WorldWideScience

Sample records for strain gradient crystal

  1. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....

  2. Strain gradient crystal plasticity effects on flow localization

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    for metals described by the reformulated Fleck-Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory...... in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered...

  3. Computational Strain Gradient Crystal Plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...... element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......-plane parameters are developed based on the crystallographic properties of the material. The problem of cyclic shear of a single crystal between rigid platens is studied as well as void growth of a cylindrical void....

  4. Energetic dislocation interactions and thermodynamical aspects of strain gradient crystal plasticity theories

    NARCIS (Netherlands)

    Ertürk, I.; Dommelen, van J.A.W.; Geers, M.G.D.

    2009-01-01

    This paper focuses on the unification of two frequently used and apparently different strain gradient crystal plasticity frameworks: (i) the physicallymotivated strain gradient crystal plasticity models proposed by Evers et al. (2004a,b) and Bayley et al. (2006, 2007) (here referred to as

  5. An incremental flow theory for crystal plasticity incorporating strain gradient effects

    DEFF Research Database (Denmark)

    Nellemann, Christopher; Niordson, Christian Frithiof; Nielsen, Kim Lau

    2017-01-01

    The present work investigates a new approach to formulating a rate-independent strain gradient theory for crystal plasticity. The approach takes as offset recent discussions published in the literature for isotropic plasticity, and a key ingredient of the present work is the manner in which...... a gradient enhanced effective slip measure governs hardening evolution. The effect of both plastic strains and plastic strain gradients are combined into this scalar effective slip quantity, the energy associated with plastic strain is dissipative (unrecoverable), while the energy from plastic strain...... gradients is recoverable (free). The framework developed forms the basis of a finite element implementation and is demonstrated on benchmark problems designed to bring out effects such as strengthening and hardening. Monotonic loading and plane strain deformation is assumed throughout, but despite this, non...

  6. Strain gradient crystal plasticity analysis of a single crystal containing a cylindrical void

    DEFF Research Database (Denmark)

    Borg, Ulrik; Kysar, J.W.

    2007-01-01

    to one another. Finite element simulations are performed using a strain gradient crystal plasticity formulation with an intrinsic length scale parameter in a non-local strain gradient constitutive framework. For a vanishing length scale parameter the non-local formulation reduces to a local crystal...... plasticity formulation. The stress and deformation fields obtained with a local non-hardening constitutive formulation are compared to those obtained from a local hardening formulation and to those from a non-local formulation. Compared to the case of the non-hardening local constitutive formulation......, it is shown that a local theory with hardening has only minor effects on the deformation field around the void, whereas a significant difference is obtained with the non-local constitutive relation. Finally, it is shown that the applied stress state required to activate plastic deformation at the void is up...

  7. Numerical modelling of micro-machining of f.c.c. single crystal: Influence of strain gradients

    KAUST Repository

    Demiral, Murat

    2014-11-01

    A micro-machining process becomes increasingly important with the continuous miniaturization of components used in various fields from military to civilian applications. To characterise underlying micromechanics, a 3D finite-element model of orthogonal micro-machining of f.c.c. single crystal copper was developed. The model was implemented in a commercial software ABAQUS/Explicit employing a user-defined subroutine VUMAT. Strain-gradient crystal-plasticity and conventional crystal-plasticity theories were used to demonstrate the influence of pre-existing and evolved strain gradients on the cutting process for different combinations of crystal orientations and cutting directions. Crown Copyright © 2014.

  8. Hardening and strengthening behavior in rate-independent strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Nellemann, C.; Niordson, C. F.; Nielsen, K.L.

    2018-01-01

    Two rate-independent strain gradient crystal plasticity models, one new and one previously published, are compared and a numerical framework that encompasses both is developed. The model previously published is briefly outlined, while an in-depth description is given for the new, yet somewhat...... related,model. The difference between the two models is found in the definitions of the plastic work expended in the material and their relation to spatial gradients of plastic strains. The model predictions are highly relevant to the ongoing discussion in the literature, concerning 1) what governs...... the increase in the apparent yield stress due to strain gradients (also referred to as strengthening)? And 2), what is the implication of such strengthening in relation to crystalline material behavior at the micron scale? The present work characterizes material behavior, and the corresponding plastic slip...

  9. Strain gradient effects in surface roughening

    DEFF Research Database (Denmark)

    Borg, Ulrik; Fleck, N.A.

    2007-01-01

    evidence for strain gradient effects. Numerical analyses of a bicrystal undergoing in-plane tensile deformation are also studied using a strain gradient crystal plasticity theory and also by using a strain gradient plasticity theory for an isotropic solid. Both theories include an internal material length...

  10. Numerical modelling of micro-machining of f.c.c. single crystal: Influence of strain gradients

    KAUST Repository

    Demiral, Murat; Roy, Anish; El Sayed, Tamer S.; Silberschmidt, Vadim V.

    2014-01-01

    of orthogonal micro-machining of f.c.c. single crystal copper was developed. The model was implemented in a commercial software ABAQUS/Explicit employing a user-defined subroutine VUMAT. Strain-gradient crystal-plasticity and conventional crystal

  11. Micro-Structural Evolution and Size-Effects in Plastically Deformed Single Crystals: Strain Gradient Continuum Modeling

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah

    the macroscopic effects related to strain gradients, most predict smooth micro-structures. The evolution of dislocation micro-structures, during plastic straining of ductile crystalline materials, is highly complex and nonuniform. Published experimental measurements on deformed metal crystals show distinct......An extensive amount of research has been devoted to the development of micro-mechanics based gradient plasticity continuum theories, which are necessary for modeling micron-scale plasticity when large spatial gradients of plastic strain appear. While many models have proven successful in capturing...... strain. It is clear that many challenges are associated with modeling dislocation structures, within a framework based on continuum fields, however, since the strain gradient effects are attributed to the dislocation micro-structure, it is a natural step, in the further development of gradient theories...

  12. Interpreting the stress–strain response of Al micropillars through gradient plasticity

    International Nuclear Information System (INIS)

    Zhang, Xu; Aifantis, Katerina E.; Ngan, Alfonso H.W.

    2014-01-01

    Micropillar compression has fascinated the materials and mechanics communities for over a decade, due to the unique stochastic effects and slip zones that dictate their stress–strain curves and microstructure. Although plethora studies exist that capture experimentally the mechanical response of various types of micropillars, limited theoretical models can interpret the observed behavior. Particularly, single crystal micropillars exhibit multiple serrations in their stress–strain response, indicating the activation of slip zones, while bi-crystal pillars, in which the grain boundary lies parallel to the pillar axis, do not display such serrations, but rather a distinct “knee”, which indicates dislocation pileups at the grain boundary. In-situ synchrotron microdiffraction experiments have illustrated that not only dislocations, but also significant plastic strain gradients develop during micropillar compression. In the present study, therefore, appropriate gradient plasticity models that can account for the pillar microstructure, are successfully used to capture the stress–strain response of single- and bi-crystal Al pillars

  13. Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study

    KAUST Repository

    Demiral, Murat

    2014-07-01

    In this paper the texture evolution in nano-indentation experiments was investigated numerically. To achieve this, a three-dimensional implicit finite-element model incorporating a strain-gradient crystal-plasticity theory was developed to represent accurately the deformation of a body-centred cubic metallic material. A hardening model was implemented to account for strain hardening of the involved slip systems. The surface topography around indents in different crystallographic orientations was compared to corresponding lattice rotations. The influence of strain gradients on the prediction of lattice rotations in nano-indentation was critically assessed. © 2014 Elsevier B.V..

  14. Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study

    KAUST Repository

    Demiral, Murat; Roy, Anish; El Sayed, Tamer S.; Silberschmidt, Vadim V.

    2014-01-01

    In this paper the texture evolution in nano-indentation experiments was investigated numerically. To achieve this, a three-dimensional implicit finite-element model incorporating a strain-gradient crystal-plasticity theory was developed to represent accurately the deformation of a body-centred cubic metallic material. A hardening model was implemented to account for strain hardening of the involved slip systems. The surface topography around indents in different crystallographic orientations was compared to corresponding lattice rotations. The influence of strain gradients on the prediction of lattice rotations in nano-indentation was critically assessed. © 2014 Elsevier B.V..

  15. Attaining the rate-independent limit of a rate-dependent strain gradient plasticity theory

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2016-01-01

    The existence of characteristic strain rates in rate-dependent material models, corresponding to rate-independent model behavior, is studied within a back stress based rate-dependent higher order strain gradient crystal plasticity model. Such characteristic rates have recently been observed...... for steady-state processes, and the present study aims to demonstrate that the observations in fact unearth a more widespread phenomenon. In this work, two newly proposed back stress formulations are adopted to account for the strain gradient effects in the single slip simple shear case, and characteristic...... rates for a selected quantity are identified through numerical analysis. Evidently, the concept of a characteristic rate, within the rate-dependent material models, may help unlock an otherwise inaccessible parameter space....

  16. On lower order strain gradient plasticity theories

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...... the tangent moduli governing increments of stress and strain. It is shown that the modification is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a new type of localization that is at odds with what is expected from a strain gradient theory....... The findings raise questions about the physical acceptability of this class of strain gradient theories....

  17. Flexoelectricity: strain gradient effects in ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Ma Wenhui [Department of Physics, Shantou Unversity, Shantou, Guangdong 515063 (China)

    2007-12-15

    Mechanical strain gradient induced polarization effect or flexoelectricity in perovskite-type ferroelectric and relaxor ferroelectric ceramics was investigated. The flexoelectric coefficients measured at room temperature ranged from about 1 {mu} C m{sup -1} for lead zirconate titanate to 100 {mu} C m{sup -1} for barium strontium titanate. Flexoelectric effects were discovered to be sensitive to chemical makeup, phase symmetry, and domain structures. Based on phenomenological discussion and experimental data on flexoelectricity, the present study proposed that mechanical strain gradient field could influence polarization responses in a way analogous to electric field. Flexoelectric coefficients were found to be nonlinearly enhanced by dielectric permittivity and strain gradient. Interfacial mismatch in epitaxial thin films can give rise to high strain gradients, enabling flexoelectric effects to make a significant impact in properly engineered ferroelectric heterostructure systems.

  18. On modeling micro-structural evolution using a higher order strain gradient continuum theory

    DEFF Research Database (Denmark)

    El-Naaman, S. A.; Nielsen, K. L.; Niordson, C. F.

    2016-01-01

    is to improve the micro-structural response predicted using strain gradient crystal plasticity within a continuum mechanics framework. One approach to modeling the dislocation structures observed is through a back stress formulation, which can be related directly to the strain gradient energy. The present work...... the experimentally observed micro-structural behavior, within a framework based on continuous field quantities, poses obvious challenges, since the evolution of dislocation structures is inherently a discrete and discontinuous process. This challenge, in particular, motivates the present study, and the aim...... offers an investigation of constitutive equations for the back stress based on both considerations of the gradient energy, but also includes results obtained from a purely phenomenological starting point. The influence of model parameters is brought out in a parametric study, and it is demonstrated how...

  19. On fracture in finite strain gradient plasticity

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof

    2016-01-01

    In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....

  20. On lower order strain gradient plasticity theories

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2002-01-01

    By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...

  1. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  2. Strain gradient drives shear banding in metallic glasses

    Science.gov (United States)

    Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong

    2017-09-01

    Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.

  3. Strain gradient plasticity effects in whisker-reinforced metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2002-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (2001). Cell-model analyzes are used to study the influence of the material length parameters numerically. Different higher order boundary conditions are considered...... at the fiber-matrix interface. The results are presented as overall stress-strain curves for the whisker-reinforced metal, and also contour plots of effective plastic strain are shown. The strain gradient plasticity theory predicts a significant stiffening effect when compared to conventional models...

  4. A strain gradient plasticity theory with application to wire torsion

    KAUST Repository

    Liu, J. X.; El Sayed, Tamer S.

    2014-01-01

    Based on the framework of the existing strain gradient plasticity theories, we have examined three kinds of relations for the plastic strain dependence of the material intrinsic length scale, and thus developed updated strain gradient plasticity

  5. Strain gradient effects on cyclic plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2010-01-01

    Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between...... rigid platens have been carried out, using the finite element method. It is shown for elastic–perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly...... hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening...

  6. Thermal-gradient migration of brine inclusions in salt crystals

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables

  7. Thermal gradient migration of brine inclusions in salt crystals

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-01-01

    Natural salt deposits, which are being considered for high-level nuclear wastes repositories, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In the present work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boudaries was observed

  8. A non-affine micro-macro approach to strain-crystallizing rubber-like materials

    Science.gov (United States)

    Rastak, Reza; Linder, Christian

    2018-02-01

    Crystallization can occur in rubber materials at large strains due to a phenomenon called strain-induced crystallization. We propose a multi-scale polymer network model to capture this process in rubber-like materials. At the microscopic scale, we present a chain formulation by studying the thermodynamic behavior of a polymer chain and its crystallization mechanism inside a stretching polymer network. The chain model accounts for the thermodynamics of crystallization and presents a rate-dependent evolution law for crystallization based on the gradient of the free energy with respect to the crystallinity variables to ensures the dissipation is always non-negative. The multiscale framework allows the anisotropic crystallization of rubber which has been observed experimentally. Two different approaches for formulating the orientational distribution of crystallinity are studied. In the first approach, the algorithm tracks the crystallization at a finite number of orientations. In contrast, the continuous distribution describes the crystallization for all polymer chain orientations and describes its evolution with only a few distribution parameters. To connect the deformation of the micro with that of the macro scale, our model combines the recently developed maximal advance path constraint with the principal of minimum average free energy, resulting in a non-affine deformation model for polymer chains. Various aspects of the proposed model are validated by existing experimental results, including the stress response, crystallinity evolution during loading and unloading, crystallinity distribution, and the rotation of the principal crystallization direction. As a case study, we simulate the formation of crystalline regions around a pre-existing notch in a 3D rubber block and we compare the results with experimental data.

  9. Interrelationship between flexoelectricity and strain gradient elasticity in ferroelectric nanofilms: A phase field study

    Science.gov (United States)

    Jiang, Limei; Xu, Xiaofei; Zhou, Yichun

    2016-12-01

    With the development of the integrated circuit technology and decreasing of the device size, ferroelectric films used in nano ferroelectric devices become thinner and thinner. Along with the downscaling of the ferroelectric film, there is an increasing influence of two strain gradient related terms. One is the strain gradient elasticity and the other one is flexoelectricity. To investigate the interrelationship between flexoelectricity and strain gradient elasticity and their combined effect on the domain structure in ferroelectric nanofilms, a phase field model of flexoelectricity and strain gradient elasticity on the ferroelectric domain evolution is developed based on Mindlin's theory of strain-gradient elasticity. Weak form is derived and implemented in finite element formulations for numerically solving the model equations. The simulation results show that upper bounds for flexoelectric coefficients can be enhanced by increasing strain gradient elasticity coefficients. While a large flexoelectricity that exceeds the upper bound can induce a transition from a ferroelectric state to a modulated/incommensurate state, a large enough strain gradient elasticity may lead to a conversion from an incommensurate state to a ferroelectric state. Strain gradient elasticity and the flexoelectricity have entirely opposite effects on polarization. The observed interrelationship between the strain gradient elasticity and flexoelectricity is rationalized by an analytical solution of the proposed theoretical model. The model proposed in this paper could help us understand the mechanism of phenomena observed in ferroelectric nanofilms under complex electromechanical loads and provide some guides on the practical application of ferroelectric nanofilms.

  10. On the homogenization of metal matrix composites using strain gradient plasticity

    DEFF Research Database (Denmark)

    Azizi, Reza; Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2014-01-01

    The homogenized response of metal matrix composites (MMC) is studied using strain gradient plasticity. The material model employed is a rate independent formulation of energetic strain gradient plasticity at the micro scale and conventional rate independent plasticity at the macro scale. Free...

  11. An alternative treatment of phenomenological higher-order strain-gradient plasticity theory

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2010-01-01

    strain is discussed, applying a dislocation theory-based consideration. Then, a differential equation for the equivalent plastic strain-gradient is introduced as an additional governing equation. Its weak form makes it possible to deduce and impose extra boundary conditions for the equivalent plastic...... strain. A connection between the present treatment and strain-gradient theories based on an extended virtual work principle is discussed. Furthermore, a numerical implementation and analysis of constrained simple shear of a thin strip are presented....

  12. Continuum and crystal strain gradient plasticity with energetic and dissipative length scales

    Science.gov (United States)

    Faghihi, Danial

    This work, standing as an attempt to understand and mathematically model the small scale materials thermal and mechanical responses by the aid of Materials Science fundamentals, Continuum Solid Mechanics, Misro-scale experimental observations, and Numerical methods. Since conventional continuum plasticity and heat transfer theories, based on the local thermodynamic equilibrium, do not account for the microstructural characteristics of materials, they cannot be used to adequately address the observed mechanical and thermal response of the micro-scale metallic structures. Some of these cases, which are considered in this dissertation, include the dependency of thin films strength on the width of the sample and diffusive-ballistic response of temperature in the course of heat transfer. A thermodynamic-based higher order gradient framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. The concept of the thermal activation energy, the dislocations interaction mechanisms, nonlocal energy exchange between energy carriers and phonon-electrons interactions are taken into consideration in proposing the thermodynamic potentials such as Helmholtz free energy and rate of dissipation. The same approach is also adopted to incorporate the effect of the material microstructural interface between two materials (e.g. grain boundary in crystals) into the formulation. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the grain boundary. Some of the abovementioned responses of small scale metallic compounds are addressed by means of the numerical implementation of the developed framework within the finite element context. In this regard, both displacement and plastic strain fields are independently discretized and the numerical implementation is performed in

  13. Study of the possibility of growing germanium single crystals under low temperature gradients

    Science.gov (United States)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.; Zhdankov, V. N.

    2014-03-01

    The possibility of growing germanium single crystals under low temperature gradients in order to produce a dislocation-free material has been studied. Germanium crystals with a dislocation density of about 100-200 cm-2 have been grown in a system with a weight control of crystal growth at maximum axial gradients of about 1.5 K/cm.

  14. Debonding analyses in anisotropic materials with strain- gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2012-01-01

    A unit cell approach is adopted to numerically analyze the effect of plastic anisotropy on damage evolution in a micro-reinforced composite. The matrix material exhibit size effects and a visco-plastic anisotropic strain gradient plasticity model accounting for such size effects is adopted....... A conventional cohesive law is extended such that both the average as well as the jump in plastic strain across the fiber-matrix interface are accounted for. Results are shown for both conventional isotropic and anisotropic materials as well as for higher order isotropic and anisotropic materials...... with and without debonding. Generally, the strain gradient enhanced material exhibits higher load carry capacity compared to the corresponding conventional material. A sudden stress drop occurs in the macroscopic stress-strain response curve due to fiber-matrix debonding and the results show that a change in yield...

  15. Mode I and mixed mode crack-tip fields in strain gradient plasticity

    DEFF Research Database (Denmark)

    Goutianos, Stergios

    2011-01-01

    Strain gradients develop near the crack-tip of Mode I or mixed mode cracks. A finite strain version of the phenomenological strain gradient plasticity theory of Fleck–Hutchinson (2001) is used here to quantify the effect of the material length scales on the crack-tip stress field for a sharp...... stationary crack under Mode I and mixed mode loading. It is found that for material length scales much smaller than the scale of the deformation gradients, the predictions converge to conventional elastic–plastic solutions. For length scales sufficiently large, the predictions converge to elastic solutions....... Thus, the range of length scales over which a strain gradient plasticity model is necessary is identified. The role of each of the three material length scales, incorporated in the multiple length scale theory, in altering the near-tip stress field is systematically studied in order to quantify...

  16. Strain gradient effects on steady state crack growth in rate-sensitive materials

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof; Hutchinson, John W.

    2012-01-01

    , a characteristic velocity, at which the toughness becomes independent of the rate-sensitivity, has been observed. It is the aim to bring forward a similar characteristic velocity for the current strain gradient visco-plastic model, as-well as to signify its use in future visco-plastic material modeling.......Steady state crack propagation produce substantial plastic strain gradients near the tip, which are accompanied by a high density of geometrically necessary dislocations and additional local strain hardening. Here, the objective is to study these gradient effects on Mode I toughness...... of a homogeneous rate-sensitive metal, using a higher order plasticity theory. Throughout, emphasis is on the toughness rate-sensitivity, as a recent numerical study of a conventional material (no gradient effects) has indicated a significant influence of both strain rate hardening and crack tip velocity. Moreover...

  17. A strain gradient plasticity theory with application to wire torsion

    KAUST Repository

    Liu, J. X.

    2014-06-05

    Based on the framework of the existing strain gradient plasticity theories, we have examined three kinds of relations for the plastic strain dependence of the material intrinsic length scale, and thus developed updated strain gradient plasticity versions with deformation-dependent characteristic length scales. Wire torsion test is taken as an example to assess existing and newly built constitutive equations. For torsion tests, with increasing plastic strain, a constant intrinsic length predicts too high a torque, while a decreasing intrinsic length scale can produce better predictions instead of the increasing one, different from some published observations. If the Taylor dislocation rule is written in the Nix-Gao form, the derived constitutive equations become singular when the hardening exponent gets close to zero, which seems questionable and calls for further experimental clarifications on the exact coupling of hardening due to statistically stored dislocations and geometrically necessary dislocations. Particularly, when comparing the present model with the mechanism-based strain gradient plasticity, the present model satisfies the reciprocity relation naturally and gives different predictions even under the same parameter setting. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Strain gradient elasticity within the symmetric BEM formulation

    Directory of Open Access Journals (Sweden)

    S. Terravecchia,

    2014-07-01

    Full Text Available The symmetric Galerkin Boundary Element Method is used to address a class of strain gradient elastic materials featured by a free energy function of the (classical strain and of its (first gradient. With respect to the classical elasticity, additional response variables intervene, such as the normal derivative of the displacements on the boundary, and the work-coniugate double tractions. The fundamental solutions - featuring a fourth order partial differential equations (PDEs system - exhibit singularities which in 2D may be of the order 1/ r 4 . New techniques are developed, which allow the elimination of most of the latter singularities. The present paper has to be intended as a research communication wherein some results, being elaborated within a more general paper [1], are reported.

  19. Improved incorporation of strain gradient elasticity in the flexoelectricity based energy harvesting from nanobeams

    Science.gov (United States)

    Zhou, Yarong; Yang, Xu; Pan, Dongmei; Wang, Binglei

    2018-04-01

    Flexoelectricity, the coupling of strain gradient and polarization, exists in all the dielectric materials and numerous models have been proposed to study this mechanism. However, the contribution of strain gradient elasticity has typically been underestimated. In this work, inspired by the one-length scale parameter model developed by Deng et al. [19], we incorporate three length-scale parameters to carefully capture the contribution of the purely mechanical strain gradients on flexoelectricity. This three-parameter model is more flexible and could be applied to investigate the flexoelectricity in a wide range of complicated deformations. Accordingly, we carry out our analysis by studying a dielectric nanobeam under different boundary conditions. We show that the strain gradient elasticity and flexoelectricity have apparent size effects and significant influence on the electromechanical response. In particular, the strain gradient effects could significantly reduce the energy efficiency, indicating their importance and necessity. This work may be helpful in understanding the mechanism of flexoelectricity at the nanoscale and sheds light on the flexoelectricity energy harvesting.

  20. A viscoplastic strain gradient analysis of materials with voids or inclusions

    DEFF Research Database (Denmark)

    Borg, Ulrik; Niordson, Christian Frithiof; Fleck, N. A.

    2006-01-01

    -2454] of the strain gradient plasticity theory proposed by Fleck and Hutchinson (2001) [Journal of the Mechanics and Physics of Solids 49, 2245-2271]. The formulation is based on a viscoplastic potential that enables the formulation of the model so that it reduces to the strain gradient plasticity theory...... in the absence of viscous effects. The numerical implementation uses increments of the effective plastic strain rate as degrees of freedom in addition to increments of displacement. To illustrate predictions of the model, results are presented for materials containing either voids or rigid inclusions......A finite strain viscoplastic nonlocal plasticity model is formulated and implemented numerically within a finite element framework. The model is a viscoplastic generalisation of the finite strain generalisation by Niordson and Redanz (2004) [Journal of the Mechanics and Physics of Solids 52, 2431...

  1. Unique Crystal Orientation of Poly(ethylene oxide) Thin Films by Crystallization Using a Thermal Gradient

    DEFF Research Database (Denmark)

    Gbabode, Gabin; Delvaux, Maxime; Schweicher, Guillaume

    2017-01-01

    Poly(ethylene oxide), (PEO), thin films of different thicknesses (220, 450, and 1500 nm) and molecular masses (4000, 8000, and 20000 g/mol) have been fabricated by spin-coating of methanol solutions onto glass substrates. All these samples have been recrystallized from the melt using a directional......, to significantly decrease the distribution of crystal orientation obtained after crystallization using the thermal gradient technique....

  2. Annealing effect of H+ -implanted single crystal silicon on strain and crystal structure

    International Nuclear Information System (INIS)

    Duo Xinzhong; Liu Weili; Zhang Miao; Gao Jianxia; Fu Xiaorong; Lin Chenglu

    2000-01-01

    The work focuses on the rocking curves of H + -implanted single silicon crystal detected by Four-Crystal X-ray diffractometer. The samples were annealed under different temperatures. Lattice defect in H + -implanted silicon crystals was detected by Rutherford Backscattering Spectrometry. It appeared that H-related complex did not crush until annealing temperature reached about 400 degree C. At that temperature H 2 was formed, deflated in silicon lattice and strained the lattice. But defects did not come into being in large quantity. The lattice was undamaged. When annealing temperature reached 500 degree C, strain induced by H 2 deflation crashed the silicon lattice. A large number of defects were formed. At the same time bubbles in the crystal and blister/flaking on the surface could be observed

  3. Enhancing tube hydroformability by reducing the local strain gradient at potential necking sites

    International Nuclear Information System (INIS)

    Shin, S. G. R.; Joo, B. D.; Moon, Y. H.; Tyne, C. J. Van

    2014-01-01

    Bursting in tube hydroforming is preceded by localized deformation, which is often called necking. The retardation of the initiation of necking is a means to enhance hydroformability. Since high strain gradients occur at necking sites, a decrease in local strain gradients is an effective way to retard the initiation of necking. In the current study, the expansion at potential necking sites was intentionally restricted in order to reduce the strain gradient at potential necking sites. From the strain distribution obtained from FEM, it is possible to determine strain concentrated zones, which are the potential necking sites. Prior to the hydroforming of a trailing arm, lead patch is attached to the tube where the strain concentration would occur. Due to the incompressibility of lead, the tube expansion is locally restricted, and the resultant strain extends to adjacent regions of the tube during hydroforming. After the first stage of hydroforming, the lead is removed from the tube, and the hydroforming continues to obtain the targeted shape without the local restriction. This method was successfully used to fabricate a complex shaped automotive trailing arm that had previously failed during traditional hydroforming processing.

  4. Crystallization engineering as a route to epitaxial strain control

    Directory of Open Access Journals (Sweden)

    Andrew R. Akbashev

    2015-10-01

    Full Text Available The controlled synthesis of epitaxial thin films offers opportunities for tuning their functional properties via enabling or suppressing strain relaxation. Examining differences in the epitaxial crystallization of amorphous oxide films, we report on an alternate, low-temperature route for strain engineering. Thin films of amorphous Bi–Fe–O were grown on (001SrTiO3 and (001LaAlO3 substrates via atomic layer deposition. In situ X-ray diffraction and X-ray photoelectron spectroscopy studies of the crystallization of the amorphous films into the epitaxial (001BiFeO3 phase reveal distinct evolution profiles of crystallinity with temperature. While growth on (001SrTiO3 results in a coherently strained film, the same films obtained on (001LaAlO3 showed an unstrained, dislocation-rich interface, with an even lower temperature onset of the perovskite phase crystallization than in the case of (001SrTiO3. Our results demonstrate how the strain control in an epitaxial film can be accomplished via its crystallization from the amorphous state.

  5. A finite deformation theory of higher-order gradient crystal plasticity

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2008-01-01

    crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution......For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation...

  6. Growth of large aluminum nitride single crystals with thermal-gradient control

    Science.gov (United States)

    Bondokov, Robert T; Rao, Shailaja P; Gibb, Shawn Robert; Schowalter, Leo J

    2015-05-12

    In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.

  7. A search for strain gradients in gold thin films on substrates using x-ray diffraction

    International Nuclear Information System (INIS)

    Leung, O. S.; Munkholm, A.; Brennan, S.; Nix, W. D.

    2000-01-01

    The high strengths of gold thin films on silicon substrates have been studied with particular reference to the possible effect of strain gradients. Wafer curvature/thermal cycling measurements have been used to study the strengths of unpassivated, oxide-free gold films ranging in thickness from 0.1 to 2.5 μm. Films thinner than about 1 μm in thickness appear to be weakened by diffusional relaxation effects near the free surface and are not good candidates for the study of strain gradient plasticity. Our search for plastically induced strain gradients was thus limited to thicker films with correspondingly larger grain sizes. Three related x-ray diffraction techniques have been used to investigate the elastic strains in these films. The standard d hkl vs sin2 Ψ technique has been used to find the average strain through the thickness of the films. The results are consistent with wafer curvature measurements. We have also measured a number of d hkl 's as a function of penetration depth to construct depth-dependent d hkl vs sin2 Ψ plots. These data show that the residual elastic strain is essentially independent of depth in the film. Finally, a new technique for sample rotation has been used to measure the d hkl 's for a fixed set of grains in the film as a function of penetration depth. Again, no detectable gradient in strain has been observed. These results show that the high strengths of unpassivated gold films relative to the strength of bulk gold cannot be rationalized on the basis of strain gradients through the film thickness. However, a sharp gradient in strain close to the film substrate interface cannot be ruled out. (c) 2000 American Institute of Physics

  8. Strain gradient plasticity effects in whisker-reinforced metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2003-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001) 2245). Cell-model analyses are used to study the influence of the material length parameters numerically, for both a single parameter...

  9. A 2D finite element implementation of the Fleck–Willis strain-gradient flow theory

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof

    2013-01-01

    The lay-out of a numerical solution procedure for the strain gradient flow (rate-independent) theory by Fleck and Willis [A mathematical basis for strain-gradient theory – Part II: Tensorial plastic multiplier, 57:1045–1057; 2009, JMPS] has been an open issue, and its finite element implementation...

  10. Entropy-driven crystal formation on highly strained substrates

    KAUST Repository

    Savage, John R.

    2013-05-20

    In heteroepitaxy, lattice mismatch between the deposited material and the underlying surface strongly affects nucleation and growth processes. The effect of mismatch is well studied in atoms with growth kinetics typically dominated by bond formation with interaction lengths on the order of one lattice spacing. In contrast, less is understood about how mismatch affects crystallization of larger particles, such as globular proteins and nanoparticles, where interparticle interaction energies are often comparable to thermal fluctuations and are short ranged, extending only a fraction of the particle size. Here, using colloidal experiments and simulations, we find particles with short-range attractive interactions form crystals on isotropically strained lattices with spacings significantly larger than the interaction length scale. By measuring the free-energy cost of dimer formation on monolayers of increasing uniaxial strain, we show the underlying mismatched substrate mediates an entropy-driven attractive interaction extending well beyond the interaction length scale. Remarkably, because this interaction arises from thermal fluctuations, lowering temperature causes such substrate-mediated attractive crystals to dissolve. Such counterintuitive results underscore the crucial role of entropy in heteroepitaxy in this technologically important regime. Ultimately, this entropic component of lattice mismatched crystal growth could be used to develop unique methods for heterogeneous nucleation and growth of single crystals for applications ranging from protein crystallization to controlling the assembly of nanoparticles into ordered, functional superstructures. In particular, the construction of substrates with spatially modulated strain profiles would exploit this effect to direct self-assembly, whereby nucleation sites and resulting crystal morphology can be controlled directly through modifications of the substrate.

  11. Boundary value problems of the circular cylinders in the strain-gradient theory of linear elasticity

    International Nuclear Information System (INIS)

    Kao, B.G.

    1979-11-01

    Three boundary value problems in the strain-gradient theory of linear elasticity are solved for circular cylinders. They are the twisting of circular cylinder, uniformly pressuring of concentric circular cylinder, and pure-bending of simply connected cylinder. The comparisons of these solutions with the solutions in classical elasticity and in couple-stress theory reveal the differences in the stress fields as well as the apparent stress fields due to the influences of the strain-gradient. These aspects of the strain-gradient theory could be important in modeling the failure behavior of structural materials

  12. Thermal gradient migration of brine inclusions in synthetic alkali halide single crystals

    International Nuclear Information System (INIS)

    Olander, D.R.; Machiels, A.J.; Balooch, M.; Yagnik, S.K.

    1982-01-01

    An apparatus consisting of an optical microscope with a hot stage attachment capable of simultaneously nonuniformly heating and mechanically loading small single crystals of salt was used to measure the velocities of all-liquid inclusions NaC1 and KC1 specimens under various conditions of temperature, temperature gradient, and uniaxial stress. The rate-controlling elementary step in the migration of the inclusions was found to be associated with interfacial processes, probably dissolution of the hot face. Dislocations are required for this step to take place. The small number of dislocation intersections with small inclusions in nearly perfect crystals causes substantial variations in the velocity, a sensitivity of the velocity to mechanical loading of the crystal, and a velocity which varies approximately as the second power of the temperature gradient

  13. Necking of anisotropic micro-films with strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2008-01-01

    Necking of stubby micro-films of aluminum is investigated numerically by considering tension of a specimen with an initial imperfection used to onset localisation. Plastic anisotropy is represented by two different yield criteria and strain-gradient effects are accounted for using the visco......-plastic finite strain model. Furthermore, the model is extended to isotropic anisotropic hardening (evolving anisotropy). For isotropic hardening plastic anisotropy affects the predicted overall nominal stress level, while the peak stress remains at an overall logarithmic strain corresponding to the hardening...... exponent. This holds true for both local and nonlocal materials. Anisotropic hardening delays the point of maximum overall nominal stress....

  14. A study of gradient strengthening based on a finite-deformation gradient crystal-plasticity model

    Science.gov (United States)

    Pouriayevali, Habib; Xu, Bai-Xiang

    2017-11-01

    A comprehensive study on a finite-deformation gradient crystal-plasticity model which has been derived based on Gurtin's framework (Int J Plast 24:702-725, 2008) is carried out here. This systematic investigation on the different roles of governing components of the model represents the strength of this framework in the prediction of a wide range of hardening behaviors as well as rate-dependent and scale-variation responses in a single crystal. The model is represented in the reference configuration for the purpose of numerical implementation and then implemented in the FEM software ABAQUS via a user-defined subroutine (UEL). Furthermore, a function of accumulation rates of dislocations is employed and viewed as a measure of formation of short-range interactions. Our simulation results reveal that the dissipative gradient strengthening can be identified as a source of isotropic-hardening behavior, which may represent the effect of irrecoverable work introduced by Gurtin and Ohno (J Mech Phys Solids 59:320-343, 2011). Here, the variation of size dependency at different magnitude of a rate-sensitivity parameter is also discussed. Moreover, an observation of effect of a distinctive feature in the model which explains the effect of distortion of crystal lattice in the reference configuration is reported in this study for the first time. In addition, plastic flows in predefined slip systems and expansion of accumulation of GNDs are distinctly observed in varying scales and under different loading conditions.

  15. An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers

    Science.gov (United States)

    Nateghi, A.; Dal, H.; Keip, M.-A.; Miehe, C.

    2018-01-01

    Upon stretching a natural rubber sample, polymer chains orient themselves in the direction of the applied load and form crystalline regions. When the sample is retracted, the original amorphous state of the network is restored. Due to crystallization, properties of rubber change considerably. The reinforcing effect of the crystallites stiffens the rubber and increases the crack growth resistance. It is of great importance to understand the mechanism leading to strain-induced crystallization. However, limited theoretical work has been done on the investigation of the associated kinetics. A key characteristic observed in the stress-strain diagram of crystallizing rubber is the hysteresis, which is entirely attributed to strain-induced crystallization. In this work, we propose a micromechanically motivated material model for strain-induced crystallization in rubbers. Our point of departure is constructing a micromechanical model for a single crystallizing polymer chain. Subsequently, a thermodynamically consistent evolution law describing the kinetics of crystallization on the chain level is proposed. This chain model is then incorporated into the affine microsphere model. Finally, the model is numerically implemented and its performance is compared to experimental data.

  16. Fracture of anisotropic materials with plastic strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2013-01-01

    A unit cell is adopted to numerically analyze the effect of plastic anisotropy on frac-ture evolution in a micro-reinforced fiber-composite. The matrix material exhibit size-effects and an anisotropic strain-gradient plasticity model accounting for such size-effects through a mate-rial length scale...

  17. The low thermal gradient CZ technique as a way of growing of dislocation-free germanium crystals

    Science.gov (United States)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.

    2014-09-01

    This paper considers the possibility of growth of dislocation-free germanium single crystals. This is achieved by reducing the temperature gradients at the level of 1 K/cm and lower. Single germanium crystals 45-48 mm in diameter with a dislocation density of 102 cm-2 were grown by a Low Thermal Gradient Czochralski technique (LTG CZ).

  18. Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Du, Han; Zhang, Xingwang; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Zhao, Yunshan [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583 (Singapore)

    2016-04-25

    We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the future nanooptoelectromechanical systems.

  19. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof

    singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation and strain......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation the dislocations are all of edge character and are modelled as line...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  20. Modeling and Analysis of Size-Dependent Structural Problems by Using Low- Order Finite Elements with Strain Gradient Plasticity

    International Nuclear Information System (INIS)

    Park, Moon Shik; Suh, Yeong Sung; Song, Seung

    2011-01-01

    An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers

  1. Clay behaviour under thermal gradients elastic and plastic strains

    International Nuclear Information System (INIS)

    Pintado, Xavier; Autio, Jorma; Punkkinen, Olli

    2010-01-01

    Document available in extended abstract form only. The nuclear waste repositories will generate strong temperature gradients at the clay barrier. The heat and water transport generate volume change in the clay. An experimental work is proposed here. The clay reference is the MX-80. The test device imposes a fixed heat flow in one side of the sample and maintains constant the temperature on the other side. Two samples are tested for symmetry. The samples are unconfined and the total mass of water remains constant. This situation creates a strong thermal gradient in the samples. The final radial strains in some places of the sample, the total vertical strain and the water content distribution will be measured just at the end of the test and some weeks later in order to distinguish the elastic strains from the plastic strains. The test period mustn't be longer than two weeks because a large quantity of water loses through the rubber membrane and the heads of the sample. The maximum temperature reached in the cooper is 90 degrees because with higher temperature, the rubber membrane is damaged. This test is already simulated by a numerical code. Thermal, thermo-hydraulic and thermo-hydro-mechanical analyses are being done. These analyses allow studying the different fluxes inside the sample and its quantification. Water content distribution is compared with the water content calculated from the reference parameters in the clay. The water distribution and the change of diameter after the test will also be studied. This experimental work will allow to know what is the percentage of the strains elastic or plastic and check the mechanical model. The experimental diameter change is compared with the diameter change calculated from the reference parameters of the clay. (authors)

  2. Effect of particle shapes on effective strain gradient of SiC particle reinforced aluminum composites

    International Nuclear Information System (INIS)

    Liu, X; Cao, D F; Mei, H; Liu, L S; Lei, Z T

    2013-01-01

    The stress increments depend not only on the plastic strain but also on the gradient of plastic strain, when the characteristic length scale associated with non-uniform plastic deformation is on the order of microns. In the present research, the Taylor-based nonlocal theory of plasticity (TNT plasticity), with considering both geometrically necessary dislocations and statistically stored dislocations, is applied to investigated the effect of particle shapes on the strain gradient and mechanical properties of SiC particle reinforced aluminum composites (SiC/Al composites). Based on this theory, a two-dimensional axial symmetry cell model is built in the ABAQUS finite element code through its USER-ELEMENT (UEL) interface. Some comparisons with the classical plastic theory demonstrate that the effective stress predicted by TNT plasticity is obviously higher than that predicted by classical plastic theory. The results also demonstrate that the irregular particles cause higher effective gradient strain which is attributed to the fact that angular shape particles give more geometrically.

  3. IR-to-visible image upconverter under nonlinear crystal thermal gradient operation.

    Science.gov (United States)

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Capmany, J

    2018-01-22

    In this work we study the enhancement of the field-of-view of an infrared image up-converter by means of a thermal gradient in a PPLN crystal. Our work focuses on compact upconverters, in which both a short PPLN crystal length and high numerical aperture lenses are employed. We found a qualitative increase in both wavelength and angular tolerances, compared to a constant temperature upconverter, which makes it necessary a correct IR wavelength allocation in order to effectively increase the up-converted area.

  4. Basic Strain Gradient Plasticity Theories with Application to Constrained Film Deformation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, John W.

    2011-01-01

    films: the compression or extension of a finite layer joining rigid platens. Full elastic-plastic solutions are obtained for the same problem based on a finite element method devised for the new class of flow theories. Potential difficulties and open issues associated with the new class of flow theories......A family of basic rate-independent strain gradient plasticity theories is considered that generalize conventional J(2) deformation and flow theories of plasticity to include a dependence on strain gradients in a simple way. The theory builds on three recent developments: the work of Gudmundson (J....... Mech. Phys. Solids 52 (2004), 1379-1406) and Gurtin and Anand (J. Mech. Phys. Solids 57 (2009), 405-421), proposing constitutive relations for flow theories consistent with requirements of positive plastic dissipation; the work of Fleck and Willis (J. Mech. Phys. Solids 57 (2009), 161-177 and 1045...

  5. Strain gradient plasticity modeling of hydrogen diffusion to the crack tip

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; del Busto, S.; Niordson, Christian Frithiof

    2016-01-01

    to characterize the gradient-enhanced stress elevation and subsequent diffusion of hydrogen towards the crack tip. Results reveal that GNDs, absent in conventional plasticity predictions, play a fundamental role on hydrogen transport ahead of a crack. SGP estimations provide a good agreement with experimental......In this work hydrogen diffusion towards the fracture process zone is examined accounting for local hardening due to geometrically necessary dislocations (GNDs) by means of strain gradient plasticity (SGP). Finite element computations are performed within the finite deformation theory...

  6. A study of microindentation hardness tests by mechanism-based strain gradient plasticity

    International Nuclear Information System (INIS)

    Huang, Y.; Xue, Z.; Gao, H.; Nix, W. D.; Xia, Z. C.

    2000-01-01

    We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model. In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society

  7. Deformation patterning driven by rate dependent non-convex strain gradient plasticity

    NARCIS (Netherlands)

    Yalcinkaya, T.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    A rate dependent strain gradient plasticity framework for the description of plastic slip patterning in a system with non-convex energetic hardening is presented. Both the displacement and the plastic slip fields are considered as primary variables. These fields are determined on a global level by

  8. Stress and Strain Gradients in a Low Carbon Steel Deformed under Heavy Sliding

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Huang, Xiaoxu

    A recent study [1] has shown that a microstructure can be refined to a record low of 5 nm and that dislocation glide is still a controlling mechanism at this length scale. In this study, by heavy rotatory sliding of a low carbon steel a gradient structure has been produced extending to about 2.5 mm...... on the deformation microstructure using the classic stress-structure relationship. Computational and materials modelling has been advanced from bulk to gradient structures leading to dissemination of constitutive stress-strain equations in gradient structures....

  9. Crystallization of nuclear glass under a thermal gradient: application to the self-crucible produced in the skull melting process

    International Nuclear Information System (INIS)

    Delattre, O.

    2013-01-01

    In the context of the vitrification of high level nuclear waste, a new industrial process has been launched in 2010 at the La Hague factory: The skull melting process. This setup applies thermal gradients to the melt, which leads to the formation of a solid layer of glass: the 'self-crucible'. The question would be to know whether these thermal gradients have an impact or not on the crystallization behaviour of the considered glasses in the self crucible. In order to answer that question, the crystallization of two glass compositions of nuclear interest has been investigated with an image analysis based method in isothermal and thermal gradient heat treatments conditions. The isothermal experiments allow for the quantification (growth speed, nucleation, crystallized fraction) of the crystallization of apatites (660 C-900 C) and powellites (630 C-900 C). The comparison of the results obtained through these two types of experimentations allows us to conclude that there is no impact of the thermal gradient on the crystallization of the studied glass compositions. In order to complete the image analysis study (based on surfaces), in and ex situ microtomography experiments have been performed at ESRF (Grenoble) on the ID19 beamline. This study allowed us to follow the crystallization of apatites in a simplified glass and to confirm the reliability of the image analysis method based on the analysis of surfaces. (author) [fr

  10. Stress and strain fluctuations in plastic deformation of crystals with disordered microstructure

    International Nuclear Information System (INIS)

    Kapetanou, O; Zaiser, M; Weygand, D

    2015-01-01

    We investigate the spatial structure of stress and strain patterns in crystal plasticity. To this end, we combine theoretical arguments with plasticity simulations using three different models: (i) a generic model of bulk crystal plasticity with stochastic evolution of the local microstructure, (ii) a 2D discrete dislocation simulation assuming single-slip deformation in a bulk crystal, and (iii) a 3D discrete dislocation model for deformation of micropillars in multiple slip. For all three models we investigate the scale-dependent magnitude of local fluctuations of internal stress and plastic strain, and we determine the spatial structure of the respective auto- and cross-correlation functions. The investigations show that, in the course of deformation, nontrivial long range correlations emerge in the stress and strain patterns. We investigate the influence of boundary conditions on the observed spatial patterns of stress and strain, and discuss implications of our findings for larger-scale plasticity models. (paper)

  11. Strain Analysis of Stretched Tourmaline Crystals Using ImageJ, Microsoft Excel and PowerPoint

    Science.gov (United States)

    Bosbyshell, H.

    2012-12-01

    This poster describes an undergraduate structural geology lab exercise utilizing the Mohr's circle diagram for finite strain, constructed using measurements obtained from stretched tourmaline crystals. A small building housing HVAC equipment at the south end of West Chester University's Recitation Hall (itself made of serpentinite) is constructed of early-Cambrian Chickies Quartzite. Stretched tourmaline crystals, with segments joined by fibrous quartz, are visible on many surfaces (presumably originally bedding). While the original orientation of any stone is unknown, these rocks provide an opportunity for a short field exercise during a two-hour lab period and a great base for conducting strain analysis. It is always fun to ask how many in the class have ever noticed the tourmaline (few have). Students take photos using their cell phones or cameras. Since strain is a ratio the absolute size of the tourmaline crystals is immaterial. Nonetheless, this is a good opportunity to remind students of the importance of including a scale in their photographs. The photos are opened in ImageJ and the line tool is used to determine the original and final lengths of selected crystals. Students calculate strain parameters using Microsoft Excel. Then, we use Adobe Illustrator or the drafting capabilities of Microsoft PowerPoint 2010 to follow Ramsay and Huber's techniques using a Mohr's circle construction to determine the finite strain ellipse. If a stretching direction can be estimated, elongation of two crystals is all that is required to determine the strain ratio. If no stretching direction is apparent, three crystals are required for a more complicated analysis that allows for determination of the stretching direction, as well as the strain ratio.

  12. SGH: stress or strain gradient hypothesis? Insights from an elevation gradient on the roof of the world.

    Science.gov (United States)

    Liancourt, Pierre; Le Bagousse-Pinguet, Yoann; Rixen, Christian; Dolezal, Jiri

    2017-07-01

    The stress gradient hypothesis (SGH), the view that competition prevails in undisturbed and productive environments, and shifts to facilitation in disturbed or stressful environments, has become a central paradigm in ecology. However, an alternative view proposes that the relationship between biotic interactions and environmental severity should be unimodal instead of monotonic. Possible causes of discrepancies between these two views were examined in the high elevation desert of the arid Trans-Himalayas. A putative nurse species and its associated plant community was surveyed over its entire elevation range, spanning from alpine to desert vegetation belts. The results were analysed at the community level (vegetation cover and species richness), considering the distinction between the intensity and the importance of biotic interactions. Interactions at the species level (pairwise interactions) were also considered, i.e. the variation of biotic interactions within the niche of a species, for which the abundance (species cover) and probability of occurrence (presence/absence) for the most widespread species along the gradient were distinguished. Overall, facilitation was infrequent in our study system; however, it was observed for the two most widespread species. At the community level, the intensity and importance of biotic interactions showed a unimodal pattern. The departure from the prediction of the SGH happened abruptly where the nurse species entered the desert vegetation belt at the lowest elevation. This abrupt shift was attributed to the turnover of species with contrasting tolerances. At the species level, however, facilitation increased consistently as the level of stress increases and individuals deviate from their optimum (increasing strain). While the stress gradient hypothesis was not supported along our elevation gradient at the community level, the strain gradient hypothesis, considering how species perceive the ambient level of stress and deviate

  13. Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates.

    Science.gov (United States)

    Deng, Bing; Pang, Zhenqian; Chen, Shulin; Li, Xin; Meng, Caixia; Li, Jiayu; Liu, Mengxi; Wu, Juanxia; Qi, Yue; Dang, Wenhui; Yang, Hao; Zhang, Yanfeng; Zhang, Jin; Kang, Ning; Xu, Hongqi; Fu, Qiang; Qiu, Xiaohui; Gao, Peng; Wei, Yujie; Liu, Zhongfan; Peng, Hailin

    2017-12-26

    Wrinkles are ubiquitous for graphene films grown on various substrates by chemical vapor deposition at high temperature due to the strain induced by thermal mismatch between the graphene and substrates, which greatly degrades the extraordinary properties of graphene. Here we show that the wrinkle formation of graphene grown on Cu substrates is strongly dependent on the crystallographic orientations. Wrinkle-free single-crystal graphene was grown on a wafer-scale twin-boundary-free single-crystal Cu(111) thin film fabricated on sapphire substrate through strain engineering. The wrinkle-free feature of graphene originated from the relatively small thermal expansion of the Cu(111) thin film substrate and the relatively strong interfacial coupling between Cu(111) and graphene, based on the strain analyses as well as molecular dynamics simulations. Moreover, we demonstrated the transfer of an ultraflat graphene film onto target substrates from the reusable single-crystal Cu(111)/sapphire growth substrate. The wrinkle-free graphene shows enhanced electrical mobility compared to graphene with wrinkles.

  14. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M.I.; Borg, Ulrik; Niordson, Christian Frithiof

    2008-01-01

    as line singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation, the dislocations are all of edge character and are modelled...... between predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model is chosen to be 0.325 mu m (about 10 times the slip plane spacing in the discrete dislocation models)....

  15. Effect of temperature gradient and crystallization rate on morphological peculiarities of cellular-dendrite structure in iron-nickel alloys

    International Nuclear Information System (INIS)

    Kralina, A.A.; Vorontsov, V.B.

    1977-01-01

    Cellular and dendritic structure of Fe-Ni single crystals (31 and 45 wt%Ni) grown according to Bridgeman have been studied by metallography. Growth rates at which the crystallization frontier becomes unstable and splits into cells have been determined for three temperature gradients. The transition from cells to dendrites occurs gradually through the changes in the cells regular structure and formation of secondary and tertiary branches. The dependence of cell diameter and distance between dendrites on crystallization rate and temperature gradient are discussed in terms of the admixture substructures development according to the schedule: cells - cellular dendrites - dendrites

  16. Finite element implementation and numerical issues of strain gradient plasticity with application to metal matrix composites

    DEFF Research Database (Denmark)

    Frederiksson, Per; Gudmundson, Peter; Mikkelsen, Lars Pilgaard

    2009-01-01

    A framework of finite element equations for strain gradient plasticity is presented. The theoretical framework requires plastic strain degrees of freedom in addition to displacements and a plane strain version is implemented into a commercial finite element code. A couple of different elements...... of quadrilateral type are examined and a few numerical issues are addressed related to these elements as well as to strain gradient plasticity theories in general. Numerical results are presented for an idealized cell model of a metal matrix composite under shear loading. It is shown that strengthening due...... to fiber size is captured but strengthening due to fiber shape is not. A few modelling aspects of this problem are discussed as well. An analytic solution is also presented which illustrates similarities to other theories....

  17. Energy harvesting from vibration of Timoshenko nanobeam under base excitation considering flexoelectric and elastic strain gradient effects

    Science.gov (United States)

    Managheb, S. A. M.; Ziaei-Rad, S.; Tikani, R.

    2018-05-01

    The coupling between polarization and strain gradients is called flexoelectricity. This phenomenon exists in all dielectrics with any symmetry. In this paper, energy harvesting from a Timoshenko beam is studied by considering the flexoelectric and strain gradient effects. General governing equations and related boundary conditions are derived using Hamilton's principle. The flexoelectric effects are defined by gradients of normal and shear strains which lead to a more general model. The developed model also covers the classical Timoshenko beam theory by ignoring the flexoelectric effect. Based on the developed model, flexoelectricity effect on dielectric beams and energy harvesting from cantilever beam under harmonic base excitation is investigated. A parametric study was conducted to evaluate the effects of flexoelectric coefficients, strain gradient constants, base acceleration and the attaching tip mass on the energy harvested from a cantilever Timoshenko beam. Results show that the flexoelectricity has a significant effect on the energy harvester performance, especially in submicron and nano scales. In addition, this effect makes the beam to behave softer than before and also it changes the harvester first resonance frequency. The present study provides guidance for flexoelectric nano-beam analysis and a method to evaluate the performance of energy harvester in nano-dielectric devices.

  18. Photonic Crystal Fiber Sensors for Strain and Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Jian Ju

    2009-01-01

    Full Text Available This paper discusses the applications of photonic crystal fibers (PCFs for strain and temperature measurement. Long-period grating sensors and in-fiber modal interferometric sensors are described and compared with their conventional single-mode counterparts. The strain sensitivities of the air-silica PCF sensors are comparable or higher than those implemented in conventional single-mode fibers but the temperature sensitivities of the PCF sensors are much lower.

  19. On the formulations of higher-order strain gradient crystal plasticity models

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2008-01-01

    Recently, several higher-order extensions to the crystal plasticity theory have been proposed to incorporate effects of material length scales that were missing links in the conventional continuum mechanics. The extended theories are classified into work-conjugate and non-work-conjugate types. A ...... deformation. In this paper, the discussion is extended to a more general situation, i.e. the context of multiple and three-dimensional slip deformations....

  20. A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load

    Science.gov (United States)

    Radwan, Ahmed F.; Sobhy, Mohammed

    2018-06-01

    This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.

  1. Geometric treatment of conduction electron scattering by crystal lattice strains and dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Koushik, E-mail: kviswana@purdue.edu [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Center for Materials Processing and Tribology, Purdue University, West Lafayette, Indiana 47907 (United States); Chandrasekar, Srinivasan [Center for Materials Processing and Tribology, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-12-28

    The problem of conduction electron scattering by inhomogeneous crystal lattice strains is addressed using a tight-binding formalism and the differential geometric treatment of deformations in solids. In this approach, the relative positions of neighboring atoms in a strained lattice are naturally taken into account, even in the presence of crystal dislocations, resulting in a fully covariant Schrödinger equation in the continuum limit. Unlike previous work, the developed formalism is applicable to cases involving purely elastic strains as well as discrete and continuous distributions of dislocations—in the latter two cases, it clearly demarcates the effects of the dislocation strain field and core. It also differentiates between elastic and plastic strain contributions, respectively. The electrical resistivity due to the strain field of edge dislocations is then evaluated and the resulting numerical estimate for Cu shows good agreement with reported experimental values. This indicates that the electrical resistivity of edge dislocations in metals is not entirely due to the core, contrary to current models. Application to the study of strain effects in constrained quantum systems is also discussed.

