WorldWideScience

Sample records for strain gage based

  1. Strain gage based determination of mixed mode SIFs

    Science.gov (United States)

    Murthy, K. S. R. K.; Sarangi, H.; Chakraborty, D.

    2018-05-01

    Accurate determination of mixed mode stress intensity factors (SIFs) is essential in understanding and analysis of mixed mode fracture of engineering components. Only a few strain gage determination of mixed mode SIFs are reported in literatures and those also do not provide any prescription for radial locations of strain gages to ensure accuracy of measurement. The present investigation experimentally demonstrates the efficacy of a proposed methodology for the accurate determination of mixed mode I/II SIFs using strain gages. The proposed approach is based on the modified Dally and Berger's mixed mode technique. Using the proposed methodology appropriate gage locations (optimal locations) for a given configuration have also been suggested ensuring accurate determination of mixed mode SIFs. Experiments have been conducted by locating the gages at optimal and non-optimal locations to study the efficacy of the proposed approach. The experimental results from the present investigation show that highly accurate SIFs (0.064%) can be determined using the proposed approach if the gages are located at the suggested optimal locations. On the other hand, results also show the very high errors (212.22%) in measured SIFs possible if the gages are located at non-optimal locations. The present work thus clearly substantiates the importance of knowing the optimal locations of the strain gages apriori in accurate determination of SIFs.

  2. Development of high temperature strain gage, (5)

    International Nuclear Information System (INIS)

    Yuuki, Hiroshi; Kobayashi, Yukio; Kanai, Kenji; Yamaura, Yoshio

    1976-01-01

    Development and improvement of resistance wire type strain gages usable for experimental measurement of thermal strains generated at high temperature in various structures and equipments that consist of a Fast Breeder Reactor have been carried out, and various characteristics of the strain gages have been investigated. Based on the results obtained up to now, development and research of this time mainly aim to improve strain and fatigue characteristics. As the results, characteristics of strain gages with sensing elements of nichrome V are improved, specifically mechanical hysteresis is decreased, strain limit is increased, etc. Also, improvement is recognized in thermal output, and it becomes clear that dummy gages work effectively. However, a filling method of MgO and an inserting method of active-dummy elements are selected as primary objects to improve strain characteristics, and many hours are taken for these objects, so confirmations of characteristics of platinum-tungsten strain gages, strain sensing elements of which are troublesome to produce, have not been completely done, though the performance of the gages has been improved in several points. As to nichrome V strain gages, there is a fair prospect of obtaining ones, specifications of which are quite close to the goal, though problems in manufacturing technics remain for future. As to platinum-tungsten strain gages, it is expected that similar strain gages to nichrome V are obtainable by improvement in manufacturing of sensing elements. (auth.)

  3. Internally Mounting Strain Gages

    Science.gov (United States)

    Jett, J. R., Jr.

    1984-01-01

    Technique for mounting strain gages inside bolt or cylinder simultaneously inserts gage, attached dowel segment, and length of expandable tubing. Expandable tubing holds gage in place while adhesive cures, assuring even distribution of pressure on gage and area gaged.

  4. Properties of strain gages at cryogenic temperature

    International Nuclear Information System (INIS)

    Shibata, Nobuo; Fujiyoshi, Toshimitsu.

    1978-01-01

    At the time of developing superconduction generators, the stress measurement for rotor parts is required to grasp the safety and performance of the rotor at cryogenic temperature, which is cooled with liquid helium. In case of carrying out the stress measurement with strain gages, the problems are as follows. The strain gages and lead wires are exposed to cryogenic temperature from 4 to 10 K and strong magnetic field of about 3T, and subjected to high centrifugal acceleration of about 500G. In order to establish the techniques of the stress measurement under such conditions, the adhesives and damp-proof coatings for strain gages and strain gages themselves in Japan and foreign countries were examined on the properties at cryogenic temperature. As for the properties of strain gages, mainly the apparent strain owing to temperature change was investigated, and the change of the gage factors was studies only at liquid nitrogen temperature. The stress measurement with strain gages at low temperature had been studied in detail down to liquid nitrogen temperature concerning LNG tanks. The experimental apparatus, the samples, the testing methods and the test results of cooling tests on adhesives and damp-proof coatings, and the temperature characteristics of strain gages are reported. The usable adhesives and coatings were found, and correction by accurate temperature measurement is required for apparent strain. (Kako, I.)

  5. Methodology to measure strains at high temperatures using electrical strain gages with free filaments

    International Nuclear Information System (INIS)

    Atanazio Filho, Nelson N.; Gomes, Paulo T. Vida; Scaldaferri, Denis H.B.; Silva, Luiz L. da; Rabello, Emerson G.; Mansur, Tanius R.

    2013-01-01

    An experimental methodology used for strains measuring at high temperatures is show in this work. In order to do the measurements, it was used electric strain gages with loose filaments attached to a stainless steel 304 beam with specific cements. The beam has triangular shape and a constant thickness, so the strain is the same along its length. Unless the beam surface be carefully prepared, the strain gage attachment is not efficient. The showed results are for temperatures ranging from 20 deg C to 300 deg C, but the experimental methodology could be used to measure strains at a temperature up to 900 deg C. Analytical calculations based on solid mechanics were used to verify the strain gage electrical installation and the measured strains. At a first moment, beam deformations as a temperature function were plotted. After that, beam deformations with different weighs were plotted as a temperature function. The results shown allowed concluding that the experimental methodology is trustable to measure strains at temperatures up to 300 deg C. (author)

  6. Evaluation results of the 700 deg C Chinese strain gages

    Science.gov (United States)

    Hobart, H. F.

    1984-01-01

    There is a continuing interest and need for resistance strain gages capable of making static strain measurements on components located in the hot section of gas turbine engines. A paper by Tsen-tai Wu describes the development and evaluation of high temperature gauges fabricated from specially developed Fe-Cr-Al-V-Ti-Y alloy wire. Several of these gages and a quantity of P12-2 ceramic adhesive were purchased for evaluation. Nine members of the aircraft turbine engine community were invited to participate in an evaluation of these gages. Each participant was sent one strain gage, a small amount of ceramic adhesive, instructions for mounting the gage on a test beam, and a set of suggestions for the experiment. Data on gage factor variation with temperature, apparent strain, and drift are discussed.

  7. Theory and Practice of Shear/Stress Strain Gage Hygrometry

    Science.gov (United States)

    Shams, Qamar A.; Fenner, Ralph L.

    2006-01-01

    Mechanical hygrometry has progressed during the last several decades from crude hygroscopes to state-of-the art strain-gage sensors. The strain-gage devices vary from different metallic beams to strain-gage sensors using cellulose crystallite elements, held in full shear restraint. This old technique is still in use but several companies are now actively pursuing development of MEMS miniaturized humidity sensors. These new sensors use polyimide thin film for water vapor adsorption and desorption. This paper will provide overview about modern humidity sensors.

  8. A new strain gage method for measuring the contractile strain ratio of Zircaloy tubing

    International Nuclear Information System (INIS)

    Hwang, S.K.; Sabol, G.P.

    1988-01-01

    An improved strain gage method for determining the contractile strain ratio (CSR) of Zircaloy tubing was developed. The new method consists of a number of load-unload cyclings at approximately 0.2% plastic strain interval. With this method the CSR of Zircaloy-4 tubing could be determined accurately because it was possible to separate the plastic strains from the elastic strain involvement. The CSR values determined by use of the new method were in good agreement with those calculated from conventional post-test manual measurements. The CSR of the tubing was found to decrease with the amount of deformation during testing because of uneven plastic flow in the gage section. A new technique of inscribing gage marks by use of a YAG laser is discussed. (orig.)

  9. Evaluation test on stability of high temperature strain gage

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toshimi (Kyowa Electronic Instruments Co. Ltd., Tokyo (Japan)); Ito, Haruhiko; Tanaka, Isao; Komori, Yoshihiro

    1983-08-01

    This report deals with the results on a stability test of high temperature strain gage which is utilized for development of the Stethoscope for OGL - 1 Components in Elevated Temperature Services (ab. SOCETS). The test has proved that the weldable strain gage (KHC - 20 - G5) exhibits excellent stability at 500/sup 0/C during 3000 to 4000 hours service and can be applied sufficiently to evaluate integrity of OGL - 1 high temperature pipings and others.

  10. Evaluation test on stability of high temperature strain gage

    International Nuclear Information System (INIS)

    Sato, Toshimi; Ito, Haruhiko; Tanaka, Isao; Komori, Yoshihiro.

    1983-01-01

    This report deals with the results on a stability test of high temperature strain gage which is utilized for development of the Stethoscope for OGL - 1 Components in Elevated Temperature Services (ab. SOCETS). The test has proved that the weldable strain gage (KHC - 20 - G5) exhibits excellent stability at 500 0 C during 3000 to 4000 hours service and can be applied sufficiently to evaluate integrity of OGL - 1 high temperature pipings and others. (author)

  11. Nickel--chromium strain gages for cryogenic stress analysis of superconducting structures in high magnetic fields

    International Nuclear Information System (INIS)

    Freynik, H.S. Jr.; Roach, D.R.; Deis, D.W.; Hirzel, D.G.

    1977-01-01

    Evaluation and calibration measurements were performed on commercial nickel-chromium metal-foil strain gages in a high-magnetic-field (12 T), liquid-helium (4.2 K) environment. The purpose was to fully characterize strain gages for use at cryogenic temperatures in high magnetic fields. In this study, the magnetoresistance of a number of strain gages was measured in three orthogonal directions at mechanical strain levels to 8900 μm/m. As a result, a unique calibration curve was defined for magnetoresistance strain errors that is independent of strain level and field direction to 12 T at 4.2 K. A current strain-gage application is the measurement of superconductor mechanical properties. These gages will soon be used in the stress analysis of superconducting fusion magnets during cooldown from ambient temperatures and during operation at 4.2 K with magnetic fields to 12 T

  12. Evaluation test of high temperature strain gages used in a stethoscope for OGL-1 components in an elevated temperature service

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toshimi (Kyowa Electronic Inst. Co. Ltd. (Japan)); Tanaka, Isao; Komori, Yoshihiro; Suzuki; Toshiaki

    1982-08-01

    The stethoscope for OGL-1 components in a elevated temperature service (SOCETS) is a measuring system of evaluation integrity of structures for high temperature pipings during operations of Japan Material Testing Reactor. This paper is described about the results on fundamental performance on high temperature strain gages. From their test results that have been based on correlation of temperature-timestrain factors, it became clear that two weldable strain gages and a capacitance strain gage were available for strain measurements of OGL-1 components.

  13. Improved Regression Analysis of Temperature-Dependent Strain-Gage Balance Calibration Data

    Science.gov (United States)

    Ulbrich, N.

    2015-01-01

    An improved approach is discussed that may be used to directly include first and second order temperature effects in the load prediction algorithm of a wind tunnel strain-gage balance. The improved approach was designed for the Iterative Method that fits strain-gage outputs as a function of calibration loads and uses a load iteration scheme during the wind tunnel test to predict loads from measured gage outputs. The improved approach assumes that the strain-gage balance is at a constant uniform temperature when it is calibrated and used. First, the method introduces a new independent variable for the regression analysis of the balance calibration data. The new variable is designed as the difference between the uniform temperature of the balance and a global reference temperature. This reference temperature should be the primary calibration temperature of the balance so that, if needed, a tare load iteration can be performed. Then, two temperature{dependent terms are included in the regression models of the gage outputs. They are the temperature difference itself and the square of the temperature difference. Simulated temperature{dependent data obtained from Triumph Aerospace's 2013 calibration of NASA's ARC-30K five component semi{span balance is used to illustrate the application of the improved approach.

  14. Evaluation test of high temperature strain gages used in a stethoscope for OGL-1 components in an elevated temperature service

    International Nuclear Information System (INIS)

    Sato, Toshimi; Tanaka, Isao; Komori, Yoshihiro; Suzuki; Toshiaki.

    1982-01-01

    The stethoscope for OGL-1 components in a elevated temperature service (SOCETS) is a measuring system of evaluation integrity of structures for high temperature pipings during operations of Japan Material Testing Reactor. This paper is described about the results on fundamental performance on high temperature strain gages. From their test results that have been based on correlation of temperature-timestrain factors, it became clear that two weldable strain gages and a capacitance strain gage were available for strain measurements of OGL-1 components. (author)

  15. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of Inflatable Modules

    Science.gov (United States)

    Mohammed, Anil

    2011-01-01

    This paper focuses on integrating a large hatch penetration into inflatable modules of various constructions. This paper also compares load predictions with test measurements. The strain was measured by utilizing photogrammetric methods and strain gages mounted to select clevises that interface with the structural webbings. Bench testing showed good correlation between strain data collected from an extensometer and photogrammetric measurements, even when the material transitioned from the low load to high load strain region of the curve. The full-scale torus design module showed mixed results as well in the lower load and high strain regions. After thorough analysis of photogrammetric measurements, strain gage measurements, and predicted load, the photogrammetric measurements seem to be off by a factor of two.

  16. Nickel--chromium strain gages for cryogenic stress analysis of superconducting structures in high magnetic fields

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Magnetoresistance measurements of strain gages were made. The magnitude and variation of the magnetoresistance of a large number of strain gages were measured for the following conditions: (1) dc magnetic fields up to 12 T, (2) three orthogonal field directions, (3) increasing and decreasing fields, (4) a wide range of strain levels, and (5) liquid helium temperature

  17. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of an Inflatable Module

    Science.gov (United States)

    Valle, Gerard D.; Selig, Molly; Litteken, Doug; Oliveras, Ovidio

    2012-01-01

    This paper documents the integration of a large hatch penetration into an inflatable module. This paper also documents the comparison of analytical load predictions with measured results utilizing strain measurement. Strain was measured by utilizing photogrammetric measurement and through measurement obtained from strain gages mounted to selected clevises that interface with the structural webbings. Bench testing showed good correlation between strain measurement obtained from an extensometer and photogrammetric measurement especially after the fabric has transitioned through the low load/high strain region of the curve. Test results for the full-scale torus showed mixed results in the lower load and thus lower strain regions. Overall strain, and thus load, measured by strain gages and photogrammetry tracked fairly well with analytical predictions. Methods and areas of improvements are discussed.

  18. Strain-gage signal-conditioning system for use in the LCP

    International Nuclear Information System (INIS)

    Ellis, J.F.; Walstrom, P.L.

    1979-01-01

    A strain-gage signal-conditioning system, providing wide-band noise rejection and isolation from high voltages that occur during emergency coil discharges, has been developed and tested. The multichannel system combines double-shielded transformers, neutralizing networks, and bandpass filters (with commercial 3-kHz carrier amplifier modules to isolate the strain gages to 5000 V) eliminate thermoelectric effects, and provide a signal bandwidth of 200 Hz. Common-mode interference occurs primarily as a result of beat-note effects between the carrier and the superimposed noise at frequencies near the odd harmonics of the carrier. The common-mode rejection of the test circuit was measured to be 120 dB for noise at 2750 and 3250 Hz, 135 dB at 3 kHz, and 135 dB and better at the odd harmonics of 9 kHz and above. The system has been successfully used in strain measurements on the toroidal field coils of the ISX-B tokamak and will be used in the Large Coil Test Facility to monitor strains in the energized coil conductors

  19. Evaluation of metal-foil strain gages for cryogenic application in magnetic fields

    International Nuclear Information System (INIS)

    Freynik, H.S. Jr.; Roach, D.R.; Deis, D.W.; Hirzel, D.G.

    1977-01-01

    The requirement for the design and construction of large superconducting magnet systems for fusion research has raised a number of new questions regarding the properties of composite superconducting conductors. One of these, the effect of mechanical stress on the current-carrying capacity of Nb 3 Sn, is of major importance in determining the feasibility of constructing large magnets with this material. A typical experiment for determining such data involves the measurement of critical current versus magnetic field while the conductor is being mechanically strained to various degrees. Techniques are well developed for the current and field measurements, but much less so for the accurate measurement of strain at liquid-helium temperature in a high magnetic field. A study was made of commercial, metal-foil strain gages for use under these conditions. The information developed can also be applied to the use of strain gages as diagnostic tools in superconducting magnets

  20. Thermal expansion measurement of turbine and main steam piping by using strain gages in power plants

    International Nuclear Information System (INIS)

    Na, Sang Soo; Chung, Jae Won; Bong, Suk Kun; Jun, Dong Ki; Kim, Yun Suk

    2000-01-01

    One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shaft alignment problem which sometimes is changed by thermal expansion and external force, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants

  1. Suitability of Strain Gage Sensors for Integration into Smart Sport Equipment: A Golf Club Example.

    Science.gov (United States)

    Umek, Anton; Zhang, Yuan; Tomažič, Sašo; Kos, Anton

    2017-04-21

    Wearable devices and smart sport equipment are being increasingly used in amateur and professional sports. Smart sport equipment employs various sensors for detecting its state and actions. The correct choice of the most appropriate sensor(s) is of paramount importance for efficient and successful operation of sport equipment. When integrated into the sport equipment, ideal sensors are unobstructive, and do not change the functionality of the equipment. The article focuses on experiments for identification and selection of sensors that are suitable for the integration into a golf club with the final goal of their use in real time biofeedback applications. We tested two orthogonally affixed strain gage (SG) sensors, a 3-axis accelerometer, and a 3-axis gyroscope. The strain gage sensors are calibrated and validated in the laboratory environment by a highly accurate Qualisys Track Manager (QTM) optical tracking system. Field test results show that different types of golf swing and improper movement in early phases of golf swing can be detected with strain gage sensors attached to the shaft of the golf club. Thus they are suitable for biofeedback applications to help golfers to learn repetitive golf swings. It is suggested that the use of strain gage sensors can improve the golf swing technical error detection accuracy and that strain gage sensors alone are enough for basic golf swing analysis. Our final goal is to be able to acquire and analyze as many parameters of a smart golf club in real time during the entire duration of the swing. This would give us the ability to design mobile and cloud biofeedback applications with terminal or concurrent feedback that will enable us to speed-up motor skill learning in golf.

  2. Stress Measurement around a Circular Role in a Cantilever Beam under Bending Moment Using Strain Gage and Reflective Photoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Tae Hyun; Park, Tae Geun; Yang, Min Bok [Kunsan National University, Gunsan (Korea, Republic of)

    2006-10-15

    It is necessary to study on the stress concentration experimentally, which is the main reason to avoid mechanical dilapidation and failure, when designing a mechanical structure. Stress concentration factor of a specimen of cantilever beam with a circular hole in the center was measured using both strain gage and photoelastic methods in this paper. In strain-gage measurement, three strain gages along the line near a hole of the specimen were installed and maximum strain was extrapolated from three measurements. In photoelastic measurement, two methods were employed. First, the Babinet-Soleil compensation method was used to measure the maximum strain. Secondly, photoelastic 4-step phase shilling method was applied to observe the strain distribution around the hole. Measurements obtained by different experiments were comparable within the range of experimental error

  3. Stress Measurement around a Circular Role in a Cantilever Beam under Bending Moment Using Strain Gage and Reflective Photoelasticity

    International Nuclear Information System (INIS)

    Baek, Tae Hyun; Park, Tae Geun; Yang, Min Bok

    2006-01-01

    It is necessary to study on the stress concentration experimentally, which is the main reason to avoid mechanical dilapidation and failure, when designing a mechanical structure. Stress concentration factor of a specimen of cantilever beam with a circular hole in the center was measured using both strain gage and photoelastic methods in this paper. In strain-gage measurement, three strain gages along the line near a hole of the specimen were installed and maximum strain was extrapolated from three measurements. In photoelastic measurement, two methods were employed. First, the Babinet-Soleil compensation method was used to measure the maximum strain. Secondly, photoelastic 4-step phase shilling method was applied to observe the strain distribution around the hole. Measurements obtained by different experiments were comparable within the range of experimental error

  4. Iterative Strain-Gage Balance Calibration Data Analysis for Extended Independent Variable Sets

    Science.gov (United States)

    Ulbrich, Norbert Manfred

    2011-01-01

    A new method was developed that makes it possible to use an extended set of independent calibration variables for an iterative analysis of wind tunnel strain gage balance calibration data. The new method permits the application of the iterative analysis method whenever the total number of balance loads and other independent calibration variables is greater than the total number of measured strain gage outputs. Iteration equations used by the iterative analysis method have the limitation that the number of independent and dependent variables must match. The new method circumvents this limitation. It simply adds a missing dependent variable to the original data set by using an additional independent variable also as an additional dependent variable. Then, the desired solution of the regression analysis problem can be obtained that fits each gage output as a function of both the original and additional independent calibration variables. The final regression coefficients can be converted to data reduction matrix coefficients because the missing dependent variables were added to the data set without changing the regression analysis result for each gage output. Therefore, the new method still supports the application of the two load iteration equation choices that the iterative method traditionally uses for the prediction of balance loads during a wind tunnel test. An example is discussed in the paper that illustrates the application of the new method to a realistic simulation of temperature dependent calibration data set of a six component balance.

