in T. vaginalis has not relation to genetic variations and might be related to some physiologic pathways of organism.

  15. Methods for measuring exchangeable protons in glycosaminoglycans.

    Science.gov (United States)

    Beecher, Consuelo N; Larive, Cynthia K

    2015-01-01

    Recent NMR studies of the exchangeable protons of GAGs in aqueous solution, including those of the amide, sulfamate, and hydroxyl moieties, have demonstrated potential for the detection of intramolecular hydrogen bonds, providing insights into secondary structure preferences. GAG amide protons are observable by NMR over wide pH and temperature ranges; however, specific solution conditions are required to reduce the exchange rate of the sulfamate and hydroxyl protons and allow their detection by NMR. Building on the vast body of knowledge on detection of hydrogen bonds in peptides and proteins, a variety of methods can be used to identify hydrogen bonds in GAGs including temperature coefficient measurements, evaluation of chemical shift differences between oligo- and monosaccharides, and relative exchange rates measured through line shape analysis and EXSY spectra. Emerging strategies to allow direct detection of hydrogen bonds through heteronuclear couplings offer promise for the future. Molecular dynamic simulations are important in this effort both to predict and confirm hydrogen bond donors and acceptors.

  16. Emitted vibration measurement device and method

    Science.gov (United States)

    Gisler, G. L.

    1986-10-01

    This invention is directed to a method and apparatus for measuring emitted vibrational forces produced by a reaction wheel assembly due to imbalances, misalignment, bearing defects and the like. The apparatus includes a low mass carriage supported on a large mass base. The carriage is in the form of an octagonal frame having an opening which is adapted for receiving the reaction wheel assembly supported thereon by means of a mounting ring. The carriage is supported on the base by means of air bearings which support the carriage in a generally frictionless manner when supplied with compressed air from a source. A plurality of carriage brackets and a plurality of base blocks provided for physical coupling of the base and carriage. The sensing axes of the load cells are arranged generally parallel to the base and connected between the base and carriage such that all of the vibrational forces emitted by the reaction wheel assembly are effectively transmitted through the sensing axes of the load cells. In this manner, a highly reliable and accurate measurment of the vibrational forces of the reaction wheel assembly can be had. The output signals from the load cells are subjected to a dynamical analyzer which analyzes and identifies the rotor and spin bearing components which are causing the vibrational forces.

  17. A novel, sensitive method to evaluate potato germplasm for bacterial wilt resistance using a luminescent Ralstonia solanacearum reporter strain.

    Science.gov (United States)

    Cruz, Andrea Paola Zuluaga; Ferreira, Virginia; Pianzzola, María Julia; Siri, María Inés; Coll, Núria S; Valls, Marc

    2014-03-01

    Several breeding programs are under way to introduce resistance to bacterial wilt caused by Ralstonia solanacearum in solanaceous crops. The lack of screening methods allowing easy measurement of pathogen colonization and the inability to detect latent (i.e., symptomless) infections are major limitations when evaluating resistance to this disease in plant germplasm. We describe a new method to study the interaction between R. solanacearum and potato germplasm that overcomes these restrictions. The R. solanacearum UY031 was genetically modified to constitutively generate light from a synthetic luxCDABE operon stably inserted in its chromosome. Colonization of this reporter strain on different potato accessions was followed using life imaging. Bacterial detection in planta by this nondisruptive system correlated with the development of wilting symptoms. In addition, we demonstrated that quantitative detection of the recombinant strain using a luminometer can identify latent infections on symptomless potato plants. We have developed a novel, unsophisticated, and accurate method for high-throughput evaluation of pathogen colonization in plant populations. We applied this method to compare the behavior of potato accessions with contrasting resistance to R. solanacearum. This new system will be especially useful to detect latency in symptomless parental lines before their inclusion in long-term breeding programs for disease resistance.

  18. Operando Synchrotron Measurement of Strain Evolution in Individual Alloying Anode Particles within Lithium Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, Francisco Javier Quintero [School; Boebinger, Matthew G. [School; Xu, Michael [School; Ulvestad, Andrew [Materials; McDowell, Matthew T. [School; G.W.

    2018-01-11

    Alloying anode materials offer high capacity for next-generation batteries, but the performance of these materials often decays rapidly with cycling because of volume changes and associated mechanical degradation or fracture. The direct measurement of crystallographic strain evolution in individual particles has not been reported, however, and this level of insight is critical for designing mechanically resilient materials. Here, we use operando X-ray diffraction to investigate strain evolution in individual germanium microparticles during electrochemical reaction with lithium. The diffraction peak was observed to shift in position and diminish in intensity during reaction because of the disappearance of the crystalline Ge phase. The compressive strain along the [111] direction was found to increase monotonically to a value of -0.21%. This finding is in agreement with a mechanical model that considers expansion and plastic deformation during reaction. This new insight into the mechanics of large-volume-change transformations in alloying anodes is important for improving the durability of high-capacity batteries.

  19. Weathering: methods and techniques to measure

    Science.gov (United States)

    Lopez-Arce, P.; Zornoza-Indart, A.; Alvarez de Buergo, M.; Fort, R.

    2012-04-01

    Surface recession takes place when weathered material is removed from the rocks. In order to know how fast does weathering and erosion occur, a review of several methods, analyses and destructive and non-destructive techniques to measure weathering of rocks caused by physico-chemical changes that occur in bedrocks due to salt crystallization, freezing-thaw, thermal shock, influence of water, wind, temperature or any type of environmental agent leading to weathering processes and development of soils, in-situ in the field or through experimental works in the laboratory are addressed. From micro-scale to macro-scale, from the surface down to more in depth, several case studies on in-situ monitoring of quantification of decay on soils and rocks from natural landscapes (mountains, cliffs, caves, etc) or from urban environment (foundations or facades of buildings, retaining walls, etc) or laboratory experimental works, such as artificial accelerated ageing tests (a.a.e.e.) or durability tests -in which one or more than one weathering agents are selected to assess the material behaviour in time and in a cyclic way- performed on specimens of these materials are summarised. Discoloration, structural alteration, precipitation of weathering products (mass transfer), and surface recession (mass loss) are all products of weathering processes. Destructive (SEM-EDX, optical microscopy, mercury intrusion porosimetry, drilling resistance measurement, flexural and compression strength) and Non-destructive (spectrophotocolorimetry, 3D optical surface roughness, Schmidt hammer rebound tester, ultrasound velocity propagation, Nuclear Magnetic Resonance NMR, X ray computed micro-tomography or CT-scan, geo-radar differential global positioning systems) techniques and characterization analyses (e.g. water absorption, permeability, open porosity or porosity accessible to water) to assess their morphological, physico-chemical, mechanical and hydric weathering; consolidation products or

  20. All-solid birefringent hybrid photonic crystal fiber based interferometric sensor for measurement of strain and temperature

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Zhang, A. Ping

    2011-01-01

    A highly sensitive fiber-optic interferometric sensor based on an all-solid birefringent hybrid photonic crystal fiber (PCF) is demonstrated for measuring strain and temperature. A strain sensitivity of similar to 23.8 pm/mu epsilon and a thermal sensitivity of similar to-1.12 nm/degrees C...

  1. Measurement of Strain in the Left Ventricle during Diastole withcine-MRI and Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Veress, Alexander I.; Gullberg, Grant T.; Weiss, Jeffrey A.

    2005-07-20

    The assessment of regional heart wall motion (local strain) can localize ischemic myocardial disease, evaluate myocardial viability and identify impaired cardiac function due to hypertrophic or dilated cardiomyopathies. The objectives of this research were to develop and validate a technique known as Hyperelastic Warping for the measurement of local strains in the left ventricle from clinical cine-MRI image datasets. The technique uses differences in image intensities between template (reference) and target (loaded) image datasets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target image. To validate the technique, MRI image datasets representing two deformation states of a left ventricle were created such that the deformation map between the states represented in the images was known. A beginning diastoliccine-MRI image dataset from a normal human subject was defined as the template. A second image dataset (target) was created by mapping the template image using the deformation results obtained from a forward FE model of diastolic filling. Fiber stretch and strain predictions from Hyperelastic Warping showed good agreement with those of the forward solution. The technique had low sensitivity to changes in material parameters, with the exception of changes in bulk modulus of the material. The use of an isotropic hyperelastic constitutive model in the Warping analyses degraded the predictions of fiber stretch. Results were unaffected by simulated noise down to an SNR of 4.0. This study demonstrates that Warping in conjunction with cine-MRI imaging can be used to determine local ventricular strains during diastole.

  2. Servohydraulic methods for mechanical testing in the Sub-Hopkinson rate regime up to strain rates of 500 1/s.

    Energy Technology Data Exchange (ETDEWEB)

    Crenshaw, Thomas B.; Boyce, Brad Lee

    2005-10-01

    Tensile and compressive stress-strain experiments on metals at strain rates in the range of 1-1000 1/s are relevant to many applications such as gravity-dropped munitions and airplane accidents. While conventional test methods cover strain rates up to {approx}10 s{sup -1} and split-Hopkinson and other techniques cover strain rates in excess of {approx}1000 s{sup -1}, there are no well defined techniques for the intermediate or ''Sub-Hopkinson'' strain-rate regime. The current work outlines many of the challenges in testing in the Sub-Hopkinson regime, and establishes methods for addressing these challenges. The resulting technique for obtaining intermediate rate stress-strain data is demonstrated in tension on a high-strength, high-toughness steel alloy (Hytuf) that could be a candidate alloy for earth penetrating munitions and in compression on a Au-Cu braze alloy.

  3. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Penn Charles W

    2009-12-01

    Full Text Available Abstract Background Homologous recombination mediated by the λ-Red genes is a common method for making chromosomal modifications in Escherichia coli. Several protocols have been developed that differ in the mechanisms by which DNA, carrying regions homologous to the chromosome, are delivered into the cell. A common technique is to electroporate linear DNA fragments into cells. Alternatively, DNA fragments are generated in vivo by digestion of a donor plasmid with a nuclease that does not cleave the host genome. In both cases the λ-Red gene products recombine homologous regions carried on the linear DNA fragments with the chromosome. We have successfully used both techniques to generate chromosomal mutations in E. coli K-12 strains. However, we have had limited success with these λ-Red based recombination techniques in pathogenic E. coli strains, which has led us to develop an enhanced protocol for recombineering in such strains. Results Our goal was to develop a high-throughput recombineering system, primarily for the coupling of genes to epitope tags, which could also be used for deletion of genes in both pathogenic and K-12 E. coli strains. To that end we have designed a series of donor plasmids for use with the λ-Red recombination system, which when cleaved in vivo by the I-SceI meganuclease generate a discrete linear DNA fragment, allowing for C-terminal tagging of chromosomal genes with a 6 × His, 3 × FLAG, 4 × ProteinA or GFP tag or for the deletion of chromosomal regions. We have enhanced existing protocols and technologies by inclusion of a cassette conferring kanamycin resistance and, crucially, by including the sacB gene on the donor plasmid, so that all but true recombinants are counter-selected on kanamycin and sucrose containing media, thus eliminating the need for extensive screening. This method has the added advantage of limiting the exposure of cells to the potential damaging effects of the λ-Red system, which can lead

  4. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains

    Science.gov (United States)

    2009-01-01

    Background Homologous recombination mediated by the λ-Red genes is a common method for making chromosomal modifications in Escherichia coli. Several protocols have been developed that differ in the mechanisms by which DNA, carrying regions homologous to the chromosome, are delivered into the cell. A common technique is to electroporate linear DNA fragments into cells. Alternatively, DNA fragments are generated in vivo by digestion of a donor plasmid with a nuclease that does not cleave the host genome. In both cases the λ-Red gene products recombine homologous regions carried on the linear DNA fragments with the chromosome. We have successfully used both techniques to generate chromosomal mutations in E. coli K-12 strains. However, we have had limited success with these λ-Red based recombination techniques in pathogenic E. coli strains, which has led us to develop an enhanced protocol for recombineering in such strains. Results Our goal was to develop a high-throughput recombineering system, primarily for the coupling of genes to epitope tags, which could also be used for deletion of genes in both pathogenic and K-12 E. coli strains. To that end we have designed a series of donor plasmids for use with the λ-Red recombination system, which when cleaved in vivo by the I-SceI meganuclease generate a discrete linear DNA fragment, allowing for C-terminal tagging of chromosomal genes with a 6 × His, 3 × FLAG, 4 × ProteinA or GFP tag or for the deletion of chromosomal regions. We have enhanced existing protocols and technologies by inclusion of a cassette conferring kanamycin resistance and, crucially, by including the sacB gene on the donor plasmid, so that all but true recombinants are counter-selected on kanamycin and sucrose containing media, thus eliminating the need for extensive screening. This method has the added advantage of limiting the exposure of cells to the potential damaging effects of the λ-Red system, which can lead to unwanted secondary

  5. A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members

    Directory of Open Access Journals (Sweden)

    Burak Ozbey

    2016-04-01

    Full Text Available In this study, we show a wireless passive sensing system embedded in a reinforced concrete member successfully being employed for the measurement of relative displacement and strain in a simply supported beam experiment. The system utilizes electromagnetic coupling between the transceiver antenna located outside the beam, and the sensing probes placed on the reinforcing bar (rebar surface inside the beam. The probes were designed in the form of a nested split-ring resonator, a metamaterial-based structure chosen for its compact size and high sensitivity/resolution, which is at µm/microstrains level. Experiments were performed in both the elastic and plastic deformation cases of steel rebars, and the sensing system was demonstrated to acquire telemetric data in both cases. The wireless measurement results from multiple probes are compared with the data obtained from the strain gages, and an excellent agreement is observed. A discrete time measurement where the system records data at different force levels is also shown. Practical issues regarding the placement of the sensors and accurate recording of data are discussed. The proposed sensing technology is demonstrated to be a good candidate for wireless structural health monitoring (SHM of reinforced concrete members by its high sensitivity and wide dynamic range.

  6. Strain measurements by fiber Bragg grating sensors for in situ pile loading tests

    Science.gov (United States)

    Schmidt-Hattenberger, Cornelia; Straub, Tilmann; Naumann, Marcel; Borm, Günter; Lauerer, Robert; Beck, Christoph; Schwarz, Wolfgang

    2003-07-01

    A fiber Bragg grating (FBG) sensor network has been installed into a large diameter concrete pile on a real construction site. The intention was to monitor its deformation behavior during several quasi-static loading cycles. The skin friction between pile and subsoil affecting the ultimate bearing capacity of the pile as well as the settlement behavior of the structure under investigation has been derived from our measurements. A comparison between the results of the fiber Bragg grating sensors and conventional concrete strain gages (CSG) has shown excellent correspondence.

  7. Measuring persistent temporomandibular joint nociception in rats and two mice strains

    OpenAIRE

    Kramer, Phillip R.; Kerins, Carolyn A.; Schneiderman, Emet; Bellinger, Larry L.

    2010-01-01

    Temporomandibular joint (TMJ) pain has been reported to last for prolonged periods in humans. In rodents a variety of methods have been used to measure TMJ nociception, but for most of these methods the period of measurement has been minutes to a couple of hours. In addition, most measurement protocols required restraint or training of the animal. Previous studies from our laboratory demonstrated that feeding behavior, particularly meal duration, was an indicator of TMJ nociception in unrestr...

  8. Preparation of reference strains for validation and comparison of mycoplasma testing methods.

    Science.gov (United States)

    Dabrazhynetskaya, A; Volokhov, D V; David, S W; Ikonomi, P; Brewer, A; Chang, A; Chizhikov, V

    2011-10-01

    To optimize growth conditions for preparation of stocks of mycoplasma reference strains to obtain highly viable and disperse samples with low ratios of genomic copy (GC) number to that of colony forming units (CFU). These stocks are required for assessment of relative limits of detection (LOD) of alternative nucleic acid testing (NAT)-based methods in comparison to the conventional microbiological methods. A kinetics study was used to assess the changes in ratios between the numbers of GC and CFU at different growth phases of six different mycoplasma cultures Acholeplasma laidlawii, Mycoplasma gallisepticum, Mycoplasma arginini, Mycoplasma fermentans, Mycoplasma orale and Mycoplasma pneumoniae. All tested mycoplasmas demonstrated low GC/CFU ratios (≤ 10) within the log and early stationary growth phases. A significant increase in GC/CFU ratios was observed at the very late stationary and death phases, when the titre of cultures has declined. Similar patterns of GC/CFU profiles were observed for A. laidlawii and Myc. gallisepticum co-cultured with suspension of Chinese hamster ovary (CHO) cells. Tested mycoplasma strains harvested at the exponential-early stationary phases of growth demonstrated the lowest GC/CFU ratios and low propensity to form filamentous structures or aggregates under proposed conditions and can be used for the preparation of a mycoplasma reference panel for methods comparability study. This study shows that the preparation and use of viable mycoplasma reference strains with low CG/CFU ratios is the most reliable way to adequately evaluate the LOD of alternative NAT-based mycoplasma testing methods. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology. No claim to US Government works.

  9. An experimental method of measuring the quasi-static and dynamic confined behaviour of PMMA

    Directory of Open Access Journals (Sweden)

    Siad L.

    2010-06-01

    Full Text Available A testing device is presented for the experimental study of the confined behaviour of PMMA in compression under quasi-static loading or at high strain-rates. The constitutive relation of the material ring (allowing to confine the PMMA being known, transverse gauges glued on its lateral surface allow for the measurement of the lateral confining pressure. The hydrostatic pressure and the Mises stress may be computed. Quasi-static and dynamic tests performed in a strain-rate range of 1e-3/s 1e3/s are processed with the method and compared to results of unconfined compression tests. It is found that the compressive behaviour of PMMA is weakly influenced by the level of pressure and much more sensitive to strain-rate: an elastic brittle behaviour is observed at high strain-rates in unconfined or confined conditions whereas elastoplastic behaviour is noted under quasi-static loading.

  10. Study of Strains of The Earth Surface In Large Cities By Satellite Methods

    Science.gov (United States)

    Blank, L.; Genike, A.; Guseva, T.

    In recent years the problem of learning modern geodynamic processes has increased sharply both within the limits of all terrestrial globe, and in its separate regions. Terri- tories of large cities are the focus of increased attention. Severe distractions of build- ings and engineering facilities take place due to strains on the earth's surface caused by intensive development of underground space, violations and disturbance of hy- drocondition, vibrations of a geologic medium by transportation facilities, and other reasons. Such phenomena became a reason for geodesic monitoring of the largest megalopolis of Russia, the city of Moscow. A geodynamic GPS network was created. The network encompasses the city and its suburbs. At the present time, nine series of high-precision measurements were taken by GPS, mainly during spring and fall seasons. The results of this analysis indicated that the strain on the outer layer of geologic patterns could reach 1-4 centimeters in the territory of Moscow. The central part of the city presents peculiar lowering. The joint analysis of geodesic, geophysical and geologic studies al- lowed the conclusion to be drawn that level variations of groundwaters and formation of depressive whirlpools are the reasons for these deformations. Results of GPS monitoring demonstrate the necessity to continue keeping track of developing strains on the earth's surface, as well as performing additional geophysical observations.

  11. Evaluation of the VDA 238-100 Tight Radius Bending Test using Digital Image Correlation Strain Measurement

    Science.gov (United States)

    Cheong, K.; Omer, K.; Butcher, C.; George, R.; Dykeman, J.

    2017-09-01

    The VDA238-100 standard for tight radius bending (v-bending) of sheet materials has received widespread acceptance with automotive suppliers and material producers to characterize local formability. However, the test fixture and tooling in the v-bend test standard is not amenable to direct strain measurement and the operator cannot terminate the test at the onset of crack initiation as the outer bend surface is not visible. Consequently, fracture is identified using a load threshold and the bend angle estimated from an analytical formula based upon the punch displacement and tooling geometry. Bend angles are not directly transferable and must be interpreted relative to the sheet thickness and bend radius unlike a strain measurement. By obtaining an in-situ strain measurement on the surface using digital image correlation (DIC), the plane strain fracture limit can be accurately identified at the onset of cracking and remove ambiguity in translating the bend angles to practical forming operations and simulations. A novel inverted VDA test frame was developed to incorporate DIC strain measurement during the bend test and a variety of advanced high strength sheet materials were evaluated. It was observed that the VDA bend test creates a homogeneous strain state of plane strain across the width of the sample along with a proportional strain path to fracture without necking that is ideal for fracture characterization. A correlation is developed to relate the bend angle with the major strain for the materials considered and accounts for the sheet thickness and bend radius. A comparison of the bend angle obtained using the formula in the VDA standard based on the punch displacement was in very good agreement with manual measurements and an algorithm to measure the bend angle using DIC analysis was developed.