  2. Strain relaxation of GaAs/Ge crystals on patterned Si substrates

    International Nuclear Information System (INIS)

    Taboada, A. G.; Kreiliger, T.; Falub, C. V.; Känel, H. von; Isa, F.; Isella, G.; Salvalaglio, M.; Miglio, L.; Wewior, L.; Fuster, D.; Alén, B.; Richter, M.; Uccelli, E.; Niedermann, P.; Neels, A.; Dommann, A.; Mancarella, F.

    2014-01-01

    We report on the mask-less integration of GaAs crystals several microns in size on patterned Si substrates by metal organic vapor phase epitaxy. The lattice parameter mismatch is bridged by first growing 2-μm-tall intermediate Ge mesas on 8-μm-tall Si pillars by low-energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs crystals towards full pyramids exhibiting energetically stable (111) facets with decreasing Si pillar size. The release of the strain induced by the mismatch of thermal expansion coefficients in the GaAs crystals has been studied by X-ray diffraction and photoluminescence measurements. The strain release mechanism is discussed within the framework of linear elasticity theory by Finite Element Method simulations, based on realistic geometries extracted from scanning electron microscopy images

  3. Strain relaxation of GaAs/Ge crystals on patterned Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.; Känel, H. von [Laboratory for Solid State Physics, ETH Zürich, Otto-Stern-Weg 1, CH-8093 Zürich (Switzerland); Isa, F.; Isella, G. [L-NESS, Department of Physics, Politecnico di Milano, via Anzani 42, I-22100 Como (Italy); Salvalaglio, M.; Miglio, L. [L-NESS, Department of Materials Science, Università di Milano-Bicocca, via Cozzi 55, I-20125 Milano (Italy); Wewior, L.; Fuster, D.; Alén, B. [IMM, Instituto de Microelectrónica de Madrid (CNM, CSIC), C/Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Richter, M.; Uccelli, E. [Functional Materials Group, IBM Research-Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Niedermann, P.; Neels, A.; Dommann, A. [Centre Suisse d' Electronique et Microtechnique, Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland); Mancarella, F. [CNR-IMM of Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2014-01-13

    We report on the mask-less integration of GaAs crystals several microns in size on patterned Si substrates by metal organic vapor phase epitaxy. The lattice parameter mismatch is bridged by first growing 2-μm-tall intermediate Ge mesas on 8-μm-tall Si pillars by low-energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs crystals towards full pyramids exhibiting energetically stable (111) facets with decreasing Si pillar size. The release of the strain induced by the mismatch of thermal expansion coefficients in the GaAs crystals has been studied by X-ray diffraction and photoluminescence measurements. The strain release mechanism is discussed within the framework of linear elasticity theory by Finite Element Method simulations, based on realistic geometries extracted from scanning electron microscopy images.

  4. Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes

    Science.gov (United States)

    Zhou, Dong

    In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user

  5. Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Jian; Wang, Xiaowei; Paiella, Roberto [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary' s Street, Boston, Massachusetts 02215 (United States); Cui, Xiaorui; Sookchoo, Pornsatit; Lagally, Max G. [Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-06-13

    Flexible photonic-crystal cavities in the form of Si-column arrays embedded in polymeric films are developed on Ge nanomembranes using direct membrane assembly. The resulting devices can sustain large biaxial tensile strain under mechanical stress, as a way to enhance the Ge radiative efficiency. Pronounced emission peaks associated with photonic-crystal cavity resonances are observed in photoluminescence measurements. These results show that ultrathin nanomembrane active layers can be effectively coupled to an optical cavity, while still preserving their mechanical flexibility. Thus, they are promising for the development of strain-enabled Ge lasers, and more generally uniquely flexible optoelectronic devices.

  6. Strain gradient crystal plasticity: A continuum mechanics approach to modeling micro-structural evolution

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2015-01-01

    In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurring...

  7. Ecological divergence of a novel group of Chloroflexus strains along a geothermal gradient.

    Science.gov (United States)

    Weltzer, Michael L; Miller, Scott R

    2013-02-01

    Environmental gradients are expected to promote the diversification and coexistence of ecological specialists adapted to local conditions. Consistent with this view, genera of phototrophic microorganisms in alkaline geothermal systems generally appear to consist of anciently divergent populations which have specialized on different temperature habitats. At White Creek (Lower Geyser Basin, Yellowstone National Park), however, a novel, 16S rRNA-defined lineage of the filamentous anoxygenic phototroph Chloroflexus (OTU 10, phylum Chloroflexi) occupies a much wider thermal niche than other 16S rRNA-defined groups of phototrophic bacteria. This suggests that Chloroflexus OTU 10 is either an ecological generalist or, alternatively, a group of cryptic thermal specialists which have recently diverged. To distinguish between these alternatives, we first isolated laboratory strains of Chloroflexus OTU 10 from along the White Creek temperature gradient. These strains are identical for partial gene sequences encoding the 16S rRNA and malonyl coenzyme A (CoA) reductase. However, strains isolated from upstream and downstream samples could be distinguished based on sequence variation at pcs, which encodes the propionyl-CoA synthase of the 3-hydroxypropionate pathway of carbon fixation used by the genus Chloroflexus. We next demonstrated that strains have diverged in temperature range for growth. Specifically, we obtained evidence for a positive correlation between thermal niche breadth and temperature optimum, with strains isolated from lower temperatures exhibiting greater thermal specialization than the most thermotolerant strain. The study has implications for our understanding of both the process of niche diversification of microorganisms and how diversity is organized in these hot spring communities.

  8. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  9. On modeling of geometrically necessary dislocation densities in plastically deformed single crystals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2013-01-01

    ) for isotropic plasticity. An effective 2Dsolution valid for certain orientations of face centered cubic crystals is presented, where effective in-plane material properties are derived based on the crystallographic properties. The problems of void growth, pure shear and 2D wedge indentation are analyzed......A computational method for strain gradient single crystal plasticity is presented. The method accounts for both recoverable and dissipative gradient effects. The mathematical solution procedure is predicated on two minimum principles along the lines of those devised by Fleck and Willis (2009...

  10. On size-effects in single crystal wedge indentation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2012-01-01

    constitutive length parameters to model sizeeffects. The problem is studied numerically using a strain gradient crystal visco-plasticity theory formulated along the lines proposed by Fleck andWillis (2009). It is shown how the force-indentation relation is affected due to size-dependence in the material. Size...

  11. Strain gradient plasticity-based modeling of hydrogen environment assisted cracking

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof; P. Gangloff, Richard

    2016-01-01

    Finite element analysis of stress about a blunt crack tip, emphasizing finite strain and phenomenologicaland mechanism-based strain gradient plasticity (SGP) formulations, is integrated with electrochemical assessment of occluded-crack tip hydrogen (H) solubility and two H-decohesion models...... to predict hydrogen environment assisted crack growth properties. SGP elevates crack tip geometrically necessary dislocation density and flow stress, with enhancement declining with increasing alloy strength. Elevated hydrostatic stress promotes high-trapped H concentration for crack tip damage......; it is imperative to account for SGP in H cracking models. Predictions of the threshold stress intensity factor and H-diffusion limited Stage II crack growth rate agree with experimental data for a high strength austenitic Ni-Cusuperalloy (Monel®K-500) and two modern ultra-high strength martensitic steels (Aer...

  12. Nuclear magnetic resonance probe head design for precision strain control

    International Nuclear Information System (INIS)

    Kissikov, T.; Sarkar, R.; Bush, B. T.; Lawson, M.; Canfield, P. C.; Curro, N. J.

    2017-01-01

    Here, we present the design and construction of an NMR probe to investigate single crystals under strain at cryogenic temperatures. The probe head incorporates a piezoelectric-based apparatus from Razorbill Instruments that enables both compressive and tensile strain tuning up to strain values on the order of 0.3% with a precision of 0.001%. 75 As NMR in BaFe 2 As 2 reveals large changes to the electric field gradient and indicates that the strain is homogeneous to within 16% over the volume of the NMR coil.

  13. Plasticity dependent damage evolution in composites with strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2015-01-01

    . (2013). In this study the reinforcement is assumed perfectly stiff and consequently only one new cohesive material parameter is introduced. Results are shown for both conventional isotropy as well as plastic anisotropy with higher-order material behavior. Due to fiber-matrix decohesion a sudden stress......A unit cell approach is adopted to numerically analyze the effect of reinforcement size on fracture evolution in metal matrix composites. The matrix material shows plastic size-effects and is modeled by an anisotropic version of the single parameter strain-gradient (higher-order) plasticity model...... by Fleck and Hutchinson (2001). The fracture process along the fiber-matrix interface is modeled using a recently proposed cohesive law extension, where plasticity affects the fracture process as both the average as well as the jump in plastic strain across the interface are accounted for Tvergaard et al...

  14. Landau levels from neutral Bogoliubov particles in two-dimensional nodal superconductors under strain and doping gradients

    Science.gov (United States)

    Nica, Emilian M.; Franz, Marcel

    2018-02-01

    Motivated by recent work on strain-induced pseudomagnetic fields in Dirac and Weyl semimetals, we analyze the possibility of analogous fields in two-dimensional nodal superconductors. We consider the prototypical case of a d -wave superconductor, a representative of the cuprate family, and find that the presence of weak, spatially varying strain leads to pseudomagnetic fields and Landau quantization of Bogoliubov quasiparticles in the low-energy sector. A similar effect is induced by the presence of generic, weak doping gradients. In contrast to genuine magnetic fields in superconductors, the strain- and doping-gradient-induced pseudomagnetic fields couple in a way that preserves time-reversal symmetry and is not subject to the screening associated with the Meissner effect. These effects can be probed by tuning weak applied supercurrents which lead to shifts in the energies of the Landau levels and hence to quantum oscillations in thermodynamic and transport quantities.

  15. Strain coupling between nitrogen vacancy centers and the mechanical motion of a diamond optomechanical crystal resonator

    Science.gov (United States)

    Cady, J. V.; Lee, K. W.; Ovartchaiyapong, P.; Bleszynski Jayich, A. C.

    Several experiments have recently demonstrated coupling between nitrogen vacancy (NV) centers in diamond and mechanical resonators via crystal strain. In the strong coupling regime, such devices could realize applications critical to emerging quantum technologies, including phonon-mediated spin-spin interactions and mechanical cooling with the NV center1. An outstanding challenge for these devices is generating higher strain coupling in high frequency devices while maintaining the excellent coherence properties of the NV center and high mechanical quality factors. As a step toward these objectives, we demonstrate single-crystal diamond optomechanical crystal resonators with embedded NV centers. These devices host highly-confined GHz-scale mechanical modes that are isolated from mechanical clamping losses and generate strain profiles that allow for large strain coupling to NV centers far from noise-inducing surfaces.

  16. Non-local crystal plasticity model with intrinsic SSD and GND effects

    NARCIS (Netherlands)

    Evers, L.P.; Brekelmans, W.A.M.; Geers, M.G.D.

    2004-01-01

    A strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to be capable of predicting scale dependence, the heterogeneous deformation-induced evolution and distribution of geometrically

  17. Investigation of Size-Dependency in Free-Vibration of Micro-Resonators Based on the Strain Gradient Theory

    Directory of Open Access Journals (Sweden)

    R. Vatankhah

    Full Text Available Abstract This paper investigates the vibration behavior of micro-resonators based on the strain gradient theory, a non-classical continuum theory capable of capturing the size effect appearing in micro-scale structures. The micro-resonator is modeled as a clamped-clamped micro-beam with an attached mass subjected to an axial force. The governing equations of motion and both classical and non-classical sets of boundary conditions are developed based on the strain gradient theory. The normalized natural frequency of the micro-resonator is evaluated and the influences of various parameters are assessed. In addition, the current results are compared to those of the classical and modified couple stress continuum theories.

  18. Exploiting the natural doping gradient of Nd:YLF crystals for high-power end pumped lasers

    CSIR Research Space (South Africa)

    Bollig, C

    2008-01-01

    Full Text Available decided to use crystals of a doping concentration below the 0.5% previously used. In addition, researchers decided to exploit the natural doping gradient along the length of the boule, which is especially pronounced at low concentrations but commonly...

  19. Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction

    International Nuclear Information System (INIS)

    Liu, B; Raabe, D; Roters, F; Eisenlohr, P; Lebensohn, R A

    2010-01-01

    We compare two full-field formulations, i.e. a crystal plasticity fast Fourier transform-based (CPFFT) model and the crystal plasticity finite element model (CPFEM) in terms of the deformation textures predicted by both approaches. Plane-strain compression of a 1024-grain ensemble is simulated with CPFFT and CPFEM to assess the models in terms of their predictions of texture evolution for engineering applications. Different combinations of final textures and strain distributions are obtained with the CPFFT and CPFEM models for this 1024-grain polycrystal. To further understand these different predictions, the correlation between grain rotations and strain gradients is investigated through the simulation of plane-strain compression of bicrystals. Finally, a study of the influence of the initial crystal orientation and the crystallographic neighborhood on grain rotations and grain subdivisions is carried out by means of plane-strain compression simulations of a 64-grain cluster

  20. Ternary gradient metal-organic frameworks.

    Science.gov (United States)

    Liu, Chong; Rosi, Nathaniel L

    2017-09-08

    Gradient MOFs contain directional gradients of either structure or functionality. We have successfully prepared two ternary gradient MOFs based on bMOF-100 analogues, namely bMOF-100/102/106 and bMOF-110/100/102, via cascade ligand exchange reactions. The cubic unit cell parameter discrepancy within an individual ternary gradient MOF crystal is as large as ∼1 nm, demonstrating the impressive compatibility and flexibility of the component MOF materials. Because of the presence of a continuum of unit cells, the pore diameters within individual crystals also change in a gradient fashion from ∼2.5 nm to ∼3.0 nm for bMOF-100/102/106, and from ∼2.2 nm to ∼2.7 nm for bMOF-110/100/102, indicating significant porosity gradients. Like previously reported binary gradient MOFs, the composition of the ternary gradient MOFs can be easily controlled by adjusting the reaction conditions. Finally, X-ray diffraction and microspectrophotometry were used to analyse fractured gradient MOF crystals by comparing unit cell parameters and absorbance spectra at different locations, thus revealing the profile of heterogeneity (i.e. gradient distribution of properties) and further confirming the formation of ternary gradient MOFs.

  1. [Genes of insecticidal crystal proteins with dual specificity in Bacillus thuringiensis strains, isolated in the Crimea territory].

    Science.gov (United States)

    Rymar, S Iu; Isakova, I A; Kuznietsova, L M; Kordium, V A

    2006-01-01

    The insecticidal crystal proteins of 15 B. thuringiensis strains, isolated in the Crimea territory that are toxical for some Lepidoptera and Colorado potato beetle larvae were identified by PAGE electrophoresis. Ten strains produced the crystal proteins with high molecular weight (> 120 kD). PCR with use of broad specificity primers and DNA of these B. thuringiensis strains as template demonstrated the specific PCR products (1000 bp). Amplified DNA fragments were cloned and sequenced. The nucleotide sequence analysis revealed that the genomes of ten strains of B. thuringiensis carried Cry1B genes, which are responsible for production of the insecticidal crystal proteins with dual specificity. The influence of the solubilization conditions on the structure and toxicity of Cry1B protein for Colorado potato beetle larvae was shown. The dual toxicity of studied B. thuringiensis strains is explained by the Cry1B genes presence in their genomes. These strains may be used to develop the broad specificity bioinsecticides.

  2. Inhomogeneous strain induced by fast neutron irradiation in NaKSO4 crystals

    International Nuclear Information System (INIS)

    Kandil, S.H.; Kassem, M.E.; El-Khatib, A.; El-Gamal, M.A.; El-Wahidy, E.F.

    1987-01-01

    The paper reports the effect of fast neutron irradiation on the thermal properties of NaKSO 4 crystals in the temperature range 400-475 K. Results are presented for the thermal expansion, tensile strain and specific heat of NaKSO 4 , as a function of neutron irradiation dose. All these results revealed an inhomogeneous strain induced by the radiation. It is suggested that this induced inhomogeneous strain could be used to detect neutron exposure doses. (UK)

  3. Strain-free polished channel-cut crystal monochromators: a new approach and results

    Science.gov (United States)

    Kasman, Elina; Montgomery, Jonathan; Huang, XianRong; Lerch, Jason; Assoufid, Lahsen

    2017-08-01

    The use of channel-cut crystal monochromators has been traditionally limited to applications that can tolerate the rough surface quality from wet etching without polishing. We have previously presented and discussed the motivation for producing channel cut crystals with strain-free polished surfaces [1]. Afterwards, we have undertaken an effort to design and implement an automated machine for polishing channel-cut crystals. The initial effort led to inefficient results. Since then, we conceptualized, designed, and implemented a new version of the channel-cut polishing machine, now called C-CHiRP (Channel-Cut High Resolution Polisher), also known as CCPM V2.0. The new machine design no longer utilizes Figure-8 motion that mimics manual polishing. Instead, the polishing is achieved by a combination of rotary and linear functions of two coordinated motion systems. Here we present the new design of C-CHiRP, its capabilities and features. Multiple channel-cut crystals polished using the C-CHiRP have been deployed into several beamlines at the Advanced Photon Source (APS). We present the measurements of surface finish, flatness, as well as topography results obtained at 1-BM of APS, as compared with results typically achieved when polishing flat-surface monochromator crystals using conventional polishing processes. Limitations of the current machine design, capabilities and considerations for strain-free polishing of highly complex crystals are also discussed, together with an outlook for future developments and improvements.

  4. Instabilities in power law gradient hardening materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...... of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly....

  5. Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting

    Science.gov (United States)

    Tol, S.; Degertekin, F. L.; Erturk, A.

    2016-08-01

    We explore the enhancement of structure-borne elastic wave energy harvesting, both numerically and experimentally, by exploiting a Gradient-Index Phononic Crystal Lens (GRIN-PCL) structure. The proposed GRIN-PCL is formed by an array of blind holes with different diameters on an aluminum plate, where the blind hole distribution is tailored to obtain a hyperbolic secant gradient profile of refractive index guided by finite-element simulations of the lowest asymmetric mode Lamb wave band diagrams. Under plane wave excitation from a line source, experimentally measured wave field validates the numerical simulation of wave focusing within the GRIN-PCL domain. A piezoelectric energy harvester disk located at the first focus of the GRIN-PCL yields an order of magnitude larger power output as compared to the baseline case of energy harvesting without the GRIN-PCL on the uniform plate counterpart.

  6. A comparative investigation on strain induced crystallization for graphene and carbon nanotubes filled natural rubber composites

    Directory of Open Access Journals (Sweden)

    D. H. Fu

    2015-07-01

    Full Text Available Natural rubber containing graphene and carbon nanotubes (CNTs composites were prepared by ultrasonicallyassisted latex mixing. Natural rubber filled by both graphene and CNTs show significant enhanced tensile strength, while graphene exhibits a better reinforcing effect than CNTs. Strain-induced crystallization in natural rubber composites during stretching was determined by synchrotron wide-angle X-ray diffraction. With the addition of CNTs or graphene, the crystallization for natural rubber occurs at a lower strain compared to unfilled natural rubber, and the strain amplification effects were observed. The incorporation of graphene results in a faster strain-induced crystallization rate and a higher crystallinity compared to CNTs. The entanglement-bound rubber tube model was used to analyze the chain network structure and determine the network parameters of composites. The results show that the addition of graphene or CNTs has an influence on the molecular network structure and improves the contribution of entanglement to the conformational constraint, while graphene has a more marked effect than CNTs.

  7. Through-Layer Buckle Wavelength-Gradient Design for the Coupling of High Sensitivity and Stretchability in a Single Strain Sensor.

    Science.gov (United States)

    He, Tengyu; Lin, Chucheng; Shi, Liangjing; Wang, Ranran; Sun, Jing

    2018-03-21

    Recent years have witnessed a breathtaking development of wearable strain sensors. Coupling high sensitivity and stretchability in a strain sensor is greatly desired by emerging wearable applications but remains a big challenge. To tackle this issue, a through-layer buckle wavelength-gradient design is proposed and a facile and universal fabrication strategy is demonstrated to introduce such a gradient into the sensing film with multilayered sensing units. Following this strategy, strain sensors are fabricated using graphene woven fabrics (GWFs) as sensing units, which exhibit highly tunable electromechanical performances. Specifically, the sensor with 10-layer GWFs has a gauge factor (GF) of 2996 at a maximum strain of 242.74% and an average GF of 327. It also exhibits an extremely low minimum detection limit of 0.02% strain, a fast signal response of less than 90 ms, and a high cyclic durability through more than 10 000 cycling test. Such excellent performances qualify it in accurately monitoring full-range human activities, ranging from subtle stimuli (e.g., pulse, respiration, and voice recognition) to vigorous motions (finger bending, walking, jogging, and jumping). The combination of experimental observations and modeling study shows that the predesigned through-layer buckle wavelength gradient leads to a layer-by-layer crack propagation process, which accounts for the underlying working mechanism. Modeling study shows a great potential for further improvement of sensing performances by adjusting fabrication parameters such as layers of sensing units ( n) and step pre-strain (ε sp ). For one thing, when ε sp is fixed, the maximum sensing strain could be adjusted from >240% ( n = 10) to >450% ( n = 15) and >1200% ( n = 20). For the other, when n is fixed, the maximum sensing strain could be adjusted from >240% (ε sp = 13.2%) to >400% (ε sp = 18%) and >800% (ε sp = 25%).

  8. Development of a New Gradient Based Strain-Criterion for Prediction of Bendability in Quality Assurance and FEA

    Science.gov (United States)

    Denninger, Ralf; Liewald, Mathias; Sindel, Manfred

    2011-08-01

    Numerical simulation systems are more and more used in process development of car bodies. Nowadays, also the hemming process is optimised in FEA. Thus, the analysing of process robustness calls for a failure criterion for the specific bending and hemming load condition. For that purpose the experimental determination of bendability under various pre-load conditions that occur in real production, e.g. during deep drawing in press shop, is content of this contribution. Using these experimental results, a new approach for a strain-gradient based failure criterion for bending operations is presented to optimise bendability prediction. The bending-strain-gradient approach can be used both in production related departments of quality assurance as well as for simulative process design or process validation for vehicle manufacturing planning.

  9. Inhomogeneous strain induced by fast neutron irradiation in NaKSO/sub 4/ crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kandil, S.H.; Kassem, M.E.; El-Khatib, A.; El-Gamal, M.A.; El-Wahidy, E.F.

    1987-11-01

    The paper reports the effect of fast neutron irradiation on the thermal properties of NaKSO/sub 4/ crystals in the temperature range 400-475 K. Results are presented for the thermal expansion, tensile strain and specific heat of NaKSO/sub 4/, as a function of neutron irradiation dose. All these results revealed an inhomogeneous strain induced by the radiation. It is suggested that this induced inhomogeneous strain could be used to detect neutron exposure doses.

  10. On the formulation of higher gradient single and polycrystal plasticity

    International Nuclear Information System (INIS)

    Menzel, A.; Steinmann, P.

    1998-01-01

    This contribution aims in a geometrically linear formulation of higher gradient plasticity of single and polycrystalline material based on the continuum theory of dislocations and incompatibilities. Thereby, general continuum dislocation densities and incompatibilities are introduced from the viewpoint of continuum mechanics by considering the spatial closure failure of arbitrary line integrals of the displacement differential. Then these findings are translated to the plastic parts of the displacement gradient, the so called plastic distortion, and the plastic strain, respectively, within an elasto-plastic solid thus defining tensor fields of plastic dislocation densities and plastic incompatibilities. Next, in the case of single crystalline material the plastic dislocation density and in the case of polycrystalline material the plastic incompatibility are considered within the exploitation of the thermodynamical principle of positive dissipation. As a result, a phenomenological but physically motivated description of hardening is obtained, which incorporates for single crystals second spatial derivatives of the plastic deformation gradient and for polycrystals fourth spatial derivatives of the plastic strains into the yield condition. Moreover, these modifications mimic the characteristic structure of kinematic hardening, whereby the backstress obeys a nonlocal evolution law. (orig.)

  11. Effects of microscopic boundary conditions on plastic deformations of small-sized single crystals

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2009-01-01

    The finite deformation version of the higher-order gradient crystal plasticity model proposed by the authors is applied to solve plane strain boundary value problems, in order to obtain an understanding of the effect of the higher-order boundary conditions. Numerical solutions are carried out...

  12. Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2018-03-01

    A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.

  13. Solvent-Induced Crystallization in Poly(Ethylene Terephthalate) during Mass Transport

    Science.gov (United States)

    Ouyang, Hao

    2001-03-01

    The solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon¡¦s model for Case I (Fickian), Case II (swelling) and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was studied by wide angle x-ray scattering (WAXS), small angle x-ray scattering (SAXS), Differential Scanning Calorimeter (DSC), density gradient column, and Fourier Transform Infra-Red (FTIR). During this process, the matrix is under a compressive strain that causes different kinetic path of crystallization as compared to that by thermal annealing. This state of strain will assist the development of the solvent-induced crystallization. It also can be explained in terms of the principle of Le Chatelier if the local equilibrium is assumed. The model regarding the crystallization was proposed in terms of the study of long period L, the crystal thickness lc and the thickness of amorphous layer la, obtained from the linear correlation function and interface distribution function.

  14. Strain gradient effects in periodic flat punch indenting at small scales

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof; Hutchinson, J. W.

    2014-01-01

    Experiments on soft polycrystalline aluminum have yielded evidence that, besides the required punch load, both the size and shape of imprinted features are affected by the scale of the set-up, e.g. substantial details are lost when the characteristic length is on the order of 10μm. The objective...... are employed. During a largely non-homogeneous deformation, the material is forced up in between the indenters so that an array of identical imprinted features is formed once the tool is retreated. It is confirmed that the additional hardening owing to plastic strain gradients severely affects both the size...

  15. Electric-field gradient characterization at 181Ta impurities in sapphire single crystals

    International Nuclear Information System (INIS)

    Renteria, M.; Darriba, G.N.; Errico, L.A.; Munoz, E.L.; Eversheim, P.D.

    2005-01-01

    We report Perturbed-Angular-Correlation (PAC) experiments on corundum Al 2 O 3 single crystals implanted with 181 Hf/ 181 Ta ions at the ISKP at Bonn and measured at La Plata with high efficiency and time-resolution. The magnitude, asymmetry, and orientation (with respect to the crystalline axes) of the electric-field gradient (EFG) tensor were determined measuring the spin-rotation curves as a function of different orientations of the single crystals relative to the detector system. These results are analyzed in the framework of point-charge model and ab initio Full-Potential Linearized-Augmented Plane Wave calculations, and compared with EFG results coming from PAC experiments with 111 In/ 111 Cd impurities. This combined study enables the determination of lattice relaxations induced by the presence of the impurity and the state of charge of a deep impurity donor level in the band gap of the semiconductor. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Inhomogeneous strain induced by fast neutron irradiation in NaKSO4 crystals

    International Nuclear Information System (INIS)

    Kandil, S.H.; El Gamal, M.A.; El Khatib, A.; El Wahidy, E.F.

    1987-06-01

    The effect of fast neutron irradiation on the thermal properties of NaKSO 4 crystals was studied around the phase transition temperature T c =453 K. The thermal expansion coefficient as well as the phase transition temperature were found to be dependent upon the irradiation dose. The specific heat, C p , showed multiple peaks in the phase transition temperature region. An explanation of this behaviour was based on the induced inhomogeneous strain in the crystal casued by the neutron irradiation process. (author). 10 refs, 3 figs

  17. Effect of temperature gradient in the solution on spiral growth of YBa2Cu3O7-x bulk single crystals

    International Nuclear Information System (INIS)

    Kanamori, Y.; Shiohara, Y.

    1996-01-01

    Bulk single crystals of Y123 are required to clarify the superconductivity phenomena and develop electronic devices using unique superconductive properties. Only the Solute Rich Liquid endash Crystal Pulling (SRL-CP) method has succeeded in continuous growth of the Y123 single crystal. In this paper, we investigated the growth of Y123 single crystals under different temperature gradients in the solution in order to understand the growth mechanism of Y123. It was revealed that Y123 single crystals grow with a spiral growth mode, which is in good agreement with the BCF theory. copyright 1996 Materials Research Society

  18. Generating, Separating and Polarizing Terahertz Vortex Beams via Liquid Crystals with Gradient-Rotation Directors

    Directory of Open Access Journals (Sweden)

    Shi-Jun Ge

    2017-10-01

    Full Text Available Liquid crystal (LC is a promising candidate for terahertz (THz devices. Recently, LC has been introduced to generate THz vortex beams. However, the efficiency is intensely dependent on the incident wavelength, and the transformed THz vortex beam is usually mixed with the residual component. Thus, a separating process is indispensable. Here, we introduce a gradient blazed phase, and propose a THz LC forked polarization grating that can simultaneously generate and separate pure THz vortices with opposite circular polarization. The specific LC gradient-rotation directors are implemented by a photoalignment technique. The generated THz vortex beams are characterized with a THz imaging system, verifying features of polarization controllability. This work may pave a practical road towards generating, separating and polarizing THz vortex beams, and may prompt applications in THz communications, sensing and imaging.

  19. Crystallization and preliminary X-ray crystallographic studies of β-transaminase from Mesorhizobium sp. strain LUK

    International Nuclear Information System (INIS)

    Kim, Bokyung; Park, Ok Kyeung; Bae, Ju Young; Jang, Tae-ho; Yoon, Jong Hwan; Do, Kyoung Hun; Kim, Byung-Gee; Yun, Hyungdon; Park, Hyun Ho

    2011-01-01

    β-Transaminase from Mesorhizobium sp. strain LUK was crystallized. The crystals were found to belong to the orthorhombic space group C222 1 , with unit-cell parameters a = 90.91, b = 192.17, c = 52.75 Å. The crystals were obtained at 293 K and diffracted to a resolution of 2.5 Å. β-Transaminase (β-TA) catalyzes the transamination reaction between β-aminocarboxylic acids and keto acids. This enzyme is a particularly suitable candidate for use as a biocatalyst for the asymmetric synthesis of enantiochemically pure β-amino acids for pharmaceutical purposes. The β-TA from Mesorhizobium sp. strain LUK (β-TAMs) belongs to a novel class in that it shows β-transaminase activity with a broad and unique substrate specificity. In this study, β-TAMs was overexpressed in Escherichia coli with an engineered C-terminal His tag. β-TAMs was then purified to homogeneity and crystallized at 293 K. X-ray diffraction data were collected to a resolution of 2.5 Å from a crystal that belonged to the orthorhombic space group C222 1 , with unit-cell parameters a = 90.91, b = 192.17, c = 52.75 Å

  20. Integration of graphene sensor with electrochromic device on modulus-gradient polymer for instantaneous strain visualization

    Science.gov (United States)

    Yang, Tingting; Zhong, Yujia; Tao, Dashuai; Li, Xinming; Zang, Xiaobei; Lin, Shuyuan; Jiang, Xin; Li, Zhihong; Zhu, Hongwei

    2017-09-01

    In nature, some animals change their deceptive coloration for camouflage, temperature preservation or communication. This astonishing function has inspired scientists to replicate the color changing abilities of animals with artificial skin. Recently, some studies have focused on the smart materials and devices with reversible color changing or light-emitting properties for instantaneous strain visualization. However, most of these works only show eye-detectable appearance change when subjected to large mechanical deformation (100%-500% strain), and conspicuous color change at small strain remains rarely explored. In the present study, we developed a user-interactive electronic skin with human-readable optical output by assembling a highly sensitive resistive strain sensor with a stretchable organic electrochromic device (ECD) together. We explored the substrate effect on the electromechanical behavior of graphene and designed a strategy of modulus-gradient structure to employ graphene as both the highly sensitive strain sensing element and the insensitive stretchable electrode of the ECD layer. Subtle strain (0-10%) was enough to evoke an obvious color change, and the RGB value of the color quantified the magnitude of the applied strain. Such high sensitivity to smaller strains (0-10%) with color changing capability will potentially enhance the function of wearable devices, robots and prosthetics in the future.

  1. Mechanical design of thin-film diamond crystal mounting apparatus with optimized thermal contact and crystal strain for coherence preservation x-ray optics

    Science.gov (United States)

    Shu, Deming; Shvydko, Yury; Stoupin, Stanislav; Kim, Kwang-Je

    2018-05-08

    A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with the thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.

  2. CONDITIONAL FLOW STATISTICS AND ALIGNMENT OF PRINCIPAL STRAIN RATES, VORTICITY, AND SCALAR GRADIENTS IN A TURBULENT NONPREMIXED JET FLAME

    KAUST Repository

    Attili, Antonio

    2015-06-30

    The alignment of vorticity and gradients of conserved and reactive scalars with the eigenvectors of the strain rate tensor (i.e., the principal strains) is investigated in a direct numerical simulation of a turbulent nonpremixed flame achieving a Taylor’s scale Reynolds number in the range 100≤Reλ≤150 (Attili et al. Comb. Flame, 161, 2014). The vorticity vector displays a pronounced tendency to align with the direction of the intermediate strain. These alignment statistics are in almost perfect agreement with those in homogeneous isotropic turbulence (Ashurst et al. Physics of Fluids 30, 1987) and differ significantly from the results obtained in other nonpremixed flames in which vorticity alignment with the most extensive strain was observed (Boratavet al. Physics of Fluids 8, 1996). The gradients of conserved and reactive scalars align with the most compressive strain. It is worth noting that conditioning on the local values of the mixture fraction, or equivalently conditioning on the distance from the flame sheet, does not affect the statistics. Our results suggest that turbulence overshadows the effects of heat release and chemical reactions. This may be due to the larger Reynolds number achieved in the present study compared to that in previous works.

  3. CONDITIONAL FLOW STATISTICS AND ALIGNMENT OF PRINCIPAL STRAIN RATES, VORTICITY, AND SCALAR GRADIENTS IN A TURBULENT NONPREMIXED JET FLAME

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio

    2015-01-01

    The alignment of vorticity and gradients of conserved and reactive scalars with the eigenvectors of the strain rate tensor (i.e., the principal strains) is investigated in a direct numerical simulation of a turbulent nonpremixed flame achieving a Taylor’s scale Reynolds number in the range 100≤Reλ≤150 (Attili et al. Comb. Flame, 161, 2014). The vorticity vector displays a pronounced tendency to align with the direction of the intermediate strain. These alignment statistics are in almost perfect agreement with those in homogeneous isotropic turbulence (Ashurst et al. Physics of Fluids 30, 1987) and differ significantly from the results obtained in other nonpremixed flames in which vorticity alignment with the most extensive strain was observed (Boratavet al. Physics of Fluids 8, 1996). The gradients of conserved and reactive scalars align with the most compressive strain. It is worth noting that conditioning on the local values of the mixture fraction, or equivalently conditioning on the distance from the flame sheet, does not affect the statistics. Our results suggest that turbulence overshadows the effects of heat release and chemical reactions. This may be due to the larger Reynolds number achieved in the present study compared to that in previous works.

  4. Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Li, Hongfei; Zhang, Wenyang

    2016-01-01

    scanning calorimetry (DSC) measurements. The data obtained from the stretched samples within 70-90 degrees C showed that all of the formed crystals are disordered alpha' form with more compact chain packing than that of the cold crystallization. Upon stretching at 70 degrees C, the mesocrystal appears......Strain-induced cold crystallization behavior and structure evolution of amorphous poly(lactic acid) (PLA) stretched within 70-90 degrees C were investigated via in situ synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) measurements as well as differential...... in strain-induced crystallization behavior of amorphous PLA within 70-90 degrees C can be attributed to the competition between chain orientation caused by stretching and chain relaxation. It was proposed that the strain-induced mesocrystal/crystal and the lamellae are formed from the mesophase originally...

  5. Integrated experimental and computational studies of deformation of single crystal copper at high strain rates

    Science.gov (United States)

    Rawat, S.; Chandra, S.; Chavan, V. M.; Sharma, S.; Warrier, M.; Chaturvedi, S.; Patel, R. J.

    2014-12-01

    Quasi-static (0.0033 s-1) and dynamic (103 s-1) compression experiments were performed on single crystal copper along ⟨100⟩ and ⟨110⟩ directions and best-fit parameters for the Johnson-Cook (JC) material model, which is an important input to hydrodynamic simulations for shock induced fracture, have been obtained. The deformation of single crystal copper along the ⟨110⟩ direction showed high yield strength, more strain hardening, and less strain rate sensitivity as compared to the ⟨100⟩ direction. Although the JC model at the macro-scale is easy to apply and describes a general response of material deformation, it lacks physical mechanisms that describe the influence of texture and initial orientation on the material response. Hence, a crystal plasticity model based on the theory of thermally activated motion of dislocations was used at the meso-scale, in which the evolution equations permit one to study and quantify the influence of initial orientation on the material response. Hardening parameters of the crystal plasticity model show less strain rate sensitivity along the ⟨110⟩ orientation as compared to the ⟨100⟩ orientation, as also shown by the JC model. Since the deformation process is inherently multiscale in nature, the shape changes observed in the experiments due to loading along ⟨100⟩ and ⟨110⟩ directions are also validated by molecular dynamics simulations at the nano-scale.

  6. Temperature Compensated Strain Sensor Based on Cascaded Sagnac Interferometers and All-Solid Birefringent Hybrid Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Wu; He, Sailing

    2012-01-01

    We demonstrate a temperature compensated strain sensor with two cascaded Sagnac interferometers, that provide strain sensing and temperature compensation, respectively. The Sagnac interferometers use an all-solid hybrid photonic crystal fiber with stress-induced birefringence. The stress-induced ...

  7. Computational description of nanocrystalline deformation based on crystal plasticity

    International Nuclear Information System (INIS)

    Fu, H.-H.; Benson, David J.; Andre Meyers, Marc

    2004-01-01

    The effect of grain size on the mechanical response of polycrystalline metals was investigated computationally and applied to the nanocrystalline domain. A phenomenological constitutive description is adopted to build the computational crystal model. Two approaches are implemented. In the first, the material is envisaged as a composite; the grain interior is modeled as a monocrystalline core surrounded by a mantle (grain boundary) with a lower yield stress and higher work hardening rate response. Both a quasi-isotropic and crystal plasticity approaches are used to simulate the grain interiors. The grain boundary is modeled either by an isotropic Voce equation (Model I) or by crystal plasticity (Model II). Elastic and plastic anisotropy are incorporated into this simulation. An implicit Eulerian finite element formulation with von Mises plasticity or rate dependent crystal plasticity is used to study the nonuniform deformation and localized plastic flow. The computational predictions are compared with the experimentally determined mechanical response of copper with grain sizes of 1 μm and 26 nm. Shear localization is observed during work hardening in view of the inhomogeneous mechanical response. In the second approach, the use of a continuous change in mechanical response, expressed by the magnitude of the maximum shear stress orientation gradient, is introduced. It is shown that the magnitude of the gradient is directly dependent on grain size. This gradient term is inserted into a constitutive equation that predicts the local stress-strain evolution

  8. Electric-field gradient characterization at {sup 181}Ta impurities in sapphire single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, M.; Darriba, G.N.; Errico, L.A.; Munoz, E.L. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina); Eversheim, P.D. [Helmholtz-Institut fuer Strahlen-und Kernphysik (ISKP), Universitaet Bonn, Nussallee 14-16, 53115 Bonn (Germany)

    2005-07-01

    We report Perturbed-Angular-Correlation (PAC) experiments on corundum Al{sub 2}O{sub 3} single crystals implanted with {sup 181}Hf/{sup 181}Ta ions at the ISKP at Bonn and measured at La Plata with high efficiency and time-resolution. The magnitude, asymmetry, and orientation (with respect to the crystalline axes) of the electric-field gradient (EFG) tensor were determined measuring the spin-rotation curves as a function of different orientations of the single crystals relative to the detector system. These results are analyzed in the framework of point-charge model and ab initio Full-Potential Linearized-Augmented Plane Wave calculations, and compared with EFG results coming from PAC experiments with {sup 111}In/{sup 111}Cd impurities. This combined study enables the determination of lattice relaxations induced by the presence of the impurity and the state of charge of a deep impurity donor level in the band gap of the semiconductor. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Lyle E. [National Institute of Standards and Technology (NIST); Larson, Ben C [ORNL; Yang, Wenge [Carnegie Institution of Washington; Kassner, Michael E. [University of Southern California; Tischler, Jonathan Zachary [ORNL; Delos-Reyes, Michael A. [University of Southern California; Fields, Richard J. [National Institute of Standards and Technology (NIST); Liu, Wenjun [Argonne National Laboratory (ANL)

    2006-01-01

    The distribution of elastic strains (and thus stresses) at the sub-micrometer length scale within deformed metal single crystals has surprisingly broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behavior within individual grains [1-4], the transport of dislocations through such structures [5-7], changes in mechanical properties that occur during reverse loading [8-10] (e.g. sheet metal forming), and the analyses of diffraction line profiles for microstructural studies of these phenomena [11-17]. We present the first direct, spatially-resolved measurements of the elastic strains within individual dislocation cells in copper single crystals deformed in tension and compression along <100> axes. Broad distributions of elastic strains are found, with profound implications for theories of dislocation structure evolution [4,18], dislocation transport [5-7], and the extraction of dislocation parameters from X-ray line profiles [11-17,19].

  10. Investigating dynamic characteristics of porous double-layered FG nanoplates in elastic medium via generalized nonlocal strain gradient elasticity

    Science.gov (United States)

    Reza Barati, Mohammad

    2017-09-01

    For the first time, a vibrating porous double-nanoplate system under in-plane periodic loads is modeled via the generalized nonlocal strain gradient theory (NSGT). Based on the proposed theory, one can examine both stiffness-softening and stiffness-hardening effects for a more accurate analysis of nanoplates. Nanopores or nanovoids are incorporated to the model based on a modified rule of mixture. Modeling of porous double-layered nanoplate is conducted according to a refined four-variable plate theory with fewer field variables than first-order plate theory. The governing equations and related classical and nonclassical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. It is shown that porosities, nonlocal parameter, strain gradient parameter, material gradation, interlayer stiffness, elastic foundation, side-to-thickness and aspect ratios have a notable impact on the vibration behavior of nanoporous materials.

  11. Vertical gradient freeze of 4 inch Ge crystals in a heater-magnet module

    Science.gov (United States)

    Frank-Rotsch, Ch.; Rudolph, P.

    2009-04-01

    For the first time 4-in. Ge single crystals were grown using the vertical gradient freeze technique (VGF) in a traveling magnetic field (TMF) generated in a heater-magnet module (HMM). The HMM was placed closely around the growth container inside the chamber of the industrial Bridgman equipment "Kronos". The HMM generates heat and a TMF together. It has a coil-shaped design and replaces the standard meander-type heater. Direct current (DC) for heat production and out-of-phase-accelerated currents (AC) for TMF generation were simultaneously delivered to three equally spaced coil segments connected by star-type wiring. In order to achieve a nearly flat and slightly convex growing interface the AC amplitude, frequency and phase shift have been optimized numerically by using the 3D CrysMAS code and validated by striation analysis on as-grown crystals. Low-field frequencies in the range f=20-50 Hz proved to be of most suitable condition. TMF programming is required to obtain constant interface morphology over the whole growth run. First Ge single crystals grown under nearly optimal conditions show reduced macro- and micro-inhomogeneities, relatively low dislocation density of (3-10)×10 2 cm -2, and high carrier mobility of μp=2800 cm 2 V -1 s -1.

  12. Study on the temperature gradient evolution of large size nonlinear crystal based on the fluid-solid coupling theory

    Science.gov (United States)

    Sun, F. Z.; Zhang, P.; Liang, Y. C.; Lu, L. H.

    2014-09-01

    In the non-critical phase-matching (NCPM) along the Θ =90° direction, ADP and DKDP crystals which have many advantages, including a large effective nonlinear optical coefficient, a small PM angular sensitivity and non beam walk-off, at the non-critical phase-matching become the competitive candidates in the inertial confinement fusion(ICF) facility, so the reasonable temperature control of crystals has become more and more important .In this paper, the fluid-solid coupling models of ADP crystal and DKDP crystal which both have anisotropic thermal conductivity in the states of vacuum and non-vacuum were established firstly, and then simulated using the fluid analysis software Fluent. The results through the analysis show that the crystal surface temperature distribution is a ring shape, the temperature gradients in the direction of the optical axis both the crystals are 0.02°C and 0.01°C due to the air, the lowest temperature points of the crystals are both at the center of surface, and the temperatures are lower than 0.09°C and 0.05°C compared in the vacuum and non-vacuum environment, then propose two designs for heating apparatus.

  13. A numerical basis for strain-gradient plasticity theory: Rate-independent and rate-dependent formulations

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof

    2014-01-01

    of a single plastic zone is analyzed to illustrate the agreement with earlier published results, whereafter examples of (ii) multiple plastic zone interaction, and (iii) elastic–plastic loading/unloading are presented. Here, the simple shear problem of an infinite slab constrained between rigid plates......A numerical model formulation of the higher order flow theory (rate-independent) by Fleck and Willis [2009. A mathematical basis for strain-gradient plasticity theory – part II: tensorial plastic multiplier. Journal of the Mechanics and Physics of Solids 57, 1045-1057.], that allows for elastic–plastic...... loading/unloading and the interaction of multiple plastic zones, is proposed. The predicted model response is compared to the corresponding rate-dependent version of visco-plastic origin, and coinciding results are obtained in the limit of small strain-rate sensitivity. First, (i) the evolution...

  14. Strain profiles in ion implanted ceramic polycrystals: An approach based on reciprocal-space crystal selection

    Energy Technology Data Exchange (ETDEWEB)

    Palancher, H., E-mail: herve.palancher@cea.fr; Martin, G.; Fouet, J. [CEA, DEN, DEC, F-13108 Saint Paul lez Durance (France); Goudeau, P. [Institut Pprime, CNRS-Université de Poitiers–ENSMA, SP2MI, F-86360 Chasseneuil (France); Boulle, A. [Science des Procédés Céramiques et Traitements de Surface (SPCTS), CNRS UMR 7315, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges (France); Rieutord, F. [CEA, DSM, INAC, F-38054 Grenoble Cedex 9 (France); Favre-Nicolin, V. [Université Grenoble-Alpes, F-38041 Grenoble, France, Institut Universitaire de France, F-75005 Paris (France); Blanc, N. [Institut NEEL, CNRS-Univ Grenoble Alpes, F-38042 Grenoble (France); Onofri, C. [CEA, DEN, DEC, F-13108 Saint Paul lez Durance (France); CEMES, CNRS UPR 8011, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4 (France)

    2016-01-18

    The determination of the state of strain in implanted materials is a key issue in the study of their mechanical stability. Whereas this question is nowadays relatively easily solved in the case of single crystals, it remains a challenging task in the case of polycrystalline materials. In this paper, we take benefit of the intense and parallel beams provided by third generation synchrotron sources combined with a two-dimensional detection system to analyze individual grains in polycrystals, hence obtaining “single crystal-like” data. The feasibility of the approach is demonstrated with implanted UO{sub 2} polycrystals where the in-depth strain profile is extracted for individual grains using numerical simulations of the diffracted signal. The influence of the implantation dose is precisely analyzed for several diffracting planes and grains. This work suggests that, at low fluences, the development of strain is mainly due to ballistic effects with little effect from He ions, independently from the crystallographic orientation. At higher fluences, the evolution of the strain profiles suggests a partial and anisotropic plastic relaxation. With the present approach, robust and reliable structural information can be obtained, even from complex polycrystalline ceramic materials.

  15. Tear energy and strain-induced crystallization of natural rubber/styrene-butadiene rubber blend

    International Nuclear Information System (INIS)

    Noguchi, F; Akabori, K; Yamamoto, Y; Kawahara, S; Kawazura, T

    2009-01-01

    Strain-induced crystallization of natural rubber (NR), dispersed in styrene-butadiene rubber (SBR), was investigated in relation to dimensional feature of a dispersoid and crosslink density of NR by measuring tear energy (G) of crosslinked NR/SBR blends. The crosslinked NR/SBR blends in ratios of 1/9 and 3/7 by weight were prepared by mixing masticated NR and SBR with an internal mixer at a rotor speed of 30 rpm, followed by crosslinking with dicumyl peroxide on a hot press at 444 K for 60 min. The G, measured in wide-ranges of temperature and tear rate, was superposed into a master curve with a Williams-Landel-Ferry shift factor. The G of the NR/SBR(3/7) blend abruptly decreased to a level comparable to that of SBR at about melting temperature of NR crystals formed on straining. The temperature, at which the dramatic decrease in the G occurred, was associated with the dimensional feature of the NR dispersoid and the crosslink density.

  16. Indentation Size Effects in Single Crystal Copper as Revealed by Synchrotron X-ray Microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2007-11-19

    The indentation size effect (ISE) has been observed in numerous nanoindentation studies on crystalline materials; it is found that the hardness increases dramatically with decreasing indentation size - a 'smaller is stronger' phenomenon. Some have attributed the ISE to the existence of strain gradients and the geometrically necessary dislocations (GNDs). Since the GND density is directly related to the local lattice curvature, the Scanning X-ray Microdiffraction ({mu}SXRD) technique, which can quantitatively measure relative lattice rotations through the streaking of Laue diffractions, can used to study the strain gradients. The synchrotron {mu}SXRD technique we use - which was developed at the Advanced Light Source (ALS), Berkeley Lab - allows for probing the local plastic behavior of crystals with sub-micrometer resolution. Using this technique, we studied the local plasticity for indentations of different depths in a Cu single crystal. Broadening of Laue diffractions (streaking) was observed, showing local crystal lattice rotation due to the indentation-induced plastic deformation. A quantitative analysis of the streaking allows us to estimate the average GND density in the indentation plastic zones. The size dependence of the hardness, as found by nanoindentation, will be described, and its correlation to the observed lattice rotations will be discussed.

  17. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure

    DEFF Research Database (Denmark)

    Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model...... is investigated numerically using a unit cell model with periodic boundary conditions containing a single fiber deformed under generalized plane strain conditions. The homogenized response can be modeled by conventional plasticity with an anisotropic yield surface and a free energy depending on plastic strain...

  18. Angle- and strain-independent coloured free-standing films incorporating non-spherical colloidal photonic crystals.

    Science.gov (United States)

    Yeo, Seon Ju; Tu, Fuquan; Kim, Seung-hyun; Yi, Gi-Ra; Yoo, Pil J; Lee, Daeyeon

    2015-02-28

    Colloidal photonic crystals (CPCs) provide a convenient way to generate structural colour with high stability against degradation under environmental factors. For a number of applications including flexible electronic and energy devices, it is important to generate flexible structural colour that maintains its colour regardless of the angle of observation and the extent of mechanical deformation. However, it is challenging to simultaneously achieve these goals because anisotropy in typical CPC structures (e.g., CPC films) tends to lead to angle-dependent photonic properties and also changes in the lattice constant due to mechanical deformation lead to changes in the photonic properties of CPCs. To overcome these challenges, we present a means of fabricating large-area free-standing films of CPC structures that exhibit angle- and strain-independent photonic characteristics. First, monodisperse double emulsions encapsulating colloidal crystal arrays are prepared using a microfluidic device. By inducing crystallization of highly charged polystyrene particles in the core of double emulsions using osmotic annealing, we generate angle independent colloidal photonic crystal (CPC) supraparticles. Moreover, the shape and crystallinity of the CPC supraparticles can be tuned by changing the concentration of salt in the solution used for osmotic annealing. Subsequently, an array of CPC supraparticles is embedded inside an elastomeric matrix to form a flexible free-standing film, which exhibits structural colours that are independent of viewing angles and externally applied strain.

  19. Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Bang, Ole

    2008-01-01

    We study the sensitivity of fiber grating sensors in the applications of strain, temperature, internal label-free biosensing, and internal refractive index sensing. New analytical expressions for the sensitivities, valid for photonic crystal fibers are rigorously derived. These are generally vali...

  20. An efficient spectral crystal plasticity solver for GPU architectures

    Science.gov (United States)

    Malahe, Michael

    2018-03-01

    We present a spectral crystal plasticity (CP) solver for graphics processing unit (GPU) architectures that achieves a tenfold increase in efficiency over prior GPU solvers. The approach makes use of a database containing a spectral decomposition of CP simulations performed using a conventional iterative solver over a parameter space of crystal orientations and applied velocity gradients. The key improvements in efficiency come from reducing global memory transactions, exposing more instruction-level parallelism, reducing integer instructions and performing fast range reductions on trigonometric arguments. The scheme also makes more efficient use of memory than prior work, allowing for larger problems to be solved on a single GPU. We illustrate these improvements with a simulation of 390 million crystal grains on a consumer-grade GPU, which executes at a rate of 2.72 s per strain step.

  1. The physical behaviour of gabbroic crystal mush

    Science.gov (United States)

    Humphreys, M.; Namur, O.; Holness, M. B.

    2012-12-01

    Crystal mushes form at the boundary layers of all magma bodies, from lava flows to volcanic conduits to batholiths. The physical behaviour of a crystal mush is important in controlling a number of physical processes, from the origin of crystal-poor rhyolites, and the migration and ascent of granitic magmas, to compaction and differentiation processes in large mafic bodies. As well as strain-rate, the grain-scale microstructure of the mush is an important factor in controlling its physical behaviour, with porosity (amount of residual liquid) being particularly important. One might therefore expect to see a range of different behaviours during the crystallisation of a magma body, depending on the porosity and strain rate at any given point in the crystallisation history. We describe evidence for three different mechanical regimes affecting a gabbroic crystal mush at different scales and residual liquid contents. We focus on the Marginal Border Series of the Skaergaard Intrusion, east Greenland, which crystallised on the steeply dipping sidewalls of the intrusion. It has the advantage that, unlike in most mushes that developed on the chamber floor, thermal gradients and the effects of gravity act in orthogonal directions, allowing shear-related features to be identified and distinguished from thermal effects. The largest-scale effects are evident at the contact between the Marginal Border Series (MBS) and the Layered Series, which crystallised on the floor of the intrusion. The contact is characterised by slumping and faulting of semi-consolidated crystal mush, resulting in slippage and rotation of large packets of relatively coherent igneous 'sediment' down-slope. This process may be analogous to the formation of slumps or rotational landslides in sedimentary systems. At a smaller scale, gravitational instability of the sidewalls caused localised sagging of the crystal mush and resulted in small ductile cracks or tears that filled with interstitial liquid. Finally

  2. 'In situ' straining in the HVEM of neutron irradiated copper crystals

    International Nuclear Information System (INIS)

    Johnson, E.; Hirsch, P.B.

    1976-01-01

    High energy neutron irradiated copper single crystals strained 'in situ' in the high voltage electron microscope are observed to yield in relatively few strongly developed slip bands. The deformation in the slip bands is caused by glide of inclined dislocations close to screw orientation belonging to the primary slip system. Radiation induced point defect clusters are swept up by the dislocations whereby superjogs are formed. Some of the jogs will be sessile and act as pinning points for the gliding dislocations, which bow out under the applied stress to form perfect dipoles mainly of edge nature, as well as faulted dipoles, which are finally pinched off. The effective stress measured from the radius of curvature of the bowed-out dislocations is in agreement with resolved flow stress measurements from irradiated bulk crystals. (Auth.)