  5. A Dual-Range Strain Gage Weighing Transducer Employing Automatic Switching

    Science.gov (United States)

    Rodger A. Arola

    1968-01-01

    Describes a dual-range strain gage transducer which has proven to be an excellent weight-sensing device for weighing trees and tree-length logs; discusses basic principals of the design and operation; and shows that a single transducer having two sensitivity ranges with automatic internal switching can sense weight with good repeatability and that one calibration curve...

  6. Wind Tunnel Strain-Gage Balance Calibration Data Analysis Using a Weighted Least Squares Approach

    Science.gov (United States)

    Ulbrich, N.; Volden, T.

    2017-01-01

    A new approach is presented that uses a weighted least squares fit to analyze wind tunnel strain-gage balance calibration data. The weighted least squares fit is specifically designed to increase the influence of single-component loadings during the regression analysis. The weighted least squares fit also reduces the impact of calibration load schedule asymmetries on the predicted primary sensitivities of the balance gages. A weighting factor between zero and one is assigned to each calibration data point that depends on a simple count of its intentionally loaded load components or gages. The greater the number of a data point's intentionally loaded load components or gages is, the smaller its weighting factor becomes. The proposed approach is applicable to both the Iterative and Non-Iterative Methods that are used for the analysis of strain-gage balance calibration data in the aerospace testing community. The Iterative Method uses a reasonable estimate of the tare corrected load set as input for the determination of the weighting factors. The Non-Iterative Method, on the other hand, uses gage output differences relative to the natural zeros as input for the determination of the weighting factors. Machine calibration data of a six-component force balance is used to illustrate benefits of the proposed weighted least squares fit. In addition, a detailed derivation of the PRESS residuals associated with a weighted least squares fit is given in the appendices of the paper as this information could not be found in the literature. These PRESS residuals may be needed to evaluate the predictive capabilities of the final regression models that result from a weighted least squares fit of the balance calibration data.

  7. Problems in use and security of measurement of high temperature strain gages at various temperature limits up to 10000C

    International Nuclear Information System (INIS)

    Ziegler, K.

    1982-01-01

    The examples given show the quality and use of manufacturers' data for a series of behaviour criteria for strain gages in the high temperature region. These results should not only be regarded critically. The manufacturer must appreciate that the very costly programme of investigations on the users' side represents a product development for large parts for the manufacturer of the strain gauges. It would therefore be desirable if these considerations were to initiate investigations on the manufacturer's part, in order to clear up the problematic are of the use of strain gages in the high temperature field, in order to provide the customer with more reliable and better strain gage characteristics for very expensive high temperature strain measurements. (orig.) [de

  8. Indium tin oxide thin film strain gages for use at elevated temperatures

    Science.gov (United States)

    Luo, Qing

    A robust ceramic thin film strain gage based on indium-tin-oxide (ITO) has been developed for static and dynamic strain measurements in advanced propulsion systems at temperatures up to 1400°C. These thin film sensors are ideally suited for in-situ strain measurement in harsh environments such as those encountered in the hot sections of gas turbine engines. A novel self-compensation scheme was developed using thin film platinum resistors placed in series with the active strain element (ITO) to minimize the thermal effect of strain or apparent strain. A mathematical model as well as design rules were developed for the self-compensated circuitry using this approach and close agreement between the model and actual static strain results has been achieved. High frequency dynamic strain tests were performed at temperatures up to 500°C and at frequencies up to 2000Hz to simulate conditions that would be encountered during engine vibration fatigue. The results indicated that the sensors could survive extreme test conditions while maintaining sensitivity. A reversible change in sign of the piezoresistive response from -G to +G was observed in the vicinity of 950°C, suggesting that the change carrier responsible for conduction in the ITO gage had been converted from a net "n-carrier" to a net "p-carrier" semiconductor. Electron spectroscopy for chemical analysis (ESCA) of the ITO films suggested they experienced an interfacial reaction with the Al2O3 substrate at 1400°C. It is likely that oxygen uptake from the substrate is responsible for stabilizing the ITO films to elevated temperatures through the interfacial reaction. Thermo gravimetric analysis of ITO films on alumina at elevated temperatures showed no sublimation of ITO films at temperature up to 1400°C. The surface morphology of ITO films heated to 800, 1200 and 1400°C were also evaluated by atomic force microscopy (AFM). A linear current-voltage (I--V) characteristic indicated that the contact interface

  9. Inexpensive Bolt-Load Gage

    Science.gov (United States)

    Long, M. J.

    1983-01-01

    "Built-in" gage determines whether large bolt or stud has been torqued to desired load and provides for continuous inspection to ensure proper load is being maintained. Gage detects longitudinal stress/strain bolt; requires no electronic or sonic test equipment.

  10. Investigation of factors affecting the calibration of strain gage based transducers (''Goodzeit gages'') for SSC magnets

    International Nuclear Information System (INIS)

    Davidson, M.; Gilbertson, A.; Dougherty, M.

    1991-03-01

    These transducers are designed to measure stresses on SSC collared coils. They are individually calibrated with a bonded ten-stack of SSC inner coil cable by applying a known load and reading corresponding output from the gages. The transducer is supported by a notched ''backing plate'' that allows for bending of the gage beam during calibration or in use with an actual coil. Several factors affecting the calibration and use of the transducers are: the number of times a ''backing plate'' is used, the similarities or difficulties between bonded ten-stacks, and the differences between the ten-stacks and the coil they represent. The latter is probably the most important because a calibration curve is a model of how a transducer should react within a coil. If the model is wrong, the calibration curve is wrong. Information will be presented regarding differences in calibrations between Brookhaven National Labs (also calibrating these transducers) and Fermilab -- what caused these differences, the investigation into the differences between coils and ten-stacks and how they relate to transducer calibration, and some suggestions for future calibrations

  11. Thermal expansion and magnetostriction measurements at cryogenic temperature using the strain gage method

    Science.gov (United States)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-03-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra low temperature (<77 K) environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gage method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 K and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  12. Review of Trackside Monitoring Solutions: From Strain Gages to Optical Fibre Sensors

    Directory of Open Access Journals (Sweden)

    Georges Kouroussis

    2015-08-01

    Full Text Available A review of recent research on structural monitoring in railway industry is proposed in this paper, with a special focus on stress-based solutions. After a brief analysis of the mechanical behaviour of ballasted railway tracks, an overview of the most common monitoring techniques is presented. A special attention is paid on strain gages and accelerometers for which the accurate mounting position on the track is requisite. These types of solution are then compared to another modern approach based on the use of optical fibres. Besides, an in-depth discussion is made on the evolution of numerical models that investigate the interaction between railway vehicles and tracks. These models are used to validate experimental devices and to predict the best location(s of the sensors. It is hoped that this review article will stimulate further research activities in this continuously expanding field.

  13. Quantum dots as mineral- and matrix-specific strain gages for bone biomechanical studies

    Science.gov (United States)

    Zhu, Peizhi; Xu, Jiadi; Morris, Michael; Ramamoorthy, Ayyalusamy; Sahar, Nadder; Kohn, David

    2009-02-01

    We report the use of quantum dots (Qdots) as strain gages in the study of bone biomechanics using solid state nuclear magnetic resonance (NMR) spectroscopy. We have developed solid state NMR sample cells for investigation of deformations of bone tissue components at loads up to several Mega Pascal. The size constraints of the NMR instrumentation limit the bone specimen diameter and length to be no greater than 2-3 mm and 30 mm respectively. Further, magic angle spinning (MAS) solid state NMR experiments require the use of non-metallic apparatus that can be rotated at kilohertz rates. These experimental constraints preclude the use of standard biomechanical measurement systems. In this paper we explore the use of quantum dot center of gravity measurement as a strain gage technology consistent with the constraints of solid state NMR. We use Qdots that bind calcium (625 nm emission) and collagen (705 nm emission) for measurement of strain in these components. Compressive loads are applied to a specimen in a cell through a fine pitch screw turned with a mini-torque wrench. Displacement is measured as changes in the positions of arrays of quantum dots on the surface of a specimen. Arrays are created by spotting the specimen with dilute suspensions of Qdots. Mineral labeling is achieved with 705 nm carboxylated dots and matrix labeling with 565 nm quantum dots conjugated to collagen I antibodies. After each load increment the new positions of the quantum dots are measured by fluorescence microscopy. Changes in Qdot center of gravity as a function of applied load can be measured with submicron accuracy.

  14. GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow

    Science.gov (United States)

    Falcone, James A.

    2011-01-01

    This dataset, termed "GAGES II", an acronym for Geospatial Attributes of Gages for Evaluating Streamflow, version II, provides geospatial data and classifications for 9,322 stream gages maintained by the U.S. Geological Survey (USGS). It is an update to the original GAGES, which was published as a Data Paper on the journal Ecology's website (Falcone and others, 2010b) in 2010. The GAGES II dataset consists of gages which have had either 20+ complete years (not necessarily continuous) of discharge record since 1950, or are currently active, as of water year 2009, and whose watersheds lie within the United States, including Alaska, Hawaii, and Puerto Rico. Reference gages were identified based on indicators that they were the least-disturbed watersheds within the framework of broad regions, based on 12 major ecoregions across the United States. Of the 9,322 total sites, 2,057 are classified as reference, and 7,265 as non-reference. Of the 2,057 reference sites, 1,633 have (through 2009) 20+ years of record since 1950. Some sites have very long flow records: a number of gages have been in continuous service since 1900 (at least), and have 110 years of complete record (1900-2009) to date. The geospatial data include several hundred watershed characteristics compiled from national data sources, including environmental features (e.g. climate – including historical precipitation, geology, soils, topography) and anthropogenic influences (e.g. land use, road density, presence of dams, canals, or power plants). The dataset also includes comments from local USGS Water Science Centers, based on Annual Data Reports, pertinent to hydrologic modifications and influences. The data posted also include watershed boundaries in GIS format. This overall dataset is different in nature to the USGS Hydro-Climatic Data Network (HCDN; Slack and Landwehr 1992), whose data evaluation ended with water year 1988. The HCDN identifies stream gages which at some point in their history had

  15. Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites

    Directory of Open Access Journals (Sweden)

    Hongbo Dai

    2015-07-01

    Full Text Available This paper describes the development of an innovative carbon nanotube-based non-woven composite sensor that can be tailored for strain sensing properties and potentially offers a reliable and cost-effective sensing option for structural health monitoring (SHM. This novel strain sensor is fabricated using a readily scalable process of coating Carbon nanotubes (CNT onto a nonwoven carrier fabric to form an electrically-isotropic conductive network. Epoxy is then infused into the CNT-modified fabric to form a free-standing nanocomposite strain sensor. By measuring the changes in the electrical properties of the sensing composite the deformation can be measured in real-time. The sensors are repeatable and linear up to 0.4% strain. Highest elastic strain gage factors of 1.9 and 4.0 have been achieved in the longitudinal and transverse direction, respectively. Although the longitudinal gage factor of the newly formed nanocomposite sensor is close to some metallic foil strain gages, the proposed sensing methodology offers spatial coverage, manufacturing customizability, distributed sensing capability as well as transverse sensitivity.

  16. Analysis of residual transverse stresses in a thick UD glass/polyester pultruded profile using hole drilling with strain gage and digital image correlation

    Science.gov (United States)

    Yuksel, Onur; Baran, Ismet; Ersoy, Nuri; Akkerman, Remko

    2018-05-01

    Process induced stresses inherently exist in fiber reinforced polymer composites particularly in thick parts due to the presence of non-uniform cure, shrinkage and thermal expansion/contraction during manufacturing. In order to increase the reliability and the performance of the composite materials, process models are developed to predict the residual stress formation. The accuracy of the process models is dependent on the geometrical (micro to macro), material and process parameters as well as the numerical implementation. Therefore, in order to have reliable process modelling framework, there is a need for validation and if necessary calibration of the developed models. This study focuses on measurement of the transverse residual stresses in a relatively thick pultruded profile (20×20 mm) made of glass/polyester. Process-induced residual stresses in the middle of the profile are examined with different techniques which have never been applied for transverse residual stresses in thick unidirectional composites. Hole drilling method with strain gage and digital image correlation are employed. Strain values measured from measurements are used in a finite element model (FEM) to simulate the hole drilling process and predict the residual stress level. The measured released strain is found to be approximately 180 μm/m from the strain gage. The tensile residual stress at the core of the profile is estimated approximately as 7-10 MPa. Proposed methods and measured values in this study will enable validation and calibration of the process models based on the residual stresses.

  17. Streamflow Gaging Stations

    Data.gov (United States)

    Department of Homeland Security — This map layer shows selected streamflow gaging stations of the United States, Puerto Rico, and the U.S. Virgin Islands, in 2013. Gaging stations, or gages, measure...

  18. Dynamic testing of POSI-SEAL motor-operated butterfly valves using strain gages

    International Nuclear Information System (INIS)

    Richard, M.C.; Chiou, D.

    1994-01-01

    Utilities operating nuclear power plants recognize that the correct functioning of all motor-operated valves, and particularly those in safety-related systems, is of paramount importance. The U.S. Nuclear Regulatory Commission has issued Generic Letter 89-10 relative to this concern. Operability must be demonstrated under design-basis conditions. In order to demonstrate operability of motor-operated butterfly valves, the valve stem torque must be determined. The valve stem torque is a function of seat material, stem packing, stem bearing friction, and hydrodynamic lift and drag. The total valve operating hydrodynamic torque can be predicted using the valve manufacturer's data and the differential pressure. In order to validate the valve manufacturer's data, the actual total valve hydrodynamic torque is measured using strain gages mounted directly on the valve stem. This paper presents the results of comparing the predicted total valve operating hydrodynamic torque with the actual total valve operating hydrodynamic torque for six POSI-SEAL Class 150 high performance butterfly valves

  19. An introduction to NH-A neutron earth base moisture gage

    International Nuclear Information System (INIS)

    Zhu Huaian; Jiang Yulan; Yin Xilin; Yu Peiying; Luo Pinjie

    1988-01-01

    NH-A neutron earth base moisture gage is an accurate instrument which can measure earth moisture rapidly and non-destructively and display moisture results immediately. The deviation is estimated at ±0.012g/cm

  20. Monitoring of prestressed concrete pressure vessels. 1. An overview of concrete embedment strain instrumentation and calibration test results for selected concrete embedment strain meters

    International Nuclear Information System (INIS)

    Naus, D.J.; Hurtt, C.C.

    1978-01-01

    The report presents results of calibration tests on strain meters. The approach was divided into two phases: (1) an overview of meter performance criteria for PCPV applications and techniques for strain measurements in concrete and (2) procurement of commercially available gages and their evaluation to assess the reliability of manufacturer-supplied calibration factors. Calibration test results for gages embedded in 15.2-cm-diam by 54-cm cylindrical concrete specimens indicated that calibration factors should be determined (verified) by embedding samples of the gages in test specimens fabricated using a representative mix and that further research should be conducted on other measurement techniques based on inductance, capacitance, semiconductors, and fluidic principles

  1. Improved nuclear gage development - phase i and ii. Interim report

    International Nuclear Information System (INIS)

    Chan, E.L.; Champion, F.C.; Castanon, D.R.; Chang, J.C.; Hannon, J.B.

    1976-09-01

    This report contains Phase I and II of an investigation covering the design and construction of a prototype nuclear-moisture-density backscatter gage. Gage development was based upon the analysis of several factors which affect gage performance. This research indicated that the prototype gage measurements are approximately equivalent to measurements obtained by a commercial transmission gage. The implication of this research finding concerns the qualification of the backscatter test method as a valid, reliable, and expedient procedure for determining in-situ soil conditions

  2. The effects of incomplete annealing on the temperature dependence of sheet resistance and gage factor in aluminum and phosphorus implanted silicon on sapphire

    Science.gov (United States)

    Pisciotta, B. P.; Gross, C.

    1976-01-01

    Partial annealing of damage to the crystal lattice during ion implantation reduces the temperature coefficient of resistivity of ion-implanted silicon, while facilitating controlled doping. Reliance on this method for temperature compensation of the resistivity and strain-gage factor is discussed. Implantation conditions and annealing conditions are detailed. The gage factor and its temperature variation are not drastically affected by crystal damage for some crystal orientations. A model is proposed to account for the effects of electron damage on the temperature dependence of resistivity and on silicon piezoresistance. The results are applicable to the design of silicon-on-sapphire strain gages with high gage factors.

  3. GAGES: A stream gage database for evaluating natural and alteredflow conditions in the conterminous United States

    Science.gov (United States)

    Falcone, James A.; Carlisle, Daren M.; Wolock, David M.; Meador, Michael R.

    2010-01-01

    Stream flow is a controlling element in the ecology of rivers and streams. Knowledge of the natural flow regime facilitates the assessment of whether specific hydrologic attributes have been altered by humans in a particular stream and the establishment of specific goals for stream-flow restoration. Because most streams are ungaged or have been altered by human influences, characterizing the natural flow regime is often only possible by estimating flow characteristics based on nearby stream gages of reference quality, i.e., gaged locations that are least disturbed by human influences. The ability to evaluate natural stream flow, that which is not altered by human activities, would be enhanced by the existence of a nationally consistent and up-to-date database of gages in relatively undisturbed watersheds.

  4. Strain Gage Load Calibration of the Wing Interface Fittings for the Adaptive Compliant Trailing Edge Flap Flight Test

    Science.gov (United States)

    Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.

    2014-01-01

    This is the presentation to follow conference paper of the same name. The adaptive compliant trailing edge (ACTE) flap experiment safety of flight requires that the flap to wing interface loads be sensed and monitored in real time to ensure that the wing structural load limits are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces will be monitored and each contains four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty one applied test load cases were developed using the predicted in-flight loads for the ACTE experiment.

  5. Flexible Riser Monitoring Using Hybrid Magnetic/Optical Strain Gage Techniques through RLS Adaptive Filtering

    Directory of Open Access Journals (Sweden)

    Daniel Pipa

    2010-01-01

    Full Text Available Flexible riser is a class of flexible pipes which is used to connect subsea pipelines to floating offshore installations, such as FPSOs (floating production/storage/off-loading unit and SS (semisubmersible platforms, in oil and gas production. Flexible risers are multilayered pipes typically comprising an inner flexible metal carcass surrounded by polymer layers and spiral wound steel ligaments, also referred to as armor wires. Since these armor wires are made of steel, their magnetic properties are sensitive to the stress they are subjected to. By measuring their magnetic properties in a nonintrusive manner, it is possible to compare the stress in the armor wires, thus allowing the identification of damaged ones. However, one encounters several sources of noise when measuring electromagnetic properties contactlessly, such as movement between specimen and probe, and magnetic noise. This paper describes the development of a new technique for automatic monitoring of armor layers of flexible risers. The proposed approach aims to minimize these current uncertainties by combining electromagnetic measurements with optical strain gage data through a recursive least squares (RLSs adaptive filter.

  6. Versatile radiation gaging system

    International Nuclear Information System (INIS)

    Long, P.J.

    1978-01-01

    The attributes of computerized versatile radiation gaging systems are described. The gages are used to measure plating thicknesses and material characteristics that can be determined from radiation attenuation and/or x-ray fluorescence measurements

  7. Low pressure gage type VM-01

    International Nuclear Information System (INIS)

    Brandea, I.; Curuia, M.; Culcer, M.