  12. Designing and comparison study of rapid detection methods of resistance to injectable drugs in clinical strains of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Fatemeh Salehi

    2012-01-01

    Full Text Available Introduction: In this study, some molecular methods were designed for rapid detection of resistance to kanamycin and amikacin.Materials and methods: Among 120 clinical isolates of mycobacterium tuberculosis, 70 strains were selected for evaluation of possible mutations. A PCR-RFLP method was designed for detection of wild type (using enzyme ajii and mutant from (BstFNI enzyme of the isolates. Furthermore, allele specific method (as PCR was designed for detection mutations in codons 1401 and 1402 gene rrs. Some selected isolates were sequenced.Results: In PCR-RFLP method, among the 70 strains examined by BstFNI enzyme, could detect 17 mutant strains among 24 phenotypicaly resistant and 44 non-mutant isolates from 46 susceptible isolates. The sensitivity of this method was %70.83 and specificity was %95.65 on the other hand, 12 mutant from 20 resistant strains and 29 non-mutant strains from 32 susceptible strains were detected by AjiI enzyme. The sensitivity and specificity of this method was 60 and %90.62, respectively. In MAS PCR, 3 mutants from 6 resistant strains and 12 non-mutants from 17 resistant strains were detected. The sensitivity of this method was 50 and specificity was 70.58. Results of sequencing method confirmed the results of molecular methods.Discussion and conclusion: PCR-RFLP method by BstFNI enzyme was the best method for rapid detection of Mycobacterium tuberculosis resistant to second-line injectable drugs and was recommended for routine use.

  13. Standard-Setting Methods as Measurement Processes

    Science.gov (United States)

    Nichols, Paul; Twing, Jon; Mueller, Canda D.; O'Malley, Kimberly

    2010-01-01

    Some writers in the measurement literature have been skeptical of the meaningfulness of achievement standards and described the standard-setting process as blatantly arbitrary. We argue that standard setting is more appropriately conceived of as a measurement process similar to student assessment. The construct being measured is the panelists'…

  14. Testing the association between psychosocial job strain and adverse birth outcomes - design and methods

    OpenAIRE

    Thulstrup Ane M; Obel Carsten; Hannerz Harald; Larsen Ann D; Bonde Jens P; Hougaard Karin S

    2011-01-01

    Abstract Background A number of studies have examined the effects of prenatal exposure to stress on birth outcomes but few have specifically focused on psychosocial job strain. In the present protocol, we aim to examine if work characterised by high demands and low control, during pregnancy, is associated with the risk of giving birth to a child born preterm or small for gestational age. Methods and design We will use the Danish National Birth Cohort where 100.000 children are included at bas...

  15. Riemann method for the plane strain of a homogeneous porous plastic material

    Science.gov (United States)

    Aleksandrov, S. E.; Lyamina, E. A.

    2015-03-01

    The system of static equations describing the stress state in a homogeneous porous plastic material obeying the pyramidal yield criterion is studied under plane strain conditions. It is shown that determining the curvature radii of the characteristics amounts to solving the telegraph equation. Thus, it is expedient to construct the net of characteristics by the Riemann method, which is widely used to solve boundary value problems in the classical theory of plasticity of incompressible materials. These solutions can directly be generalized to the considered porous material model.

  16. Detection of virulence genes in Uropathogenic E. coli (UPEC strains by Multiplex-PCR method

    Directory of Open Access Journals (Sweden)

    Javad Mohammadi

    2017-06-01

    Full Text Available Background & Objectives: Urinary tract infection caused by E. coli is one of the most common illnesses in all age groups worldwide. Presence of virulence genes is a key factor in bacterial pathogens in uroepithelial cells. The present study was performed to detect iha, iroN, ompT genes in the Uropathogenic E.coli isolates from clinical samples using multiplex-PCR method in Kerman. Materials & Methods: In this descriptive cross-sectional study, 200 samples of patients with urinary tract infections in Kerman hospitals were collected. After biochemical and microbiological tests, all strains were tested with regard to the presence of iha, iroN, and ompT genes using multiplex-PCR method. Results: The results of Multiplex-PCR showed that all specimens had one, two, or three virulence genes simultaneously. The highest and lowest frequency distribution of genes was related to iha (56.7% and iroN (20% respectively. Conclusion: According to the prevalence of urinary tract infection in the community and distribution of resistance and virulence factors, the fast and accurate detection of the strains and virulence genes is necessary

  17. wzi Gene Sequencing, a Rapid Method for Determination of Capsular Type for Klebsiella Strains

    Science.gov (United States)

    Passet, Virginie; Haugaard, Anita Björk; Babosan, Anamaria; Kassis-Chikhani, Najiby; Struve, Carsten; Decré, Dominique

    2013-01-01

    Pathogens of the genus Klebsiella have been classified into distinct capsular (K) types for nearly a century. K typing of Klebsiella species still has important applications in epidemiology and clinical microbiology, but the serological method has strong practical limitations. Our objective was to evaluate the sequencing of wzi, a gene conserved in all capsular types of Klebsiella pneumoniae that codes for an outer membrane protein involved in capsule attachment to the cell surface, as a simple and rapid method for the prediction of K type. The sequencing of a 447-nucleotide region of wzi distinguished the K-type reference strains with only nine exceptions. A reference wzi sequence database was created by the inclusion of multiple strains representing K types associated with high virulence and multidrug resistance. A collection of 119 prospective clinical isolates of K. pneumoniae were then analyzed in parallel by wzi sequencing and classical K typing. Whereas K typing achieved typeability for 81% and discrimination for 94.4% of the isolates, these figures were 98.1% and 98.3%, respectively, for wzi sequencing. The prediction of K type once the wzi allele was known was 94%. wzi sequencing is a rapid and simple method for the determination of the K types of most K. pneumoniae clinical isolates. PMID:24088853

  18. Rethinking traditional methods for measuring intellectual capital.

    Science.gov (United States)

    Corso, John A

    2007-01-01

    Historically, approaches to measuring intellectual capital have included both conventional accounting-based measures, such as variants of the market-to-book ratio, and more progressive measures, such as the measurement of intangible assets found in approaches such as the Balanced Scorecard and Human Resource Accounting. As greater emphasis is placed on intellectual capital and its various aspects in the continually growing service and knowledge economy, the use of assessment instruments to inventory the alignment, balance, and variety of intellectual capacities and metrics that assess the effectiveness of succession planning may represent new directions in which organizations can head in the measurement of this important construct.

  19. Penicillium expansum Link strain for a biometallurgical method to recover REEs from WEEE.

    Science.gov (United States)

    Di Piazza, Simone; Cecchi, Grazia; Cardinale, Anna Maria; Carbone, Cristina; Mariotti, Mauro Giorgio; Giovine, Marco; Zotti, Mirca

    2017-02-01

    Due to the wide range of applications in high-tech solutions, Rare Earth Elements (REEs) have become object of great interest. In the last years several studies regarding technologies for REE extraction from secondary resources have been carried out. In particular biotechnologies, which use tolerant and accumulator microorganisms to recover and recycle precious metals, are replacing traditional methods. This paper describes an original biometallurgical method to recover REEs from waste electrical and electronic equipment (WEEE) by using a strain of Penicillium expansum Link isolated from an ecotoxic metal contaminated site. The resulting product is a high concentrated solution of Lanthanum (up to 390ppm) and Terbium (up to 1520ppm) obtained from WEEE. Under this perspective, the proposed protocol can be considered a method of recycling exploiting biometallurgy. Finally, the process is the subject of the Italian patent application n. 102015000041404 submitted by the University of Genoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. AN EVALUATION OF DIFFERENT METHODS FOR MEASURING LATERAL TIBIAL SLOPE USING MAGNETIC RESONANCE IMAGING

    Science.gov (United States)

    Lipps, David B.; Wilson, Annie M.; Ashton-Miller, James A.; Wojtys, Edward M.

    2014-01-01

    Background Since lateral tibial slope (LTS) affects the amount of anterior tibial translation and anterior cruciate ligament (ACL) strain during a dynamic maneuver, accurate measurements of lateral tibial slope may be beneficial in screening individuals at a higher risk for ACL injury. Methods for measuring LTS on magnetic resonance imaging scans of the proximal tibia include the midpoint and circle methods. There are no current studies that have validated different LTS measurements methods using a proximal tibia magnetic resonance imaging scan. Hypothesis We tested the null hypotheses that (1) LTS measurements were independent of the length of tibia imaged using the midpoint method, and (2) LTS measurements calculated from different methods (‘midpoint’, ‘circle’, and ‘full tibia’) would not differ significantly. Study Design Descriptive Laboratory Study Methods Blinded observers measured LTS from 3-Tesla 3D magnetic resonance images from 40 size-matched donors according to one circle method and three midpoint methods. Outcomes were then compared to the full tibial anatomical axis (line connecting the center of two circles fit within the proximal and distal tibia) in 11 donors. Bonferroni-correct paired t-tests (p methods. Results The circle and full tibia methods had the lowest inter- and intra-observer variability, while the midpoint method with 10 cm tibia was the most variable. The midpoint method with 10cm and 15 cm proximal tibia closely resembled LTS measurements with the full tibia anatomic axis. The circle method, while repeatable, provided smaller numerical LTS measurements than the full tibia and midpoint methods. Conclusions While LTS measurements using the midpoint method can resemble measurements made using the full tibia, the reliability of the midpoint method depends on the length of proximal tibia used. The circle method may be the preferred method for future studies since it was the most repeatable method and is independent of proximal

  1. A strain gauge

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction. The reinforce......The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....

  2. A new manometric method for measuring carbon dioxide production ...

    African Journals Online (AJOL)

    This paper describe a technique for carbon dioxide (CO2) measurement based on the displacement of acidifying liquid in burette at constant pressure. It was adapted to allow the growth of ... The CO2 production rate was higher with the parental strain (6.5 mM/ h) than with the variants. The amount of CO2 produced was ...

  3. Evaluation of different methods for measuring lateral tibial slope using magnetic resonance imaging.

    Science.gov (United States)

    Lipps, David B; Wilson, Annie M; Ashton-Miller, James A; Wojtys, Edward M

    2012-12-01

    Since lateral tibial slope (LTS) affects the amount of anterior tibial translation and anterior cruciate ligament (ACL) strain during a dynamic maneuver, accurate measurements of LTS may be beneficial in screening people at a higher risk for ACL injury. Methods for measuring LTS on magnetic resonance imaging (MRI) scans of the proximal tibia include the midpoint and circle methods. No current studies have validated different LTS measurement methods using a proximal tibia MRI scan. We tested the null hypotheses that (1) LTS measurements were independent of the length of tibia imaged using the midpoint method, and (2) LTS measurements calculated from different methods (midpoint, circle, and full tibia) would not differ significantly. Controlled laboratory study. Blinded observers measured LTS from 3-tesla, 3-dimensional MRIs from 40 size-matched donors according to 1 circle method and 3 midpoint methods. Outcomes were then compared with the full-tibial anatomic axis (line connecting the center of 2 circles fit within the proximal and distal tibia) in 11 donors. Bonferroni-corrected paired t tests (significance, P methods. The circle and full-tibia methods had the lowest interobserver and intraobserver variability, whereas the midpoint method with 10-cm tibia was the most variable. The midpoint method with 10-cm and 15-cm proximal tibia closely resembled LTS measurements with the full-tibial anatomic axis. The circle method, although repeatable, provided smaller numerical LTS measurements than the full-tibia and midpoint methods. Although LTS measurements using the midpoint method can resemble measurements made using the full tibia, the reliability of the midpoint method depends on the length of proximal tibia used. The circle method may be the preferred method for future studies since it was the most repeatable method and is independent of proximal tibial length. LTS measurements vary depending on the method used.

  4. Measuring phenotypic variability and plasticity in influenza A virus using multispectral viral strains

    Science.gov (United States)

    Vahey, Michael

    Despite relevance to human health, the mechanisms of enveloped virus assembly remain largely mysterious. This is particularly true of influenza A virus (IAV), which (unlike viral capsids with stereotyped shape and composition) forms heterogeneous particles whose assembly cannot be described in terms of equilibrium thermodynamics. Although the ability to assemble into particles with diverse size and composition could have important implications for infectivity, understanding how virion-to-virion differences arise and how they ultimately influence virus replication has proven challenging due to the lack of available tools for studying the assembly process. To address this challenge and establish a dynamic picture of how IAV assembles, we have developed virus strains that harbor small, non-disruptive fluorescent tags on each of the virus's five major structural proteins. Using these multispectral strains, we are able to quantify the protein composition and dynamics of virions as they assemble in live infected cells - measurements that have been previously inaccessible, and which reveal subpopulations of virus that favor either the binding or destruction of host receptors. The occupancy of these different subpopulations is malleable, shifting in response to environmental stimuli, including antiviral drugs that block receptor-destruction. In complex environments like the human respiratory tract, this phenotypic diversity could act as an evolutionary hedge. We acknowledge the Burroughs Wellcome Fund and NIH NIGMS for supporting this work.

  5. Aerodynamic measurements and thermal tests of a strain-gage balance in a cryogenic wind tunnel

    Science.gov (United States)

    Boyden, Richmond P.; Ferris, Alice T.; Johnson, William G., Jr.; Dress, David A.; Hill, Acquilla S.

    1987-04-01

    An internal strain-gage balance designed and constructed in Europe for use in cryogenic wind tunnels has been tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. Part of the evaluation was made at equilibrium balance temperatures and it consisted of comparing the data taken at a tunnel stagnation temperature of 300 K with the data taken at 200 K and 110 K while maintaining either the Reynolds number or the stagnation pressure. A sharp-leading-edge delta-wing model was used to provide the aerodynamic loading for these tests. Results obtained with the balance during the force tests were found to be accurate and repeatable both with and without the use of a convection shield on the balance. An additional part of this investigation involved obtaining data on the transient temperature response of the balance during both normal and rapid changes in the tunnel stagnation temperature. The variation of the temperature with time was measured at three locations on the balance near the physical locations of the strain gages. The use of a convection shield significantly increased the time required for the balance to stabilize at a new temperature during the temperature response tests.

  6. A thin-film aluminum strain gauges array in a flexible gastrointestinal catheter for pressure measurements

    Science.gov (United States)

    Sousa, P. J.; Silva, L. R.; Pinto, V. C.; Goncalves, L. M.; Minas, G.

    2016-08-01

    This paper presents an innovative approach to measure the pressure patterns associated with the motility and peristaltic movements in the upper gastrointestinal tract. This approach is based on inexpensive and easy to fabricate thin-film aluminum strain gauge pressure sensors using a flexible polyimide film (Kapton) as substrate and SU-8 structural support. These sensors are fabricated using well-established and standard photolithographic and wet etching techniques. Each sensor has a 3.4 mm2 area, allowing a fabrication process with a high level of sensors integration (four sensors in 1.7 cm), which is suitable for placing them in a single catheter. These strain gauges bend when pressure is applied and, consequently, their electrical resistance is changed. The fabricated sensors feature an almost linear response (R 2  =  0.9945) and an overall sensitivity of 6.4 mV mmHg-1. Their readout and control electronics were developed in a flexible Kapton ribbon cable and, together with the sensors, bonded and wrapped around a catheter-like structure. The sequential acquisition of the different signals is carried by a microcontroller with a 10 bit ADC at a sample rate of 250 Hz per-1 sensor. The signals are presented in a user friendly interface developed using the integrated development environment software, QtCreator IDE, for better visualization by physicians.

  7. Field Strain Measurement on the Fiber-Epoxy Scale in CFRPs

    KAUST Repository

    Tao, Ran

    2015-06-08

    Laminated composites are materials with complex architecture made of continuous fibers (usually glass or carbon) embedded within a polymeric resin. The properties of the raw materials can vary from one point to another due to different local processing conditions or complex geometrical features for example. A first step towards the identification of these spatially varying material parameters is to image with precision the displacement fields in this complex microstructure when subjected to mechanical loading. Secondary electron images obtained by scanning electron microscopy (SEM) and then numerically deformed are post-processed by either local subset-based digital image correlation (DIC) or global finite-element based DIC to measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. It is shown that when global DIC is applied with a conformal mesh, it can capture more accurate local variations in the strain fields as it takes into account the underlying microstructure. In comparison to subset DIC, global DIC is better suited for capturing gradients across the fiber-matrix interfaces.

  8. Aerodynamic measurements and thermal tests of a strain-gage balance in a cryogenic wind tunnel

    Science.gov (United States)

    Boyden, Richmond P.; Ferris, Alice T.; Johnson, William G., Jr.; Dress, David A.; Hill, Acquilla S.

    1987-01-01

    An internal strain-gage balance designed and constructed in Europe for use in cryogenic wind tunnels has been tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. Part of the evaluation was made at equilibrium balance temperatures and it consisted of comparing the data taken at a tunnel stagnation temperature of 300 K with the data taken at 200 K and 110 K while maintaining either the Reynolds number or the stagnation pressure. A sharp-leading-edge delta-wing model was used to provide the aerodynamic loading for these tests. Results obtained with the balance during the force tests were found to be accurate and repeatable both with and without the use of a convection shield on the balance. An additional part of this investigation involved obtaining data on the transient temperature response of the balance during both normal and rapid changes in the tunnel stagnation temperature. The variation of the temperature with time was measured at three locations on the balance near the physical locations of the strain gages. The use of a convection shield significantly increased the time required for the balance to stabilize at a new temperature during the temperature response tests.

  9. Measurements of residual strains in ceramic-elastomer composites with diffuse scattering of polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Zajac, Wojciech [H. Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland)], E-mail: Wojciech.Zajac@ifj.edu.pl; Boczkowska, Anna; Babski, Kamil; Kurzydlowski, Krzysztof J. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland); Deen, Pascale P. [Institute Laue-Langevin, 6 rue Jules Horowitz, 38000 Grenoble (France)

    2008-12-15

    An experiment of diffuse scattering (also referred to as wide-angle neutron scattering) of polarized neutrons with polarization analysis was performed in order to detect residual strains in ceramic-elastomer composites of porous SiO{sub 2} and poly(urea-urethane) elastomers. Two ceramics, with pore sizes of 20 and 70 {mu}m, and two elastomers, with hard/soft segments molar ratios of H/S = 0.25 and 1.5, were selected for composite fabrication. The use of polarization analysis made it possible to detect and study very weak coherent scattering peaks from the elastomer synthesized inside SiO{sub 2} ceramics. Residual strains were detected and measured based on interatomic distances in the SiO{sub 2}+ H/S = 1.5 composite but not in the SiO{sub 2}+ H/S = 0.25. The reason is sought in soft domains being ordered in the H/S = 0.25 elastomer as opposed to the H/S = 1.5 one.

  10. Full-field displacement and strain measurement of small complex bony structures with digital speckle pattern interferometry and shearography

    Science.gov (United States)

    Soons, Joris; Dirckx, Joris J. J.

    2010-09-01

    We have developed a simple digital speckle pattern interferometry (DSPI) and shearography setup to measure the displacement and the corresponding strains of small complex bony structures. We choose both optical techniques because we want to obtain very small deformations (+/- 20 μm) of small objects (+/- 1cm). Furthermore full field and in situ measurements are preferred. We first use a Michelson DSPI arrangement with phase shifting. In this way we can obtain the out-of-plane displacements precisely. Second, shearography is introduced to measure the derivative of the out-ofplane displacement. In this way some intrinsic disadvantages of DSPI can be overcome. We have developed these setups to measure the out-of-plane deformations of (small) bird beaks when realistic external forces are applied. In this way, we have a full field validation measurement to which we can compare the outcome of realistic finite element models. The aim is to determine whether the shape, and not only the size, of the bird beaks are optimized to deal with the biting forces that a species encounters. This quantitative analysis will help biologists to investigate if beak morphology is adapted to feeding habits. Applying the method to the famous evolution model of the Darwin's finches will provide scientific proof of functional evolution. In this paper we will present both the DSPI and shearography setup, a comparison of the performance of both techniques on a simple deflection of a cantilever beam and the first results obtained on loaded bird beaks.