  3. Growth of doped and pure monocrystalline fibers and gradient crystals of REMO_4 compounds (RE = rare earths and M = Nb and Ta)

    International Nuclear Information System (INIS)

    Octaviano, E.S.; Levada, C.L.; Missiato, O.; Semenzato, M.J.; Silva, R.A.; Andreeta, J.P.

    2009-01-01

    A desirable alternative for a faster development, characterization and application of material of technological interest has been the growth of single crystal fibers by LHPG - Laser Heated Pedestal Growth. In this work it was reported the growth of pure, doped and gradient single crystal fibers of the chemical formulation REMO_4 (M = Nb e Ta, e RE= Rare Earth), characterized through primary techniques such as X-Ray and optical spectroscopy. (author)

  4. Overexpression, purification, crystallization and preliminary X-ray cystallographic studies of a proline-specific aminopeptidase from Aneurinibacillus sp. strain AM-1

    International Nuclear Information System (INIS)

    Akioka, Makoto; Nakano, Hiroaki; Horikiri, Aya; Tsujimoto, Yoshiyuki; Matsui, Hiroshi; Shimizu, Tetsuya; Nakatsu, Toru; Kato, Hiroaki; Watanabe, Kunihiko

    2006-01-01

    Preliminary X-ray crystallographic study of a proline-specific aminopepitdase from Aneurinibacillus sp, strain AM-1 was carried out. To elucidate the structure and molecular mechanism of a characteristic proline-specific aminopeptidase produced by the thermophile Aneurinibacillus sp. strain AM-1, its gene was cloned and the recombinant protein was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected to 1.8 Å resolution from the recombinant aminopeptidase crystal. The crystals belong to the orthorhombic space group P2 1 2 1 2, with unit-cell parameters a = 93.62, b = 68.20, c = 76.84 Å. A complete data set was also obtained from crystals of SeMet-substituted aminopeptidase. Data in the resolution range 20–2.1 Å from the MAD data set from the SeMet-substituted crystal were used for phase determination

  5. Characteristics of strain-sensitive photonic crystal cavities in a flexible substrate.

    Science.gov (United States)

    No, You-Shin; Choi, Jae-Hyuck; Kim, Kyoung-Ho; Park, Hong-Gyu

    2016-11-14

    High-index semiconductor photonic crystal (PhC) cavities in a flexible substrate support strong and tunable optical resonances that can be used for highly sensitive and spatially localized detection of mechanical deformations in physical systems. Here, we report theoretical studies and fundamental understandings of resonant behavior of an optical mode excited in strain-sensitive rod-type PhC cavities consisting of high-index dielectric nanorods embedded in a low-index flexible polymer substrate. Using the three-dimensional finite-difference time-domain simulation method, we calculated two-dimensional transverse-electric-like photonic band diagrams and the three-dimensional dispersion surfaces near the first Γ-point band edge of unidirectionally strained PhCs. A broken rotational symmetry in the PhCs modifies the photonic band structures and results in the asymmetric distributions and different levels of changes in normalized frequencies near the first Γ-point band edge in the reciprocal space, which consequently reveals strain-dependent directional optical losses and selected emission patterns. The calculated electric fields, resonant wavelengths, and quality factors of the band-edge modes in the strained PhCs show an excellent agreement with the results of qualitative analysis of modified dispersion surfaces. Furthermore, polarization-resolved time-averaged Poynting vectors exhibit characteristic dipole-like emission patterns with preferentially selected linear polarizations, originating from the asymmetric band structures in the strained PhCs.

  6. Numerically simulated and experimentally obtained X-ray section topographs of a spherical strain field in a floating zone silicon crystal

    International Nuclear Information System (INIS)

    Okitsu, Kouhei; Iida, Satoshi; Sugita, Yoshimitsu; Takeno, Hiroshi; Yagou, Yasuyoshi; Kawata, Hiroshi.

    1992-01-01

    An undoped floating zone (FZ) silicon crystal has been investigated by synchrotron X-radiation section topography with high-order reflections up to 14 14 0. Numerically simulated topographs based on the Takagi-Taupin equations were in good agreement with experimental distorted patterns when a spherical strain field was assumed in the crystal. The volume change of the lattice caused by the strain center was estimated to correspond to a sphere with a radius of 10 μm. (author)

  7. An implicit tensorial gradient plasticity model - formulation and comparison with a scalar gradient model

    NARCIS (Netherlands)

    Poh, L.H.; Peerlings, R.H.J.; Geers, M.G.D.; Swaddiwudhipong, S.

    2011-01-01

    Many rate-independent models for metals utilize the gradient of effective plastic strain to capture size-dependent behavior. This enhancement, sometimes termed as "explicit" gradient formulation, requires higher-order tractions to be imposed on the evolving elasto-plastic boundary and the resulting

  8. Phase retrieval of diffraction from highly strained crystals

    International Nuclear Information System (INIS)

    Newton, Marcus C.; Harder, Ross; Huang Xiaojing; Xiong Gang; Robinson, Ian K.

    2010-01-01

    An important application of phase retrieval methods is to invert coherent x-ray diffraction measurements to obtain real-space images of nanoscale crystals. The phase information is currently recovered from reciprocal-space amplitude measurements by the application of iterative projective algorithms that solve the nonlinear and nonconvex optimization problem. Various algorithms have been developed each of which apply constraints in real and reciprocal space on the reconstructed object. In general, these methods rely on experimental data that is oversampled above the Nyquist frequency. To date, support-based methods have worked well, but are less successful for highly strained structures, defined as those which contain (real-space) phase information outside the range of ±π/2. As a direct result the acquired experimental data is, in general, inadvertently subsampled below the Nyquist frequency. In recent years, a new theory of 'compressive sensing' has emerged, which dictates that an appropriately subsampled (or compressed) signal can be recovered exactly through iterative reconstruction and various routes to minimizing the l 1 norm or total variation in that signal. This has proven effective in solving several classes of convex optimization problems. Here we report on a 'density-modification' phase reconstruction algorithm that applies the principles of compressive sensing to solve the nonconvex phase retrieval problem for highly strained crystalline materials. The application of a nonlinear operator in real-space minimizes the l 1 norm of the amplitude by a promotion-penalization (or 'propenal') operation that confines the density bandwidth. This was found to significantly aid in the reconstruction of highly strained nanocrystals. We show how this method is able to successfully reconstruct phase information that otherwise could not be recovered.

  9. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    Science.gov (United States)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  10. Orientations of Liquid Crystals in Contact with Surfaces that Present Continuous Gradients of Chemical Functionality

    International Nuclear Information System (INIS)

    Clare, B.; Efimenko, K.; Fischer, D.; Genzer, J.; Abbott, N.

    2006-01-01

    We report the formation of continuous spatial gradients in the density of grafted semifluorinated chains on silicon oxide surfaces by vapor-phase diffusion of semifluorinated silanes. We quantify the orientations of the nematic liquid crystal (LC) 4-cyano-4'-pentylbiphenyl on these surfaces as a function of local surface composition obtained by using NEXAFS. These measurements demonstrate that it is possible to obtain the full range of tilt angles of a LC on these surfaces. We also use the data provided by these gradient surfaces to test hypotheses regarding the nature of the interaction between the LC and surfaces that give rise to the range of tilted orientations of the LC. We conclude that the orientations of the LC are not determined solely by the density of grafted semifluorinated chains or by the density of residual hydroxyl groups presented at these surfaces following reactions with the silanes. Instead, our results raise the possibility that the tilt angles of the semifluorinated chains on these surfaces (which are a function of the density of the grafted chains) may influence the orientation of the LC. These results, when combined, demonstrate the potential utility of gradient surfaces for screening surface chemistries that achieve desired orientations of LCs as well as for rapidly assembling experimental data sets that can be used to test propositions regarding mechanisms of anchoring LCs at surfaces

  11. Crystallization and preliminary X-ray diffraction analysis of YisP protein from Bacillus subtilis subsp. subtilis strain 168

    International Nuclear Information System (INIS)

    Hu, Yumei; Jia, Shiru; Ren, Feifei; Huang, Chun-Hsiang; Ko, Tzu-Ping; Mitchell, Douglas A.; Guo, Rey-Ting; Zheng, Yingying

    2012-01-01

    A bacteria biofilm formation involved enzyme, BsYisP, from Bacillus subtilis subsp. subtilis strain 168, was crystallized and diffracted to 1.92 Å. YisP is an enzyme involved in the pathway of biofilm formation in bacteria and is predicted to possess squalene synthase activity. A BlastP search using the YisP protein sequence from Bacillus subtilis subsp. subtilis strain 168 shows that it shares 23% identity with the dehydrosqualene synthase from Staphylococcus aureus. The YisP from B. subtilis 168 was expressed in Escherichia coli and the recombinant protein was purified and crystallized. The crystals, which belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 43.966, b = 77.576, c = 91.378 Å, were obtained by the sitting-drop vapour-diffusion method and diffracted to 1.92 Å resolution. Structure determination using MAD and MIR methods is in progress

  12. TIGER: Development of Thermal Gradient Compensation Algorithms and Techniques

    Science.gov (United States)

    Hereford, James; Parker, Peter A.; Rhew, Ray D.

    2004-01-01

    In a wind tunnel facility, the direct measurement of forces and moments induced on the model are performed by a force measurement balance. The measurement balance is a precision-machined device that has strain gages at strategic locations to measure the strain (i.e., deformations) due to applied forces and moments. The strain gages convert the strain (and hence the applied force) to an electrical voltage that is measured by external instruments. To address the problem of thermal gradients on the force measurement balance NASA-LaRC has initiated a research program called TIGER - Thermally-Induced Gradients Effects Research. The ultimate goals of the TIGER program are to: (a) understand the physics of the thermally-induced strain and its subsequent impact on load measurements and (b) develop a robust thermal gradient compensation technique. This paper will discuss the impact of thermal gradients on force measurement balances, specific aspects of the TIGER program (the design of a special-purpose balance, data acquisition and data analysis challenges), and give an overall summary.

  13. Nonlocal wave propagation in an embedded DWBNNT conveying fluid via strain gradient theory

    International Nuclear Information System (INIS)

    Ghorbanpour Arani, A.; Kolahchi, R.; Vossough, H.

    2012-01-01

    Based on the strain gradient and Eringen’s piezoelasticity theories, wave propagation of an embedded double-walled boron nitride nanotube (DWBNNT) conveying fluid is investigated using Euler-Bernoulli beam model. The elastic medium is simulated by the Pasternak foundation. The van der Waals (vdW) forces between the inner and outer nanotubes are taken into account. Since, considering electro-mechanical coupling made the nonlinear motion equations, a numerical procedure is proposed to evaluate the upstream and downstream phase velocities. The results indicate that the effect of nonlinear terms in motion equations on the phase velocity cannot be neglected at lower wave numbers. Furthermore, the effect of fluid-conveying on wave propagation of the DWBNNT is significant at lower wave numbers.

  14. Crystal structures of the methyltransferase and helicase from the ZIKA 1947 MR766 Uganda strain

    Energy Technology Data Exchange (ETDEWEB)

    Bukrejewska, Malgorzata; Derewenda, Urszula; Radwanska, Malwina; Engel, Daniel A.; Derewenda, Zygmunt S.

    2017-08-15

    Two nonstructural proteins encoded byZika virusstrain MR766 RNA, a methyltransferase and a helicase, were crystallized and their structures were solved and refined at 2.10 and 2.01 Å resolution, respectively. The NS5 methyltransferase contains a boundS-adenosyl-L-methionine (SAM) co-substrate. The NS3 helicase is in the apo form. Comparison with published crystal structures of the helicase in the apo, nucleotide-bound and single-stranded RNA (ssRNA)-bound states suggests that binding of ssRNA to the helicase may occur through conformational selection rather than induced fit.

  15. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility

    International Nuclear Information System (INIS)

    Wu, X.L.; Yang, M.X.; Yuan, F.P.; Chen, L.; Zhu, Y.T.

    2016-01-01

    We report a design strategy to combine the benefits from both gradient structure and transformation-induced plasticity (TRIP). The resultant TRIP-gradient steel takes advantage of both mechanisms, allowing strain hardening to last to a larger plastic strain. 304 stainless steel sheets were treated by surface mechanical attrition to synthesize gradient structure with a central coarse-grained layer sandwiched between two grain-size gradient layers. The gradient layer is composed of submicron-sized parallelepiped austenite domains separated by intersecting ε-martensite plates, with increasing domain size along the depth. Significant microhardness heterogeneity exists not only macroscopically between the soft coarse-grained core and the hard gradient layers, but also microscopically between the austenite domain and ε-martensite walls. During tensile testing, the gradient structure causes strain partitioning, which evolves with applied strain, and lasts to large strains. The γ → α′ martensitic transformation is triggered successively with an increase of the applied strain and flow stress. Importantly, the gradient structure prolongs the TRIP effect to large plastic strains. As a result, the gradient structure in the 304 stainless steel provides a new route towards a good combination of high strength and ductility, via the co-operation of both the dynamic strain partitioning and TRIP effect.

  16. High-energy x-ray scattering quantification of in-situ-loading-related strain gradients spanning the dentinoenamel junction (DEJ) in bovine tooth specimens

    International Nuclear Information System (INIS)

    Almer, J.D.; Stock, S.R.

    2010-01-01

    High energy X-ray scattering (80.7keV photons) at station 1-ID of the Advanced Photon Source quantified internal strains as a function of applied stress in mature bovine tooth. These strains were mapped from dentin through the dentinoenamel junction (DEJ) into enamel as a function of applied compressive stress in two small parallelepiped specimens. One specimen was loaded perpendicular to the DEJ and the second parallel to the DEJ. Internal strains in enamel and dentin increased and, as expected from the relative values of the Young's modulus, the observed strains were much higher in dentin than in enamel. Large strain gradients were observed across the DEJ, and the data suggest that the mantle dentin-DEJ-aprismatic enamel structure may shield the near-surface volume of the enamel from large strains. In the enamel, drops in internal strain for applied stresses above 40MPa also suggest that this structure had cracked.

  17. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  18. Magnetic field effect on microplastic strain rate in C690 single crystals

    International Nuclear Information System (INIS)

    Smirnov, B.I.; Shpejzman, V.V.; Peschanskaya, N.N.; Nikolaev, R.K.

    2002-01-01

    Microplastic strain in magnetic field and beyond it, as well as, subsequent to preliminary exposure of C 60 crystals to magnetic field was investigated by means of laser interferometer enabling to measure rate of strain on the basis of 0.15 μm linear shifting. It is shown that introduction and removal of specimen from 0.2 T induction field immediately during deformation of specimen result in variation of its rate, and at reduction of rate one observes discontinuous interruption of deformation. Sign of effect depends on temperature: at room temperature magnetic field promotes deformation, at 100 K - shows it down. Effect of preliminary exposure within 0.2 and 2T induction field turned to be analogous one. One analyzed possible reasons of the observed manifestation of magnetoplastic effect in C 60 and relation of its sign with phase transition under 260 K temperature [ru

  19. New Insights into the Relationship Between Network Structure and Strain Induced Crystallization in Unvolcanized Natural Rubber by Synchrotron X-ray Diffraction

    International Nuclear Information System (INIS)

    Toki, S.; Hsiao, B.; Amnuaypornsri, S.; Sakdapipanich, J.

    2009-01-01

    The relationship between the network structure and strain-induced crystallization in un-vulcanized as well as vulcanized natural rubbers (NR) and synthetic poly-isoprene rubbers (IR) was investigated via synchrotron wide-angle X-ray diffraction (WAXD) technique. It was found that the presence of a naturally occurring network structure formed by natural components in un-vulcanized NR significantly facilitates strain-induced crystallization and enhances modulus and tensile strength. The stress-strain relation in vulcanized NR is due to the combined effect of chemical and naturally occurring networks. The weakness of naturally occurring network against stress and temperature suggests that vulcanized NR has additional relaxation mechanism due to naturally occurring network. The superior mechanical properties in NR compared with IR are mainly due to the existence of naturally occurring network structure.

  20. Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali

    2017-02-01

    Main object of the present research is an exact investigation of wave propagation responses of smart rotating magneto-electro-elastic (MEE) graded nanoscale plates. In addition, effective material properties of functionally graded (FG) nanoplate are presumed to be calculated using the power-law formulations. Also, it has been tried to cover both softening and stiffness-hardening behaviors of nanostructures by the means of employing nonlocal strain gradient theory (NSGT). Due to increasing the accuracy of the presented model in predicting shear deformation effects, a refined higher-order plate theory is introduced. In order to cover the most enormous circumstances, maximum amount of load generated by plate’s rotation is considered. Furthermore, utilizing a developed form of Hamilton’s principle, containing magneto-electric effects, the nonlocal governing equations of MEE-FG rotating nanoplates are derived. An analytical solution is obtained to solve the governing equations and validity of the solution method is proven by comparing results from present method with those of former attempts. At last, outcomes are plotted in the framework of some figures to show the influences of various parameters such as wave number, nonlocality, length scale parameter, magnetic potential, electric voltage, gradient index and angular velocity on wave frequency, phase velocity and escape frequency of the examined nanoplate.

  1. Non-Conventional Thermodynamics and Models of Gradient Elasticity

    Directory of Open Access Journals (Sweden)

    Hans-Dieter Alber

    2018-03-01

    Full Text Available We consider material bodies exhibiting a response function for free energy, which depends on both the strain and its gradient. Toupin–Mindlin’s gradient elasticity is characterized by Cauchy stress tensors, which are given by space-like Euler–Lagrange derivative of the free energy with respect to the strain. The present paper aims at developing a first version of gradient elasticity of non-Toupin–Mindlin’s type, i.e., a theory employing Cauchy stress tensors, which are not necessarily expressed as Euler–Lagrange derivatives. This is accomplished in the framework of non-conventional thermodynamics. A one-dimensional boundary value problem is solved in detail in order to illustrate the differences of the present theory with Toupin–Mindlin’s gradient elasticity theory.

  2. Coupled stress-strain and electrical resistivity measurements on copper based shape memory single crystals

    Directory of Open Access Journals (Sweden)

    Gonzalez Cezar Henrique

    2004-01-01

    Full Text Available Recently, electrical resistivity (ER measurements have been done during some thermomechanical tests in copper based shape memory alloys (SMA's. In this work, single crystals of Cu-based SMA's have been studied at different temperatures to analyse the relationship between stress (s and ER changes as a function of the strain (e. A good consistency between ER change values is observed in different experiments: thermal martensitic transformation, stress induced martensitic transformation and stress induced reorientation of martensite variants. During stress induced martensitic transformation (superelastic behaviour and stress induced reorientation of martensite variants, a linear relationship is obtained between ER and strain as well as the absence of hys teresis. In conclusion, the present results show a direct evidence of martensite electrical resistivity anisotropy.

  3. Purification, crystallization and preliminary X-ray diffraction analysis of enoyl-acyl carrier protein reductase (FabK) from Streptococcus mutans strain UA159

    International Nuclear Information System (INIS)

    Kim, Tae-O; Im, Dong-Won; Jung, Ha Yun; Kwon, Seong Jung; Heo, Yong-Seok

    2012-01-01

    Enoyl-acyl carrier protein reductase (FabK) from S. mutans strain UA159 was cloned, overexpressed, purified and crystallized. X-ray diffraction data were collected to a resolution of 2.40 Å. A triclosan-resistant flavoprotein termed FabK is the sole enoyl-acyl carrier protein reductase in Streptococcus pneumoniae and Streptococcus mutans. In this study, FabK from S. mutans strain UA159 was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.40 Å resolution using a synchrotron-radiation source. The crystal belonged to space group P6 2 , with unit-cell parameters a = b = 105.79, c = 44.15 Å. The asymmetric unit contained one molecule, with a corresponding V M of 2.05 Å 3 Da −1 and a solvent content of 39.9%

  4. Crystallization and preliminary X-ray diffraction analysis of recombinant phosphoribosylpyrophosphate synthetase from the Thermophilic thermus thermophilus strain HB27

    Energy Technology Data Exchange (ETDEWEB)

    Abramchik, Yu. A. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Timofeev, V. I., E-mail: tostars@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Muravieva, T. I.; Sinitsyna, E. V.; Esipov, R. S., E-mail: esipov@mx.ibch.ru [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Kuranova, I. P., E-mail: inna@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-01-15

    Phosphoribosylpyrophosphate synthetases (PRPP synthetases) are among the key enzymes essential for vital functions of organisms and are involved in the biosynthesis of purine and pyrimidine nucleotides, coenzymes, and the amino acids histidine and tryptophan. These enzymes are used in biotechnology for the combined chemoenzymatic synthesis of natural nucleotide analogs. Recombinant phosphoribosylpyrophosphate synthetase I from the thermophilic strain HB27 of the bacterium Thermus thermophilus (T. th HB27) has high thermal stability and shows maximum activity at 75°Ð¡, due to which this enzyme holds promise for biotechnological applications. In order to grow crystals and study them by X-ray crystallography, an enzyme sample, which was produced using a highly efficient producer strain, was purified by affinity and gel-filtration chromatography. The screening of crystallization conditions was performed by the vapor-diffusion technique. The crystals of the enzyme suitable for X-ray diffraction were grown by the counter-diffusion method through a gel layer. These crystals were used to collect the X-ray diffraction data set at the SPring-8 synchrotron radiation facility (Japan) to 3-Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unitcell parameters: a = 107.7 Å, b = 112.6 Å, c = 110.2 Å, α = γ = 90°, β = 116.6°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the enzyme at 3.0-Å resolution.

  5. Microplasticity and dislocation mobility in copper-nickel single crystals evaluated from strain-amplitude-dependent internal friction. [CuNi

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Y.; Okada, Y.; Asano, S. (Dept. of Materials Science and Engineering, Nagoya Inst. of Tech. (Japan))

    1992-02-16

    Internal friction in copper-0.4 to 7.6 at% nickel single crystals is measured as a function of strain amplitude at various temperatures. Analysis of the data on the amplitude-dependent internal friction yields the relation of effective stress and microplastic strain of the order of 10{sup -9}. The stress-strain responses thus obtained exhibit that the microplastic flow stress increases more rapidly on alloying than the macroscopic yield stress. The mean dislocation velocity is also evaluated from the internal-friction data, which corresponds well to the etch-pit data. It is shown that the dislocation motion is impeded by friction due to dispersed solute atoms. (orig.).

  6. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  7. Structures and Strength of Gradient Nanostructures

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    distance from the surface forming a gradient structure. In this study [2], by shot peening of a low carbon steel a gradient structure has been produced extending to about 1 mm below the surface. A number of strengthening mechanisms have been analyzed as a basis for a calculation of the stress and strain...

  8. Finite-strain micromechanical model of stress-induced martensitic transformations in shape memory alloys

    International Nuclear Information System (INIS)

    Stupkiewicz, S.; Petryk, H.

    2006-01-01

    A micromechanical model of stress-induced martensitic transformation in single crystals of shape memory alloys is developed. This model is a finite-strain counterpart to the approach presented recently in the small-strain setting [S. Stupkiewicz, H. Petryk, J. Mech. Phys. Solids 50 (2002) 2303-2331]. The stress-induced transformation is assumed to proceed by the formation and growth of parallel martensite plates within the austenite matrix. Propagation of phase transformation fronts is governed by a rate-independent thermodynamic criterion with a threshold value for the thermodynamic driving force, including in this way the intrinsic dissipation due to phase transition. This criterion selects the initial microstructure at the onset of transformation and governs the evolution of the laminated microstructure at the macroscopic level. A multiplicative decomposition of the deformation gradient into elastic and transformation parts is assumed, with full account for the elastic anisotropy of the phases. The pseudoelastic behavior of Cu-Zn-Al single crystal in tension and compression is studied as an application of the model

  9. Effect of density step on stirring properties of a strain flow

    International Nuclear Information System (INIS)

    Gonzalez, M; Paranthoen, P

    2009-01-01

    The influence of steep density gradient on stirring properties of a strain flow is addressed by considering the problem in which an interface separating two regions with different constant densities is stabilized within a stagnation-point flow. The existence of an analytic solution for the two-dimensional incompressible flow field allows the exact derivation of the velocity gradient tensor and of parameters describing the local flow topology. Stirring properties are affected not only by vorticity production and jump of strain intensity at the interface, but also by rotation of strain principal axes resulting from anisotropy of pressure Hessian. The strain persistence parameter, which measures the respective effects of strain and effective rotation (vorticity plus rotation rate of strain basis), reveals a complex structure. In particular, for large values of the density ratio, it indicates dominating effective rotation in a restricted area past the interface. Information on flow structure derived from the Okubo-Weiss parameter, by contrast, is less detailed. The influence of the density step on stirring properties is assessed by the Lagrangian evolution of the gradient of a passive scalar. Even for a moderate density ratio, alignment of the scalar gradient and growth rate of its norm are deeply altered. Past the interface effective rotation indeed drives the scalar gradient to align with a direction determined by the local strain persistence parameter, away from the compressional strain direction. The jump of strain intensity at the interface, however, opposes the lessening effect of the latter mechanism on the growth rate of the scalar gradient norm and promotes the rise of the gradient.

  10. Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27

    Science.gov (United States)

    Sinitsyna, E. V.; Timofeev, V. I.; Tuzova, E. S.; Kostromina, M. A.; Murav'eva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2017-07-01

    Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are involved in a salvage pathway of nucleotide synthesis, thus providing purine base utilization and maintaining the optimal level of purine bases in the body. Adenine phosphoribosyltransferase from the extremely thermophilic Thermus thermophilus strain HB27 was produced using a highly efficient E. coli producer strain and was then purified by affinity and gel-filtration chromatography. This enzyme was successfully employed as a catalyst for the cascade biosynthesis of biologically important nucleotides. The screening of crystallization conditions for recombinant APRT from T. thermophilus HB27 was performed in order to determine the enzyme structure by X-ray diffraction. The crystallization conditions, which were found by the vapor-diffusion technique, were then optimized to apply the counter-diffusion technique. The crystals of the enzyme were grown by the capillary counter-diffusion method. The crystals belong to sp. gr. P1211 and have the following unitcell parameters: a = 69.86 Å, b = 82.16 Å, c = 91.39 Å, α = γ = 90°, β = 102.58°. The X-ray diffraction data set suitable for the determination of the APRT structure at 2.6 Å resolution was collected from the crystals at the SPring-8 synchrotron facility (Japan).

  11. Nano-resonator frequency response based on strain gradient theory

    International Nuclear Information System (INIS)

    Miandoab, Ehsan Maani; Yousefi-Koma, Aghil; Pishkenari, Hossein Nejat; Fathi, Mohammad

    2014-01-01

    This paper aims to explore the dynamic behaviour of a nano-resonator under ac and dc excitation using strain gradient theory. To achieve this goal, the partial differential equation of nano-beam vibration is first converted to an ordinary differential equation by the Galerkin projection method and the lumped model is derived. Lumped parameters of the nano-resonator, such as linear and nonlinear springs and damper coefficients, are compared with those of classical theory and it is demonstrated that beams with smaller thickness display greater deviation from classical parameters. Stable and unstable equilibrium points based on classic and non-classical theories are also compared. The results show that, regarding the applied dc voltage, the dynamic behaviours expected by classical and non-classical theories are significantly different, such that one theory predicts the un-deformed shape as the stable condition, while the other theory predicts that the beam will experience bi-stability. To obtain the frequency response of the nano-resonator, a general equation including cubic and quadratic nonlinearities in addition to parametric electrostatic excitation terms is derived, and the analytical solution is determined using a second-order multiple scales method. Based on frequency response analysis, the softening and hardening effects given by two theories are investigated and compared, and it is observed that neglecting the size effect can lead to two completely different predictions in the dynamic behaviour of the resonators. The findings of this article can be helpful in the design and characterization of the size-dependent dynamic behaviour of resonators on small scales. (paper)

  12. Purification, crystallization and preliminary crystallographic analysis of DehI, a group I α-haloacid dehalogenase from Pseudomonas putida strain PP3

    Energy Technology Data Exchange (ETDEWEB)

    Schmidberger, Jason W. [School of Pharmacology and Medicine, University of Western Australia, Crawley, Western Australia (Australia); Wilce, Jackie A. [Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria (Australia); Weightman, Andrew J. [School of Biosciences, Cardiff University, Cardiff,Wales (United Kingdom); Wilce, Matthew C. J., E-mail: matthew.wilce@med.monash.edu.au [Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria (Australia); School of Pharmacology and Medicine, University of Western Australia, Crawley, Western Australia (Australia)

    2008-07-01

    The α-haloacid dehalogenase DehI from P. putida strain PP3 was cloned into a vector with an N-terminal His tag and expressed in E. coli Nova Blue strain. Purified protein was crystallized in a primitive monoclinic form and a complete native data set was collected and analysed. Pseudomonas putida strain PP3 produces two dehalogenases, DehI and DehII, which belong to the group I and II α-haloacid dehalogenases, respectively. Group I dehalogenases catalyse the removal of halides from d-haloalkanoic acids and in some cases also the l-enantiomers, both substituted at their chiral centres. Studies of members of this group have resulted in the proposal of general catalytic mechanisms, although no structural information is available in order to better characterize their function. This work presents the initial stages of the structural investigation of the group I α-haloacid dehalogenase DehI. The DehI gene was cloned into a pET15b vector with an N-terminal His tag and expressed in Escherichia coli Nova Blue strain. Purified protein was crystallized in 25% PEG 3350, 0.4 M lithium sulfate and 0.1 M bis-tris buffer pH 6.0. The crystals were primitive monoclinic (space group P2{sub 1}), with unit-cell parameters a = 68.32, b = 111.86, c = 75.13 Å, α = 90, β = 93.7, γ = 90°, and a complete native data set was collected. Molecular replacement is not an option for structure determination, so further experimental phasing methods will be necessary.

  13. Purification, crystallization and preliminary crystallographic analysis of DehI, a group I α-haloacid dehalogenase from Pseudomonas putida strain PP3

    International Nuclear Information System (INIS)

    Schmidberger, Jason W.; Wilce, Jackie A.; Weightman, Andrew J.; Wilce, Matthew C. J.

    2008-01-01

    The α-haloacid dehalogenase DehI from P. putida strain PP3 was cloned into a vector with an N-terminal His tag and expressed in E. coli Nova Blue strain. Purified protein was crystallized in a primitive monoclinic form and a complete native data set was collected and analysed. Pseudomonas putida strain PP3 produces two dehalogenases, DehI and DehII, which belong to the group I and II α-haloacid dehalogenases, respectively. Group I dehalogenases catalyse the removal of halides from d-haloalkanoic acids and in some cases also the l-enantiomers, both substituted at their chiral centres. Studies of members of this group have resulted in the proposal of general catalytic mechanisms, although no structural information is available in order to better characterize their function. This work presents the initial stages of the structural investigation of the group I α-haloacid dehalogenase DehI. The DehI gene was cloned into a pET15b vector with an N-terminal His tag and expressed in Escherichia coli Nova Blue strain. Purified protein was crystallized in 25% PEG 3350, 0.4 M lithium sulfate and 0.1 M bis-tris buffer pH 6.0. The crystals were primitive monoclinic (space group P2 1 ), with unit-cell parameters a = 68.32, b = 111.86, c = 75.13 Å, α = 90, β = 93.7, γ = 90°, and a complete native data set was collected. Molecular replacement is not an option for structure determination, so further experimental phasing methods will be necessary

  14. Brilliance and flux reduction in imperfect inclined crystals

    International Nuclear Information System (INIS)

    Lee, W.K.; Blasdell, R.C.; Fernandez, P.B.; Macrander, A.T.; Mills, D.M.

    1996-01-01

    The inclined crystal geometry has been suggested as a method of reducing the surface absorbed power density of high-heat-load monochromators for third-generation synchrotron radiation sources. Computer simulations have shown that if the crystals are perfectly aligned and have no strains then the diffraction properties of a pair of inclined crystals are very similar to a pair of conventional flat crystals with only subtle effects differentiating the two configurations. However, if the crystals are strained, these subtle differences in the behavior of inclined crystals can result in large beam divergences causing brilliance and flux losses. This manuscript elaborates on these issues and estimates potential brilliance and flux losses from strained inclined crystals at the APS

  15. Protein crystal growth in low gravity

    Science.gov (United States)

    Feigelson, Robert S.

    1993-01-01

    This Final Technical Report for NASA Grant NAG8-774 covers the period from April 27, 1989 through December 31, 1992. It covers five main topics: fluid flow studies, the influence of growth conditions on the morphology of isocitrate lyase crystals, control of nucleation, the growth of lysozyme by the temperature gradient method and graphoepitaxy of protein crystals. The section on fluid flow discusses the limits of detectability in the Schlieren imaging of fluid flows around protein crystals. The isocitrate lyase study compares crystals grown terrestrially under a variety of conditions with those grown in space. The controlling factor governing the morphology of the crystals is the supersaturation. The lack of flow in the interface between the drop and the atmosphere in microgravity causes protein precipitation in the boundary layer and a lowering of the supersaturation in the drop. This lowered supersaturation leads to improved crystal morphology. Preliminary experiments with lysozyme indicated that localized temperature gradients could be used to nucleate crystals in a controlled manner. An apparatus (thermonucleator) was designed to study the controlled nucleation of protein crystals. This apparatus has been used to nucleate crystals of materials with both normal (ice-water, Rochelle salt and lysozyme) and retrograde (horse serum albumin and alpha chymotrypsinogen A) solubility. These studies have lead to the design of an new apparatus that small and more compatible with use in microgravity. Lysozyme crystals were grown by transporting nutrient from a source (lysozyme powder) to the crystal in a temperature gradient. The influence of path length and cross section on the growth rate was demonstrated. This technique can be combined with the thermonucleator to control both nucleation and growth. Graphoepitaxy utilizes a patterned substrate to orient growing crystals. In this study, silicon substrates with 10 micron grooves were used to grow crystals of catalase

  16. Young-Laplace equation for liquid crystal interfaces

    Science.gov (United States)

    Rey, Alejandro D.

    2000-12-01

    This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.

  17. Method for single crystal growth of photovoltaic perovskite material and devices

    Science.gov (United States)

    Huang, Jinsong; Dong, Qingfeng

    2017-11-07

    Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.

  18. X-Ray Microbeam Measurements of Individual Dislocation Cell Elastic Strains in Deformed Single-Crystal Copper

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Lyle E. [National Institute of Standards and Technology (NIST); Larson, Ben C [ORNL; Yang, Wenge [ORNL; Kassner, Michael E. [University of Southern California; Tischler, Jonathan Zachary [ORNL; Delos-Reyes, Michael A. [University of Southern California; Fields, Richard J. [National Institute of Standards and Technology (NIST); Liu, Wenjun [ORNL

    2006-01-01

    The distribution of elastic strains at the submicrometre length scale within deformed metal single crystals has remarkably broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behaviour within individual grains, the transport of dislocations through such structures, changes in mechanical properties that occur during reverse loading (for example, sheet-metal forming and fatigue), and the analyses of diffraction line profiles for microstructural studies of these phenomena.

  19. Measurement & Minimization of Mount Induced Strain on Double Crystal Monochromator Crystals

    Science.gov (United States)

    Kelly, J.; Alcock, S. G.

    2013-03-01

    Opto-mechanical mounts can cause significant distortions to monochromator crystals and mirrors if not designed or implemented carefully. A slope measuring profiler, the Diamond-NOM [1], was used to measure the change in tangential slope as a function of crystal clamping configuration and load. A three point mount was found to exhibit the lowest surface distortion (Diamond Light Source.

  20. Nonlinear behavior of capacitive micro-beams based on strain gradient theory

    International Nuclear Information System (INIS)

    Fathalilou, Mohammad; Sadeghi, Morteza; Rezazadeh, Ghader

    2014-01-01

    This paper studies the size dependent behavior of materials in MEMS structures. This behavior becomes noticeable for a structure when the characteristic size such as thickness or diameter is close to its internal length-scale parameter and is insignificant for the high ratio of the characteristic size to the length-scale parameter, which is the case of the silicon base micro-beams. However, in some types of micro-beams like gold or nickel bases, the size dependent effect cannot be overlooked. In such cases, ignoring this behavior in modeling will lead to incorrect results. Some previous researchers have applied classic beam theory on their models and imposed a considerable hypothetical value of residual stress to match their theoretical results with the experimental ones. The equilibrium positions or fixed points of the gold and nickel micro-beams are obtained and shown that for a given DC voltage, there is a considerable difference between the obtained fixed points using classic beam theory, modified couple stress theory, and modified strain gradient theory. In addition, it is shown that the calculated static and dynamic pull-in voltages using higher order theories are much closer to the experimental results and are higher several times than those obtained by classic beam theory.

  1. Modeling the size dependent pull-in instability of beam-type NEMS using strain gradient theory

    Directory of Open Access Journals (Sweden)

    Ali Koochi

    Full Text Available It is well recognized that size dependency of materials characteristics, i.e. size-effect, often plays a significant role in the performance of nano-structures. Herein, strain gradient continuum theory is employed to investigate the size dependent pull-in instability of beam-type nano-electromechanical systems (NEMS. Two most common types of NEMS i.e. nano-bridge and nano-cantilever are considered. Effects of electrostatic field and dispersion forces i.e. Casimir and van der Waals (vdW attractions have been considered in the nonlinear governing equations of the systems. Two different solution methods including numerical and Rayleigh-Ritz have been employed to solve the constitutive differential equations of the system. Effect of dispersion forces, the size dependency and the importance of coupling between them on the instability performance are discussed.

  2. Expression, purification, crystallization and preliminary X-ray analysis of maleylacetate reductase from Burkholderia sp. strain SJ98

    International Nuclear Information System (INIS)

    Chauhan, Archana; Islam, Zeyaul; Jain, Rakesh Kumar; Karthikeyan, Subramanian

    2009-01-01

    Purification and preliminary X-ray crystallographic analysis of maleylacetate reductase encoded by the pnpD gene is reported. Maleylacetate reductase (EC 1.3.1.32) is an important enzyme that is involved in the degradation pathway of aromatic compounds and catalyzes the reduction of maleylacetate to 3-oxoadipate. The gene pnpD encoding maleylacetate reductase in Burkholderia sp. strain SJ98 was cloned, expressed in Escherichia coli and purified by affinity chromatography. The enzyme was crystallized in both native and SeMet-derivative forms by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant at 293 K. The crystals belonged to space group P2 1 2 1 2, with unit-cell parameters a = 72.91, b = 85.94, c = 53.07 Å. X-ray diffraction data for the native and SeMet-derivative crystal were collected to 2.7 and 2.9 Å resolution, respectively

  3. Quantification of photoinduced bending of dynamic molecular crystals: from macroscopic strain to kinetic constants and activation energies.

    Science.gov (United States)

    Chizhik, Stanislav; Sidelnikov, Anatoly; Zakharov, Boris; Naumov, Panče; Boldyreva, Elena

    2018-02-28

    Photomechanically reconfigurable elastic single crystals are the key elements for contactless, timely controllable and spatially resolved transduction of light into work from the nanoscale to the macroscale. The deformation in such single-crystal actuators is observed and usually attributed to anisotropy in their structure induced by the external stimulus. Yet, the actual intrinsic and external factors that affect the mechanical response remain poorly understood, and the lack of rigorous models stands as the main impediment towards benchmarking of these materials against each other and with much better developed soft actuators based on polymers, liquid crystals and elastomers. Here, experimental approaches for precise measurement of macroscopic strain in a single crystal bent by means of a solid-state transformation induced by light are developed and used to extract the related temperature-dependent kinetic parameters. The experimental results are compared against an overarching mathematical model based on the combined consideration of light transport, chemical transformation and elastic deformation that does not require fitting of any empirical information. It is demonstrated that for a thermally reversible photoreactive bending crystal, the kinetic constants of the forward (photochemical) reaction and the reverse (thermal) reaction, as well as their temperature dependence, can be extracted with high accuracy. The improved kinematic model of crystal bending takes into account the feedback effect, which is often neglected but becomes increasingly important at the late stages of the photochemical reaction in a single crystal. The results provide the most rigorous and exact mathematical description of photoinduced bending of a single crystal to date.

  4. Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Steuer, S., E-mail: Susanne.Steuer@ensma.fr [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Villechaise, P. [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Pollock, T.M. [Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106-5050 (United States); Cormier, J. [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France)

    2015-10-01

    The influence of high thermal gradient processing on the creep and low cycle fatigue properties of the AM1 Ni-based single crystal superalloy has been studied. Isothermal creep (from 750 °C up to 1200 °C) and low cycle fatigue (750 °C and 950 °C) experiments were performed for AM1 alloy solidified with a conventional radiation cooled (Bridgman) and higher thermal gradient liquid-metal cooled (LMC) casting process to produce coarse and finer-scaled dendritic structures, respectively. There was no significant effect of the casting technique on creep properties, due to the very similar microstructures (γ′-size and γ-channel width) established after full heat treatment of both Bridgman and LMC samples. For low cycle fatigue properties, the benefit of the higher gradient LMC process was dependent on the testing temperature. At 750 °C, cracks primarily initiated at pores created by solidification shrinkage in both Bridgman and LMC samples. Samples produced by the LMC technique demonstrated fatigue lives up to 4 times longer, compared to the Bridgman samples, due to refined porosity. At 950 °C the low cycle fatigue properties of the LMC and conventionally solidified material were not distinguishable due to a shift of crack initiation sites from internal pores to oxidized surface layers or near-surface pores. The benefit of the LMC approach was, however, apparent in fatigue at 950 °C when testing in a vacuum environment. Based on these results, a crack initiation model based on the local slip activity close to casting defect is proposed.

  5. Piezo-optic tensor of crystals from quantum-mechanical calculations.

    Science.gov (United States)

    Erba, A; Ruggiero, M T; Korter, T M; Dovesi, R

    2015-10-14

    An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of the full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO4, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π61 constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.

  6. Growth of doped and pure monocrystalline fibers and gradient crystals of REMO{sub 4} compounds (RE = rare earths and M = Nb and Ta); Crescimento de fibras monocristalinas puras e dopadas, e cristais gradientes de compostos REMO{sub 4} (RE= terras raras e M = Nb e Ta)

    Energy Technology Data Exchange (ETDEWEB)

    Octaviano, E.S.; Levada, C.L.; Missiato, O., E-mail: esoctaviano@if.sc.usp.br [Academia da Forca Aerea, Campo Fontenelle, Pirassununga , SP (Brazil). Div. de Ensino; Semenzato, M.J.; Silva, R.A.; Andreeta, J.P. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica

    2009-07-01

    A desirable alternative for a faster development, characterization and application of material of technological interest has been the growth of single crystal fibers by LHPG - Laser Heated Pedestal Growth. In this work it was reported the growth of pure, doped and gradient single crystal fibers of the chemical formulation REMO{sub 4} (M = Nb e Ta, e RE= Rare Earth), characterized through primary techniques such as X-Ray and optical spectroscopy. (author)

  7. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams.

    Science.gov (United States)

    Cao, J; Ertekin, E; Srinivasan, V; Fan, W; Huang, S; Zheng, H; Yim, J W L; Khanal, D R; Ogletree, D F; Grossman, J C; Wu, J

    2009-11-01

    Correlated electron materials can undergo a variety of phase transitions, including superconductivity, the metal-insulator transition and colossal magnetoresistance. Moreover, multiple physical phases or domains with dimensions of nanometres to micrometres can coexist in these materials at temperatures where a pure phase is expected. Making use of the properties of correlated electron materials in device applications will require the ability to control domain structures and phase transitions in these materials. Lattice strain has been shown to cause the coexistence of metallic and insulating phases in the Mott insulator VO(2). Here, we show that we can nucleate and manipulate ordered arrays of metallic and insulating domains along single-crystal beams of VO(2) by continuously tuning the strain over a wide range of values. The Mott transition between a low-temperature insulating phase and a high-temperature metallic phase usually occurs at 341 K in VO(2), but the active control of strain allows us to reduce this transition temperature to room temperature. In addition to device applications, the ability to control the phase structure of VO(2) with strain could lead to a deeper understanding of the correlated electron materials in general.

  8. Effects of growth conditions on thermal profiles during Czochralski silicon crystal growth

    Science.gov (United States)

    Choe, Kwang Su; Stefani, Jerry A.; Dettling, Theodore B.; Tien, John K.; Wallace, John P.

    1991-01-01

    An eddy current testing method was used to continuously monitor crystal growth process and investigate the effects of growth conditions on thermal profiles during Czochralski silicon crystal growth. The experimental concept was to monitor the intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. In terms of the experiments, the effects of changes in growth parameters, which include the crystal and crucible rotation rates, crucible position, and pull rate, and hot-zone geometries were investigated. The results show that the crystal thermal profile could shift significantly as a function of crystal length if the closed-loop control fails to maintain a constant thermal condition. As a direct evidence to the effects of the melt flow on heat transfer processes, a thermal gradient minimum was observed when the crystal/crucible rotation combination was 20/-10 rpm cw. The thermal gradients in the crystal near the growth interface were reduced most by decreasing the pull rate or by reducing the radiant heat loss to the environment; a nearly constant axial thermal gradient was achieved when either the pull rate was decreased by half, the height of the exposed crucible wall was doubled, or a radiation shield was placed around the crystal. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5°C/mm. When compared to theoretical results found in literature, the axial profiles correlated well with the results of the models which included radiant interactions. However, the radial gradients estimated from three-frequency data were much higher than what were predicted by known theoretical models. This discrepancy seems to indicate that optical phenomenon within the crystal is significant and should be included in theoretical modeling.

  9. A device for the application of uniaxial strain to single crystal samples for use in synchrotron radiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gannon, L. [Clarendon Laboratory, University of Oxford Physics Department, Parks Road, Oxford OX1 3PU (United Kingdom); Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE (United Kingdom); Bosak, A. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Burkovsky, R. G. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Peter the Great Saint-Petersburg Polytechnic University, 29 Politekhnicheskaya, 195251, St.-Petersburg (Russian Federation); Nisbet, G.; Hoesch, M., E-mail: Moritz.Hoesch@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE (United Kingdom); Petrović, A. P. [DPMC-MaNEP, Université de Genève, Quai Ernest-Ansermet 24, 1211 Genève 4 (Switzerland)

    2015-10-15

    We present the design, construction, and testing of a straining device compatible with many different synchrotron radiation techniques, in a wide range of experimental environments (including low temperature, high field and ultra-high vacuum). The device has been tested by X-ray diffraction on single crystal samples of quasi-one-dimensional Cs{sub 2}Mo{sub 6}Se{sub 6} and K{sub 2}Mo{sub 6}Se{sub 6}, in which microscopic strains up to a Δc/c = 0.12% ± 0.01% change in the c lattice parameters have been achieved. We have also used the device in an inelastic X-ray scattering experiment, to probe the strain-dependent speed of sound ν along the c axis. A reduction Δν/ν of up to −3.8% was obtained at a strain of Δc/c = 0.25% in K{sub 2}Mo{sub 6}Se{sub 6}.

  10. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8* carbohydrate-binding protein of the human rotavirus strain Wa

    International Nuclear Information System (INIS)

    Kraschnefski, Mark J.; Scott, Stacy A.; Holloway, Gavan; Coulson, Barbara S.; Itzstein, Mark von; Blanchard, Helen

    2005-01-01

    The carbohydrate-binding component (VP8* 64–223 ) of the human Wa rotavirus spike protein has been overexpressed in E. coli, purified and crystallized in two different crystal forms. X-ray diffraction data have been collected that have enabled determination of the Wa VP8* 64–223 structure by molecular replacement. Rotaviruses exhibit host-specificity and the first crystallographic information on a rotavirus strain that infects humans is reported here. Recognition and attachment to host cells, leading to invasion and infection, is critically linked to the function of the outer capsid spike protein of the rotavirus particle. In some strains the VP8* component of the spike protein is implicated in recognition and binding of sialic-acid-containing cell-surface carbohydrates, thereby enabling infection by the virus. The cloning, expression, purification, crystallization and initial X-ray diffraction analysis of the VP8* core from human Wa rotavirus is reported. Two crystal forms (trigonal P3 2 21 and monoclinic P2 1 ) have been obtained and X-ray diffraction data have been collected, enabling determination of the VP8* 64–223 structure by molecular replacement

  11. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8* carbohydrate-binding protein of the human rotavirus strain Wa

    Energy Technology Data Exchange (ETDEWEB)

    Kraschnefski, Mark J.; Scott, Stacy A. [Institute for Glycomics, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre, Queensland 9726 (Australia); Holloway, Gavan; Coulson, Barbara S.; Itzstein, Mark von [Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010 (Australia); Blanchard, Helen, E-mail: h.blanchard@griffith.edu.au [Institute for Glycomics, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre, Queensland 9726 (Australia)

    2005-11-01

    The carbohydrate-binding component (VP8*{sub 64–223}) of the human Wa rotavirus spike protein has been overexpressed in E. coli, purified and crystallized in two different crystal forms. X-ray diffraction data have been collected that have enabled determination of the Wa VP8*{sub 64–223} structure by molecular replacement. Rotaviruses exhibit host-specificity and the first crystallographic information on a rotavirus strain that infects humans is reported here. Recognition and attachment to host cells, leading to invasion and infection, is critically linked to the function of the outer capsid spike protein of the rotavirus particle. In some strains the VP8* component of the spike protein is implicated in recognition and binding of sialic-acid-containing cell-surface carbohydrates, thereby enabling infection by the virus. The cloning, expression, purification, crystallization and initial X-ray diffraction analysis of the VP8* core from human Wa rotavirus is reported. Two crystal forms (trigonal P3{sub 2}21 and monoclinic P2{sub 1}) have been obtained and X-ray diffraction data have been collected, enabling determination of the VP8*{sub 64–223} structure by molecular replacement.

  12. Minimization of spurious strains by using a Si bent-perfect-crystal monochromator: neutron surface strain scanning of a shot-peened sample

    Science.gov (United States)

    Rebelo Kornmeier, Joana; Gibmeier, Jens; Hofmann, Michael

    2011-06-01

    Neutron strain measurements are critical at the surface. When scanning close to a sample surface, aberration peak shifts arise due to geometrical and divergence effects. These aberration peak shifts can be of the same order as the peak shifts related to residual strains. In this study it will be demonstrated that by optimizing the horizontal bending radius of a Si (4 0 0) monochromator, the aberration peak shifts from surface effects can be strongly reduced. A stress-free sample of fine-grained construction steel, S690QL, was used to find the optimal instrumental conditions to minimize aberration peak shifts. The optimized Si (4 0 0) monochromator and instrument settings were then applied to measure the residual stress depth gradient of a shot-peened SAE 4140 steel sample to validate the effectiveness of the approach. The residual stress depth profile is in good agreement with results obtained by x-ray diffraction measurements from an international round robin test (BRITE-EURAM-project ENSPED). The results open very promising possibilities to bridge the gap between x-ray diffraction and conventional neutron diffraction for non-destructive residual stress analysis close to surfaces.

  13. Minimization of spurious strains by using a Si bent-perfect-crystal monochromator: neutron surface strain scanning of a shot-peened sample

    International Nuclear Information System (INIS)

    Rebelo Kornmeier, Joana; Hofmann, Michael; Gibmeier, Jens

    2011-01-01

    Neutron strain measurements are critical at the surface. When scanning close to a sample surface, aberration peak shifts arise due to geometrical and divergence effects. These aberration peak shifts can be of the same order as the peak shifts related to residual strains. In this study it will be demonstrated that by optimizing the horizontal bending radius of a Si (4 0 0) monochromator, the aberration peak shifts from surface effects can be strongly reduced. A stress-free sample of fine-grained construction steel, S690QL, was used to find the optimal instrumental conditions to minimize aberration peak shifts. The optimized Si (4 0 0) monochromator and instrument settings were then applied to measure the residual stress depth gradient of a shot-peened SAE 4140 steel sample to validate the effectiveness of the approach. The residual stress depth profile is in good agreement with results obtained by x-ray diffraction measurements from an international round robin test (BRITE-EURAM-project ENSPED). The results open very promising possibilities to bridge the gap between x-ray diffraction and conventional neutron diffraction for non-destructive residual stress analysis close to surfaces

  14. Enhanced ductility of surface nano-crystallized materials by modulating grain size gradient

    International Nuclear Information System (INIS)

    Li, Jianjun; Soh, A K

    2012-01-01

    Surface nano-crystallized (SNC) materials with a graded grain size distribution on their surfaces have been attracting increasing scientific interest over the past few decades due to their good synergy of high strength and high ductility. However, to date most of the existing studies have focused on the individual contribution of three different aspects, i.e. grain size gradient (GSG), work-hardened region and surface compressive residual stresses, which were induced by surface severe plastic deformation processes, to the improved strength of SNC materials as compared with that of their coarse grained (CG) counterparts. And the ductility of these materials has hardly been studied. In this study, a combination of theoretical analysis and finite element simulations was used to investigate the role of GSG in tuning the ductility of SNC materials. It was found that the ductility of an SNC material can be comparable to that of its CG counterpart, while it simultaneously possessed a much higher strength than its CG core if the optimal GSG thickness and grain size of the topmost phase were adopted. A design map that can be used as a guideline for fabrication of SNC materials was also plotted. Our predictions were also compared with the corresponding experimental results. (paper)

  15. Recombinant Bacillus thuringiensis subsp. kurstaki HD73 strain that synthesizes Cry1Ac and chimeric ChiA74∆sp chitinase inclusions.

    Science.gov (United States)

    González-Ponce, Karen S; Casados-Vázquez, Luz E; Salcedo-Hernández, Rubén; Bideshi, Dennis K; Del Rincón-Castro, María C; Barboza-Corona, José E

    2017-05-01

    In this study, the endochitinase chiA74 gene lacking its secretion signal peptide sequence (chiA74∆sp) was fused in frame with the sequence coding for the C-terminal crystallization domain and transcription terminator of cry1Ac. The chimeric gene was expressed under the strong pcytA-p/STAB-SD promoter system in an acrystalliferous Cry - B strain of Bacillus thuringiensis and B. thuringiensis subsp. kurstaki HD73. We showed that the chimeric ChiA74∆sp produced amorphous inclusions in both Cry - B and HD73. In addition to the amorphous inclusions putatively composed of the chimera, bipyramidal Cry1Ac crystals, smaller than the wild-type crystal, were observed in recombinant HD73, and chitinase activity was remarkably higher (75-fold) in this strain when compared with parental HD73. Moreover, we observed that lyophilized samples of a mixture containing Cry1Ac, amorphous inclusions, and spores maintained chitinase activity. Amorphous inclusions could not be separated from Cry1Ac crystals by sucrose gradient centrifugation. Interestingly, the chitinase activity of purified Cry1Ac/amorphous inclusions was 51-fold higher compared to purified Cry1Ac inclusions of parental HD73, indicating that the increased enzymatic activity was due primarily to the presence of the atypical amorphous component. The possibility that the chimera is occluded with the Cry1Ac crystal, thereby contributing to the increased endochitinolytic activity, cannot be excluded. Finally, bioassays against larvae of Spodoptera frugiperda with spore/crystals of HD73 or spore-crystal ChiA74∆sp chimeric inclusions of recombinant HD73 strain showed LC 50 s of 396.86 and 290.25 ng/cm 2 , respectively. Our study suggests a possible practical application of the chimera in formulations of B. thuringiensis-based lepidopteran larvicides.