    2000-01-01

    High vacuum systems became an important element of many applied technologies, from gas analysers to rocket engines. An intelligent apparatus for pressure measurement in the range of 10 -3 - 10 -8 mbar, with incorporated INTEL 80C51 microcontroller is presented. Based on a Bayard-Alpert hot cathode gage, equally developed in our institute, the pressure gage allows the displaying of different operation parameters and also of the error codes for different kinds of malfunctioning, as for instance missing of grid voltage, grid-collector breakdown, pressure increasing above 10 -3 mbar. Its operation is based on a microcontroller assembly language program especially worked out and introduced in the central units EPROM memory. The gage characteristics for different gases are also introduced in an EPROM memory, and the type of the gas is selected by the operator from the front panel. One can select also from the front panel the pressure unit (mbar, torr, Pa). If a remote control is necessary, this can be done by means of a PC, with a program written in the LabVIEW graphical programming language. The pressure gage was tested and calibrated in relation with an EDWARDS vacuum measuring system and provided a good accuracy (better than 25%). Its field of application is both laboratory and industrial measurements. Its main features are: - supply voltage, 220 V ac / 50 Hz; - power consumption, 30 W; - gage's grid supply voltage, 160 V; grid current, 2 mA / p = 10 -5 ...10 -8 mbar and 0.2 mA / p = 10 -3 ...10 -5 mbar; - cathode heating current, max. 3 A; - measuring range, 10 -3 ...10 -8 mbar; - error of measurement, ±35%; - remote control, according to the RS232 standard; - size, 320 x 200 x 100 mm; - weight, 3.5 Kg. (authors)

  8. Film-based Sensors with Piezoresistive Molecular Conductors as Active Components Strain Damage and Thermal Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Laukhina

    2011-02-01

    Full Text Available The article is addressed to the development of flexible all-organic bi layer (BL film-based sensors being capable of measuring strain as a well-defined electrical signal in a wide range of elongations and temperature. The purpose was achieved by covering polycarbonate films with the polycrystalline layer of a high piezoresistive organic molecular conductor. To determine restrictions for sensor applications, the effect of monoaxial strain on the resistance and texture of the sensing layers of BL films was studied. The experiments have shown that the maximum strain before fracture is about 1 %. A thermal regeneration of the sensing layer of the BL film-based sensors that were damaged by cyclic load is also described. These sensors are able to take the place of conventional metal-based strain and pressure gages in low cost innovative controlling and monitoring technologies.

  9. Non-metallic gage for gap

    International Nuclear Information System (INIS)

    Hiroki, Hideo.

    1996-01-01

    The present invention concerns a non-metallic gage for detecting a gap which can not be seen from the out side such as a gap between a water pipe and fuel rods without damaging an objective material as to whether the gap is formed within a standard value or not. The gage is made of a synthetic resin, for example, polyacetal having such a hardness as not damaging the objective material and endurable to repeating flexure upon use. The gage comprises a short gage portion having a predetermined standard thickness and an flexible extended connection portion reduced in the thickness. Provision of the extended connection portion enables wide range flexure thereof such as ±60deg relative to insertion direction during insertion operation upon testing to solve a drawback in the prior art such as worry of breakage of the gage, thereby enabling to conduct inspection rapidly at high reliability. (N.H.)

  10. Strain measurement on a compact nuclear reactor steam generator

    International Nuclear Information System (INIS)

    Scaldaferri, Denis Henrique Bianchi; Gomes, Paulo de Tarso Vida; Mansur, Tanius Rodrigues; Pozzo, Renato del; Mola, Jairo

    2011-01-01

    This work presents the strain measurement procedures applied to a compact nuclear reactor steam generator, during a hydrostatic test, using strain gage technology. The test was divided in two steps: primary side test and secondary side test. In the primary side test twelve points for strain measurement using rectangular rosettes, three points (two external and one internal) for temperature measurement using special strain gages and one point for pressure measurement using a pressure transducer were monitored. In the secondary side test 18 points for strain measurement using rectangular rosettes, four points (two external and two internal) for temperature measurement using special strain gages and one point for pressure measurement using a pressure transducer were monitored. The measurement points on both internal and external pressurizer walls were established from pre-calculated stress distribution by means of numerical approach (finite elements modeling). Strain values using a quarter Wheatstone bridge circuit were obtained. Stress values, from experimental strain were determined, and to numerical calculation results were compared. (author)

  11. Design, analysis, and initial testing of a fiber-optic shear gage for three-dimensional, high-temperature flows

    Science.gov (United States)

    Orr, Matthew W.

    This investigation concerns the design, analysis, and initial testing of a new, two-component wall shear gage for 3D, high-temperature flows. This gage is a direct-measuring, non-nulling design with a round head surrounded by a small gap. Two flexure wheels are used to allow small motions of the floating head. Fiber-optic displacement sensors measure how far the polished faces of counterweights on the wheels move in relation to a fixed housing as the primary measurement system. No viscous damping was required. The gage has both fiber-optic instrumentation and strain gages mounted on the flexures for validation of the newer fiber optics. The sensor is constructed of Haynes RTM 230RTM, a high-temperature nickel alloy. The gage housing is made of 316 stainless steel. All components of the gage in pure fiber-optic form can survive to a temperature of 1073 K. The bonding methods of the backup strain gages limit their maximum temperature to 473 K. The dynamic range of the gage is from 0--500 Pa (0--10g) and higher shears can be measured by changing the floating head size. Extensive use of finite element modeling was critical to the design and analysis of the gage. Static structural, modal, and thermal analyses were performed on the flexures using the ANSYS finite element package. Static finite element analysis predicted the response of the flexures to a given load, and static calibrations using a direct force method confirmed these results. Finite element modal analysis results were within 16.4% for the first mode and within 30% for the second mode when compared with the experimentally determined modes. Vibration characteristics of the gage were determined from experimental free vibration data after the gage was subjected to an impulse. Uncertainties in the finished geometry make this level of error acceptable. A transient thermal analysis examined the effects of a very high heat flux on the exposed head of the gage. The 100,000 W/m2 heat flux used in this analysis is

  12. Development of piping strain sensor for stress evaluation

    International Nuclear Information System (INIS)

    Takahama, Tsunemichi; Nishimura, Kazuma; Ninomiya, Seiichiro; Matsumoto, Yoshihiro; Harada, Yutaka

    2014-01-01

    In a small diameter piping, stresses are generated due to internal fluid or pump vibrations especially around the welding parts. Authors have successfully developed a pipe strain sensor which is able to measure such stresses. Unlike conventional methods using strain gages and adhesive bond, the sensor can measure the strain without putting adhesive bond on the piping surface. However, the strain sensor can provide measurements with a level of accuracy equivalent to that of conventional method using strain gages and adhesive bond. Accordingly, the strain sensor can significantly reduce the working time without any loss of the measurement accuracy. (author)

  13. How the Schmidt-Boelter gage really works

    International Nuclear Information System (INIS)

    Kidd, C.T.; Nelson, C.G.

    1995-01-01

    The Schmidt-Boelter gage is but one version of a proven heat flux measurement concept generally referred to as the axial temperature gradient method. This gage has been used since the mid-1950's and has gained wide acceptance because the transducer provides a high-level, self-generating output signal directly proportional to the heat flux incident upon the sensing surface. Utilization of this transducer in aerospace measurements since the late 1970's has broadened the scope of application of the device, but has raised questions concerning the proper interpretation of the results. The principle of operation of the gage can correctly be divided into two distinct categories-the thermal and thermoelectric functions. The thermal response of the gage can be approximated by simple steady-state equations. But due to the number of different materials required in the construction of the gage, the transient temperature and heat conduction in gage members are more accurately characterized by finite-element thermal analysis techniques. Results of these analyses are presented in graphical format in the paper. Thermoelectric characteristics of the gage are accurately defined by basic principles of thermoelectric thermometry. Altogether, the analyses presented in this paper demonstrate how this transducer actually works. The conclusions presented herein may be different than opinions held by most casual users regarding gage operation. Results of limited laboratory experiments which support the analyses are described and presented

  14. Standard guide for high-temperature static strain measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This guide covers the selection and application of strain gages for the measurement of static strain up to and including the temperature range from 425 to 650°C (800 to 1200°F). This guide reflects some current state-of-the-art techniques in high temperature strain measurement, and will be expanded and updated as new technology develops. 1.2 This practice assumes that the user is familiar with the use of bonded strain gages and associated signal conditioning and instrumentation as discussed in Refs. (1) and (2). The strain measuring systems described are those that have proven effective in the temperature range of interest and were available at the time of issue of this practice. It is not the intent of this practice to limit the user to one of the gage types described nor is it the intent to specify the type of system to be used for a specific application. However, in using any strain measuring system including those described, the proposer must be able to demonstrate the capability of the proposed sy...

  15. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.

    Science.gov (United States)

    Feng, Guo-Hua; Huang, Wei-Lun

    2014-12-01

    This paper presents a smart tuning-fork-shaped ionic polymer metal composite (IPMC) clamping actuator for biomedical applications. The two fingers of the actuator, which perform the clamping motion, can be electrically controlled through a unique electrode design on the IPMC material. The generated displacement or strain of the fingers can be sensed using an integrated soft strain-gage sensor. The IPMC actuator and associated soft strain gage were fabricated using a micromachining technique. A 13.5×4×2 mm(3) actuator was shaped from Nafion solution and a selectively grown metal electrode formed the active region. The strain gage consisted of patterned copper foil and polyethylene as a substrate. The relationship between the strain gage voltage output and the displacement at the front end of the actuator's fingers was characterized. The equivalent Young's modulus, 13.65 MPa, of the soft-strain-gage-integrated IPMC finger was analyzed. The produced clamping force exhibited a linear increasing rate of 1.07 mN/s, based on a dc driving voltage of 7 V. Using the developed actuator to clamp soft matter and simultaneously acquire its Young's modulus was achieved. This demonstrated the feasibility of the palpation function and the potential use of the actuator in minimally invasive surgery. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. INDUSTRIAL MEASUREMENT AND CONTROL OF SLURRIES USING RADIOISOTOPE GAGES

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jr., H. L.

    1963-09-15

    Radioactivity gages are available in a variety of configurations to suit the problem of process measurement. The placement of any gage configuration must be selected carefully so that the process material flowing past the gage is representative of actual process conditions. The initial calibration of a gage is relatively simple but when the gage reading is compared with the existing manual sample measurement, confusion can result if the manual measurement is not basically accurate or subject to human error. Routine mechanical and electrical maintenance of the gage is relatively simple, because modern gages use solidstate circuitry with modular plug-in construction. Thus, routine maintenance of the gage is usually limited to restandardization to compensate for source decay. Two types of zero suppression are available, via. fixed and reductionwith-time. If reduction-with-time suppression is used the re-standardization period is about ten times longer than that required for fixed-zero suppression. Routine maintenance of the process piping and machinery is necessary to assure that a representative process material sample continues to flow through the gage. (auth)

  17. Sensitivity of hot-cathode ionization vacuum gages in several gases

    Science.gov (United States)

    Holanda, R.

    1972-01-01

    Four hot-cathode ionization vacuum gages were calibrated in 12 gases. The relative sensitivities of these gages were compared to several gas properties. Ionization cross section was the physical property which correlated best with gage sensitivity. The effects of gage accelerating voltage and ionization-cross-section energy level were analyzed. Recommendations for predicting gage sensitivity according to gage type were made.

  18. Fast recovery strain measurements in a nuclear test environment

    International Nuclear Information System (INIS)

    Kitchen, W.R.; Nauman, W.J.; Vollmer, D.W.

    1979-01-01

    The recovery of early-time (50 μs or less) strain gage data on structural response experiments in underground nuclear tests has been a continuing problem for experimenters at the Nevada Test Site. Strain measurement is one of the primary techniques used to obtain experimental data for model verification and correlation with predicted effects. Peak strains generally occur within 50 to 100 μs of the radiation exposure. Associated with the exposure is an intense electromagnetic impulse that produces potentials of kilovolts and currents of kiloamperes on the experimental structures. For successful operation, the transducer and associated recording system must recover from the initial noise overload and accurately track the strain response within about 50 μs of the nuclear detonation. A gaging and fielding technique and a recording system design that together accomplish these objectives are described. Areas discussed include: (1) noise source model; (2) experimental cassette design, gage application, grounding, and shielding; (3) cable design and shielding between gage and recorder; (4) recorder design including signal conditioner/amplifier, digital encoder, buffer memory, and uphole data transmission; and (5) samples of experimental data

  19. Polymer film strain gauges for measuring large elongations

    Science.gov (United States)

    Kondratov, A. P.; Zueva, A. M.; Varakin, R. S.; Taranec, I. P.; Savenkova, I. A.

    2018-02-01

    The paper shows the possibility to print polymer strain gages, microstrip lines, coplanar waveguides, and other prints for avionics using printing technology and equipment. The methods of screen and inkjet printing have been complemented by three new operations of preparing print films for application of an electrically conductive ink layer. Such additional operations make it possible to enhance the conductive ink layer adhesion to the film and to manufacture strain gages for measuring large elongations.

  20. Comparison of Ruska and Rosemont pressure gages (U)

    International Nuclear Information System (INIS)

    Harvel, C.D.

    1991-01-01

    This paper reports that a 150,000 gallon tank was calibrated during the months of May and July of 1990. Six calibration runs were completed. Ruska and Rosemont pressure gages were installed to make in-tank liquid level measurements during the calibration process. A flow meter was used to measure the incremental volumes of water added to or removed from the tank. The Ruska and Rosemont gages were compared to determine the gage best suited for tank operation. One comparison criteria was the tolerance limits of error (LOE) for the predicted standardized in-tank volumes. For accountability purposes, the effects of the two gages on the LOE for the predicted inventory of U-235 were evaluated. The most important comparison criteria was the gage's contribution to the U-235 inventory LOE. The choice of which gage to use depends on the other measurement methods used for material accountability. The contributions to the inventory LOE were evaluated for two in-tank liquid level measurement methods, two concentration measurement methods, and one isotopic measurement method. The results indicate the Ruska pressure gage is best suited for tank operation only if the best concentration measurement method is used

  1. Measurement of aerosol concentration with a beta-ray gage

    International Nuclear Information System (INIS)

    Auzac, G. d'; Dubillot, J.

    1978-01-01

    Because dusts in suspension are a dangerous polluting agent, several methods have been used to monitor their concentration. Among these, the beta-ray gage enjoys a privileged position. The authors describe such a gage and discuss the conditions to be observed for it to be capable of giving results comparable to those obtained with manual gravimetric methods. The satisfactory results obtained led to standardization of the method and a whole range of instruments based on this principle are employed in pollution supervising networks and for continuously monitoring industrial emissions [fr

  2. Stage measurement at gaging stations

    Science.gov (United States)

    Sauer, Vernon B.; Turnipseed, D. Phil

    2010-01-01

    Stream and reservoir stage are critical parameters in the computation of stream discharge and reservoir volume, respectively. In addition, a record of stream stage is useful in the design of structures that may be affected by stream elevation, as well as for the planning for various uses of flood plains. This report describes equipment and methodology for the observation, sensing, and recording of stage in streams and reservoirs. Although the U.S. Geological Survey (USGS) still uses the traditional, basic stilling-well float system as a predominant gaging station, modern electronic stage sensors and water-level recorders are now commonly used. Bubble gages coupled with nonsubmersible pressure transducers eliminate the need for stilling wells. Submersible pressure transducers have become common in use for the measurement of stage in both rivers and lakes. Furthermore, noncontact methods, such as radar, acoustic, and laser methods of sensing water levels, are being developed and tested, and in the case of radar, are commonly used for the measurement of stage. This report describes commonly used gaging-station structures, as well as the design and operation of gaging stations. Almost all of the equipment and instruments described in this report will meet the accuracy standard set by the USGS Office of Surface Water (OSW) for the measurement of stage for most applications, which is ±0.01 foot (ft) or 0.2 percent of the effective stage. Several telemetry systems are used to transmit stage data from the gaging station to the office, although satellite telemetry has become the standard. These telemetry systems provide near real-time stage data, as well as other information that alerts the hydrographer to extreme or abnormal events, and instrument malfunctions.

  3. Longitudinally Jointed Edge-wise Compression Honeycomb Composite Sandwich Coupon Testing and FE Analysis: Three Methods of Strain Measurement, and Comparison

    Science.gov (United States)

    Farrokh, Babak; AbdulRahim, Nur Aida; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex; Gifford, Dawn; hide

    2013-01-01

    Three means (i.e., typical foil strain gages, fiber optic sensors, and a digital image correlation (DIC) system) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The Pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The strain gages and fiber optic sensors were bonded on the specimen at locations with nearly the same strain values, as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the DIC system are justified. The test article was loaded to failure (at approximately 38 kips), at the strain value of approximately 10,000mu epsilon As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the strain gage and DIC data, and also will be compared with FEA predictions.

  4. Gage for measuring coastal erosion and sedimentation

    Science.gov (United States)

    Carpini, T. D.; Moughon, W. C.

    1970-01-01

    Underwater sand height gage, which measures heights up to 12 inches, is comprised of two standard flush-diaphragm pressure transducers. Gage is very sensitive to buried water heights and is useful as a research tool in study of wet earth and landslide phenomena.

  5. Measurement of strains at high temperatures by means of electro-optics holography

    Science.gov (United States)

    Sciammarella, Cesar A.; Bhat, G.; Vaitekunas, Jeffrey

    Electro-optics holographic-moire interferometry is used to measure strains at temperatures up to 1000 C. A description of the instrumentation developed to carry out the measurements is given. The data processing technique is also explained. Main problems encountered in recording patterns at high temperatures are analyzed and possible solutions are outlined. Optical results are compared with strain gage values obtained with instrumented specimens and with theoretical results. Very good agreement is found between optical, strain gage and theoretical results.

  6. GAGE cancer-germline antigens are recruited to the nuclear envelope by germ cell-less (GCL)

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Rösner, Heike I; Pedersen, Christina B

    2012-01-01

    GAGE proteins are highly similar, primate-specific molecules with unique primary structure and undefined cellular roles. They are restricted to cells of the germ line in adult healthy individuals, but are broadly expressed in a wide range of cancers. In a yeast two-hybrid screen we identified the...... different dsDNA fragments, suggesting sequence-nonspecific binding. Dual association of GAGE family members with GCL at the nuclear envelope inner membrane in cells, and with dsDNA in vitro, implicate GAGE proteins in chromatin regulation in germ cells and cancer cells....... the metazoan transcriptional regulator, Germ cell-less (GCL), as an interaction partner of GAGE12I. GCL directly binds LEM-domain proteins (LAP2β, emerin, MAN1) at the nuclear envelope, and we found that GAGE proteins were recruited to the nuclear envelope inner membrane by GCL. Based on yeast two...

  7. Vision system for dial gage torque wrench calibration

    Science.gov (United States)

    Aggarwal, Neelam; Doiron, Theodore D.; Sanghera, Paramjeet S.

    1993-11-01

    In this paper, we present the development of a fast and robust vision system which, in conjunction with the Dial Gage Calibration system developed by AKO Inc., will be used by the U.S. Army in calibrating dial gage torque wrenches. The vision system detects the change in the angular position of the dial pointer in a dial gage. The angular change is proportional to the applied torque. The input to the system is a sequence of images of the torque wrench dial gage taken at different dial pointer positions. The system then reports the angular difference between the different positions. The primary components of this vision system include modules for image acquisition, linear feature extraction and angle measurements. For each of these modules, several techniques were evaluated and the most applicable one was selected. This system has numerous other applications like vision systems to read and calibrate analog instruments.