  11. C 1 natural element method for strain gradient linear elasticity and its application to microstructures

    Science.gov (United States)

    Nie, Zhi-Feng; Zhou, Shen-Jie; Han, Ru-Jun; Xiao, Lin-Jing; Wang, Kai

    2012-02-01

    C 1 natural element method ( C 1 NEM) is applied to strain gradient linear elasticity, and size effects on microstructures are analyzed. The shape functions in C 1 NEM are built upon the natural neighbor interpolation (NNI), with interpolation realized to nodal function and nodal gradient values, so that the essential boundary conditions (EBCs) can be imposed directly in a Galerkin scheme for partial differential equations (PDEs). In the present paper, C 1 NEM for strain gradient linear elasticity is constructed, and several typical examples which have analytical solutions are presented to illustrate the effectiveness of the constructed method. In its application to microstructures, the size effects of bending stiffness and stress concentration factor (SCF) are studied for microspeciem and microgripper, respectively. It is observed that the size effects become rather strong when the width of spring for microgripper, the radius of circular perforation and the long axis of elliptical perforation for microspeciem come close to the material characteristic length scales. For the U-shaped notch, the size effects decline obviously with increasing notch radius, and decline mildly with increasing length of notch.

  12. Computer assisted strain-gauge plethysmography is a practical method of excluding deep venous thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, A.J.P.; Chakraverty, S.; Wright, J

    2001-01-01

    AIM: To evaluate a computed strain-gauge plethysmograph (CSGP) as a screening tool to exclude above knee deep venous thrombosis (DVT). METHODS: The first phase took place in the Radiology department. One hundred and forty-nine patients had both Doppler ultrasound and CSGP performed. Discordant results were resolved by venography where possible. The second phase took place in an acute medical admissions ward using a modified protocol. A further 173 patients had both studies performed. The results were collated and analysed. RESULTS: Phase 1. The predictive value of a negative CSGP study was 98%. There were two false-negative CSGP results (false-negative rate 5%), including one equivocal CSGP study which had deep venous thrombosis on ultrasound examination. Two patients thought to have thrombus on ultrasound proved not to have acute thrombus on venography. Phase 2. The negative predictive value of CSGP using a modified protocol was 97%. There were two definite and one possible false-negative studies (false-negative rate 4-7%). CONCLUSION: Computer strain-gauge plethysmograph can provide a simple, cheap and effective method of excluding lower limb DVT. However, its use should be rigorously assessed in each hospital in which it is used. Goddard, A.J.P., Chakraverty, S. and Wright, J. (2001)

  13. Evaluation of three methods for DNA fingerprinting of Corynebacterium pseudotuberculosis strains isolated from goats in Poland.

    Science.gov (United States)

    Stefańska, Ilona; Rzewuska, Magdalena; Binek, Marian

    2008-01-01

    Phenotypic approaches based on metabolic and biological characteristics of Corynebacterium pseudotuberculosis have been limited due to insufficient discrimination between closely related isolates. In this paper we present performance and convenience of three molecular typing methods: BOX-PCR, random amplification of polymorphic DNA (RAPD) and amplification of DNA fragments surrounding rare restriction site (ADSRRS-fingerprinting) in genome analysis of these bacteria. Among examined 61 strains there were distinguished four, eight and 10 different genotypes by BOX-PCR, RAPD and ADSRRS-fingerprinting, respectively. The value of discrimination index was the lowest for BOX-PCR (D = 0.265), much bigger for RAPD (D = 0.539) and the highest for ADSRRS-fingerprinting (D = 0.604). The good discriminatory ability and reproducibility of RAPD and ADSRRS-fingerprinting indicates that those techniques may be particularly applied for epidemiological studies of C. pseudotuberculosis isolates. We found that ADSRRS-fingerprinting is a rapid method offering good discrimination power, excellent reproducibility and may be applied for epidemiological studies of intraspecific genetic relatedness of C. pseudotuberculosis strains.

  14. Experimental Method of Temperature and Strain Discrimination in Polymer Composite Material by Embedded Fiber-Optic Sensors Based on Femtosecond-Inscribed FBGs

    Directory of Open Access Journals (Sweden)

    Victor V. Shishkin

    2016-01-01

    Full Text Available Experimental method of temperature and strain discrimination with fiber Bragg gratings (FBGs sensors embedded in carbon fiber-reinforced plastic is proposed. The method is based on two-fiber technique, when two FBGs inscribed in different fibers with different sensitivities to strain and/or temperature are placed close to each other and act as a single sensing element. The nonlinear polynomial approximation of Bragg wavelength shift as a function of temperature and strain is presented for this method. The FBGs were inscribed with femtosecond laser by point-by-point inscription technique through polymer cladding of the fiber. The comparison of linear and nonlinear approximation accuracies for array of embedded sensors is performed. It is shown that the use of nonlinear approximation gives 1.5–2 times better accuracy. The obtained accuracies of temperature and strain measurements are 2.6–3.8°C and 50–83 με in temperature and strain range of 30–120°C and 0–400 με, respectively.

  15. Dynamic strain distribution measurement and crack detection of an adhesive-bonded single-lap joint under cyclic loading using embedded FBG

    Science.gov (United States)

    Ning, Xiaoguang; Murayama, Hideaki; Kageyama, Kazuro; Wada, Daichi; Kanai, Makoto; Ohsawa, Isamu; Igawa, Hirotaka

    2014-10-01

    In this study, the dynamic strain distribution measurement of an adhesive-bonded single-lap joint was carried out in a cyclic load test using a fiber Bragg grating (FBG) sensor embedded into the adhesive/adherend interface along the overlap length direction. Unidirectional carbon fiber reinforced plastic (CFRP) substrates were bonded by epoxy resin to form the joint, and the FBG sensor was embedded into the surface of one substrate during its curing. The measurement was carried out with a sampling rate of 5 Hz by the sensing system, based on the optical frequency domain reflectometry (OFDR) throughout the test. A finite element analysis (FEA) was performed for the measurement evaluation using a three-dimensional model, which included the embedded FBG sensor. The crack detection method, based on the longitudinal strain distribution measurement, was introduced and performed to estimate the cracks that occurred at the adhesive/adherend interface in the test.

  16. An exponential expansion method and its application to the strain wave equation in microstructured solids

    Directory of Open Access Journals (Sweden)

    M.G. Hafez

    2015-06-01

    Full Text Available The modeling of wave propagation in microstructured materials should be able to account for various scales of microstructure. Based on the proposed new exponential expansion method, we obtained the multiple explicit and exact traveling wave solutions of the strain wave equation for describing different types of wave propagation in microstructured solids. The solutions obtained in this paper include the solitary wave solutions of topological kink, singular kink, non-topological bell type solutions, solitons, compacton, cuspon, periodic solutions, and solitary wave solutions of rational functions. It is shown that the new exponential method, with the help of symbolic computation, provides an effective and straightforward mathematical tool for solving nonlinear evolution equations arising in mathematical physics and engineering.

  17. Transient Response of an Impacted Beam and Indirect Impact Force Identification Using Strain Measurements

    Directory of Open Access Journals (Sweden)

    Hyungsoon Park

    1994-01-01

    Full Text Available The impulse response functions (force-strain relations for Euler–Bernoulli and Timoshenko beams are considered. The response of a beam to a transverse impact force, including reflection at the boundary, is obtained with the convolution approach using the impulse response function obtained by a Laplace transform and a numerical scheme. Using this relation, the impact force history is determined in the time domain and results are compared with those of Hertz's contact law. In the case of an arbitrary impact, the location of the impact force and the time history of the impact force can be found. In order to verify the proposed algorithm, measurements were taken using an impact hammer and a drop test of a steel ball. These results are compared with simulated ones.

  18. Screening of Bacillus coagulans strains in lignin supplemented minimal medium with high throughput turbidity measurements

    Directory of Open Access Journals (Sweden)

    Robert Glaser

    2014-12-01

    Full Text Available The aim of this study was to extend the options for screening and characterization of microorganism through kinetic growth parameters. In order to obtain data, automated turbidimetric measurements were accomplished to observe the response of strains of Bacillus coagulans. For the characterization, it was decided to examine the influence of varying concentrations of lignin with respect to bacterial growth. Different mathematical models are used for comparison: logistic, Gompertz, Baranyi and Richards and Stannard. The growth response was characterized by parameters like maximum growth rate, maximum population, and the lag time. In this short analysis we present a mathematical approach towards a comparison of different microorganisms. Furthermore, it can be demonstrated that lignin in low concentrations can have a positive influence on the growth of B. coagulans.

  19. Arterial endothelial function measurement method and apparatus

    Science.gov (United States)

    Maltz, Jonathan S; Budinger, Thomas F

    2014-03-04

    A "relaxoscope" (100) detects the degree of arterial endothelial function. Impairment of arterial endothelial function is an early event in atherosclerosis and correlates with the major risk factors for cardiovascular disease. An artery (115), such as the brachial artery (BA) is measured for diameter before and after several minutes of either vasoconstriction or vasorelaxation. The change in arterial diameter is a measure of flow-mediated vasomodification (FMVM). The relaxoscope induces an artificial pulse (128) at a superficial radial artery (115) via a linear actuator (120). An ultrasonic Doppler stethoscope (130) detects this pulse 10-20 cm proximal to the point of pulse induction (125). The delay between pulse application and detection provides the pulse transit time (PTT). By measuring PTT before (160) and after arterial diameter change (170), FMVM may be measured based on the changes in PTT caused by changes in vessel caliber, smooth muscle tone and wall thickness.

  20. Trichophyton rubrum and Trichophyton interdigitale: genetic diversity among species and strains by random amplified polymorphic DNA method.

    Science.gov (United States)

    Santos, Daniel Assis; Araújo, Roberta Amália Carvalho; Hamdan, Júnia Soares; Cisalpino, Patrícia Silva

    2010-04-01

    Onychomycosis is a common condition that represents up to 50% of all nail problems and 30% of all cases of dermatophytoses. Trichophyton rubrum and Trichophyton interdigitale are the most common agents involved in this condition. In cases of recurrent post-treatment onychomycosis, strain fingerprinting could reveal whether the original isolate is responsible, a new strain has been acquired or if multiple strains are involved. The aim of this study was to evaluate the efficacy of the RAPD method for species and strain differentiation of T. rubrum and T. interdigitale obtained from patients with subungeal distal-lateral onychomycosis. A set of 86 strains of onychomycosis causative dermatophytes were submitted to species differentiation and strain typing by RAPD method with two previously described primers. Both primers proved capable of strain differentiation when tested for each species. Nineteen molecular profiles were configured for T. rubrum isolates with primers 1 and 6. For T. mentagrophytes, ten molecular profiles were configured with primer 1 and twenty-one with primer 6. We found that T. interdigitale and T. rubrum species were grouped in different clusters when both primers were analyzed together. This study shows that these primers are valuable tools for strain differentiation with T. rubrum and T. intedigitale.

  1. Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement

    Science.gov (United States)

    Park, Jinwoo; Kwon, Yong Seok; Ko, Myeong Ock; Jeon, Min Yong

    2017-11-01

    We demonstrate a 1550 nm band resonance Fourier-domain mode-locked (FDML) fiber laser with fiber Bragg grating (FBG) array. Using the FDML fiber laser, we successfully demonstrate real-time monitoring of dynamic FBG strain sensor interrogation for structural health monitoring. The resonance FDML fiber laser consists of six multiplexed FBGs, which are arranged in series with delay fiber lengths. It is operated by driving the fiber Fabry-Perot tunable filter (FFP-TF) with a sinusoidal waveform at a frequency corresponding to the round-trip time of the laser cavity. Each FBG forms a laser cavity independently in the FDML fiber laser because the light travels different length for each FBG. The very closely positioned two FBGs in a pair are operated simultaneously with a frequency in the FDML fiber laser. The spatial positions of the sensing pair can be distinguished from the variation of the applied frequency to the FFP-TF. One of the FBGs in the pair is used as a reference signal and the other one is fixed on the piezoelectric transducer stack to apply the dynamic strain. We successfully achieve real-time measurement of the abrupt change of the frequencies applied to the FBG without any signal processing delay. The real-time monitoring system is displayed simultaneously on the monitor for the variation of the two peaks, the modulation interval of the two peaks, and their fast Fourier transform spectrum. The frequency resolution of the dynamic variation could reach up to 0.5 Hz for 2 s integration time. It depends on the integration time to measure the dynamic variation. We believe that the real-time monitoring system will have a potential application for structural health monitoring.

  2. Method and apparatus for measuring electromagnetic radiation

    Science.gov (United States)

    Been, J. F. (Inventor)

    1973-01-01

    An apparatus and method are described in which the capacitance of a semiconductor junction subjected to an electromagnetic radiation field is utilized to indicate the intensity or strength of the radiation.

  3. Methods to measure stability of dental implants

    Directory of Open Access Journals (Sweden)

    Shruti Digholkar

    2014-01-01

    Full Text Available Dental implant treatment is an excellent option for prosthetic restoration that is associated with high success rates. Implant stability is essential for a good outcome. The clinical assessment of osseointegration is based on mechanical stability rather than histological criteria, considering primary stability (absence of mobility in bone bed after implant insertion and secondary stability (bone formation and remodeling at implant-bone interface. However, due to the invasive nature of the histological methods various other methods have been proposed: Radiographs, the surgeon′s perception, Insertion torque (cutting torque analysis, seating torque, reverse torque testing, percussion testing, impact hammer method, pulsed oscillation waveform, implant mobility checker, Periotest, resonance frequency analysis. This review focuses on the methods currently available for the evaluation of implant stability.

  4. In vivo measurement of volumetric strain in the human brain induced by arterial pulsation and harmonic waves.

    Science.gov (United States)

    Hirsch, Sebastian; Klatt, Dieter; Freimann, Florian; Scheel, Michael; Braun, Jürgen; Sack, Ingolf

    2013-09-01

    Motion-sensitive phase contrast magnetic resonance imaging and magnetic resonance elastography are applied for the measurement of volumetric strain and tissue compressibility in human brain. Volumetric strain calculated by the divergence operator using a biphasic effective-medium model is related to dilatation and compression of fluid spaces during harmonic stimulation of the head or during intracranial passage of the arterial pulse wave. In six volunteers, phase contrast magnetic resonance imaging showed that the central cerebrum expands at arterial pulse wave to strain values of (2.8 ± 1.9)·10(-4). The evolution of volumetric strain agrees well with the magnitude of the harmonic divergence measured in eight volunteers by magnetic resonance elastography using external activation of 25 Hz vibration frequency. Intracranial volumetric strain was proven sensitive to venous pressure altered by abdominal muscle contraction. In eight volunteers, an increase in volumetric strain due to abdominal muscle contraction of approximately 45% was observed (P = 0.0001). The corresponding compression modulus in the range of 9.5-13.5 kPa demonstrated that the compressibility of brain tissue at 25 Hz stimulation is much higher than that of water. This pilot study provides the background for compression-sensitive magnetic resonance imaging with or without external head stimulation. Volumetric strain may be sensitive to fluid flow abnormalities or pressure imbalances between vasculature and parenchyma as seen in hydrocephalus. Copyright © 2012 Wiley Periodicals, Inc.

  5. Measurement of minute local strain in semiconductor materials and electronic devices by using a highly parallel X-ray microbeam

    CERN Document Server

    Matsui, J; Yokoyama, K; Takeda, S; Katou, M; Kurihara, H; Watanabe, K; Kagoshima, Y; Kimura, S

    2003-01-01

    We have developed an X-ray microbeam with a small angular divergence by adopting X-ray optics with successive use of asymmetric Bragg reflection from silicon crystals for the both polarizations of the synchrotron X-rays. The microbeam actually obtained is several microns in size and possesses an angular divergence of less than 2 arcsec which enables us to measure the strain of 10 sup - sup 5 -10 sup - sup 6. By scanning the sample against the microbeam, distribution of the minute local strain in various regions of semiconductor crystals for electronic devices, e.g., the strain around the SiO sub 2 /Si film edge in silicon devices, the strain in an InGaAsP/InP stripe laser were measured.

  6. WE-EF-210-06: Ultrasound 2D Strain Measurement of Radiation-Induced Toxicity: Phantom and Ex Vivo Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T; Torres, M; Rossi, P; Jani, A; Curran, W; Yang, X [Emory Univ, Atlanta, GA (United States)

    2015-06-15

    Purpose: Radiation-induced fibrosis is a common long-term complication affecting many patients following cancer radiotherapy. Standard clinical assessment of subcutaneous fibrosis is subjective and often limited to visual inspection and palpation. Ultrasound strain imaging describes the compressibility (elasticity) of biological tissues. This study’s purpose is to develop a quantitative ultrasound strain imaging that can consistently and accurately characterize radiation-induce fibrosis. Methods: In this study, we propose a 2D strain imaging method based on deformable image registration. A combined affine and B-spline transformation model is used to calculate the displacement of tissue between pre-stress and post-stress B-mode image sequences. The 2D displacement is estimated through a hybrid image similarity measure metric, which is a combination of the normalized mutual information (NMI) and normalized sum-of-squared-differences (NSSD). And 2D strain is obtained from the gradient of the local displacement. We conducted phantom experiments under various compressions and compared the performance of our proposed method with the standard cross-correlation (CC)- based method using the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. In addition, we conducted ex-vivo beef muscle experiment to further validate the proposed method. Results: For phantom study, the SNR and CNS values of the proposed method were significantly higher than those calculated from the CC-based method under different strains. The SNR and CNR increased by a factor of 1.9 and 2.7 comparing to the CC-based method. For the ex-vivo experiment, the CC-based method failed to work due to large deformation (6.7%), while our proposed method could accurately detect the stiffness change. Conclusion: We have developed a 2D strain imaging technique based on the deformable image registration, validated its accuracy and feasibility with phantom and ex-vivo data. This 2D ultrasound strain imaging

  7. Stress-strain relationship of PDMS micropillar for force measurement application

    Science.gov (United States)

    Johari, Shazlina; Shyan, L. Y.

    2017-11-01

    There is an increasing interest to use polydimethylsiloxane (PDMS) based materials as bio-transducers for force measurements in the order of micro to nano Newton. The accuracy of these devices relies on appropriate material characterization of PDMS and modelling to convert the micropillar deformations into the corresponding forces. Previously, we have reported on fabricated PDMS micropillar that acts as a cylindrical cantilever and was experimentally used to measure the force of the nematode C. elegans. In this research, similar PDMS micropillars are designed and simulated using ANSYS software. The simulation involves investigating two main factors that is expected to affect the force measurement performance; pillar height and diameter. Results show that the deformation increases when pillar height is increased and the deformation is inversely proportional to the pillar diameter. The maximum deformation obtained is 713 um with pillar diameter of 20 um and pillar height of 100 um. Results of stress and strain show similar pattern, where their values decreases as pillar diameter and height is increased. The simulated results are also compared with the calculated displacement. The trend for both calculated and simulated values are similar with 13% average difference.

  8. A keyboard control method for loop measurement

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Z.W. [Universita Degli Studi di Roma La Sapienza (Italy)

    1994-12-31

    This paper describes a keyboard control mode based on the DEC VAX computer. The VAX Keyboard code can be found under running of a program was developed. During the loop measurement or multitask operation, it ables to be distinguished from a keyboard code to stop current operation or transfer to another operation while previous information can be held. The combining of this mode, the author successfully used one key control loop measurement for test Dual Input Memory module which is used in a rearrange Energy Trigger system for LEP 8 Bunch operation.

  9. Space Suit Joint Torque Measurement Method Validation

    Science.gov (United States)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  10. Advances in structural damage assessment using strain measurements and invariant shape descriptors

    Science.gov (United States)

    Patki, Amol Suhas

    to the area surrounding the damage, while damage in orthotropic materials tends to have more global repercussions. This calls for analysis of full-field strain distributions adding to the complexity of post-damage life estimation. This study explores shape descriptors used in the field of medical imagery, military targeting and biometric recognition for obtaining a qualitative and quantitative comparison between full-field strain data recorded from damaged composite panels using sophisticated experimental techniques. These descriptors are capable of decomposing images with 103 to 106 pixels into a feature vector with only a few hundred elements. This ability of shape descriptors to achieve enormous reduction in strain data, while providing unique representation, makes them a practical choice for the purpose of structural damage assessment. Consequently, it is relatively easy to statistically compare the shape descriptors of the full-field strain maps using similarity measures rather than the strain maps themselves. However, the wide range of geometric and design features in engineering components pose difficulties in the application of traditional shape description techniques. Thus a new shape descriptor is developed which is applicable to a wide range of specimen geometries. This work also illustrates how shape description techniques can be applied to full-field finite element model validations and updating.

  11. Myocardium wall thickness transducer and measuring method

    Science.gov (United States)

    Feldstein, C.; Lewis, G. W.; Silver, R. H.; Culler, V. H. (Inventor)

    1976-01-01

    A miniature transducer for measuring changes of thickness of the myocardium is described. The device is easily implantable without traumatizing the subject, without affecting the normal muscle behavior, and is removable and implantable at a different muscle location. Operating features of the device are described.