  16. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mehralian, Fahimeh [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Tadi Beni, Yaghoub, E-mail: tadi@eng.sku.ac.ir [Faculty of Engineering, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Karimi Zeverdejani, Mehran [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of)

    2017-06-01

    Featured by two small length scale parameters, nonlocal strain gradient theory is utilized to investigate the free vibration of nanotubes. A new size-dependent shell model formulation is developed by using the first order shear deformation theory. The governing equations and boundary conditions are obtained using Hamilton's principle and solved for simply supported boundary condition. As main purpose of this study, since the values of two small length scale parameters are still unknown, they are calibrated by the means of molecular dynamics simulations (MDs). Then, the influences of different parameters such as nonlocal parameter, scale factor, length and thickness on vibration characteristics of nanotubes are studied. It is also shown that increase in thickness and decrease in length parameters intensify the effect of nonlocal parameter and scale factor.

  17. Quasistatic nonlinear viscoelasticity and gradient flows

    OpenAIRE

    Ball, John M.; Şengül, Yasemin

    2014-01-01

    We consider the equation of motion for one-dimensional nonlinear viscoelasticity of strain-rate type under the assumption that the stored-energy function is λ-convex, which allows for solid phase transformations. We formulate this problem as a gradient flow, leading to existence and uniqueness of solutions. By approximating general initial data by those in which the deformation gradient takes only finitely many values, we show that under suitable hypotheses on the stored-energy function the d...

  18. The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS)

    International Nuclear Information System (INIS)

    Gerdts, Cory J.; Elliott, Mark; Lovell, Scott; Mixon, Mark B.; Napuli, Alberto J.; Staker, Bart L.; Nollert, Peter; Stewart, Lance

    2008-01-01

    The Microcapillary Protein Crystallization System (MPCS) is a new protein-crystallization technology used to generate nanolitre-sized crystallization experiments for crystal screening and optimization. Using the MPCS, diffraction-ready crystals were grown in the plastic MPCS CrystalCard and were used to solve the structure of methionine-R-sulfoxide reductase. The Microcapillary Protein Crystallization System (MPCS) embodies a new semi-automated plug-based crystallization technology which enables nanolitre-volume screening of crystallization conditions in a plasticware format that allows crystals to be easily removed for traditional cryoprotection and X-ray diffraction data collection. Protein crystals grown in these plastic devices can be directly subjected to in situ X-ray diffraction studies. The MPCS integrates the formulation of crystallization cocktails with the preparation of the crystallization experiments. Within microfluidic Teflon tubing or the microfluidic circuitry of a plastic CrystalCard, ∼10–20 nl volume droplets are generated, each representing a microbatch-style crystallization experiment with a different chemical composition. The entire protein sample is utilized in crystallization experiments. Sparse-matrix screening and chemical gradient screening can be combined in one comprehensive ‘hybrid’ crystallization trial. The technology lends itself well to optimization by high-granularity gradient screening using optimization reagents such as precipitation agents, ligands or cryoprotectants

  19. Plateau-Rayleigh Crystal Growth of Nanowire Heterostructures: Strain-Modified Surface Chemistry and Morphological Control in One, Two, and Three Dimensions.

    Science.gov (United States)

    Day, Robert W; Mankin, Max N; Lieber, Charles M

    2016-04-13

    One-dimensional (1D) structures offer unique opportunities for materials synthesis since crystal phases and morphologies that are difficult or impossible to achieve in macroscopic crystals can be synthesized as 1D nanowires (NWs). Recently, we demonstrated one such phenomenon unique to growth on a 1D substrate, termed Plateau-Rayleigh (P-R) crystal growth, where periodic shells develop along a NW core to form diameter-modulated NW homostructures with tunable morphologies. Here we report a novel extension of the P-R crystal growth concept with the synthesis of heterostructures in which Ge (Si) is deposited on Si (Ge) 1D cores to generate complex NW morphologies in 1, 2, or 3D. Depositing Ge on 50 nm Si cores with a constant GeH4 pressure yields a single set of periodic shells, while sequential variation of GeH4 pressure can yield multimodulated 1D NWs with two distinct sets of shell periodicities. P-R crystal growth on 30 nm cores also produces 2D loop structures, where Ge (Si) shells lie primarily on the outside (inside) of a highly curved Si (Ge) core. Systematic investigation of shell morphology as a function of growth time indicates that Ge shells grow in length along positive curvature Si cores faster than along straight Si cores by an order of magnitude. Short Ge deposition times reveal that shells develop on opposite sides of 50 and 100 nm Si cores to form straight 1D morphologies but that shells develop on the same side of 20 nm cores to produce 2D loop and 3D spring structures. These results suggest that strain mediates the formation of 2 and 3D morphologies by altering the NW's surface chemistry and that surface diffusion of heteroatoms on flexible freestanding 1D substrates can facilitate this strain-mediated mechanism.

  20. Entropy-driven crystal formation on highly strained substrates

    KAUST Repository

    Savage, John R.; Hopp, Stefan F.; Ganapathy, Rajesh; Gerbode, Sharon J.; Heuer, Andreas; Cohen, Itai

    2013-01-01

    the crucial role of entropy in heteroepitaxy in this technologically important regime. Ultimately, this entropic component of lattice mismatched crystal growth could be used to develop unique methods for heterogeneous nucleation and growth of single crystals

  1. Spall response of single-crystal copper

    Science.gov (United States)

    Turley, W. D.; Fensin, S. J.; Hixson, R. S.; Jones, D. R.; La Lone, B. M.; Stevens, G. D.; Thomas, S. A.; Veeser, L. R.

    2018-02-01

    We performed a series of systematic spall experiments on single-crystal copper in an effort to determine and isolate the effects of crystal orientation, peak stress, and unloading strain rate on the tensile spall strength. Strain rates ranging from 0.62 to 2.2 × 106 s-1 and peak shock stresses in the 5-14 GPa range, with one additional experiment near 50 GPa, were explored as part of this work. Gun-driven impactors, called flyer plates, generated flat top shocks followed by spall. This work highlights the effect of crystal anisotropy on the spall strength by showing that the spall strength decreases in the following order: [100], [110], and [111]. Over the range of stresses and strain rates explored, the spall strength of [100] copper depends strongly on both the strain rate and shock stress. Except at the very highest shock stress, the results for the [100] orientation show linear relationships between the spall strength and both the applied compressive stress and the strain rate. In addition, hydrodynamic computer code simulations of the spall experiments were performed to calculate the relationship between the strain rate near the spall plane in the target and the rate of free surface velocity release during the pullback. As expected, strain rates at the spall plane are much higher than the strain rates estimated from the free surface velocity release rate. We have begun soft recovery experiments and molecular dynamics calculations to understand the unusual recompression observed in the spall signature for [100] crystals.

  2. Isostructural crystal hydrates of rare-earth metal oxalates at high pressure. From strain anisotropy to dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Boris A.; Matvienko, Alexander A. [Russian Academy of Ssciences, Novosibirsk (Russian Federation). Inst. of Solid State Chemistry and Mechanochemistry; Novosibirsk State Univ. (Russian Federation); Gribov, Pavel A.; Boldyreva, Elena V. [Russian Academy of Ssciences, Novosibirsk (Russian Federation). Inst. of Solid State Chemistry and Mechanochemistry

    2017-07-01

    The crystal structures of a series of isostructural rare-earth metal oxalates, (REE){sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O (REE=Sm, Y) and a 1:1 YSm(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O solid solution, have been studied in situ by single-crystal X-ray diffraction and optical microscopy. The structures were followed from ambient pressure to 6 GPa in a DAC with paraffin as the hydrostatic fluid. Bulk compressibilities, anisotropic lattice strain on hydrostatic compression and the corresponding changes in the atomic coordinates were followed. Discontinuities/sharp changes in the slopes of the pressure dependences of volume and selected cell parameters have been observed for yttrium-containing salts at ∝3.5 GPa. This may be related to the re-distribution of water molecules within the crystal structure. Y{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O undergoes a partial dehydration at 1 GPa, forming monoclinic Y{sub 2}(C{sub 2}O{sub 4}){sub 3}.6H{sub 2}O as single-crystalline inclusions in the original phase.

  3. Global Existence Results for Viscoplasticity at Finite Strain

    Science.gov (United States)

    Mielke, Alexander; Rossi, Riccarda; Savaré, Giuseppe

    2018-01-01

    We study a model for rate-dependent gradient plasticity at finite strain based on the multiplicative decomposition of the strain tensor, and investigate the existence of global-in-time solutions to the related PDE system. We reveal its underlying structure as a generalized gradient system, where the driving energy functional is highly nonconvex and features the geometric nonlinearities related to finite-strain elasticity as well as the multiplicative decomposition of finite-strain plasticity. Moreover, the dissipation potential depends on the left-invariant plastic rate, and thus depends on the plastic state variable. The existence theory is developed for a class of abstract, nonsmooth, and nonconvex gradient systems, for which we introduce suitable notions of solutions, namely energy-dissipation-balance and energy-dissipation-inequality solutions. Hence, we resort to the toolbox of the direct method of the calculus of variations to check that the specific energy and dissipation functionals for our viscoplastic models comply with the conditions of the general theory.

  4. Strained Silicon Photonics

    Directory of Open Access Journals (Sweden)

    Ralf B. Wehrspohn

    2012-05-01

    Full Text Available A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon.

  5. Micromechanical properties of single crystals and polycrystals of pure α-titanium: anisotropy of microhardness, size effect, effect of the temperature (77-300 K)

    Science.gov (United States)

    Lubenets, S. V.; Rusakova, A. V.; Fomenko, L. S.; Moskalenko, V. A.

    2018-01-01

    The anisotropy of microhardness of pure α-Ti single crystals, indentation size effect in single-crystal, course grained (CG) pure and nanocrystalline (NC) VT1-0 titanium, as well as the temperature dependences of the microhardness of single-crystal and CG Ti in the temperature range 77-300 K were studied. The minimum value of hardness was obtained when indenting into the basal plane (0001). The indentation size effect (ISE) was clearly observed in the indentation of soft high-purity single-crystal iodide titanium while it was the least pronounced in a sample of nanocrystalline VT1-0 titanium. It has been demonstrated that the ISE can be described within the model of geometrically necessary dislocations (GND), which follows from the theory of strain gradient plasticity. The true hardness and others parameters of the GND model were determined for all materials. The temperature dependence of the microhardness is in agreement with the idea of the governing role of Peierls relief in the dislocation thermally-activated plastic deformation of pure titanium as has been earlier established and justified in macroscopic tensile investigations at low temperatures. The activation energy and activation volume of dislocation motion in the strained region under the indenter were estimated.

  6. The impact of elastic and plastic strain on relaxation and crystallization of Pd–Ni–P-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Mitrofanov, Yu.P.; Peterlechner, M.; Binkowski, I.; Zadorozhnyy, M.Yu.; Golovin, I.S.; Divinski, S.V.; Wilde, G.

    2015-01-01

    The effects of deformation and subsequent heat treatment on the low-temperature heat capacity, enthalpy relaxation rate and mechanical losses of two Pd–Ni–P-based bulk metallic glasses of slightly different compositions and different thermal stabilities have been investigated. It was found that the crystallization temperatures decreased significantly with imposed strain and the effect was more pronounced for the alloy with a higher thermal stability. The boson heat capacity peak increases with increasing strain in both alloys. However, after annealing treatments above room temperature, it relaxes to a lower enthalpy state as compared to that of the as-quenched state for the alloy with a lower thermal stability. The existence of two counteracting processes that might be related to different shear band structures within one homogeneously deformed sample is suggested. These results agree with the internal friction data, which indicate different regimes of mechanical damping as a function of the strain amplitude, while the critical amplitude of a transition between the regimes depends on the imposed strain. The results are interpreted within the energy landscape approach and advocate that the composition-dependent local atomic configurations affect significantly the response of the glass to an applied strain

  7. Phonon dispersion evolution in uniaxially strained aluminum crystal

    Science.gov (United States)

    Parthasarathy, Ranganathan; Misra, Anil; Aryal, Sitaram; Ouyang, Lizhi

    2018-04-01

    The influence of loading upon the phonon dispersion of crystalline materials could be highly nonlinear with certain particular trends that depend upon the loading path. In this paper, we have calculated the influence of [100] uniaxial strain on the phonon dispersion and group velocities in fcc aluminum using second moments of position obtained from molecular dynamics (MD) simulation at 300 K. In contrast to nonlinear monotonic variation of both longitudinal and transverse phonon frequencies along the Δ , Λ and Σ lines of the first Brillouin zone under tension, transverse phonon branches along the Λ line show inflection at specific wavevectors when the compressive strain exceeds 5%. Further, the longitudinal group velocities along the high-symmetry Δ line vary non-monotonically with strain, reaching a minimum at 5% compressive strain. Throughout the strain range studied, the equilibrium positions of atoms displace in an affine manner preserving certain static structural symmetry. We attribute the anomalies in the phonon dispersion to the non-affine evolution of second moments of atomic position, and the associated plateauing of force constants under the applied strain path.

  8. The ideal tensile strength and deformation behavior of a tungsten single crystal

    International Nuclear Information System (INIS)

    Liu Yuelin; Zhou Hongbo; Zhang Ying; Jin Shuo; Lu Guanghong

    2009-01-01

    We employ first-principles total energy method based on the density functional theory with the generalized gradient approximation to investigate the ideal tensile strengths of a bcc tungsten (W) single crystal systemically. The ideal tensile strengths are shown to be 29.1, 49.2 and 37.6 GPa for bcc W in the [0 0 1], [1 1 0] and [1 1 1] directions, respectively. The [0 0 1] direction is shown to be the weakest direction due to the occurrence of structure transition at the lower strain and the [1 1 0] direction is strongest. The results can provide a useful reference for W as a PFM in the nuclear fusion Tokamak.

  9. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    John Reilly

    2018-03-01

    Full Text Available Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc. and generalized displacement (deflection, rotation, etc. to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i the range of raw temperatures on the structure, and (ii the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  10. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring.

    Science.gov (United States)

    Reilly, John; Glisic, Branko

    2018-03-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  11. Drift of nonequilibrium charge carriers in GaAs-crystals with traps in ultrasonic fields

    International Nuclear Information System (INIS)

    Zaveryukhina, N.N.; Zaveryukhin, B.N.; Zaveryukhina, E.B.

    2007-01-01

    Full text: The drift of nonequilibrium charge carriers in a semiconductor is one of the basic processes determining the efficiency of semiconductor photodetectors. Gallium arsenide possesses certain advantages to other semiconductors in this respect, which allow GaAs-photodetectors to be obtained which possess the maximum efficiency in comparison with all other systems. The purpose of this study was to deepen and expand our knowledge about the acoustic-drift processes in GaAs- crystals. As is known, the drift of nonequilibrium charge carriers in a semiconductor is determined either by external electric fields and/or by internal (built-in) electrostatic fields related to an impurity concentration gradient in the semiconductor. Gallium arsenide is a piezoelectric semiconductor with a structure possessing no center of symmetry. An electric field applied to such a crystal produces deformation of the crystal, and vice versa, any deformation of the crystal leads to the appearance of an induced electric field. Therefore, investigation of the effect of deformation on the drift of nonequilibrium charge carriers is a very important task. One of the possible straining factors is ultrasonic wave. Interaction of the charge carriers with ultrasonic waves in piezo-semiconductors is mediated by piezo exertion. Straining a semiconductor by an ultrasonic wave field gives rise to a force acting upon the charge carriers, which is proportional to the wave vector and the piezoelectric constant of the crystal. The physics of interaction between an ultrasonic wave and nonequilibrium charge carriers in GaAs, as well as in non-polar semiconductors (Si, Ge), consists in the energy and momentum exchange between the wave and the carriers. Besides the ultrasonic waves interact with the traps of carriers and devastate them. These both acoustic effects lead to rise of amplitude of signal of GaAs-photodetectors. (authors)

  12. Orientation and deformation of mineral crystals in tooth surfaces.

    Science.gov (United States)

    Fujisaki, Kazuhiro; Todoh, Masahiro; Niida, Atsushi; Shibuya, Ryota; Kitami, Shunsuke; Tadano, Shigeru

    2012-06-01

    Tooth enamel is the hardest material in the human body, and it is mainly composed of hydroxyapatite (HAp)-like mineral particles. As HAp has a hexagonal crystal structure, X-ray diffraction methods can be used to analyze the crystal structure of HAp in teeth. Here, the X-ray diffraction method was applied to the surface of tooth enamel to measure the orientation and strain of the HAp crystals. The c-axis of the hexagonal crystal structure of HAp was oriented to the surface perpendicular to the tooth enamel covering the tooth surface. Thus, the strain of HAp at the surface of teeth was measured by X-ray diffraction from the (004) lattice planes aligned along the c-axis. The X-ray strain measurements were conducted on tooth specimens with intact surfaces under loading. Highly accurate strain measurements of the surface of tooth specimens were performed by precise positioning of the X-ray irradiation area during loading. The strains of the (004) lattice plane were measured at several positions on the surface of the specimens under compression along the tooth axis. The strains were obtained as tensile strains at the labial side of incisor tooth specimens. In posterior teeth, the strains were different at different measurement positions, varying from tensile to compressive types. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Overexpression, crystallization and preliminary X-ray crystallographic analysis of the RNA polymerase domain of primase from Streptococcus mutans strain UA159

    International Nuclear Information System (INIS)

    Im, Dong-Won; Kim, Tae-O; Jung, Ha Yun; Oh, Ji Eun; Lee, Se Jin; Heo, Yong-Seok

    2011-01-01

    The RNA polymerase domain of primase from S. mutans strain UA159 was cloned, overexpressed, purified and crystallized. X-ray diffraction data were collected to a resolution of 1.60 Å. Primase is the enzyme that synthesizes RNA primers on single-stranded DNA during normal DNA replication. In this study, the catalytic core domain of primase from Streptococcus mutans UA159 was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 1.60 Å resolution using a synchrotron-radiation source. The crystal belonged to space group P4 1 or P4 3 , with unit-cell parameters a = b = 52.63, c = 110.31 Å. The asymmetric unit is likely to contain one molecule, with a corresponding V M of 1.77 Å 3 Da −1 and a solvent content of 30.7%

  14. Micromechanical analysis of martensite distribution on strain localization in dual phase steels by scanning electron microscopy and crystal plasticity simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Ziaei-Rad, S., E-mail: szrad@cc.iut.ac.ir [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Saeidi, N. [Department of Materials Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Jamshidian, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2016-07-18

    The morphology and distribution of the dispersed martensite islands in the ferrite matrix plays a key role in the formation of shear bands in dual phase steels. In this study, we investigate the relationship between the martensite dispersion and the strain localization regions due to the formation of shear bands in fine-grained DP 780 steel, employing experimental observations as well as numerical simulations. SEM studies of the deformed microstructure showed that voids nucleated at ferrite-martensite interface within larger ferrite grains and regions with low local martensite fraction. The experimental results were precisely analyzed by finite element simulations based on the theory of crystal plasticity. A parametric study was then performed to obtain a deeper insight in to the effect of martensite dispersion on the strain localization of the neighboring ferrite. Crystal plasticity simulation results revealed that in a more regular structure compared to a random structure, a greater region of the ferrite phase contributes to accommodate plasticity. In addition, these regions limit the formation of main shear bands by creating barriers against stress concentration regions, results in lower growth and interaction of stress concentration regions with each others.

  15. Investigation of microstructure and V-defect formation inInxGa1-xN/GaN MQW grown using temperature-gradient MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.C.; Liliental-Weber, Z.; Zakharov, D.N.; McCready,D.E.; Jorgenson, R.J.; Wu, J.; Shan, W.; Bourret-Courchesne, E.D.

    2004-11-19

    Temperature-gradient Metalorganic Chemical Vapor Deposition was used to deposit In{sub x}Ga{sub 1-x}N/GaN multiple quantum well structures with a concentration gradient of indium across the wafer. These multiple quantum well structures were deposited on low defect density (2 x 10{sup 8} cm{sup -2}) GaN template layers for investigation of microstructural properties and V-defect (pinhole) formation. Room temperature photoluminescence and photomodulated transmission were used for optical characterization which show a systematic decrease in emission energy for a decrease in growth temperature. Triple-axis X-ray diffraction, scanning electron microscopy and cross-section transmission electron microscopy were used to obtain microstructural properties of different regions across the wafer. Results show that there is a decrease in crystal quality and an increase in V-defect formation with increasing indium concentration. A direct correlation was found between V-defect density and growth temperature due to increased strain and indium segregation for increasing indium concentration.

  16. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8* sialic acid-binding domain of porcine rotavirus strain OSU

    International Nuclear Information System (INIS)

    Zhang, Yang-De; Li, Hao; Liu, Hui; Pan, Yi-Feng

    2007-01-01

    Porcine rotavirus strain OSU VP8* domain has been expressed, purified and crystallized. X-ray diffraction data from different crystal forms of the VP8* domain have been collected to 2.65 and 2.2 Å resolution, respectively. The rotavirus outer capsid spike protein VP4 is utilized in the process of rotavirus attachment to and membrane penetration of host cells. VP4 is cleaved by trypsin into two domains: VP8* and VP5*. The VP8* domain is implicated in initial interaction with sialic acid-containing cell-surface carbohydrates and triggers subsequent virus invasion. The VP8* domain from porcine OSU rotavirus was cloned and expressed in Escherichia coli. Different crystal forms (orthorhombic P2 1 2 1 2 1 and tetragonal P4 1 2 1 2) were harvested from two distinct crystallization conditions. Diffraction data have been collected to 2.65 and 2.2 Å resolution and the VP8* 65–224 structure was determined by molecular replacement

  17. Anomalous radial and angular strain relaxation around dilute p-, isoelectronic-, and n-type dopants in Si crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mingshu [School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Dong, Juncai, E-mail: dongjc@ihep.ac.cn [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Dongliang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-02-01

    Doping is widely applied in yielding desirable properties and functions in silicon technology; thus, fully understanding the relaxation mechanism for lattice-mismatch strain is of fundamental importance. Here we systematically study the local lattice distortion near dilute IIIA-, IVA-, and VA-group substitutional dopants in Si crystal using density functional theory, and anomalous radial and angular strain relaxation modes are first revealed. Both the nearest-neighbor (NN) bond-distances and the tetrahedral bond-angles are found to exhibit completely opposite dependence on the electronic configurations for the low Z (Z<26) and high Z (Z>26) dopants. More surprisingly, negative and positive angular shifts for the second NN twelve Si2 atoms are unveiled surrounding the p- and n-type dopants, respectively. While electron localization function shows that the doped hole and electron are highly localized near the dopants, hence being responsible for the abnormal angular shifts, a universal radial strain relaxation mechanism dominated by a competition of the Coulomb interactions among the ion-core, bond-charge, and the localized hole or electron is also proposed. These findings may prove to be instrumental in precise design of silicon-based solotronics.

  18. A novel polymerase chain reaction (PCR) - denaturing gradient gel electrophoresis (DGGE) for the identification of Micrococcaceae strains involved in meat fermentations. Its application to naturally fermented Italian sausages.

    Science.gov (United States)

    Cocolin, L; Manzano, M; Aggio, D; Cantoni, C; Comi, G

    2001-05-01

    A new molecular method consisting of polymerase chain reaction (PCR) amplification and denaturing gradient gel electrophoresis (DGGE) of a small fragment from the 16S rRNA gene identified the Micrococcaceae strains isolated from natural fermented Italian sausages. Lactic acid bacteria, total aerobic mesophilic flora, Enterobacteriaceae and faecal enterococci were also monitored. Micrococcaceaea control strains from international collections were used to optimise the method and 90 strains, isolated from fermented sausages, were identified by biochemical tests and PCR-DGGE. No differences were observed between the methods used. The results reported in this paper prove that Staphylococcus xylosus is the main bacterium involved in fermented sausage production, representing, from the tenth day of ripening, the only Micrococcaceaea species isolated.

  19. Great Disparity in Photoluminesence Quantum Yields of Colloidal CsPbBr3 Nanocrystals with Varied Shape: The Effect of Crystal Lattice Strain.

    Science.gov (United States)

    Zhao, Jiangtao; Liu, Mei; Fang, Li; Jiang, Shenlong; Zhou, Jingtian; Ding, Huaiyi; Huang, Hongwen; Wen, Wen; Luo, Zhenlin; Zhang, Qun; Wang, Xiaoping; Gao, Chen

    2017-07-06

    Understanding the big discrepancy in the photoluminesence quantum yields (PLQYs) of nanoscale colloidal materials with varied morphologies is of great significance to its property optimization and functional application. Using different shaped CsPbBr 3 nanocrystals with the same fabrication processes as model, quantitative synchrotron radiation X-ray diffraction analysis reveals the increasing trend in lattice strain values of the nanocrystals: nanocube, nanoplate, nanowire. Furthermore, transient spectroscopic measurements reveal the same trend in the defect quantities of these nanocrystals. These experimental results unambiguously point out that large lattice strain existing in CsPbBr 3 nanoparticles induces more crystal defects and thus decreases the PLQY, implying that lattice strain is a key factor other than the surface defect to dominate the PLQY of colloidal photoluminesence materials.

  20. Strain-tuned optoelectronic properties of hollow gallium sulphide microspheres

    Science.gov (United States)

    Zhang, Yin; Chen, Chen; Liang, C. Y.; Liu, Z. W.; Li, Y. S.; Che, Renchao

    2015-10-01

    intrinsic inhomogeneous strain distribution. Geometric phase analysis (GPA) based on high-resolution transmission electron microscopy (HRTEM) imaging reveals that the strain distribution and the associated PL properties can be accurately controlled by changing the growth temperature gradient, which depends on the distance between the boats used for raw material evaporation and microsphere deposition. The stacking-fault density, lattice distortion degree and strain distribution at the shell interfacial region of the Ga2S3 microspheres could be readily adjusted. Ab initio first-principles calculations confirm that the lowest conductive band (LCB) is dominated by S-3s and Ga-4p states, which shift to the low-energy band as a result of the introduction of tensile strain, well in accordance with the observed PL evolution. Therefore, based on our strain driving strategy, novel guidelines toward the reasonable design of sulfide semiconductors with tunable photoluminescence properties are proposed. Electronic supplementary information (ESI) available: Crystal structure pattern; calculated DOS diagram. See DOI: 10.1039/c5nr05528h

  1. Resonant tunneling measurements of size-induced strain relaxation

    Science.gov (United States)

    Akyuz, Can Deniz

    Lattice mismatch strain available in such semiconductor heterostructures as Si/SiGe or GaAs/AlGaAs can be employed to alter the electronic and optoelectronic properties of semiconductor structures and devices. When deep submicron structures are fabricated from strained material, strained layers relax by sidewall expansion giving rise to size- and geometry-dependent strain gradients throughout the structure. This thesis describes a novel experimental technique to probe the size-induced strain relaxation by studying the tunneling current characteristics of strained p-type Si/SiGe resonant tunneling diodes. Our current-voltage measurements on submicron strained p-Si/SiGe double- and triple-barrier resonant tunneling structures as a function of device diameter, D, provide experimental access to both the average strain relaxation (which leads to relative shifts in the tunneling current peak positions) and strain gradients (which give rise to a fine structure in the current peaks due to inhomogeneous strain-induced lateral quantization). We find that strain relaxation is significant, with a large fraction of the strain energy relaxed on average in D ≤ 0.25 m m devices. Further, the in-plane potentials that arise from inhomogeneous strain gradients are large. In the D ˜ 0.2 m m devices, the corresponding lateral potentials are approximately parabolic exceeding ˜ 25 meV near the perimeter. These potentials create discrete hole states in double-barrier structures (single well), and coupled hole states in triple-barrier structures (two wells). Our results are in excellent agreement with finite-element strain calculations in which the strained layers are permitted to relax to a state of minimum energy by sidewall expansion. Size-induced strain relaxation will undoubtedly become a serious technological issue once strained devices are scaled down to the deep submicron regime. Interestingly, our calculations predict and our measurements are consistent with the appearance of

  2. Micromechanical modelling of the cyclic stress-strain behaviour of nickel polycrystals

    International Nuclear Information System (INIS)

    Steckmeyer, A.; Sauzay, M.; Weidner, A.; Hieckmann, E.

    2012-01-01

    A crystalline elasto-plasticity model is proposed to describe the cyclic behaviour of face-centred cubic crystals. It is based on many experimental observations correlating the observed dislocation structures with the orientations of corresponding crystals. The model distinguishes between two families of crystals. The first family gathers crystals for which the tension-compression loading axis is located in the centre of the standard stereo-graphic triangle. These crystals, in which bundle and/or slip band dislocation structures are usually observed, are subjected to single slip deformation. The second family gathers crystals in which labyrinths or wall dislocation structures develop. These crystals are subjected to multiple slip deformation. Crystalline plasticity parameters are adjusted using only the single crystal cyclic stress strain curves measured for one orientation of each of the two families. The relevance of the model is evaluated through finite elements calculations of the uniaxial cyclic deformation of texture-free nickel polycrystals at room temperature. The macroscopic predictions are in reasonable agreement with experimental data concerning both the cyclic stress-strain curve and the hysteresis loops provided either large grain sizes or intermediate to high plastic strains are considered. By construction, the modelling is unable to predict grain size effect observed at low plastic strain. The distributions of the mean grain plastic strains become narrower as the macroscopic plastic strain amplitude increases, which appears consistent with the large scattering in high-cycle fatigue lifetimes usually observed. On the contrary, the distributions of mean grain axial stresses get broader, in agreement with neutron and X-ray diffraction measurement values published in the literature. The influence of the material parameters is then discussed. Finally, the cumulative probability curves of the number of cycles to fatigue microcrack nucleation are deduced

  3. Investigations into the Surface Strain/Stress State in a Single-Crystal Superalloy via XRD Characterization

    Directory of Open Access Journals (Sweden)

    Haodong Duan

    2018-05-01

    Full Text Available The present study was aimed at determining the surface strain/stress state in an Ni-based single-crystal (SC superalloy that was subjected to two different cooling rates from solid solution temperature through using the X-ray diffraction (XRD method. The normal stresses σ 11 s and σ 22 s were determined, then the Von Mises stresses ( σ V M s were derived from them. Field emission gun scanning electron microscope (FEG-SEM and transmission electron microscope (TEM micrographs were taken to illustrate the strain/stress state change. The precipitation of the secondary γ′ phases in the γ phase and the formation of the dislocation in the interphase upon a slower cooling rate caused the γ phase lattice distortion to increase, so a larger σ V M s of the γ phase was realized in comparison to the faster cooling sample. For both of the two cooling modes, we found that the σ V M s of the γ′ phase increased due to the growth of the γ′ phase during the aging process. Also, the aging process led to pronouncedly anisotropic lattice mismatches in the {331} and {004} planes. In addition, the surface strain/stress states of a cylinder sample and a tetragonal sample were also studied using a faster cooling rate, and σ 11 s and σ 22 s were analyzed to explain the influence of the shape factor on the stress anisotropy in the [001] and [ 1 1 ¯ 0 ] orientations. The strain in the [001] orientation of the γ phase is more sensitive to the shape change.

  4. Anisotropic gradients in the upper mantle

    International Nuclear Information System (INIS)

    Garmany, J.

    1981-01-01

    Pn amplitudes in some widely spaced sets of orthogonal marine refraction lines on young oceanic crust are greater in the fast direction than in the slow direction. This is inconsistent with the predicted amplitude behavior for simple head waves, but can be explained by an increase in anisotropy with depth. It appears that these gradients are due to increasing olivine crystal orientation, although changes in the relative abundance of two anisotropic minerals without variable tectonization could also account for the observations. Depth variation of tectonization most probably indicates very high temperature gradients at the Moho. This would imply a substantial amount of convective heat transport in the whole oceanic crust near mid-ocean rises

  5. Pseudo Landau levels and quantum oscillations in strained Weyl semimetals

    Science.gov (United States)

    Alisultanov, Z. Z.

    2018-05-01

    The crystal lattice deformation in Weyl materials where the two chiralities are separated in momentum space leads to the appearance of gauge pseudo-fields. We investigated the pseudo-magnetic field induced quantum oscillations in strained Weyl semimetal (WSM). In contrast to all previous works on this problem, we use here a more general tilted Hamiltonian. Such Hamiltonian, seems to be is more suitable for a strained WSMs. We have shown that a pseudo-magnetic field induced magnetization of strained WSM is nonzero due to the fact that electric field (gradient of the deformation potential) is induced simultaneously with the pseudo-magnetic field. This related with fact that the pseudo Landau levels (LLs) in strained WSM are differ in vicinities of different WPs due to the presence of tilt in spectrum. Such violation of the equivalence between Weyl points (WPs) leads to modulation of quantum oscillations. We also showed that magnetization magnitude can be changed by application of an external electric field. In particular, it can be reduced to zero. The possibility of controlling of the magnetization by an electric field is interesting both from a fundamental point of view (a new type of magneto-electric effect) and application point of view (additional possibility to control diamagnetism of deformed WSMs). Finally, a coexistence of type-I and type-II Weyl fermions is possible in the system under investigation. Such phase is absolutely new for physics of topological systems.

  6. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  7. Activity-dependent formation of a vesicular inhibitory amino acid transporter gradient in the superior olivary complex of NMRI mice.

    Science.gov (United States)

    Ebbers, Lena; Weber, Maren; Nothwang, Hans Gerd

    2017-10-26

    In the mammalian superior olivary complex (SOC), synaptic inhibition contributes to the processing of binaural sound cues important for sound localization. Previous analyses demonstrated a tonotopic gradient for postsynaptic proteins mediating inhibitory neurotransmission in the lateral superior olive (LSO), a major nucleus of the SOC. To probe, whether a presynaptic molecular gradient exists as well, we investigated immunoreactivity against the vesicular inhibitory amino acid transporter (VIAAT) in the mouse auditory brainstem. Immunoreactivity against VIAAT revealed a gradient in the LSO and the superior paraolivary nucleus (SPN) of NMRI mice, with high expression in the lateral, low frequency processing limb and low expression in the medial, high frequency processing limb of both nuclei. This orientation is opposite to the previously reported gradient of glycine receptors in the LSO. Other nuclei of the SOC showed a uniform distribution of VIAAT-immunoreactivity. No gradient was observed for the glycine transporter GlyT2 and the neuronal protein NeuN. Formation of the VIAAT gradient was developmentally regulated and occurred around hearing-onset between postnatal days 8 and 16. Congenital deaf Claudin14 -/- mice bred on an NMRI background showed a uniform VIAAT-immunoreactivity in the LSO, whereas cochlear ablation in NMRI mice after hearing-onset did not affect the gradient. Additional analysis of C57Bl6/J, 129/SvJ and CBA/J mice revealed a strain-specific formation of the gradient. Our results identify an activity-regulated gradient of VIAAT in the SOC of NRMI mice. Its absence in other mouse strains adds a novel layer of strain-specific features in the auditory system, i.e. tonotopic organization of molecular gradients. This calls for caution when comparing data from different mouse strains frequently used in studies involving transgenic animals. The presence of strain-specific differences offers the possibility of genetic mapping to identify molecular

  8. High energy X-ray diffraction study of a dental ceramics–titanium functional gradient material prepared by field assisted sintering technique

    International Nuclear Information System (INIS)

    Witte, K.; Bodnar, W.; Schell, N.; Lang, H.; Burkel, E.

    2014-01-01

    A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. The crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength

  9. In Situ Determination of Thermal Profiles during Czochralski Silicon Crystal Growth by an Eddy Current Technique.

    Science.gov (United States)

    Choe, Kwang Su.

    An eddy current testing method was developed to continuously monitor crystal growth process and determine thermal profiles in situ during Czochralski silicon crystal growth. The work was motivated by the need to improve the quality of the crystal by controlling thermal gradients and annealing history over the growth cycle. The experimental concept is to monitor intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. The experiments were performed in a resistance-heated Czochralski puller with a 203 mm (8 inch) diameter crucible containing 6.5 kg melt. The silicon crystals being grown were about 80 mm in diameter and monitored by an encircling sensor operating at three different test frequencies (86, 53 and 19 kHz). A one-dimensional analytical solution was employed to translate the detected signals into electrical conductivities. In terms of experiments, the effects of changes in growth condition, which is defined by crystal and crucible rotation rates, crucible position, pull rate, and hot-zone configuration, were investigated. Under a given steady-state condition, the thermal profile was usually stable over the entire length of crystal growth. The profile shifted significantly, however, when the crucible rotation rate was kept too high. As a direct evidence to the effects of melt flow on heat transfer process, a thermal gradient minimum was observed about the crystal/crucible rotation combination of 20/-10 rpm cw. The thermal gradient reduction was still most pronounced when the pull rate or the radiant heat loss to the environment was decreased: a nearly flat axial thermal gradient was achieved when either the pull rate was halved or the height of the exposed crucible wall was effectively doubled. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5 ^{rm o}C/mm. Regardless of growth condition, the three-frequency data revealed radial thermal gradients much larger

  10. Observation of in-plane asymmetric strain relaxation during crystal growth and growth interruption in InGaAs/GaAs(001)

    International Nuclear Information System (INIS)

    Sasaki, Takuo; Shimomura, Kenichi; Kamiya, Itaru; Ohshita, Yoshio; Yamaguchi, Masafumi; Suzuki, Hidetoshi; Takahasi, Masamitu

    2012-01-01

    In-plane asymmetric strain relaxation in lattice-mismatched InGaAs/GaAs(001) heteroepitaxy is studied by in situ three-dimensional X-ray reciprocal space mapping. Repeating crystal growth and growth interruptions during measurements allows us to investigate whether the strain relaxation is limited at a certain thickness or saturated. We find that the degree of relaxation during growth interruption depends on both the film thickness and the in-plane directions. Significant lattice relaxation is observed in rapid relaxation regimes during interruption. This is a clear indication that relaxation is kinetically limited. In addition, relaxation along the [110] direction can saturate more readily than that along the [1-bar10] direction. We discuss this result in terms of the interaction between orthogonally aligned dislocations. (author)

  11. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8* sialic acid-binding domain of porcine rotavirus strain OSU

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang-De, E-mail: zhangyd1960@yahoo.com.cn; Li, Hao [National Hepatobiliary and Enteric Surgery Research Center of The Ministry of Health, Xiangya Hospital, Central South University, Hunan Province (China); Liu, Hui; Pan, Yi-Feng [Biochemistry Laboratory, Institution of Biomedical Engineering, Central South University, Hunan Province (China); National Hepatobiliary and Enteric Surgery Research Center of The Ministry of Health, Xiangya Hospital, Central South University, Hunan Province (China)

    2007-02-01

    Porcine rotavirus strain OSU VP8* domain has been expressed, purified and crystallized. X-ray diffraction data from different crystal forms of the VP8* domain have been collected to 2.65 and 2.2 Å resolution, respectively. The rotavirus outer capsid spike protein VP4 is utilized in the process of rotavirus attachment to and membrane penetration of host cells. VP4 is cleaved by trypsin into two domains: VP8* and VP5*. The VP8* domain is implicated in initial interaction with sialic acid-containing cell-surface carbohydrates and triggers subsequent virus invasion. The VP8* domain from porcine OSU rotavirus was cloned and expressed in Escherichia coli. Different crystal forms (orthorhombic P2{sub 1}2{sub 1}2{sub 1} and tetragonal P4{sub 1}2{sub 1}2) were harvested from two distinct crystallization conditions. Diffraction data have been collected to 2.65 and 2.2 Å resolution and the VP8*{sub 65–224} structure was determined by molecular replacement.

  12. AMS fabric and structural record along a strain gradient in an extrusive salt diapir (Kuh-e-Namak, Dashti, Iran)

    Science.gov (United States)

    Zavada, Prokop; Schulmann, Karel; Lexa, Ondrej; Machek, Matej; Roxerova, Zuzana; Kusbach, Vladimir

    2016-04-01

    The AMS record and the halite fabrics on meso- and micro-scale were studied in detail on a well exposed salt extrusive body in Iran. In the Kuh-e-Namak (Dashti) mountain salt diapir, the deformation structures in colored salt are displayed along longitudinal profiles across the dome and two glaciers that extend from the NE and SW edge of the dome. The profiles from the dome to the frontal parts of the glaciers reveal a continuous strain gradient associated with transposition of the domal salt fabrics by axial fold cleavage development during flow of rock salt over the ridges in the channel. The extruded salt belongs to the Hormuz sequence of Neo-Proterozoic to Early Cambrian age. From central dome towards especially the northern namakier, structural record revealed zonation from; 1) gravitational collapse related recumbent isoclinal folds in the dome, 2) flat normal shears at the edge of the dome, 3) collapsed vertical layering into flat lying transpositional fabric at the toe of the dome, 4) penetrative fold cleavage transposition of earlier fabrics above the topographical ridge in the base of the flow, locally displaying strong transversal constrictional fabrics, 5) banded mylonites with isoclinal rootless folds in subhorizontally banded frontal and marginal domain of the glacier. The AMS fabric in the rock salt is generated primarily by hematite dispersed in the recrystallized halite. The AMS exhibits three main types of fabric symmetry from clustered all directions (K1,K2,K3, orthogonal fabric) to clustered K1 directions with girdle forming K2,K3 axes and clustered K3 directions with girdle of K1 and K2 directions. The AMS fabric clearly reflects the macroscopic fabric transpositions along the entire investigated strain gradient in the rock salt. Magnetic fabrics reveal continuous trends from bimodal to semi-girdle distribution of foliations in folded and cleavage present regions, to magnetic lineation clustering perpendicular to flow in completely refolded

  13. Highly effective strain-induced band-engineering of (111) oriented, direct-gap GeSn crystallized on amorphous SiO{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haofeng; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States)

    2016-03-07

    We demonstrate highly effective strain-induced band-engineering of (111) oriented direct-gap Ge{sub 1−x}Sn{sub x} thin films (0.074 < x < 0.085) crystallized on amorphous SiO{sub 2} towards 3D photonic integration. Due to a much smaller Poisson's ratio for (111) vs. (100) orientation, 0.44% thermally induced biaxial tensile strain reduces the direct-gap by 0.125 eV towards enhanced direct-gap semiconductor properties, twice as effective as the tensile strain in Ge(100) films. Correspondingly, the optical response is extended to λ = 2.8 μm. A dilatational deformation potential of a = −12.8 ± 0.8 eV is derived. These GeSn films also demonstrate high thermal stability, offering both excellent direct-gap optoelectronic properties and fabrication/operation robustness for integrated photonics.

  14. Thermal Conductivity and Liquid Crystal Thermometers.

    Science.gov (United States)

    Edge, R. D., Ed.

    1993-01-01

    Describes using stock liquid crystal postcards as inexpensive classroom thermometers. Also suggests using these postcards as a good visual temperature indicator for classroom demonstrations such as temperature gradients. One such activity is provided. (MVL)

  15. Determination of low-strain interfaces via geometric matching

    DEFF Research Database (Denmark)

    Jelver, Line; Larsen, Peter Mahler; Stradi, Daniele

    2017-01-01

    We present a general method for combining two crystals into an interface. The method finds all possible interfaces between the crystals with small coincidence cells and identifies the strain and area of the corresponding two-dimensional cells of the two crystal surfaces. We apply the method to th...

  16. A review of higher order strain gradient theories of plasticity: Origins ...

    Indian Academy of Sciences (India)

    require higher order boundary conditions that enable us to model effects of disloca- ..... where ǫ0 is a reference strain, σ0 the yield stress and n the strain hardening exponent. The ...... Petch N J 1953 J. Iron Steel Inst. London 173: 25. Pantleon ...

  17. Crystallization and preliminary X-ray study of a family 10 alkali-thermostable xylanase from alkalophilic Bacillus sp. strain NG-27

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, K. [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Bhardwaj, Amit [International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067 (India); Ghosh, Amit [Institute of Microbial Technology, Sector 39-A, Chandigarh 160 036 (India); Reddy, V. S. [International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067 (India); Ramakumar, S., E-mail: ramak@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Bioinformatics Centre, Indian Institute of Science, Bangalore 560 012 (India)

    2005-08-01

    A family 10 alkali-thermostable xylanase from Bacillus sp. NG-27 has been crystallized. A diffraction data set has been collected to 2.2 Å resolution. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of β-1,4-glycosidic linkages within xylan, a major hemicellulose component in the biosphere. The extracellular endoxylanase (XylnA) from the alkalophilic Bacillus sp. strain NG-27 belongs to family 10 of the glycoside hydrolases. It is active at 343 K and pH 8.4. Moreover, it has attractive features from the point of view of utilization in the paper pulp, animal feed and baking industries since it is an alkali-thermostable protein. In this study, XylnA was purified from the native host source and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 174.5, b = 54.7, c = 131.5 Å, β = 131.2°, and diffract to better than 2.2 Å resolution.

  18. Crystallization and preliminary X-ray study of a family 10 alkali-thermostable xylanase from alkalophilic Bacillus sp. strain NG-27

    International Nuclear Information System (INIS)

    Manikandan, K.; Bhardwaj, Amit; Ghosh, Amit; Reddy, V. S.; Ramakumar, S.

    2005-01-01

    A family 10 alkali-thermostable xylanase from Bacillus sp. NG-27 has been crystallized. A diffraction data set has been collected to 2.2 Å resolution. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of β-1,4-glycosidic linkages within xylan, a major hemicellulose component in the biosphere. The extracellular endoxylanase (XylnA) from the alkalophilic Bacillus sp. strain NG-27 belongs to family 10 of the glycoside hydrolases. It is active at 343 K and pH 8.4. Moreover, it has attractive features from the point of view of utilization in the paper pulp, animal feed and baking industries since it is an alkali-thermostable protein. In this study, XylnA was purified from the native host source and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 174.5, b = 54.7, c = 131.5 Å, β = 131.2°, and diffract to better than 2.2 Å resolution

  19. A new constitutive analysis of hexagonal close-packed metal in equal channel angular pressing by crystal plasticity finite element method

    Science.gov (United States)

    Li, Hejie; Öchsner, Andreas; Yarlagadda, Prasad K. D. V.; Xiao, Yin; Furushima, Tsuyoshi; Wei, Dongbin; Jiang, Zhengyi; Manabe, Ken-ichi

    2018-01-01

    Most of hexagonal close-packed (HCP) metals are lightweight metals. With the increasing application of light metal products, the production of light metal is increasingly attracting the attentions of researchers worldwide. To obtain a better understanding of the deformation mechanism of HCP metals (especially for Mg and its alloys), a new constitutive analysis was carried out based on previous research. In this study, combining the theories of strain gradient and continuum mechanics, the equal channel angular pressing process is analyzed and a HCP crystal plasticity constitutive model is developed especially for Mg and its alloys. The influence of elevated temperature on the deformation mechanism of the Mg alloy (slip and twin) is novelly introduced into a crystal plasticity constitutive model. The solution for the new developed constitutive model is established on the basis of the Lagrangian iterations and Newton Raphson simplification.

  20. Characterisation of a radiation-resistant strain of bacillus thuringiensis subsp. Aizawai with improved toxicity to larval plutella xylostella

    International Nuclear Information System (INIS)

    Mahadi, N.M.; Boo, J.M.L.; Jangi, M.S.

    1989-01-01

    A radiation-resistant strain of Bacillus thuringiensis subsp. Aizawai which was previously shown to be more toxic against larval Plutell xylostella was further characterized. Some of the growth characteristics of the mutant strain were quite different from those of the parent strain. In shake flask culture, its lag period was shorter and its cell yield was lower. The growth rate, however, was the same as that of the parent. Electron microscope studies show that the insecticidal parasporal crystals from the mutant strain are significantly bigger than those produced by the parent strain. The average length and width of the crystals were 1.25 and 0.53 um respectively whereas those of the parent were 0.87 and 0.35 um, respectively. The crystals from the mutant strain were also more toxic. The LC 50 was 0.30 ug crystal protein per ml as against 0.66 ug crystal protein per ml for those from the parent strain. Protein profile of the crystals obtained with SDS-PA gel electrophoresis showed that the mutant strain produced an additional polypeptide of 143 KDa polypeptide. The mutant strain also has an additional high molecular weight plasmid. The improved toxicity may have been brought about by a number of factors including an alteration in the regulatory mechanism that control the synthesis of the polypeptides that make up the crystals. (Auth.). 5 figs.; 21 refs.; 2 tabs

  1. Elastic (stress-strain) halo associated with ion-induced nano-tracks in lithium niobate: role of crystal anisotropy

    International Nuclear Information System (INIS)

    Rivera, A; Garcia, G; Olivares, J; Crespillo, M L; Agulló-López, F

    2011-01-01

    The elastic strain/stress fields (halo) around a compressed amorphous nano-track (core) caused by a single high-energy ion impact on LiNbO 3 are calculated. A method is developed to approximately account for the effects of crystal anisotropy of LiNbO 3 (symmetry 3m) on the stress fields for tracks oriented along the crystal axes (X, Y or Z). It only considers the zero-order (axial) harmonic contribution to the displacement field in the perpendicular plane and uses effective Poisson moduli for each particular orientation. The anisotropy is relatively small; however, it accounts for some differential features obtained for irradiations along the crystallographic axes X, Y and Z. In particular, the irradiation-induced disorder (including halo) and the associated surface swelling appear to be higher for irradiations along the X- or Y-axis in comparison with those along the Z-axis. Other irradiation effects can be explained by the model, e.g. fracture patterns or the morphology of pores after chemical etching of tracks. Moreover, it offers interesting predictions on the effect of irradiation on lattice parameters.

  2. Oscillations of the crystal-melt interface caused by harmonic oscillations of the pulling rate for the cylindrical phase of crystal growth

    Science.gov (United States)

    Vasil'ev, M. G.

    2017-02-01

    A technique for measuring the crystal cross-sectional area with a weight sensor based on the difference between its readings at the extreme rod positions in the stepwise and continuous modes of modulation of the pulling rate is proposed for the low-thermal gradient Czochralski method. A change in the crystallization rate at harmonic oscillations of the pulling rate is estimated with the aim of conserving the quality of the growing crystal for this measurement method.

  3. Development of longer Nd:LGGG crystal for high power laser application

    Science.gov (United States)

    Yin, Yanru; Tian, Hanlin; Zhang, Jian; Mu, Wenxiang; Zhang, Baitao; Jia, Zhitai; He, Jingliang; Tao, Xutang

    2017-11-01

    In order to further improve the Nd3+:(LuxGd1-x)3Ga5O12 (Nd:LGGG) crystal performance in high power laser field, a long Nd:LGGG crystal with dimensions of Φ 23 × 112 mm3 has been grown successfully by the Czochralski (Cz) method for laser rod fabrication. Compared with the normal size LGGG crystals (like 30-50 mm in length), we overcame several difficulties in the growth of longer ones, including crystal cracking by a large longitudinal temperature gradient, spiral growth by a small radial temperature gradient, and growth instability and even constitutional super cooling by Ga2O3 volatilizing continuously. The doping concentrations of Nd3+ and Lu3+ in the as-grown crystal and the crystal optical quality have been measured. The performance of diode-side-pumped Nd:LGGG rod laser has been preliminarily tested for the first time, simply by replacing the Nd:YAG crystal rod inside a commercial laser module. Under an incident pump power of 160 W, the maximum continuous wave output power of 38 W has been obtained, corresponding to an optical-optical conversion efficiency of 23.8% and a slope efficiency of 40.8%, respectively.

  4. Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wei, Lei; Alkeskjold, Thomas Tanggaard

    2009-01-01

    We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used to demons......We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used...... to demonstrate that both signs of the thermal tunability of the bandgaps are possible. The useful bandgaps are ultimately bounded to the visible range by the transparency window of the polymer....

  5. Direct transmission electron microscopy observations of martensitic transformations in Ni-rich NiTi single crystals during in situ cooling and straining

    International Nuclear Information System (INIS)

    Kroeger, A.; Dziaszyk, S.; Frenzel, J.; Somsen, Ch.; Dlouhy, A.; Eggeler, G.

    2008-01-01

    We investigate martensitic transformations using transmission electron microscopy (TEM) in compression aged Ni-rich NiTi single crystals with one family of Ni 4 Ti 3 precipitates. Small cylinders from a Ni-rich NiTi single crystal with a Ni content of 51.0 at.% were compression aged at 550 deg. C in the [1 1 1] B2 direction for different aging times. Differential scanning calorimetry (DSC) investigations show that a three-step martensitic transformation (three DSC peaks on cooling from the high temperature regime) can be observed for aging times of 4 ks. In situ cooling TEM investigations reveal that the first peak on cooling is associated with a transformation from B2 to R-phase, starting from all precipitate/matrix interfaces. On further cooling, the B19'-phase appears and grows along precipitate/matrix interfaces (second step). With further decreasing temperature, the remaining R-phase between the precipitates transforms to B19' (third peak). In situ TEM straining experiments of B2 above the martensitic start temperature reveal that first some microstructural regions directly transform in microscopic burst like events from B2 to B19'. On further straining, the B19'-phase grows along precipitate/matrix interfaces. However, no formation of R-phase precedes the formation of stress-induced B19'

  6. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model

    DEFF Research Database (Denmark)

    Tarp, Jens M.; Angheluta, Luiza; Mathiesen, Joachim

    2014-01-01

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations...... propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate....

  7. Virus purification by CsCl density gradient using general centrifugation.

    Science.gov (United States)

    Nasukawa, Tadahiro; Uchiyama, Jumpei; Taharaguchi, Satoshi; Ota, Sumire; Ujihara, Takako; Matsuzaki, Shigenobu; Murakami, Hironobu; Mizukami, Keijirou; Sakaguchi, Masahiro

    2017-11-01

    Virus purification by cesium chloride (CsCl) density gradient, which generally requires an expensive ultracentrifuge, is an essential technique in virology. Here, we optimized virus purification by CsCl density gradient using general centrifugation (40,000 × g, 2 h, 4 °C), which showed almost the same purification ability as conventional CsCl density gradient ultracentrifugation (100,000 × g, 1 h, 4 °C) using phages S13' and φEF24C. Moreover, adenovirus strain JM1/1 was also successfully purified by this method. We suggest that general centrifugation can become a less costly alternative to ultracentrifugation for virus purification by CsCl densiy gradient and will thus encourage research in virology.

  8. Gradient effects in a new class of electro-elastic bodies

    Science.gov (United States)

    Arvanitakis, Antonios

    2018-06-01

    Continuum theories for electro-elastic solids suggest the development of electric field or polarization-based models. Advanced versions of these models are the so-called gradient models, i.e., polarization gradient and electric field gradient models, which prove to be more than capable of explaining the behavior of a continuum in a wider range of length scales. In this work, implicit constitutive relations for electro-elastic bodies are considered with the introduction of polarization and electric field gradient effects. In this sense, the new class of electro-elastic bodies extends even further to account for nonlocality in constitutive equations, besides strain-limiting behavior and polarization saturation for large values of stresses and electric field, respectively. Nonlocality in constitutive equations is essential in modeling various phenomena.

  9. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  10. Hanging drop crystal growth apparatus and method

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  11. Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films.