  8. An Experimental Technique for Developing Intermediate Strain Rates in Ductile Metals

    Science.gov (United States)

    2008-03-01

    detecting small changes is resistance [45]. Figure 2.11 shows a basic strain gage Wheatstone bridge circuit where R1, R2, R3, and R4 are individual resistors ...all of the resistances of the resistors and the strain gage in the bridge circuit are equal such that, R = R1 = R2 = R3 = R4 and the bridge is...piezoelectric material [45]. Figure 2.13 [45] shows a piezo - electric accelerometer configured such that a mass is threaded onto a post above a

  9. Peri-Implant Strain in an In Vitro Model.

    Science.gov (United States)

    Hussaini, Souheil; Vaidyanathan, Tritala K; Wadkar, Abhinav P; Quran, Firas A Al; Ehrenberg, David; Weiner, Saul

    2015-10-01

    An in vitro experimental model was designed and tested to determine the influence that peri-implant strain may have on the overall crestal bone. Strain gages were attached to polymethylmethacrylate (PMMA) models containing a screw-type root form implant at sites 1 mm from the resin-implant interface. Three different types of crown superstructures (cemented, 1-screw [UCLA] and 2-screw abutment types) were tested. Loading (1 Hz, 200 N load) was performed using a MTS Mechanical Test System. The strain gage data were stored and organized in a computer for statistical treatment. Strains for all abutment types did not exceed the physiological range for modeling and remodeling of cancellous bone, 200-2500 με (microstrain). For approximately one-quarter of the trials, the strain values were less than 200 με the zone for bone atrophy. The mean microstrain obtained was 517.7 με. In conclusion, the peri-implant strain in this in vitro model did not exceed the physiologic range of bone remodeling under axial occlusal loading.

  10. Testing for moisture content in foods by neutron gaging

    International Nuclear Information System (INIS)

    Helf, S.

    1976-01-01

    Neutron gaging was applied to the testing for moisture content in bulk powdered foods and in canned Army field rations. The technique is based on the moderation or thermalization of fast neutrons by hydrogenous matter and the measurement of thermal neutron intensity as a function of moisture content. A small californium-252 capsule, of approximate output 10 7 neutrons per second, was used as the source of fast neutrons. It is concluded that a fast neutron moderation technique is feasible for the nondestructive measurement or control of moisture or both in near-dry bulk powdered foods. Samples must be measured under identical geometric conditions, that is, uniform bulk density and volume using a standard metal container or cell. For canned or otherwise prepacked rations, measurement of moisture is interfered with by variations in fill weight among cans or packages of the same product. A gamma-ray attenuation gaging method proved to be of insufficient sensitivity to correct for fill weight variation and was further complicated by nonuniformity in can wall dimensions. Neutron gaging, however, appears to be quite useful for monitoring a standard packaged item for fill weight since the neutron signal is virtually unaffected by variations in container dimensions. The radiation dose imparted to a sample or package of food subjected to such a test is judged to pose no threat to humans from subsequent consumption of the food. An estimate is given for the cost range of a commercial neutron gage and of encapsulated radioisotopic neutron sources

  11. Streamflow characteristics based on data through water year 2009 for selected streamflow-gaging stations in or near Montana: Chapter E in Montana StreamStats

    Science.gov (United States)

    McCarthy, Peter M.

    2016-04-05

    Chapter E of this Scientific Investigations Report documents results from a study by the U.S. Geological Survey, in cooperation with the Montana Department of Environmental Quality and the Montana Department of Natural Resources and Conservation, to provide an update of statewide streamflow characteristics based on data through water year 2009 for streamflow-gaging stations in or near Montana. Streamflow characteristics are presented for 408 streamflow-gaging stations in Montana and adjacent areas having 10 or more years of record. Data include the magnitude and probability of annual low and high streamflow, the magnitude and probability of low streamflow for three seasons (March–June, July–October, and November–February), streamflow duration statistics for monthly and annual periods, and mean streamflows for monthly and annual periods. Streamflow is considered to be regulated at streamflow-gaging stations where dams or other large-scale human modifications affect 20 percent or more of the contributing drainage basin. Separate streamflow characteristics are presented for the unregulated and regulated periods of record for streamflow-gaging stations with sufficient data.

  12. Restriction of GAGE protein expression to subpopulations of cancer cells is independent of genotype and may limit the use of GAGE proteins as targets for cancer immunotherapy

    DEFF Research Database (Denmark)

    Gjerstorff, M F; Johansen, L E; Nielsen, O

    2006-01-01

    The GAGE cancer testis antigen gene family encodes products that can be recognized by autologous T cells, and GAGE proteins have been suggested as potential targets for cancer immunotherapy. Analysis of GAGE expression in tumours has primarily been performed at the level of gene transcription, wh...

  13. Strain expansion-reduction approach

    Science.gov (United States)

    Baqersad, Javad; Bharadwaj, Kedar

    2018-02-01

    Validating numerical models are one of the main aspects of engineering design. However, correlating million degrees of freedom of numerical models to the few degrees of freedom of test models is challenging. Reduction/expansion approaches have been traditionally used to match these degrees of freedom. However, the conventional reduction/expansion approaches are only limited to displacement, velocity or acceleration data. While in many cases only strain data are accessible (e.g. when a structure is monitored using strain-gages), the conventional approaches are not capable of expanding strain data. To bridge this gap, the current paper outlines a reduction/expansion technique to reduce/expand strain data. In the proposed approach, strain mode shapes of a structure are extracted using the finite element method or the digital image correlation technique. The strain mode shapes are used to generate a transformation matrix that can expand the limited set of measurement data. The proposed approach can be used to correlate experimental and analytical strain data. Furthermore, the proposed technique can be used to expand real-time operating data for structural health monitoring (SHM). In order to verify the accuracy of the approach, the proposed technique was used to expand the limited set of real-time operating data in a numerical model of a cantilever beam subjected to various types of excitations. The proposed technique was also applied to expand real-time operating data measured using a few strain gages mounted to an aluminum beam. It was shown that the proposed approach can effectively expand the strain data at limited locations to accurately predict the strain at locations where no sensors were placed.

  14. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  15. SAF line pellet gaging

    International Nuclear Information System (INIS)

    Jedlovec, D.R.; Bowen, W.W.; Brown, R.L.

    1983-10-01

    Automated and remotely controlled pellet inspection operations will be utilized in the Secure Automated Fabrication (SAF) line. A prototypic pellet gage was designed and tested to verify conformance to the functions and requirements for measurement of diameter, surface flaws and weight-per-unit length

  16. Sleep monitoring sensor using flexible metal strain gauge

    Science.gov (United States)

    Kwak, Yeon Hwa; Kim, Jinyong; Kim, Kunnyun

    2018-05-01

    This paper presents a sleep monitoring sensor based on a flexible metal strain gauge. As quality of life has improved, interest in sleep quality, and related products, has increased. In this study, unlike a conventional single sensor based on a piezoelectric material, a metal strain gauge-based array sensor based on polyimide and nickel chromium (NiCr) is applied to provide movement direction, respiration, and heartbeat data as well as contact-free use by the user during sleeping. Thin-film-type resistive strain gage sensors are fabricated through the conventional flexible printed circuit board (FPCB) process, which is very useful for commercialization. The measurement of movement direction and respiratory rate during sleep were evaluated, and the heart rate data were compared with concurrent electrocardiogram (ECG) data. An algorithm for analyzing sleep data was developed using MATLAB, and the error rate was 4.2% when compared with ECG for heart rate.

  17. The role of GAGE cancer/testis antigen in metastasis

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Terp, Mikkel Green; Hansen, Malene Bredahl

    2016-01-01

    with migratory and invasive properties and were found to be upregulated in cancer cells with metastasizing potential in a gastric cancer model. METHODS: We have addressed the direct role of GAGE proteins in supporting metastasis using an isogenic metastasis model of human cancer, consisting of 4 isogenic cell......) and moderately metastatic clones (LM3), stable downregulation of GAGE expression did not affect the ability of CL16 cells to establish primary tumors and form metastasis in the lungs of immunodeficient mice. CONCLUSIONS: These results suggest that GAGE proteins per se do not support metastasis and that further...

  18. Development of Displacement Gages Exposed to Solid Rocket Motor Internal Environments

    Science.gov (United States)

    Bolton, D. E.; Cook, D. J.

    2003-01-01

    The Space Shuttle Reusable Solid Rocket Motor (RSRM) has three non-vented segment-to-segment case field joints. These joints use an interference fit J-joint that is bonded at assembly with a Pressure Sensitive Adhesive (PSA) inboard of redundant O-ring seals. Full-scale motor and sub-scale test article experience has shown that the ability to preclude gas leakage past the J-joint is a function of PSA type, joint moisture from pre-assembly humidity exposure, and the magnitude of joint displacement during motor operation. To more accurately determine the axial displacements at the J-joints, two thermally durable displacement gages (one mechanical and one electrical) were designed and developed. The mechanical displacement gage concept was generated first as a non-electrical, self-contained gage to capture the maximum magnitude of the J-joint motion. When it became feasible, the electrical displacement gage concept was generated second as a real-time linear displacement gage. Both of these gages were refined in development testing that included hot internal solid rocket motor environments and simulated vibration environments. As a result of this gage development effort, joint motions have been measured in static fired RSRM J-joints where intentional venting was produced (Flight Support Motor #8, FSM-8) and nominal non-vented behavior occurred (FSM-9 and FSM-10). This data gives new insight into the nominal characteristics of the three case J-joint positions (forward, center and aft) and characteristics of some case J-joints that became vented during motor operation. The data supports previous structural model predictions. These gages will also be useful in evaluating J-joint motion differences in a five-segment Space Shuttle solid rocket motor.

  19. Electro optical system to measure strains at high temperature

    Science.gov (United States)

    Sciammarella, Cesar A.

    1991-12-01

    The measurement of strains at temperatures of the order of 1000 C has become a very important field of research. Technological advances in areas such as the analysis of high speed aircraft structures and high efficiency thermal engines require operational temperatures of this order of magnitude. Current techniques for the measurement of strains, such as electrical strain gages, are at the limit of their useful range and new methods need to be developed. Optical techniques are very attractive in this type of application because of their noncontacting nature. Holography is of particular interest because a minimal preparation of the surfaces is required. Optoelectronics holography is specially suited for this type of application, from the point of view of industrial use. There are a number of technical problems that need to be overcome to measure strains using holographic interferometry at high temperatures. Some of these problems are discussed, and solutions are given. A specimen instrumented with high temperature strains gages is used to compare the results of both technologies.

  20. Variation of Shrinkage Strain within the Depth of Concrete Beams

    Directory of Open Access Journals (Sweden)

    Jong-Hyun Jeong

    2015-11-01

    Full Text Available The variation of shrinkage strain within beam depth was examined through four series of time-dependent laboratory experiments on unreinforced concrete beam specimens. Two types of beam specimens, horizontally cast and vertically cast, were tested; shrinkage variation was observed in the horizontally cast specimens. This indicated that the shrinkage variation within the beam depth was due to water bleeding and tamping during the placement of the fresh concrete. Shrinkage strains were measured within the beam depth by two types of strain gages, surface-attached and embedded. The shrinkage strain distribution within the beam depth showed a consistent tendency for the two types of gages. The test beams were cut into four sections after completion of the test, and the cutting planes were divided into four equal sub-areas to measure the aggregate concentration for each sub-area of the cutting plane. The aggregate concentration increased towards the bottom of the beam. The shrinkage strain distribution was estimated by Hobbs’ equation, which accounts for the change of aggregate volume concentration.

  1. Data acquisition from vacuum gage controlled by RS-232 standard using LabVIEW

    International Nuclear Information System (INIS)

    Brandea, Iulian; Culcer, Mihai; Steflea, Dumitru

    1999-01-01

    This paper deals with the problem of connecting a microcontroller-based vacuum gage to a personal computer, using the RS-232 hardware standard and the software LabVIEW and his collection of virtual instruments from National Instruments. To solve the problem an instrument driver was created. This provided the customer with a perfect solution for the remote control and data acquisition from an Intel 80CXX microcontroller-based vacuum gage. The remote control making use of an IBM-PC was design and manufactured in our institute. In order to make it intelligent the device was provided with a microprocessor or a microcontroller. To fulfill the requirements a vacuum gage with an 80C31 microcontroller and two Bayard-Alpert ion gauges, for very low pressures (10 -3 to 10 -7 mbar) and low pressure (10 mbar to 10 -3 mbar) was built. Because this microcontroller has a built-in circuitry for a serial communication, we established a serial communication between the PC (Pentium -166 MHz) and the vacuum gage, according to the RS-232 hardware standard. Optimum selection of software development tools however, was not as straightforward. Most producers use the C/C ++ - language programming tool for developing instrument drivers for their intelligent devices. One of the advantages of C/C ++ is its speed, but the compilation and the high-level skill required for optimum programming do not fit well with some requirements, particularly those of versatility, upgradability and user friendliness. After careful evaluation of several options, a final decision was to develop a hybrid software package using two different software development tools: LabVIEW, and assembly language. We chose LabVIEW because it is dedicated to data acquisition and communications, containing libraries for data collection, analysis, presentation and storage. The assembly language for Intel 8051's microcontrollers family is used to write the firmware for the vacuum gage and arithmetic routines. (authors)

  2. Standard Test Method for Measuring Heat Flux Using Flush-Mounted Insert Temperature-Gradient Gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method describes the measurement of the net heat flux normal to a surface using gages inserted flush with the surface. The geometry is the same as heat-flux gages covered by Test Method E 511, but the measurement principle is different. The gages covered by this standard all use a measurement of the temperature gradient normal to the surface to determine the heat that is exchanged to or from the surface. Although in a majority of cases the net heat flux is to the surface, the gages operate by the same principles for heat transfer in either direction. 1.2 This general test method is quite broad in its field of application, size and construction. Two different gage types that are commercially available are described in detail in later sections as examples. A summary of common heat-flux gages is given by Diller (1). Applications include both radiation and convection heat transfer. The gages used for aerospace applications are generally small (0.155 to 1.27 cm diameter), have a fast time response ...

  3. New approach for calibration and interpretation of IRAD GAGE vibrating-wire stressmeters

    International Nuclear Information System (INIS)

    Mao, N.

    1986-05-01

    IRAD GAGE vibrating-wire stressmeters were installed in the Spent Fuel Facility at the Nevada Test Site to measure the change in in-situ stress during the Spent Fuel Test-Climax (SFT-C). This paper discusses the results of removing a cylindrical section of rock and gages as a unit through overcoring, and the subsequent post-test calibration of the stressmeters in the laboratory. The estimated in-situ stresses based on post test calibration data are quite consistent with those directly measured in nearby holes. The magnitude of stress change calculated from pre-test calibration data is generally much smaller than that estimated from post test calibration data. 11 refs., 5 figs., 2 tabs

  4. GAGE cancer-germline antigens bind DNA and are recruited to the nuclear envelope by Germ cell-less

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Rösner, Heike; Pedersen, Christina Bøg

    GAGE genes encode a highly similar, primate-specific protein family with unique primary structure and undefined roles in germ cells, various fetal cells and cancer cells. We report that GAGE proteins are intrinsically disordered proteins that provide novel interfaces between chromatin and the nuc......GAGE genes encode a highly similar, primate-specific protein family with unique primary structure and undefined roles in germ cells, various fetal cells and cancer cells. We report that GAGE proteins are intrinsically disordered proteins that provide novel interfaces between chromatin...... and the nuclear envelope. Structural analysis by NMR and CD spectroscopy showed GAGE proteins lack distinct secondary or tertiary structure and are therefore intrinsically disordered. In normal cells and cancer cells GAGE proteins localize predominantly in the nucleus; we found GAGE proteins formed stable......) at the nuclear envelope. Furthermore, exogenous and endogenous GAGE proteins were recruited to the nuclear envelope in GCL-overexpressing cells. Gene expression analysis and immunohistochemical staining suggest GAGE proteins and GCL interact physiologically in human cells that express both, including male germ...

  5. Standard test methods for performance characteristics of metallic bonded resistance strain gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 The purpose of this standard is to provide uniform test methods for the determination of strain gauge performance characteristics. Suggested testing equipment designs are included. 1.2 Test Methods E 251 describes methods and procedures for determining five strain gauge parameters: Section Part I—General Requirements 7 Part II—Resistance at a Reference Temperature 8 Part III—Gauge Factor at a Reference Temperature 9 Part IV—Temperature Coefficient of Gauge Factor\t10 Part V—Transverse Sensitivity\t11 Part VI—Thermal Output\t12 1.3 Strain gauges are very sensitive devices with essentially infinite resolution. Their response to strain, however, is low and great care must be exercised in their use. The performance characteristics identified by these test methods must be known to an acceptable accuracy to obtain meaningful results in field applications. 1.3.1 Strain gauge resistance is used to balance instrumentation circuits and to provide a reference value for measurements since all data are...

  6. Design of membrane pressure indicators with strain gages

    International Nuclear Information System (INIS)

    Haberzettl, G.

    1979-01-01

    A special type of pressure indicators, more or less well known under the name of 'membrane pressure indicators' is dealt with. In principle, they consist of a pipe socket which is open at one end and sealed by the 'membrane' at the other end. In case of internal pressure from the open side, the membrane will begin to arch. This arch, which is proportional to the internal pressure, is measured by suitable methods. A special form of strain ganges, so-called 'membrane pressure roses' have turned out to be particularly suitable here. The article gives general guidelines for the construction of membrane pressure indicators. (orig./HT) [de

  7. Comparison of NEXRAD multisensor precipitation estimates to rain gage observations in and near DuPage County, Illinois, 2002–12

    Science.gov (United States)

    Spies, Ryan R.; Over, Thomas M.; Ortel, Terry W.

    2018-05-21

    In this report, precipitation data from 2002 to 2012 from the hourly gridded Next-Generation Radar (NEXRAD)-based Multisensor Precipitation Estimate (MPE) precipitation product are compared to precipitation data from two rain gage networks—an automated tipping bucket network of 25 rain gages operated by the U.S. Geological Survey (USGS) and 51 rain gages from the volunteer-operated Community Collaborative Rain, Hail, and Snow (CoCoRaHS) network—in and near DuPage County, Illinois, at a daily time step to test for long-term differences in space, time, and distribution. The NEXRAD–MPE data that are used are from the fifty 2.5-mile grid cells overlying the rain gages from the other networks. Because of the challenges of measuring of frozen precipitation, the analysis period is separated between days with or without the chance of freezing conditions. The NEXRAD–MPE and tipping-bucket rain gage precipitation data are adjusted to account for undercatch by multiplying by a previously determined factor of 1.14. Under nonfreezing conditions, the three precipitation datasets are broadly similar in cumulative depth and distribution of daily values when the data are combined spatially across the networks. However, the NEXRAD–MPE data indicate a significant trend relative to both rain gage networks as a function of distance from the NEXRAD radar just south of the study area. During freezing conditions, of the USGS network rain gages only the heated gages were considered, and these gages indicate substantial mean undercatch of 50 and 61 percent compared to the NEXRAD–MPE and the CoCoRaHS gages, respectively. The heated USGS rain gages also indicate substantially lower quantile values during freezing conditions, except during the most extreme (highest) events. Because NEXRAD precipitation products are continually evolving, the report concludes with a discussion of recent changes in those products and their potential for improved precipitation estimation. An appendix

  8. Latin square three dimensional gage master

    Science.gov (United States)

    Jones, Lynn L.

    1982-01-01

    A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.

  9. Latin-square three-dimensional gage master

    Science.gov (United States)

    Jones, L.

    1981-05-12

    A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.

  10. Skin-friction measurements with hot-wire gages

    Science.gov (United States)

    Houdeville, R.; Juillen, J. C.; Cousteix, J.

    1983-11-01

    The development of two hot-wire gauges for implantation in wind-tunnel models and their application to the measurement of skin-friction phenomena are reported. The measurement principle is explained; the design and calibration of a single-wire gage containing a thermocouple for temperature determination (Cousteix and Juillen, 1982-1983) are summarized; and sample results for 2D and 3D flows with positive pressure gradients are shown. An advanced design employing a thin hot film deposited on an 80-micron-diameter quartz fiber extending into a 1-mm-sq 0.8-mm-deep cavity is characterized and demonstrated on a pulsed flow on a flat plate, Tollmien-Schlichting waves, and a turbulent boundary layer. Two cold-wire temperature sensors are added to this gage to permit detection of the skin of the skin friction in the separated flow over a cylinder.

  11. Cost effective stream-gaging strategies for the Lower Colorado River basin; the Blythe field office operations

    Science.gov (United States)

    Moss, Marshall E.; Gilroy, Edward J.