  12. Methods for measurement of developmental reproductive ...

    Science.gov (United States)

    NR OP Abstract:The purpose of this SOP is to outline a procedure for the evaluation of the presence or absence of nipples/areola in the day 13 rodent pup. In the absence of androgens from the developing testes, female rats develop nipples/areola, while dihydrotestosterone induces regression or apoptosis of the nipple anlage in male rats. Thus, nipple development in male rats is a useful endpoint for evaluating the degree of demasculinization produced by in utero/lactational exposure to antiandrogenic compounds. AGD OP Abstract: As a sexually dimorphic secondary sex characteristic in mammals, anogenital distance may be used to measure the degree of demasculinization or feminization of males as a consequence of developmental exposure to androgen receptor (AR) antagonists (Vinclozolin, Procymidone and Flutamide), 5 alpha reductase inhibitors (finasteride) or compounds which inhibit steroidogenesis (some diester phthalates), (see Appendices 7.a). Likewise, AGD is useful in measuring the degree of masculinization or defeminization of females exposed during sexual differentiation to androgenic compounds such as the cattle growth stimulant Trenbolone (see Appendices 7.b). This OP should be used in all studies that include measurement of AGD in rats. NCEA, EPA scientists have requested a copy of two of our laboratory OPs used to measure Anogenital Distance in newborn rats and nipple retention/agenesis in infant male and female rats. These will be submitted to an up

  13. Device and method for measuring biomarkers

    NARCIS (Netherlands)

    Wiedemair, Justyna; Olthuis, Wouter; van den Berg, Albert

    2011-01-01

    The invention relates to a device for the measurement of hydrogen peroxide and optionally other biomarkers in a gaseous mixture, and in particular to a microfabricated device. The device comprises hydrogen peroxide capturing means and an electromechanical sensor comprising a sensing element in

  14. Device and method for measuring biomarkers

    NARCIS (Netherlands)

    Wiedemair, Justyna; Olthuis, Wouter; van den Berg, Albert

    2012-01-01

    The invention relates to a device for the measurement of hydrogen peroxide and optionally other biomarkers in a gaseous mixture, and in particular to a microfabricated device. The device comprises hydrogen peroxide capturing means and an electromechanical sensor comprising a sensing element in

  15. Reliability of the Upper Trapezius Muscle and Fascia Thickness and Strain Ratio Measures by Ultrasonography and Sonoelastography in Participants With Myofascial Pain Syndrome.

    Science.gov (United States)

    Salavati, Mahyar; Akhbari, Behnam; Ebrahimi Takamjani, Ismail; Ezzati, Kamran; Haghighatkhah, Hamidreza

    2017-12-01

    The purpose of this study was to assess the intra- and interexaminer reliability of the upper trapezius muscle and fascia thickness measured by ultrasonography imaging and strain ratio by sonoelastography in participants with myofascial pain syndrome. Thirty-two upper trapezius muscles were assessed. Two examiners measured the upper trapezius thickness and strain ratio 3 times by ultrasonography and sonoelastography independently in the test session. The retest session was completed 6 to 8 days later. A total of 87.5% of participants had trigger points on the right side, and 22.5% had trigger points on the left side. For the test session, the average upper trapezius thickness, fascia thickness, and strain ratio measured by first and second examiners were 11.86 mm and 11.56 mm, 1.23 mm and 1.25 mm, and 0.94 and 0.99, respectively. For the retest session, the previously mentioned parameters obtained by first and second examiners were 11.76 mm and 11.39 mm, 1.27 mm and 1.29 mm, and 0.96 and 0.99, respectively. The intraclass correlation coefficients indicated good to excellent reliability for both within-intraexaminer (0.78-0.96) and between-intraexaminer (0.75-0.98) measurements. Also, the intraclass correlation coefficients and standard errors of measurement of interexaminer reliability ranged between 0.88 to 0.93 and 0.05 to 0.44 for both muscle and fascia thickness and 0.70 to 0.75 and 0.04 to 0.20 for strain ratio of upper trapezius, respectively. Upper trapezius thickness measurements by ultrasonography and strain ratio by sonoelastography are reliable methods in participants with myofascial pain syndrome.

  16. Ligament strain on the iliofemoral, pubofemoral, and ischiofemoral ligaments in cadaver specimens: biomechanical measurement and anatomical observation.

    Science.gov (United States)

    Hidaka, Egi; Aoki, Mitsuhiro; Izumi, Tomoki; Suzuki, Daisuke; Fujimiya, Mineko

    2014-10-01

    The iliofemoral, pubofemoral, and ischiofemoral ligaments are major structures that stabilize the hip joint. We have sought evidence on which to base more effective hip stretching positions. The purpose of this study was to measure strains on these ligaments and to observe them. Eight fresh/frozen translumbar cadaver specimens were used. Clinically available stretching positions for these ligaments were adopted. Strain on each ligament was measured by a displacement sensor during passive torque to the hip joint. Hip motion was measured using an electromagnetic tracking device. The strained ligaments were captured on clear photographs. Significantly, high strains were imposed on the superior iliofemoral ligament by external rotation of the hip (3.48%); on the inferior iliofemoral ligament by maximal extension and 10° or 20° of external rotation with maximal extension (1.86%, 1.46%, 1.25%); on the pubofemoral ligament by maximal abduction and 10°, 20°, or 30° of external rotation with maximal abduction (3.18%, 3.28%, 3.11%, 2.99%); and on the ischiofemoral ligament by 10° or 20° of abduction with maximal internal rotation (7.11%, 7.83%). Fiber direction in each ligament was clearly identified. Significantly, high strains on hip ligaments corresponded with the anatomical direction of the ligament fibers. Positions were identified for each ligament that imposed maximal increase in strain on it. © 2014 Wiley Periodicals, Inc.

  17. Strain Accumulation in the Messina Straits (Southern Italy) From Terrestrial Geodetic Measurements and GPS observations

    Science.gov (United States)

    Cheloni, D.; D'Agostino, N.; Hunstad, I.; Selvaggi, G.; Maseroli, R.

    2008-12-01

    We use geodetic (terrestrial and GPS) measurements at different spatial and temporal scales, to study the present-day style and rate of active crustal deformation in the Messina Straits southern Italy). The first set of observations consists of triangulation and trilateration measurements from a small-aperture (~ 10 km wide) terrestrial network located in the northern part of the Straits, surveyed between 1971 and 2004. The second set of measurements consists of continuous GPS observations from the larger aperture RING network (inter-station distance in the study area ~ 10-30 km).The results show that the main deformation pattern from GPS and triangulation measurements is given by a 110-160 nstrain/yr right-lateral N-S simple shear. Although affected by an unclear systematic bias the trilateration measurements are statistically consistent with this pattern. This deformation appears to correspond to the transition between collision in Sicily and subduction in Calabria and is determined by the differential retrograde motion of the Ionian lithosperic slab relative to Sicily, where the arrival of buoyant continental lithosphere has caused the end of subduction activity. The rate of observed deformation implies a tectonic loading of the order of 1.1-1.6 mm/yr over the 10 km wide Messina Straits network and 6-9 mm/yr over the larger (50-60 km) subarray of the RING network. The understanding of how this deformation is presently accomodated by faulting is presently unclear but very important for the evaluation of the seismic hazard. We find here that the current strain accumulation in the Messina Straits confirms the hypothesis which considers the Messina Straits as an important boundary between distinct crustal domains. On the other hand the style of interseismic deformation appears scarcely consistent with the faulting geometry generally associated with the 1908 M_w=7.1 Messina earthquake.

  18. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad

    2016-08-18

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  19. POSSIBLE RAPID STRAIN ACCUMULATION RATES NEAR CALI, COLOMBIA, DETERMINED FROM GPS MEASUREMENTS (1996-2003

    Directory of Open Access Journals (Sweden)

    Trenkamp Robert

    2004-06-01

    Full Text Available Global Positioning System (GPS data from southern Central America and northwestern South America collected between 1991 and 1998 reveal wide plate margin deformation along a 1400 km length of the North Andes. Also associated with the oblique subduction of the Nazca plate at the Colombia-Ecuador trench is the 'escape' of the North Andes block (NAB. The NAB is delineated by the Bocono-East Andean fault systems and the Dolores Guayaquil Megasheare to the east, the South Caribbean deformed belt on the north and the Colombia-Ecuador trench and Panama on the west. Within the NAB many damaging crustal earthquakes have occurred which is most recently exemplified on January 25, 1999 (Mw = 6.1 Armenia earthquake. Preliminary analysis of recent occupations (2003 GEORED GPS of several previously observed (1996-2001 GPS sites suggest shear strain accumulation rates in the Cauca valley near Cali of approximately 2.1 x 10-7 yr-1 and 1.6 x 10-7 yr-1. These strain rates are measured within 2 Delaunay triangles with common vertices at Cali and Restrepo, which encompass areas, located north and west of Cali.Seismicity has been monitored in the Cauca Valley for the last 17 years by the "Observatorio Sismológico del Suroccidente" (OSSO since 1987 and by the Red Sismológica Nacional del INGEOMINAS since 1993. Their catalogs list numerous shallow earthquakes near Cali but nothing larger than magnitude 5. Historically, however, several large earthquakes are associated with the "Falla Cauca Almaguer" in locations both to the south and north of Cali in the Cauca valley. Preliminary calculations using the strain rates determined for these Delaunay triangles and a simplified Kostrov formula suggest possible decadal (30 - 90 years recurrence intervals for Mw = 6.0 - 6.3 earthquakes, centenary (90 - 900 years recurrence intervals for Mw = 6.4 - 6.9 earthquakes and millennial (900+ years recurrence intervals for Mw ≥ 7 earthquakes.

  20. The Strain Index: a proposed method to analyze jobs for risk of distal upper extremity disorders.

    Science.gov (United States)

    Moore, J S; Garg, A

    1995-05-01

    Based on existing knowledge and theory of the physiology, biomechanics, and epidemiology of distal upper extremity disorders, a semiquantitative job analysis methodology was developed. The methodology involves the measurement or estimation of six task variables (intensity of exertion, duration of exertion per cycle, efforts per minute, wrist posture, speed of exertion, and duration of task per day); assignment of an ordinal rating for each variable according to exposure data; then assignment of a multiplier value for each variable. The Strain Index is the product of these six multipliers. Preliminary testing suggests that the methodology accurately identifies jobs associated with distal upper extremity disorders versus jobs that are not; however, large-scale studies are needed to validate and update the proposed methodology.

  1. A new imaging technique for measuring the surface strains applied to dentine.

    Science.gov (United States)

    Palamara, J E; Wilson, P R; Thomas, C D; Messer, H H

    2000-02-01

    To investigate possible variation in directional material properties of dentine in relationship to tubule orientation using a new optical imaging technique. The optical imaging technique records photometrically a grid pattern formed by using a transmission electron microscope grid as a template on the polished surface of the dentine. The grid pattern is silhouetted onto the sample surface using standard techniques. Compression (c) and diametral compression (dc) tests were undertaken using a servo hydraulic testing machine (MTS model 810) acting on rectangular blocks of dentine with dimensions 1.5 x 1.0 x 1.0 mm (for c) and cylindrical samples with dimensions 2.1 mm in diameter and 1-1.5 mm thick (for dc), respectively. The samples were cut using a diamond wheel and miniature lathe and the cut surfaces polished. Images due to a changing load profile were captured and stored as digitised files on a computer for later analysis. The precision is mainly determined by the pixel resolution of the charged-coupled device camera. Preliminary results show the value of elastic modulus of dentine (10.4 +/- 2.9 GPa) to be similar to those previously reported in the literature. Very small localised strains at the surface of a sample can be observed qualitatively and measured quantitatively by reference to the line spacing (approximately 85 microns). Maximum strength varied with tubule orientation and (compressive/tensile) stress. Very small samples of dentine may be investigated for strain in more than one direction using the imaging technique described. These results may be more appropriate for finding relative directional change rather than obtaining the elastic properties of the dentine.

  2. An autocorrelation-based method for improvement of sub-pixel displacement estimation in ultrasound strain imaging.

    Science.gov (United States)

    Kim, Seungsoo; Aglyamov, Salavat R; Park, Suhyun; O'Donnell, Matthew; Emelianov, Stanislav Y

    2011-04-01

    In ultrasound strain and elasticity imaging, an accurate and cost-effective sub-pixel displacement estimator is required because strain/elasticity imaging quality relies on the displacement SNR, which can often be higher if more computational resources are provided. In this paper, we introduce an autocorrelation-based method to cost-effectively improve subpixel displacement estimation quality. To quantitatively evaluate the performance of the autocorrelation method, simulated and tissue-mimicking phantom experiments were performed. The computational cost of the autocorrelation method is also discussed. The results of our study suggest the autocorrelation method can be used for a real-time elasticity imaging system. © 2011 IEEE

  3. Quantitative Method of Measuring Metastatic Activity

    Science.gov (United States)

    Morrison, Dennis R. (Inventor)

    1999-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated uroldnase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  4. Coaxial printing method for directly writing stretchable cable as strain sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hai-liang [College of Material Science and Engineering, Beijing University of Technology, 100124 Beijing (China); Chengdu Green Energy and Green Manufacturing Technology R& D Center, 610299 Chengdu (China); Chen, Yan-qiu, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn; Deng, Yong-qiang; Zhang, Li-long; Lau, Woon-ming; Mei, Jun; Liu, Yu, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn [Chengdu Green Energy and Green Manufacturing Technology R& D Center, 610299 Chengdu (China); Hong, Xiao [Chengdu Green Energy and Green Manufacturing Technology R& D Center, 610299 Chengdu (China); College of Computer Science, Sichuan University, Chengdu 610207 (China); Hui, David [Department of Mechanical Engineering, University of New Orleans, New Orleans, Louisiana 70148 (United States); Yan, Hui, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn [College of Material Science and Engineering, Beijing University of Technology, 100124 Beijing (China)

    2016-08-22

    Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well–posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchability and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication.

  5. Distribution of radial strain in a disc-braked railway wheel measured by neutron diffraction

    CERN Document Server

    Grosse, M; Ottlinger, P

    2002-01-01

    Three sectors of a damaged disc-braked railway wheel with a flat spot and a macro-crack parallel to the tread were investigated. Differences in the radial strain distribution between the sector containing the crack and the undamaged sector were found. At crack positions the tensile strain is higher than at comparable positions in the undamaged sector. The strain in the sector with the flat spot is lower than in the other two sectors. 1 Refs.

  6. Luminescent Tension-Indicating Orthopedic Strain Gauges for Non-Invasive Measurements Through Tissue

    Science.gov (United States)

    Anker, Jeffrey (Inventor); Rogalski, Melissa (Inventor); Anderson, Dakota (Inventor); Heath, Jonathon (Inventor)

    2015-01-01

    Strain gauges that can provide information with regard to the state of implantable devices are described. The strain gauges can exhibit luminescence that is detectable through living tissue, and the detectable luminescent emission can vary according to the strain applied to the gauge. A change in residual strain of the device can signify a loss of mechanical integrity and/or loosening of the implant, and this can be non-invasively detected either by simple visual detection of the luminescent emission or through examination of the emission with a detector such as a spectrometer or a camera.

  7. Poverty in Ukraine: Development, Validity and Reliability of a New Measure of Financial Strain for Young Adults.

    Science.gov (United States)

    Balabukha, Iryna; Krishnakumar, Ambika; Narine, Lutchmie

    2017-01-01

    The purpose of this paper was to develop a valid and reliable measure of financial strain for use with college-attending young adults in Ukraine. The newly developed measure represents an alternative approach to currently used objective measures of poverty and economic hardship. Objective measures are not adequate or applicable for use with Ukrainian young adults who are mainly dependent on their families for economic support. Financial strain was conceptualized as the financial adjustments that young adults have to make to meet their basic housing, food and clothing needs. Items were generated to capture the construct of financial strain, and content validity of the scale was assessed. Exploratory factor analysis strongly supported the unidimensional nature of the scale. In addition, findings from simultaneous multiple-group confirmatory factor analyses indicated configural, metric and factor invariance of the measure across the southern and central regions of Ukraine. The new measure of financial strain was positively correlated with emotional distress and violence against romantic partners, indicating good predictive validity. The scale also showed good internal consistency. We suggest that the new measure is appropriate to use with young adults in other Eastern European countries in transition.

  8. Diffraction measurements for evaluating plastic strain in A533B ferritic steel—a feasibility study

    Science.gov (United States)

    Lewis, S. J.; Truman, C. E.

    2010-07-01

    It is known that the physical properties of many engineering materials may be strongly affected by previous loading, in particular prior plastic deformation. Most obviously, work hardening will alter subsequent yielding behaviour. Plastic deformation may also preferentially align the material microstructure, resulting in anisotropy of subsequent behaviour and a change in material fracture resistance. When physical characterization is undertaken by experimental testing it is, therefore, important to have some knowledge of the current state of the material. As a result, it is desirable to have methods of quantitatively evaluating the level of plastic deformation which specimen material may have experienced prior to testing. This paper presents the results of a feasibility study, using a ferritic reactor pressure vessel steel, into the use of diffractive methods for plastic strain evaluation. Using neutron diffraction, changes in diffraction peak width and anisotropy of peak response were correlated with plastic deformation in a tensile test. The relationships produced were then used to evaluate permanent deformation levels in large samples, representative of standard fracture toughness test specimens.

  9. High impulse voltage and current measurement techniques fundamentals, measuring instruments, measuring methods

    CERN Document Server

    Schon, Klaus

    2013-01-01

    Equipment to be installed in electric power-transmission and distribution systems must pass acceptance tests with standardized high-voltage or high-current test impulses which simulate the stress on the insulation caused by external lightning discharges and switching operations in the grid. High impulse voltages and currents are also used in many other fields of science and engineering for various applications. Therefore, precise impulse-measurement techniques are necessary, either to prevent an over- or understressing of the insulation or to guarantee the effectiveness and quality of the application. The book deals with: principal generator circuits for generating high-voltage and high-current impulses measuring systems and their calibration according to IEC 60060 and IEC 62475 methods of estimating uncertainties of measurement mathematical and experimental basis for characterizing the transfer behavior of spatially extended systems used for measuring fast transients. This book is intended for engineers and ...

  10. Investigation Study on Determination of Fracture Strain and Fractuer Forming Limit Curve Using Different Experimental and Numerical Methods

    Science.gov (United States)

    Farahnak, P.; Urbanek, M.; Džugan, J.

    2017-09-01

    Forming Limit Curve (FLC) is a well-known tool for the evaluation of failure in sheet metal process. However, its experimental determination and evaluation are rather complex. From theoretical point of view, FLC describes initiation of the instability not fracture. During the last years Digital Image Correlation (DIC) techniques have been developed extensively. Throughout this paper, all the measurements were done using DIC and as it is reported in the literature, different approaches to capture necking and fracture phenomena using Cross Section Method (CSM), Time dependent Method (TDM) and Thinning Method (TM) were investigated. Each aforementioned method has some advantages and disadvantages. Moreover, a cruciform specimen was used in order to cover whole FLC in the range between uniaxial to equi-biaxial tension and as an alternative for Nakajima test. Based on above-mentioned uncertainty about the fracture strain, some advanced numerical failure models can describe necking and fracture phenomena accurately with consideration of anisotropic effects. It is noticeable that in this paper, dog-bone, notch and circular disk specimens are used to calibrate Johnson-Cook (J-C) fracture model. The results are discussed for mild steel DC01.

  11. Transverse Beam Profile Measurements Using Optical Methods

    CERN Document Server

    Peters, A; Weiss, A; Bank, A

    2001-01-01

    Two different systems are currently under development at GSI's heavy ion facility to measure transverse beam profiles using optical emitters. At the GSI-LINAC for energies up to 15 MeV/u residual gas fluorescence is investigated for pulsed high current beams. The fluorescence of N2 is monitored by an image intensified CCD camera. For all ion species with energies above 50 MeV/u slowly extracted from the synchrotron SIS a classical viewing screen system is used. Three different target materials have been investigated and their behavior concerning efficiency, saturation and timing performance is evaluated. Both systems (will) use CCD cameras with a digital read out using the IEEE 1394 standard.