    Science.gov (United States)

    Bukusoglu, Emre; Martinez-Gonzalez, Jose A; Wang, Xiaoguang; Zhou, Ye; de Pablo, Juan J; Abbott, Nicholas L

    2017-12-06

    We report on the influence of surface confinement on the phase behavior and strain-induced alignment of thin films of blue phase liquid crystals (BPs). Confining surfaces comprised of bare glass, dimethyloctadecyl [3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP)-functionalized glass, or polyvinyl alcohol (PVA)-coated glass were used with or without mechanically rubbing to influence the azimuthal anchoring of the BPs. These experiments reveal that confinement can change the phase behavior of the BP films. For example, in experiments performed with rubbed-PVA surfaces, we measured the elastic strain of the BPs to change the isotropic-BPII phase boundary, suppressing formation of BPII for film thicknesses incommensurate with the BPII lattice. In addition, we observed strain-induced alignment of the BPs to exhibit a complex dependence on both the surface chemistry and azimuthal alignment of the BPs. For example, when using bare glass surfaces causing azimuthally degenerate and planar anchoring, BPI oriented with (110) planes of the unit cell parallel to the contacting surfaces for thicknesses below 3 μm but transitioned to an orientation with (200) planes aligned parallel to the contacting surfaces for thicknesses above 4 μm. In contrast, BPI aligned with (110) planes parallel to confining surfaces for all other thicknesses and surface treatments, including bare glass with uniform azimuthal alignment. Complementary simulations based on minimization of the total free energy (Landau-de Gennes formalism) confirmed a thickness-dependent reorientation due to strain of BPI unit cells within a window of surface anchoring energies and in the absence of uniform azimuthal alignment. In contrast to BPI, BPII did not exhibit thickness-dependent orientations but did exhibit orientations that were dependent on the surface chemistry, a result that was also captured in simulations by varying the anchoring energies. Overall, the results in this paper reveal that the orientations

  12. Conjugate gradient filtering of instantaneous normal modes, saddles on the energy landscape, and diffusion in liquids.

    Science.gov (United States)

    Chowdhary, J; Keyes, T

    2002-02-01

    Instantaneous normal modes (INM's) are calculated during a conjugate-gradient (CG) descent of the potential energy landscape, starting from an equilibrium configuration of a liquid or crystal. A small number (approximately equal to 4) of CG steps removes all the Im-omega modes in the crystal and leaves the liquid with diffusive Im-omega which accurately represent the self-diffusion constant D. Conjugate gradient filtering appears to be a promising method, applicable to any system, of obtaining diffusive modes and facilitating INM theory of D. The relation of the CG-step dependent INM quantities to the landscape and its saddles is discussed.

  13. A gradient approximation for calculating Debye temperatures from pairwise interatomic potentials

    International Nuclear Information System (INIS)

    Jackson, D.P.

    1975-09-01

    A simple gradient approximation is given for calculating the effective Debye temperature of a cubic crystal from central pairwise interatomic potentials. For examples of the Morse potential applied to cubic metals the results are in generally good agreement with experiment. (author)

  14. Cardiac biplane strain imaging: initial in vivo experience

    Science.gov (United States)

    Lopata, R. G. P.; Nillesen, M. M.; Verrijp, C. N.; Singh, S. K.; Lammens, M. M. Y.; van der Laak, J. A. W. M.; van Wetten, H. B.; Thijssen, J. M.; Kapusta, L.; de Korte, C. L.

    2010-02-01

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to test the method in vivo. The proposed approach can serve as a framework to monitor the development of cardiac hypertrophy and fibrosis. A 2D strain estimation technique using radio frequency (RF) ultrasound data was applied. Biplane image acquisition was performed at a relatively low frame rate (dogs with an aortic stenosis. Initial results reveal the feasibility of measuring large radial, circumferential and longitudinal cumulative strain (up to 70%) at a frame rate of 100 Hz. Mean radial strain curves of a manually segmented region-of-interest in the infero-lateral wall show excellent correlation between the measured strain curves acquired in two perpendicular planes. Furthermore, the results show the feasibility and reproducibility of assessing radial, circumferential and longitudinal strains simultaneously. In this preliminary study, three beagles developed an elevated pressure gradient over the aortic valve (Δp: 100-200 mmHg) and myocardial hypertrophy. One dog did not develop any sign of hypertrophy (Δp = 20 mmHg). Initial strain (rate) results showed that the maximum strain (rate) decreased with increasing valvular stenosis (-50%), which is in accordance with previous studies. Histological findings corroborated these results and showed an increase in fibrotic tissue for the hearts with larger pressure gradients (100, 200 mmHg), as well as lower strain and strain rate values.

  15. Thermal-gradient migration of brine inclusions in salt

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-02-01

    It has been proposed that the high level nuclear waste be buried deep underground in a suitable geologic formation. Natural salt deposits have been under active consideration as one of the geologic formations where a nuclear waste repository may be built in future. The salt deposits, however, are known to contain a small amount (about 0.5 vol.%) of water in the form of brine inclusions which are dispersed throughout the medium. The temperature gradients imposed by the heat generating nuclear waste will mobilize these brine inclusions. It is important to know the rate and the amount of brine accumulating at the waste packages to properly evaluate the performance of a nuclear waste repository. An extensive experimental investigation of the migration velocities of brine inclusions in synthetic single crystals of NaCl and in polycrystalline natural salt crystals has been conducted. The results show that in a salt repository the brine inclusions within a grain would move with the diffusion controlled velocities. The brine reaching a grain boundary may be swept across, if the thermal gradient is high enough. Grain boundaries in polycrystalline rock salt are apparently quite weak and open up due to drilling the hole for a waste canister and to the thermal stresses which accompany the thermal gradient produced by the heat generating waste. The enhanced porosity allows the water reaching the grain boundary to escape by a vapor transport process

  16. The elastic strain energy of crystallographic shear planes in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Tilley, R.J.D.

    1977-01-01

    Calculations of the elastic strain energy due to crystallographic shear (c.s.) planes lying upon 102, 103 and 001 planes in reduced tungsten trioxide crystals have been made. The cases analysed in detail are for both isolated c.s. planes and for pairs of c.s. planes. These results are used to determine the elastic strain energy per unit volume for crystals containing ordered arrays of c.s. planes. It was found that the magnitude of the elastic strain energy was in the sequence 001 < 102 < 103 and that at relatively small inter-c.s. spacings the curves of elastic strain energy against c.s. plane separation take the form of a series of peaks and valleys. These results are compared with experimental observations of c.s. plane spacings in substantially reduced crystals containing quasi-ordered arrays of c.s. planes and with observations of c.s. plane nucleation and growth in both slightly and more appreciably reduced crystals. It was found that the elastic strain energy plays a significant part in controlling the microstructure of c.s. plane arrays in such cases. (author)

  17. Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Matveyev, Alexander L.; Matveev, Lev A.; Gelikonov, Grigory V.; Sovetsky, Aleksandr A.; Vitkin, Alex

    2016-11-01

    In compressional optical coherence elastography, phase-variation gradients are used for estimating quasistatic strains created in tissue. Using reference and deformed optical coherence tomography (OCT) scans, one typically compares phases from pixels with the same coordinates in both scans. Usually, this limits the allowable strains to fairly small values advantages of the proposed optimized phase-variation methodology.

  18. Crystallization and preliminary X-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15

    International Nuclear Information System (INIS)

    Ochiai, Akihito; Yamasaki, Masayuki; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2006-01-01

    The crystallization and preliminary X-ray characterization of a family PL-15 exotype alginate lyase are presented. Almost all alginate lyases depolymerize alginate in an endolytical fashion via a β-elimination reaction. The alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, consisting of 776 amino-acid residues, is a novel exotype alginate lyase classified into polysaccharide lyase family 15. The enzyme was crystallized at 293 K by sitting-drop vapour diffusion with polyethylene glycol 4000 as a precipitant. Preliminary X-ray analysis showed that the Atu3025 crystal belonged to space group P2 1 and diffracted to 2.8 Å resolution, with unit-cell parameters a = 107.7, b = 108.3, c = 149.5 Å, β = 91.5°

  19. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    International Nuclear Information System (INIS)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed

  20. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  1. The plane-to-cellular-to-dendrite transition of the shape of the crystallization front during the crystallization of Al–Cu alloys

    Directory of Open Access Journals (Sweden)

    VESNA RADOJEVIC

    2006-03-01

    Full Text Available The evolution of the crystallization front from a planar to a dendritic one as a function of the GL/(Rc0 parameter was investigated during the crystallization of Al–Cu alloys by the vertical Bridgman method. Six series of alloyswith different initial compositions of Cu were solidified at different growth rates. A mathematical model for the heat transfer during vertical Bridgmen crystal growth was developed. The model was solved using the finite element method. The temperature gradient in the melt at the beginning of crystal growth was calculated using the obtainedmodel. Discrete stages of the crystallization front were identified in the experiments, as the ratio GL/(Rc0 decreased.

  2. Local disorder in mixed crystals as viewed by XRPD

    International Nuclear Information System (INIS)

    Machavariani, V.Sh.; Voronel, A.; Garber, S.; Rubstein, A.; Rosenberg, Yu.; Frenkel, A. I.; Stern, E.A.

    2001-01-01

    A correlation between precise X-ray powder diffraction patterns and atomic size mismatch in disordered mixed crystals (alloys and ionic crystals) is observed. The anisotropy of the elastic moduli has been taken into account for evaluation of the strain energy density of the mixed crystals revealed in XRPD measurements

  3. The influence of texture on the strain measured by diffraction

    International Nuclear Information System (INIS)

    Penning, P.; Brakman, C.M.

    1988-01-01

    Strain, as determined by diffraction techniques, is calculated from its constituents. First, the fraction of the crystals that have the proper orientation for diffraction. One degree of freedom is present: the angle of rotation φ 2 '' about the scattering vector that the diffracting crystals have in common. The proper orientations, expressed in Euler angles, lie on a line ('trace') in orientation space. The density along the trace is asserted to be known as a Fourier series in φ 2 ''. Second, the strain in the diffracting crystals. The simplest possible models are discussed: the Voigt and Reuss approximations. The symmetries of the crystal (m3 or m3m) and of the orientation distribution function (o.d.f.) are taken into account. The dilatation in spacing of the reflecting planes is found as a Fourier series in φ 2 '' also. Only the zeroth, first and second harmonic (including phase angles: five parameters) play a part. The diffraction strain is the average over the angle φ 2 '' of the dilatation, weighted with the product of the orientation density and the square of the structure factor. For each contributing trace, the corresponding Fourier coefficients have to be multiplied and added to obtain the diffraction strain. The symmetry of the diffraction pole figure is derived. (orig.)

  4. Polariton effects in naphthalene crystals

    International Nuclear Information System (INIS)

    Robinette, S.L.

    1977-10-01

    The experimental verification of the two-step nature of energy dissipation of photon energy by a crystal is the subject of this dissertation. The α(O,O) Davydov component of the lowest energy singlet transition in pure strain-free napthalene single crystals is shown to exhibit an increase in absorption with increasing temperature, due to an increase in polariton damping via polariton-phonon scattering processes

  5. Cyclic saturation dislocation structures of multiple-slip-oriented copper single crystals

    International Nuclear Information System (INIS)

    Li, X.W.; Chinese Academy of Sciences, Shenyang; Umakoshi, Y.; Li, S.X.; Wang, Z.G.

    2001-01-01

    The dislocation structures of [011] and [ anti 111] multiple-slip-oriented Cu single crystals cyclically saturated at constant plastic strain amplitudes were investigated through transmission electron microscopy. The results obtained on [001] multiple-slip-oriented Cu single crystals were also included for summarization. Unlike the case for single-slip-oriented Cu single crystals, the crystallographic orientation has a strong effect on the saturation dislocation structure in these three multiple-slip-oriented crystals. For the [011] crystal, different dislocation patterns such as veins, PSB walls, labyrinths and PSB ladders were observed. The formation of PSB ladders is believed to be a major reason for the existence of a plateau region in the cyclic stress-strain (CSS) curve for the [011] crystal. The cyclic saturation dislocation structure of a [ anti 111] crystal cycled at a low applied strain amplitude γ pl of 2.0 x 10 -4 was found to consist of irregular cells, which would develop into a more regular arrangement (e. g. PSB ladder-like) and the scale of which tends to decrease with increasing γ pl . Finally, three kinds of representative micro-deformation mode were summarized and termed as labyrinth-mode (or [001]-mode), cell-mode (or [ anti 111]-mode) and PSB ladder-mode (or [011]-mode). (orig.)

  6. The Taylor relation in compression deformed Ge single crystals

    International Nuclear Information System (INIS)

    Nyilas, K; Ungar, T; Dupas, C; Martin, J L; Kruml, T

    2010-01-01

    Ge single crystals are deformed in compression at 850K and the same strain rate to various extents of strains. In each sample, the internal stress is measured through stress reduction tests and the dislocation densities by X-ray measurements. Data about these two parameters follow fairly well the Taylor-Saada relation, provided a correction term is added. It probably corresponds to dislocations which are seen by X-rays, though they do not contribute to crystal hardening.

  7. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase.

    Science.gov (United States)

    Gregersen, Jonas Lindholt; Mattle, Daniel; Fedosova, Natalya U; Nissen, Poul; Reinhard, Linda

    2016-04-01

    Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.

  8. Unique morphology and gradient arrangement of nacre's platelets in green mussel shells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun; Zhang, Gangsheng, E-mail: zhanggs@gxu.edu.cn

    2015-07-01

    Nacre has long served as a classic model in biomineralization and the synthesis of biomimetic materials. However, the morphology and arrangement of its basic building blocks, the aragonite platelets, are still under hot debate. In this study, using a field emission scanning electron microscope (SEM), a high-resolution transmission electron microscope (HRTEM), and an X-ray diffractometer (XRD), we investigate the platelets at the edges and centers of green mussel shells. We find that 1) flat and curved platelets coexist in green mussel shells; 2) the immature platelets at the shell edge are aggregates of aragonite nanoparticles, whereas the immature ones at the shell center are single crystals; and 3) the morphology and thickness of the platelets exhibit a gradient arrangement. Based on these findings, we hypothesize that the gradient in the thickness and curvature of the platelets may probably result from the difference in growth rate between the edge and the center of the shell and from the gradient in compressive stress imposed by the closing of the shells by the adductor muscles or the withdrawal of the periostracum by the mantle. We expect that the presented results will shed new light on the formation mechanisms of natural composite materials. - Highlights: • Flat and curved platelets coexist in green mussel shells. • The immature platelets at the shell edge consist of aragonite nanoparticles. • The immature platelets at the shell center are single crystals. • The morphology and thickness of platelets exhibit a gradient arrangement. • The gradient arrangement of platelets may result from the stress gradient.

  9. Strain tunable ferroelectric and dielectric properties of BaZrO3

    International Nuclear Information System (INIS)

    Zhang, Yajun; Liu, Man; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie

    2014-01-01

    The crucial role of epitaxial (in-plane) strain on the structural, electronic, energetic, ferroelectric, and dielectric properties of BaZrO 3 (BZO) is investigated using density-functional theory calculations. We demonstrate that the BZO crystal subjected to a critical compressive (or tensile) strain exhibits non-trivial spontaneous polarization that is higher than that of well-known ferroelectrics BaTiO 3 , while the BZO crystal is essentially paraelectric in the absence of strain. The electronic structure and Born-effective-charge analyses elucidate that the strain-induced paraelectric-to-ferroelectric transition is driven by the orbital hybridization of d-p electrons between zirconium and oxygen. Through the strain-induced paraelectric-to-ferroelectric phase transition, the dielectric response of BZO is significantly enhanced by the in-plane strain. The tensile strain increases the in-plane dielectric constant by a factor of seven with respect to that without the strain, while the compression tends to enhance the out-of-plane dielectric response. Therefore, strain engineering makes BZO an important electromechanical material due to the diversity in ferroelectric and dielectric properties.

  10. Characterization of Bacillus thuringiensis strains from Jordan and ...

    African Journals Online (AJOL)

    Eight serotypes with Bacillus thuringiensis israelensis being the most common. Out of the twenty-six isolated strains, five strains (serotype: kenyae, kurstaki, kurstaki HD1 and thuringiensis) that produced bipyramid crystal proteins were toxic to the lepidoptera larvae of Ephestia kuehniella Zeller. The SDS-PAGE protein ...

  11. Stability of Coulomb crystals in a linear Paul trap with storage-ring-like confinement

    DEFF Research Database (Denmark)

    Kjærgaard, Niels; Mølhave, Kristian; Drewsen, Michael

    2002-01-01

    We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...... confinement. The experimentally observed stability conditions for stationary crystals comply remarkably well with current theory of crystalline plasmas and beams.......We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...

  12. Modeling of monolayer charge-stabilized colloidal crystals with static hexagonal crystal lattice

    Science.gov (United States)

    Nagatkin, A. N.; Dyshlovenko, P. E.

    2018-01-01

    The mathematical model of monolayer colloidal crystals of charged hard spheres in liquid electrolyte is proposed. The particles in the monolayer are arranged into the two-dimensional hexagonal crystal lattice. The model enables finding elastic constants of the crystals from the stress-strain dependencies. The model is based on the nonlinear Poisson-Boltzmann differential equation. The Poisson-Boltzmann equation is solved numerically by the finite element method for any spatial configuration. The model has five geometrical and electrical parameters. The model is used to study the crystal with particles comparable in size with the Debye length of the electrolyte. The first- and second-order elastic constants are found for a broad range of densities. The model crystal turns out to be stable relative to small uniform stretching and shearing. It is also demonstrated that the Cauchy relation is not fulfilled in the crystal. This means that the pair effective interaction of any kind is not sufficient to proper model the elasticity of colloids within the one-component approach.

  13. Crystallization and preliminary X-ray diffraction analysis of the carbohydrate-recognizing domain (VP8*) of bovine rotavirus strain NCDV

    International Nuclear Information System (INIS)

    Yu, Xing; Guillon, Annabel; Szyczew, Alex J.; Kiefel, Milton J.; Coulson, Barbara S.; Itzstein, Mark von; Blanchard, Helen

    2008-01-01

    NCDV VP8* 64–224 was expressed in E. coli, purified and crystallized in the presence of a sialic acid derivative. X-ray diffraction data were obtained to a resolution of 2.0 Å and the crystallographic structure was determined by molecular replacement. The infectivity of rotavirus is dramatically enhanced by proteolytic cleavage of its outer layer VP4 spike protein into two functional domains, VP8* and VP5*. The carbohydrate-recognizing domain VP8* is proposed to bind sialic acid-containing host cell-surface glycans and this is followed by a series of subsequent virus–cell interactions. Live attenuated human and bovine rotavirus vaccine candidates for the prevention of gastroenteritis have been derived from bovine rotavirus strain NCDV. The NCDV VP8* 64–224 was overexpressed, purified to homogeneity and crystallized in the presence of an N-acetylneuraminic acid derivative. X-ray diffraction data were collected to a resolution of 2.0 Å and the crystallographic structure of NCDV VP8* 64–224 was determined by molecular replacement

  14. Crystal growth and mechanical hardness of In{sub 2}Se{sub 2.7}Sb{sub 0.3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Piyush, E-mail: piyush-patel130@yahoo.com; Vyas, S. M., E-mail: s-m-vyas-gu@hotmail.com; Patel, Vimal; Pavagadhi, Himanshu [Department of Physics, School of Science, Gujarat University, Ahmedabad, Gujarat, India-380009 (India); Solanki, Mitesh [panditdindayal Petroleum University, Gandhinagar. Gujarat (India); Jani, Maunik P. [BITS Edu Campus, Varnama, Vadodara, Gujarat (India)

    2015-08-28

    The III-VI compound semiconductors is important for the fabrication of ionizing radiation detectors, solid-state electrodes, and photosensitive heterostructures, solar cell and ionic batteries. In this paper, In{sub 2}Se{sub 2.7} Sb{sub 0.3} single crystals were grown by the Bridgman method with temperature gradient of 60 °C/cm and the growth velocity 0.5cm/hr. The as-grown crystals were examined under the optical microscope for surface study, a various growth features observed on top free surface of the single crystal which is predominant of layers growth mechanism. The lattice parameters of as-grown crystal was determined by the XRD analysis. A Vickers’ projection microscope were used for the study of microhardness on the as-cleaved, cold-worked and annealed samples of the crystals, the results were discussed, and reported in detail.

  15. Cardiac biplane strain imaging: initial in vivo experience

    Energy Technology Data Exchange (ETDEWEB)

    Lopata, R G P; Nillesen, M M; Thijssen, J M; De Korte, C L [Clinical Physics Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Verrijp, C N; Lammens, M M Y; Van der Laak, J A W M [Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Singh, S K; Van Wetten, H B [Department of Cardiothoracic Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Kapusta, L [Pediatric Cardiology, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)], E-mail: R.Lopata@cukz.umcn.nl

    2010-02-21

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to test the method in vivo. The proposed approach can serve as a framework to monitor the development of cardiac hypertrophy and fibrosis. A 2D strain estimation technique using radio frequency (RF) ultrasound data was applied. Biplane image acquisition was performed at a relatively low frame rate (<100 Hz) using a commercial platform with an RF interface. For testing the method in vivo, biplane image sequences of the heart were recorded during the cardiac cycle in four dogs with an aortic stenosis. Initial results reveal the feasibility of measuring large radial, circumferential and longitudinal cumulative strain (up to 70%) at a frame rate of 100 Hz. Mean radial strain curves of a manually segmented region-of-interest in the infero-lateral wall show excellent correlation between the measured strain curves acquired in two perpendicular planes. Furthermore, the results show the feasibility and reproducibility of assessing radial, circumferential and longitudinal strains simultaneously. In this preliminary study, three beagles developed an elevated pressure gradient over the aortic valve ({delta}p: 100-200 mmHg) and myocardial hypertrophy. One dog did not develop any sign of hypertrophy ({delta}p = 20 mmHg). Initial strain (rate) results showed that the maximum strain (rate) decreased with increasing valvular stenosis (-50%), which is in accordance with previous studies. Histological findings corroborated these results and showed an increase in fibrotic tissue for the hearts with larger pressure gradients (100, 200 mmHg), as well as lower strain and strain rate values.

  16. Cardiac biplane strain imaging: initial in vivo experience

    International Nuclear Information System (INIS)

    Lopata, R G P; Nillesen, M M; Thijssen, J M; De Korte, C L; Verrijp, C N; Lammens, M M Y; Van der Laak, J A W M; Singh, S K; Van Wetten, H B; Kapusta, L

    2010-01-01

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to test the method in vivo. The proposed approach can serve as a framework to monitor the development of cardiac hypertrophy and fibrosis. A 2D strain estimation technique using radio frequency (RF) ultrasound data was applied. Biplane image acquisition was performed at a relatively low frame rate (<100 Hz) using a commercial platform with an RF interface. For testing the method in vivo, biplane image sequences of the heart were recorded during the cardiac cycle in four dogs with an aortic stenosis. Initial results reveal the feasibility of measuring large radial, circumferential and longitudinal cumulative strain (up to 70%) at a frame rate of 100 Hz. Mean radial strain curves of a manually segmented region-of-interest in the infero-lateral wall show excellent correlation between the measured strain curves acquired in two perpendicular planes. Furthermore, the results show the feasibility and reproducibility of assessing radial, circumferential and longitudinal strains simultaneously. In this preliminary study, three beagles developed an elevated pressure gradient over the aortic valve (Δp: 100-200 mmHg) and myocardial hypertrophy. One dog did not develop any sign of hypertrophy (Δp = 20 mmHg). Initial strain (rate) results showed that the maximum strain (rate) decreased with increasing valvular stenosis (-50%), which is in accordance with previous studies. Histological findings corroborated these results and showed an increase in fibrotic tissue for the hearts with larger pressure gradients (100, 200 mmHg), as well as lower strain and strain rate values.

  17. Flexible X-ray detector based on sliced lead iodide crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui; Gao, Xiuying [College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu (China); Department of Materials Science, Sichuan University, Chengdu (China); Zhao, Beijun [Department of Materials Science, Sichuan University, Chengdu (China); Yang, Dingyu; Wangyang, Peihua; Zhu, Xinghua [College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu (China)

    2017-02-15

    A promising flexible X-ray detector based on inorganic semiconductor PbI{sub 2} crystal is reported. The sliced crystals mechanically cleaved from an as-grown PbI{sub 2} crystal act as the absorber directly converting the impinging X-ray photons to electron hole pairs. Due to the ductile feature of the PbI{sub 2} crystal, the detector can be operated under a highly curved state with the strain on the top surface up to 1.03% and still maintaining effective detection performance. The stable photocurrent and fast response were obtained with the detector repeated bending to a strain of 1.03% for 100 cycles. This work presents an approach for developing efficient and cost-effective PbI{sub 2}-based flexible X-ray detector. Photocurrent responses of the flexible PbI{sub 2} X-ray detector with the strain on the top surface up to 1.03% proposed in this work with the cross sectional structure and curved detector photograph as insets. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Modifications of micro-pulling-down method for the growth of selected Li-containing crystals for neutron scintillator and VUV scintillation crystals

    Science.gov (United States)

    Pejchal, J.; Fujimoto, Y.; Chani, V.; Yanagida, T.; Yokota, Y.; Yoshikawa, A.; Nikl, M.; Beitlerova, A.

    2012-12-01

    To develop new and efficient neutron scintillator, Ti-doped LiAlO2 single crystal was grown by micro-pulling-down method. The X-ray excited radioluminescence spectra and neutron light yield were measured. Positive effect of Mg codoping on the overall scintillation efficiency was found. The BaLu2F8 single crystal was grown by micro-pulling-down method using low temperature gradient at growth interface and applying quenching immediately after growth process.

  19. Acoustic and photon emissions during mechanical deformation of coloured alkali halide crystals

    International Nuclear Information System (INIS)

    Chandra, B.P.

    1984-01-01

    Acoustic and photon emissions take place in the elastic and plastic as well as the fracture region of x-irradiated KBr, KCl and NaCl crystals. The rate of photon emission is linear with the strain rate: however, the RMS value of the acoustic emission is proportional to the square root of the strain rate. The acoustic emission is maximum for x-irradiated NaCl crystals; however, the photon emission is maximum for x-irradiated KBr crystals. From the similarity between the acoustic emission and the photon emission, it seems that mobile dislocations are responsible for the acoustic emission in coloured alkali halide crystals. (author)

  20. Size-dependent dynamic stability analysis of microbeams actuated by piezoelectric voltage based on strain gradient elasticity theory

    Energy Technology Data Exchange (ETDEWEB)

    Sahmani, Saeid; Bahrami, Mohsen [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-01-15

    In the current paper, dynamic stability analysis of microbeams subjected to piezoelectric voltage is presented in which the microbeam is integrated with piezoelectric layers on the lower and upper surfaces. Both of the flutter and divergence instabilities of microbeams with clamped-clamped and clamped-free boundary conditions are predicted corresponding to various values of applied voltage. To take size effect into account, the classical Timoshenko beam theory in conjunction with strain gradient elasticity theory is utilized to develop nonclassical beam model containing three additional internal length scale parameters. By using Hamilton's principle, the higher-order governing differential equations and associated boundary conditions are derived. Afterward, generalized differential quadrature method is employed to discretize the size-dependent governing differential equations along with clamped-clamped and clamped-free end supports. The critical piezoelectric voltages corresponding to various values dimensionless length scale parameter are evaluated and compared with those predicted by the classical beam theory. It is revealed that in the case of clamped-free boundary conditions, the both of flutter and divergence instabilities occur. However, for the clamped-clamped microbeams, only divergence instability takes place.

  1. Abnormal optical anisotropy in correlated disorder KTa1-xNbxO3:Cu with refractive index gradient.

    Science.gov (United States)

    Zhang, Xin; He, Shan; Zhao, Zhuan; Wu, Pengfei; Wang, Xuping; Liu, Hongliang

    2018-02-13

    In this report, an abnormal optical anisotropy in KTa 1-x Nb x O 3 :Cu (Cu:KTN) crystals with refractive index gradient is presented. Contrary to general regulation in a cross-polarization setup, the transmitted intensity of both TE (horizontally polarized) and TM (vertically polarized) lasers aligned with the basic crystallographic directions can be modulated quasiperiodically. The mechanism is supposed to be based on the polarization induced by the temperature gradient and the refractive index gradient. Meanwhile, the correlated disorder property of the crystals in the range of the freezing temperature (T f ) and the intermediate temperature (T  * ) also plays an important role. With the results verified both theoretically and experimentally, we believe this work is not only beneficial for the development of the theory associated with the correlated disorder structures in relaxor ferroelectrics, but also significant for the exploitation of numerous optical functional devices.

  2. Crystal growth of emerald by flux method

    International Nuclear Information System (INIS)

    Inoue, Mikio; Narita, Eiichi; Okabe, Taijiro; Morishita, Toshihiko.

    1979-01-01

    Emerald crystals have been formed in two binary fluxes of Li 2 O-MoO 2 and Li 2 O-V 2 O 5 using the slow cooling method and the temperature gradient method under various conditions. In the flux of Li 2 O-MoO 3 carried out in the range of 2 -- 5 of molar ratios (MoO 3 /Li 2 O), emerald was crystallized in the temperature range from 750 to 950 0 C, and the suitable crystallization conditions were found to be the molar ratio of 3 -- 4 and the temperature about 900 0 C. In the flux of Li 2 O-V 2 O 5 carried out in the range of 1.7 -- 5 of molar ratios (V 2 O 5 /Li 2 O), emerald was crystallized in the temperature range from 900 to 1150 0 . The suitable crystals were obtained at the molar ratio of 3 and the temperature range of 1000 -- 1100 0 C. The crystallization temperature rised with an increase in the molar ratio of the both fluxes. The emeralds grown in two binary fluxes were transparent green, having the density of 2.68, the refractive index of 1.56, and the two distinct bands in the visible spectrum at 430 and 600nm. The emerald grown in Li 2 O-V 2 O 5 flux was more bluish green than that grown in Li 2 O-MoO 3 flux. The size of the spontaneously nucleated emerald grown in the former flux was larger than the latter, when crystallized by the slow cooling method. As for the solubility of beryl in the two fluxes, Li 2 O-V 2 O 5 flux was superior to Li 2 O-MoO 3 flux whose small solubility of SiO 2 caused an experimental problem to the temperature gradient method. The suitability of the two fluxes for the crystal growth of emerald by the flux method was discussed from the view point of various properties of above-mentioned two fluxes. (author)

  3. One Dimension Analytical Model of Normal Ballistic Impact on Ceramic/Metal Gradient Armor

    International Nuclear Information System (INIS)

    Liu Lisheng; Zhang Qingjie; Zhai Pengcheng; Cao Dongfeng

    2008-01-01

    An analytical model of normal ballistic impact on the ceramic/metal gradient armor, which is based on modified Alekseevskii-Tate equations, has been developed. The process of gradient armour impacted by the long rod can be divided into four stages in this model. First stage is projectile's mass erosion or flowing phase, mushrooming phase and rigid phase; second one is the formation of comminuted ceramic conoid; third one is the penetration of gradient layer and last one is the penetration of metal back-up plate. The equations of third stage have been advanced by assuming the behavior of gradient layer as rigid-plastic and considering the effect of strain rate on the dynamic yield strength

  4. One Dimension Analytical Model of Normal Ballistic Impact on Ceramic/Metal Gradient Armor

    Science.gov (United States)

    Liu, Lisheng; Zhang, Qingjie; Zhai, Pengcheng; Cao, Dongfeng

    2008-02-01

    An analytical model of normal ballistic impact on the ceramic/metal gradient armor, which is based on modified Alekseevskii-Tate equations, has been developed. The process of gradient armour impacted by the long rod can be divided into four stages in this model. First stage is projectile's mass erosion or flowing phase, mushrooming phase and rigid phase; second one is the formation of comminuted ceramic conoid; third one is the penetration of gradient layer and last one is the penetration of metal back-up plate. The equations of third stage have been advanced by assuming the behavior of gradient layer as rigid-plastic and considering the effect of strain rate on the dynamic yield strength.

  5. Crystal Structures of Two Isozymes of Citrate Synthase from Sulfolobus tokodaii Strain 7

    Directory of Open Access Journals (Sweden)

    Midori Murakami

    2016-01-01

    Full Text Available Thermoacidophilic archaeon Sulfolobus tokodaii strain 7 has two citrate synthase genes (ST1805-CS and ST0587-CS in the genome with 45% sequence identity. Because they exhibit similar optimal temperatures of catalytic activity and thermal inactivation profiles, we performed structural comparisons between these isozymes to elucidate adaptation mechanisms to high temperatures in thermophilic CSs. The crystal structures of ST1805-CS and ST0587-CS were determined at 2.0 Å and 2.7 Å resolutions, respectively. Structural comparison reveals that both of them are dimeric enzymes composed of two identical subunits, and these dimeric structures are quite similar to those of citrate synthases from archaea and eubacteria. ST0587-CS has, however, 55 ion pairs within whole dimer structure, while having only 36 in ST1805-CS. Although the number and distributions of ion pairs are distinct from each other, intersubunit ion pairs between two domains of each isozyme are identical especially in interterminal region. Because the location and number of ion pairs are in a trend with other CSs from thermophilic microorganisms, the factors responsible for thermal adaptation of ST-CS isozymes are characterized by ion pairs in interterminal region.

  6. Crystal orientation effects on wurtzite quantum well electromechanical fields

    DEFF Research Database (Denmark)

    Duggen, Lars; Willatzen, Morten

    2010-01-01

    in the literature for semiconductors, is inaccurate for ZnO/MgZnO heterostructures where shear-strain components play an important role. An interesting observation is that a growth direction apart from [1̅ 21̅ 0] exists for which the electric field in the quantum well region becomes zero. This is important for, e......A one-dimensional continuum model for calculating strain and electric field in wurtzite semiconductor heterostructures with arbitrary crystal orientation is presented and applied to GaN/AlGaN and ZnO/MgZnO heterostructure combinations. The model is self-consistent involving feedback couplings...... of spontaneous polarization, strain, and electric field. Significant differences between fully coupled and semicoupled models are found for the longitudinal and shear-strain components as a function of the crystal-growth direction. In particular, we find that the semicoupled model, typically used...

  7. Active thermal fine laser tuning in a broad spectral range and optical properties of cholesteric liquid crystal.

    Science.gov (United States)

    Jeong, Mi-Yun; Kwak, Keumcheol

    2016-11-20

    In this study, we achieved active fine laser tuning in a broad spectral range with dye-doped cholesteric liquid crystal wedge-type cells through temperature control. The spatial pitch gradient of each position of the wedge cell at room temperature was almost maintained after developing a temperature gradient. To achieve the maximum tuning range, the chiral dopant concentration, thickness, thickness gradient, and temperature gradient on the wedge cell should be matched properly. In order to understand the laser tuning mechanism for temperature change, we studied the temperature dependence of optical properties of the photonic bandgap of cholesteric liquid crystals. In our cholesteric liquid crystal samples, when temperature was increased, photonic bandgaps were shifted toward blue, while the width of the photonic bandgap was decreased, regardless of whether the helicity was left-handed or right-handed. This is mainly due to the combination of decreased refractive indices, higher molecular anisotropy of chiral molecules, and increased chiral molecular solubility. We envisage that this kind of study will prove useful in the development of practical active tunable CLC laser devices.

  8. Suppressing molecular vibrations in organic semiconductors by inducing strain.

    Science.gov (United States)

    Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun

    2016-04-04

    Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm(2) V(-1) s(-1) by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices.

  9. High Strain Rate and Shock-Induced Deformation in Metals

    Science.gov (United States)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  10. On the existence of minimisers for strain-gradient single-crystal plasticity

    Czech Academy of Sciences Publication Activity Database

    Anguige, K.; Dondl, P.; Kružík, Martin

    (2018) ISSN 0044-2267 R&D Projects: GA ČR GA14-15264S; GA ČR(CZ) GF16-34894L Institutional support: RVO:67985556 Keywords : existence of minimizers * plasticity Subject RIV: BA - General Mathematics Impact factor: 1.332, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kruzik-0481468.pdf

  11. Analysis of structural properties for AlSi11 alloy with use of thermal derivative gradient analysis TDGA

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2008-08-01

    Full Text Available In this paper a basis of thermal derivative gradient analysis was shown. Authors presented methodology of the studies, results and analysis. Studies of crystallization kinetics were conducted on non-modified AlSi11 eutectic alloy. Analyzing the results authors proposed some parameters for description of crystallization kinetics and their relation to microstructure and mechanical properties.

  12. Graded photonic crystals by optical interference holography

    International Nuclear Information System (INIS)

    Han, Chunrui; Tam, Wing Yim

    2012-01-01

    We report on the fabrication of graded photonic crystals in dye doped dichromate gelatin emulsions using an optical interference holographic technique. The gradedness is achieved by imposing a gradient form factor in the interference intensity resulting from the absorption of the dye in the dichromate gelatin. Wider and deeper photonic bandgaps are observed for the dyed samples as compared to the un-dyed samples. Our method could open up a new direction in fabricating graded photonic crystals which cannot be achieved easily using other techniques. (paper)

  13. Characterization Of Biaxial Strain Of Poly(L-Lactide) Tubes

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard

    2016-01-01

    Poly(L-lactide) (PLLA) in its L-form has promising mechanical properties. Being a semi-crystalline polymer, it can be subjected to strain-induced crystallization at temperatures above Tg and can thereby become oriented. Following a simultaneous (SIM) biaxial strain process or a sequential (SEQ...

  14. The Growth of Protein Crystals Using McDUCK

    Science.gov (United States)

    Ewing, Felicia; Wilson, Lori; Nadarajah, Arunan; Pusey, Marc

    1998-01-01

    Most of the current microgravity crystal growth hardware is optimized to produce crystals within the limited time available on orbit. This often results in the actual nucleation and growth process being rushed or the system not coming to equilibrium within the limited time available. Longer duration hardware exists, but one cannot readily pick out crystals grown early versus those which nucleated and grew more slowly. We have devised a long duration apparatus, the Multi-chamber Dialysis Unit for Crystallization Kinetics, or McDUCK. This apparatus-is a series of protein chambers, stacked upon a precipitant reservoir chamber. All chambers are separated by a dialysis membrane, which serves to pass small molecules while retaining the protein. The volume of the Precipitant chamber is equal to the sum of the volumes of the protein chamber. In operation, the appropriate chambers are filled with precipitant solution or protein solution, and the McDUCK is placed standing upright, with the precipitant chamber on the bottom. The precipitant diffuses upwards over time, with the time to reach equilibration a function of the diffusivity of the precipitant and the overall length of the diffusion pathway. Typical equilibration times are approximately 2-4 months, and one can readily separate rapid from slow nucleation and growth crystals. An advantage on Earth is that the vertical precipitant concentration gradient dominates that of the solute, thus dampening out solute density gradient driven convective flows. However, large Earth-grown crystals have so far tended to be more two dimensional. Preliminary X-ray diffraction analysis of lysozyme crystals grown in McDUCK have indicated that the best, and largest, come from the middle chambers, suggesting that there is an optimal growth rate. Further, the improvements in diffraction resolution have been better signal to noise ratios in the low resolution data, not an increase in resolution overall. Due to the persistently large crystals

  15. Extension of an anisotropic creep model to general high temperature deformation of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pan, L.M.; Ghosh, R.N.; McLean, M.

    1993-01-01

    A physics based model has been developed that accounts for the principal features of anisotropic creep deformation of single crystal superalloys. The present paper extends this model to simulate other types of high temperature deformation under strain controlled test conditions, such as stress relaxation and tension tests at constant strain rate in single crystals subject to axial loading along an arbitrary crystal direction. The approach is applied to the SRR99 single crystal superalloy where a model parameter database is available, determined via analysis of a database of constant stress creep curves. A software package has been generated to simulate the deformation behaviour under complex stress-strain conditions taking into account anisotropic elasticity. (orig.)

  16. Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles

    Science.gov (United States)

    Sutapa, I. W.; Wahid Wahab, Abdul; Taba, P.; Nafie, N. L.

    2018-03-01

    The oxide of magnesium nanoparticles synthesized using sol-gel method and analysis of the structural properties was conducted. The functional groups of nanoparticles has been analysed by Fourier Transform Infrared Spectroscopy (FT-IR). Dislocations, average size of crystal, strain, stress, the energy density of crystal, crystallite size distribution and morphologies of the crystals were determined based on X-ray diffraction profile analysis. The morphological of the crystal was analysed based on the image resulted from SEM analysis. The crystallite size distribution was calculated with the contention that the particle size has a normal logarithmic form. The most orientations of crystal were determined based on the textural crystal from diffraction data of X-ray diffraction profile analysis. FT-IR results showed the stretching vibration mode of the Mg-O-Mg in the range of 400.11-525 cm-1 as a broad band. The average size crystal of nanoparticles resulted is 9.21 mm with dislocation value of crystal is 0.012 nm-2. The strains, stress, the energy density of crystal are 1.5 x 10-4 37.31 MPa; 0.72 MPa respectively. The highest texture coefficient value of the crystal is 0.98. This result is supported by morphological analysis using SEM which shows most of the regular cubic-shaped crystals. The synthesis method is suitable for simple and cost-effective synthesis model of MgO nanoparticles.

  17. Micro-structural evolution in plastically deformed crystalline materials

    DEFF Research Database (Denmark)

    Nellemann, Christopher

    predictions for the two models to be obtained. Application of the two models to the pure shear boundary value problem is used to characterize plastic behavior, which also allows for the identification of inherent properties through closed form expressions. Single crystal Monazite containing a void is studied......Two rate-independent strain gradient crystal plasticity models are developed and applied in numerical studies designed to identify the properties inherent to model predictions of plastic deformation. The two models incorporate gradients of slip into the framework of conventional crystal plasticity...... in order to model size-dependent plasticity effects. This gradient dependence is achieved by relating a slip measure which combines both slip and their gradients to a shear hardening curve, as commonly done in conventional plasticity theories. Finite element codes are implemented which allow for numerical...

  18. On the wavelength dependence of the reflectivity of one-dimensionally distorted crystals

    International Nuclear Information System (INIS)

    Guigay, J.P.

    1986-01-01

    Scaling properties of the integrated reflectivity of non-absorbing perfect or ideally imperfect crystals as a function of wavelength, in the symmetrical Laue and Bragg cases, are shown also to be valid for distorted crystals where the gradient of the lattice phase factor is perpendicular to the crystal surfaces. This result is obtained by an analysis of the Taupin-Takagi equations. Some previous experiments (test of a proposal for extinction-free measurements of F M /F N in polarized neutron scattering by magnetic crystals, and neutron diffraction from curved and non-curved crystals) are discussed from this point of view. (orig.)

  19. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients

    DEFF Research Database (Denmark)

    Sass, Andrea M.; Wieland, Andrea Eschemann; Kühl, Michael

    2002-01-01

    Growth and chemotactic behavior in oxic–anoxic gradients were studied with two freshwater and four marine strains of sulfate-reducing bacteria related to the genera Desulfovibrio, Desulfomicrobium or Desulfobulbus. Cells were grown in oxygen–sulfide counter-gradients within tubes filled with agar...... chemotactically to lactate, nitrate, sulfate and thiosulfate, and even sulfide functioned as an attractant. In oxic–anoxic gradients the bacteria moved away from high oxygen concentrations and formed bands at the outer edge of the oxic zone at low oxygen concentration (... to actively change the extension and slope of the gradients by oxygen reduction with lactate or even sulfide as electron donor. Generally, the chemotactic behavior was in agreement with a defense strategy that re-establishes anoxic conditions, thus promoting anaerobic growth and, in a natural community...

  20. Methodology for Analyzing Strain States During In-Situ Thermomechanical Cycling in Individual Lead Free Solder Joints Using Synchrotron Radiation

    International Nuclear Information System (INIS)

    Zhou, Bite; Bieler, Thomas R.; Lee, Tae-Kyu; Liu, Kuo-Chuan

    2009-01-01

    To examine how a lead-free solder joint deforms in a thermal cycling environment, both the elastic and plastic stress and strain behavior must be understood. Methods to identify evolution of the internal strain (stress) state during thermal cycling are described. A slice of a package containing a single row of solder joints was thermally cycled from 0 C to 100 C with a period of about 1 h with concurrent acquisition of transmission Laue patterns using synchrotron radiation. These results indicated that most joints are single crystals, with some being multicrystals with no more than a few Sn grain orientations. Laue patterns were analyzed to estimate local strains in different crystal directions at different temperatures during a thermal cycle. While the strains perpendicular to various crystal planes all vary in a similar way, the magnitude of strain varies. The specimens were subsequently given several hundred additional thermal cycles and measured again to assess changes in the crystal orientations. These results show that modest changes in crystal orientations occur during thermal cycling.

  1. Sudden motility reversal indicates sensing of magnetic field gradients in Magnetospirillum magneticum AMB-1 strain.

    Science.gov (United States)

    González, Lina M; Ruder, Warren C; Mitchell, Aaron P; Messner, William C; LeDuc, Philip R

    2015-06-01

    Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni(80)Fe(20)) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients.

  2. Temperature and strain-rate dependence of the flow stress of ultrapure tantalum single crystals

    International Nuclear Information System (INIS)

    Werner, M.

    1987-01-01

    Measurements of the temperature dependence of the cyclic flow stress of ultrapure tantalum single crystals (RRR >∼ 14000) are extended to lower temperatures. After cyclic deformation well into saturation at 400 K, the temperature dependence of the flow stress is measured between 80 and 450 K at five different plastic resolved shear-strain rates, ε pl , in the range 2 x 10 -5 to 6 x 10 -3 s -1 . Below a critical temperature T k the flow stress is dominantly controlled by the mobility of screw dislocations. A recent theory of Seeger describes the 'thermal' component, σ*, of the flow stress (resolved shear stress) in the temperature and stress regime where the strain rate is determined by the formation and migration of kink pairs. The analytical expressions are valid in well-defined ranges of stress and temperature. The evaluation of the experimental data yields a value for the formation enthalpy of two isolated kinks 2H k = 0.98 eV. From the low-stress (σ* k = 2.0 x 10 -6 m 2 s -1 . The product of the density of mobile screw dislocations and the distance between insurmountable obstacles is found to be 2 x 10 -5 m -1 . The stress dependence of the kink-pair formation enthalpy H kp follows the theoretically predicted curve in the elastic-interaction stress regime. At the transition to the line-tension approximation (near σ* ∼ 80 MPa) the activation volume increases rather abruptly. Moreover, the quantitative analysis involves kinks other than those of minimum height. The most likely candidates are kinks on {211} planes. (author)

  3. Gradients estimation from random points with volumetric tensor in turbulence

    Science.gov (United States)

    Watanabe, Tomoaki; Nagata, Koji

    2017-12-01

    We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.

  4. On the gradient plasticity approach to size effects. Pt. 1: reviews

    International Nuclear Information System (INIS)

    Malmberg, T.; Tsagrakis, I.; Eleftheriadis, I.; Aifantis, E.C.; Michigan Technol. Univ., Houghton, MI

    2001-03-01

    The influence of specimen size on the plastic deformation and failure behaviour of some metals and steels is considered. This size dependence issue relates to the question of the transferability of mechanical test results of geometrically similar scaled-down structural models to the full scale structures using similitude laws; but it concerns also the validity of small scale laboratory type test results and their use as a basis for the computational modelling of large scale components. In part I ''reviews'' of this report a restricted review of scaled experiments at room temperature of geometrically similar specimens is given. This refers to the initiation of yielding under non-uniform states of deformation and also to the plastic deformation and fracture of smooth tensile specimens. Among others, non-classical continuum mechanics theories have become a means to interpret size effects. Especially gradient concepts are of interest which enrich the classical plasticity theories by higher order spatial strain gradients. These model extensions implicate additional material parameters which can be associated with internal length scales characteristic for the material. In part I a brief review of several gradient theories of plasticity is also given, including both deformation and flow theories and a comparison of the original ''symmetric stress'' theory with the more recent ''asymmetric stress'' theory is provided. The forthcoming part II ''applications'' exemplifies to what extend strain gradient models can describe the size influence on the deformation behaviour. (orig.) [de

  5. Molecular Dynamics Modeling of PPTA Crystals in Aramid Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, Brian Scott [Univ. of California, Berkeley, CA (United States)

    2016-05-19

    In this work, molecular dynamics modeling is used to study the mechanical properties of PPTA crystallites, which are the fundamental microstructural building blocks of polymer aramid bers such as Kevlar. Particular focus is given to constant strain rate axial loading simulations of PPTA crystallites, which is motivated by the rate-dependent mechanical properties observed in some experiments with aramid bers. In order to accommodate the covalent bond rupture that occurs in loading a crystallite to failure, the reactive bond order force eld ReaxFF is employed to conduct the simulations. Two major topics are addressed: The rst is the general behavior of PPTA crystallites under strain rate loading. Constant strain rate loading simulations of crystalline PPTA reveal that the crystal failure strain increases with increasing strain rate, while the modulus is not a ected by the strain rate. Increasing temperature lowers both the modulus and the failure strain. The simulations also identify the C N bond connecting the aromatic rings as weakest primary bond along the backbone of the PPTA chain. The e ect of chain-end defects on PPTA micromechanics is explored, and it is found that the presence of a chain-end defect transfers load to the adjacent chains in the hydrogen-bonded sheet in which the defect resides, but does not in uence the behavior of any other chains in the crystal. Chain-end defects are found to lower the strength of the crystal when clustered together, inducing bond failure via stress concentrations arising from the load transfer to bonds in adjacent chains near the defect site. The second topic addressed is the nature of primary and secondary bond failure in crystalline PPTA. Failure of both types of bonds is found to be stochastic in nature and driven by thermal uctuations of the bonds within the crystal. A model is proposed which uses reliability theory to model bonds under constant strain rate loading as components with time-dependent failure rate

  6. Electrophoretic analysis of proteins from Mycoplasma hominis strains detected by SDS-PAGE, two-dimensional gel electrophoresis and immunoblotting

    DEFF Research Database (Denmark)

    Andersen, H; Birkelund, Svend; Christiansen, Gunna

    1987-01-01

    The proteins of 14 strains of Mycoplasma hominis were compared by SDS-PAGE in gradient gels, by two-dimensional (2D) gel electrophoresis of extracts of 35S-labelled cells and by immunoblot analysis of cell proteins. The strains examined included the M. hominis type strain PG21 and 13 others...... isolated variously from genital tract, mouth, blood, upper urinary tract and a wound. These 14 strains shared 76-99% of proteins in SDS-gradient gel analysis and 41-72% in the 2D gels. As expected, the immunoblot analysis likewise revealed the existence of an extensive common protein pattern in M. hominis...

  7. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  8. Dynamic Actuation of Single-Crystal Diamond Nanobeams

    OpenAIRE

    Sohn, Young-Ik; Burek, Michael J.; Kara, Vural; Kearns, Ryan; Lončar, Marko

    2014-01-01

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ~50MHz. Frequency tuning and parametric actuation are also studied.

  9. From Modeling of Plasticity in Single-Crystal Superalloys to High-Resolution X-rays Three-Crystal Diffractometer Peaks Simulation

    Science.gov (United States)

    Jacques, Alain

    2016-12-01

    The dislocation-based modeling of the high-temperature creep of two-phased single-crystal superalloys requires input data beyond strain vs time curves. This may be obtained by use of in situ experiments combining high-temperature creep tests with high-resolution synchrotron three-crystal diffractometry. Such tests give access to changes in phase volume fractions and to the average components of the stress tensor in each phase as well as the plastic strain of each phase. Further progress may be obtained by a new method making intensive use of the Fast Fourier Transform, and first modeling the behavior of a representative volume of material (stress fields, plastic strain, dislocation densities…), then simulating directly the corresponding diffraction peaks, taking into account the displacement field within the material, chemical variations, and beam coherence. Initial tests indicate that the simulated peak shapes are close to the experimental ones and are quite sensitive to the details of the microstructure and to dislocation densities at interfaces and within the soft γ phase.

  10. Density gradient in SiO 2 films on silicon as revealed by positron annihilation spectroscopy

    Science.gov (United States)

    Revesz, A. G.; Anwand, W.; Brauer, G.; Hughes, H. L.; Skorupa, W.

    2002-06-01

    Positron annihilation spectroscopy of thermally grown and deposited SiO 2 films on silicon shows in a non-destructive manner that these films have a gradient in their density. The gradient is most pronounced for the oxide grown in dry oxygen. Oxidation in water-containing ambient results in an oxide with reduced gradient, similarly to the gradient in the deposited oxide. These observations are in accordance with earlier optical and other studies using stepwise etching or a set of samples of varying thickness. The effective oxygen charge, which is very likely one of the reasons for the difference in the W parameters of silica glass and quartz crystal, could be even higher at some localized configurations in the SiO 2 films resulting in increased positron trapping.

  11. Strain analysis of nanowire interfaces in multiscale composites

    Science.gov (United States)

    Malakooti, Mohammad H.; Zhou, Zhi; Spears, John H.; Shankwitz, Timothy J.; Sodano, Henry A.

    2016-04-01

    Recently, the reinforcement-matrix interface of fiber reinforced polymers has been modified through grafting nanostructures - particularly carbon nanotubes and ZnO nanowires - on to the fiber surface. This type of interface engineering has made a great impact on the development of multiscale composites that have high stiffness, interfacial strength, toughness, and vibrational damping - qualities that are mutually exclusive to a degree in most raw materials. Although the efficacy of such nanostructured interfaces has been established, the reinforcement mechanisms of these multiscale composites have not been explored. Here, strain transfer across a nanowire interphase is studied in order to gain a heightened understanding of the working principles of physical interface modification and the formation of a functional gradient. This problem is studied using a functionally graded piezoelectric interface composed of vertically aligned lead zirconate titanate nanowires, as their piezoelectric properties can be utilized to precisely control the strain on one side of the interface. The displacement and strain across the nanowire interface is captured using digital image correlation. It is demonstrated that the material gradient created through nanowires cause a smooth strain transfer from reinforcement phase into matrix phase that eliminates the stress concentration between these phases, which have highly mismatched elasticity.

  12. Low-temperature strain gauges based on silicon whiskers

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2008-08-01

    Full Text Available To create low-temperature strain gauges based on p-type silicon whiskers tensoresistive characteristics of these crystals in 4,2—300 K temperature range were studied. On the basis of p-type Si whiskers with different resistivity the strain gauges for different materials operating at cryogenic temperatures with extremely high gauge factor at 4,2 K were developed, as well as strain gauges operating at liquid helium temperatures in high magnetic fields.

  13. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator

    OpenAIRE

    Ovartchaiyapong, Preeti; Lee, Kenneth W.; Myers, Bryan A.; Jayich, Ania C. Bleszynski

    2014-01-01

    The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy center spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain inte...

  14. Experimental demonstration of efficient and robust second harmonic generation using the adiabatic temperature gradient method

    Science.gov (United States)

    Dimova, E.; Steflekova, V.; Karatodorov, S.; Kyoseva, E.

    2018-03-01

    We propose a way of achieving efficient and robust second-harmonic generation. The technique proposed is similar to the adiabatic population transfer in a two-state quantum system with crossing energies. If the phase mismatching changes slowly, e.g., due to a temperature gradient along the crystal, and makes the phase match for second-harmonic generation to occur, then the energy would be converted adiabatically to the second harmonic. As an adiabatic technique, the second-harmonic generation scheme presented is stable to variations in the crystal parameters, as well as in the input light, crystal length, input intensity, wavelength and angle of incidence.

  15. Formation of biofilm by strains of Listeria monocytogenes isolated ...

    African Journals Online (AJOL)

    Quantification of biofilm formation by 40 Listeria monocytogenes strains from wara soft cheese and its processing environment was assessed on glass vials surfaces. Attachement to glass surface was quantified using a crystal violet binding assay. All the 40 strains produced biofilms after 48 and 72 h incubation at 37oC.