    1980-01-01

    This report describes the theoretical developments and illustrates the applications of techniques that recently have been assembled to analyze the cost-effectiveness of federally funded stream-gaging activities in support of the Colorado River compact and subsequent adjudications. The cost effectiveness of 19 stream gages in terms of minimizing the sum of the variances of the errors of estimation of annual mean discharge is explored by means of a sequential-search optimization scheme. The search is conducted over a set of decision variables that describes the number of times that each gaging route is traveled in a year. A gage route is defined as the most expeditious circuit that is made from a field office to visit one or more stream gages and return to the office. The error variance is defined as a function of the frequency of visits to a gage by using optimal estimation theory. Currently a minimum of 12 visits per year is made to any gage. By changing to a six-visit minimum, the same total error variance can be attained for the 19 stations with a budget of 10% less than the current one. Other strategies are also explored. (USGS)

  12. Expression, purification and characterization of the cancer-germline antigen GAGE12I: a candidate for cancer immunotherapy

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Besir, Hüseyin; Larsen, Martin R

    2010-01-01

    GAGE cancer-germline antigens are frequently expressed in a broad range of different cancers, while their expression in normal tissues is limited to the germ cells of the immune privileged organs, testis and ovary. GAGE proteins are immunogenic in humans, which make them promising targets...... for immunotherapy and candidates for cancer vaccines. Recombinant proteins may be superior to peptides as immunogens, since they have the potential to prime both CD4(+) and CD8(+) T cells and are not dependent on patient HLA-type. We have developed a method for production of highly pure recombinant GAGE12I...... filtration and formaldehyde cross-linking indicated that GAGE12I forms tetramers. The purified recombinant GAGE12I represents a candidate molecule for vaccination of cancer patients and will form the basis for further structural analysis of GAGE proteins....

  13. Accelerometer and strain gage evaluation

    International Nuclear Information System (INIS)

    Ammerman, D.J.; Madsen, M.M.; Uncapher, W.L.; Stenberg, D.R.; Bronowski, D.R.

    1991-01-01

    This document describes the method developed by Sandia National Laboratories (SNL) to evaluate transducer used in the design certification testing of nuclear material shipping packages. This testing project was performed by SNL for the Office of Civilian Radioactive Waste Management (OCRWM). This evaluation is based on the results of tests conducted to measure ruggedness, failure frequency, repeatability, and manufacturers' calibration data under both field and laboratory conditions. The results of these tests are provided and discussed. The transducer were selected for testing by surveying cask contractors and testing facilities. Important insights relating to operational characteristics of accelerometer types were gained during field testing. 11 refs., 105 figs., 16 tabs

  14. Strain measurements during pressurized thermal shock experiment

    International Nuclear Information System (INIS)

    Tarso Vida Gomes, P. de; Julio Ricardo Barreto Cruz; Tanius Rodrigues Mansur; Denis Henrique Bianchi Scaldaferri; Miguel Mattar Neto

    2005-01-01

    For the life extension of nuclear power plants, the residual life of most of their components must be evaluated along all their operating time. Concerning the reactor pressure vessel, the pressurized thermal shock (PTS) is a very important event to be considered. For better understanding the effects of this kind of event, tests are made. The approach described here consisted of building a simplified in-scale physical model of the reactor pressure vessel, submitting it to the actual operating temperature and pressure conditions and provoking a thermal shock by means of cold water flow in its external surface. To conduct such test, the Nuclear Technology Development Center (CDTN) has been conducting several studies related to PTS and has also built a laboratory that has made possible the simulation of the PTS loading conditions. Several cracks were produced in the external surface of the reactor pressure vessel model. Strain gages were fixed by means of electrical discharge welding over the cracks regions in both external and internal surfaces. The temperature was monitored in 10 points across the vessel wall. The internal pressure was manually controlled and monitored using a pressure transducer. Two PTS experiments were conducted and this paper presents the strain measurement procedures applied to the reactor pressure vessel model, during the PTS, using strain gages experimental methodology. (authors)

  15. Cost-effectiveness of the stream-gaging program in Maine; a prototype for nationwide implementation

    Science.gov (United States)

    Fontaine, Richard A.; Moss, M.E.; Smath, J.A.; Thomas, W.O.

    1984-01-01

    This report documents the results of a cost-effectiveness study of the stream-gaging program in Maine. Data uses and funding sources were identified for the 51 continuous stream gages currently being operated in Maine with a budget of $211,000. Three stream gages were identified as producing data no longer sufficiently needed to warrant continuing their operation. Operation of these stations should be discontinued. Data collected at three other stations were identified as having uses specific only to short-term studies; it is recommended that these stations be discontinued at the end of the data-collection phases of the studies. The remaining 45 stations should be maintained in the program for the foreseeable future. The current policy for operation of the 45-station program would require a budget of $180,300 per year. The average standard error of estimation of streamflow records is 17.7 percent. It was shown that this overall level of accuracy at the 45 sites could be maintained with a budget of approximately $170,000 if resources were redistributed among the gages. A minimum budget of $155,000 is required to operate the 45-gage program; a smaller budget would not permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 25.1 percent. The maximum budget analyzed was $350,000, which resulted in an average standard error of 8.7 percent. Large parts of Maine's interior were identified as having sparse streamflow data. It was determined that this sparsity be remedied as funds become available.

  16. The Effect of Modeling Qualities, Tones and Gages in Ceramic Supply Chains' Master Planning

    Directory of Open Access Journals (Sweden)

    Isabel MUNDI

    2012-01-01

    Full Text Available Ceramic production processes are characterized by providing quantities of the same finished goods that differ in qualities, tones and gages. This aspect becomes a problem for ceramic supply chains (SCs that should promise and serve customer orders with homogeneous quantities of the same finished good. In this paper a mathematical programming model for the cen-tralized master planning of ceramic SC is proposed. Inputs to the master plan include demand forecasts in terms of customer order classes based on their order size and splitting percentages of a lot into homogeneous sub-lots. Then, the master plan defines the size and loading of lots to production lines and their distribution with the aim of maximizing the number of customer orders fulfilled with homogeneous quantities in the most efficient manner for the SC. Finally, the effect of modeling qualities, tones and gages in master planning is assessed.

  17. Peak-flow frequency analyses and results based on data through water year 2011 for selected streamflow-gaging stations in or near Montana: Chapter C in Montana StreamStats

    Science.gov (United States)

    Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    Chapter C of this Scientific Investigations Report documents results from a study by the U.S. Geological Survey, in cooperation with the Montana Department of Transportation and the Montana Department of Natural Resources, to provide an update of statewide peak-flow frequency analyses and results for Montana. The purpose of this report chapter is to present peak-flow frequency analyses and results for 725 streamflow-gaging stations in or near Montana based on data through water year 2011. The 725 streamflow-gaging stations included in this study represent nearly all streamflowgaging stations in Montana (plus some from adjacent states or Canadian Provinces) that have at least 10 years of peak-flow records through water year 2011. For 29 of the 725 streamflow-gaging stations, peak-flow frequency analyses and results are reported for both unregulated and regulated conditions. Thus, peak-flow frequency analyses and results are reported for a total of 754 analyses. Estimates of peak-flow magnitudes for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities are reported. These annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals.

  18. Ball mounting fixture for a roundness gage

    Science.gov (United States)

    Gauler, Allen L.; Pasieka, Donald F.

    1983-01-01

    A ball mounting fixture for a roundness gage is disclosed. The fixture includes a pair of chuck assemblies oriented substantially transversely with respect to one another and mounted on a common base. Each chuck assembly preferably includes a rotary stage and a wobble plate affixed thereto. A ball chuck affixed to each wobble plate is operable to selectively support a ball to be measured for roundness, with the wobble plate permitting the ball chuck to be tilted to center the ball on the axis of rotation of the rotary stage. In a preferred embodiment, each chuck assembly includes a vacuum chuck operable to selectively support the ball to be measured for roundness. The mounting fixture enables a series of roundness measurements to be taken with a conventional rotating gagehead roundness instrument, which measurements can be utilized to determine the sphericity of the ball.

  19. Strain rate behavior of magnetorheological materials

    International Nuclear Information System (INIS)

    Seminuk, Kenneth; Joshi, Vasant; Gump, Jared; Stoltz, Chad; Forbes, Jerry

    2014-01-01

    Strain rate response of two Hydroxyl-terminated Polybutadiene/ Iron (HTPB/Fe) compositions under electromagnetic fields has been investigated using a Split Hopkinson Pressure bar arrangement equipped with aluminum bars. Two HTPB/Fe compositions were developed, the first without plasticizer and the second containing plasticizer. Samples were tested with and without the application of a 0.01 Tesla magnetic field. Strain gauge data taken from the Split Hopkinson Pressure Bar has been used to determine the extent of change in mechanical properties by inducing a mild electromagnetic field onto each sample. Raw data from strain gages was processed using commercial software (Signo) and Excel spreadsheet. It is of particular interest to determine whether the mechanical properties of binder systems can be manipulated by adding ferrous or Magnetostrictive particulates. Data collected from the Split Hopkinson Pressure bar indicate changes in the Mechanical Stress-Strain curves and suggest that the impedance of a binder system can be altered by means of a magnetic field.

  20. Standard practice for strain controlled thermomechanical fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers the determination of thermomechanical fatigue (TMF) properties of materials under uniaxially loaded strain-controlled conditions. A “thermomechanical” fatigue cycle is here defined as a condition where uniform temperature and strain fields over the specimen gage section are simultaneously varied and independently controlled. This practice is intended to address TMF testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. While this practice is specific to strain-controlled testing, many sections will provide useful information for force-controlled or stress-controlled TMF testing. 1.2 This practice allows for any maximum and minimum values of temperature and mechanical strain, and temperature-mechanical strain phasing, with the restriction being that such parameters remain cyclically constant throughout the duration of the test. No restrictions are placed on en...

  1. 49 CFR 213.110 - Gage restraint measurement systems.

    Science.gov (United States)

    2010-10-01

    ... requirements specified in §§ 213.109 and 213.127. (5) If the PTLF becomes non-functional or is missing, the... and fastener requirements specified in §§ 213.109 and 213.127 provided that— (1) The track owner... the minimum design requirements of a GRMS vehicle which specify that— (1) Gage restraint shall be...

  2. HydroCloud: A Web Application for Exploring Stream Gage Data

    Directory of Open Access Journals (Sweden)

    Martin C. Roberge

    2017-08-01

    Full Text Available HydroCloud (hydrocloud.org is a mobile-friendly web application for visually browsing hydrology data from multiple sources. Data providers such as the US Geological Survey (USGS and the German 'Wasserstraßen- und Schifffahrtsverwaltung des Bundes' (WSV currently serve stream discharge data from more than 10,000 stream gages around the world. HydroCloud allows users to plot these data while out in the field, while also providing contextual information such as the current NEXRAD weather imagery or descriptive information about the stream gage and its watershed. Additional features include a chat mechanism for contacting developers, and the use of local storage for saving data.   Funding Statement: This project was supported in part by a grant from the Towson University School of Emerging Technology.

  3. Discharge measurements at gaging stations

    Science.gov (United States)

    Turnipseed, D. Phil; Sauer, Vernon B.

    2010-01-01

    The techniques and standards for making discharge measurements at streamflow gaging stations are described in this publication. The vertical axis rotating-element current meter, principally the Price current meter, has been traditionally used for most measurements of discharge; however, advancements in acoustic technology have led to important developments in the use of acoustic Doppler current profilers, acoustic Doppler velocimeters, and other emerging technologies for the measurement of discharge. These new instruments, based on acoustic Doppler theory, have the advantage of no moving parts, and in the case of the acoustic Doppler current profiler, quickly and easily provide three-dimensional stream-velocity profile data through much of the vertical water column. For much of the discussion of acoustic Doppler current profiler moving-boat methodology, the reader is referred to U.S. Geological Survey Techniques and Methods 3-A22 (Mueller and Wagner, 2009). Personal digital assistants (PDAs), electronic field notebooks, and other personal computers provide fast and efficient data-collection methods that are more error-free than traditional hand methods. The use of portable weirs and flumes, floats, volumetric tanks, indirect methods, and tracers in measuring discharge are briefly described.

  4. 3D printed high performance strain sensors for high temperature applications

    Science.gov (United States)

    Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul

    2018-01-01

    Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.

  5. Strain measurement based battery testing

    Science.gov (United States)

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  6. The application of a 3 dimensional image scanner to the strain measurement

    International Nuclear Information System (INIS)

    Mazda, Taiji; Ogawa, Hiroshi; Suzuki, Michiaki; Nakano, Yasuo.

    1993-01-01

    A large strain measuring method for a laminated seismic isolation rubber, which will be introduced to reactor buildings of the Demonstration Fast Breeder Reactor (DFBR), was developed. With using strain gages, it is difficult to measure the large strain under the large displacement condition. With using the optical instruments, it is also impossible to measure the strain of a 3 dimensional object. We developed a new measuring method in which strain is calculated from a 3 dimensional deformation with using a 3 dimensional image scanner. This method is noncontact measuring method, and it can measure the strain of a 3 dimensional object under the large deformation. This work is one part of 'The Development of FBR Seismic Isolation system' operated by Central Research Institute of Electric Power Industry. (author)

  7. Finite element analysis of fatigue crack closure under plane strain state

    International Nuclear Information System (INIS)

    Lee, Hak Joo; Kang, Jae Youn; Song, Ji Ho

    2004-01-01

    An elastic-plastic finite element analysis of fatigue crack closure is performed for plane strain conditions. The stabilization behavior of crack opening level and the effect of mesh size on the crack opening stress are investigated. In order to obtain a stabilized crack opening level for plane strain conditions, the crack must be advanced through approximately four times the initial monotonic plastic zone. The crack opening load tends to increase with the decrease of mesh size. The mesh size nearly equal to the theoretical plane strain cyclic plastic zone size may provide reasonable numerical results comparable with experimental crack opening data. The crack opening behavior is influenced by the crack growth increment and discontinuous opening behavior is observed. A procedure to predict the most appropriate mesh size for different stress ratio is suggested. Crack opening loads predicted by the FE analysis based on the procedure suggested resulted in good agreement with experimental ones within the error of 5 %. Effect of the distance behind the crack tip on the crack opening load determined by the ASTM compliance offset method based on the load-displacement relation and by the rotational offset method based on the load-differential displacement relation is investigated. Optimal gage location and method to determine the crack opening load is suggested

  8. Sensitivity Enhancement of FBG-Based Strain Sensor.

    Science.gov (United States)

    Li, Ruiya; Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Li, Tianliang; Mao, Jian

    2018-05-17

    A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments.

  9. Establishing a Multi-scale Stream Gaging Network in the Whitewater River Basin, Kansas, USA

    Science.gov (United States)

    Clayton, J.A.; Kean, J.W.

    2010-01-01

    Investigating the routing of streamflow through a large drainage basin requires the determination of discharge at numerous locations in the channel network. Establishing a dense network of stream gages using conventional methods is both cost-prohibitive and functionally impractical for many research projects. We employ herein a previously tested, fluid-mechanically based model for generating rating curves to establish a stream gaging network in the Whitewater River basin in south-central Kansas. The model was developed for the type of channels typically found in this watershed, meaning that it is designed to handle deep, narrow geomorphically stable channels with irregular planforms, and can model overbank flow over a vegetated floodplain. We applied the model to ten previously ungaged stream reaches in the basin, ranging from third- to sixth-order channels. At each site, detailed field measurements of the channel and floodplain morphology, bed and bank roughness, and vegetation characteristics were used to quantify the roughness for a range of flow stages, from low flow to overbank flooding. Rating curves that relate stage to discharge were developed for all ten sites. Both fieldwork and modeling were completed in less than 2 years during an anomalously dry period in the region, which underscores an advantage of using theoretically based (as opposed to empirically based) discharge estimation techniques. ?? 2010 Springer Science+Business Media B.V.

  10. Strain Dependence of Photoluminescense of Individual Carbon Nanotubes

    Science.gov (United States)

    Nikolaev, Pavel N.; Leeuw, Tonya K.; Tsyboulski, Dmitri A.; Bachilo, Sergei M.; Weisman, Bruce; Arepalli, Sivaram

    2007-01-01

    We have investigated strain dependence of photoluminescense (PL) spectra of single wall carbon nanotubes (SWNT). Nanotubes were sparsely dispersed in a thin PMMA film applied to acrylic bar, and strained in both compression and extension by bending this bar in either direction in a homebuilt four-point bending rig. The average surface strain was measured with high accuracy by a resistive strain gage applied on top of the film. The near infrared imaging and spectroscopy were performed on the inverted microscope equipped with high numerical aperture reflective objective lens and InGaAs CCD cameras. PL was excited with a diode laser at either 658, 730 or 785 nm, linearly polarized in the direction of the strain. We were able to measure (n,m) types and orientation of individual nanotubes with respect to strain direction and strain dependence of their PL maxima. It was found that PL peak shifts with respect to the values measured in SDS micelles are a sum of three components. First, a small environmental shift due to difference in the dielectric constant of the surrounding media, that is constant and independent of the nanotube type. Second, shift due to isotropic compression of the film during drying. Third, shifts produced by the uniaxial loading of the film in the experiment. Second and third shifts follow expression based on the first-order expansion of the TB hamiltonian. Their magnitude is proportional to the nanotube chiral angle and strain, and direction is determined by the nanotube quantum number. PL strain dependence measured for a number of various nanotube types allows to estimate TB carbon-carbon transfer integral.

  11. Development and application of the variable focus laser leveling gage

    International Nuclear Information System (INIS)

    Gong Kun; Ma Jinglong

    2005-01-01

    The variable focus laser leveling gage was developed. The performance and structure were introduced. The several alignments and tests in KrF laser angle multi-path optical system were accomplished with them. Its application in other optical equipment was discussed too. (author)

  12. Analysis of GAGE, NY-ESO-1 and SP17 cancer/testis antigen expression in early stage non-small cell lung carcinoma

    International Nuclear Information System (INIS)

    Gjerstorff, Morten F; Pøhl, Mette; Olsen, Karen E; Ditzel, Henrik J

    2013-01-01

    The unique expression pattern and immunogenic properties of cancer/testis antigens make them ideal targets for immunotherapy of cancer. The MAGE-A3 cancer/testis antigen is frequently expressed in non-small cell lung cancer (NSCLC) and vaccination with MAGE-A3 in patients with MAGE-A3-positive NSCLC has shown promising results. However, little is known about the expression of other cancer/testis antigens in NSCLC. In the present study the expression of cancer/testis antigens GAGE, NY-ESO-1 and SP17 was investigated in patients with completely resected, early stage, primary NSCLC. Tumor biopsies from normal lung tissue and from a large cohort (n = 169) of NSCLC patients were examined for GAGE, NY-ESO-1 and SP17 protein expression by immunohistochemical analysis. The expression of these antigens was further matched to clinical and pathological features using univariate cox regression analysis. GAGE and NY-ESO-1 cancer/testis antigens were not expressed in normal lung tissue, while SP17 was expressed in ciliated lung epithelia. The frequency of GAGE, NY-ESO-1 and SP17 expression in NSCLC tumors were 26.0% (44/169), 11.8% (20/169) and 4.7% (8/169), respectively, and 33.1% (56/169) of the tumors expressed at least one of these antigens. In general, the expression of GAGE, NY-ESO-1 and SP17 was not significantly associated with a specific histotype (adenocarcinoma vs. squamous cell carcinoma), but high-level GAGE expression (>50%) was more frequent in squamous cell carcinoma (p = 0.02). Furthermore, the frequency of GAGE expression was demonstrated to be significantly higher in stage II-IIIa than stage I NSCLC (17.0% vs. 35.8%; p = 0.02). Analysis of the relation between tumor expression of GAGE and NY-ESO-1 and survival endpoints revealed no significant associations. Our study demonstrates that GAGE, NY-ESO-1 and SP17 cancer/testis antigens are candidate targets for immunotherapy of NSCLC and further suggest that multi-antigen vaccines may be beneficial

  13. Portable neutron moisture gage for the moisture determination of structure parts

    International Nuclear Information System (INIS)

    Harnisch, M.