  12. Beam Parameters Measurement Based On Tv Methods

    CERN Document Server

    Klimenkov, E; Milichenko, Yu; Voevodin, V

    2004-01-01

    The paper describes hardware and software used to control TV-cameras and to process TV-images of luminescent screens placed along the beam transfer lines. Industrial devices manually control the movements and focusing of the cameras. All devices are linked to PC via PCI interfaces with homemade drivers for Linux OS and provide both selection of camera and digitizing of video signal synchronized with beam. One part of software provides means to set initial parameters using PC consol. Thus an operator can choose contrast, brightness, some number of significant points on TV-image to calculate beam position and its size. Second part supports remote TV controls and data processing from Control Rooms of U-70 complex using set initial parameters. First experience and results of the method realization are discussed.

  13. Micro-scale measurements of plastic strain field, and local contributions of slip and twinning in TWIP steels during in situ tensile tests

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.K. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Laboratoire de Mécanique des Solides, Ecole Polytechnique, CNRS UMR7649, Université Paris-Saclay, 91128 Palaiseau (France); Doquet, V., E-mail: doquet@lms.polytechnique.fr [Laboratoire de Mécanique des Solides, Ecole Polytechnique, CNRS UMR7649, Université Paris-Saclay, 91128 Palaiseau (France); Zhang, Z.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-08-30

    In-situ tensile tests were carried out on Fe22Mn0.6C and Fe22Mn0.6C3Al (wt%) twinning-induced plasticity (TWIP) steels specimens covered with gold micro-grids. High resolution atomic force microscopy (AFM) and scanning electron microscope (SEM) images were periodically captured. The latter were used for measurements of the plastic strain field, using digital image correlation (DIC). Although no meso-scale localization bands appeared, some areas were deformed three times more than average. Plastic deformation inside the grains was more heterogeneous in Fe22Mn0.6C, but at meso-scale, the degree of strain heterogeneity was not higher, at least up to 12% strain. Plastic deformation started from grain boundaries or annealing twin boundaries in both materials, due to a high elastic anisotropy of the grains. An original method based on DIC was developed to estimate the twin fraction in grains that exhibit a single set of slip/twin bands. Deformation twinning accommodated 60–80% of the plastic strain in some favorably oriented grains, from the onset of plastic flow in Fe22Mn0.6C, but was not observed in the Al-bearing steel until 12% strain. The back stress was important in both materials, but significantly higher in Fe22Mn0.6C.

  14. Fiber Optic Strain Measurements In Filament-Wound Graphite-Epoxy Tubes Containing Embedded Fibers

    Science.gov (United States)

    Rogowski, R. S.; Heyman, J. S.; Holben, M. S.; Egalon, C.; Dehart, D. W.; Doederlein, T.; Koury, J.

    1989-01-01

    analysis on LSS. Advanced composite materials have been fabricated for the last seven years, consisting mostly of rocket components such as: nozzles, payload shrouds, exit cones, and nose cones. Recently, however, AFAL has been fabricating composite components such as trusses, tubes and flat panels for space applications. Research on fiber optic sensors at NASA Langley Research Center (NASA LaRC) dates back to 1979. Recently an optical phase locked loop (OPLL) has been developed that can be used to make strain and temperature measurements. Static and dynamic strain measurements have been demonstrated using this device.' To address future space requirements, AFAL and NASA have initiated a program to design, fabricate, and experimentally test composite struts and panels with embedded sensors, actuators, and microprocessors that can be used to control vibration and motion in space structures.

  15. Histogram Planimetry Method for the Measurement of Irregular Wounds.

    Science.gov (United States)

    Yesiloglu, Nebil; Yildiz, Kemalettin; Cem Akpinar, Ali; Gorgulu, Tahsin; Sirinoglu, Hakan; Ozcan, Arzu

    2016-09-01

    Irregularly shaped wounds or flap borders usually require specified software or devices to measure their area and follow-up wound healing. In this study, an easy way of area measurement called histogram planimetry (HP) for wounds with irregular geometric shapes is defined and compared to conventional millimetric wound measurement. Ten irregularly bordered geometric shapes were measured by 4 different individuals working as surgical assistants using both HP and manual millimetric measurement tools. The amount of time for each wound shape calculation as well as the measurements of the wound areas were noted. All measurements were compared for each method and between each individual using the Wilcoxon signed-rank test. There was no statistically significant difference between 2 measurement methods by means of measured areas; however, measurement time was significantly lower when the HP method was used. There also was no significant difference between the individuals' measurements and calculation times. These results indicated that HP is useful as a conventional millimetric square wound measurement technique with significantly lower measurement times. Due to the development of photo-editor software technologies, measurements in the surgical field have become more accurate and rapid than conventional manual methods without consuming the time and energy needed for other studies. A future study including comparisons between the presented method and complex computerized measurement methods, in terms of duration and accuracy, may provide additional supportive data for the authors' method.

  16. Normal ranges of right ventricular systolic and diastolic strain measures in children: a systematic review and meta-analysis.

    Science.gov (United States)

    Levy, Philip T; Sanchez Mejia, Aura A; Machefsky, Aliza; Fowler, Susan; Holland, Mark R; Singh, Gautam K

    2014-05-01

    Establishment of the range of normal values and associated variations of two-dimensional (2D) speckle-tracking echocardiography (STE)-derived right ventricular (RV) strain is a prerequisite for its routine clinical application in children. The objectives of this study were to perform a meta-analysis of normal ranges of RV longitudinal strain measurements derived by 2D STE in children and to identify confounders that may contribute to differences in reported measures. A systematic review was conducted in PubMed, Embase, Scopus, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov. Search hedges were created to cover the concepts of pediatrics, STE, and the right heart ventricle. Two investigators independently identified and included studies if they reported the 2D STE-derived RV strain measure RV peak global longitudinal strain, peak global longitudinal systolic strain rate, peak global longitudinal early diastolic strain rate, peak global longitudinal late diastolic strain rate, or segmental longitudinal strain at the apical, middle, and basal ventricular levels in healthy children. Quality and reporting of the studies were assessed. The weighted mean was estimated using random effects with 95% confidence intervals (CIs), heterogeneity was assessed using Cochran's Q statistic and the inconsistency index (I(2)), and publication bias was evaluated using funnel plots and Egger's test. Effects of demographic, clinical, equipment, and software variables were assessed in a metaregression. The search identified 226 children from 10 studies. The reported normal mean values of peak global longitudinal strain among the studies varied from -20.80% to -34.10% (mean, -29.03%; 95% CI, -31.52% to -26.54%), peak global longitudinal systolic strain rate varied from -1.30 to -2.40 sec(-1) (mean, -1.88 sec(-1); 95% CI, -2.10 to -1.59 sec(-1)), peak global longitudinal early diastolic strain rate ranged from 1.7 to 2.69 sec(-1) (mean, 2.34 sec(-1); 95% CI, 2

  17. [Comparison of disk-diffusion method and PCR for detection of methicillin resistance in Staphylococcus aureus strains].

    Science.gov (United States)

    Kaczmarek, Agnieszka; Budzyńska, Anna; Mikołajczyk, Dorota; Gospodarek, Eugenia

    2006-01-01

    The aim of the study was to compare the disk-diffusion (oxacillin 1 microg, cefoxitin 30 microg) method and PCR for detection of methicillin-resistance in S. aureus. The investigation were carried out on 120 S. aureus strains isolated from clinical materials of patients hospitalized in the University Hospital at the L. Rydygier Collegium Medicum in Bydgoszcz, University of Nicolaus Copernicus in Toruń. Of the 120 S. aureus strains tested, 60 (50%) were mecA-positive by PCR. Consistency of results between oxacillin disk-difussion method and PCR amounted 92.5% and cefoxitin disk-diffusion method and PCR--98.3%. The oxacillin disk-difussion method falsely identified 3 (2.5%) strains as MSSA (sensitivity 95.0%) and 4 strains as MRSA (specificity 93.3%) in comparison with PCR. The cefoxitin disk-diffusion method falsely identified 2 (1.6%) strains as MSSA (sensitivity 96.7%) and there were no false resistant results (specificity 100%). Our results showed that in disk-diffusion tests, cefoxitin is a better than oxacillin for the identification of MRSA.

  18. Heat capacity measurements of Sr{sub 2}RuO{sub 4} under uni-axial strain

    Energy Technology Data Exchange (ETDEWEB)

    Li, You-sheng; Mackenzie, Andrew [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); University of St. Andrews, School of Physics and Astronomy (United Kingdom); Gibbs, Alexandra [Max Planck Institute for Solid State Research, Stuttgart (Germany); Hicks, Clifford [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Nicklas, Michael [University of St. Andrews, School of Physics and Astronomy (United Kingdom)

    2016-07-01

    One of the most-discussed possible pairing symmetries of Sr{sub 2}RuO{sub 4} is p{sub x} ± ip{sub y}. By applying strain along left angle 100 right angle -direction, the degeneracy of the p{sub x} and p{sub y} components is lifted, and thus there should be two critical temperatures (T{sub c}). Hicks et al. have observed an increase of T{sub c} of Sr{sub 2}RuO{sub 4} under both compressive and tensile strains, by measuring the susceptibility, which is sensitive only to the first transition. Their results also indicate, indirectly, that any splitting of T{sub c}s might be small. For a direct test of possible splitting, we measure the heat capacity of Sr{sub 2}RuO{sub 4} under strain. To do so, we are developing an approach to measure heat capacity under non-adiabatic conditions. We have observed an increase of T{sub c} under compressive strain. This is the first thermodynamic evidence of the strain-induced increase in T{sub c} of Sr{sub 2}RuO{sub 4}.

  19. Design and development of fixture and force measuring system for friction stir welding process using strain gauges

    Energy Technology Data Exchange (ETDEWEB)

    Parida, Biswajit; Vishwakarma, Shiv Dayal; Pal, Sukhomay [IIT Guwahati, Guwahati (India)

    2015-02-15

    We developed a clamping system and an instrumented setup for a vertical milling machine for friction stir welding (FSW) operations and measuring the process forces. Taking into account the gap formation (i.e., lateral movement) and transverse movement of the workpiece, a new type of adjustable fixture was designed to hold the workpiece being welded. For force measurement, a strain gauge based force dynamometer was designed, developed and fabricated. The strain gauges were fitted into the specially designed octagonal members to support the welding plates. When the welding force was applied onto the plates, the load was transferred to the octagonal members and strain was induced in the member. The strains of the strain gauges were measured in terms of voltages using a Wheatstone bridge. To acquire forces in FSW operations, a data acquisition system with the necessary hardware and software was devised and connected to the developed setup. The developed setup was tested in actual welding operations. It is found that the proposed setup can be used in milling machine to perform FSW operations.

  20. An in-situ measuring method for planar straightness error

    Science.gov (United States)

    Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie

    2018-01-01

    According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.

  1. DNA typing methods for differentiation of Debaryomyces hansenii strains and other yeasts related to surface ripened cheeses.

    Science.gov (United States)

    Petersen, K M; Møller, P L; Jespersen, L

    2001-09-19

    The discriminative power of ITS-PCR, ITS-PCR RFLP and mitochondrial (mt)-DNA RFLP were evaluated for differentiation of yeasts of importance for surface ripened cheeses. In total 60 isolates were included. Of these, 40 strains of the following species, Debaryomyces hansenii var. hansenii, D. hansenii var. fabryi, Saccharomyces cerevisiae, Candida zeylanoides, Kluyveromyces lactis and Yarrowia lipolytica, were obtained from culture collections and 20 isolates of D. hansenii representing six different phenotypes were collected from seven Danish producers of surface ripened cheeses. ITS-PCR was evaluated for differentiation at species level on the 40 strains obtained from culture collections. Ten strains of each variety of D. hansenii and five strains of each of the above mentioned species were analysed. For each of the investigated species, a specific ITS1-5.8S rDNA-ITS2 region size was observed. Accordingly ITS-PCR was found valuable for differentiation at species level of yeasts of importance for surface ripened cheeses. ITS-PCR RFLP was investigated for the purpose of strain typing of D. hansenii. Ten CBS strains of each variety of D. hansenii were analysed. Only one enzyme (TaqI) out of several investigated (BamHI, DpnI, Fnu4HI, HaeIII, HindIII, HpaII, NlaII, Sau3AI, TaqI) demonstrated genetic diversity within the strains. This enzyme divided the 20 strains in three groups. Sequence analysis of the ITS1-5.8S rDNA-ITS2 region for the type strains of each variety of D. hansenii showed an identity of 99.84%, corresponding to a difference in one basepair. Based on these results, ITS-PCR RFLP was found ineffective for strain typing of D. hansenii. MtDNA RFLP using HaeIII and HpaII was evaluated for strain typing of D. hansenii on the 20 CBS strains of D. hansenii. The CBS strains were divided into 16 groups according to their restriction profiles, which proved the method useful for typing of D. hansenii at subspecies level. The 20 dairy isolates showed a lower genetic

  2. Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement

    Science.gov (United States)

    Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia

    2017-08-01

    A short fiber Bragg grating (FBG) is successfully written in a multimode fiber (MMF) with core and cladding diameters of 50 μm and 125 μm using 800 nm femtosecond laser side-illumination technique. Three-type grating inscriptions can be realized at the different positions over the core of MMF by moving the focal-line position of laser beam. Both fundamental mode and higher-order modes of MMF are excited at the core-mismatch junction, resulting in two well-defined resonances in transmission. The strain measurement with a single core resonance mode is demonstrated experimentally at the ultra-high temperature. The result indicates that the strain sensitivity improved to 5.24 pm/με at the temperature of 600-900 °C, making it as a good candidate for the strain measurement at the high temperature environments.

  3. Full-field, high-spatial-resolution detection of local structural damage from low-resolution random strain field measurements

    Science.gov (United States)

    Yang, Yongchao; Sun, Peng; Nagarajaiah, Satish; Bachilo, Sergei M.; Weisman, R. Bruce

    2017-07-01

    Structural damage is typically a local phenomenon that initiates and propagates within a limited area. As such high spatial resolution measurement and monitoring is often needed for accurate damage detection. This requires either significantly increased costs from denser sensor deployment in the case of global simultaneous/parallel measurements, or increased measurement time and labor in the case of global sequential measurements. This study explores the feasibility of an alternative approach to this problem: a computational solution in which a limited set of randomly positioned, low-resolution global strain measurements are used to reconstruct the full-field, high-spatial-resolution, two-dimensional (2D) strain field and rapidly detect local damage. The proposed approach exploits the implicit low-rank and sparse data structure of the 2D strain field: it is highly correlated without many edges and hence has a low-rank structure, unless damage-manifesting itself as sparse local irregularity-is present and alters such a low-rank structure slightly. Therefore, reconstruction of the full-field, high-spatial-resolution strain field from a limited set of randomly positioned low-resolution global measurements is modeled as a low-rank matrix completion framework and damage detection as a sparse decomposition formulation, enabled by emerging convex optimization techniques. Numerical simulations on a plate structure are conducted for validation. The results are discussed and a practical iterative global/local procedure is recommended. This new computational approach should enable the efficient detection of local damage using limited sets of strain measurements.

  4. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil.

    Science.gov (United States)

    Afzal, Muhammad; Yousaf, Sohail; Reichenauer, Thomas G; Sessitsch, Angela

    2012-01-01

    Plants in combination with microorganisms can remediate soils, which are contaminated with organic pollutants such as petroleum hydrocarbons. Inoculation of plants with degrading bacteria is one approach to improve remediation processes, but is often not successful due to the competition with resident microorganisms. It is therefore of high importance to address the persistence and colonization behavior of inoculant strains. The objective of this study was to determine whether the inoculation method (seed imbibement and soil inoculation) influences bacterial colonization, plant growth promotion and hydrocarbon degradation. Italian ryegrass was grown in non-sterilized soil polluted with diesel and inoculated with different alkane-degrading strains Pantoea sp. ITSI10, Pantoea sp. BTRH79 and Pseudomonas sp. MixRI75 individually as well as in combination. Inoculation generally had a beneficial effect on plant biomass production and hydrocarbon degradation, however, strains inoculated in soil performed better than applied by seed imbibement. Performance correlated with the colonization efficiency of the inoculated strains. The highest hydrocarbon degradation was observed in the treatment, in which all three strains were inoculated in combination into soil. Our study revealed that besides the degradation potential and competitive ability of inoculant strains the inoculation method plays an important role in determining the success of microbial inoculation.

  5. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  6. A condensed water method for measuring the atmospheric radon

    CERN Document Server

    Wu Xin; Pan Xiao Qing; Yu Yi Ling

    1998-01-01

    The author summarizes the present situation of atmospheric Radon measurement, and introduces the working principle, working method and advantage and disadvantage of condensed water method in detail. The structure and function of the instrument used for this method, and the measuring result are discussed. The direction of further work is pointed out from now on

  7. Design of triaxial test with controlled suction: measure of strain; Conception d'un essai triaxial a succion controlee: mesure des deformations

    Energy Technology Data Exchange (ETDEWEB)

    Gasc-Barbier, M.; Cosenza, Ph.; Ghoreychi, M.; Chanchole, S. [Ecole Polytechnique, 91 - Palaiseau (France); Cosenza, Ph. [Paris-6 Univ., 75 (France); Tessier, D. [Institut National de Recherches Agronomiques (INRA), Unite de Sciences du Sol, 78 - Versailles (France)

    2000-01-01

    Experimental study of mechanical behavior of clayey materials under hygrometric condition is usually performed either on unloaded samples or by means of classical odometer tests used in soil mechanics. Such methods are not well adapted to hard deep clayey rocks with little deformability, porosity and permeability. Moreover, stress and strain tensors having a significant effect on hygro-mechanical behaviour and properties cannot be measured and investigated appropriately by classical tests. This is why a specific triaxial test was designed in which the sample is surrounded by a fiber glass tissue allowing air circulation and then by silicon on which confining pressure is applied. Thus, equilibrium between air and sample was reduced. Stress and strain tensors were also measured in time on the sample subjected to a mechanical loading and to a controlled suction. After presentation of the test, preliminary results are given. (authors)

  8. Comparison of Mercury Measurement Methods Using Two Active Filter Measurement Methods and a Tekran Speciation Unit

    Science.gov (United States)

    Pierce, A.; Gustin, M. S.; Huang, J.; Heidecorn, K.

    2014-12-01

    Three active mercury (Hg) measurement methods were operated side by side at an urban site (University of Nevada, Reno College of Agriculture Greenhouse facility, elev. 1370 m) in Reno, and at a high elevation site (Peavine Peak, elev. 2515 m) adjacent to Reno from December 2013 to October 2014. A model 602 BetaPlus Teledyne Advanced Pollution Instrumentation (TAPI, San Diego, CA USA) particulate measurement system was used to collect particulate matter on a 47 mm diameter cation exchange membrane (CEM, PN# MSTGS3R Mustang S, Pall Corp. Port Washington, NY) at a rate of 16.7 lpm for 24 hours to four days. Particulate concentrations were calculated using beta attenuation across the filters (non-destructive to filter material); the CEM filters were then analyzed for total Hg on a Tekran Total Hg Analysis system (model 2600, Tekran Instruments Corp. Knoxville, TN, USA). Concurrently, samples were collected on an active Hg membrane system. The active Hg membrane system consisted of 3 CEM filters sampling at a rate of 1 lpm for one to two weeks. CEM filters were then analyzed on the Tekran 2600. A Tekran speciation unit (model 1130, 1135, 2537) was also in operation and ambient air samples were analyzed for gaseous elemental Hg (GEM), gaseous oxidized Hg (GOM), and particulate bound Hg (PBM). Both the 602 BetaPlus system and the active Hg membrane system should collect RM on the CEM filters. The active Hg membrane system most likely captures mainly GOM based on previous tests with the Teflon inlet setup that indicated there was high static electricity effective in removing particulate matter. Flow rate and length of measurement (24 hours vs. four days) affected the Hg concentrations on the 602 BetaPlus system. Based on these measurements we hypothesize that, due to the high flow rate, and therefore short retention time, the 602 BetaPlus only captured PBM. It is also possible that there was loss of Hg to inlet walls due to the longer inlet on the 602 BetaPlus system

  9. Piezoelectric fiber-composite-based cantilever sensor for electric-field-induced strain measurement in soft electroactive polymer.