  16. Drop casting of stiffness gradients for chip integration into stretchable substrates

    International Nuclear Information System (INIS)

    Naserifar, Naser; LeDuc, Philip R; Fedder, Gary K

    2017-01-01

    Stretchable electronics have demonstrated promise within unobtrusive wearable systems in areas such as health monitoring and medical therapy. One significant question is whether it is more advantageous to develop holistic stretchable electronics or to integrate mature CMOS into stretchable electronic substrates where the CMOS process is separated from the mechanical processing steps. A major limitation with integrating CMOS is the dissimilar interface between the soft stretchable and hard CMOS materials. To address this, we developed an approach to pattern an elastomeric polymer layer with spatially varying mechanical properties around CMOS electronics to create a controllable material stiffness gradient. Our experimental approach reveals that modifying the interfaces can increase the strain failure threshold up to 30% and subsequently decreases delamination. The stiffness gradient in the polymer layer provides a safe region for electronic chips to function under a substrate tensile strain up to 150%. These results will have impacts in diverse applications including skin sensors and wearable health monitoring systems. (paper)

  17. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  18. Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Lacroute, Y.; Markey, L.; Salazar, M.; Vignal, V. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)

    2011-05-15

    Research highlights: > Surface strains measured using nanogauge were compared to the texture obtained by EBSD. > Statistics of the principal strain discern the grains according to the Schmid factor. > Strain hotspots were localized near a triple junction of alloy 600 under tensile loading. > Asymetrical profile of the GB strains is a criterion for surface cracking initiation. - Abstract: A key element for analyzing the crack initiation in strained polycrystalline alloys is the local quantification of the surface strain distribution according to the grain texture. Using electron backscattered diffraction, the local microstructure was determined to both localize a triple junction and deduce the local Schmid factors. Kernel average misorientation (KAM) was also used to map the areas of defect concentration. The maximum principal strain and the in-plane shear strain were quantified using the biaxial nanogauge. Distortions of the array of nanodots used as spot markers were analyzed near the triple junction. The crystallographic orientation and the surface strain were then investigated both statistically for each grain and locally at the grain boundaries. The superimposition of microstructure and strain maps allows the high strain gradient (reaching 3-fold the applied strain) to be localized at preferential grain boundaries near the triple junction. The Schmid factors and the KAM were compared to the maximum principal strain and the in-plane shear strain respectively. The polycrystalline deformation was attributable first to the rotation of some grains, followed by the elongation of all grains along their preferential activated slip systems.

  19. An adaptive crystal bender for high power synchrotron radiation beams

    International Nuclear Information System (INIS)

    Berman, L.E.; Hastings, J.B.

    1992-01-01

    Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described

  20. Solvent micro-evaporation and concentration gradient synergistically induced crystallization of poly(L-lactide) and ring banded supra-structures with radial periodic variation of thickness

    DEFF Research Database (Denmark)

    Huang, Shaoyong; Li, Hongfei; Wen, Huiying

    2014-01-01

    The crystalline morphology and structure of poly(L-lactide) (PLLA) in a PLLA film-chloroform system were investigated by means of wide angle X-ray diffraction (WAXD), polarized optical microscopy (POM) and atomic force microscopy (AFM). Birefringent and nonbirefringent ring banded supra-structure......The crystalline morphology and structure of poly(L-lactide) (PLLA) in a PLLA film-chloroform system were investigated by means of wide angle X-ray diffraction (WAXD), polarized optical microscopy (POM) and atomic force microscopy (AFM). Birefringent and nonbirefringent ring banded supra......-structures with radial periodic variation of thickness were obtained, which were induced by micro-evaporation of solvents and concentration gradient of PLLA. The ring banded morphologies consisted of multilayer lamellar crystals, which is a manifestation of alternating ridge and valley bands of periodic variation...

  1. Two-dimensional strain gradient damage modeling: a variational approach

    Science.gov (United States)

    Placidi, Luca; Misra, Anil; Barchiesi, Emilio

    2018-06-01

    In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not only the equilibrium equations but, notably, also the Karush-Kuhn-Tucker conditions. Finally, numerical simulations for exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence evidence. Element-free Galerkin method and moving least square shape functions have been employed.

  2. Dislocations and Plastic Deformation in MgO Crystals: A Review

    Directory of Open Access Journals (Sweden)

    Jonathan Amodeo

    2018-05-01

    Full Text Available This review paper focuses on dislocations and plastic deformation in magnesium oxide crystals. MgO is an archetype ionic ceramic with refractory properties which is of interest in several fields of applications such as ceramic materials fabrication, nano-scale engineering and Earth sciences. In its bulk single crystal shape, MgO can deform up to few percent plastic strain due to dislocation plasticity processes that strongly depend on external parameters such as pressure, temperature, strain rate, or crystal size. This review describes how a combined approach of macro-mechanical tests, multi-scale modeling, nano-mechanical tests, and high pressure experiments and simulations have progressively helped to improve our understanding of MgO mechanical behavior and elementary dislocation-based processes under stress.

  3. A chemometric-assisted method for the simultaneous determination of malachite green and crystal violet in water based on absorbance-pH data generated by a homemade pH gradient apparatus.

    Science.gov (United States)

    Yu, Shuling; Yuan, Xuejie; Yang, Jing; Yuan, Jintao; Shi, Jiahua; Wang, Yali; Chen, Yuewen; Gao, Shufang

    2015-01-01

    An attractive method of generating second-order data was developed by a dropping technique to generate pH gradient simultaneously coupled with diode-array spectrophotometer scanning. A homemade apparatus designed for the pH gradient. The method and the homemade apparatus were used to simultaneously determine malachite green (MG) and crystal violet (CV) in water samples. The absorbance-pH second-order data of MG or CV were obtained from the spectra of MG or CV in a series of pH values of HCl-KCl solution. The second-order data of mixtures containing MG and CV that coexisted with interferents were analyzed using multidimensional partial least-squares with residual bilinearization. The method and homemade apparatus were used to simultaneously determine MG and CV in fish farming water samples and in river ones with satisfactory results. The presented method and the homemade apparatus could serve as an alternative tool to handle some analysis problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A gradient surface produced by combined electroplating and incremental frictional sliding

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hong, Chuanshi; Kitamura, K.

    2017-01-01

    A Cu plate was first electroplated with a Ni layer, with a thickness controlled to be between 1 and 2 mu m. The coated surface was then deformed by incremental frictional sliding with liquid nitrogen cooling. The combined treatment led to a multifunctional surface with a gradient in strain...

  5. Strain cupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator

    OpenAIRE

    Teissier, J.; Barfuss, A.; Appel, P.; Neu, E.; Maletinsky, P.

    2014-01-01

    We report on single electronic spins coupled to the motion of mechanical resonators by a novel mechanism based on crystal strain. Our device consists of single-crystal diamond cantilevers with embedded nitrogen-vacancy center spins. Using optically detected electron spin resonance, we determine the unknown spin-strain coupling constants and demonstrate that our system resides well within the resolved sideband regime. We realize coupling strengths exceeding 10 MHz under mechanical driving and ...

  6. Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter.

    Science.gov (United States)

    Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2015-11-10

    A thin-core-fiber excited photonic crystal fiber modal interferometer has been proposed and experimentally demonstrated. By employing a thin-core fiber as the mode exciter, both of the core and cladding modes propagate in the photonic crystal fiber and interfere with each other. The experimental results show that the transmission dips corresponding to different-order modes have various strain responses with opposite shift directions. The strain sensitivity could be improved to 58.57  pm/με for the applied strain from 0 to 491 με by utilizing the wavelength interval between the dips with opposite shift directions. Moreover, due to the pure silica property of the employed photonic crystal fiber, the proposed fiber modal interferometer exhibits a low-temperature sensitivity of about 0.56  pm/°C within a temperature range from 26.4°C (room temperature) to 70°C. Additionally, the proposed fiber modal interferometer has several advantages, such as good stability, compact structure, and simple fabrication. Therefore, it is more applicable for strain measurement with reducing temperature cross-sensitivity.

  7. Thermoresistance in radioresistant strains of 'Drosophila nebulosa'

    International Nuclear Information System (INIS)

    Kratz, F.L.

    1977-01-01

    The detection of thermoresistance in radioresistant strains of 'D. nebulosa' is described, as well as some conclusions on the genetic nature of these differences are presented. The strains used in this experiment were MF 204, from 'Morro de Ferro', in Pocos de Caldas (MG) (one of the biggest radioactive anomalies in the world) whose radioresistance is due to its additive genetic components (Kratz, 1973 and 1975); 85(87) R, an induced radioresistant strain; and MF K a control 'pooled' strain obtained near 'Morro do Ferro'. Survival tests, 72 hours after temperature shocks, performed in the interval of 36 0 C to 39 0 C showed a decreasing gradient of thermoresistance with the following regression coefficients: MF 204 b= - 5,4; 85(87)R b= - 7,2 and MF K b= - 7,9. Bifactorial analysis (strains and sexes) performed at 38 0 C and 39 0 C confirmed differences among strains (P [pt

  8. Three-dimensional local residual stress and orientation gradients near graphite nodules in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren

    2016-01-01

    strains are measured with a maximum strain of ∼6.5–8 × 10−4 near the graphite nodules extending into the matrix about 20 μm, where the elastic strain is near zero. The experimental data are compared with a strain gradient calculated by a finite element model, and good accord has been found...... but with a significant overprediction of the maximum strain. This is discussed in terms of stress relaxation during cooling or during storage by plastic deformation of the nodule, the matrix or both. Relaxation by plastic deformation of the ferrite is demonstrated by the formation of low energy dislocation cell...

  9. Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization.

    Science.gov (United States)

    Miehe, C; Teichtmeister, S; Aldakheel, F

    2016-04-28

    This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. © 2016 The Author(s).

  10. Three dimensional grain boundary modeling in polycrystalline plasticity

    Science.gov (United States)

    Yalçinkaya, Tuncay; Özdemir, Izzet; Fırat, Ali Osman

    2018-05-01

    At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorientation are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at the grain boundaries. Moreover, the concepts such as the transmission of dislocations between grains and strength of the grain boundaries are not included in the modelling. The higher order strain gradient crystal plasticity modelling approaches offer the possibility of defining grain boundary conditions. However, these conditions are mostly not dependent on misorientation of grains and can define only extreme cases. For a proper definition of grain boundary behavior in plasticity, a model for grain boundary behavior should be incorporated into the plasticity framework. In this context, a particular grain boundary model ([l]) is incorporated into a strain gradient crystal plasticity framework ([2]). In a 3-D setting, both bulk and grain boundary models are implemented as user-defined elements in Abaqus. The strain gradient crystal plasticity model works in the bulk elements and considers displacements and plastic slips as degree of freedoms. Interface elements model the plastic slip behavior, yet they do not possess any kind of mechanical cohesive behavior. The physical aspects of grain boundaries and the performance of the model are addressed through numerical examples.

  11. Micromechanical Behavior of Single-Crystal Superalloy with Different Crystal Orientations by Microindentation

    Directory of Open Access Journals (Sweden)

    Jinghui Li

    2015-01-01

    Full Text Available In order to investigate the anisotropic micromechanical properties of single-crystal nickel-based superalloy DD99 of four crystallographic orientations, (001, (215, (405, and (605, microindentation test (MIT was conducted with different loads and loading velocities by a sharp Berkovich indenter. Some material parameters reflecting the micromechanical behavior of DD99, such as microhardness H, Young’s modulus E, yield stress σy, strain hardening component n, and tensile strength σb, can be obtained from load-displacement relations. H and E of four different crystal planes evidently decrease with the increase of h. The reduction of H is due to dislocation hardening while E is related to interplanar spacing and crystal variable. σy of (215 is the largest among four crystal planes, followed by (605, and (001 has the lowest value. n of (215 is the lowest, followed by (605, and that of (001 is the largest. Subsequently, a simplified elastic-plastic material model was employed for 3D microindentation simulation of DD99 with various crystal orientations. The simulation results agreed well with experimental, which confirmed the accuracy of the simplified material model.

  12. Evaluation of strain-rate sensitivity of ion-irradiated austenitic steel using strain-rate jump nanoindentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University Gokasho, Uji 611-0011, Kyoto (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University Gokasho, Uji 611-0011, Kyoto (Japan); Hamaguchi, Dai; Ando, Masami; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan)

    2016-11-01

    Highlights: • We examined strain-rate jump nanoindentation on ion-irradiated stainless steel. • We observed irradiation hardening of the ion-irradiated stainless steel. • We found that strain-rate sensitivity parameter was slightly decreased after the ion-irradiation. - Abstract: The present study investigated strain-rate sensitivity (SRS) of a single crystal Fe–15Cr–20Ni austenitic steel before and after 10.5 MeV Fe{sup 3+} ion-irradiation up to 10 dpa at 300 °C using a strain-rate jump (SRJ) nanoindentation test. It was found that the SRJ nanoindentation test is suitable for evaluating the SRS at strain-rates from 0.001 to 0.2 s{sup −1}. Indentation size effect was observed for depth dependence of nanoindentation hardness but not the SRS. The ion-irradiation increased the hardness at the shallow depth region but decreased the SRS slightly.

  13. Control of colloids with gravity, temperature gradients, and electric fields

    CERN Document Server

    Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M

    2003-01-01

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  14. Control of colloids with gravity, temperature gradients, and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Matt [Department of Physics, Princeton University, Princeton, NJ (United States); Zhao Kun [Department of Physics, Princeton University, Princeton, NJ (United States); Harrison, Christopher [Department of Physics, Princeton University, Princeton, NJ (United States); Austin, Robert H [Department of Physics, Princeton University, Princeton, NJ (United States); Megens, Mischa [Department of Physics, Princeton University, Princeton, NJ (United States); Hollingsworth, Andrew [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Russel, William B [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Cheng Zhengdong [ExxonMobil Research, Annandale, NJ (United States); Mason, Thomas [ExxonMobil Research, Annandale, NJ (United States); Chaikin, P M [Department of Physics, Princeton University, Princeton, NJ (United States)

    2003-01-15

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  15. Engineering mechanical gradients in next generation biomaterials - Lessons learned from medical textile design.

    Science.gov (United States)

    Ng, Joanna L; Collins, Ciara E; Knothe Tate, Melissa L

    2017-07-01

    Nonwoven and textile membranes have been applied both externally and internally to prescribe boundary conditions for medical conditions as diverse as oedema and tissue defects. Incorporation of mechanical gradients in next generation medical membrane design offers great potential to enhance function in a dynamic, physiological context. Yet the gradient properties and resulting mechanical performance of current membranes are not well described. To bridge this knowledge gap, we tested and compared the mechanical properties of bounding membranes used in both external (compression sleeves for oedema, exercise bands) and internal (surgical membranes) physiological contexts. We showed that anisotropic compression garment textiles, isotropic exercise bands and surgical membranes exhibit similar ranges of resistance to tension under physiologic strains. However, their mechanical gradients and resulting stress-strain relationships show differences in work capacity and energy expenditure. Exercise bands' moduli of elasticity and respective thicknesses allow for controlled, incremental increases in loading to facilitate healing as injured tissues return to normal structure and function. In contrast, the gradients intrinsic to compression sleeve design exhibit gaps in the middle range (1-5N) of physiological strains and also inconsistencies along the length of the sleeve, resulting in less than optimal performance of these devices. These current shortcomings in compression textile and garment design may be addressed in the future through implementation of novel approaches. For example, patterns, fibre compositions, and fibre anisotropy can be incorporated into biomaterial design to achieve seamless mechanical gradients in structure and resulting dynamic function, which would be particularly useful in physiological contexts. These concepts can be applied further to biomaterial design to deliver pressure gradients during movement of oedematous limbs (compression garments) and

  16. PWR clad ballooning: The effect of circumferential clad temperature variations on the burst strain/burst temperature relationship

    International Nuclear Information System (INIS)

    Barlow, P.

    1983-01-01

    By experiment, it has been shown by other workers that there is a reduction in the creep ductility of Zircaloy 4 in the α+β phase transition region. Results from single rod burst tests also show a reduction in burst strain in the α+β phase region. In this report it is shown theoretically that for single rod burst tests in the presence of circumferential temperature gradients, the temperature dependence of the mean burst strain is not determined by temperature variations in creep ductility, but is governed by the temperature sensitivity of the creep strain rate, which is shown to be a maximum in the α+β phase transition region. To demonstrate this effect, the mean clad strain at burst was calculated for creep straining at different temperature levels in the α, α+β and β phase regions. Cross-pin temperature gradients were applied which produced strain variations around the clad which were greatest in the α+β phase region. The mean strain at burst was determined using a maximum local burst strain (i.e. a creep ductility) which is independent of temperature. By assuming cross-pin temperature gradients which are typical of those observed during burst tests, then the calculated mean burst strain/burst temperature relationship gave good agreement with experiment. The calculations also show that when circumferential temperature differences are present, the calculated mean strain at burst is not sensitive to variations in the magnitude of the assumed creep ductility. This reduces the importance of the assumed burst criterion in the calculations. Hence a temperature independent creep ductility (e.g. 100% local strain) is adequate as a burst criterion for calculations under PWR LOCA conditions. (author)

  17. Solitary waves in morphogenesis: Determination fronts as strain-cued strain transformations among automatous cells

    Science.gov (United States)

    Cox, Brian N.; Landis, Chad M.

    2018-02-01

    We present a simple theory of a strain pulse propagating as a solitary wave through a continuous two-dimensional population of cells. A critical strain is assumed to trigger a strain transformation, while, simultaneously, cells move as automata to tend to restore a preferred cell density. We consider systems in which the strain transformation is a shape change, a burst of proliferation, or the commencement of growth (which changes the shape of the population sheet), and demonstrate isomorphism among these cases. Numerical and analytical solutions describe a strain pulse whose height does not depend on how the strain disturbance was first launched, or the rate at which the strain transformation is achieved, or the rate constant in the rule for the restorative cell motion. The strain pulse is therefore very stable, surviving the imposition of strong perturbations: it would serve well as a timing signal in development. The automatous wave formulation is simple, with few model parameters. A strong case exists for the presence of a strain pulse during amelogenesis. Quantitative analysis reveals a simple relationship between the velocity of the leading edge of the pulse in amelogenesis and the known speed of migration of ameloblast cells. This result and energy arguments support the depiction of wave motion as an automatous cell response to strain, rather than as a response to an elastic energy gradient. The theory may also contribute to understanding the determination front in somitogenesis, moving fronts of convergent-extension transformation, and mitotic wavefronts in the syncytial drosophila embryo.

  18. 3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients.

    Science.gov (United States)

    Kokkinis, Dimitri; Bouville, Florian; Studart, André R

    2018-05-01

    Mechanical gradients are useful to reduce strain mismatches in heterogeneous materials and thus prevent premature failure of devices in a wide range of applications. While complex graded designs are a hallmark of biological materials, gradients in manmade materials are often limited to 1D profiles due to the lack of adequate fabrication tools. Here, a multimaterial 3D-printing platform is developed to fabricate elastomer gradients spanning three orders of magnitude in elastic modulus and used to investigate the role of various bioinspired gradient designs on the local and global mechanical behavior of synthetic materials. The digital image correlation data and finite element modeling indicate that gradients can be effectively used to manipulate the stress state and thus circumvent the weakening effect of defect-rich interfaces or program the failure behavior of heterogeneous materials. Implementing this concept in materials with bioinspired designs can potentially lead to defect-tolerant structures and to materials whose tunable failure facilitates repair of biomedical implants, stretchable electronics, or soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Strain modification on electronic transport of the phosphorene nanoribbon

    Directory of Open Access Journals (Sweden)

    Yawen Yuan

    2017-07-01

    Full Text Available We demonstrate theoretically how local strains can be tailored to control quantum transport of carriers on monolayer armchair and zigzag phosphorene nanoribbon. We find that the electron tunneling is forbidden when the in-plane strain exceeds a critical value. The critical strain is different for different crystal orientation of the ribbons, widths, and incident energies. By tuning the Fermi energy and strain, the channels can be transited from opaque to transparent. Moreover, for the zigzag-phosphorene nanoribbon, the two-fold degenerate quasi-flat edge band splits completely under certain strain. These properties provide us an efficient way to control the transport of monolayer phosphorene-based microstructure.

  20. Detection of minute strain in very local areas of materials by using an X-ray microbeam

    CERN Document Server

    Matsui, J; Tsusaka, Y; Kimura, S

    2003-01-01

    In order to analyze the local minute strain in semiconductor materials and devices, we have demonstrated formation of X-ray microbeams by using asymmetric Bragg reflections of the crystal and a zone plate or cylindrical mirror combined with synchrotron radiation. A series of X-ray rocking curves have been obtained by scanning the sample with using the X-ray microbeam. In addition, reciprocal space maps have also been obtained by inserting an analyzer crystal behind the sample. From these data, information on the strain distribution can be obtained for various samples, such as the strain near SiO sub 2 /Si film edges, that in silicon-on-insulator (SOI) crystals, and that in InGaAsP semiconductor laser stripes. (author)

  1. Preparation and characterisation of radiation hard PbWO4 crystal scintillator

    International Nuclear Information System (INIS)

    Sabharwal, S.C.; Desai, D.G.; Sangeeta; Karandikar, S.C.; Chauhan, A.K.; Sangiri, A.K.; Keshwani, K.S.; Ahuja, M.N.

    1996-01-01

    The selective loss of one of the crystal constituents is found to be responsible for the yellowish coloration of PbWO 4 crystals. However, using the already pulled crystals as the starting charge for the subsequent growth, colorless crystals can be grown. The crystals exhibiting excellent transmission characteristics have been grown employing a low temperature gradient, a moderate rotation rate of 15 rpm and a pull speed of 1 mm/h. The colored crystals show some radiation damage on gamma irradiation, while the colorless ones remain unaffected even for irradiation doses as high as 10 Mrad. Both the types of crystals show the presence of weak thermoluminescence (TL) emission when high irradiation doses (similar 10 Mrad) are given. Only one TL glow peak is obtained in both the cases but the peak temperatures are different. The emission centers responsible for the TL emission are found to be the ones which give rise to the scintillation emission in the crystal. (orig.)

  2. Growth of sodium chlorate crystals in the presence of potassium sulphate

    Science.gov (United States)

    Kim, E. L.; Tsyganova, A. A.; Vorontsov, D. A.; Ovsetsina, T. I.; Katkova, M. R.; Lykov, V. A.; Portnov, V. N.

    2015-09-01

    In this work, we investigated the morphology and growth rates of NaClO3 crystals in solutions with K2SO4 additives. NaClO3 crystals were grown using the temperature gradient technique under concentration convection. We found that the crystal habitus changed from cubic to tetrahedral, and the growth of the cubic {100}, tetrahedral {111} and rhomb-dodecahedral {110} faces decelerated with an increase in the concentration of SO42- ions. The {110} face was the most and the {100} face was the least inhibited by sulphate ions. The mechanism of SO42- ions action is their adsorption on the crystal surface, which impedes attachment of the crystal's building units. We conclude that different atomic structure and charge state of various crystal faces determine their sensitivity to the action of the SO42- ions.

  3. Multi-scale Modeling of the Impact Response of a Strain Rate Sensitive High-Manganese Austenitic Steel

    Directory of Open Access Journals (Sweden)

    Orkun eÖnal

    2014-09-01

    Full Text Available A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading. The equivalent stress – equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading. The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.

  4. Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory

    Directory of Open Access Journals (Sweden)

    A. Farajpour

    Full Text Available Carbon nanotubes are a new class of microtubule-stabilizing agents since they interact with protein microtubules in living cells, interfering with cell division and inducing apoptosis. In the present work, a modified beam model is developed to investigate the effect of carbon nanotubes on the buckling of microtubule bundles in living cell. A realistic interaction model is employed using recent experimental data on the carbon nanotube-stabilized microtubules. Small scale and surface effects are taken into account applying the nonlocal strain gradient theory and surface elasticity theory. Pasternak model is used to describe the normal and shearing effects of enclosing filament matrix on the buckling behavior of the system. An exact solution is obtained for the buckling growth rates of the mixed bundle in viscoelastic surrounding cytoplasm. The present results are compared with those reported in the open literature for single microtubules and an excellent agreement is found. Finally, the effects of different parameters such as the size, chirality, position and surface energy of carbon nanotubes on the buckling growth rates of microtubule bundles are studied. It is found that the buckling growth rate may increase or decrease by adding carbon nanotubes, depending on the diameter and chirality of carbon nanotubes. Keywords: Microtubules, Carbon nanotubes, Buckling, Size effects

  5. Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process

    Science.gov (United States)

    Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.

    2018-06-01

    A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.

  6. Microstructure and hardness development in a copper-nickel diffusion gradient model system

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Zhang, Xiaodan; Hansen, Niels

    2015-01-01

    Cu has been electrolytically coated with Ni and subsequently deformed by rotary swaging up to a strain of ε=2 to create a chemical gradient at the interface of the two elements. The extend of this chemical intermixing has been investigated through Energy Dispersive X-ray (EDX) spectroscopy...

  7. Neutrons and the crystal ball experiments

    International Nuclear Information System (INIS)

    Alyea, J.; Grosnick, D.; Koetke, D.; Manweiler, R.; Spinka, H.; Stanislaus, S.

    1997-01-01

    The Crystal Ball detector, as originally constructed, consisted of a set of 672 optically-isolated NaI crystals, forming an approximately spherical shell and each crystal viewed by a photomultiplier, a charged-particle tracker within the NaI shell, and two endcaps to cover angles close to two colliding beams. The detector geometry subtends a solid angle of about 93% of 4π st (20 degree le θ le 160degree and 0degree le φ le 360degree) from the center. The Crystal Ball detector was used for two long series of experiments at the e + e - colliding beam accelerators SPEAR [1, 2, 3, 4] at SLAC and DORIS [5, 6, 7, 8] at DESY. A new set of measurements using the Crystal Ball detector is planned at the Brookhaven National Laboratory Alternating Gradient Synchrotrons (BNL AGS). These new experiments will use the 672 NaI crystals from the original detector, but neither the tracker nor endcaps. The ''Crystal Ball'' in this note will refer only to the set of NaI crystals. Initially, the reactions to be studied will include π - pr a rrow neutrals with pion beam momenta approximately400-750 MeV/c and K - pr a rrow neutrals with kaon beam momenta approximately600-750 MeV/c. Each of these reactions will include a neutron in the final state. whereas the fraction of e + e - interactions with neutrons at SLAC or DESY was quite small. Consequently, there is relatively little experience understanding the behavior of neutrons in the Crystal Ball

  8. Purification, crystallization and preliminary crystallographic analysis of the minor pilin FctB from Streptococcus pyogenes

    International Nuclear Information System (INIS)

    Linke, Christian; Young, Paul G.; Kang, Hae Joo; Proft, Thomas; Baker, Edward N.

    2010-01-01

    The minor pilin FctB from S. pyogenes strain 90/306S was expressed in E. coli, purified and crystallized. The hexagonal FctB crystals diffracted to 2.9 Å resolution. The minor pilin FctB is an integral part of the pilus assembly expressed by Streptococcus pyogenes. Since it is located at the cell wall, it can be hypothesized that it functions as a cell-wall anchor for the streptococcal pilus. In order to elucidate its structure, the genes for FctB from the S. pyogenes strains 90/306S and SF370 were cloned for overexpression in Escherichia coli. FctB from strain 90/306S was crystallized by the sitting-drop vapour-diffusion method using sodium citrate as a precipitant. The hexagonal FctB crystals belonged to space group P6 1 or P6 5 , with unit-cell parameters a = b = 95.15, c = 100.25 Å, and diffracted to 2.9 Å resolution

  9. Finite element modeling to determine thermal residual strain distribution of bonded composite repairs for structural health monitoring design

    Science.gov (United States)

    Baker, Wayne; Jones, Rhys; Davis, Claire; Galea, Stephen C.

    2002-11-01

    The economic implication of fleet upgrades, particularly in Australia with military aircraft such as the F-111 and F/A-18, has led to an increasing reliance on composite repair technology to address fatigue and corrosion-affected aircraft components. The increasing use of such repairs has led to a research effort to develop various in-situ health monitoring systems that may be incorporated with a repair. This paper reports on the development of a theoretical methodology that uses finite element analysis (FEA) to model the strain profiles which optical sensors, on or within the patch, will be exposed to under various operational scenarios, including load and disbond. Numerical techniques are then used to predict the fibre Bragg grating (FBG) reflections which occur with these strain profiles. The quality of these reflection are a key consideration when designing FBG based structural health monitoring (SHM) systems. This information can be used to optimise the location of both surface mounted, and embedded sensors, and determine feasibility of SHM system design. Research was conducted into the thermal residual strain (TRS) within the patch. A finite element study revealed the presence of significant thermal residual strain gradients along the surface of the tapered region of the patch. As Bragg gratings are particularly sensitive to strain gradients, (producing a result similar to a chirped grating) the strain gradient on the composite at potential sensor locations both under load, and in the event of disbond was considered. A sufficiently high gradient leads to an altered Bragg reflection. These spurious reflections need to be considered, and theoretically obtained reflections can provide information to allow for load scenarios where the Bragg shift is not a smooth, well defined peak. It can also be shown that embedded fibres offer a higher average thermal residual strain reading, while being subject to a much lower strain gradient. This particularly favors the

  10. Crystallization and initial X-ray analysis of polyhydroxyalkanoate granule-associated protein from Aeromonas hydrophila

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Minglian; Li, Zhenguo; Zheng, Wei; Lou, Zhiyong [MOE Key Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084 (China); Chen, Guo-Qiang, E-mail: chengq@stu.edu.cn [MOE Key Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084 (China); Multidisciplinary Research Center, Shantou University, Shantou 515063, Guangdong (China)

    2006-08-01

    The phasin PhaP{sub Ah} from A. hydrophila strain 4AK4 was crystallized using the hanging-drop vapour-diffusion method. Polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were discovered in PHA-accumulating bacteria. They play a crucial role as a structural protein during initial PHA-granule formation and granule growth and also serve as interfaces for granule stabilization in vivo. The phasin PhaP{sub Ah} from Aeromonas hydrophila strain 4AK4 was crystallized using the hanging-drop vapour-diffusion method. Single crystals were cryocooled for X-ray diffraction analysis. The phasin crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 80.8, b = 108.9, c = 134.4 Å.

  11. Beam paths of flexural Lamb waves at high frequency in the first band within phononic crystal-based acoustic lenses

    Directory of Open Access Journals (Sweden)

    J. Zhao

    2014-12-01

    Full Text Available This work deals with an analytical and numerical study of the focusing of the lowest order anti-symmetric Lamb wave in gradient index phononic crystals. Computing the ray trajectories of the elastic beam allowed us to analyze the lateral dimensions and shape of the focus, either in the inner or behind the phononic crystal-based acoustic lenses, for frequencies within a broad range in the first band. We analyzed and discussed the focusing behaviors inside the acoustic lenses where the focalization at sub-wavelength scale was achieved. The focalization behind the gradient index phononic crystal is shown to be efficient as well: we report on FMHM = 0.63λ at 11MHz.

  12. New applications of a generalized Hooke’s law for second gradient materials

    Directory of Open Access Journals (Sweden)

    K. Enakoutsa

    2015-05-01

    Full Text Available We provide analytical solutions to the problems of a circular bending of a beam in plane strain and the torsion of a non-circular cross-section beam, the beams obeying a second-gradient elasticity law proposed by the author, following a previous suggestion of Dell’Isola et al. (2009. The motivation was to find benchmark analytical solutions that can serve to grasp the physical foundations of second gradient elasticity laws for heterogeneous materials. The analytical solution of the circular beam problem presents the additional advantage to establish some nice properties on the unknown second gradient elastic moduli introduced by Enakoutsa (2014 model and the classical elasticity constants for both incompressible and compressible heterogeneous elastic materials. A framework to find the elastic moduli of the new model is also proposed.

  13. Molecular typing of Brucella melitensis endemic strains and differentiation from the vaccine strain Rev-1.

    Science.gov (United States)

    Noutsios, Georgios T; Papi, Rigini M; Ekateriniadou, Loukia V; Minas, Anastasios; Kyriakidis, Dimitrios A

    2012-03-01

    In the present study forty-four Greek endemic strains of Br. melitensis and three reference strains were genotyped by Multi locus Variable Number Tandem Repeat (ML-VNTR) analysis based on an eight-base pair tandem repeat sequence that was revealed in eight loci of Br. melitensis genome. The forty-four strains were discriminated from the vaccine strain Rev-1 by Restriction Fragment Length Polymorphism (RFLP) and Denaturant Gradient Gel Electrophoresis (DGGE). The ML-VNTR analysis revealed that endemic, reference and vaccine strains are genetically closely related, while most of the loci tested (1, 2, 4, 5 and 7) are highly polymorphic with Hunter-Gaston Genetic Diversity Index (HGDI) values in the range of 0.939 to 0.775. Analysis of ML-VNTRs loci stability through in vitro passages proved that loci 1 and 5 are non stable. Therefore, vaccine strain can be discriminated from endemic strains by allele's clusters of loci 2, 4, 6 and 7. RFLP and DGGE were also employed to analyse omp2 gene and reveled different patterns among Rev-1 and endemic strains. In RFLP, Rev-1 revealed three fragments (282, 238 and 44 bp), while endemic strains two fragments (238 and 44 bp). As for DGGE, the electrophoretic mobility of Rev-1 is different from the endemic strains due to heterologous binding of DNA chains of omp2a and omp2b gene. Overall, our data show clearly that it is feasible to genotype endemic strains of Br. melitensis and differentiate them from vaccine strain Rev-1 with ML-VNTR, RFLP and DGGE techniques. These tools can be used for conventional investigations in brucellosis outbreaks.

  14. Crystallization of inorganic salts from aqueous solutions in a microwave field

    International Nuclear Information System (INIS)

    Kochetkov, S. E.; Kuznetsov, V. A.; Lyashenko, A. V.; Bakshutov, V. S.

    2006-01-01

    The crystallization of some inorganic salts (KH 2 PO 4 , NaCl, Sr(NO 3 ) 2 , KNO 2 , Ca(OH) 2 ) by the thermal-gradient (with decreasing temperature) and solvent-evaporation methods using microwave heating of solutions is investigated. It is established that the growth rates of single crystals in a microwave field are an order of magnitude higher than obtained in other known techniques at comparable crystallization temperatures and supersaturations. For example, the growth rate of prismatic faces {100} of KH 2 PO 4 crystals is as high as 11 mm/day at supersaturations of ∼1.2%. The results obtained are discussed in the context of the effect of microwave radiation on the adsorption surface layers of crystals. Fine-grained phases of the salts under study are obtained by evaporation of the solvent

  15. Study of Rayleigh-Love coupling from Spatial Gradient Observation

    Science.gov (United States)

    Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.

    2017-12-01

    We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.

  16. JAC, 2-D Finite Element Method Program for Quasi Static Mechanics Problems by Nonlinear Conjugate Gradient (CG) Method

    International Nuclear Information System (INIS)

    Biffle, J.H.

    1991-01-01

    1 - Description of program or function: JAC is a two-dimensional finite element program for solving large deformation, temperature dependent, quasi-static mechanics problems with the nonlinear conjugate gradient (CG) technique. Either plane strain or axisymmetric geometry may be used with material descriptions which include temperature dependent elastic-plastic, temperature dependent secondary creep, and isothermal soil models. The nonlinear effects examined include material and geometric nonlinearities due to large rotations, large strains, and surface which slide relative to one another. JAC is vectorized to perform efficiently on the Cray1 computer. A restart capability is included. 2 - Method of solution: The nonlinear conjugate gradient method is employed in a two-dimensional plane strain or axisymmetric setting with various techniques for accelerating convergence. Sliding interface conditions are also implemented. A four-node Lagrangian uniform strain element is used with orthogonal hourglass viscosity to control the zero energy modes. Three sets of continuum equations are needed - kinematic statements, constitutive equations, and equations of equilibrium - to describe the deformed configuration of the body. 3 - Restrictions on the complexity of the problem - Maxima of: 10 load and solution control functions, 4 materials. The strain rate is assumed constant over a time interval. Current large rotation theory is applicable to a maximum shear strain of 1.0. JAC should be used with caution for large shear strains. Problem size is limited only by available memory

  17. Experimental Study of Instantaneous Evolution of A Scalar Gradient With Small-scale Anisotropic Injection In A 2d, Periodic Flow

    Science.gov (United States)

    Godard, G.; Paranthoen, P.; Gonzalez, M.

    Anisotropic small-scale injection of a scalar (e.g. heat) in a turbulent medium can be performed by means of a small-diameter line source as already done in a turbulent plane jet and a turbulent boundary layer (Rosset et al., Phys. Fluids 13, 3729, 2001). In such conditions, however, experiment is revealed delicate especially, as regard to temperature gradient measurements in the near-field of the source. In the present study, we get rid of previous difficulties by setting up the heated line source in a simpler flow namely, a Bénard-von Kármán street. Under this situation, owing to a phase reference, the history of the instantaneous temperature gradient can be scrutinized from the vicinity of the source. Gradient statistics (second-order mo- ments, skewness, kurtosis ...) is derived which allows us to follow the evolution of anisotropy downstream of the line source. Alignment of temperature gradient with respect to strain principal axes is also analyzed. This experiment provides a precise knowledge of the way in which a scalar gradient evolves under the combined actions of strain, vorticity and molecular diffusion.

  18. The growth of crystals of erbium hydride

    International Nuclear Information System (INIS)

    Grimshaw, J.A.; Spooner, F.J.; Wilson, C.G.; McQuillan, A.D.

    1981-01-01

    Crystals of the rare-earth hydride ErH 2 have been produced with face areas greater than a square millimetre and corresponding volumes exceeding those of earlier crystals by orders of magnitude. The hydride, which was produced in bulk polycrystalline form by hydriding erbium metal at 950 0 C, has been examined by optical and X-ray techniques. For material of composition ErH 2 and ErHsub(1.8) the size of the grains and their degree of strain appears to depend more on oxygen contamination during formation and on the subsequent cooling procedure, than on the size of erbium metal crystals in the starting material. (author)

  19. Impact of interaction range and curvature on crystal growth of particles confined to spherical surfaces

    NARCIS (Netherlands)

    Paquay, S.; Both, G.-J.; Van Der Schoot, P.P.A.M.

    2017-01-01

    When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms

  20. Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)

    Science.gov (United States)

    Garland, Anthony

    of gradient material designs. A macroscopic gradient can be achieved by varying the microstructure or the mesostructures of an object. The mesostructure interpretation allows for more design freedom since the mesostructures can be tuned to have non-isotropic material properties. A new algorithm called Bi-level Optimization of Topology using Targets (BOTT) seeks to find the best distribution of mesostructure designs throughout a single object in order to minimize an objective value. On the macro level, the BOTT algorithm optimizes the macro topology and gradient material properties within the object. The BOTT algorithm optimizes the material gradient by finding the best constitutive matrix at each location with the object. In order to enhance the likelihood that a mesostructure can be generated with the same equivalent constitutive matrix, the variability of the constitutive matrix is constrained to be an orthotropic material. The stiffness in the X and Y directions (of the base coordinate system) can change in addition to rotating the orthotropic material to align with the loading at each region. Second, the BOTT algorithm designs mesostructures with macroscopic properties equal to the target properties found in step one while at the same time the algorithm seeks to minimize material usage in each mesostructure. The mesostructure algorithm maximizes the strain energy of the mesostructures unit cell when a pseudo strain is applied to the cell. A set of experiments reveals the fundamental relationship between target cell density and the strain (or pseudo strain) applied to a unit cell and the output effective properties of the mesostructure. At low density, a few mesostructure unit cell design are possible, while at higher density the mesostructure unit cell designs have many possibilities. Therefore, at low densities the effective properties of the mesostructure are a step function of the applied pseudo strain. At high densities, the effective properties of the

  1. Imaging of the strain field around precipitate particles using transmission ion channeling

    NARCIS (Netherlands)

    King, PJC; Breese, MBH; Meekeson, D; Smulders, PJM; Wilshaw, PR; Grime, GW

    1996-01-01

    This paper shows ion channeling images of the strain field produced by precipitate particles in a crystal matrix. Images have been produced by mapping the energy of 3 MeV protons transmitted through a thinned silicon crystal containing colonies of copper silicide particles, with the incident beam at

  2. In-situ measurement of texture and elastic strains with HIPPO-CRATES

    International Nuclear Information System (INIS)

    Hartig, Ch.; Vogel, S.C.; Mecking, H.

    2006-01-01

    In this paper, the micromechanical interaction between constituents of a metallic material during elastic and plastic deformation are analyzed by comparing experimental results with modeling predictions. This comparison aims at determining the locally acting internal stresses, the spatial distribution of strains and the rules allowing deriving the macroscopic behavior of the material from the behavior of its microscopic constituents. We report the application of a new deformation apparatus CRATES, which allows measuring texture and crystal lattice spacings, and from these crystal lattice strains, using neutron diffraction. From the in-situ measured elastic lattice strains ε hkl the corresponding local stresses can be derived. The deformation apparatus allows uni-axial tensile or compressive deformation up to 100 kN and is specifically designed for use in the HIPPO neutron time-of-flight diffractometer. In this paper, we report initial results on an iron-copper model system (Fe100, Fe33Cu67, Fe67Cu33, vol.%) and commercial magnesium alloys (Mg-AZ31 and Mg-AZ80). Finite element calculations using a crystal-plastic constitutive law, allowing for shear and hardening of crystallographic slip-systems, were used for the interpretation of the measurements

  3. Structure of highly perfect semiconductor strained-layer superlattices

    International Nuclear Information System (INIS)

    Vandenberg, J.M.

    1989-01-01

    High-resolution x-ray diffraction (HRXRD) measurements of strained-layer superlattices (SLS's) have been carried out using a four-crystal monochromator. A wide asymmetric range of sharp higher-order x-ray satellite peaks is observed indicating well-defined periodic structures. Using a kinematical diffraction step model very good agreement between measured and simulated x-ray satellite patterns could be achieved. These results show that this x- ray method is a powerful tool to evaluate the crystal quality of SLS's

  4. A decade of crystallization drops: crystallization of the cbb3 cytochrome c oxidase from Pseudomonas stutzeri.

    Science.gov (United States)

    Buschmann, Sabine; Richers, Sebastian; Ermler, Ulrich; Michel, Hartmut

    2014-04-01

    The cbb3 cytochrome c oxidases are distant members of the superfamily of heme copper oxidases. These terminal oxidases couple O2 reduction with proton transport across the plasma membrane and, as a part of the respiratory chain, contribute to the generation of an electrochemical proton gradient. Compared with other structurally characterized members of the heme copper oxidases, the recently determined cbb3 oxidase structure at 3.2 Å resolution revealed significant differences in the electron supply system, the proton conducting pathways and the coupling of O2 reduction to proton translocation. In this paper, we present a detailed report on the key steps for structure determination. Improvement of the protein quality was achieved by optimization of the number of lipids attached to the protein as well as the separation of two cbb3 oxidase isoenzymes. The exchange of n-dodecyl-β-D-maltoside for a precisely defined mixture of two α-maltosides and decanoylsucrose as well as the choice of the crystallization method had a most profound impact on crystal quality. This report highlights problems frequently encountered in membrane protein crystallization and offers meaningful approaches to improve crystal quality. © 2014 The Protein Society.

  5. Explaining the social gradient in sickness absence: a study of a general working population in Sweden.

    Science.gov (United States)

    Löve, Jesper; Hensing, Gunnel; Holmgren, Kristina; Torén, Kjell

    2013-06-05

    Some previous studies have proposed potential explanatory factors for the social gradient in sickness absence. Yet, this research area is still in its infancy and in order to comprise the full range of socioeconomic positions there is a need for studies conducted on random population samples. The main aim of the present study was to investigate if somatic and mental symptoms, mental wellbeing, job strain, and physical work environment could explain the association between low socioeconomic position and belonging to a sample of new cases of sick-listed employees. This study was conducted on one random working population sample (n = 2763) and one sample of newly sick-listed cases of employees (n = 3044), drawn from the same random general population in western Sweden. Explanatory factors were self-rated 'Somatic and mental symptoms', 'Mental well-being', 'job strain', and 'physical work conditions' (i.e. heavy lifting and awkward work postures). Multiple logistic regression analyses were used. Somatic and mental symptoms, mental well-being, and job strain, could not explain the association between socioeconomic position and sickness absence in both women and men. However, physical work conditions explained the total association in women and much of this association in men. In men the gradient between Non-skilled manual OR 1.76 (1.24;2.48) and Skilled manual OR 1.59 (1.10;2.20), both in relation to Higher non-manual, remained unexplained. The present study strengthens the scientific evidence that social differences in physical work conditions seem to comprise a key element of the social gradient in sickness absence, particularly in women. Future studies should try to identify further predictors for this gradient in men.

  6. Thermoelectricity in liquid crystals

    Science.gov (United States)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  7. Relationship between electrical properties and crystallization of indium oxide thin films using ex-situ grazing-incidence wide-angle x-ray scattering

    Science.gov (United States)

    González, G. B.; Okasinski, J. S.; Buchholz, D. B.; Boesso, J.; Almer, J. D.; Zeng, L.; Bedzyk, M. J.; Chang, R. P. H.

    2017-05-01

    Grazing-incidence, wide-angle x-ray scattering measurements were conducted on indium oxide thin films grown on silica substrates via pulsed laser deposition. Growth temperatures (TG) in this study ranged from -50 °C to 600 °C, in order to investigate the thermal effects on the film structure and its spatial homogeneity, as well as their relationship to electrical properties. Films grown below room temperature were amorphous, while films prepared at TG = 25 °C and above crystallized in the cubic bixbyite structure, and their crystalline fraction increased with deposition temperature. The electrical conductivity (σ) and electrical mobility (μ) were strongly enhanced at low deposition temperatures. For TG = 25 °C and 50 °C, a strong ⟨100⟩ preferred orientation (texture) occurred, but it decreased as the deposition temperature, and consequential crystallinity, increased. Higher variations in texture coefficients and in lattice parameters were measured at the film surface compared to the interior of the film, indicating strong microstructural gradients. At low crystallinity, the in-plane lattice spacing expanded, while the out-of-plane spacing contracted, and those values merged at TG = 400 °C, where high μ was measured. This directional difference in lattice spacing, or deviatoric strain, was linear as a function of both deposition temperature and the degree of crystallinity. The crystalline sample with TG = 100 °C had the lowest mobility, as well as film diffraction peaks which split into doublets. The deviatoric strains from these doublet peaks differ by a factor of four, supporting the presence of both a microstructure and strain gradient in this film. More isotropic films exhibit larger μ values, indicating that the microstructure directly correlates with electrical properties. These results provide valuable insights that can help to improve the desirable properties of indium oxide, as well as other transparent conducting oxides.

  8. Mechanical properties of graphene nanoribbons under uniaxial tensile strain

    Science.gov (United States)

    Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu

    2018-03-01

    Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.

  9. LITERATURE SURVEY FOR FRACTIONAL CRYSTALLIZATION STUDY

    International Nuclear Information System (INIS)

    PERSON, J.C.

    2004-01-01

    strain of the crystal. Both the crystal size and the strain in the crystal lattice have a pronounced effect on the growth rate of the individual crystals (Menon 2003). This report is organized into six sections. Section 1 summarizes reports on the design principles for separations by crystallization. Section 2 discusses the fractional crystallization in the NaNO 3 -CH 3 COONa-H 2 O system presented in RPP-18541, ''Test Plan for Tank 241-S-112 Fractional crystallization Study,'' dated 2003. Section 3 summarizes reports on crystallization in the Na 2 CO 3 -Na 2 SO 4 -H 2 O system, which includes the effects of the burkeite double salt (Na 2 CO 3 · 2Na 2 SO 4 ). Section 4 summarizes solubility data for sodium compounds and presents two miscellaneous topics. Section 5 is excerpted from the internet to show applications of thermodynamic calculations. Section 5.1 compares results and calculations for the NaNO 3 -Na 2 SO 4 -H 2 O system, and Section 5.2 shows the use of the calculations to optimize flowsheets. Flowsheets are given for two examples: (1) the production of KNO 3 from NaNO 3 and KCl (including the effects of having Na 2 SO 4 in the initial material) and (2) the production of K 2 SO 4 and NaCl from Na 2 SO 4 and KCl. Section 6 is excerpted from the internet to show some examples of the information available on crystallizers

  10. Free Vibration Behavior of a Gradient Elastic Beam with Varying Cross Section

    Directory of Open Access Journals (Sweden)

    Mustafa Özgür Yayli

    2014-01-01

    Full Text Available Based on strain gradient elasticity theory, a finite element procedure is proposed for computation of natural frequencies for the microbeams of constant width and linear varying depth. Weak form formulation of the equation of motion is obtained first as in common classical finite element procedure in terms of various kinds of boundary conditions. Gradient elastic shape functions are used for interpolating deflection inside a finite element. Stiffness and mass matrices are then calculated to solve the microbeam eigen value problem. A solution for natural frequencies is obtained using characteristic equation of microbeam in gradient elasticity. The results are given in a series of figures and compared with their classical counterparts. The effect of various slope values on the natural frequencies are examined in some numerical examples. Comparison with the classical elasticity theory is also performed to verify the present study.

  11. The strain-dependent spatial evolution of garnet in a high- P ductile shear zone from the Western Gneiss Region (Norway): a synchrotron X-ray microtomography study

    Energy Technology Data Exchange (ETDEWEB)

    Macente, A. [School of Geosciences, University of Edinburgh, The King' s Building James Hutton Road Edinburgh EH9 3FE UK; Fusseis, F. [School of Geosciences, University of Edinburgh, The King' s Building James Hutton Road Edinburgh EH9 3FE UK; Menegon, L. [School of Geography, Earth and Environmental Sciences, Faculty of Science and Engineering, Plymouth University, Fitzroy Drake Circus Plymouth Devon PL4 8AA UK; Xianghui, X. [Argonne National Laboratory, 9700 S. Cass Ave Building 431-B003 Argonne IL USA; John, T. [Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74-100 12249 Berlin Germany

    2017-03-27

    Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono-metamorphic processes, however they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron-based X-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets with increasing strain. Our microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X-ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low strain domain, garnets form a well interconnected large garnet aggregate that develops throughout the entire Page 1 of 52 sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet show a near-random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo-nucleation and overgrowth. Microprobe chemical analysis

  12. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    Science.gov (United States)

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-11-01

    A framework for dislocation-based viscoplasticity and dynamic ductile failure has been developed to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. An averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Additionally, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in (Wilkerson and Ramesh, 2014), which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.

  13. Impact of interaction range and curvature on crystal growth of particles confined to spherical surfaces

    Science.gov (United States)

    Paquay, Stefan; Both, Gert-Jan; van der Schoot, Paul

    2017-07-01

    When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms reaches a critical size, growth continues via the incorporation of defects to alleviate elastic strain. Recently, it was experimentally found that, if defect formation is somehow not possible, the crystal instead continues growing in ribbons that protrude from the original crystal. Here we report on computer simulations in which we observe both the formation of ribbons at short interaction ranges and packings that incorporate defects if the interaction is longer-ranged. The ribbons only form above some critical crystal size, below which the nucleus is disk-shaped. We find that the scaling of the critical crystal size differs slightly from the one proposed in the literature, and we argue that this is because the actual morphology transition is caused by the competition between line tension and elastic stress, rather than the competition between chemical potential and elastic stress.

  14. Fracto-mechanoluminescent light emission of EuD4TEA-PDMS composites subjected to high strain-rate compressive loading

    Science.gov (United States)

    Ryu, Donghyeon; Castaño, Nicolas; Bhakta, Raj; Kimberley, Jamie

    2017-08-01

    The objective of this study is to understand light emission characteristics of fracto-mechanoluminescent (FML) europium tetrakis(dibenzoylmethide)-triethylammonium (EuD4TEA) crystals under high strain-rate compressive loading. As a sensing material that can play a pivotal role for the self-powered impact sensor technology, it is important to understand transformative light emission characteristics of the FML EuD4TEA crystals under high strain-rate compressive loading. First, EuD4TEA crystals were synthesized and embedded into polydimethylsiloxane (PDMS) elastomer to fabricate EuD4TEA-PDMS composite test specimens. Second, the prepared EuD4TEA-PDMS composites were tested using the modified Kolsky bar setup equipped with a high-speed camera. Third, FML light emission was captured to yield 12 bit grayscale video footage, which was processed to quantify the FML light emission. Finally, quantitative parameters were generated by taking into account pixel values and population of pixels of the 12 bit grayscale images to represent FML light intensity. The FML light intensity was correlated with high strain-rate compressive strain and strain rate to understand the FML light emission characteristics under high strain-rate compressive loading that can result from impact occurrences.

  15. Investigation of the correlation between stoichiometry and thermoelectric properties in a PtSb2 single crystal

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Christensen, Mogens; Bjerg, Lasse

    2012-01-01

    utilizing X-Ray Diffraction and Energy Dispersive X-Ray Spectroscopy. The correlation between Pt/Sb ratio and physical property parameters - Seebeck coefficient, mobility, resistivity and charge carrier concentration - was studied. Elemental analysis by Energy Dispersive X-Ray Spectroscopy, X......The thermoelectric properties of a PtSb2 single crystal containing a stoichiometric gradient were investigated. The gradient was produced by employing a Stockbarger synthesis technique. The gradient was observed through the use of spatial resolved Seebeck coefficient measurements and verified...

  16. Avalanches and plastic flow in crystal plasticity: an overview

    Science.gov (United States)

    Papanikolaou, Stefanos; Cui, Yinan; Ghoniem, Nasr

    2018-01-01

    Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-range interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.

  17. Dynamics of Reactive Microbial Hotspots in Concentration Gradient.

    Science.gov (United States)

    Hubert, A.; Farasin, J.; Tabuteau, H.; Dufresne, A.; Meheust, Y.; Le Borgne, T.

    2017-12-01

    In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella capsiferriformans ES-2 as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. We measure bacterial activity and population growth locally in precisely known hydrodynamic and chemical environments. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We compare reactive microbial hotspot dynamics in our micromodels to classic growth laws and well-known growth parameters for the laboratory model bacteria Escherichia coli.We also discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.

  18. Lectin typing of Campylobacter jejuni using a novel quartz crystal microbalance technique

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, Maria E., E-mail: maria.yakovleva@gmail.com [Department of Infectious Diseases and Medical Microbiology, Lund University, 223 62 Lund (Sweden); Moran, Anthony P. [Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway (Ireland); Safina, Gulnara R. [Department of Analytical and Marine Chemistry, University of Gothenburg, 412 96 Gothenburg (Sweden); Wadstroem, Torkel [Department of Infectious Diseases and Medical Microbiology, Lund University, 223 62 Lund (Sweden); Danielsson, Bengt [Acromed Invest AB, Magistratsvaegen 10, 226 43 Lund (Sweden)

    2011-05-23

    Seven Campylobacter jejuni strains were characterised by a lectin typing assay. The typing system was based on a quartz crystal microbalance technique (QCM) with four commercially available lectins (wheat germ agglutinin, Maackia amurensis lectin, Lens culinaris agglutinin, and Concanavalin A), which were chosen for their differing carbohydrate specificities. Initially, the gold surfaces of the quartz crystals were modified with 11-mercaptoundecanoic acid followed by lectin immobilisation using a conventional amine-coupling technique. Bacterial cells were applied for lectin typing without preliminary treatment, and resonant frequency and dissipation responses were recorded. The adhesion of microorganisms on lectin surfaces was confirmed by atomic force microscopy. Scanning was performed in the tapping mode and the presence of bacteria on lectin-coated surfaces was successfully demonstrated. A significant difference in the dissipation response was observed for different C. jejuni strains which made it possible to use this parameter for discriminating between bacterial strains. In summary, the QCM technique proved a powerful tool for the recognition and discrimination of C. jejuni strains. The approach may also prove applicable to strain discrimination of other bacterial species, particularly pathogens.