    1985-01-01

    For determining the moisture of structure parts during building or before repairing a portable neutron moisture gage consisting of a neutron probe and pulse analyzer has been developed. The measuring process, calibration, and prerequisites of application are briefly discussed

  14. Application of carbon nanotubes flexible strain sensor in smart textiles

    Directory of Open Access Journals (Sweden)

    Qiong CHENG

    2017-10-01

    Full Text Available Smart textiles have not only the necessary functions of daily wear, but also the intelligence. The focus of the current textile materials research is the selection of flexible material. For flexible materials, carbon material is one of the ideal materials for preparing flexible strain gauges. The application of flexible strain sensor prepared by carbon nanotubes as a flexible material in smart textiles is the research content. The research status of carbon nanotubes flexible strain sensor is introduced from the aspects of the structure, properties and application. The characteristics and functions of flexible strain gages prepared with carbon nanotube fibers and carbon nanotube films as flexible materials are discussed in terms of selection, preparation method, performance test and application. At the same time, the advantages and disadvantages of the flexible strain sensor of carbon nanotubes are reviewed from the aspects of preparation difficulty, production cost and practical application effect. High sensitivity with high strain will be a key research direction for carbon nanotube flexible strain sensors.

  15. Low Cost Stream Gaging through Analysis of Stage Height Using Digital Photography

    Science.gov (United States)

    Mui, C. K.; Royem, A. A.; Walter, M. T.

    2010-12-01

    Through the middle of the twentieth century, the US was relatively rich in active streamflow gages. Over the past four decades, the number of gages has decreased by approximately 10% (approx. 20 gages a year) and it is likely this trend will continue for the foreseeable future. Not only are streaflow data valuable for water resources planning and management, but they are invaluable for assessing how land use and climate changes are impacting the environment. Affordable, easy-to-use systems need to be developed to enable a wider community to establish and maintain streamflow observation sites. Currently USGS-like gauges cost 30,000 to 50,000 to build and $6,000/year to maintain. We are developing a system that uses digital images in conjunction with MATLAB for image post processing that has the potential to both accurately and cost effectively monitor stream gauge. We explored several different staff gauge designs in conjunction with associated image processing code. The most robust design so far consists of a brightly colored metal staff gauge and and code that allows a point-and-click method for training the image processing code to correctly identify the staff. We ultimately envision a system in which users can upload their images via the Internet and post-processing is done on a remote server, which also collates data and metadata for open-access downloading.

  16. Design of Gages for Direct Skin Friction Measurements in Complex Turbulent Flows with Shock Impingement Compensation

    Science.gov (United States)

    2007-06-07

    100 kW/m2 for 0.1 s. Along with the material change, an oil leak problem required a geometric change. Initially, we considered TIG welding or...shear and moment, is addressed through the design, development, and testing of the CF1 and CF2 gages. Chapter 3 presents the evolutionary process ...a shock. Chapter 4 examines the performance of each gage to the nominal load conditions. Through this process , objective 2 is met. The best

  17. TEM sample preparation by femtosecond laser machining and ion milling for high-rate TEM straining experiments

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Thomas; Grapes, Michael D. [Dept. of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Zhang, Yong [Dept. of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Lorenzo, Nicholas; Ligda, Jonathan; Schuster, Brian [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD 21005 (United States); Weihs, Timothy P. [Dept. of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2017-04-15

    To model mechanical properties of metals at high strain rates, it is important to visualize and understand their deformation at the nanoscale. Unlike post mortem Transmission Electron Microscopy (TEM), which allows one to analyze defects within samples before or after deformation, in situ TEM is a powerful tool that enables imaging and recording of deformation and the associated defect motion during mechanical loading. Unfortunately, all current in situ TEM mechanical testing techniques are limited to quasi-static strain rates. In this context, we are developing a new test technique that utilizes a rapid straining stage and the Dynamic TEM (DTEM) at the Lawrence Livermore National Laboratory (LLNL). The new straining stage can load samples in tension at strain rates as high as 4×10{sup 3}/s using two piezoelectric actuators operating in bending while the DTEM at LLNL can image in movie mode with a time resolution as short as 70 ns. Given the piezoelectric actuators are limited in force, speed, and displacement, we have developed a method for fabricating TEM samples with small cross-sectional areas to increase the applied stresses and short gage lengths to raise the applied strain rates and to limit the areas of deformation. In this paper, we present our effort to fabricate such samples from bulk materials. The new sample preparation procedure combines femtosecond laser machining and ion milling to obtain 300 µm wide samples with control of both the size and location of the electron transparent area, as well as the gage cross-section and length. - Highlights: • Tensile straining TEM specimens made by femtosecond laser machining and ion milling. • Accurate positioning of the electron transparent area within a controlled gauge region. • Optimization of femtosecond laser and ion milling parameters. • Fast production of numerous samples with a highly repeatable geometry.

  18. United States Geological Survey discharge data from five example gages on intermittent streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data are mean daily discharge data at United States Geological Survey gages. Once column provides the date (mm/dd/yyyy) and the other column provides the mean...

  19. Behavior of porous beryllium under thermomechanical loading. Part 7. Calibration studies on the carbon piezoresistive gage

    International Nuclear Information System (INIS)

    Horning, R.R.; Isbell, W.M.

    1975-01-01

    The calibrations, time responses, and Hugoniot for carbon piezoresistive gages from two manufacturers are presented. These gages exhibit a high sensitivity of about --20 percent resistance change per GPa at 0.5 GPa. Their equilibrium times, when tested in fused silica, exceed 0.6 μs below 0.5 GPa but improve at higher stresses and under better impedance matching conditions. They can be made of low atomic number materials, making them interesting candidates for studying the mechanical responses of materials to electron and x-ray deposition. (U.S.)

  20. The shape of a strain-based failure assessment diagram

    International Nuclear Information System (INIS)

    Budden, P.J.; Ainsworth, R.A.

    2012-01-01

    There have been a number of recent developments of strain-based fracture assessment approaches, including proposals by Budden [Engng Frac Mech 2006;73:537–52] for a strain-based failure assessment diagram (FAD) related to the conventional stress-based FAD. However, recent comparisons with finite element (FE) data have shown that this proposed strain-based FAD can be non-conservative in some cases, particularly for deeper cracks and materials with little strain-hardening capacity. Therefore, this paper re-examines the shape of the strain-based FAD, guided by these FE analyses and some theoretical analysis. On this basis, modified proposals for the shape of the strain-based FAD are given, including simplified and more detailed options in line with the options available for stress-based FADs in existing fitness-for-service procedures. The proposals are then illustrated by a worked example and by comparison with FE data, which demonstrate that the new proposals are generally conservative. - Highlights: ► The strain-based failure assessment diagram approach to fracture is developed. ► The new approach modifies earlier proposals by Budden. ► A new generic Option 1 strain-based failure assessment diagram is proposed. ► Validation based on finite element J data for plates and cylinders is presented. ► The new approach is generally conservative compared with the finite element data.

  1. Application of AFINCH as a tool for evaluating the effects of streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the southeast Lake Michigan hydrologic subregion

    Science.gov (United States)

    Koltun, G.F.; Holtschlag, David J.

    2010-01-01

    Bootstrapping techniques employing random subsampling were used with the AFINCH (Analysis of Flows In Networks of CHannels) model to gain insights into the effects of variation in streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the 0405 (Southeast Lake Michigan) hydrologic subregion. AFINCH uses stepwise-regression techniques to estimate monthly water yields from catchments based on geospatial-climate and land-cover data in combination with available streamflow and water-use data. Calculations are performed on a hydrologic-subregion scale for each catchment and stream reach contained in a National Hydrography Dataset Plus (NHDPlus) subregion. Water yields from contributing catchments are multiplied by catchment areas and resulting flow values are accumulated to compute streamflows in stream reaches which are referred to as flow lines. AFINCH imposes constraints on water yields to ensure that observed streamflows are conserved at gaged locations.  Data from the 0405 hydrologic subregion (referred to as Southeast Lake Michigan) were used for the analyses. Daily streamflow data were measured in the subregion for 1 or more years at a total of 75 streamflow-gaging stations during the analysis period which spanned water years 1971–2003. The number of streamflow gages in operation each year during the analysis period ranged from 42 to 56 and averaged 47. Six sets (one set for each censoring level), each composed of 30 random subsets of the 75 streamflow gages, were created by censoring (removing) approximately 10, 20, 30, 40, 50, and 75 percent of the streamflow gages (the actual percentage of operating streamflow gages censored for each set varied from year to year, and within the year from subset to subset, but averaged approximately the indicated percentages).Streamflow estimates for six flow lines each were aggregated by censoring level, and results were analyzed to assess (a) how the

  2. Strain Measurement during Stress Rupture of Composite Over-Wrapped Pressure Vessel with Fiber Bragg Gratings Sensors

    Science.gov (United States)

    Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn

    2008-01-01

    Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPV). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPY liner.

  3. Using strain gauges to record the course of brown coal briquetting

    Energy Technology Data Exchange (ETDEWEB)

    Wrzesinski, B.; Borelowski, M.; Piwowarczyk, T.

    1977-01-01

    Process of brown coal briquetting is described. It is noted that measuring energy absorbed by coal during coal pressing is one of the most popular methods of evaluating coal ability to be briquetted. A review of measuring apparatus is presented. An electric dynamometer is described. It consists of press chamber and two moving punches with plates made of electrode carbon. The electric dynamometer uses the principle that under influence of changing pressure electric conductivity of the carbon plates also varies. Construction of the dynamometer is shown. Using a piezoelectric sensor is a more modern solution. Deformation of the punch is transferred to the crystal of a piezoelectric sensor, when the sensor is deformed electric current flows and after being amplified it is recorded by an oscillograph as change in pressure during briquetting. A measuring system developed by the Stanislaw Staszic University of Mining and Metallurgy is described. Four electric resistance wire strain gages are located at various points of the punch. During pressing the metal punch is deformed and this deformation is registered by strain gages as change in current voltage. A block scheme of the measuring system is given. It is stressed that the apparatus measures energy absorbed by coal during briquetting with a maximum error of 2%. It is suggested that the system can be successfully used under industrial conditions. (6 refs.) (In Polish)

  4. Improving snow water equivalent simulations in an alpine basin using blended gage precipitation and snow pillow measurements

    Science.gov (United States)

    Sohrabi, M.; Safeeq, M.; Conklin, M. H.

    2017-12-01

    Snowpack is a critical freshwater reservoir that sustains ecosystem, natural habitat, hydropower, agriculture, and urban water supply in many areas around the world. Accurate estimation of basin scale snow water equivalent (SWE), through both measurement and modeling, has been significantly recognized to improve regional water resource management. Recent advances in remote data acquisition techniques have improved snow measurements but our ability to model snowpack evolution is largely hampered by poor knowledge of inherently variable high-elevation precipitation patterns. For a variety of reasons, majority of the precipitation gages are located in low and mid-elevation range and function as drivers for basin scale hydrologic modeling. Here, we blend observed gage precipitation from low and mid-elevation with point observations of SWE from high-elevation snow pillow into a physically based snow evolution model (SnowModel) to better represent the basin-scale precipitation field and improve snow simulations. To do this, we constructed two scenarios that differed in only precipitation. In WTH scenario, we forced the SnowModel using spatially distributed gage precipitation data. In WTH+SP scenario, the model was forced with spatially distributed precipitation data derived from gage precipitation along with observed precipitation from snow pillows. Since snow pillows do not directly measure precipitation, we uses positive change in SWE as a proxy for precipitation. The SnowModel was implemented at daily time step and 100 m resolution for the Kings River Basin, USA over 2000-2014. Our results show an improvement in snow simulation under WTH+SP as compared to WTH scenario, which can be attributed to better representation in high-elevation precipitation patterns under WTH+SP. The average Nash Sutcliffe efficiency over all snow pillow and course sites was substantially higher for WTH+SP (0.77) than for WTH scenario (0.47). The maximum difference in observed and simulated

  5. Strain measurements of nuclear power plant steam generator antiseismic supports

    International Nuclear Information System (INIS)

    Kulichevsky, R.

    1997-01-01

    The nuclear power plants steam generators have different types of structural supports. One of these types are the antiseismic supports, which are intended to be under stress only if a seismic event takes place. Nevertheless, the antiseismic supports lugs, that are welded to the steam generator vessel, are subjected to thermal fatigue because of the temperature cycles related with the shut down and start up operations performed during the life of the nuclear power plant. In order to evaluate the stresses that the lugs are subjected to, several strain gages were welded on two supports lugs, positioned at two heights of one of the Embalse nuclear power plant steam generators. In this paper, the instrumentation used and the strain measurements obtained during two start up operations are presented. The influence of the plant start up operation parameters on the lugs strain evolution is also analyzed. (author) [es

  6. Application of the nuclear gages in dynamic sedimentology for the solid transport study

    International Nuclear Information System (INIS)

    Lamdasni, Y.

    1994-02-01

    The problems caused by the solid particle transport in rivers, dams, harbors, estuaries and in navigation channels have considerable economical consequences. The technical difficulties met when trying to limit or manage these problems are very important because of lack of knowledge. The nuclear gages and the radioactive tracers can be the measurement and monitoring means which, associated to the conventional techniques, permit to develop strongly the knowledge in the solid transport field. This report gives the modes of solid transport and the problems caused by these transports and exposes the physical properties of the fine sediments and their behavior under the hydrodynamic effects. In the same way, it deals with the theory of the nuclear gages, often applied in dynamic sedimentology and gives some examples of their applications. 29 refs., 35 figs., 5 tabs. (F.M.)

  7. An overview of the GAGE cancer/testis antigen family with the inclusion of newly identified members

    DEFF Research Database (Denmark)

    Gjerstorff, M F; Ditzel, H J

    2008-01-01

    . This review describes the structure and phylogeny of the GAGE family members and presents a revised nomenclature, which will enable a more clear distinction of genes and gene products. The GAGE gene locus at chromosome X p11.23 consists of at least 16 genes, each of which is located in one of an equal number...... of highly conserved tandem repeats, and more genes remain to be identified. These genes are likely the creation of unequal replication under positive selection after the divergence of primates from other mammals. The encoded products are predicted to be highly similar small acidic proteins involved in germ...

  8. Characterization of high-strain rate mechanical behavior of AZ31 magnesium alloy using 3D digital image correlation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli; Xu, Hanbing; Erdman, Donald L.; Starbuck, Michael J.; Simunovic, Srdjan [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2011-10-15

    Characterization of the material mechanical behavior at sub-Hopkinson regime (0.1 to 1 000 s{sup -1}) is very challenging due to instrumentation limitations and the complexity of data analysis involved in dynamic loading. In this study, AZ31 magnesium alloy sheet specimens are tested using a custom designed servo-hydraulic machine in tension at nominal strain rates up to 1 000 s{sup -1}. In order to resolve strain measurement artifacts, the specimen displacement is measured using 3D Digital Image correlation instead from actuator motion. The total strain is measured up to {approx} 30%, which is far beyond the measurable range of electric resistance strain gages. Stresses are calculated based on the elastic strains in the tab of a standard dog-bone shaped specimen. Using this technique, the stresses measured for strain rates of 100 s{sup -1} and lower show little or no noise comparing to load cell signals. When the strain rates are higher than 250 s{sup -1}, the noises and oscillations in the stress measurements are significantly decreased from {approx} 250 to 50 MPa. Overall, it is found that there are no significant differences in the elongation, although the material exhibits slight work hardening when the strain rate is increased from 1 to 100 s{sup -1}. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. New constraints on slip rates and locking depths of the San Andreas Fault System from Sentinel-1A InSAR and GAGE GPS observations

    Science.gov (United States)

    Ward, L. A.; Smith-Konter, B. R.; Higa, J. T.; Xu, X.; Tong, X.; Sandwell, D. T.

    2017-12-01

    After over a decade of operation, the EarthScope (GAGE) Facility has now accumulated a wealth of GPS and InSAR data, that when successfully integrated, make it possible to image the entire San Andreas Fault System (SAFS) with unprecedented spatial coverage and resolution. Resulting surface velocity and deformation time series products provide critical boundary conditions needed for improving our understanding of how faults are loaded across a broad range of temporal and spatial scales. Moreover, our understanding of how earthquake cycle deformation is influenced by fault zone strength and crust/mantle rheology is still developing. To further study these processes, we construct a new 4D earthquake cycle model of the SAFS representing the time-dependent 3D velocity field associated with interseismic strain accumulation, co-seismic slip, and postseismic viscoelastic relaxation. This high-resolution California statewide model, spanning the Cerro Prieto fault to the south to the Maacama fault to the north, is constructed on a 500 m spaced grid and comprises variable slip and locking depths along 42 major fault segments. Secular deep slip is prescribed from the base of the locked zone to the base of the elastic plate while episodic shallow slip is prescribed from the historical earthquake record and geologic recurrence intervals. Locking depths and slip rates for all 42 fault segments are constrained by the newest GAGE Facility geodetic observations; 3169 horizontal GPS velocity measurements, combined with over 53,000 line-of-sight (LOS) InSAR velocity observations from Sentinel-1A, are used in a weighted least-squares inversion. To assess slip rate and locking depth sensitivity of a heterogeneous rheology model, we also implement variations in crustal rigidity throughout the plate boundary, assuming a coarse representation of shear modulus variability ranging from 20-40 GPa throughout the (low rigidity) Salton Trough and Basin and Range and the (high rigidity) Central

  10. Hydraulic Testing of Polymer Matrix Composite 102mm Tube Section Technical Report

    Science.gov (United States)

    2018-04-01

    official Department of the Army position, policy, or decision, unless so designated by other documentation. The citation in this report of the names...the test specimen bore to measure strain in the hoop direction. Axial location of the interior strain gages was in the center of the test specimen...material. Each interior hoop direction strain gage contained a three-wire set-up for ease of balancing the bridge. Each internal strain gage wiring

  11. Coupon Test of an Elbow Component by Using Vision-based Measurement System

    International Nuclear Information System (INIS)

    Kim, Sung Wan; Jeon, Bub Gyu; Choi, Hyoung Suk; Kim, Nam Sik

    2016-01-01

    Among the various methods to overcome this shortcoming, vision-based methods to measure the strain of a structure are being proposed and many studies are being conducted on them. The vision-based measurement method is a noncontact method for measuring displacement and strain of objects by comparing between images before and after deformation. This method offers such advantages as no limitations in the surface condition, temperature, and shape of objects, the possibility of full filed measurement, and the possibility of measuring the distribution of stress or defects of structures based on the measurement results of displacement and strain in a map. The strains were measured with various methods using images in coupon test and the measurements were compared. In the future, the validity of the algorithm will be compared using stain gauge and clip gage, and based on the results, the physical properties of materials will be measured using a vision-based measurement system. This will contribute to the evaluation of reliability and effectiveness which are required for investigating local damages

  12. Coupon Test of an Elbow Component by Using Vision-based Measurement System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Wan; Jeon, Bub Gyu; Choi, Hyoung Suk; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    Among the various methods to overcome this shortcoming, vision-based methods to measure the strain of a structure are being proposed and many studies are being conducted on them. The vision-based measurement method is a noncontact method for measuring displacement and strain of objects by comparing between images before and after deformation. This method offers such advantages as no limitations in the surface condition, temperature, and shape of objects, the possibility of full filed measurement, and the possibility of measuring the distribution of stress or defects of structures based on the measurement results of displacement and strain in a map. The strains were measured with various methods using images in coupon test and the measurements were compared. In the future, the validity of the algorithm will be compared using stain gauge and clip gage, and based on the results, the physical properties of materials will be measured using a vision-based measurement system. This will contribute to the evaluation of reliability and effectiveness which are required for investigating local damages.

  13. Arrangement for correcting values measured by mass per unit area or thickness gages

    International Nuclear Information System (INIS)

    Volger, G.; Sandke, E.; Heinz, P.

    1985-01-01

    The described arrangement can be applied to gaged making use of beta radiation and of a protective screen for shielding the radiation source and the ionization chamber of the measuring instrument. It has been aimed at counterbalancing measuring inaccuracies caused by temperature fluctuations in the measuring slot

  14. Neutron moisture gaging of agricultural soil

    International Nuclear Information System (INIS)

    Pospisil, S.; Janout, Z.; Kovacik, M.