    Science.gov (United States)

    Chen, Qian; Sun, Yingying; Qin, Lifeng; Wang, Qing-Ming

    2013-10-01

    Polymeric materials have been widely used in electronic and electromechanical transducer applications. Because of their low elastic modulus, it is quite challenging to accurately characterize the electric-field-induced strain and elastic modulus by conventional contact methods. In this paper, a piezoelectric lead zirconate titanate (PZT) fiber-composite-based cantilever strain sensor has been investigated to accurately characterize the electric-field-induced strain response in the out-of-plane direction of soft electroactive polymer samples. By choosing appropriate substrate material and the thickness ratio of the fiber composite to the substrate, this strain sensor can be optimized to provide high sensitivity and high flexibility simultaneously. The high voltage sensitivity can be attributed to partial decoupling of the longitudinal and transverse piezoelectric responses, the improved piezoelectric coefficient and small dielectric permittivity. The high flexibility is due to the reduced flexural spring constant of the composite-based cantilever device. Both theoretical modeling of the PZT fiber-composite-based cantilever device and experimental verification are performed in this work. The results indicate that the piezoelectric PZT fiber-composite-based cantilever strain sensor can accurately characterize the electric-field-induced small strain in electroactive soft polymers with high reliability.

  10. A new method of non-invasive blood pressure measurement

    Science.gov (United States)

    Gu, Liangling; Yang, Yongming; Yu, Chengbo; Guo, Qiaohui; Zhu, Gang

    2005-12-01

    Blood pressure reflects a person's health.It is proposed here that the method of detecting blood pressure may be the key to improving the precision of blood pressure measurements. The oscillometric blood pressure measurement technique is widely used in automatic blood pressure measurement instruments correctly. A method of blood pressure measurement by oscillometric method is first presented. In the oscillometric method, the basic principle of the "feature point" method and the "amplitude characteristic ratios" method is also explained and discussed here. A new method of blood pressure measurement, namely the coefficient difference comparative method, is proposed here,which is based on the feature point method and amplitude characteristic ratios method. The method is proved both effective and reliable through the analysis of many cases and clinical tests. Utilizing Visual C++, software for this new and novel method was developed and passed criterion simulation apparatus test. When applied in hospital situation, its error was +/-5%. It is concluded that the oscillometric blood pressure measurement method can provide better means of blood pressure measurements reference for doctors.

  11. Thermal conductivity measurement of sintered Vibro-packed fuel. 1. Study on sample preparation method

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Mineo; Kosaka, Yuji; Ogawa, Shinta [Nuclear Development Corp., Tokai, Ibaraki (Japan)

    2002-02-01

    An experimental study was carried out in order to grasp the sintering condition of the Vibro-packed fuel bed. A disc shaped bed of UO{sub 2} particles manufactured by the tumbling granulation method was sintered in constant load and temperature using a creep examination machine. The following results were obtained. 1) Sintering for about 2 hours and 30 minutes under the temperature of 1700degC and the compression load condition of 7 MPa generated 4.5 - 4.7% strain of the bed and about 40% neck ratio between particles. 2) Larger neck ratio was observed in larger sintering strain bed. This result implies the aimed neck ratio can be prepared by the adjustment of the sintering strain. 3) Sintering strain of the bed was depend on the particle size. In case of the large size particle, sintering strain became large. It was considered that it was based on the increase of local stress caused by the reduction of contact points according to particle diameter increase. 4) When the particle diameter becomes small, the particle neck ratio perpendicular to the load direction became small in comparison with the load direction, and the tendency that a particle becomes easy to separate was recognized. 5) >From the grain size measurement result of particle before and after a sintering experiment, no significant change of the crystal grain size was recognized. (author)

  12. [Methodical approaches to isolation of teichoic acids from native cells of lactic acid bacteria probiotic strains].

    Science.gov (United States)

    Livins'ka, O P; Harmasheva, I L; Vasyl'iev, V M; Kovalenko, N K

    2012-01-01

    Teichoic acids of lactic acid bacteria probiotic strains have been obtained by extraction from native cells, followed by purification of extracts using ion exchange chromatography. Selected fractions contained high concentrations of phosphorus and did not contain nucleic acids. The content of teichoic acid depended on the species and strain specificity. Heterogeneity of the studied biomolecules was revealed.

  13. Numerical method for a 2D drift diffusion model arising in strained n ...

    Indian Academy of Sciences (India)

    Abstract. This paper reports the calculation of electron transport in metal oxide semiconductor field effects transistors (MOSFETs) with biaxially tensile strained silicon channel. The calculation is formulated based on two-dimensional drift diffusion model (DDM) including strain effects. The carrier mobility dependence on the ...

  14. Numerical method for a 2D drift diffusion model arising in strained n ...

    Indian Academy of Sciences (India)

    This paper reports the calculation of electron transport in metal oxide semiconductor field effects transistors (MOSFETs) with biaxially tensile strained silicon channel. The calculation is formulated based on two-dimensional drift diffusion model (DDM) including strain effects. The carrier mobility dependence on the lateral and ...

  15. Elasto-plastic strain analysis by a semi-analytical method

    Indian Academy of Sciences (India)

    Some indicative results have been presented for static and dynamic problems and the solution methodology developed for one-dimension has been extended to the elasto-plastic analysis of two-dimensional strain field prob- lems of a rotating disk. Keywords. Non-uniform taper bar; rotating disk; elasto-plastic strain analysis ...

  16. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    NARCIS (Netherlands)

    Versteijlen, W.G.; Van Dalen, K.N.; Metrikine, A.V.; Hamre, L.

    2014-01-01

    The fundamental natural frequency as measured on installed offshore wind turbines is significantly higher than its designed value, and it is expected that the explanation for this can be found in the currently adopted modeling of soil-structure interaction. The small-strain soil stiffness is an

  17. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    NARCIS (Netherlands)

    Versteijlen, W.G.; Van Dalen, K.N.; Metrikine, A.; Hamre, L.

    2014-01-01

    In this contribution, in situ seismic measurements are used to derive the small-strain shear modulus of soil as input for two soil-structure interaction (SSI) models to assess the initial soil stiffness for offshore wind turbine foundations. This stiffness has a defining influence on the first

  18. Modeling and Experimental Strain Measurements on a Non-Homogeneous Cylinder Under Transverse Load

    National Research Council Canada - National Science Library

    Viator, John A; Kreger, Stephen; Winz, Michele W; Udd, Eric

    2004-01-01

    .... While there is an analytical model for determining the strain on a homogeneous cylinder under transverse load, these ber optic sensors are not homogeneous as they consist of distinct regions within the ber...

  19. Strain and displacement measurements for the June 9, 1980 Victoria, Mexico Earthquake

    Science.gov (United States)

    Darby, D.; Nyland, E.; Suarez, F.; Chavez, D.; Gonzalez, J.

    A microgeodetic network 22 km south east of Est. Guadalupe Victoria, Baja California Norte, installed in late May 1980, has been resurveyed in an experiment that started 12 hours after the June 9, 1980 Victoria earthquake, which had an epicenter at 10 km depth about 12 km from the network. The resurvey was complete by June 13. Both the initial observations and the resurvey were done with HP3800 distance meter equipment. Some angular control was provided with a Wild T3 theodolite. The network underwent a compressive strain of 7 ± 3 micro strain essentially parallel the Cerro Prieto fault about the time of the earthquake. Strains of this size are associated with simple dislocation models of earthquakes of this magnitude. Its direction appears to be anomalous however. This may indicate compression related to soil liquefaction processes or strain near the end of the slip plane.

  20. CAPABILITY ASSESSMENT OF MEASURING EQUIPMENT USING STATISTIC METHOD

    Directory of Open Access Journals (Sweden)

    Pavel POLÁK

    2014-10-01

    Full Text Available Capability assessment of the measurement device is one of the methods of process quality control. Only in case the measurement device is capable, the capability of the measurement and consequently production process can be assessed. This paper deals with assessment of the capability of the measuring device using indices Cg and Cgk.

  1. Deformation measurement of internal components of ASDEX Upgrade using optical strain sensors

    Energy Technology Data Exchange (ETDEWEB)

    Vorpahl, C., E-mail: christian.vorpahl@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Suttrop, W.; Ebner, M.; Streibl, B.; Zohm, H. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2013-10-15

    Highlights: ► A fibre-optic measurement for the deformation of in-vessel components has successfully been installed and commissioned at ASDEX Upgrade. ► This technology has thereby been qualified for in-vessel use at experimental nuclear fusion devices. ► The sensors were tested for their neutron tolerance and vacuum compatibility. ► Installation was done by copper–steel laser beam welding. ► The temporal and spatial resolutions of the system are sufficient to resolve oscillations due to internal coils and plasma disruptions. -- Abstract: A fibre-optic measurement system to analyse the deformation of in-vessel components has successfully been developed, installed and commissioned at ASDEX Upgrade (AUG). This technology has thereby been qualified for in-vessel use at experimental fusion devices. AUG is equipped with an internal conductor for passive plasma stabilisation called the Passive Stabilisation Loop (PSL), on which the recently installed 16 internal coils (B-coils) are directly mounted. The PSL structure is highly prone to vibrations, and the risk of resonant oscillations in response to B-coil induced forces necessitated the development of the present diagnostic. The diagnostic system consists of 34 fibre-optic strain sensors incorporated in two glass fibres. It is completely insensitive to electromagnetic disturbances. The fibres are customised to avoid inconvenient excess fibre length in the vacuum vessel. They were tested for their neutron tolerance and vacuum compatibility prior to installation. The actual sensors are embedded in stainless steel carriers that were attached to the PSL, which is made of copper, by laser welding. Appropriate welding parameters were determined in view of the metallurgical dissimilarity. The weld quality was approved by tensile tests and microscopic investigations. Accurate in-vessel positioning of the sensors was assured using a 3D measurement system and coordinates from CAD. The data acquisition allows a

  2. Methods for measuring RF radiation properties of small antennas

    OpenAIRE

    Icheln, Clemens

    2001-01-01

    In this work significant improvements for measurements of the radio-frequency (RF) radiation properties of small antennas have been proposed and investigated. The main focus is on electrically small antennas as used in mobile communications systems. The methods proposed and evaluated in this thesis allow the minimisation of the dimensions of measurement chambers, and the methods also allow pattern measurements with a minimised error from the RF feed cable and thus lower measurement uncertaint...

  3. A Method Using Optical Contactless Displacement Sensors to Measure Vibration Stress of Small-Bore Piping.

    Science.gov (United States)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Noda, Michiyasu

    2014-02-01

    In nuclear power plants, vibration stress of piping is frequently evaluated to prevent fatigue failure. A simple and fast measurement method is attractive to evaluate many piping systems efficiently. In this study, a method to measure the vibration stress using optical contactless displacement sensors was proposed, the prototype instrument was developed, and the instrument practicality for the method was verified. In the proposed method, light emitting diodes (LEDs) were used as measurement sensors and the vibration stress was estimated by measuring the deformation geometry of the piping caused by oscillation, which was measured as the piping curvature radius. The method provided fast and simple vibration estimates for small-bore piping. Its verification and practicality were confirmed by vibration tests using a test pipe and mock-up piping. The stress measured by both the proposed method and an accurate conventional method using strain gauges were in agreement, and it was concluded that the proposed method could be used for actual plant piping systems.

  4. Application of indirect stress measurement techniques (non strain gauge based technology) to quantify stress environments in mines

    CSIR Research Space (South Africa)

    Stacey, TR

    2002-03-01

    Full Text Available Reliable values of in situ stress are essential for the valid modelling of mine layouts. Available non-strain gauge methods are reviewed as potential practical techniques for South African mines. From this review it is concluded that the most...

  5. High Frequency Modulation Method for Measuring of Birefringence

    Directory of Open Access Journals (Sweden)

    Šulc M.

    2013-05-01

    Full Text Available A method of optical birefringence measurement is presented. It uses an el ectro-optic modulator for the high frequency modulation of polarization of the laser beam. The developed optical apparatus exhibits high sensitivity. It is able to measure very small birefringence of samples down to 10-3 rad. The accuracy and sensitivity of the method was checked by measurement of calibrated Sol eil – Babi net compensator. Method can be also used for online and accurate measurement of an optical components birefringence. This application was developed with the aim to measure Cotton-Mouton effect in air and nitrogen.

  6. Full elastic strain and stress tensor measurements from individual dislocation cells in copper through-Si vias.

    Science.gov (United States)

    Levine, Lyle E; Okoro, Chukwudi; Xu, Ruqing

    2015-11-01

    Nondestructive measurements of the full elastic strain and stress tensors from individual dislocation cells distributed along the full extent of a 50 µm-long polycrystalline copper via in Si is reported. Determining all of the components of these tensors from sub-micrometre regions within deformed metals presents considerable challenges. The primary issues are ensuring that different diffraction peaks originate from the same sample volume and that accurate determination is made of the peak positions from plastically deformed samples. For these measurements, three widely separated reflections were examined from selected, individual grains along the via. The lattice spacings and peak positions were measured for multiple dislocation cell interiors within each grain and the cell-interior peaks were sorted out using the measured included angles. A comprehensive uncertainty analysis using a Monte Carlo uncertainty algorithm provided uncertainties for the elastic strain tensor and stress tensor components.

  7. Full elastic strain and stress tensor measurements from individual dislocation cells in copper through-Si vias

    Directory of Open Access Journals (Sweden)

    Lyle E. Levine

    2015-11-01

    Full Text Available Nondestructive measurements of the full elastic strain and stress tensors from individual dislocation cells distributed along the full extent of a 50 µm-long polycrystalline copper via in Si is reported. Determining all of the components of these tensors from sub-micrometre regions within deformed metals presents considerable challenges. The primary issues are ensuring that different diffraction peaks originate from the same sample volume and that accurate determination is made of the peak positions from plastically deformed samples. For these measurements, three widely separated reflections were examined from selected, individual grains along the via. The lattice spacings and peak positions were measured for multiple dislocation cell interiors within each grain and the cell-interior peaks were sorted out using the measured included angles. A comprehensive uncertainty analysis using a Monte Carlo uncertainty algorithm provided uncertainties for the elastic strain tensor and stress tensor components.

  8. Methods for measuring the loudness and noisiness of complex sounds

    Science.gov (United States)

    Kryter, K.

    1970-01-01

    Physical and temporal aspects of sound which influence the rating of subjective noisiness are intensity, spectrum shape and bandwidth, spectral complexity, and duration. Objective rating methods include a graphic method, full octave and one-third octave methods, and methods that measure one value over all frequencies.

  9. In situ measurement using FBGs of process-induced strains during curing of thick glass/epoxy laminate plate

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Hattel, Jesper Henri

    2012-01-01

    For large composite structures, such as wind turbine blades, thick laminates are required to withstand large in-service loads. During the manufacture of thick laminates, one of the challenges met is avoiding process-induced shape distortions and residual stresses. In this paper, embedded fibre...... Bragg grating sensors are used to monitor process-induced strains during vacuum infusion of a thick glass/epoxy laminate. The measured strains are compared with predictions from a cure hardening instantaneous linear elastic (CHILE) thermomechanical numerical model where different mechanical boundary...

  10. A Strain-Based Method to Estimate Slip Angle and Tire Working Conditions for Intelligent Tires Using Fuzzy Logic

    Science.gov (United States)

    Garcia-Pozuelo, Daniel; Yunta, Jorge; Olatunbosun, Oluremi; Yang, Xiaoguang; Diaz, Vicente

    2017-01-01

    Tires equipped with sensors, the so-called “intelligent tires”, can provide vital information for control systems, drivers and external users. In this research, tire dynamic strain characteristics in cornering conditions are collected and analysed in relation to the variation of tire working conditions, such as inflation pressure, rolling speed, vertical load and slip angle. An experimental tire strain-based prototype and an indoor tire test rig are used to demonstrate the suitability of strain sensors to establish relations between strain data and lateral force. The results of experiments show that strain values drop sharply when lateral force is decreasing, which can be used to predict tire slip conditions. As a first approach to estimate some tire working conditions, such as the slip angle and vertical load, a fuzzy logic method has been developed. The simulation and test results confirm the feasibility of strain sensors and the proposed computational model to solve the non-linearity characteristics of the tires’ parameters and turn tires into a source of useful information. PMID:28420156

  11. A Strain-Based Method to Estimate Slip Angle and Tire Working Conditions for Intelligent Tires Using Fuzzy Logic.

    Science.gov (United States)

    Garcia-Pozuelo, Daniel; Yunta, Jorge; Olatunbosun, Oluremi; Yang, Xiaoguang; Diaz, Vicente

    2017-04-16

    Tires equipped with sensors, the so-called "intelligent tires", can provide vital information for control systems, drivers and external users. In this research, tire dynamic strain characteristics in cornering conditions are collected and analysed in relation to the variation of tire working conditions, such as inflation pressure, rolling speed, vertical load and slip angle. An experimental tire strain-based prototype and an indoor tire test rig are used to demonstrate the suitability of strain sensors to establish relations between strain data and lateral force. The results of experiments show that strain values drop sharply when lateral force is decreasing, which can be used to predict tire slip conditions. As a first approach to estimate some tire working conditions, such as the slip angle and vertical load, a fuzzy logic method has been developed. The simulation and test results confirm the feasibility of strain sensors and the proposed computational model to solve the non-linearity characteristics of the tires' parameters and turn tires into a source of useful information.

  12. Intra-specific differentiation of Paramecium bursaria strains by molecular methods--preliminary studies.

    Science.gov (United States)

    Greczek-Stachura, Magdalena; Tarcz, Sebastian; Przyboś, Ewa

    2010-01-01

    Ten strains of Paramecium bursaria and also P. caudatum, P. multimicronucleatum, P. tetraurelia strains (as outgroups) were characterized by using Random Amplified Polymorphic DNA (RAPD), Amplified Ribosomal DNA Restriction Analysis (ARDRA) and sequencing of the non-coding ribosomal internal transcribed spacer (ITS) regions. RAPD analysis revealed that all Paramecium bursaria strains possessed characteristic band patterns; there was a correlation between the degree of differentiation of DNA revealed by RAPD-fingerprinting and the geographic origin of a particular strain. ARDRA riboprinting (using a fragment of SSU-LSU rDNA, about 3085 bp) with restriction enzymes DraI, EcoRV, HhaI, HindIII, MspI, PstI distinguished groups of P. bursaria strains with characteristic band patterns originating from different sites. Comparison of the 550 bp ITS 1-5.8S-ITS2 fragment showed differentiation (0.9%) of the P. bursaria strains as three main groups of strains connected by site of origin in the constructed tree.

  13. The application of molecular methods in the identification of isolated strains of parainfluenza 3 virus of cattle

    Directory of Open Access Journals (Sweden)

    Veljović Lj.

    2014-01-01

    Full Text Available Bovine parainfluenza 3 virus (PI3 causes respiratory infections in cattle and sheep with great economic losses in livestock. The aim of this investigation was to determine the significance of molecular methods in the identification of isolated strains of PI3 virus. Twenty cattle nasal swabs were analyzed for the presence of PI3 using the standard virology method of virus isolation in MBDK cell line and virus neutralization test. The identification of isolated strains was confirmed by RT-PCR and method of direct sequencing with primers for PI3 fusion (F protein gene. PI3 virus was isolated and identified in four nasal swabs using the standard virology method and RT-PCR. The analysis of nucleotide sequences of isolated PI3 strains showed high similarity with sequences isolated from cattle in Asia. Our results showed that molecular methods are very useful in the diagnosis of PI3 infections as well as for the identification and characterization of PI3 strains in Serbia. [Projekat Ministarstva nauke Republike Srbije, br. 31008 i br. 175073

  14. Temperature retrievals from satellite radiance measurements - An empirical method

    Science.gov (United States)

    Fritz, S.

    1977-01-01

    This paper presents a method for using satellite measurements to interpolate vertical temperature soundings between radiosonde stations. The calculations presented show that especially in the 1000-800 mb layer, where linear methods of temperature retrieval usually contain large errors, the proposed method reduces the errors substantially. The method finds a set of coefficients, which when multiplied by corresponding measured radiance quantities, yield zero temperature error at a radiosonde station. This derived set of coefficients is then applied to satellite radiance measurements at places between the radiosonde stations. The computations show, for example, that the average absolute error in the layer 1000-800 mb is only 0.3 K when the corresponding 'minimum-information' method error was 2.9 K. The method may be most applicable to measurements from geostationary satellites, but should also be applicable to measurements from polar orbiting satellites under certain conditions.

  15. Identification of G8 rotavirus strains determined as G12 by rotavirus genotyping PCR: updating the current genotyping methods.