  19. Lectin typing of Campylobacter jejuni using a novel quartz crystal microbalance technique

    International Nuclear Information System (INIS)

    Yakovleva, Maria E.; Moran, Anthony P.; Safina, Gulnara R.; Wadstroem, Torkel; Danielsson, Bengt

    2011-01-01

    Seven Campylobacter jejuni strains were characterised by a lectin typing assay. The typing system was based on a quartz crystal microbalance technique (QCM) with four commercially available lectins (wheat germ agglutinin, Maackia amurensis lectin, Lens culinaris agglutinin, and Concanavalin A), which were chosen for their differing carbohydrate specificities. Initially, the gold surfaces of the quartz crystals were modified with 11-mercaptoundecanoic acid followed by lectin immobilisation using a conventional amine-coupling technique. Bacterial cells were applied for lectin typing without preliminary treatment, and resonant frequency and dissipation responses were recorded. The adhesion of microorganisms on lectin surfaces was confirmed by atomic force microscopy. Scanning was performed in the tapping mode and the presence of bacteria on lectin-coated surfaces was successfully demonstrated. A significant difference in the dissipation response was observed for different C. jejuni strains which made it possible to use this parameter for discriminating between bacterial strains. In summary, the QCM technique proved a powerful tool for the recognition and discrimination of C. jejuni strains. The approach may also prove applicable to strain discrimination of other bacterial species, particularly pathogens.

  20. Irradiation creep in zirconium single crystals

    International Nuclear Information System (INIS)

    MacEwen, S.R.; Fidleris, V.

    1976-07-01

    Two identical single crystals of crystal bar zirconium have been creep tested in reactor. Both specimens were preirradiated at low stress to a dose of about 4 x 10 23 n/m 2 (E > 1 MeV), and were then loaded to 25 MPa. The first specimen was loaded with reactor at full power, the second during a shutdown. The loading strain for both crystals was more than an order of magnitude smaller than that observed when an identical unirradiated crystal was loaded to the same stress. Both crystals exhibited periods of primary creep, after which their creep rates reached nearly constant values when the reactor was at power. During shutdowns the creep rates decreased rapidly with time. Electron microscopy revealed that the irradiation damage consisted of prismatic dislocation loops, approximately 13.5 nm in diameter. Cleared channels, identified as lying on (1010) planes, were also observed. The results are discussed in terms of the current theories for flux enhanced creep in the light of the microstructures observed. (author)

  1. Controllable reflection of X-rays on crystals of saccharose

    CERN Document Server

    Navasardyan, M A; Hayrapetyan, K T; Gabrielyan, R T

    2003-01-01

    Multiple (ten times and more) increase in intensities of separate reflections and of lauegram reflections from organic single crystals of saccharose (C sub 1 2H sub 2 2O sub 1 1) was observed under influence of certain temperature gradient. On the base of the present experiment and the data of our previous woks we show that the controllable reflection process has a common nature and the intensity of the diffracted beam under external influences does not depend on the total number of electrons per unit volume of the unit cell of the single crystal.

  2. ptchg: A FORTRAN program for point-charge calculations of electric field gradients (EFGs)

    Science.gov (United States)

    Spearing, Dane R.

    1994-05-01

    ptchg, a FORTRAN program, has been developed to calculate electric field gradients (EFG) around an atomic site in crystalline solids using the point-charge direct-lattice summation method. It uses output from the crystal structure generation program Atoms as its input. As an application of ptchg, a point-charge calculation of the EFG quadrupolar parameters around the oxygen site in SiO 2 cristobalite is demonstrated. Although point-charge calculations of electric field gradients generally are limited to ionic compounds, the computed quadrupolar parameters around the oxygen site in SiO 2 cristobalite, a highly covalent material, are in good agreement with the experimentally determined values from nuclear magnetic resonance (NMR) spectroscopy.

  3. Growth and characterization of LiInSe2 single crystals

    Science.gov (United States)

    Ma, Tianhui; Zhu, Chongqiang; Lei, Zuotao; Yang, Chunhui; Sun, Liang; Zhang, Hongchen

    2015-04-01

    Large and crack-free LiInSe2 single crystals were obtained by the vertical gradient freezing method with adding a temperature oscillation technology in a two-zone furnace. X-ray diffraction data showed that the pure LiInSe2 compound was synthesized. The grown crystals had different color depending on melt composition. The atomic ratios of elements of LiInSe2 crystals were obtained by an Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), and the structural formula were calculated according to the relative contents of elements. The average absorption coefficients were estimated by using average reflection indices. The absorption coefficients of the thermal annealing samples are 0.6 cm-1 at 2-3 μm. The transparent range of our LiInSe2 crystals is from 0.6 μm to 13.5 μm.

  4. Rapid growth of ZnO hexagonal prism crystals by direct microwave heating

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhenqi; ZHOU Jian; LIU Guizhen; REN Zhiguo

    2008-01-01

    ZnO hexagonal prism crystals were synthesized from ZnO powders by microwave heating in a short time (within 20 min) without any metal catalyst or transport agent.Zinc oxide raw materials were made by evaporating from the high-temperature zone in an enclosure atmosphere and crystals were grown on the self-source substrate.The inherent asymmetry in microwave heating provides the temperature gradient for crystal growth.Substrate and temperature distribution in the oven show significant effects on the growth of the ZnO crystal.The morphologies demonstrate that these samples are pure hexagonal prism crystals with maximum 80 μm in diameter and 600 μm in length,which possess a well faceted end and side surface.X-ray diffraction (XRD) reveals that these samples are pure crystals.The photoluminescence (PL) exhibits strong ultraviolet emission at room temperature,indicating potential applications for short-wave light-emitting photonic devices.

  5. A polarized photoluminescence study of strained layer GaAs photocathodes

    International Nuclear Information System (INIS)

    Mair, R.A.

    1996-07-01

    Photoluminescence measurements have been made on a set of epitaxially grown strained GaAs photocathode structures. The photocathodes are designed to exhibit a strain-induced enhancement of the electron spin polarization obtainable by optical pumping with circularly polarized radiation of near band gap energy. For the case of non-strained GaAs, the degree of spin polarization is limited to 50% by crystal symmetry. Under an appropriate uniaxial compression or tension, however, the valence band structure near the gap minimum is modified such that a spin polarization of 100% is theoretically possible. A total of nine samples with biaxial compressive strains ranging from zero to ∼0.8% are studied. X-ray diffraction analysis, utilizing Bragg reflections, is used to determine the crystal lattice structure of the samples. Luminescence spectra and luminescence circular polarization data are obtained at room temperature, ∼78 K and ∼12 K. The degree of luminescence circular polarization is used as a relative measure of the photo-excited electron spin polarization. The room temperature luminescence circular polarization data is compared with the measured electron spin polarization when the samples are used as electron photo-emitters with a negative electron affinity surface preparation. The luminescence data is also analyzed in conjunction with the crystal structure data with the goal of understanding the strain dependent valence band structure, optical pumping characteristics and spin depolarization mechanisms of the photocathode structures. A simple model is used to describe the luminescence data, obtained for the set of samples. Within the assumptions of the model, the deformation potentials a, b and d for GaAs are determined. The measured values are a = -10.16±.21 eV, b = -2.00±.05 eV and d = -4.87±.29 eV. Good agreement with published values of the deformation potentials provides support for the model used to describe the data

  6. On strain and stress in living cells

    Science.gov (United States)

    Cox, Brian N.; Smith, David W.

    2014-11-01

    Recent theoretical simulations of amelogenesis and network formation and new, simple analyses of the basic multicellular unit (BMU) allow estimation of the order of magnitude of the strain energy density in populations of living cells in their natural environment. A similar simple calculation translates recent measurements of the force-displacement relation for contacting cells (cell-cell adhesion energy) into equivalent volume energy densities, which are formed by averaging the changes in contact energy caused by a cell's migration over the cell's volume. The rates of change of these mechanical energy densities (energy density rates) are then compared to the order of magnitude of the metabolic activity of a cell, expressed as a rate of production of metabolic energy per unit volume. The mechanical energy density rates are 4-5 orders of magnitude smaller than the metabolic energy density rate in amelogenesis or bone remodeling in the BMU, which involve modest cell migration velocities, and 2-3 orders of magnitude smaller for innervation of the gut or angiogenesis, where migration rates are among the highest for all cell types. For representative cell-cell adhesion gradients, the mechanical energy density rate is 6 orders of magnitude smaller than the metabolic energy density rate. The results call into question the validity of using simple constitutive laws to represent living cells. They also imply that cells need not migrate as inanimate objects of gradients in an energy field, but are better regarded as self-powered automata that may elect to be guided by such gradients or move otherwise. Thus Ġel=d/dt 1/2 >[(C11+C12)ɛ02+2μγ02]=(C11+C12)ɛ0ɛ˙0+2μγ0γ˙0 or Ġel=ηEɛ0ɛ˙0+η‧Eγ0γ˙0 with 1.4≤η≤3.4 and 0.7≤η‧≤0.8 for Poisson's ratio in the range 0.2≤ν≤0.4 and η=1.95 and η‧=0.75 for ν=0.3. The spatial distribution of shear strains arising within an individual cell as cells slide past one another during amelogenesis is not known

  7. Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group▿

    Science.gov (United States)

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-01-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  8. Proteomic Analysis of Bacillus thuringiensis Strain 4.0718 at Different Growth Phases

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2012-01-01

    Full Text Available The growth process of Bacillus thuringiensis Bt4.0718 strain was studied using proteomic technologies. The proteins of Bt whole cells at three phases—middle vegetative, early sporulation, and late sporulation—were extracted with lysis buffer, followed with separation by 2-DE and identified by MALDI-TOF/TOF MS. Bioactive factors such as insecticidal crystal proteins (ICPs including Cry1Ac(3, Cry2Aa, and BTRX28, immune inhibitor (InhA, and InhA precursor were identified. InhA started to express at the middle vegetative phase, suggesting its contribution to the survival of Bt in the host body. At the early sporulation phase, ICPs started their expression. CotJC, OppA, ORF1, and SpoIVA related to the formation of crystals and spores were identified, the expression characteristics of which ensured the stable formation of crystals and spores. This study provides an important foundation for further exploration of the stable expression of ICPs, the smooth formation of crystals, and the construction of recombinant strains.

  9. Strain effect on the phase diagram of Ba-122

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kazumasa [IFW Dresden (Germany); Nagoya University (Japan); Grinenko, Vadim; Kurth, Fritz; Efremov, Dmitriy; Drechsler, Stefan-Ludwig; Engelmann, Jan; Aswartham, Saicharan; Wurmehl, Sabine; Moench, Ingolf; Huehne, Ruben [IFW Dresden (Germany); Langer, Marco; Erbe, Manuela; Haenisch, Jens; Holzapfel, Bernhard [IFW Dresden (Germany); Karlsruhe Institute of Technology (KIT) (Germany); Ichinose, Ataru; Tsukada, Ichiro [Central Research Institute of Electric Power Industry, Nagasaka (Japan); Ahrens, Eike [TU Dresden (Germany); Ikuta, Hiroshi [Nagoya University (Japan)

    2015-07-01

    Thin films offer a possibility for tuning superconducting (SC) properties without external pressure or chemical doping. In-plane strain controls the Neel temperature of the antiferromagnetic (AF) transition and the SC transition temperature or even induce superconductivity in the parent compound. We studied the electronic and magnetic properties of Co, Ru, and P doped Ba-122 thin films in different strain states. We have found that the strain shifts nearly rigidly the whole phase diagram including the AF region and the SC dome in the direction of higher or lower substitution levels depending on the direction of strain (i.e. compressive or tensile). In particular, we found that the strain affects the band structure similarly as Co doping despite that the crystal structure changes differently. As a result tensile or compressive strain acts as additional el or h doping, respectively.

  10. Large area crystallization of amorphous Si with overlapping high repetition rate laser pulses

    KAUST Repository

    Ryu, Sang-Gil

    2012-09-01

    This paper presents a pulsed laser crystallization technique, enabling large area crystallization of amorphous Si to produce grains having well-defined size and orientation. The method is developed by first determining the parameters influencing crystallization induced by single laser pulses of circular cross-sectional profile. In a second step, crystallization by overlapping round spots is examined. The experiments reveal three zones characterized by distinctly different crystallized morphologies following the laser irradiation. One of these zones corresponds to the regime of lateral crystal growth, wherein grains are driven towards the center of the spot by the radial temperature gradient. These findings are then applied to processing via line beam profiles that facilitate large area crystallization upon rapid translation of the specimen. Crystallization of extended areas hinges on the determination of the crystal growth length for a single spot. The pitch between successive pulses is then set on the basis of this information. It is shown that the pulse energy has only a weak effect on the crystal growth length. © 2012 Elsevier B.V.

  11. Homogeneous SiGe crystal growth in microgravity by the travelling liquidus-zone method

    International Nuclear Information System (INIS)

    Kinoshita, K; Arai, Y; Inatomi, Y; Sakata, K; Takayanagi, M; Yoda, S; Miyata, H; Tanaka, R; Sone, T; Yoshikawa, J; Kihara, T; Shibayama, H; Kubota, Y; Shimaoka, T; Warashina, Y

    2011-01-01

    Homogeneous SiGe crystal growth experiments will be performed on board the ISS 'Kibo' using a gradient heating furnace (GHF). A new crystal growth method invented for growing homogeneous mixed crystals named 'travelling liquidus-zone (TLZ) method' is evaluated by the growth of Si 0.5 Ge 0.5 crystals in space. We have already succeeded in growing homogeneous 2mm diameter Si 0.5 Ge 0.5 crystals on the ground but large diameter homogeneous crystals are difficult to be grown due to convection in a melt. In microgravity, larger diameter crystals can be grown with suppressing convection. Radial concentration profiles as well as axial profiles in microgravity grown crystals will be measured and will be compared with our two-dimensional TLZ growth model equation and compositional variation is analyzed. Results are beneficial for growing large diameter mixed crystals by the TLZ method on the ground. Here, we report on the principle of the TLZ method for homogeneous crystal growth, results of preparatory experiments on the ground and plan for microgravity experiments.

  12. The influence of ALN-Al gradient material gradient index on ballistic performance

    International Nuclear Information System (INIS)

    Wang Youcong; Liu Qiwen; Li Yao; Shen Qiang

    2013-01-01

    Ballistic performance of the gradient material is superior to laminated material, and gradient materials have different gradient types. Using ls-dyna to simulate the ballistic performance of ALN-AL gradient target plates which contain three gradient index (b = 1, b = 0.5, b = 2). Through Hopkinson bar numerical simulation to the target plate materials, we obtained the reflection stress wave and transmission stress wave state of gradient material to get the best gradient index. The internal stress state of gradient material is simulated by amplification processing of the target plate model. When the gradient index b is equal to 1, the gradient target plate is best of all.

  13. Internal-strain effect on the valence band of strained silicon and its correlation with the bond angles

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Yanagisawa, Susumu; Kadekawa, Yukihiro [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2014-02-14

    By means of the first-principles density-functional theory, we investigate the effect of relative atom displacement in the crystal unit cell, namely, internal strain on the valence-band dispersion of strained silicon, and find close correlation of this effect with variation in the specific bond angles due to internal strain. We consider the [111] ([110]) band dispersion for (111) ((110)) biaxial tensility and [111] ([110]) uniaxial compression, because remarkably small values of hole effective mass m* can be obtained in this dispersion. Under the practical condition of no normal stress, biaxial tensility (uniaxial compression) involves additional normal compression (tensility) and internal strain. With an increase in the internal-strain parameter, the energy separation between the highest and second-highest valence bands becomes strikingly larger, and the highest band with conspicuously small m* extends remarkably down to a lower energy region, until it intersects or becomes admixed with the second band. This is closely correlated with the change in the specific bond angles, and this change can reasonably explain the above enlargement of the band separation.

  14. Dynamic scattering theory for dark-field electron holography of 3D strain fields.

    Science.gov (United States)

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. © 2013 Elsevier B.V. All rights reserved.

  15. Temperature dependency of silicon structures for magnetic field gradient sensing

    Science.gov (United States)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2018-02-01

    This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.

  16. Crystal growth of Li10B3O5

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Gallagher, Hugh G.; Han, Thomas P.J.

    1999-09-01

    The growth of boron 10 isotope enriched L 10 BO (Li 10 B 3 O 5 ) optical crystal has been developed from Top-Seeded-Solution-Growth using a resistance furnace. In the preparation for growth materials, we have made further improvement on a charge loading technique to a crucible and succeeded in forming suitable high temperature flux for producing crystals. Adequate temperature gradient of 1K/cm inside the crucible was achieved from searching for a combination of setting temperatures in the vertical three-zone furnace and installing a ceramic ring under the crucible. We have also optimized seed holder configuration and established growth conditions by several attempts. As a result, two good quality L 10 BO crystals were produced with sizes of 14 x 25 x 22 mm and 13 x 10 x 12 mm from oriented seed crystals. Although these sizes were limited by the size of the crucible used, appropriate oriented samples were extracted for detailed studies in optical measurements. (author)

  17. Wave propagation in fluid-conveying viscoelastic carbon nanotubes under longitudinal magnetic field with thermal and surface effect via nonlocal strain gradient theory

    Science.gov (United States)

    Zhen, Yaxin; Zhou, Lin

    2017-03-01

    Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.

  18. How the tooth got its stripes: patterning via strain-cued motility

    Science.gov (United States)

    Cox, Brian N.

    2013-01-01

    We hypothesize that a population of migrating cells can form patterns when changes in local strains owing to relative cell motions induce changes in cell motility. That the mechanism originates in competing rates of motion distinguishes it from mechanisms involving strain energy gradients, e.g. those generated by surface energy effects or eigenstrains among cells, and diffusion–reaction mechanisms involving chemical signalling factors. The theory is tested by its ability to reproduce the morphological characteristics of enamel in the mouse incisor. Dental enamel is formed during amelogenesis by a population of ameloblasts that move about laterally within an expanding curved sheet, subject to continuously evolving spatial and temporal gradients in strain. Discrete-cell simulations of this process compute the changing strain environment of all cells and predict cell trajectories by invoking simple rules for the motion of an individual cell in response to its strain environment. The rules balance a tendency for cells to enhance relative sliding motion against a tendency to maintain uniform cell–cell separation. The simulations account for observed waviness in the enamel microstructure, the speed and shape of the ‘commencement front’ that separates domains of migrating secretory-stage ameloblasts from those that are not yet migrating, the initiation and sustainment of layered, fracture-resistant decussation patterns (cross-plied microstructure) and the transition from decussating inner enamel to non-decussating outer enamel. All these characteristics can be correctly predicted with the use of a single scalar adjustable parameter. PMID:23614945

  19. Co-ordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria.

    Science.gov (United States)

    Arakaki, Atsushi; Yamagishi, Ayana; Fukuyo, Ayumi; Tanaka, Masayoshi; Matsunaga, Tadashi

    2014-08-01

    Magnetotactic bacteria synthesize magnetosomes comprised of membrane-enveloped single crystalline magnetite (Fe3 O4 ). The size and morphology of the nano-sized magnetite crystals (Mms (Mms5, Mms6, Mms7, and Mms13), was previously isolated from the surface of cubo-octahedral magnetite crystals in Magnetospirillum magneticum strain AMB-1. Analysis of an mms6 gene deletion mutant suggested that the Mms6 protein plays a major role in the regulation of magnetite crystal size and morphology. In this study, we constructed various mms gene deletion mutants and characterized the magnetite crystals formed by the mutant strains. Comparative analysis showed that all mms genes were involved in the promotion of crystal growth in different manners. The phenotypic characterization of magnetites also suggested that these proteins are involved in controlling the geometries of the crystal surface structures. Thus, the co-ordinated functions of Mms proteins regulate the morphology of the cubo-octahedral magnetite crystals in magnetotactic bacteria. © 2014 John Wiley & Sons Ltd.

  20. Curvature reduces bending strains in the quokka femur

    Directory of Open Access Journals (Sweden)

    Kyle McCabe

    2017-03-01

    Full Text Available This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading.

  1. Gradient waveform synthesis for magnetic propulsion using MRI gradient coils

    International Nuclear Information System (INIS)

    Han, B H; Lee, S Y; Park, S

    2008-01-01

    Navigating an untethered micro device in a living subject is of great interest for both diagnostic and therapeutic applications. Magnetic propulsion of an untethered device carrying a magnetic core in it is one of the promising methods to navigate the device. MRI gradients coils are thought to be suitable for navigating the device since they are capable of magnetic propulsion in any direction while providing magnetic resonance images. For precise navigation of the device, especially in the peripheral region of the gradient coils, the concomitant gradient fields, as well as the linear gradient fields in the main magnetic field direction, should be considered in driving the gradient coils. For simple gradient coil configurations, the Maxwell coil in the z-direction and the Golay coil in the x- and y-directions, we have calculated the magnetic force fields, which are not necessarily the same as the conventional linear gradient fields of MRI. Using the calculated magnetic force fields, we have synthesized gradient waveforms to navigate the device along a desired path

  2. Calculation of Optical Parameters of Liquid Crystals

    Science.gov (United States)

    Kumar, A.

    2007-12-01

    Validation of a modified four-parameter model describing temperature effect on liquid crystal refractive indices is being reported in the present article. This model is based upon the Vuks equation. Experimental data of ordinary and extraordinary refractive indices for two liquid crystal samples MLC-9200-000 and MLC-6608 are used to validate the above-mentioned theoretical model. Using these experimental data, birefringence, order parameter, normalized polarizabilities, and the temperature gradient of refractive indices are determined. Two methods: directly using birefringence measurements and using Haller's extrapolation procedure are adopted for the determination of order parameter. Both approches of order parameter calculation are compared. The temperature dependences of all these parameters are discussed. A close agreement between theory and experiment is obtained.

  3. Resolved sidebands in a strain-coupled hybrid spin-oscillator system

    OpenAIRE

    Teissier, Jean; Barfuss, Arne; Appel, Patrick; Neu, Elke; Maletinsky, P.

    2014-01-01

    We report on single electronic spins coupled to the motion of mechanical resonators by a novel mechanism based on crystal strain. Our device consists of single-crystalline diamond cantilevers with embedded Nitrogen-Vacancy center spins. Using optically detected electron spin resonance, we determine the unknown spin-strain coupling constants and demonstrate that our system resides well within the resolved sideband regime. We realize coupling strengths exceeding ten MHz under mechanical driving...

  4. Effects of gauge volume on pseudo-strain induced in strain measurement using time-of-flight neutron diffraction

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Harjo, Stefanus; Abe, Jun; Xu, Pingguang; Aizawa, Kazuya; Akita, Koichi

    2013-01-01

    Spurious or pseudo-strains observed in time-of-flight (TOF) neutron diffraction due to neutron attenuation, surface-effects and a strain distribution within the gauge volume were investigated. Experiments were carried out on annealed and bent ferritic steel bars to test these effects. The most representative position in the gauge volume corresponds to the neutron-weighted center of gravity (ncog), which takes into account variations in intensity within the gauge volume due to neutron attenuation and/or absence of material in the gauge volume. The average strain in the gauge volume was observed to be weighted towards the ncog position but following an increase in the size of the gauge volume the weighted average strain was changed because of the change in the ncog position when a strain gradient appeared within the gauge volume. On the other hand, typical pseudo-strains, which are well known, did appear in through-surface strain measurements when the gauge volume was incompletely filled by the sample. Tensile pseudo-strains due to the surface-effect increased near the sample surface and exhibited a similar trend regardless of the size of the gauge volume, while the pseudo-strains increased faster for the smaller gauge volume. Furthermore, a pseudo-strain due to a change in the ncog position was observed even when the gauge volume was perfectly filled in the sample, and it increased with an increase in the size of the gauge volume. These pseudo-strains measured were much larger than those simulated by the conventional modeling, whereas they were simulated by taking into account an incident neutron beam divergence additionally in the model. Therefore, the incident divergence of the incident neutron beam must be carefully designed to avoid pseudo-strains in time-of-flight neutron diffractometry

  5. Plastic strain caused by contraction of pores in polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Yoda, Shinichi; Konishi, Takashi.

    1989-01-01

    The effects of porosity on mechanical properties and deformation behavior of four isotropic polycrystalline graphites were studied. The pore size distributions of the graphites were measured using a conventional mercury penetration technique. The average pore radius of ISO-88 graphite was about one-tenth of that of ISEM-1, IG-11 or IG-15 graphites. Young's modulus of the graphites decreased with increasing porosity. The stress-strain curve of each graphite was measured in its lateral and axial directions. Young's modulus of graphite decreased with increasing load. The plastic strain at a given compressive load was calculated from the stress-strain curve and the initial gradient of the unloading curve at the load. The ratio of lateral plastic strain to axial plastic strain for the graphites was less than 0.5, indicating that the volume of the graphites decreased during compressive loading. By assuming that the volume change was caused by contraction of pores, plastic strain associated with contraction of pores was calculated from the axial plastic strain and lateral plastic strain by slips along the basal planes. The plastic strain increased with increasing axial plastic strain and porosity of graphite. (author)

  6. Etude de la transition ferroelectrique-ferroelastique du KD2PO4 forme du front de phase en fonction du gradient thermique

    OpenAIRE

    Kvítek, Zdeněk

    2010-01-01

    Etude de la transition ferroelectrique-ferroelastique du KD2PO4 forme du front de phase en fonction du gradient thermique The thesis explores complex process of first order transition of KD2PO4 crystal from tetragonal phase to ferroelectric - ferroelastic orthorhombic phase and back at temperature 209 K. The experimental set up of nitrogeneous cryostat allowes temperature and temperature gradient variations during simultaneous three axes optical sample observations, dielectric measurements. T...

  7. Method and apparatus for enhancing vortex pinning by conformal crystal arrays

    Science.gov (United States)

    Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan

    2015-07-14

    Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.

  8. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  9. Theory of liquid crystal elastomers and polymer networks : Connection between neoclassical theory and differential geometry.

    Science.gov (United States)

    Nguyen, Thanh-Son; Selinger, Jonathan V

    2017-09-01

    In liquid crystal elastomers and polymer networks, the orientational order of liquid crystals is coupled with elastic distortions of crosslinked polymers. Previous theoretical research has described these materials through two different approaches: a neoclassical theory based on the liquid crystal director and the deformation gradient tensor, and a geometric elasticity theory based on the difference between the actual metric tensor and a reference metric. Here, we connect those two approaches using a formalism based on differential geometry. Through this connection, we determine how both the director and the geometry respond to a change of temperature.

  10. Crystallization and preliminary X-ray diffraction analysis of West Nile virus

    International Nuclear Information System (INIS)

    Kaufmann, Bärbel; Plevka, Pavel; Kuhn, Richard J.; Rossmann, Michael G.

    2010-01-01

    Crystals of infectious West Nile virus were obtained and diffracted at best to about 25 Å resolution. Preliminary analysis of the diffraction pattern suggested tight hexagonal packing of the intact virus. West Nile virus, a human pathogen, is closely related to other medically important flaviviruses of global impact such as dengue virus. The infectious virus was purified from cell culture using polyethylene glycol (PEG) precipitation and density-gradient centrifugation. Thin amorphously shaped crystals of the lipid-enveloped virus were grown in quartz capillaries equilibrated by vapor diffusion. Crystal diffraction extended at best to a resolution of about 25 Å using synchrotron radiation. A preliminary analysis of the diffraction images indicated that the crystals had unit-cell parameters a ≃ b ≃ 480 Å, γ = 120°, suggesting a tight hexagonal packing of one virus particle per unit cell

  11. Combining Step Gradients and Linear Gradients in Density.

    Science.gov (United States)

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.

  12. Variable-metric diffraction crystals for x-ray optics

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1992-01-01

    A variable-metric (VM) crystal is one in which the spacing between the crystalline planes changes with position in the crystal. This variation can be either parallel to the crystalline planes or perpendicular to the crystalline planes of interest and can be produced by either introducing a thermal gradient in the crystal or by growing a crystal made of two or more elements and changing the relative percentages of the two elements as the crystal is grown. A series of experiments were performed in the laboratory to demonstrate the principle of the variable-metric crystal and its potential use in synchrotron beam lines. One of the most useful applications of the VM crystal is to increase the number of photons per unit bandwidth in a diffracted beam without losing any of the overall intensity. In a normal synchrotron beam line that uses a two-crystal monochromator, the bandwidth of the diffracted photon beam is determined by the vertical opening angle of the beam which is typically 0.10--0.30 mrad or 20--60 arcsec. When the VM crystal approach is applied, the bandwidth of the beam can be made as narrow as the rocking curve of the diffracting crystal, which is typically 0.005--0.050 mrad or 1--10 arcsec. Thus a very large increase of photons per unit bandwidth (or per unit energy) can be achieved through the use of VM crystals. When the VM principle is used with bent crystals, new kinds of x-ray optical elements can be generated that can focus and defocus x-ray beams much like simple lenses where the focal length of the lens can be changed to match its application. Thus both large magnifications and large demagnifications can be achieved as well as parallel beams with narrow bandwidths

  13. Measurement of minute local strain in semiconductor materials and electronic devices by using a highly parallel X-ray microbeam

    International Nuclear Information System (INIS)

    Matsui, J.; Tsusaka, Y.; Yokoyama, K.; Takeda, S.; Katou, M.; Kurihara, H.; Watanabe, K.; Kagoshima, Y.; Kimura, S.

    2003-01-01

    We have developed an X-ray microbeam with a small angular divergence by adopting X-ray optics with successive use of asymmetric Bragg reflection from silicon crystals for the both polarizations of the synchrotron X-rays. The microbeam actually obtained is several microns in size and possesses an angular divergence of less than 2 arcsec which enables us to measure the strain of 10 -5 -10 -6 . By scanning the sample against the microbeam, distribution of the minute local strain in various regions of semiconductor crystals for electronic devices, e.g., the strain around the SiO 2 /Si film edge in silicon devices, the strain in an InGaAsP/InP stripe laser were measured

  14. Intraspecific Adaptations to Thermal Gradients in a Cosmopolitan Coccolithophore

    Science.gov (United States)

    Matson, P. G.; Ladd, T. M.; Iglesias-Rodriguez, D.

    2016-02-01

    The species concept in marine phytoplankton has enormous biological complexity. Differences in genomic, morphological, physiological, biogeochemical, and ecological/biogeographic properties between strains of the same species can be comparable or even exceed those between species. This complexity is particularly pronounced in the cosmopolitan coccolithophore species Emiliania huxleyi. This bloom-forming species is found at nearly every latitude in a variety of environments including upwelling regions, and exposed to large temperature gradients. We present results from experiments using two strains of E. huxleyi isolated from different latitudes and environmental conditions. Tests involved semi-continuous culturing in lab manipulation experiments to determine how carbon fixation, growth, and morphology respond to temperature-driven alterations in physico-chemical conditions. This talk will discuss the observed differences in physiology within an ecological context and the implications of these biogeochemical differences in modeling carbon fluxes driven by phytoplankton.

  15. Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth. II - Processing strategies

    Science.gov (United States)

    Derby, J. J.; Brown, R. A.

    1986-01-01

    The pseudosteady-state heat transfer model developed in a previous paper is augmented with constraints for constant crystal radius and melt/solid interface deflection. Combinations of growth rate, and crucible and bottom-heater temperatures are tested as processing parameters for satisfying the constrained thermal-capillary problem over a range of melt volumes corresponding to the sequence occuring during the batchwise Czochralski growth of a small-diameter silicon crystal. The applicability of each processing strategy is judged by the range of existence of the solution, in terms of melt volume and the values of the axial and radial temperature gradients in the crystal.

  16. Development of shearography for surface strain measurement of non planar objects

    International Nuclear Information System (INIS)

    Groves, Roger Michael

    2001-01-01

    The subject of this thesis is the development of optical instrumentation for surface strain measurement of non-planar objects. The speckle interferometry technique of shearography is used to perform quantitative measurements of surface strain on non-planar objects and to compensate these measurements for the errors that are due to the shape and slope of the object. Shearography is an optical technique that is usually used for defect location and for qualitative strain characterisation. In this thesis a multi-component shearography system is described that can measure the six components of displacement gradient. From these measurements the surface strain can be fully characterised. For non-planar objects an error is introduced into the displacement gradient measurement due to the variation of the sensitivity vector across the field of view and the variation in the magnitude of applied shear due to the curvature of the object surface. To correct for these errors requires a knowledge of the slope and shape of the object. Shearography may also be used to measure object slope and shape by a source displacement technique. Therefore slope, shape and surface strain may be measured using the same optical system. The thesis describes a method of multiplexing the shear direction using polarisation switching, a method of measuring the source position using shadow Moire and the shearography source displacement technique for measuring the surface slope and shape of objects. The multi-component shearography system is used to perform measurements of the six components of surface strain, on an industrial component, with a correction applied for errors due to the shape and slope of the object. (author)

  17. Impact of crystallization on the structure and chemical durability of borosilicate glass

    International Nuclear Information System (INIS)

    Nicoleau, Elodie

    2016-01-01

    This work describes a new approach to help understand the chemical durability of partially crystallized nuclear waste conditioning matrices. Among the studies carried out on nuclear waste deep geological disposal, long term behavior studies have so far been conducted on homogeneous glassy matrices. However, as the crystalline phases may generate modifications in the chemical composition and properties of such matrices, the description and a better understanding of their effects on the chemical durability of waste packages are of primary importance. A protocol to study the durability of heterogeneous model matrices of nuclear interest containing different types of crystalline phases was developed. It is based on a detailed description of the morphology, microstructure and structure of the glassy matrix and crystalline phases, and on the study of various alteration regimes. Three crystal phases that may form when higher concentrations of waste are immobilized in Uranium Oxide type conditioning glasses were studied: alkali and alkaline earth molybdates, rare earth silicates and ruthenium oxide. The results highlight the roles of the composition and the structure of the surrounding glassy matrix as the parameters piloting the alteration kinetics of the partially crystallized glassy matrices. This behavior is identical whatever the nature of the crystalline phases, as long as these phases do not lead to a composition gradient and do not percolate within the glassy matrix. Given these results, a methodology to study partially crystallized matrices with no composition gradient is then suggested. Its key development lies firstly in the evaluation of the behavior of partially crystallized matrices through the experimental study of the residual glassy matrix in various alteration regimes. This methodology may be adapted to the case of new glass formulations with more complex compositions (e.g. highly waste-loaded glass), which may contain crystals formed during cooling

  18. Atomistic simulations of void migration under thermal gradient in UO2

    International Nuclear Information System (INIS)

    Desai, Tapan G.; Millett, Paul; Tonks, Michael; Wolf, Dieter

    2010-01-01

    It is well known that within a few hours after startup of a nuclear reactor, the temperature gradient within a fuel element causes migration of voids/bubbles radially inwards to form a central hole. To understand the atomic processes that control this migration of voids, we performed molecular dynamics (MD) simulations on single crystal UO 2 with voids of diameter 2.2 nm. An external temperature gradient was applied across the simulation cell. At the end of the simulation run, it was observed that the voids had moved towards the hot end of the simulation cell. The void migration velocity obtained from the simulations was compared with the available phenomenological equations for void migration due to different transport mechanisms. Surface diffusion of the slowest moving specie, i.e. uranium, was found to be the dominant mechanism for void migration. The contribution from lattice diffusion and the thermal stress gradient to the void migration was analyzed and found to be negligible. By extrapolation, a crossover from the surface-diffusion-controlled mechanism to the lattice-diffusion-controlled mechanism was found to occur for voids with sizes in the μm range.

  19. Modeling Shock Induced Plasticity in Copper Single Crystal: Numerical and Strain Localization Issues

    International Nuclear Information System (INIS)

    Shehadeh, M

    2011-01-01

    Multiscale dislocation dynamics plasticity (MDDP) simulations are carried out to address the following issues in modeling shock-induced plasticity: 1- the effect of finite element (FE) boundary conditions on shock wave characteristics and wave-dislocation interaction, 2- the effect of the evolution of the dislocation microstructure on lattice rotation and strain localization. While uniaxial strain is achieved with high accuracy using confined boundary condition, periodic boundary condition yields a disturbed wave profile due the edge effect. Including lattice rotation in the analysis leads to higher dislocation density and more localized plastic strain. (author)

  20. Fatique of Copper Polycrystals at Low Plastic Strain Amplitudes

    DEFF Research Database (Denmark)

    Rasmussen, K. V.; Pedersen, Ole Bøcker

    1980-01-01

    Single crystals and polycrystals of pure copper were fatigued in tension-compression at constant low amplitudes of plastic strain and low cycling frequencies at room temperature in air. Surface patterns of persistent slip bands were quantitatively examined by optical microscopy. Bulk dislocation...

  1. Strain-enhanced optical absorbance of topological insulator films

    DEFF Research Database (Denmark)

    Brems, Mathias Rosdahl; Paaske, Jens; Lunde, Anders Mathias

    2018-01-01

    Topological insulator films are promising materials for optoelectronics due to a strong optical absorption and a thickness-dependent band gap of the topological surface states. They are superior candidates for photodetector applications in the THz-infrared spectrum, with a potential performance...... thickness, the surface-state band gap, and thereby the optical absorption, can be effectively tuned by the application of uniaxial strain epsilon(zz), leading to a divergent band-edge absorbance for epsilon(zz) greater than or similar to 6%. Shear strain breaks the crystal symmetry and leads...

  2. Piezoelectric Ca{sub 3}NbGa{sub 3}Si{sub 2}O{sub 14} crystal: crystal growth, piezoelectric and acoustic properties

    Energy Technology Data Exchange (ETDEWEB)

    Roshchupkin, Dmitry; Emelin, Evgenii [Russian Academy of Sciences, Institute of Microelectronics Technology and High-Purity Materials, Chernogolovka, Moscow District (Russian Federation); National University of Science and Technology MISiS, Moscow (Russian Federation); Ortega, Luc [Univ. Paris-Sud, CNRS, UMR 8502, Laboratoire de Physique des Solides, Orsay Cedex (France); Plotitcyna, Olga; Irzhak, Dmitry [Russian Academy of Sciences, Institute of Microelectronics Technology and High-Purity Materials, Chernogolovka, Moscow District (Russian Federation); Erko, Alexei; Zizak, Ivo; Vadilonga, Simone [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institute for Nanometre Optics and Technology, Berlin (Germany); Buzanov, Oleg [FOMOS Materials Co., Moscow (Russian Federation); Leitenberger, Wolfram [Universitaet Potsdam Institut fuer Physik, Potsdam (Germany)

    2016-08-15

    Ca{sub 3}NbGa{sub 3}Si{sub 2}O{sub 14} (CNGS), a five-component crystal of lanthanum-gallium silicate group, was grown by the Czochralski method. The parameters of the elementary unit cell of the crystal were measured by powder diffraction. The independent piezoelectric strain coefficients d{sub 11} and d{sub 14} were determined by the triple-axis X-ray diffraction in the Bragg and Laue geometries. Excitation and propagation of surface acoustic waves (SAW) were studied by high-resolution X-ray diffraction at BESSY II synchrotron radiation source. The velocity of SAW propagation and power flow angles in the Y-, X- and yxl/+36 {sup circle} -cuts of the CNGS crystal were determined from the analysis of the diffraction spectra. The CNGS crystal was found practically isotropic by its acoustic properties. (orig.)

  3. Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.

    Science.gov (United States)

    Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S

    2004-01-01

    MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.

  4. Decolorization of Malachite Green and Crystal Violet by Waterborne Pathogenic Mycobacteria

    OpenAIRE

    Jones, Jefferson J.; Falkinham III, Joseph O.

    2003-01-01

    Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum, Mycobacterium marinum, and Mycobacterium chelonae tolerate high concentrations of the dyes malachite green and crystal violet. Cells of strains of those species decolorized (reduced) both malachite green and crystal violet. Because decolorized malachite green lacked antimicrobial activity, the resistance of these mycobacteria could be due, in part, to their ability to decolorize the dyes. Small amounts of malachite...

  5. Morphological Transition in the Cellular Structure of Single Crystals of Nickel-Tungsten Alloys near the Congruent Melting Point

    International Nuclear Information System (INIS)

    Azhazha, V.M.; Ladygin, A.N.; Sverdlov, V.Ja.; Zhemanyuk, P.D.; Klochikhin, V.V.

    2005-01-01

    The structure and microhardness of single crystals of nickel-tungsten alloys containing 25-36 wt % W are investigated. The temperature gradient at the crystallization front and the velocity of the crystallization front are the variable parameters of directional crystallization. It is found that, when the velocity of the crystallization front is 4 mm/min, the morphology of the cellular structure of the single crystals grown from nickel-tungsten alloys changes from square cells to hexagonal cells at a tungsten content of greater than or equal to 31 wt %. As the velocity of the crystallization front increases to 10 mm/min, no morphological transition occurs. It is shown that impurities play an important role in the formation of a cellular structure with cells of different types

  6. Growth of NH4Cl Single Crystal from Vapor Phase in Vertical Furnace

    Science.gov (United States)

    Nigara, Yutaka; Yoshizawa, Masahito; Fujimura, Tadao

    1983-02-01

    A pure and internally stress-free single crystal of NH4Cl was grown successfully from the vapor phase. The crystal measured 1.6 cmφ× 2 cm and had the disordered CsCl structure, which was stable below 184°C. The crystal was grown in an ampoule in a vertical furnace, in which the vapor was efficiently transported both by diffusion and convection. In line with the growth mechanism of a single crystal, the temperature fluctuation (°C/min) on the growth interface was kept smaller than the product of the temperature gradient (°C/cm) and the growth rate (cm/min). The specific heat of the crystal was measured around -31°C (242 K) during cooling and heating cycles by AC calorimetry. The thermal hysteresis (0.4 K) obtained here was smaller than that (0.89 K) of an NH4Cl crystal grown from its aqueous solution with urea added as a habit modifier.

  7. Internal residual strain mapping in carburized chrome molybdenum steel after quenching by neutron strain scanning

    International Nuclear Information System (INIS)

    Sakaida, Yoshihisa; Serizawa, Takanobu; Manzanka, Michiya

    2011-01-01

    A hollow circular cylinder specimen with an annular U-notch of chrome molybdenum steel with 0.20 mass% C (SCM420) was carburized in carrier gas and quenched in oil bath. In order to determine the case depth, the specimen was cut off and carbon content and Vickers hardness gradients were measured experimentally near the carburized surface. The residual strain mapping in the interior of carburized cylinder was conducted nondestructively by neutron strain scanning. In this study, the neutron diffraction from Fe-211 plane was used for strain scanning. The neutron wavelength was tuned to 0.1654nm so that diffraction angle became about 90deg. Radial, hoop and axial residual strains were measured by scanning diffracting volume along the axial direction of cylinder specimen. Each residual strain was calculated from lattice spacing change. Unstressed lattice spacing was determined experimentally using reference coupon specimens that were cut from the interior of same carburized cylinder. As a result, the diffraction peak width at half height, FWHM, near the carburized surface was about 3.7 times wider than that of coupon specimens. On the other hand, the most peak widths in the interior equaled to that of coupon specimens. Peak width broadened slightly as the diffracting volume approached the carburized case layer. From the center to the quarter of cylinder specimen, the hoop and axial strains were tensile, and the radial one was compressive in the interior. From the quarter to the edge of the cylinder specimen, the hoop tensile strain increased, radial and axial strains changed to tensile and compressive, respectively. Therefore, the interior of the cylinder specimen was found to be deformed elastically to balance the existence of compressive residual stresses in the carburized case layer. (author)

  8. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    Science.gov (United States)

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  9. Crystal structure of the sodium-potassium pump

    DEFF Research Database (Denmark)

    Morth, J Preben; Pedersen, Bjørn Panyella; Toustrup-Jensen, Mads S

    2007-01-01

    The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution......-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential. Udgivelsesdato: 2007-Dec-13...

  10. Crystallization of the virulent and benign subtilisin-like proteases from the ovine footrot pathogen Dichelobacter nodosus

    International Nuclear Information System (INIS)

    Wong, Wilson; Kennan, Ruth M.; Rosado, Carlos J.; Rood, Julian I.; Whisstock, James C.; Porter, Corrine J.

    2010-01-01

    The subtilisin-like proteases AprV2 and BprV from virulent strains and AprB2 and BprB from benign strains of D. nodosus have been crystallized and X-ray diffraction data have been collected to 2.0, 2.0, 1.7 and 1.8 Å resolution, respectively. Dichelobacter nodosus is the principal causative agent of ovine footrot, a disease of significant economic importance to the sheep industry. D. nodosus secretes a number of subtilisin-like serine proteases which mediate tissue damage and presumably contribute to the pathogenesis of footrot. Strains causing virulent footrot secrete the proteases AprV2, AprV5 and BprV and strains causing benign footrot secrete the closely related proteases AprB2, AprB5 and BprB. Here, the cloning, purification and crystallization of AprV2, AprB2, BprV and BprB are reported. Crystals of AprV2 and AprB2 diffracted to 2.0 and 1.7 Å resolution, respectively. The crystals of both proteases belonged to space group P1, with unit-cell parameters a = 43.1, b = 46.0, c = 47.2 Å, α = 97.8, β = 115.2, γ = 115.2° for AprV2 and a = 42.7, b = 45.8, c = 45.7 Å, α = 98.4, β = 114.0, γ = 114.6° for AprB2. Crystals of BprV and BprB diffracted to 2.0 and 1.8 Å resolution, respectively. The crystals of both proteases belonged to space group P2 1 , with unit-cell parameters a = 38.5, b = 89.6, c = 47.7 Å, β = 113.6° for BprV and a = 38.5, b = 90.5, c = 44.1 Å, β = 109.9° for BprB. The crystals of all four proteases contained one molecule in the asymmetric unit, with a solvent content ranging from 36 to 40%

  11. A composite hydrogels-based photonic crystal multi-sensor

    International Nuclear Information System (INIS)

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-01-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye. (paper)

  12. Gradient simulation experiments for targeting population heterogeneity in continuous Saccharomyces cerevisiae fermentation

    DEFF Research Database (Denmark)

    Heins, Anna-Lena; Lencastre Fernandes, Rita; Lundin, L.

    Traditionally, a microbial population has been considered homogeneous in optimization studies of fermentation processes. However, research has shown that a typical microbial population in a fermenter is heterogeneous. There are indications that such heterogeneity may be both beneficial (facilitates...... quick adaptation to new conditions) and harmful (reduces yields and productivities) (Bylund et al. (1998); Enfors et al. (2001)). Significant gradients of e.g. dissolved oxygen, substrates, and pH are typically observed in many industrial scale fermentation processes. Consequently, the microbial cells...... reporter strain demonstrated a highly dynamic behaviour with regards to subpopulation distribution during the different growth stages. To simulate which effect glucose gradients, often seen in large scale cultivations, have on population heterogeneity, glucose perturbations during continuous cultivation...

  13. Decolorization of Malachite Green and Crystal Violet by Waterborne Pathogenic Mycobacteria

    Science.gov (United States)

    Jones, Jefferson J.; Falkinham III, Joseph O.

    2003-01-01

    Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum, Mycobacterium marinum, and Mycobacterium chelonae tolerate high concentrations of the dyes malachite green and crystal violet. Cells of strains of those species decolorized (reduced) both malachite green and crystal violet. Because decolorized malachite green lacked antimicrobial activity, the resistance of these mycobacteria could be due, in part, to their ability to decolorize the dyes. Small amounts of malachite green and its reduced, decolorized product were detected in the lipid fraction of M. avium strain A5 cells grown in the presence of malachite green, suggesting that a minor component of resistance could be due to sequestering the dyes in the extensive mycobacterial cell surface lipid. The membrane fraction of M. avium strain A5 had at least a fivefold-higher specific decolorization rate than did the crude extract, suggesting that the decolorization activity is membrane associated. The malachite green-decolorizing activity of the membrane fraction of M. avium strain A5 was abolished by either boiling or proteinase exposure, suggesting that the decolorizing activity was due to a protein. Decolorization activity of membrane fractions was stimulated by ferrous ion and inhibited by dinitrophenol and metyrapone. PMID:12821489

  14. Morphology of calcite crystals in clast coatings from four soils in the Mojave desert region

    Science.gov (United States)

    Chadwick, Oliver A.; Sowers, Janet M.; Amundson, Ronald G.

    1989-01-01

    Pedogenic calcite-crystal coatings on clasts were examined in four soils along an altitudinal gradient on Kyle Canyon alluvium in southern Nevada. Clast coatings were studied rather than matrix carbonate to avoid the effects of soil matrix on crystallization. Six crystal sizes and shapes were recognized and distinguished. Equant micrite was the dominant crystal form with similar abundance at all elevations. The distributions of five categories of spar and microspar appear to be influenced by altitudinally induced changes in effective moisture. In the drier, lower elevation soils, crystals were equant or parallel prismatic with irregular, interlocking boundaries while in the more moist, higher elevation soils they were randomly oriented, euhedral, prismatic, and fibrous. There was little support for the supposition that Mg(+2) substitution or increased (Mg + Ca)/HCO3 ratios in the precipitating solution produced crystal elongation.

  15. Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yijia; Hong, Zijian; Britson, Jason; Chen, Long-Qing [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-01-12

    Flexoelectric coefficient is a fourth-rank tensor arising from the coupling between strain gradient and electric polarization and thus exists in all crystals. It is generally ignored for macroscopic crystals due to its small magnitude. However, at the nanoscale, flexoelectric contributions may become significant and can potentially be utilized for device applications. Using the phase-field method, we study the mechanical switching of electric polarization in ferroelectric thin films by a strain gradient created via an atomic force microscope tip. Our simulation results show good agreement with existing experimental observations. We examine the competition between the piezoelectric and flexoelectric effects and provide an understanding of the role of flexoelectricity in the polarization switching. Also, by changing the pressure and film thickness, we reveal that the flexoelectric field at the film bottom can be used as a criterion to determine whether domain switching may happen under a mechanical force.

  16. Theory of piezoelectricity, electrostriction, and pyroelectricity in molecular crystals.

    Science.gov (United States)

    Munn, R W

    2010-03-14

    A microscopic theory is presented for piezoelectricity, electrostriction, and pyroelectricity in molecular crystals. The required coefficients are derived by combining a theoretical treatment of the dependence of molecular dipole moments on molecular displacement and a generalized elastic theory for internal strain.

  17. Strain effects on the work function of an organic semiconductor

    KAUST Repository

    Wu, Yanfei

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.

  18. Strain effects on the work function of an organic semiconductor

    Science.gov (United States)

    Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel

    2016-01-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials. PMID:26831362

  19. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  20. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.; Larson, Ben C.; Tischler, Jon Z.; El-Azab, Anter

    2015-01-01

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  1. Steady-state crack growth in single crystals under Mode I loading

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2017-01-01

    The active plastic zone that surrounds the tip of a sharp crack growing under plane strain Mode I loading conditions at a constant velocity in a single crystal is studied. Both the characteristics of the plastic zone and its effect on the macroscopic toughness is investigated in terms of crack tip...... that the largest shielding effect develops in HCP crystals, while the lowest shielding exists for FCC crystals. Rate-sensitivity is found to affect the plastic zone size, but the characteristics overall remain similar for each individual crystal structure. An increasing rate-sensitivity at low crack velocities...... shielding due to plasticity (quantified by employing the Suo, Shih, and Varias set-up). Three single crystals (FCC, BCC, HCP) are modelled in a steady-state elastic visco-plastic framework, with emphasis on the influence of rate-sensitivity and crystal structures. Distinct velocity discontinuities...

  2. A detailed investigation of the strain hardening response of aluminum alloyed Hadfield steel

    Science.gov (United States)

    Canadinc, Demircan

    The unusual strain hardening response exhibited by Hadfield steel single and polycrystals under tensile loading was investigated. Hadfield steel, which deforms plastically through the competing mechanisms slip and twinning, was alloyed with aluminum in order to suppress twinning and study the role of slip only. To avoid complications due to a grained structure, only single crystals of the aluminum alloyed Hadfield steel were considered at the initial stage of the current study. As a result of alloying with aluminum, twinning was suppressed; however a significant increase in the strain hardening response was also present. A detailed microstructural analysis showed the presence of high-density dislocation walls that evolve in volume fraction due to plastic deformation and interaction with slip systems. The very high strain hardening rates exhibited by the aluminum alloyed Hadfield steel single crystals was attributed to the blockage of glide dislocations by the high-density dislocation walls. A crystal plasticity model was proposed, that accounts for the volume fraction evolution and rotation of the dense dislocation walls, as well as their interaction with the active slip systems. The novelty of the model lies in the simplicity of the constitutive equations that define the strain hardening, and the fact that it is based on experimental data regarding the microstructure. The success of the model was tested by its application to different crystallographic orientations, and finally the polycrystals of the aluminum alloyed Hadfield steel. Meanwhile, the capability of the model to predict texture was also observed through the rotation of the loading axis in single crystals. The ability of the model to capture the polycrystalline deformation response provides a venue for its utilization in other alloys that exhibit dislocation sheet structures.

  3. Macro and intergranular stress responses of austenitic stainless steel to 90° strain path changes

    International Nuclear Information System (INIS)

    Gonzalez, D.; Kelleher, J.F.; Quinta da Fonseca, J.; Withers, P.J.

    2012-01-01

    Highlights: ► We measure and model the macro and IG stresses of ASS to 90° strain path changes. ► The macro stress–strain curves show a clear Bauschinger effect on reloading. ► This is only partially captured by the model. ► The measured {h k l} families show an earlier microyield than predicted. ► This difference is more noticeable for a strain path with a higher reversibility. - Abstract: Strain path history can play a crucial role in sensitising/desensitising metals to various damage mechanisms and yet little work has been done to quantify and understand how intergranular strains change upon path changes, or their effect on the macroscopic behaviour. Here we have measured, by neutron diffraction, and modelled, by crystal plasticity finite elements, the stress–strain responses of 316L stainless steel over three different 90° strain path changes using an assembled microstructure of randomly oriented crystallites. The measurements show a clear Bauschinger effect on reloading that is only partially captured by the model. Further, measurements of the elastic response of different {h k l} grain families revealed an even earlier onset of yield for strain paths reloaded in compression while a strain path reloaded in tension showed good agreement with corresponding predictions. Finally, we propose that the study of strain path effects provides a more rigorous test of crystal plasticity models than conventional in situ diffraction studies of uniaxial loading.

  4. Measurement of minute local strain in semiconductor materials and electronic devices by using a highly parallel X-ray microbeam

    CERN Document Server

    Matsui, J; Yokoyama, K; Takeda, S; Katou, M; Kurihara, H; Watanabe, K; Kagoshima, Y; Kimura, S

    2003-01-01

    We have developed an X-ray microbeam with a small angular divergence by adopting X-ray optics with successive use of asymmetric Bragg reflection from silicon crystals for the both polarizations of the synchrotron X-rays. The microbeam actually obtained is several microns in size and possesses an angular divergence of less than 2 arcsec which enables us to measure the strain of 10 sup - sup 5 -10 sup - sup 6. By scanning the sample against the microbeam, distribution of the minute local strain in various regions of semiconductor crystals for electronic devices, e.g., the strain around the SiO sub 2 /Si film edge in silicon devices, the strain in an InGaAsP/InP stripe laser were measured.