    1987-01-01

    The design is described of a neutron moisture gage which consists of a measuring probe, neutron detector, small electronic recording device and a 241 Am-Be radionuclide source. The neutron detector consists of a surface barrier semiconductor silicon detector and a conversion layer of lithium fluoride. The detection of triton which is the reaction product of lithium with neutrons by the silicon detector is manifested as a voltage pulse. The detector has low sensitivity for fast neutrons and for gamma radiation and is suitable for determining moisture values in large volume samples. Verification and calibration measurements were carried out of chernozem, brown soil and podzolic soils in four series. The results are tabulated. Errors of measurement range between 0.8 to 1.0%. The precision of measurement could be improved by the calibration of the device for any type of soil. (E.S.). 4 tabs., 6 refs., 5 figs

  15. A methodology for strain-based fatigue reliability analysis

    International Nuclear Information System (INIS)

    Zhao, Y.X.

    2000-01-01

    A significant scatter of the cyclic stress-strain (CSS) responses should be noted for a nuclear reactor material, 1Cr18Ni9Ti pipe-weld metal. Existence of the scatter implies that a random cyclic strain applied history will be introduced under any of the loading modes even a deterministic loading history. A non-conservative evaluation might be given in the practice without considering the scatter. A methodology for strain-based fatigue reliability analysis, which has taken into account the scatter, is developed. The responses are approximately modeled by probability-based CSS curves of Ramberg-Osgood relation. The strain-life data are modeled, similarly, by probability-based strain-life curves of Coffin-Manson law. The reliability assessment is constructed by considering interference of the random fatigue strain applied and capacity histories. Probability density functions of the applied and capacity histories are analytically given. The methodology could be conveniently extrapolated to the case of deterministic CSS relation as the existent methods did. Non-conservative evaluation of the deterministic CSS relation and availability of present methodology have been indicated by an analysis of the material test results

  16. Mechanism of Strain Rate Effect Based on Dislocation Theory

    International Nuclear Information System (INIS)

    Kun, Qin; Shi-Sheng, Hu; Li-Ming, Yang

    2009-01-01

    Based on dislocation theory, we investigate the mechanism of strain rate effect. Strain rate effect and dislocation motion are bridged by Orowan's relationship, and the stress dependence of dislocation velocity is considered as the dynamics relationship of dislocation motion. The mechanism of strain rate effect is then investigated qualitatively by using these two relationships although the kinematics relationship of dislocation motion is absent due to complicated styles of dislocation motion. The process of strain rate effect is interpreted and some details of strain rate effect are adequately discussed. The present analyses agree with the existing experimental results. Based on the analyses, we propose that strain rate criteria rather than stress criteria should be satisfied when a metal is fully yielded at a given strain rate. (condensed matter: structure, mechanical and thermal properties)

  17. Strain-based fracture assessment of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Olsoe, Erlend; Oestby, Erling; Nyhus, Baard [SINTEF, Trondheim (Norway); Skallerud, Bjoern; Holthe, Kjell [Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Berg, Espen [LINKftr AS, Trondheim (Norway)

    2009-12-19

    The oil and gas industry moves into harsher regions and faces challenges with i.e. deep water, arctic conditions and seismic regions. Consequently, ensuring the integrity of pipelines becomes more challenging, and potential large deformation scenarios that can be attributed to the above mentioned areas have lead to a current strong focus on strain-based fracture assessment methods for pipelines. However, no widely established methods exist today. In this paper specific challenges related to development of such methods are discussed. Keywords are biaxial loading, crack driving force relations, ductile tearing resistance, and definition of strain capacity. The effect of the different features will be illustrated with both experimental and numerical simulation results. Experimental results presented will cover both large- and small-scale testing. A highly efficient and accurate line-spring based numerical fracture assessment method will be presented. A simplified scheme for a strain-based fracture assessment method will also be briefly outlined, and the extension of this method to also include partial safety factors is discussed. (author)

  18. Development of a fiber optic pavement subgrade strain measurement system

    Science.gov (United States)

    Miller, Craig Emerson

    2000-11-01

    This dissertation describes the development of a fiber optic sensing system to measure strains within the soil subgrade of highway pavements resulting from traffic loads. The motivation to develop such a device include improvements to: (1)all phases of pavement design, (2)theoretical models used to predict pavement performance, and (3)pavement rehabilitation. The design of the sensing system encompasses selecting an appropriate transducer design as well as the development of optimal optical and demodulation systems. The first is spring based, which attempts to match its spring stiffness to that of the soil-data indicate it is not an optimal transducer design. The second transducer implements anchoring plates attached to two telescoping tubes which allows the soil to be compacted to a desired density between the plates to dictate the transducer's behavior. Both transducers include an extrinsic Fabry- Perot cavity to impose the soil strains onto a phase change of the optical signal propagating through the cavity. The optical system includes a low coherence source and allows phase modulation via path length stretching by adding a second interferometer in series with the transducer, resulting in a path matched differential interferometer. A digitally implemented synthetic heterodyne demodulator based on a four step phase stepping algorithm is used to obtain unambiguous soil strain information from the displacement of the Fabry-Perot cavity. The demodulator is calibrated and characterized by illuminating the transducer with a second long coherence source of different wavelength. The transducer using anchoring plates is embedded within cylindrical soil specimens of varying soil types and soil moisture contents. Loads are applied to the specimen and resulting strains are measured using the embedded fiber optic gage and LVDTs attached to the surface of the specimen. This experimental verification is substantiated using a finite element analysis to predict any differences

  19. High Strain Rate Testing of Welded DOP-26 Iridium

    Energy Technology Data Exchange (ETDEWEB)

    Schneibel, J. H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, R. G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carmichael, C. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fox, E. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The iridium alloy DOP-26 is used to produce Clad Vent Set cups that protect the radioactive fuel in radioisotope thermoelectric generators (RTGs) which provide electric power for spacecraft and rovers. In a previous study, the tensile properties of DOP-26 were measured over a wide range of strain rates and temperatures and reported in ORNL/TM-2007/81. While that study established the properties of the base material, the fabrication of the heat sources requires welding, and the mechanical properties of welded DOP-26 have not been extensively characterized in the past. Therefore, this study was undertaken to determine the mechanical properties of DOP-26 specimens containing a transverse weld in the center of their gage sections. Tensile tests were performed at room temperature, 750, 900, and 1090°C and engineering strain rates of 1×10-3 and 10 s-1. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1×10-4 Torr. The welded specimens had a significantly higher yield stress, by up to a factor of ~2, than the non-welded base material. The yield stress did not depend on the strain rate except at 1090°C, where it was slightly higher for the faster strain rate. The ultimate tensile stress, on the other hand, was significantly higher for the faster strain rate at temperatures of 750°C and above. At 750°C and above, the specimens deformed at 1×10-3 s-1 showed pronounced necking resulting sometimes in perfect chisel-edge fracture. The specimens deformed at 10 s-1 exhibited this fracture behavior only at the highest test temperature, 1090°C. Fracture occurred usually in the fusion zone of the weld and was, in most cases, primarily intergranular.

  20. Optimization of protection and calibration of the moisture-density gages troxler

    International Nuclear Information System (INIS)

    RAKOTONDRAVANONA, J.E.

    2011-01-01

    The purpose of this work is the implementation of the principle of optimization of the protection and calibration of moisture-density gages TROXLER. The main objectives are the application of radiation protection and the feasibility of a calibration laboratory design. The calibration of density and moisture may confirm the calibration of moisture-density gages TROXLER. The calibration of density consists of the assembly of measurements on three calibration blocks (magnesium, aluminium and magnesium/aluminium) built in the TRACKER. The value of density uncertainty is ±32 Kg.m -3 . The calibration of moisture is carried out on two calibration blocks (magnesium and magnesium/polyethylene)The value of moisture uncertainty is ±16 Kg.m -3 . The design of the laboratory returns to the dose limitation. The laboratory is designed mainly wall out of ordinary concrete, a good attenuator of the gamma radiations and neutron. For the design, the value of term source gamma is 25.77±0.20μSv.h -1 and the value of term source neutron is 7.88±0.35μSv.h -1 are used for the thickness of the walls. The importance of the design makes it possible to attenuate to the maximum doses and rates dose until the total absorption of the radiations. [fr

  1. Investigation of transducers for large-scale cryogenic systems in Italy

    International Nuclear Information System (INIS)

    Pavese, F.

    1984-01-01

    This chapter investigates temperature, pressure (static, absolute), strain and flowrate transducers. A modular cryostat system, which includes a superconducting solenoid, is used for measurements. The module for pressure transducers allows them to be measured one at a time. Adiabatic conditions for the functional part of the module for strain-gages are ensured by sliding thermal anchors. The equipment is driven by three computer-based systems which act separately. Magnetoresistance has been measured up to 6 T. Only foil-type strain gages were investigated. It is determined that apparent strain has a peculiar trend at liquid helium temperatures. Four types of transducers, specifically designed for low-temperature measurement of static, absolute pressure, and uncalibrated, were tested

  2. Evaluating a slope-stability model for shallow rain-induced landslides using gage and satellite data

    Science.gov (United States)

    Yatheendradas, S.; Kirschbaum, D.; Baum, Rex L.; Godt, Jonathan W.

    2014-01-01

    Improving prediction of landslide early warning systems requires accurate estimation of the conditions that trigger slope failures. This study tested a slope-stability model for shallow rainfall-induced landslides by utilizing rainfall information from gauge and satellite records. We used the TRIGRS model (Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis) for simulating the evolution of the factor of safety due to rainfall infiltration. Using a spatial subset of a well-characterized digital landscape from an earlier study, we considered shallow failure on a slope adjoining an urban transportation roadway near the Seattle area in Washington, USA.We ran the TRIGRS model using high-quality rain gage and satellite-based rainfall data from the Tropical Rainfall Measuring Mission (TRMM). Preliminary results with parameterized soil depth values suggest that the steeper slope values in this spatial domain have factor of safety values that are extremely close to the failure limit within an extremely narrow range of values, providing multiple false alarms. When the soil depths were constrained using a back analysis procedure to ensure that slopes were stable under initial condtions, the model accurately predicted the timing and location of the landslide observation without false alarms over time for gage rain data. The TRMM satellite rainfall data did not show adequately retreived rainfall peak magnitudes and accumulation over the study period, and as a result failed to predict the landslide event. These preliminary results indicate that more accurate and higher-resolution rain data (e.g., the upcoming Global Precipitation Measurement (GPM) mission) are required to provide accurate and reliable landslide predictions in ungaged basins.

  3. Tunable strain gauges based on two-dimensional silver nanowire networks

    International Nuclear Information System (INIS)

    Ho, Xinning; Cheng, Chek Kweng; Tey, Ju Nie; Wei, Jun

    2015-01-01

    Strain gauges are used in various applications such as wearable strain gauges and strain gauges in airplanes or structural health monitoring. Sensitivity of the strain gauge required varies, depending on the application of the strain gauge. This paper reports a tunable strain gauge based on a two-dimensional percolative network of silver nanowires. By varying the surface coverage of the nanowire network and the waviness of the nanowires in the network, the sensitivity of the strain gauge can be controlled. Hence, a tunable strain gauge can be engineered, based on demands of the application. A few applications are demonstrated. The strain gauge can be adhered to the human neck to detect throat movements and a glove integrated with such a strain gauge can detect the bending of the forefinger. Other classes of two-dimensional percolative networks of one-dimensional materials are also expected to exhibit similar tunable properties. (paper)

  4. Strain-based failure criteria for steel containments

    International Nuclear Information System (INIS)

    Fanous, F.; Greimann, L.F.

    1989-01-01

    The Containment Integrity Division of the Sandia National Laboratories (Sandia) has been conducting a program to evaluate the performance of containment buildings with internal pressure. Sandia has suggested that in the absence of leakage past penetrations, containment buildings will fail by rupturing after large plastic strains are developed up to ultimate strain of the material. This paper represents a portion of work conducted at Ames Laboratory for Sandia, the objective of which was to identify fabrication details that may affect the performance of a containment building. Construction drawings for nine steel containment buildings were surveyed, and several significant strain concentration regions were identified by using recommendations from Sandia and Section NE-3217 of the ASME Boiler and Pressure Vessel Code. These following regions were identified as: eccentricities in stiffener patterns around penetrations, eccentricities in containment shell middle surface, flat plate covers used on spare penetrations, containment base connection details, and containment heads. Examples of each of these regions were analyzed by the finite-element method, by simplified equations or both. In the case of middle surface eccentricities, the strains were found to be self-limiting. Even though flat plates have primary strains, they are typically designed so as not to control. Bolts in the base connection have primary strains and may control. The circumferential compressive strains introduced at the knuckle during buckling of the containment head grow as the pressure increases, but are somewhat restricted by the meridional tension. Finally, three analysis techniques and their associated failure criteria for the analysis of containment strength are introduced. (orig.)

  5. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales.

    Science.gov (United States)

    Yang, Yi-Fan; Tao, Lu-Qi; Pang, Yu; Tian, He; Ju, Zhen-Yi; Wu, Xiao-Ming; Yang, Yi; Ren, Tian-Ling

    2018-06-12

    An ultrasensitive strain sensor with a wide strain range based on graphene armour scales is demonstrated in this paper. The sensor shows an ultra-high gauge factor (GF, up to 1054) and a wide strain range (ε = 26%), both of which present an advantage compared to most other flexible sensors. Moreover, the sensor is developed by a simple fabrication process. Due to the excellent performance, this strain sensor can meet the demands of subtle, large and complex human motion monitoring, which indicates its tremendous application potential in health monitoring, mechanical control, real-time motion monitoring and so on.

  6. Precipitation data for water years 1992 and 1993 from a network of nonrecording gages at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ambos, D.S.; Flint, A.L.; Hevesi, J.A.

    1995-01-01

    This report presents precipitation data collected in a storage gage network at Yucca Mountain, Nevada, from October 1, 1991, to September 30, 1993. The measured values indicate total accumulated precipitation for specified time intervals approximately corresponding to separate storm events. Installation of a precipitation monitoring network was initiated in January 1990, and was continually expanded and upgraded throughout the period ending in September 1993. The final network included 3 different gage types for a total of 133 gages at 108 locations within the three drainages overlying the potential repository site. Measured precipitation indicated above average accumulations for water years 1992 and 1993 relative to the most recent estimate of 6.7 inches for long-term average annual precipitation over the area of the network. The total precipitation averaged over the network in 1992 was about 8.2 inches with a maximum of about 11.2 inches measured at borehole USW GA-1. The total precipitation averaged over the network in 1993 was about 10.3 inches with a maximum of about 12.1 inches at neutron-access borehole UE-25 UZN number-sign 4

  7. Systems and Methods for Implementing Bulk Metallic Glass-Based Strain Wave Gears and Strain Wave Gear Components

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Wilcox, Brian (Inventor)

    2016-01-01

    Bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a strain wave gear includes: a wave generator; a flexspline that itself includes a first set of gear teeth; and a circular spline that itself includes a second set of gear teeth; where at least one of the wave generator, the flexspline, and the circular spline, includes a bulk metallic glass-based material.

  8. Combined Synchrotron X-ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-assisted Steels

    Energy Technology Data Exchange (ETDEWEB)

    Poling, Whitney A.; Savic, Vesna; Hector, Louis G.; Sachdev, Anil K.; Hu, Xiaohua; Devaraj, Arun; Abu-Farha, Fadi

    2016-04-05

    The strain-induced, diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain in TRIP-assisted steels with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing. Results obtained for a QP980 steel are used to study the influence of initial volume fraction of austenite and the austenite transformation with strain on tensile mechanical behavior.

  9. Improving Streamflow Simulation in Gaged and Ungaged Areas Using a Multi-Model Synthesis Combined with Remotely-Sensed Data and Estimates of Uncertainty

    Science.gov (United States)

    Lafontaine, J.; Hay, L.

    2015-12-01

    The United States Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the conterminous United States (CONUS). More than 1,700 gaged watersheds across the CONUS were modeled to test the feasibility of improving streamflow simulations in gaged and ungaged watersheds by linking statistically- and physically-based hydrologic models with remotely-sensed data products (i.e. - snow water equivalent) and estimates of uncertainty. Initially, the physically-based models were calibrated to measured streamflow data to provide a baseline for comparison. As many stream reaches in the CONUS are either not gaged, or are substantially impacted by water use or flow regulation, ancillary information must be used to determine reasonable parameter estimations for streamflow simulations. In addition, not all ancillary datasets are appropriate for application to all parts of the CONUS (e.g. - snow water equivalent in the southeastern U.S., where snow is a rarity). As it is not expected that any one data product or model simulation will be sufficient for representing hydrologic behavior across the entire CONUS, a systematic evaluation of which data products improve simulations of streamflow for various regions across the CONUS was performed. The resulting portfolio of calibration strategies can be used to guide selection of an appropriate combination of simulated and measured information for model development and calibration at a given location of interest. In addition, these calibration strategies have been developed to be flexible so that new data products or simulated information can be assimilated. This analysis provides a foundation to understand how well models work when streamflow data is either not available or is limited and could be used to further inform hydrologic model parameter development for ungaged areas.

  10. Strain measurements by fiber Bragg grating sensors for in situ pile loading tests

    Science.gov (United States)

    Schmidt-Hattenberger, Cornelia; Straub, Tilmann; Naumann, Marcel; Borm, Günter; Lauerer, Robert; Beck, Christoph; Schwarz, Wolfgang

    2003-07-01

    A fiber Bragg grating (FBG) sensor network has been installed into a large diameter concrete pile on a real construction site. The intention was to monitor its deformation behavior during several quasi-static loading cycles. The skin friction between pile and subsoil affecting the ultimate bearing capacity of the pile as well as the settlement behavior of the structure under investigation has been derived from our measurements. A comparison between the results of the fiber Bragg grating sensors and conventional concrete strain gages (CSG) has shown excellent correspondence.

  11. Doses of personnel employed in the manufacture of radioisotope thickness gages

    International Nuclear Information System (INIS)

    Kostenetskij, M.I.

    1981-01-01

    Doses of the personnel of one of the plants manifacturing radioisotope thickness gages of different types are determined. Annual doses to the body protected by shielding screens are low and according to the data of individual dosimetry constitute 5x10 -3 -6x10 -3 J/kg (0.5-0.6 rem). A table of radiation doses to hands obtained during all kind of operations, is given. Measures for the further reduction of radiation doses of the personnel are suggested [ru

  12. Apparatus for measuring fluid flow

    Science.gov (United States)

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  13. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    Science.gov (United States)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  14. Regional Relations in Bankfull Channel Characteristics determined from flow measurements at selected stream-gaging stations in West Virginia, 1911-2002

    Science.gov (United States)

    Messinger, Terence; Wiley, Jeffrey B.

    2004-01-01

    Three bankfull channel characteristics?cross-sectional area, width, and depth?were significantly correlated with drainage area in regression equations developed for two regions in West Virginia. Channel characteristics were determined from analysis of flow measurements made at 74 U.S. Geological Survey stream-gaging stations at flows between 0.5 and 5.0 times bankfull flow between 1911 and 2002. Graphical and regression analysis were used to delineate an 'Eastern Region' and a 'Western Region,' which were separated by the boundary between the Appalachian Plateaus and Valley and Ridge Physiographic Provinces. Streams that drained parts of both provinces had channel characteristics typical of the Eastern Region, and were grouped with it. Standard error for the six regression equations, three for each region, ranged between 8.7 and 16 percent. Cross-sectional area and depth were greater relative to drainage area for the Western Region than they were for the Eastern Region. Regression equations were defined for streams draining between 46.5 and 1,619 square miles for the Eastern Region, and between 2.78 and 1,354 square miles for the Western Region. Stream-gaging stations with two or more cross sections where flow had been measured at flows between 0.5 and 5.0 times the 1.5-year flow showed poor replication of channel characteristics compared to the 95-percent confidence intervals of the regression, suggesting that within-reach variability for the stream-gaging stations may be substantial. A disproportionate number of the selected stream-gaging stations were on large (drainage area greater than 100 square miles) streams in the central highlands of West Virginia, and only one stream-gaging station that met data-quality criteria was available to represent the region within about 50 miles of the Ohio River north of Parkersburg, West Virginia. Many of the cross sections were at bridges, which can change channel shape. Although the data discussed in this report may not be

  15. Rapid discrimination of strain-dependent fermentation characteristics among Lactobacillus strains by NMR-based metabolomics of fermented vegetable juice.