    Science.gov (United States)

    Aladin, Farah; Nawaz, Sameena; Iturriza-Gómara, Miren; Gray, Jim

    2010-04-01

    Rotaviruses are classified into G- and P-types, which are determined by the reactivity with antibodies to the outer viral proteins, VP7 and VP4, respectively, or sequence variation in the genes encoding these proteins. There are presently a number of different rotavirus strains co-circulating within the UK, with the common human strains G1P[8], G2P[4] and G9P[8] being the most prevalent. As part of strain surveillance for the European Rotavirus Network (EuroRotaNet) a cluster (n=29) of G8 strains was detected in the UK between February and May 2009. G8 strains were initially mistyped as G12 through multiplex RT-PCR, therefore further investigation was performed to ascertain the reasons behind this mistyping. The genes encoding the VP7 of these G8 strains were sequenced and aligned with the existing G8- and G12-specific oligonucleotide primers. Multiple alignment of sequences derived from these strains and the G8- and G12-specific oligonucleotide primers revealed a series of point mutations which resulted in mismatches at the 3' end of the G8-specific primer binding site that prevented amplification with the G8-specific primer, whilst a close homology with the G12-specific primer allowed mis-priming. Both the G8 and G12 primers were redesigned and their ability to correctly identify G8 and G12 strains was evaluated and confirmed. These findings highlight the importance of monitoring the specificity and sensitivity of the genotyping methods in order to detect changes in the genotype distribution and changes associated with genetic drift of common or uncommon genotypes. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Measurement of local strain and heat propagation during high-temperature testing in a split-Hopkinson tension bar system

    Directory of Open Access Journals (Sweden)

    Børvik T.

    2012-08-01

    Full Text Available Aluminium alloys are commonly used by the industry due to their good mechanical properties and their relatively low density. An accurate prediction of the behaviour of aluminium alloys under a wide range of temperatures and strain rates is important in numerical simulations of forming processes or applications involving adiabatic heating like penetration and crash situations. Several tests are needed at low, medium and high strain rates to study this behaviour. This paper will focus on the high strain rate test rig, which is a split- Hopkinson tension bar system (SHTB, the acquisition system for strain measurements, and a thermal analysis of the bars due to heating of the sample. A new way of doing local measurements with a high-speed camera will be presented. The thermal boundary conditions of the tests have been measured and simulated, and the results indicate that the stress wave propagation in the bars is not significantly affected by a local heating of the part of the bars which is closest to the sample.

  17. Palmar abduction: reliability of 6 measurement methods in healthy adults.

    Science.gov (United States)

    de Kraker, M; Selles, R W; Schreuders, T A R; Stam, H J; Hovius, S E R

    2009-03-01

    The aim of the current study was to assess reliability of 6 palmar thumb abduction measurement methods: conventional goniometry, the Inter Metacarpal Distance, the method described by the American Medical Association, the method described by the American Society of Hand Therapists, and 2 new methods: the Pollexograph-thumb and the Pollexograph-metacarpal. An experienced hand therapist and a less-experienced examiner (trainee in plastic surgery) measured the right hands of 25 healthy subjects. Palmar abduction was measured both passively and actively. Means and ranges for palmar abduction were calculated, and intrarater and interrater reliability was expressed in intraclass correlation coefficients, standard errors of measurement, and smallest detectable differences. Mean active and passive angles measured with goniometry resembled values measured with the Pollexograph-thumb method (approximately 60 degrees). Mean angles found with the Pollexograph-metacarpal method were approximately 48 degrees. Mean active and passive distances for the Inter Metacarpal Distance were 64 mm. Mean active and passive distances found with the American Society of Hand Therapists method were 97 to 101 mm, and mean distances found with the American Medical Association method were 67 to 70 mm for active and passive measurements. Intraclass correlation coefficients for the Pollexograph-thumb, Pollexograph-metacarpal, and the Inter Metacarpal Distance indicated good and significantly higher intrarater agreement for active and passive measurements than intraclass correlation coefficients of conventional goniometry, the American Society of Hand Therapists method, and the American Medical Association method, which showed only moderate agreement. For interrater reliability, the same measurement methods were found to be most reliable: the Pollexograph-thumb, Pollexograph-metacarpal, and the Inter Metacarpal Distance. We found that the Pollexograph-thumb, Pollexograph-metacarpal, and the Inter

  18. X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper.

    Science.gov (United States)

    Levine, Lyle E; Larson, Bennett C; Yang, Wenge; Kassner, Michael E; Tischler, Jonathan Z; Delos-Reyes, Michael A; Fields, Richard J; Liu, Wenjun

    2006-08-01

    The distribution of elastic strains (and thus stresses) at the submicrometre length scale within deformed metal single crystals has remarkably broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behaviour within individual grains, the transport of dislocations through such structures, changes in mechanical properties that occur during reverse loading (for example, sheet-metal forming and fatigue), and the analyses of diffraction line profiles for microstructural studies of these phenomena. We present the first direct, spatially resolved measurements of the elastic strains within individual dislocation cells in copper single crystals deformed in tension and compression along axes. Broad distributions of elastic strains are found, with important implications for theories of dislocation structure evolution, dislocation transport, and the extraction of dislocation parameters from X-ray line profiles.

  19. An Improved Negative Pressure Wave Method for Natural Gas Pipeline Leak Location Using FBG Based Strain Sensor and Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Qingmin Hou

    2013-01-01

    Full Text Available Methods that more quickly locate leakages in natural gas pipelines are urgently required. In this paper, an improved negative pressure wave method based on FBG based strain sensors and wavelet analysis is proposed. This method takes into account the variation in the negative pressure wave propagation velocity and the gas velocity variation, uses the traditional leak location formula, and employs Compound Simpson and Dichotomy Searching for solving this formula. In addition, a FBG based strain sensor instead of a traditional pressure sensor was developed for detecting the negative pressure wave signal produced by leakage. Unlike traditional sensors, FBG sensors can be installed anywhere along the pipeline, thus leading to high positioning accuracy through more frequent installment of the sensors. Finally, a wavelet transform method was employed to locate the pressure drop points within the FBG signals. Experiment results show good positioning accuracy for natural gas pipeline leakage, using this new method.

  20. DYNAMIC PLANE-STRAIN SHEAR RUPTURE WITH A SLIP-WEAKENING FRICTION LAW CALCULATED BY A BOUNDARY INTEGRAL METHOD.

    Science.gov (United States)

    Andrews, D.J.

    1985-01-01

    A numerical boundary integral method, relating slip and traction on a plane in an elastic medium by convolution with a discretized Green function, can be linked to a slip-dependent friction law on the fault plane. Such a method is developed here in two-dimensional plane-strain geometry. Spontaneous plane-strain shear ruptures can make a transition from sub-Rayleigh to near-P propagation velocity. Results from the boundary integral method agree with earlier results from a finite difference method on the location of this transition in parameter space. The methods differ in their prediction of rupture velocity following the transition. The trailing edge of the cohesive zone propagates at the P-wave velocity after the transition in the boundary integral calculations. Refs.

  1. Research On The Measure Method Of Oblique Pinhole Parameters

    Directory of Open Access Journals (Sweden)

    Ma Yu-Zhen

    2016-01-01

    Full Text Available There are many special advantages in measuring the diameter of blind and deep holes with a capacitive probe, there are still some challenges for the measurement of a oblique pinhole parameters because the measuring device is inconvenient to stretch into the oblique pinhole exactly. A five-dimensional measurement system was adopted in the paper which included a capacitive sensor probe and a three-coordinate measuring machine to accomplish the measurement for oblique pinholes. With the help of the three-dimensional coordinates measured from the pinhole axis, we put forward a comprehensive method of combining the projection method and the least squares method together for fitting spatial straight line to obtain the optimal equation of the spacial axis. Finally, a reliable and entire measurement system was set up.

  2. Systematic method for the validation of long-term temperature measurements

    Science.gov (United States)

    Abdel-Jaber, H.; Glisic, B.

    2016-12-01

    Structural health monitoring (SHM) is the process of collecting and analyzing measurements of various structural and environmental parameters on a structure for the purpose of formulating conclusions on the performance and condition of the structure. Accurate long-term temperature data is critical for SHM applications as it is often used to compensate other measurements (e.g., strain), or to understand the thermal behavior of the structure. Despite the need for accurate long-term temperature data, there are currently no validation methods to ensure the accuracy of collected data. This paper researches and presents a novel method for the validation of long-term temperature measurements from any type of sensors. The method relies on modeling the dependence of temperature measurements inside a structure on the ambient temperature measurements collected from a reliable nearby weather tower. The model is then used to predict future measurements and assess whether or not future measurements conform to predictions. The paper presents both the model selection process, as well as the sensor malfunction detection process. To illustrate and validate the method, it is applied to data from a monitoring system installed on a real structure, Streicker Bridge on the Princeton University campus. Application of the method to data collected from about forty sensors over five years showed the potential of the method to categorize normal sensor function, as well as characterize sensor defect and minor drift.

  3. Raman measurements of Kevlar-29 fiber pull-out test at different strain levels

    Science.gov (United States)

    Wang, Quan; Lei, Zhenkun; Kang, Yilan; Qiu, Wei

    2008-11-01

    This paper adopted Kevlar-29 fiber monofilament embedding technology to prepare fiber/ epoxy resin tensile specimen. The specimen was pulled on a homemade and portable mini-loading device. At the same time micro-Raman spectroscopy is introduced to detect the distributions of stress on the embedded fiber at different strain levels. The characteristic peak shift of the 1610 cm-1 in Raman band has a linear relationship with the strain or stress. The experimental results show that the fiber axial stress decreases gradually from the embedded fiber-start to the embedded fiber-end at the same strain level. At different strain levels, the fiber axial stress increases along with the applied load. It reveals that there is a larger fiber axial stress distribution under a larger strain level. And the stress transfer is realized gradually from the embedded fiber-start to the fiber-end. Stress concentration exists in the embedded fiber-end, which is a dangerous region for interfacial debonding easily.

  4. Novel ultrasonic distance measuring system based on correlation method

    Directory of Open Access Journals (Sweden)

    Gądek K.

    2014-09-01

    Full Text Available This paper presents an innovative method for measuring the time delay of ultrasonic waves. Pulse methods used in the previous studies was characterized by latency. The method of phase correlation, presented in this article is free from this disadvantages. Due to the phase encoding with the use of Walsh functions the presented method allows to obtain better precision than previous methods. The algorithm to measure delay of the reflected wave with the use of microprocessor ARM Cortex M4 linked to a PC has been worked out and tested. This method uses the signal from the ultrasonic probe to precisely determine the time delay, caused by the propagation in medium, possible. In order to verify the effectiveness of the method a part of the measuring system was implemented in LabVIEW. The presented method proved to be effective, as it is shown in presented simulation results

  5. Detection of Dekkera-Brettanomyces strains in sherry by a nested PCR method.

    OpenAIRE

    Ibeas, J I; Lozano, I.; Perdigones, F; Jimenez, J.

    1996-01-01

    Brettanomyces sp. and its ascosporogenous sexual state, Dekkera sp., have been well documented as spoilage microorganisms, usually associated with barrel-aged red wines. In this report, we describe the genetic characterization, on the basis of DNA content per cell, electrophoretic karyotyping, and mitochondrial DNA restriction patterns, of a Dekkera yeast strain isolated from sherries and of a number of other Brettanomyces and Dekkera strains. By using a genomic DNA fragment of the isolated D...

  6. Unified Hall-Petch description of nano-grain nickel hardness, flow stress and strain rate sensitivity measurements

    Directory of Open Access Journals (Sweden)

    R. W. Armstrong

    2017-08-01

    Full Text Available It is shown that: (i nano-grain nickel flow stress and hardness data at ambient temperature follow a Hall-Petch (H-P relation over a wide range of grain size; and (ii accompanying flow stress and strain rate sensitivity measurements follow an analogous H-P relationship for the reciprocal “activation volume”, (1/v* = (1/A*b where A* is activation area. Higher temperature flow stress measurements show a greater than expected reduction both in the H-P kε and in v*. The results are connected with smaller nano-grain size (< ∼20 nm measurements exhibiting grain size weakening behavior that extends to larger grain size when tested at very low imposed strain rates.

  7. [Use of phenotypic methods to estimate species diversity for methicillin-resistant Staphylococcus epidermidis strains--comparative analysis].

    Science.gov (United States)

    Bogiel, Tomasz; Mikucka, Agnieszka; Deptuła, Aleksander; Gospodarek, Eugenia

    2009-01-01

    Many identification and typing methods has been commonly used in microbiological laboratories. Phenotypic methods are the most frequently used. The aim of this study was to compare biochemical profiles and susceptibility patterns ofmethicillin-resistant S. epidermidis strains isolated from clinical material. 46 methicillin-resistant S. epidermidis strains were included in this study. Most of them were isolated from wound swabs (65.2%) and catheters (19.6%) from different surgical clinics (76.1%). To receive biochemical profiles ID 32 Staph tests and GPI cards of Vitek 1 were used receiving 18 and 14 profiles, respectively. 28 susceptibility patterns were obtained by disc-diffusion method and automatic system Vitek 1 using GPS-527 cards. ID 32 Staph tests and Vitek GPI cards represented the lowest discriminate power for methicillin-resistant S. epidermidis strains and they should not be recommended for typing them. Estimation of the susceptibility patterns was far more sensitive among examined phenotypic methods. Groups of strains have often the same profile received in ID 32 Staph test and Vitek GPI cards but different susceptibility.

  8. Ultrafast high strain rate acoustic wave measurements at high static pressure in a diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, M; Crowhurst, J; Reed, E; Zaug, J

    2008-02-04

    We have used sub-picosecond laser pulses to launch ultra-high strain rate ({approx} 10{sup 9} s{sup -1}) nonlinear acoustic waves into a 4:1 methanol-ethanol pressure medium which has been precompressed in a standard diamond anvil cell. Using ultrafast interferometry, we have characterized acoustic wave propagation into the pressure medium at static compression up to 24 GPa. We find that the velocity is dependent on the incident laser fluence, demonstrating a nonlinear acoustic response which may result in shock wave behavior. We compare our results with low strain, low strain-rate acoustic data. This technique provides controlled access to regions of thermodynamic phase space that are otherwise difficult to obtain.

  9. Real-time evaluation of longitudinal peak systolic strain (speckle tracking measurement in left and right ventricles of athletes

    Directory of Open Access Journals (Sweden)

    Stefani Laura

    2009-04-01

    Full Text Available Abstract Background Strain, and particularly Longitudinal Peak Systolic Strain (LPSS, plays a role in investigating the segmental and overall contractility of the heart which is a particularly interesting feature in athletes in whom regular training determines several morphological and functional modifications in both the ventricles, that normally work at different loads. Speckle tracking techniques assess the LPSS of LV and RV from B-mode imaging in real time, with uniform accuracy in all segments, and can verify the possible dissimilar segmental contributions of the two chambers to overall myocardial contraction. The aim of the study is to quantify the LPSS in real time in both the ventricles in order to estimate any possible different deformation properties in them during a systolic period. Methods 32 subjects (20 athletes and 18 controls were submitted to a standard echocardiographic examination at rest and after a Hand Grip (HG stress. From a four-chamber-view image, the LPSS parameter was measured with Speckle Tracking analysis in the basal and medium-apical segments of the two ventricles, at rest and after HG. Results In both athletes and controls, LPSS values were significantly higher in the RV of athletes (RV LPSS medium-apical -23.87 ± 4.94; basalfreewall -25.04 ± 4.12 at rest and controls (RV LPSSmedium-apical -25.21 ± 4.97; basalfreewall -28.69 ± 4.62 at rest than in the LV of both (athletes LV LPSS medium-apical -18.14 ± 4.16; basallateralwall -16.05 ± 12.32; controls medium-apical -18.81 ± 2.64; basallateralwall -19.74 ± 3.84 With the HG test a significant enhancement of the LPSS(with P Conclusion ST analysis is an easy method for investigating the contractility of the RV through deformation parameters, showing greater involvement of the RV than LV at rest. In athletes only, after isometric stress the two ventricles show particular myocardial deformation properties of the regions around the apex where the curvature of the

  10. Disordered Speech Assessment Using Automatic Methods Based on Quantitative Measures

    Directory of Open Access Journals (Sweden)

    Christine Sapienza

    2005-06-01

    Full Text Available Speech quality assessment methods are necessary for evaluating and documenting treatment outcomes of patients suffering from degraded speech due to Parkinson's disease, stroke, or other disease processes. Subjective methods of speech quality assessment are more accurate and more robust than objective methods but are time-consuming and costly. We propose a novel objective measure of speech quality assessment that builds on traditional speech processing techniques such as dynamic time warping (DTW and the Itakura-Saito (IS distortion measure. Initial results show that our objective measure correlates well with the more expensive subjective methods.

  11. Prediction of Full Field Dynamic Strain from Limited Sets of Measured Data

    Directory of Open Access Journals (Sweden)

    Peter Avitabile

    2012-01-01

    Full Text Available Dynamic response is an important consideration for design of structures due to operating or occasional loadings. The resulting dynamic stress strain is also of concern for fatigue and structural health monitoring. Typically, the actual loading and structural condition (boundary conditions, environmental condition, geometry, mechanical properties, etc. are not necessarily known. Much effort is expended in attempting to identify the loads and appropriate model for prediction of these types of events. At best, the forces and actual boundary conditions are approximate and have an effect on the overall predicted response and resulting stress-strain that is identified for subsequent evaluation.

  12. A method of reconstructing the spatial measurement network by mobile measurement transmitter for shipbuilding

    Science.gov (United States)

    Guo, Siyang; Lin, Jiarui; Yang, Linghui; Ren, Yongjie; Guo, Yin

    2017-07-01

    The workshop Measurement Position System (wMPS) is a distributed measurement system which is suitable for the large-scale metrology. However, there are some inevitable measurement problems in the shipbuilding industry, such as the restriction by obstacles and limited measurement range. To deal with these factors, this paper presents a method of reconstructing the spatial measurement network by mobile transmitter. A high-precision coordinate control network with more than six target points is established. The mobile measuring transmitter can be added into the measurement network using this coordinate control network with the spatial resection method. This method reconstructs the measurement network and broadens the measurement scope efficiently. To verify this method, two comparison experiments are designed with the laser tracker as the reference. The results demonstrate that the accuracy of point-to-point length is better than 0.4mm and the accuracy of coordinate measurement is better than 0.6mm.

  13. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  14. Carbon dioxide titration method for soil respiration measurements

    OpenAIRE

    Martín Rubio, Luis

    2017-01-01

    This thesis was commissioned by Tampere University of Applied Sciences, which was interested in studying and developing a titration measurement method for soil respiration and biodegradability. Some experiments were carried out measuring soil respiration for testing the method and others adding some biodegradable material like polylactic acid compressed material and 100% biodegradable plastic bags to test its biodegradability and the possibility to measure it via titration. The thesi...

  15. Measurement Methods to Determine Air Leakage Between Adjacent Zones

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dickerhoff, Darryl J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-09-01

    Air leakage between adjacent zones of a building can lead to indoor air quality and energy efficiency concerns, however there is no existing standard for measuring inter-zonal leakage. In this study, synthesized data and field measurements are analyzed in order to explore the uncertainty associated with different methods for collecting and analyzing fan pressurization measurements to calculate interzone leakage.

  16. Measurement of complex permittivity of composite materials using waveguide method

    NARCIS (Netherlands)

    Tereshchenko, O.V.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2011-01-01

    Complex dielectric permittivity of 4 different composite materials has been measured using the transmissionline method. A waveguide fixture in L, S, C and X band was used for the measurements. Measurement accuracy is influenced by air gaps between test fixtures and the materials tested. One of the

  17. Measurement of heat transfer coefficient using termoanemometry methods

    Directory of Open Access Journals (Sweden)

    Dančová P.

    2014-03-01

    Full Text Available This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.

  18. Color image segmentation by integrating texture measure into JSEG method

    Science.gov (United States)

    Sheng, Qinghong; Zhang, Jianqing; Xiao, Hui

    2007-11-01

    We present a new color image segmentation method that combined texture measures and the JSEG (J measure based JSEGmentation) algorithm. In particular, two major contributions are set forth in this paper. (1) The two measures defined in JSEG and the Laws texture energy is discussed respectively and then we find that the over-segmentation problem of JSEG could be attributed partly to the absence of color discontinuity in the J measure. (2) A new measure is proposed by integrating the Laws texture energy measures into the J measure, on which our segmentation method is based. The new segmentation method taking account of both textural homogeneity and color discontinuity in local regions can be used to detect proper edges at the boundaries of shadows and highlights. Performance improvement due to the proposed modification was demonstrated on a variety of real color images.