  5. Measurement of minute local strain in semiconductor materials and electronic devices by using a highly parallel X-ray microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, J. E-mail: matsui@sci.himeji-tech.ac.jp; Tsusaka, Y.; Yokoyama, K.; Takeda, S.; Katou, M.; Kurihara, H.; Watanabe, K.; Kagoshima, Y.; Kimura, S

    2003-01-01

    We have developed an X-ray microbeam with a small angular divergence by adopting X-ray optics with successive use of asymmetric Bragg reflection from silicon crystals for the both polarizations of the synchrotron X-rays. The microbeam actually obtained is several microns in size and possesses an angular divergence of less than 2 arcsec which enables us to measure the strain of 10{sup -5}-10{sup -6}. By scanning the sample against the microbeam, distribution of the minute local strain in various regions of semiconductor crystals for electronic devices, e.g., the strain around the SiO{sub 2}/Si film edge in silicon devices, the strain in an InGaAsP/InP stripe laser were measured.

  6. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric

    DEFF Research Database (Denmark)

    Walker, Julian; Simons, Hugh; Alikin, Denis O

    2016-01-01

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroe......Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb......)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its...... realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced...

  7. Comment on "Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals".

    Science.gov (United States)

    Wilson, Colin J N; Morgan, Daniel J; Charlier, Bruce L A; Barker, Simon J

    2017-12-22

    Rubin et al (Reports, 16 June 2017, p. 1154) proposed that gradients in lithium abundance in zircons from a rhyolitic eruption in New Zealand reflected short-lived residence at magmatic temperatures interleaved with long-term "cold" (<650°C) storage. Important issues arise with the interpretation of these lithium gradients and consequent crystal thermal histories that raise concerns about the validity of this conclusion. Copyright © 2017, American Association for the Advancement of Science.

  8. Improvement of GaN epilayer by gradient layer method with molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Chen, Yen-Liang; Lo, Ikai; Gau, Ming-Hong; Hsieh, Chia-Ho; Sham, Meng-Wei; Pang, Wen-Yuan; Hsu, Yu-Chi; Tsai, Jenn-Kai; Schuber, Ralf; Schaadt, Daniel

    2012-01-01

    We demonstrated a molecular beam epitaxy method to resolve the dilemma between structural and morphological quality in growth of the GaN epilayer. A gradient buffer layer was grown in such a way that the N/Ga ratio was gradually changed from nitrogen-rich to gallium-rich. The GaN epitaxial layer was then grown on the gradient buffer layer. In the X-ray diffraction analysis of GaN(002) rocking curves, we found that the full width at half-maximum was improved from 531.69″ to 59.43″ for the sample with a gradient buffer layer as compared to a purely gallium-rich grown sample. Atomic force microscopy analysis showed that the root-mean-square roughness of the surface was improved from 18.28 nm to 1.62 nm over an area of 5 × 5 μm 2 with respect to a purely nitrogen-rich grown sample. Raman scattering showed the presence of a slightly tilted plane in the gradient layer. Furthermore we showed that the gradient layer can also slash the strain force caused by either Ga-rich GaN epitaxial layer or AlN buffer layer. - Highlights: ► The samples were grown by plasma-assisted molecular beam epitaxy. ► The GaN epilayer was grown on sapphire substrate. ► The samples were characterized by X-ray diffraction and atomic force microscopy. ► The sample quality was improved by gradient buffer layer.

  9. Fano resonances from gradient-index metamaterials.

    Science.gov (United States)

    Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang

    2016-01-27

    Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies.

  10. Strain-magneto-optics of a magnetostrictive ferrimagnet CoFe2O4

    OpenAIRE

    Sukhorukov, Yu. P.; Telegin, A. V.; Bebenin, N. G.; Nosov, A. P.; Bessonov, V. D.; Buchkevich, A. A.

    2017-01-01

    We experimentally demonstrate that in magnetostrictive ferrimagnetic single crystal of CoFe2O4 there is clear correlation between magnetostriction and magnetoreflection of unpolarized light in the infrared range. The influence of magnetic field on specular reflection is likely to be indirect: application of a magnetic field results in strong strain and deformation of the crystal lattice, which leads to the change in electron energy structure and hence reflection spectrum.

  11. Purification, crystallization and preliminary X-ray crystallographic analysis of ST1022, a putative member of the Lrp/AsnC family of transcriptional regulators isolated from Sulfolobus tokodaii strain 7

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Noboru; Kumarevel, Thirumananseri, E-mail: tskvel@spring8.or.jp; Matsunaga, Emiko; Shinkai, Akeo [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Kuramitsu, Seiki [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Department of Biological Sciences, Graduate School of Science, Osaka University, Tayonaka, Osaka 560-0043 (Japan); Yokoyama, Shigeyuki, E-mail: tskvel@spring8.or.jp [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Genomic Sciences Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2007-11-01

    A putative member of the Lrp/AsnC family of transcriptional regulators, ST1022 from S. tokodaii strain 7, has been purified and crystallized in the absence and presence of the effector l-glutamine. A molecular-replacement solution was found using the FL11 transcriptional regulator from Pyrococcus sp. OT3 as a model and structural refinement is under way. The Lrp/AsnC family of transcriptional regulators, also known as feast/famine transcriptional regulators, are widely distributed among bacteria and archaea. This family of proteins are likely to be involved in cellular metabolism, with exogenous amino acids functioning as effectors. Here, the crystallization and preliminary X-ray diffraction analysis of ST1022, a member of the Lrp/AsnC family of proteins, is reported with and without exogenous glutamine as the effector molecule. The crystals of native ST1022 and of the putative complex belong to the tetragonal space group I422, with unit-cell parameters a = b = 103.771, c = 73.297 Å and a = b = 103.846, c = 73.992 Å, respectively. Preliminary X-ray diffraction data analysis and molecular-replacement solution revealed the presence of one monomer per asymmetric unit.

  12. Purification, crystallization and preliminary X-ray crystallographic analysis of ST1022, a putative member of the Lrp/AsnC family of transcriptional regulators isolated from Sulfolobus tokodaii strain 7

    International Nuclear Information System (INIS)

    Nakano, Noboru; Kumarevel, Thirumananseri; Matsunaga, Emiko; Shinkai, Akeo; Kuramitsu, Seiki; Yokoyama, Shigeyuki

    2007-01-01

    A putative member of the Lrp/AsnC family of transcriptional regulators, ST1022 from S. tokodaii strain 7, has been purified and crystallized in the absence and presence of the effector l-glutamine. A molecular-replacement solution was found using the FL11 transcriptional regulator from Pyrococcus sp. OT3 as a model and structural refinement is under way. The Lrp/AsnC family of transcriptional regulators, also known as feast/famine transcriptional regulators, are widely distributed among bacteria and archaea. This family of proteins are likely to be involved in cellular metabolism, with exogenous amino acids functioning as effectors. Here, the crystallization and preliminary X-ray diffraction analysis of ST1022, a member of the Lrp/AsnC family of proteins, is reported with and without exogenous glutamine as the effector molecule. The crystals of native ST1022 and of the putative complex belong to the tetragonal space group I422, with unit-cell parameters a = b = 103.771, c = 73.297 Å and a = b = 103.846, c = 73.992 Å, respectively. Preliminary X-ray diffraction data analysis and molecular-replacement solution revealed the presence of one monomer per asymmetric unit

  13. Reactive Stresses in Ni49Fe18Ga27Co6 Shape-Memory-Alloy Single Crystals

    Science.gov (United States)

    Averkin, A. I.; Krymov, V. M.; Guzilova, L. I.; Timashov, R. B.; Soldatov, A. V.; Nikolaev, V. I.

    2018-03-01

    The reactive stresses induced in Ni49Fe18Ga27Co6-alloy single crystals during martensitic transformations with a limited possibility of shape-memory-strain recovery have been experimentally studied. The data on these crystals are compared with the results obtained previously for Cu-Al-Ni, Ni-Ti, and Ni‒Fe-Ga crystals. The potential of application of the Ni49Fe18Ga27Co6 single crystals in designing drives and power motors is demonstrated.

  14. Crystal plasticity modeling of through-thickness texture heterogeneity in heavily rolled aluminum

    DEFF Research Database (Denmark)

    Delannay, Laurent; Mishin, Oleg V.

    2013-01-01

    from hot rolling producing shear near the surface and conditions approaching plane strain compression in the center layer. Model predictions confirm experimental observations that such a gradient strengthens significantly during further heavy cold rolling. Copyright © 2013 Trans Tech Publications Ltd....

  15. Novel Transrotational Solid State Order Discovered by TEM in Crystallizing Amorphous Films

    Science.gov (United States)

    Kolosov, Vladimir

    Exotic thin crystals with unexpected transrotational microstructures have been discovered by transmission electron microscopy (TEM) for crystal growth in thin (10-100 nm) amorphous films of different chemical nature (oxides, chalcogenides, metals and alloys) prepared by various methods. Primarily we use our TEM bend contour technique. The unusual phenomenon can be traced in situ in TEM column: dislocation independent regular internal bending of crystal lattice planes in a growing crystal. Such transrotation (unit cell trans lation is complicated by small rotationrealized round an axis lying in the film plane) can result in strong regular lattice orientation gradients (up to 300 degrees per micrometer) of different geometries: cylindrical, ellipsoidal, toroidal, saddle, etc. Transrotation is increasing as the film gets thinner. Transrotational crystal resembles ideal single crystal enclosed in a curved space. Transrotational micro crystals have been eventually recognized by other authors in some vital thin film materials, i.e. PCMs for memory, silicides, SrTiO3. Atomic model and possible mechanisms of the phenomenon are discussed. New transrotational nanocrystalline model of amorphous state is also proposed Support of RF Ministry of Education and Science is acknowledged.

  16. Evaluation of local strain in Si using UV-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Atsushi [School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan)], E-mail: a_ogura@isc.meiji.ac.jp; Kosemura, Daisuke; Takei, Munehisa [School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Uchida, Hidetsugu; Hattori, Nobuyoshi [Semiconductor Technology Academic Research Center, 3-17-2 Shinyokohama, Kouhoku-ku, Yokohama 220-0033 (Japan); Yoshimaru, Masaki [Semiconductor Business Group, Sony Corporation, Atsugi Tec., 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa 243-0014 (Japan); Mayuzumi, Satoru [School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Semiconductor Business Group, Sony Corporation, Atsugi Tec., 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa 243-0014 (Japan); Wakabayashi, Hitoshi [Semiconductor Business Group, Sony Corporation, Atsugi Tec., 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa 243-0014 (Japan)

    2009-03-15

    'Strained-Si', in which intentional strain is introduced in Si crystal to improve carrier mobility by using a modulated band structure, is recognized as one of the most important technologies in post-scaling-generation LSIs. Strain-evaluation technology to probe strain in shallow surfaces that correspond to the channels of MOSFETs is crucial to achieving strained-Si technology. In this paper, we introduce the results we obtained by evaluating strain with the new UV-Raman spectroscopy we developed. Quasi-line shape illumination enabled Raman measurements with 200-nm intervals on the sample. The local-strain mechanism caused by SiN stressors covering a MOSFET was clarified by measuring one-dimensional strain profiles induced by patterned SiN film on Si. We also demonstrated that the induced strain was proportional to the inner stresses of SiN film and that it is more effective to introduce strain in SOI substrates than in bulk substrates. In the evaluation of a actual device fabricated by using the gate-last process in which strain was significantly enhanced after the dummy gate was removed, the size effect, i.e., an increase in induced strain with a decrease in gate length, was confirmed through one-dimensional strain-profile measurements with various gate lengths.

  17. Evaluation of local strain in Si using UV-Raman spectroscopy

    International Nuclear Information System (INIS)

    Ogura, Atsushi; Kosemura, Daisuke; Takei, Munehisa; Uchida, Hidetsugu; Hattori, Nobuyoshi; Yoshimaru, Masaki; Mayuzumi, Satoru; Wakabayashi, Hitoshi

    2009-01-01

    'Strained-Si', in which intentional strain is introduced in Si crystal to improve carrier mobility by using a modulated band structure, is recognized as one of the most important technologies in post-scaling-generation LSIs. Strain-evaluation technology to probe strain in shallow surfaces that correspond to the channels of MOSFETs is crucial to achieving strained-Si technology. In this paper, we introduce the results we obtained by evaluating strain with the new UV-Raman spectroscopy we developed. Quasi-line shape illumination enabled Raman measurements with 200-nm intervals on the sample. The local-strain mechanism caused by SiN stressors covering a MOSFET was clarified by measuring one-dimensional strain profiles induced by patterned SiN film on Si. We also demonstrated that the induced strain was proportional to the inner stresses of SiN film and that it is more effective to introduce strain in SOI substrates than in bulk substrates. In the evaluation of a actual device fabricated by using the gate-last process in which strain was significantly enhanced after the dummy gate was removed, the size effect, i.e., an increase in induced strain with a decrease in gate length, was confirmed through one-dimensional strain-profile measurements with various gate lengths.

  18. Measurement of mean rotation and strain-rate tensors by using stereoscopic PIV

    DEFF Research Database (Denmark)

    Özcan, Oktay; Meyer, Knud Erik; Larsen, Poul Scheel

    2005-01-01

    A technique is described for measuring the mean velocity gradient (rate-of-displacement) tensor by using a conventional stereoscopic particle image velocimetry (SPIV) system. Planar measurement of the mean vorticity vector, rate-of-rotation and rate-of-strain tensors and the production of turbule...

  19. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Raghavan, Seetha [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Meid, Carla; Wischek, Janine; Bartsch, Marion [German Aerospace Center (DLR), Institute of Materials Research, 51147 Cologne (Germany); Okasinski, John; Almer, Jonathan [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Karlsson, Anette M. [Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (United States)

    2013-08-15

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  20. Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: Calculation and application

    Science.gov (United States)

    Luo, Yao; Wu, Mei-Ping; Wang, Ping; Duan, Shu-Ling; Liu, Hao-Jun; Wang, Jin-Long; An, Zhan-Feng

    2015-09-01

    The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.

  1. Sequence and expression of two cry8 genes from Bacillus thuringiensis INTA Fr7-4, a native strain from Argentina.

    Science.gov (United States)

    Navas, Laura E; Berretta, Marcelo F; Pérez, Melisa P; Amadio, Ariel F; Ortiz, Elio M; Sauka, Diego H; Benintende, Graciela B; Zandomeni, Rubén O

    2014-01-01

    We found and characterized two cry8 genes from the Bacillus thuringiensis strain INTA Fr7-4 isolated in Argentina. These genes, cry8Kb3 and cry8Pa3, are located in a tandem array within a 13,200-bp DNA segment sequenced from a preparation of total DNA. They encode 1,169- and 1,176-amino-acid proteins, respectively. Both genes were cloned with their promoter sequences and the proteins were expressed separately in an acrystalliferous strain of B. thuringiensis leading to the formation of ovoid crystals in the recombinant strains. The toxicity against larvae of Anthonomus grandis Bh. (Coleoptera: Curculionidae) of a spore-crystal suspension from the recombinant strain containing cry8Pa3 was similar to that of the parent strain INTA Fr7-4. © 2014 S. Karger AG, Basel.

  2. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu-Ag core-shell nanowire using molecular dynamics simulations

    Science.gov (United States)

    Sarkar, Jit; Das, D. K.

    2018-01-01

    Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.

  3. Adaptation of microalgae to a gradient of continuous petroleum contamination

    Energy Technology Data Exchange (ETDEWEB)

    Carrera-Martinez, Daniel; Mateos-Sanz, Aranzazu [AlgasGen Biotecnologia, EBT-UCM, Facultad de Veterinaria, Universidad Complutense de Madrid, Puerta de Hierro s/n, E-28040 Madrid (Spain); Lopez-Rodas, Victoria [AlgasGen Biotecnologia, EBT-UCM, Facultad de Veterinaria, Universidad Complutense de Madrid, Puerta de Hierro s/n, E-28040 Madrid (Spain); Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, Puerta de Hierro s/n, E-28040 Madrid (Spain); Costas, Eduardo, E-mail: ecostas@vet.ucm.es [AlgasGen Biotecnologia, EBT-UCM, Facultad de Veterinaria, Universidad Complutense de Madrid, Puerta de Hierro s/n, E-28040 Madrid (Spain); Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, Puerta de Hierro s/n, E-28040 Madrid (Spain)

    2011-01-25

    In order to study adaptation of microalgae to petroleum contamination, we have examined an environmental stress gradient by crude oil contamination in the Arroyo Minero River (AMR), Argentina. Underground crude oil has constantly leaked out since 1915 as a consequence of test drilling for possible petroleum exploitation. Numerous microalgae species proliferated in AMR upstream of the crude oil spill. In contrast, only four microalgal species were detected in the crude oil spill area. Species richness increases again downstream. Microalgae biomass in the crude oil spill area is dominated by a mesophile species, Scenedesmus sp. Effects of oil samples from AMR spill on photosynthetic performance and growth were studied using laboratory cultures of two Scenedesmus sp. strains. One strain (Se-co) was isolated from the crude oil spill area. The other strain (Se-pr) was isolated from a pristine area without petroleum contamination. Crude oil has undetectable effects on Se-co strain. In contrast crude oil rapidly destroys Se-pr strain. However, Se-pr strain can adapt to low doses of petroleum ({<=}3% v/v total hydrocarbons/water) by means of physiological acclimatization. In contrast, only rare crude oil-resistant mutants are able to grow under high levels of crude oil ({>=}10% v/v total hydrocarbons/water). These crude oil-resistant mutants have arisen through rare spontaneous mutations that occur prior to crude oil exposure. Species richness in different areas of AMR is closely connected to the kind of mechanism (genetic adaptation vs. physiological acclimatization) that allows adaptation. Resistant-mutants are enough to assure the survival of microalgal species under catastrophic crude oil spill.

  4. Determination of strain concentration by microfluorescent densitometry of X-ray topography: a bridge between microfracture and continuum mechanics

    International Nuclear Information System (INIS)

    Kalman, Z.H.; Chaudhuri, J.; Weng, G.J.; Weissmann, S.

    1980-01-01

    The strain distribution in the vicinity of the notches of a double-notched, elastically bent silicon crystal was determined by measuring the diffracted X-ray intensities. The measurements were carried out on traverse-oscillation topographs of a crystal section extending through both notches. Strain distributions were determined by measuring the local densities of silver deposits (measurements of 'opacities') with a scanning electron microscope. It was shown that both the density range and spatial resolution of X-ray densitometry were larger by an order of magnitude than those of optical densitometry. The strain concentration factors associated with the notches were measured experimentally and calculated by continuum mechanics. The results were in satisfactory agreement. Also, the experimentally found rise of strains, to a maximum in the critical area adjacent to the notch root, followed the trend predicted by continuum mechanics. (Auth.)

  5. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    KAUST Repository

    Cho, Nam Chul

    2016-11-10

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microarrays that are distinguishable from general polycrystalline perovskite materials in terms of their crystal orientation, film morphology and electronic properties. X-ray diffraction patterns reveal that the film is strongly oriented in the (112) and (200) planes parallel to the substrate. This film is structurally confined by directional crystal growth, inducing intense anisotropy in charge transport. In addition, the low trap-state density (7.9 × 1013 cm−3) leads to strong amplified stimulated emission. This ability to control crystal orientation and morphology could be widely adopted in optoelectronic devices.

  6. Quantitative analysis of O-2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria

    DEFF Research Database (Denmark)

    Lueder, U.; Druschel, G.; Emerson, D.

    2018-01-01

    The classical approach for the cultivation of neutrophilic microaerophilic Fe(II)-oxidizing bacteria is agar-based gradient tubes where these bacteria find optimal growth conditions in opposing gradients of oxygen (O-2) and dissolved Fe(II) (Fe2+). The goals of this study were to quantify...... imply that transfer of cultures to fresh tubes within 48-72 h is crucial to provide optimal growth conditions for microaerophilic Fe(II)-oxidizers, particularly for the isolation of new strains....

  7. Fine tuning of optical signals in nanoporous anodic alumina photonic crystals by apodized sinusoidal pulse anodisation.

    Science.gov (United States)

    Santos, Abel; Law, Cheryl Suwen; Chin Lei, Dominique Wong; Pereira, Taj; Losic, Dusan

    2016-11-03

    In this study, we present an advanced nanofabrication approach to produce gradient-index photonic crystal structures based on nanoporous anodic alumina. An apodization strategy is for the first time applied to a sinusoidal pulse anodisation process in order to engineer the photonic stop band of nanoporous anodic alumina (NAA) in depth. Four apodization functions are explored, including linear positive, linear negative, logarithmic positive and logarithmic negative, with the aim of finely tuning the characteristic photonic stop band of these photonic crystal structures. We systematically analyse the effect of the amplitude difference (from 0.105 to 0.840 mA cm -2 ), the pore widening time (from 0 to 6 min), the anodisation period (from 650 to 950 s) and the anodisation time (from 15 to 30 h) on the quality and the position of the characteristic photonic stop band and the interferometric colour of these photonic crystal structures using the aforementioned apodization functions. Our results reveal that a logarithmic negative apodisation function is the most optimal approach to obtain unprecedented well-resolved and narrow photonic stop bands across the UV-visible-NIR spectrum of NAA-based gradient-index photonic crystals. Our study establishes a fully comprehensive rationale towards the development of unique NAA-based photonic crystal structures with finely engineered optical properties for advanced photonic devices such as ultra-sensitive optical sensors, selective optical filters and all-optical platforms for quantum computing.

  8. Crystal structure optimisation using an auxiliary equation of state

    Science.gov (United States)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  9. Crystal structure optimisation using an auxiliary equation of state

    International Nuclear Information System (INIS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" data-affiliation=" (Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" >Walsh, Aron

    2015-01-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu 2 ZnSnS 4 and the magnetic metal-organic framework HKUST-1

  10. Crystal structure optimisation using an auxiliary equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E" 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu{sub 2}ZnSnS{sub 4} and the magnetic metal-organic framework HKUST-1.

  11. Quantitative strain analysis of surfaces and interfaces using extremely asymmetric x-ray diffraction

    International Nuclear Information System (INIS)

    Akimoto, Koichi; Emoto, Takashi

    2010-01-01

    Strain can reduce carrier mobility and the reliability of electronic devices and affect the growth mode of thin films and the stability of nanometer-scale crystals. To control lattice strain, a technique for measuring the minute lattice strain at surfaces and interfaces is needed. Recently, an extremely asymmetric x-ray diffraction method has been developed for this purpose. By employing Darwin's dynamical x-ray diffraction theory, quantitative evaluation of strain at surfaces and interfaces becomes possible. In this paper, we review our quantitative strain analysis studies on native SiO 2 /Si interfaces, reconstructed Si surfaces, Ni/Si(111)-H interfaces, sputtered III-V compound semiconductor surfaces, high-k/Si interfaces, and Au ion-implanted Si. (topical review)

  12. Empirical temperature-dependent intermolecular potentials determined by data mining from crystal data

    Science.gov (United States)

    Hofmann, D. W. M.; Kuleshova, L. N.

    2018-05-01

    Modern force fields are accurate enough to describe thermal effects in molecular crystals. Here, we have extended our earlier approach to discrete force fields for various temperatures to a force field with a continuous function. For the parametrisation of the force field, we used data mining on experimental structures with the temperature as an additional descriptor. The obtained force field can be used to minimise energy at a finite temperature and for molecular dynamics with zero-K potentials. The applicability of the method has been demonstrated for the prediction of crystal density, temperature density gradients and transition temperature.

  13. Mode I crack analysis in single crystals with anisotropic discrete dislocation plasticity : I. Formulation and crack growth

    NARCIS (Netherlands)

    Shishvan, Siamak Soleymani; Van der Giessen, Erik

    Analyses of monotonic loading of a plane-strain mode I crack in an fcc single crystal under small-scale yielding are carried out using discrete dislocation plasticity (DDP) incorporating anisotropic elasticity. Two crystallographically symmetric crack orientations are considered where plane-strain

  14. A new spectral framework for crystal plasticity modeling of cubic and hexagonal polycrystalline metals

    Science.gov (United States)

    Knezevic, Marko

    Crystal plasticity physics-based constitutive theories are used in understanding and predicting the evolution of the underlying microstructure and the concomitant anisotropic stress-strain response in polycrystalline metals subjected to finite plastic strains. A new scheme for efficient crystal plasticity computations for both cubic and hexagonal polycrystalline metals subjected to arbitrary deformation modes has been developed in this thesis. This new computational scheme involves building material databases comprised of spectral coefficients. These spectral coefficients are computed using discrete Fourier transforms (DFTs) and allow for compact representation and fast retrieval of crystal plasticity solutions for a crystal of any orientation subjected to any deformation mode. The novel approach is able to speed up the conventional crystal plasticity computations by two orders of magnitude. Furthermore, mathematical procedures for delineation of property closures that identify the complete set of theoretically feasible combinations of macroscale effective properties has been developed for a broad set of mechanical properties. Subsequently, these constructs were used in microstructure design for identifying an optimal microstructure for selected performance criteria. And finally, hybrid processing recipes that transform a given initial microstructure into a member of the set of optimal microstructures that exhibit superior properties or performance characteristics have been described. Insights and tremendous potential of these novel materials knowledge systems are discussed and demonstrated through specific case-studies. The anisotropic stress-strain response measured in simple compression and simple tension tests in different sample directions on an annealed, strongly textured, AZ31 sheet has been studied. New insights into the mechanical response of this material were obtained by correlating the changes in the measured strain-hardening rates in the different

  15. Rank gradient and p-gradient of amalgamated free products and HNN extensions

    OpenAIRE

    Pappas, Nathaniel

    2013-01-01

    We calculate the rank gradient and p-gradient of free products, free products with amalgamation over an amenable subgroup, and HNN extensions with an amenable associated subgroup. The notion of cost is used to compute the rank gradient of amalgamated free products and HNN extensions. For the p-gradient the Kurosh subgroup theorems for amalgamated free products and HNN extensions will be used.

  16. Crystal plasticity modeling of irradiation growth in Zircaloy-2

    Science.gov (United States)

    Patra, Anirban; Tomé, Carlos N.; Golubov, Stanislav I.

    2017-08-01

    A physically based reaction-diffusion model is implemented in the visco-plastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. The reaction-diffusion model accounts for the defects produced by the cascade of displaced atoms, their diffusion to lattice sinks and the contribution to crystallographic strain at the level of single crystals. The VPSC framework accounts for intergranular interactions and irradiation creep, and calculates the strain in the polycrystalline ensemble. A novel scheme is proposed to model the simultaneous evolution of both, number density and radius, of irradiation-induced dislocation loops directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behaviour of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture and external stress on the coupled irradiation growth and creep behaviour are also studied and compared with available experimental data.

  17. Mechanical properties and deformation mechanism of Mg-Al-Zn alloy with gradient microstructure in grain size and orientation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liu; Yuan, Fuping; Jiang, Ping; Xie, Jijia; Wu, Xiaolei, E-mail: xlwu@imech.ac.cn

    2017-05-10

    The surface mechanical attrition treatment was taken to fabricate the gradient structure in AZ31 magnesium alloy sheet. Microstructural investigations demonstrate the formation of dual gradients with respect to grain size and orientation, where the microstructural sizes decreased from several microns to about 200 nm from center area to treated surface, while the c-axis gradually inclined from being vertical to treated plane towards parallel with it. According to tensile results, the gradient structured sample has yield strength of 305 MPa in average, which is increased by about 4 times when compared with its coarse-grained counterpart. Meanwhile, contrary to quickly failure after necking in most traditional magnesium alloys, the failure process of gradient structure appears more gently, which makes it has 6.5% uniform elongation but 11.5% total elongation. The further comparative tensile tests for separated gradient layers and corresponding cores demonstrate that the gradient structured sample has higher elongation either in uniform or in post-uniform stages. In order to elucidate the relationship between mechanical properties and deformation mechanisms for this dual gradient structure, the repeated stress relaxation tests and pole figure examinations via X-ray diffraction were conducted in constituent gradient layer and corresponding core, as well as gradient structured sample. The results show that the pyramidal dislocations in dual gradient structure are activated through the whole thickness of sample. Together with the contribution of grain-size gradient, more dislocations are activated in dual gradient structure under tensile loading, which results in stronger strain hardening and hence higher tensile ductility.

  18. Mechanical properties and deformation mechanism of Mg-Al-Zn alloy with gradient microstructure in grain size and orientation

    International Nuclear Information System (INIS)

    Chen, Liu; Yuan, Fuping; Jiang, Ping; Xie, Jijia; Wu, Xiaolei

    2017-01-01

    The surface mechanical attrition treatment was taken to fabricate the gradient structure in AZ31 magnesium alloy sheet. Microstructural investigations demonstrate the formation of dual gradients with respect to grain size and orientation, where the microstructural sizes decreased from several microns to about 200 nm from center area to treated surface, while the c-axis gradually inclined from being vertical to treated plane towards parallel with it. According to tensile results, the gradient structured sample has yield strength of 305 MPa in average, which is increased by about 4 times when compared with its coarse-grained counterpart. Meanwhile, contrary to quickly failure after necking in most traditional magnesium alloys, the failure process of gradient structure appears more gently, which makes it has 6.5% uniform elongation but 11.5% total elongation. The further comparative tensile tests for separated gradient layers and corresponding cores demonstrate that the gradient structured sample has higher elongation either in uniform or in post-uniform stages. In order to elucidate the relationship between mechanical properties and deformation mechanisms for this dual gradient structure, the repeated stress relaxation tests and pole figure examinations via X-ray diffraction were conducted in constituent gradient layer and corresponding core, as well as gradient structured sample. The results show that the pyramidal dislocations in dual gradient structure are activated through the whole thickness of sample. Together with the contribution of grain-size gradient, more dislocations are activated in dual gradient structure under tensile loading, which results in stronger strain hardening and hence higher tensile ductility.

  19. Strain-induced shear instability in Liverpool Bay

    Science.gov (United States)

    Wihsgott, Juliane; Palmer, Matthew R.

    2013-04-01

    Liverpool Bay is a shallow subsection of the eastern Irish Sea with large tides (10 m), which drive strong tidal currents (1 ms-1). The Bay is heavily influenced by large freshwater inputs from several Welsh and English rivers that maintain a strong and persistent horizontal density gradient. This gradient interacts with the sheared tidal currents to strain freshwater over denser pelagic water on a semi-diurnal frequency. This Strain-Induced-Periodic-Stratification (SIPS) has important implications on vertical and horizontal mixing. The subtle interaction between stratification and turbulence in this complex environment is shown to be of critical importance to freshwater transport, and subsequently the fate of associated biogeochemical and pollutant pathways. Recent work identified an asymmetry of current ellipses due to SIPS that increases shear instability in the halocline with the potential to enhance diapycnal mixing. Here, we use data from a short, high intensity process study which reveals this mid-water mechanism maintains prolonged periods of sub-critical gradient Richardson number (Ri ≤ ¼) that suggests shear instability is likely. A time series of measurements from a microstructure profiler identifies the associated increase in turbulence is short lived and 'patchy' but sufficient to promote diapycnal mixing. The significance of this mixing process is further investigated by comparing our findings with long-term observations from the Liverpool Bay Coastal Observatory. We identify that the conditions for shear instability during SIPS are regularly met and suggest that this process contributes to the current underestimates of near coastal mixing observed in regional models. To assist our understanding of the observed processes and to test the current capability of turbulence 'closure schemes' we employ a one-dimensional numerical model to investigate the physical mechanisms driving diapycnal mixing in Liverpool Bay.

  20. Mechanical properties of hydroxyapatite single crystals from nanoindentation data

    Science.gov (United States)

    Zamiri, A.; De, S.

    2011-01-01

    In this paper we compute elasto-plastic properties of hydroxyapatite single crystals from nanindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young’s modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals. PMID:21262492

  1. Sources of optical distortion in rapidly grown crystals of KH2PO4

    International Nuclear Information System (INIS)

    De Yoreo, J.J.; Zaitseva, N.P.; Woods, B.W.; Land, T.A.; Rek, Z.U.

    1995-01-01

    We report results of x-ray topographic and optical measurements on KH 2 PO 4 crystals grown at rates of 5 to 30mm/day. We show that optical distortion in these crystals is caused primarily by 3 sources: dislocations, differences in composition between adjacent growth sectors of the crystal, and differences in composition between adjacent sectors of vicinal growth hillocks within a single growth sector of the crystal. We find that the compositional heterogeneities cause spatial variations in the refractive index and induced distortion of the transmitted wave front while large groups of dislocations are responsible for strain induced birefringence which leads to beam depolarization

  2. Improvement of GaN epilayer by gradient layer method with molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yen-Liang [Department of Physics, Institute of Material Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China); Lo, Ikai, E-mail: ikailo@mail.phys.nsysu.edu.tw [Department of Physics, Institute of Material Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China); Gau, Ming-Hong; Hsieh, Chia-Ho; Sham, Meng-Wei; Pang, Wen-Yuan; Hsu, Yu-Chi [Department of Physics, Institute of Material Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China); Tsai, Jenn-Kai [Department of Electronics Engineering, National Formosa University, Hu-Wei, Yun-Lin County 63208, Taiwan, ROC (China); Schuber, Ralf; Schaadt, Daniel [Institute of Applied Physics/DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2012-07-31

    We demonstrated a molecular beam epitaxy method to resolve the dilemma between structural and morphological quality in growth of the GaN epilayer. A gradient buffer layer was grown in such a way that the N/Ga ratio was gradually changed from nitrogen-rich to gallium-rich. The GaN epitaxial layer was then grown on the gradient buffer layer. In the X-ray diffraction analysis of GaN(002) rocking curves, we found that the full width at half-maximum was improved from 531.69 Double-Prime to 59.43 Double-Prime for the sample with a gradient buffer layer as compared to a purely gallium-rich grown sample. Atomic force microscopy analysis showed that the root-mean-square roughness of the surface was improved from 18.28 nm to 1.62 nm over an area of 5 Multiplication-Sign 5 {mu}m{sup 2} with respect to a purely nitrogen-rich grown sample. Raman scattering showed the presence of a slightly tilted plane in the gradient layer. Furthermore we showed that the gradient layer can also slash the strain force caused by either Ga-rich GaN epitaxial layer or AlN buffer layer. - Highlights: Black-Right-Pointing-Pointer The samples were grown by plasma-assisted molecular beam epitaxy. Black-Right-Pointing-Pointer The GaN epilayer was grown on sapphire substrate. Black-Right-Pointing-Pointer The samples were characterized by X-ray diffraction and atomic force microscopy. Black-Right-Pointing-Pointer The sample quality was improved by gradient buffer layer.

  3. Stability of (Fe-Tm-B) amorphous alloys: relaxation and crystallization phenomena

    International Nuclear Information System (INIS)

    Zemcik, T.

    1994-01-01

    Fe-Tm-B base (TM = transition metal) amorphous alloys (metallic glasses) are thermodynamically metastable. This limits their use as otherwise favourable materials, e.g. magnetically soft, corrosion resistant and mechanically firm. By analogy of the mechanical strain-stress dependence, at a certain degree of thermal activation the amorphous structure reaches its limiting state where it changes its character and physical properties. Relaxation and early crystallization processes in amorphous alloys, starting already around 100 C, are reviewed involving subsequently stress relief, free volume shrinking, topological and chemical ordering, pre-crystallization phenomena up to partial (primary) crystallization. Two diametrically different examples are demonstrated from among the soft magnetic materials: relaxation and early crystallization processes in the Fe-Co-B metallic glasses and controlled crystallization of amorphous ribbons yielding rather modern nanocrystalline ''Finemet'' alloys where late relaxation and pre-crystallization phenomena overlap when forming extremely dispersive and fine-grained nanocrystals-in-amorphous-sauce structure. Moessbauer spectroscopy seems to be unique for magnetic and phase analysis of such complicated systems. (orig.)

  4. A Model for High-Strain-Rate Deformation of Uranium-Niobium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    F.L.Addessio; Q.H.Zuo; T.A.Mason; L.C.Brinson

    2003-05-01

    A thermodynamic approach is used to develop a framework for modeling uranium-niobium alloys under the conditions of high strain rate. Using this framework, a three-dimensional phenomenological model, which includes nonlinear elasticity (equation of state), phase transformation, crystal reorientation, rate-dependent plasticity, and porosity growth is presented. An implicit numerical technique is used to solve the evolution equations for the material state. Comparisons are made between the model and data for low-strain-rate loading and unloading as well as for heating and cooling experiments. Comparisons of the model and data also are made for low- and high-strain-rate uniaxial stress and uniaxial strain experiments. A uranium-6 weight percent niobium alloy is used in the comparisons of model and experiment.

  5. Strain-induced band engineering in monolayer stanene on Sb(111)

    Science.gov (United States)

    Gou, Jian; Kong, Longjuan; Li, Hui; Zhong, Qing; Li, Wenbin; Cheng, Peng; Chen, Lan; Wu, Kehui

    2017-10-01

    The two-dimensional (2D) allotrope of tin with low buckled honeycomb structure named stanene is proposed to be an ideal 2D topological insulator with a nontrivial gap larger than 0.1 eV. Theoretical works also pointed out the topological property of stanene amenability to strain tuning. In this paper we report the successful realization of high quality, monolayer stanene film as well as monolayer stanene nanoribbons on Sb(111) surface by molecular-beam epitaxy, providing an ideal platform to the study of stanene. More importantly, we observed a continuous evolution of the electronic bands of stanene across the nanoribbon, related to the strain field gradient in stanene. Our work experimentally confirmed that strain is an effective method for band engineering in stanene, which is important for fundamental research and application of stanene.

  6. Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency.

    Science.gov (United States)

    Wang, Fuxian; Septina, Wilman; Chemseddine, Abdelkrim; Abdi, Fatwa F; Friedrich, Dennis; Bogdanoff, Peter; van de Krol, Roel; Tilley, S David; Berglund, Sean P

    2017-10-25

    A new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBi 2 O 4 photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBi 2 O 4 photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials. Thus, a gradient in Cu vacancies leads to an internal electric field within CuBi 2 O 4 , which can facilitate charge separation. Compared to homogeneous CuBi 2 O 4 photocathodes, CuBi 2 O 4 photocathodes with a forward gradient show highly improved charge separation efficiency and enhanced photoelectrochemical performance for reduction reactions, while CuBi 2 O 4 photocathodes with a reverse gradient show significantly reduced charge separation efficiency and photoelectrochemical performance. The CuBi 2 O 4 photocathodes with a forward gradient produce record AM 1.5 photocurrent densities for CuBi 2 O 4 up to -2.5 mA/cm 2 at 0.6 V vs RHE with H 2 O 2 as an electron scavenger, and they show a charge separation efficiency of 34% for 550 nm light. The gradient self-doping accomplishes this without the introduction of external dopants, and therefore the tetragonal crystal structure and carrier mobility of CuBi 2 O 4 are maintained. Lastly, forward gradient self-doped CuBi 2 O 4 photocathodes are protected with a CdS/TiO 2 heterojunction and coated with Pt as an electrocatalyst. These photocathodes demonstrate photocurrent densities on the order of -1.0 mA/cm 2 at 0.0 V vs RHE and evolve hydrogen with a faradaic efficiency of ∼91%.

  7. Magnon dark modes and gradient memory.

    Science.gov (United States)

    Zhang, Xufeng; Zou, Chang-Ling; Zhu, Na; Marquardt, Florian; Jiang, Liang; Tang, Hong X

    2015-11-16

    Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin degree of freedom. Among all the possible materials, single-crystal yttrium iron garnet has shown up recently as a promising candidate for hybrid systems, and various highly coherent interactions, including strong and even ultrastrong coupling, have been demonstrated. One distinct advantage in these systems is that spins form well-defined magnon modes, which allows flexible and precise tuning. Here we demonstrate that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved. Such a process enables us to build a magnon gradient memory to store information in the magnon dark modes, which decouple from the microwave cavity and thus preserve a long lifetime. Our findings provide a promising approach for developing long-lifetime, multimode quantum memories.

  8. Strain amplitude-dependent anelasticity in Cu-Ni solid solution due to thermally activated and athermal dislocation-point obstacle interactions

    Science.gov (United States)

    Kustov, S.; Gremaud, G.; Benoit, W.; Golyandin, S.; Sapozhnikov, K.; Nishino, Y.; Asano, S.

    1999-02-01

    Experimental investigations of the internal friction and the Young's modulus defect in single crystals of Cu-(1.3-7.6) at. % Ni have been performed for 7-300 K over a wide range of oscillatory strain amplitudes. Extensive data have been obtained at a frequency of vibrations around 100 kHz and compared with the results obtained for the same crystals at a frequency of ˜1 kHz. The strain amplitude dependence of the anelastic strain amplitude and the average friction stress acting on a dislocation due to solute atoms are also analyzed. Several stages in the strain amplitude dependence of the internal friction and the Young's modulus defect are revealed for all of the alloy compositions, at different temperatures and in different frequency ranges. For the 100 kHz frequency, low temperatures and low strain amplitudes (˜10-7-10-5), the amplitude-dependent internal friction and the Young's modulus defect are essentially temperature independent, and are ascribed to a purely hysteretic internal friction component. At higher strain amplitudes, a transition stage and a steep strain amplitude dependence of the internal friction and the Young's modulus defect are observed, followed by saturation at the highest strain amplitudes employed. These stages are temperature and frequency dependent and are assumed to be due to thermally activated motion of dislocations. We suggest that the observed regularities in the entire strain amplitude, temperature and frequency ranges correspond to a motion of dislocations in a two-component system of obstacles: weak but long-range ones, due to the elastic interaction of dislocations with solute atoms distributed in the bulk of the crystal; and strong short-range ones, due to the interaction of dislocations with solute atoms distributed close to dislocation glide planes. Based on these assumptions, a qualitative explanation is given for the variety of experimental observations.

  9. Mapping residual stresses in PbWO4 crystals using photo-elastic analysis

    International Nuclear Information System (INIS)

    Lebeau, M.; Gobbi, L.; Majni, G.; Paone, N.; Pietroni, P.; Rinaldi, D.

    2005-01-01

    Large scintillating crystals are affected by internal stresses induced by the crystal growth temperature gradient remanence. Cutting boules (ingots) into finished crystal shapes allows for a partial tension relaxation but residual stresses remain the main cause of breaking. Quality control of residual stresses is essential in the application of Scintillating Crystals to high-energy physics calorimeters (e.g. CMS ECAL at CERN LHC). In this context the industrial process optimisation towards stress reduction is mandatory. We propose a fast technique for testing samples during the production process in order to evaluate the residual stress distribution after the first phases of mechanical processing. We mapped the stress distribution in PbWO 4 slabs cut from the same production boule. The analysis technique is based on the stress intensity determination using the photo-elastic properties of the samples. The stress distribution is mapped in each sample. The analysis shows that there are regions of high residual tension close to the seed position and at the boule periphery. These results should allow for adapting the industrial process to producing crystals with lower residual stresses

  10. Analysis of heterogeneities in strain and microstructure in aluminum alloy and magnesium processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Subrata, E-mail: subrata.panda@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); Toth, Laszlo S., E-mail: laszlo.toth@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); Fundenberger, Jean-Jacques, E-mail: jean-jacques.fundenberger@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); Perroud, Olivier, E-mail: olivier.perroud@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); and others

    2017-01-15

    Two distinct bulk light metals were opted to study the shear strain evolution and associated heterogeneities in texture/microstructure development during torsional straining by high pressure torsion (HPT): a face centered cubic Al alloy (A5086) and a hexagonal commercial purity Mg. Relatively thick disk samples - four times thicker than usually employed in HPT process - were processed to 180° and 270° rotations. With the help of X-ray tomography, the shear strain gradients were examined in the axial direction. The results showed strongly localized shear deformation in the middle plane of the disks in both materials. These gradients involved strong heterogeneities in texture, microstructure and associated hardness, in particular through the thickness direction at the periphery of the disk where the interplay between significant strain hardening and possible dynamic recrystallization could occur. - Highlights: •HPT processing was conducted on bulk specimens thicker than the usual thin-disks. •The Al alloy (A5086) and commercial purity magnesium samples were compared. •Distributions of strain and microhardness were evaluated in the radial and axial direction. •Plastic deformation is highly localized in the middle plane at outer edge in both materials. •Different DRX rates governed the differences in microstructure and hardening behavior.

  11. Solid-solid phase transitions in Fe nanowires induced by axial strain

    International Nuclear Information System (INIS)

    Sandoval, Luis; Urbassek, Herbert M

    2009-01-01

    By means of classical molecular-dynamics simulations we investigate the solid-solid phase transition from a bcc to a close-packed crystal structure in cylindrical iron nanowires, induced by axial strain. The interatomic potential employed has been shown to be capable of describing the martensite-austenite phase transition in iron. We study the stress versus strain curves for different temperatures and show that for a range of temperatures it is possible to induce a solid-solid phase transition by axial strain before the elasticity is lost; these transition temperatures are below the bulk transition temperature. The two phases have different (non-linear) elastic behavior: the bcc phase softens, while the close-packed phase stiffens with temperature. We also consider the reversibility of the transformation in the elastic regimes, and the role of the strain rate on the critical strain necessary for phase transition.

  12. Stress-induced state transitions in flexible liquid-crystal devices

    International Nuclear Information System (INIS)

    Ho, I-Lin; Chang, Yia-Chung

    2012-01-01

    This work studies the stress-strain dynamics for the transient optoelectronic characteristics of flexible liquid-crystal (LC) devices. Due to the fast response of LC directors, the configuration of the LC is assumed to be in quasi-equilibrium during the process of elastic deformations of the flexible structures. The LC medium hence can be treated effectively as a thin-film layer and can approximately follow the strain-stress mechanism in the solids. Relevant theoretical algorithms are studied in this work, and numerical results present the stress-induced state transitions in the π cell.

  13. Slip-band formation and dislocation kinetics in the stage I deformation of neutron-irradiated copper single crystals

    International Nuclear Information System (INIS)

    Kitajima, Sadakichi; Shinohara, Kazutoshi; Kutsuwada, Masanori

    1995-01-01

    The velocity of edge and screw dislocations moving in primary slip bands and the formation rate of primary slip bands were measured in stage I deformation of neutron-irradiated copper single crystals at different strain rates at room temperature using micro-cinematography and optical micrography. The average velocity of edge dislocations was larger at least by one order than that of screw ones, and that of screw dislocations did not depend so strongly on strain rate. The formation rate of primary slip bands was proportional to strain rate. From these results, it is concluded that (1) jogs produced on moving dislocations by cutting dislocation loops result in the difference in velocity between edge and screw dislocations and (2) the change in the density of mobile dislocations as well as velocity of dislocations is responsible for the change of plastic strain rate of a crystal. (author)

  14. Orientation effect on recovery and recrystallization of cold rolled niobium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, R. [Center for Accelerated Maturation of Materials, Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)], E-mail: rajagopalan.5@osu.edu; Viswanathan, G.B.; Levit, V.I.; Fraser, H.L. [Center for Accelerated Maturation of Materials, Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)

    2009-05-15

    Single crystal sheets of niobium with initial orientations of (0 0 1) [11-bar0], (1 1 0) [11-bar 0] and (1 1 1) [11-bar0] were rolled at room temperature in the strain range of 25-50%. The deformed specimens were vacuum annealed at temperatures of 800 deg. C, 1000 deg. C, and 1200 deg. C for 3 h. TEM, SEM-OIM and optical microscopy revealed orientation stability in (0 0 1) and (1 1 0) rolled samples with no recrystallization observed after annealing. Samples rolled along (1 1 1) partially recrystallized after annealing at 1000 deg. C and 1200 deg. C. A relatively small increase was observed in hardness of (0 0 1) rolled crystals between 25% and 50% strain, implying low work hardening rates. (1 1 1) rolled samples showed higher hardening rates, and enhanced recovery in hardness values after annealing, due to partial recrystallization. Conditions have been identified for the deformation and annealing of niobium single crystals, enabling the preservation of single crystal structure and near-complete recovery of mechanical properties. A simple crystallographic model is proposed, giving an explanation for the observed orientation stability in (0 0 1) and (1 1 0) rolled samples, and the tendency towards instability and recrystallization in (1 1 1) rolled samples.

  15. The effect of deformation twinning on irradiation embrittlement in iron single crystals

    International Nuclear Information System (INIS)

    Kayano, Hideo; Tokutomi, Shoichiro; Yajima, Seishi; Takaku, Hiroshi.

    1978-01-01

    Single crystals of iron with the [100] crystal orientation were irradiated in JMTR with fast neutrons to a fluence of 8 x 10 18 n/cm 2 (E > 1 MeV). All samples were deformed in tension at temperatures from liquid nitrogen temperature to 200 0 C at different strain rates using an Instron-type tensile testing machine. Scanning electron microscopy of the fractured surfaces revealed that deformation twinning is difficult to occur in irradiated samples, and also that twins formed in both irradiated and unirradiated samples inhibit fracture nucleation and growth. From the results of tensile deformation of the irradiated samples deformed in tension a different strain rates at 159 0 K, it is conceived that twinning suppression is greater in the irradiated than in the unirradiated samples, and that the nucleation and growth of twins are not necessarily related to those of cracks. It is suggested that the irradiation-induced defects impede plastic deformation of the crystals and deformation twinning is suppressed by irradiation, thus causing the irradiation embrittlement. (auth.)

  16. Determination of the rate of crystal growth from the gas phase under conditions of turbulent free convection

    Science.gov (United States)

    Alad'Ev, S. I.

    1987-04-01

    Crystal growth in vertical and horizontal cylindrical vials, with the substrate and the source serving as the vial ends, is investigated analytically, assuming that the medium consists of a binary mixture of an active and an inert gas. The active gas is made up of the gaseous products of reactions taking place at the substrate and at the source. It is shown that turbulent free convection leads to an increase in crystal growth rate. All other conditions being equal, crystal growth in vertical vials is greater than that in horizontal ones; in both cases crystal growth rate increases with the vial radius, temperature gradient in the gas phase, and gas phase density. The results are compared with experimental data on the growth of Ge crystals in the Ge-GeI4 system.

  17. All-optical image processing with nonlinear liquid crystals

    Science.gov (United States)

    Hong, Kuan-Lun

    Liquid crystals are fascinating materials because of several advantages such as large optical birefringence, dielectric anisotropic, and easily compatible to most kinds of materials. Compared to the electro-optical properties of liquid crystals widely applied in displays and switching application, transparency through most parts of wavelengths also makes liquid crystals a better candidate for all-optical processing. The fast response time of liquid crystals resulting from multiple nonlinear effects, such as thermal and density effect can even make real-time processing realized. In addition, blue phase liquid crystals with spontaneously self-assembled three dimensional cubic structures attracted academic attention. In my dissertation, I will divide the whole contents into six parts. In Chapter 1, a brief introduction of liquid crystals is presented, including the current progress and the classification of liquid crystals. Anisotropy and laser induced director axis reorientation is presented in Chapter 2. In Chapter 3, I will solve the electrostrictive coupled equation and analyze the laser induced thermal and density effect in both static and dynamic ways. Furthermore, a dynamic simulation of laser induced density fluctuation is proposed by applying finite element method. In Chapter 4, two image processing setups are presented. One is the intensity inversion experiment in which intensity dependent phase modulation is the mechanism. The other is the wavelength conversion experiment in which I can read the invisible image with a visible probe beam. Both experiments are accompanied with simulations to realize the matching between the theories and practical experiment results. In Chapter 5, optical properties of blue phase liquid crystals will be introduced and discussed. The results of grating diffractions and thermal refractive index gradient are presented in this chapter. In addition, fiber arrays imaging and switching with BPLCs will be included in this chapter

  18. Performance comparison of Rayleigh and STW modes on quartz crystal for strain sensor application

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Chen; Lee, Ki Jung; Lee, Keekeun; Yang, Sang Sik, E-mail: ssyang@ajou.ac.kr [Department of Electrical and Computer Engineering, Ajou University, Suwon 442-749 (Korea, Republic of); Eun, Kyongtae; Choa, Sung-Hoon [Nano-IT Fusion Program, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of)

    2016-07-14

    In this study, we compare two kinds of strain sensors based on Rayleigh wave and surface transverse wave (STW) modes, respectively. First, we perform a strain-and-stress analysis using the finite element method, and we consider the contribution to a surface acoustic wave (SAW) velocity shift. Prior to fabrication, we use a coupling-of-modes model to simulate and optimize two-port SAW resonators for both modes. We use a network analyzer to measure and characterize the two devices. Further, we perform an experiment using a strain-testing system with a tapered cross-section cantilever beam. The experimental results show that the ratio of the frequency shift to the strain for the Rayleigh wave mode is −1.124 ppm/με in the parallel direction and 0.109 ppm/με in the perpendicular direction, while the corresponding values for the STW mode are 0.680 ppm/με and 0.189 ppm/με, respectively.

  19. Strain driven anisotropic magnetoresistance in antiferromagnetic La$_{0.4}$Sr$_{0.6}$MnO$_{3}$

    OpenAIRE

    Wong, A. T.; Beekman, C.; Guo, H.; Siemons, W.; Gai, Z.; Arenholz, E.; Takamura, Y.; Ward, T. Z.

    2014-01-01

    We investigate the effects of strain on antiferromagnetic (AFM) single crystal thin films of La 1-x Sr x MnO 3 (x = 0.6). Nominally unstrained samples have strong magnetoresistance with anisotropic magnetoresistances (AMR) of up to 8%. Compressive strain suppresses magnetoresistance but generates AMR values of up to 63%. Tensile strain presents the only case of a metal-insulator transition and demonstrates a previously unreported AMR behavior. In all three cases, we find evidence of magnetic...

  20. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2

    International Nuclear Information System (INIS)

    Ravindran, P.; Fast, L.; Korzhavyi, P.A.; Johansson, B.; Wills, J.; Eriksson, O.

    1998-01-01

    A theoretical formalism to calculate the single crystal elastic constants for orthorhombic crystals from first principle calculations is described. This is applied for TiSi 2 and we calculate the elastic constants using a full potential linear muffin-tin orbital method using the local density approximation (LDA) and generalized gradient approximation (GGA). The calculated values compare favorably with recent experimental results. An expression to calculate the bulk modulus along crystallographic axes of single crystals, using elastic constants, has been derived. From this the calculated linear bulk moduli are found to be in good agreement with the experiments. The shear modulus, Young's modulus, and Poisson's ratio for ideal polycrystalline TiSi 2 are also calculated and compared with corresponding experimental values. The directional bulk modulus and the Young's modulus for single crystal TiSi 2 are estimated from the elastic constants obtained from LDA as well as GGA calculations and are compared with the experimental results. The shear anisotropic factors and anisotropy in the linear bulk modulus are obtained from the single crystal elastic constants. From the site and angular momentum decomposed density of states combined with a charge density analysis and the elastic anisotropies, the chemical bonding nature between the constituents in TiSi 2 is analyzed. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal. The calculated elastic properties are found to be in good agreement with experimental values when the generalized gradient approximation is used for the exchange and correlation potential. copyright 1998 American Institute of Physics