  19. Novel method of measurement of radon exhalation from building materials.

    Science.gov (United States)

    Awhida, A; Ujić, P; Vukanac, I; Đurašević, M; Kandić, A; Čeliković, I; Lončar, B; Kolarž, P

    2016-11-01

    In the era of the energy saving policy (i.e. more air tight doors and windows), the radon exhaled from building materials tends to increase its concentration in indoor air, which increases the importance of the measurement of radon exhalation from building materials. This manuscript presents a novel method of the radon exhalation measurement using only a HPGe detector or any other gamma spectrometer. Comparing it with the already used methods of radon exhalation measurements, this method provides the measurement of the emanation coefficient, the radon diffusion length and the radon exhalation rate, all within the same measurement, which additionally defines material's radon protective properties. Furthermore it does not necessitate additional equipment for radon or radon exhalation measurement, which simplifies measurement technique, and thus potentially facilitates introduction of legal obligation for radon exhalation determination in building materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Evaluation of PCR methods for detection of Brucella strains from culture and tissues.

    Science.gov (United States)

    Çiftci, Alper; İça, Tuba; Savaşan, Serap; Sareyyüpoğlu, Barış; Akan, Mehmet; Diker, Kadir Serdar

    2017-04-01

    The genus Brucella causes significant economic losses due to infertility, abortion, stillbirth or weak calves, and neonatal mortality in livestock. Brucellosis is still a zoonosis of public health importance worldwide. The study was aimed to optimize and evaluate PCR assays used for the diagnosis of Brucella infections. For this aim, several primers and PCR protocols were performed and compared with Brucella cultures and biological material inoculated with Brucella. In PCR assays, genus- or species-specific oligonucleotide primers derived from 16S rRNA sequences (F4/R2, Ba148/928, IS711, BruP6-P7) and OMPs (JPF/JPR, 31ter/sd) of Brucella were used. All primers except for BruP6-P7 detected the DNA from reference Brucella strains and field isolates. In spiked blood, milk, and semen samples, F4-R2 primer-oriented PCR assays detected minimal numbers of Brucella. In spiked serum and fetal stomach content, Ba148/928 primer-oriented PCR assays detected minimal numbers of Brucella. Field samples collected from sheep and cattle were examined by bacteriological methods and optimized PCR assays. Overall, sensitivity of PCR assays was found superior to conventional bacteriological isolation. Brucella DNA was detected in 35.1, 1.1, 24.8, 5.0, and 8.0% of aborted fetus, blood, milk, semen, and serum samples by PCR assays, respectively. In conclusion, PCR assay in optimized conditions was found to be valuable in sensitive and specific detection of Brucella infections of animals.

  1. A preliminary biomechanical assessment of a polymer composite hip implant using an infrared thermography technique validated by strain gage measurements.

    Science.gov (United States)

    Bougherara, Habiba; Rahim, Ehsan; Shah, Suraj; Dubov, Anton; Schemitsch, Emil H; Zdero, Rad

    2011-07-01

    With the resurgence of composite materials in orthopaedic applications, a rigorous assessment of stress is needed to predict any failure of bone-implant systems. For current biomechanics research, strain gage measurements are employed to experimentally validate finite element models, which then characterize stress in the bone and implant. Our preliminary study experimentally validates a relatively new nondestructive testing technique for orthopaedic implants. Lock-in infrared (IR) thermography validated with strain gage measurements was used to investigate the stress and strain patterns in a novel composite hip implant made of carbon fiber reinforced polyamide 12 (CF/PA12). The hip implant was instrumented with strain gages and mechanically tested using average axial cyclic forces of 840 N, 1500 N, and 2100 N with the implant at an adduction angle of 15 deg to simulate the single-legged stance phase of walking gait. Three-dimensional surface stress maps were also obtained using an IR thermography camera. Results showed almost perfect agreement of IR thermography versus strain gage data with a Pearson correlation of R(2) = 0.96 and a slope = 1.01 for the line of best fit. IR thermography detected hip implant peak stresses on the inferior-medial side just distal to the neck region of 31.14 MPa (at 840 N), 72.16 MPa (at 1500 N), and 119.86 MPa (at 2100 N). There was strong correlation between IR thermography-measured stresses and force application level at key locations on the implant along the medial (R(2) = 0.99) and lateral (R(2) = 0.83 to 0.99) surface, as well as at the peak stress point (R(2) = 0.81 to 0.97). This is the first study to experimentally validate and demonstrate the use of lock-in IR thermography to obtain three-dimensional stress fields of an orthopaedic device manufactured from a composite material.

  2. Logarithmic derivative method and system for capacitance measurement.

    Science.gov (United States)

    Wu, Yichun; Wang, Lingzhi; Cai, Yuanfeng; Wu, Cunqiao

    2015-08-01

    A novel method based on logarithmic derivative is introduced to analyze multi-lifetime decay. As the discharge voltage signal of a RC circuit is a special kind of multi-lifetime exponential decay, the logarithmic derivative method can be used to measure single capacitance and multiple capacitances. With the logarithmic derivative method, a log(t) curve strongly peaked at precisely log(τ) is obtained, where the lifetime τ equals to RC. In a measurement system, if the resistance R is known, then the capacitance under test can be calculated. A logarithmic derivative curve fitting method is also presented, which has better anti-noise capability than the method that simply finds the maximum data on the peak. The curve fitting method can also be used for multiple capacitors measurement. To measure small capacitances, a large enough time window of the measuring instrument is required. Based on a field programmable gate array and a high speed analog-to-digital converter, a measurement system is developed. This system can provide the 16-bit resolution with sampling rate up to 250 MHz, which has a large enough time window for measuring lifetime shorter than 10(-8) s. To reduce the amount of data needed to be stored and the noise due to the derivative treatment of transient data, the interpolation and noise-filter algorithms are employed. Experiments indicate that the logarithmic derivative method and system are suitable for the measurement of capacitances discharge and other exponential decay processes.

  3. Preliminary results of three-dimensional stress orientation determined by anelastic strain recovery (ASR) measurements of core samples retrieved from IODP Expedition 343

    Science.gov (United States)

    Lin, W.; Yamamoto, Y.; Tanikawa, W.

    2013-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 343, Japan Trench Fast Drilling Project (JFAST) penetrated to ~850 meter below seafloor (mbsf) in a water depth of 6890 m and passed through the plate boundary fault of the overriding North American Plate and the subducting Pacific plate witch. The fault locates at ~820 mbsf and is preliminarily considered to be the source fault of the 2011 Tohoku-oki Mw 9.0 earthquake. Area of JFAST drilling site (C0019) was in the largest coseismic slip zone where the fault slipped more than 50 m during the earthquake. Hole C0019E dedicated to coring retrieved a total of 21 cores having a total of 51 m long cores from both the hanging wall and the footwall of the plate boundary fault. To determine three-dimensional stress state after the huge earthquake, we collected four whole round core samples and measured anelastic strain recovery (ASR) also called 'relaxation' of the core samples onboard D/V Chikyu. The principle idea behind the ASR method is that stress-induced elastic strain is released first instantaneously (i.e., as time-independent elastic strain), followed by a more gradual or time-dependent recovery of anelastic strain. The ASR method takes advantage of the time-dependent strain and has been successfully applied in IODP expeditions (e.g. Byrne et al., 2009; Yamamoto et al., 2013). The four core samples used for ASR measurements were taken from C0019E-1R1 (~177 mbsf), C0019E-5R1 (~697 mbsf)), C0019E-13R1 (~802 mbsf) and C0019E-19R2 (~828 mbsf). The three core samples at shallower depths were in the hanging wall of the fault; and the deepest one was in the footwall. We started ASR measurements approximate three hours after the core was 'on deck', that is approximate six hours from the in situ stress was released, and keep the measurements for about two weeks. The anelastic strains measured in nine directions including six independent directions were extensional; all of the curves varied smoothly and similarly with

  4. A Modified Jaeger's Method for Measuring Surface Tension.

    Science.gov (United States)

    Ntibi, J. Effiom-Edem

    1991-01-01

    A static method of measuring the surface tension of a liquid is presented. Jaeger's method is modified by replacing the pressure source with a variable pressure head. By using this method, stationary air bubbles are obtained thus resulting in controllable external parameters. (Author/KR)

  5. Metagenomics and other Methods for Measuring Antibiotic Resistance in Agroecosystems

    Science.gov (United States)

    Background: There is broad concern regarding antibiotic resistance on farms and in fields, however there is no standard method for defining or measuring antibiotic resistance in environmental samples. Methods: We used metagenomic, culture-based, and molecular methods to characterize the amount, t...

  6. Methods for measuring diffusion coefficients of radon in building materials

    NARCIS (Netherlands)

    Cozmuta, [No Value; van der Graaf, ER

    2001-01-01

    Two methods for determining the Rn-222 diffusion coefficient in concrete are presented. Experimentally, the flush and adsorption technique to measure radon release rates underlines both methods. Theoretically, the first method was developed fur samples of cubical geometry. The radon diffusion

  7. Improved methods of cultivation and production of deuteriated proteins from E. coli strains grown on fully deuteriated minimal medium.

    Science.gov (United States)

    Paliy, O; Bloor, D; Brockwell, D; Gilbert, P; Barber, J

    2003-01-01

    The aim was to develop reliable and economical protocols for the production of fully deuteriated biomolecules by bacteria. This required the preparation of deuterium-tolerant bacterial strains and an understanding of the physiological mechanisms of acquisition of deuterium tolerance. We report here improved methods for the cultivation of Escherichia coli on fully deuteriated minimal medium. A multi-stage adaptation protocol was developed; this included repeated plating and selection of colonies and resulted in highly deuterium-tolerant cell cultures. Three E. coli strains, JM109, MRE600 and MRE600Rif, were adapted to growth on deuteriated succinate medium. This is the first report of JM109 being adapted to deuteriated minimal media. The adapted strains showed good, consistent growth rates and were capable of being transformed with plasmids. Expression of heterologous proteins in these strains was reliable and yields were consistently high (100-200 mg l-1). We also show that all E. coli cells are inherently capable of growth on deuteriated media. We have developed a new adaptation protocol that resulted in three highly deuterium-tolerant E. coli strains. Deuterium-adapted cultures produced good yields of a deuteriated recombinant protein. We suggest that E. coli cells are inherently capable of growth on deuteriated media, but that non-specific mutations enhance deuterium tolerance. Thus plating and selection of colonies leads to highly deuterium-tolerant strains. An understanding of the mechanism of adaptation of E. coli to growth on deuteriated media allows strategies for the development of disabled deuterium-tolerant strains suitable for high-level production of deuteriated recombinant proteins and other biomolecules. This is of particular importance for nuclear magnetic resonance and neutron scattering studies of biomolecules.

  8. Measurement of Ring Strain Using Butanols: A Physical Chemistry Lab Experiment

    Science.gov (United States)

    Martin, William R.; Davidson, Ada S.; Ball, David W.

    2016-01-01

    In this article, a bomb calorimeter experiment and subsequent calculations aimed at determining the strain energy of the cyclobutane backbone are described. Students use several butanol isomers instead of the parent hydrocarbons, and they manipulate liquids instead of gases, which makes the experiment much easier to perform. Experiments show that…

  9. Measurement of strain in InGaN/GaN nanowires and nanopyramids

    DEFF Research Database (Denmark)

    Stankevic, Tomas; Mickevicius, Simas; Nielsen, Mikkel Schou

    2015-01-01

    The growth and optoelectronic properties of core-shell nanostructures are influenced by the strain induced by the lattice mismatch between core and shell. In contrast with planar films, nanostructures contain multiple facets that act as independent substrates for shell growth, which enables diffe...

  10. A high energy microscope for local strain measurements within bulk materials

    DEFF Research Database (Denmark)

    Lienert, U.; Poulsen, H.F.; Martins, R.V.

    2000-01-01

    A novel diffraction technique for local, three dimensional strain scanning within bulk materials is presented. The technique utilizes high energy, micro-focussed synchrotron radiation which can penetrate several millimeters into typical metals. The spatial resolution can be as narrow as 1 mum...

  11. Strain Gage

    Science.gov (United States)

    1995-01-01

    HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.

  12. Simple, rapid and cost-effective method for high quality nucleic acids extraction from different strains of Botryococcus braunii.

    Directory of Open Access Journals (Sweden)

    Byung-Hyuk Kim

    Full Text Available This study deals with an effective nucleic acids extraction method from various strains of Botryococcus braunii which possesses an extensive extracellular matrix. A method combining freeze/thaw and bead-beating with heterogeneous diameter of silica/zirconia beads was optimized to isolate DNA and RNA from microalgae, especially from B. braunii. Eukaryotic Microalgal Nucleic Acids Extraction (EMNE method developed in this study showed at least 300 times higher DNA yield in all strains of B. braunii with high integrity and 50 times reduced working volume compared to commercially available DNA extraction kits. High quality RNA was also extracted using this method and more than two times the yield compared to existing methods. Real-time experiments confirmed the quality and quantity of the input DNA and RNA extracted using EMNE method. The method was also applied to other eukaryotic microalgae, such as diatoms, Chlamydomonas sp., Chlorella sp., and Scenedesmus sp. resulting in higher efficiencies. Cost-effectiveness analysis of DNA extraction by various methods revealed that EMNE method was superior to commercial kits and other reported methods by >15%. This method would immensely contribute to area of microalgal genomics.

  13. Comparison of Thermal Properties Measured by Different Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan [Geo Innova AB, Linkoeping (Sweden); Kukkonen, Ilmo [Geological Survey of Finland, Helsinki (Finland); Haelldahl, Lars [Hot Disk AB, Uppsala (Sweden)

    2003-04-01

    A strategy for a thermal site descriptive model of bedrock is under development at SKB. In the model different kinds of uncertainties exist. Some of these uncertainties are related to the potential errors in the methods used for determining thermal properties of rock. In two earlier investigations thermal properties of rock samples were analysed according to the TPS method (transient plane source). Thermal conductivity and thermal diffusivity were determined using the TPS method. For a comparison, the same samples have been measured at the Geological Survey of Finland (GSF), using different laboratory methods. In this later investigation, the thermal conductivity was determined using the divided-bar method and the specific heat capacity using a calorimetric method. The mean differences between the results of different methods are relatively low but the results of individual samples show large variations. The thermal conductivity measured by the divided bar method gives for most samples slightly higher values, in average about 3%, than the TPS method. The specific heat capacity measured by the calorimetric method gives lower values, in average about 2%, than the TPS method. Consequently, the thermal diffusivity calculated from thermal conductivity and specific heat capacity gives higher values, in average about 6%, than the TPS method. Reasons for the differences are estimated mainly to be dependent on differences between the samples, errors in the temperature dependence of specific heat and in the transformation from volumetric to specific heat. The TPS measurements are performed using two pieces (sub-samples) of rock. Only one of these two sub-samples was measured using the divided bar method and the calorimetric method. Further, sample preparation involved changes in the size of some of the samples. The mean differences between the results of different methods are within the margins of error reported by the measuring laboratories. However, systematic errors in

  14. Laser confocal cylindrical radius measurement method and its system.

    Science.gov (United States)

    Xiao, Yang; Qiu, Lirong; Zhao, Weiqian

    2017-08-10

    This paper proposes a laser confocal cylindrical radius of the curvature measurement (CCRM) method. The CCRM method precisely identifies the positions of the vertex and curvature center of the test cylindrical surface by using the property so that the maximum point of the laser confocal axial intensity curve precisely corresponds to the focus of the laser confocal measurement system, and the accurate distance of these two positions is obtained by the distance measuring instrument, thus achieving the precise measurement of the cylindrical radius. The quadratic fitting method is used to further improve the measurement accuracy. Compared with existing measurement methods, the CCRM method has high measurement precision, simple structure, and strong environmental interference capability, and it is more suitable for engineering applications. Based on the CCRM, the CCRM system is established, and theoretical analysis and preliminary experiments indicate that the relative uncertainty of cylindrical radius measurement is better than 0.045%. Therefore, the CCRM provides an effective approach for the high-precision measurement of cylindrical radius.

  15. Sedimentation in mountain streams: A review of methods of measurement

    Science.gov (United States)

    Hedrick, Lara B.; Anderson, James T.; Welsh, Stuart; Lin, Lian-Shin

    2013-01-01

    The goal of this review paper is to provide a list of methods and devices used to measure sediment accumulation in wadeable streams dominated by cobble and gravel substrate. Quantitative measures of stream sedimentation are useful to monitor and study anthropogenic impacts on stream biota, and stream sedimentation is measurable with multiple sampling methods. Evaluation of sedimentation can be made by measuring the concentration of suspended sediment, or turbidity, and by determining the amount of deposited sediment, or sedimentation on the streambed. Measurements of deposited sediments are more time consuming and labor intensive than measurements of suspended sediments. Traditional techniques for characterizing sediment composition in streams include core sampling, the shovel method, visual estimation along transects, and sediment traps. This paper provides a comprehensive review of methodology, devices that can be used, and techniques for processing and analyzing samples collected to aid researchers in choosing study design and equipment.

  16. Welding deformation analysis based on improved equivalent strain method to cover external constraint during cooling stage

    Directory of Open Access Journals (Sweden)

    Tae-Jun Kim

    2015-09-01

    Full Text Available In the present study, external restraints imposed normal to the plate during the cooling stage were determined to be effective for reduction of the angular distortion of butt-welded or fillet-welded plate. A welding analysis model under external force during the cooling stage was idealized as a prismatic member subjected to pure bending. The external restraint was represented by vertical force on both sides of the work piece and bending stress forms in the transverse direction. The additional bending stress distribution across the plate thickness was reflected in the improved inherent strain model, and a set of inherent strain charts with different levels of bending stress were newly calculated. From an elastic linear FE analysis using the inherent strain values taken from the chart and comparing them with those from a 3D thermal elasto-plastic FE analysis, welding deformation can be calculated.

  17. A Family of Uniform Strain Tetrahedral Elements and a Method for Connecting Dissimilar Finite Element Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Dohrmann, C.R.; Heinstein, M.W.; Jung, J.; Key, S.W.

    1999-01-01

    This report documents a collection of papers on a family of uniform strain tetrahedral finite elements and their connection to different element types. Also included in the report are two papers which address the general problem of connecting dissimilar meshes in two and three dimensions. Much of the work presented here was motivated by the development of the tetrahedral element described in the report "A Suitable Low-Order, Eight-Node Tetrahedral Finite Element For Solids," by S. W. Key {ital et al.}, SAND98-0756, March 1998. Two basic issues addressed by the papers are: (1) the performance of alternative tetrahedral elements with uniform strain and enhanced uniform strain formulations, and (2) the proper connection of tetrahedral and other element types when two meshes are "tied" together to represent a single continuous domain.

  18. Computing Fuzzy Queueing Performance Measures by L-R Method

    Directory of Open Access Journals (Sweden)

    J.P. Mukeba Kanyinda

    2015-04-01

    Full Text Available This article shows that the {\\it L-R method} introduced in this work is one of valid methods for computing performance measures of fuzzy queues. Using this calculation technique, we find the number of customers and the waiting time of a simple queue M/M/1 in fuzzy environment. L-R method has the advantage of being short, convenient and flexible compared to the well-known and called alpha-cuts method.

  19. Testing the association between psychosocial job strain and adverse birth outcomes--design and methods

    DEFF Research Database (Denmark)

    Larsen, Ann D; Hannerz, Harald; Obel, Carsten

    2011-01-01

    A number of studies have examined the effects of prenatal exposure to stress on birth outcomes but few have specifically focused on psychosocial job strain. In the present protocol, we aim to examine if work characterised by high demands and low control, during pregnancy, is associated with the r......A number of studies have examined the effects of prenatal exposure to stress on birth outcomes but few have specifically focused on psychosocial job strain. In the present protocol, we aim to examine if work characterised by high demands and low control, during pregnancy, is associated...... with the risk of giving birth to a child born preterm or small for gestational age....

  20. Monitoring of Yersinia enterocolitica strains from free-living animals using different methods.

    Science.gov (United States)

    Syczyło, K; Platt-Samoraj, A; Bancerz-Kisiel, A; Szczerba-Turek, A; Lipczyńska, K; Jabłoński, A; Procajło, Z; Szweda, W

    2016-01-01

    The aim of the study was to monitor Y. enterocolitica strains from free-living animals captured during 2011-2014 hunting seasons in Poland using warm (ITC) and cold (PSB) enrichment and molecular examination. Over 1600 samples have been cultured. After ITC/PSB enrichment 237 strains presenting features characteristic for Y. enterocolitica were isolated. Molecular examination using multiplex PCR revealed 140 isolates from PSB and 78 from ITC. The concentration of pathogenic Yersinia in asymptomatic carriers is low and the PCR detection should be preceded by bacteriological examination.