    Directory of Open Access Journals (Sweden)

    Satoru Tomita

    Full Text Available In this study, we investigated the applicability of NMR-based metabolomics to discriminate strain-dependent fermentation characteristics of lactic acid bacteria (LAB, which are important microorganisms for fermented food production. To evaluate the discrimination capability, six type strains of Lactobacillus species and six additional L. brevis strains were used focusing on i the difference between homo- and hetero-lactic fermentative species and ii strain-dependent characteristics within L. brevis. Based on the differences in the metabolite profiles of fermented vegetable juices, non-targeted principal component analysis (PCA clearly separated the samples into those inoculated with homo- and hetero-lactic fermentative species. The separation was primarily explained by the different levels of dominant metabolites (lactic acid, acetic acid, ethanol, and mannitol. Orthogonal partial least squares discrimination analysis, based on a regions-of-interest (ROIs approach, revealed the contribution of low-abundance metabolites: acetoin, phenyllactic acid, p-hydroxyphenyllactic acid, glycerophosphocholine, and succinic acid for homolactic fermentation; and ornithine, tyramine, and γ-aminobutyric acid (GABA for heterolactic fermentation. Furthermore, ROIs-based PCA of seven L. brevis strains separated their strain-dependent fermentation characteristics primarily based on their ability to utilize sucrose and citric acid, and convert glutamic acid and tyrosine into GABA and tyramine, respectively. In conclusion, NMR metabolomics successfully discriminated the fermentation characteristics of the tested strains and provided further information on metabolites responsible for these characteristics, which may impact the taste, aroma, and functional properties of fermented foods.

  16. Development of advanced strain diagnostic techniques for reactor environments.

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  17. Gage for gas flow measurement especially in gas-suction pipes

    International Nuclear Information System (INIS)

    Renner, K.; Stegmanns, W.

    1978-01-01

    The gage utilizes the differential pressure given by a differential pressure producer to generate, in a bypass, a partial gas flow measured by means of a direct-reading anemometer of windmill type. The partial gas flow is generated between pressure pick-up openings in the gas-suction pipe in front of a venturi insert and pressure pick-up openings at the bottleneck of the venturi insert. The reading of the anemometer is proportional to the main gas flow and independent of the variables of state and the properties of the gases to be measured. (RW) [de

  18. Low-temperature strain gauges based on silicon whiskers

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2008-08-01

    Full Text Available To create low-temperature strain gauges based on p-type silicon whiskers tensoresistive characteristics of these crystals in 4,2—300 K temperature range were studied. On the basis of p-type Si whiskers with different resistivity the strain gauges for different materials operating at cryogenic temperatures with extremely high gauge factor at 4,2 K were developed, as well as strain gauges operating at liquid helium temperatures in high magnetic fields.

  19. Strain-based quench detection for a solenoid superconducting magnet

    International Nuclear Information System (INIS)

    Wang Xingzhe; Guan Mingzhi; Ma Lizhen

    2012-01-01

    In this paper, we present a non-electric quench detection method based on the strain gauge measurement of a superconducting solenoid magnet at cryogenic temperature under an intense magnetic field. Unlike the traditional voltage measurement of quench detection, the strain-based detection method utilizes low-temperature strain gauges, which evidently reduce electromagnetic noise and breakdown, to measure the magneto/thermo-mechanical behavior of the superconducting magnet during excitation. The magnet excitation, quench tests and trainings were performed on a prototype 5 T superconducting solenoid magnet. The transient strains and their abrupt changes were compared with the current, magnetic field and temperature signals collected during excitation and quench tests to indicate that the strain gauge measurements can detect the quench feature of the superconducting magnet. The proposed method is expected to be able to detect the quench of a superconducting coil independently or utilized together with other electrical methods. In addition, the axial quench propagation velocity of the solenoid is evaluated by the quench time lags among different localized strains. The propagation velocity is enhanced after repeated quench trainings. (paper)

  20. Near Net Manufacturing Using Thin Gage Friction Stir Welding

    Science.gov (United States)

    Takeshita, Jennifer; Potter, David; Holquin, Michael

    2006-01-01

    Friction Stir Welding (FSW) and near net spin forming of FSW aluminumn blanks were investigated for large-scale pressure vessel applications. With a specific focus on very thin gage 2xxx and 7xxx aluminum alloys, the program concentrated on the following: the criteria used for material selection, a potential manufacturing flow, and the effectiveness and associated risks of near net spin forming. Discussion will include the mechanical properties of the friction stir welds and the parent material from before and after the spin forming process. This effort was performed under a NASA Space Exploration initiative focused on increasing the affordability, reliability and performance of pressure vessels larger than 10 ft. diameter.

  1. Effects of C and Si on strain aging of strain-based API X60 pipeline steels

    Science.gov (United States)

    Sung, Hyo Kyung; Lee, Dong Ho; Lee, Sunghak; Lee, Byeong-Joo; Hong, Seung-Pyo; Kim, Young-Woon; Yoo, Jang Yong; Hwang, Byoungchul; Shin, Sang Yong

    2017-05-01

    Four types of strain-based API X60 pipeline steels were fabricated by varying the C and Si contents, and the effects of C and Si on strain aging were investigated. The 0.05 wt% C steels consisted mainly of polygonal ferrite (PF), whereas the 0.08 wt% C steels consisted of acicular ferrite (AF). The volume fraction of AF increased with increasing C content because C is an austenite stabilizer element. The volume fractions of bainitic ferrite (BF) of the 0.15 wt% Si steels were higher than those of the 0.25 wt% Si steels, whereas the volume fractions of the secondary phases were lower. From the tensile properties before and after the aging process of the strainbased API X60 pipeline steels, the yield strength increased and the uniform and total elongation decreased, which is the strain aging effect. The strain aging effect in the strain-based API X60 pipeline steels was minimized when the volume fraction of AF was increased and secondary phases were distributed uniformly. On the other hand, an excessively high C content formed fine precipitates, and the strain aging effect occurred because of the interactions among dislocations and fine precipitates.

  2. Polydimethylsiloxane (PDMS-Based Flexible Resistive Strain Sensors for Wearable Applications

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2018-02-01

    Full Text Available There is growing attention and rapid development on flexible electronic devices with electronic materials and sensing technology innovations. In particular, strain sensors with high elasticity and stretchability are needed for several potential applications including human entertainment technology, human–machine interface, personal healthcare, and sports performance monitoring, etc. This article presents recent advancements in the development of polydimethylsiloxane (PDMS-based flexible resistive strain sensors for wearable applications. First of all, the article shows that PDMS-based stretchable resistive strain sensors are successfully fabricated by different methods, such as the filtration method, printing technology, micromolding method, coating techniques, and liquid phase mixing. Next, strain sensing performances including stretchability, gauge factor, linearity, and durability are comprehensively demonstrated and compared. Finally, potential applications of PDMS-based flexible resistive strain sensors are also discussed. This review indicates that the era of wearable intelligent electronic systems has arrived.

  3. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites

    Science.gov (United States)

    Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen

    2018-06-01

    Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human–machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.

  4. Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition

    Science.gov (United States)

    Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.

    2017-03-01

    Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.

  5. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites.

    Science.gov (United States)

    Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen

    2018-06-08

    Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human-machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.

  6. Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers

    KAUST Repository

    Zhou, Jian

    2017-01-17

    The development of strain sensors featuring both ultra high sensitivity and high stretchability is still a challenge. We demonstrate that strain sensors based on fragmented single-walled carbon nanotube (SWCNT) paper embedded in poly(dimethylsiloxane) (PDMS) can sustain their sensitivity even at very high strain levels (with a gauge factor of over 10(7) at 50% strain). This record sensitivity is ascribed to the low initial electrical resistance (5-28 Omega) of the SWCNT paper and the wide change in resistance (up to 10(6) Omega) governed by the percolated network of SWCNT in the cracked region. The sensor response remains nearly unchanged after 10 000 strain cycles at 20% proving the robustness of this technology. This fragmentation based sensing system brings opportunities to engineer highly sensitive stretchable sensors.

  7. Long term strain behavior of PMMA based polymer optical fibers

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Nielsen, Kristian; Woyessa, Getinet

    2015-01-01

    We are reporting on the viscoelasticity of PMMA based Fiber Bragg Grating (FBG) strain sensors when exposed to repeated sequences of long term strain and relaxation with various duty-cycles. In terms of the FBG wavelength and how it follows the strain cycle, we have shown that in the small strain...... regime (up to 1%) an elastic-dominated fast relaxing range, which is followed by a mainly viscous relaxation, depends both on the strain level and on the strain duration. For a small ratio of the strain-relax durations, this fast relaxation range stays almost the same. However, with increasing strain...... duration, for the same relaxation time, this range will be shortened, which might influence the sensing capabilities of the fiber sensor....

  8. Design and construction of a strain gage compression load cell to measure rolling forces

    International Nuclear Information System (INIS)

    Schoeffer, L.; Borchardt, I.G.; Carvalho, L.F.A.

    1978-05-01

    A complete detailed mechanical desion of a strain gauge compression load cell is presented. This cell was specialy designed to measure rolling forces at conventional duo or trio industrial roughing stands. The stands, in general, have little space (height) to adjust to the cells. Moreover the contact stands surfaces are very rough. Do to this facts, load cells of elastic cilindrical geometries are not recommended for accuracies better than 8%. This work describes the complete design and the construction of a circular (membrane) steel plate load cell. A prototype of 300 KN (approximately 30t) capacity, with 2% accuracies and with a height of 6 cm was constructed and tested. The design proposed is a general one and permits the construction of small load cells to measure any compression load [pt

  9. MAGE-A1, GAGE and NY-ESO-1 cancer/testis antigen expression during human gonadal development

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Kock, Kirsten; Nielsen, Ole

    2007-01-01

    BACKGROUND: Cancer/testis antigens (CTAs) are expressed in several cancers and during normal adult male germ cell differentiation. Little is known about their role in fetal development of human germ cells. METHODS: We examined expression of the CTAs MAGE-A1, GAGE and NY-ESO-1 in fetal gonads...

  10. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    Science.gov (United States)

    Aksoy, B.; Rehman, A.; Bayraktar, H.; Alaca, B. E.

    2017-04-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µm are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can

  11. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    International Nuclear Information System (INIS)

    Aksoy, B; Alaca, B E; Rehman, A; Bayraktar, H

    2017-01-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µ m are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can

  12. Geoscience Workforce Development at UNAVCO: Leveraging the NSF GAGE Facility

    Science.gov (United States)

    Morris, A. R.; Charlevoix, D. J.; Miller, M.

    2013-12-01

    Global economic development demands that the United States remain competitive in the STEM fields, and developing a forward-looking and well-trained geoscience workforce is imperative. According to the Bureau of Labor Statistics, the geosciences will experience a growth of 19% by 2016. Fifty percent of the current geoscience workforce is within 10-15 years of retirement, and as a result, the U.S. is facing a gap between the supply of prepared geoscientists and the demand for well-trained labor. Barring aggressive intervention, the imbalance in the geoscience workforce will continue to grow, leaving the increased demand unmet. UNAVCO, Inc. is well situated to prepare undergraduate students for placement in geoscience technical positions and advanced graduate study. UNAVCO is a university-governed consortium facilitating research and education in the geosciences and in addition UNAVCO manages the NSF Geodesy Advancing Geosciences and EarthScope (GAGE) facility. The GAGE facility supports many facets of geoscience research including instrumentation and infrastructure, data analysis, cyberinfrastructure, and broader impacts. UNAVCO supports the Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering graduate school in the geosciences. RESESS has met with high success in the first 9 years of the program, as more than 75% of RESESS alumni are currently in Master's and PhD programs across the U.S. Building upon the successes of RESESS, UNAVCO is launching a comprehensive workforce development program that will network underrepresented groups in the geosciences to research and opportunities throughout the geosciences. This presentation will focus on the successes of the RESESS program and plans to expand on this success with broader

  13. Nanoscale strain engineering of graphene and graphene-based devices

    Institute of Scientific and Technical Information of China (English)

    N-C Yeh; C-C Hsu; M L Teague; J-Q Wang; D A Boyd; C-C Chen

    2016-01-01

    Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simula-tions and nano-fabrication technology.

  14. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles

    Science.gov (United States)

    Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang

    2018-06-01

    Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.

  15. Operation of a nuclear test gage at low multiplications

    International Nuclear Information System (INIS)

    Baumann, N.P.

    1977-01-01

    The Nuclear Test Gage (NTG) at the Savannah River Plant is a subcritical multiplying facility (low k) with H 2 O moderator and 2.54-cm-diameter fuel slugs of 5 wt percent 235 U in aluminum alloy at a 4.285-cm triangular pitch. The core of the facility is 61-cm long with a normal diameter of 27 cm. The NTG is used for quality control of reactor components, such as 235 U-Al fuel tubes, Li--Al target tubes, control and safety rods, and miscellaneous special irradiation elements. A component is tested by passing it through an axial test port 11.63 cm in diameter. The ion chamber response from the resultant change in neutron source multiplication is then compared with corresponding responses from known standards

  16. An embeddable optical strain gauge based on a buckled beam.

    Science.gov (United States)

    Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie

    2017-11-01

    We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.

  17. An embeddable optical strain gauge based on a buckled beam

    Science.gov (United States)

    Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie

    2017-11-01

    We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.

  18. Analysis of strain distribution and critical current of superconductors based on a strain-critical current measurement system

    International Nuclear Information System (INIS)

    Liu Fang; Wu Yu; Long Feng

    2010-01-01

    Based on Pacman device which is widely used to investigate the axial strain dependence of the critical current in superconductors, the finite element analysis method is employed to carry out the force analysis of the spring and the superconducting strand, thereby the axial and lateral strain distributions of the superconducting strand are obtained. According to the two extreme assumptions(low inter-filament resistance and high inter-filament resistance), the effects of the strain homogeneity at the cross section of the superconductor on the critical current is analyzed combined with the Nb 3 Sn deviatoric strain-critical current scaling law. (authors)

  19. Use of colony-based bacterial strain typing for tracking the fate of Lactobacillus strains during human consumption

    Directory of Open Access Journals (Sweden)

    Drevinek Pavel

    2009-12-01

    Full Text Available Abstract Background The Lactic Acid Bacteria (LAB are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i the initial cultivable LAB strain diversity in the human gut, and (ii the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156 contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be

  20. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    Science.gov (United States)

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  1. Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers

    KAUST Repository

    Zhou, Jian; Yu, Hu; Xu, Xuezhu; Han, Fei; Lubineau, Gilles

    2017-01-01

    The development of strain sensors featuring both ultra high sensitivity and high stretchability is still a challenge. We demonstrate that strain sensors based on fragmented single-walled carbon nanotube (SWCNT) paper embedded in poly

  2. Measuring Crack Length in Coarse Grain Ceramics

    Science.gov (United States)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  3. Lower-energy neutron sources for increasing the sensitivity of nuclear gages for measuring the water content of bulk materials

    International Nuclear Information System (INIS)

    Bailey, S.M.

    1977-01-01

    The sensitivity of a gage using a nuclear source for measuring the water content of bulk materials, such as plastic concrete, is increased by use of a lithium or fluorine neutron nuclear source. 3 figures

  4. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.

    Science.gov (United States)

    Amjadi, Morteza; Turan, Mehmet; Clementson, Cameron P; Sitti, Metin

    2016-03-02

    There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11,344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics.

  5. Assessment of creep-fatigue damage using the UK strain based procedure

    International Nuclear Information System (INIS)

    Bate, S.K.

    1997-01-01

    The UK strain based procedures have been developed for the evaluation of damage in structures, arising from fatigue cycles and creep processes. The fatigue damage is assessed on the basis of modelling crack growth from about one grain depth to an allowable limit which represents an engineering definition of crack formation. Creep damage is based up on the exhaustion of available ductility by creep strain accumulation. The procedures are applicable only when level A and B service conditions apply, as defined in RCC-MR or ASME Code Case N47. The procedures require the components of strain to be evaluated separately, thus they may be used with either full inelastic analysis or simplified methods. To support the development of the UK strain based creep-fatigue procedures an experimental program was undertaken by NNC to study creep-fatigue interaction of structures operating at high temperature. These tests, collectively known as the SALTBATH tests considered solid cylinder and tube-plate specimens, manufactured from Type 316 stainless steel. These specimens were subjected to thermal cycles between 250 deg. C and 600 deg. C. In all the cases the thermal cycle produces tensile residual stresses during dwells at 600 deg. C. One of the tube-plate specimens was used as a benchmark for validating the strain based creep fatigue procedures and subsequently as part of a CEC co-operative study. This benchmark work is described in this paper. A thermal and inelastic stress analysis was carried out using the finite element code ABAQUS. The inelastic behaviour of the material was described using the ORNL constitutive equations. A creep fatigue assessment using the strain based procedures has been compared with an assessment using the RCC-MR inelastic rules. The analyses indicated that both the UK strain based procedures and the RCC-MR rules were conservative, but the conservatism was greater for the RCC-MR rules. (author). 8 refs, 8 figs, 4 tabs

  6. Bridge condition assessment based on long-term strain monitoring

    Science.gov (United States)

    Sun, LiMin; Sun, Shouwang

    2011-04-01

    In consideration of the important role that bridges play as transportation infrastructures, their safety, durability and serviceability have always been deeply concerned. Structural Health Monitoring Systems (SHMS) have been installed to many long-span bridges to provide bridge engineers with the information needed in making rational decisions for maintenance. However, SHMS also confronted bridge engineers with the challenge of efficient use of monitoring data. Thus, methodologies which are robust to random disturbance and sensitive to damage become a subject on which many researches in structural condition assessment concentrate. In this study, an innovative probabilistic approach for condition assessment of bridge structures was proposed on the basis of long-term strain monitoring on steel girder of a cable-stayed bridge. First, the methodology of damage detection in the vicinity of monitoring point using strain-based indices was investigated. Then, the composition of strain response of bridge under operational loads was analyzed. Thirdly, the influence of temperature and wind on strains was eliminated and thus strain fluctuation under vehicle loads is obtained. Finally, damage evolution assessment was carried out based on the statistical characteristics of rain-flow cycles derived from the strain fluctuation under vehicle loads. The research conducted indicates that the methodology proposed is qualified for structural condition assessment so far as the following respects are concerned: (a) capability of revealing structural deterioration; (b) immunity to the influence of environmental variation; (c) adaptability to the random characteristic exhibited by long-term monitoring data. Further examination of the applicability of the proposed methodology in aging bridge may provide a more convincing validation.

  7. Soil moisture determination with Tesla NZK 203 neutron gage

    International Nuclear Information System (INIS)

    Hally, J.

    1977-01-01

    Soil moisture was measured using the NZK 203 neutron probe manufactured by Tesla Premysleni. The individual measuring sites were spaced at a distance of 100 m. The NZK 203 set consists of a NPK 202 moisture gage and a NSK 301 scintillation detector and features the following specifications: moisture density measuring range 20 to 500 kg/m 3 , 241 Am-Be fast neutron source having a neutron flux of 7.5x10 4 n.sec -1 +-10%, operating temperature -10 to +45 degC. The measured counting rate was primarily affected by the statistical fluctuation of ionizing radiation and by instrument instability. In order that these effects should be limited each measurement was repeated 10 times with the optimum measurement time at an interval of 20 to 100 sec. The NZK 203 Tesla set was proven to be suitable for rapid and reproducible determination of moisture profiles. (J.P.)

  8. Guidelines for using sensitivity analysis and auto-calibration tools for multi-gage or multi-step calibration in SWAT

    Science.gov (United States)

    Autocalibration of a water quality model such as SWAT (Soil and Water Assessment Tool) can be a powerful, labor-saving tool. When multi-gage or multi-pollutant calibration is desired, autocalibration is essential because the time involved in manual calibration becomes prohibitive. The ArcSWAT Interf...

  9. Prediction of material creep behaviour for strain based life assessment applications

    Energy Technology Data Exchange (ETDEWEB)

    Rantala, J H; Hurst, R C [EC JRC IAM, Petten (Netherlands); Bregani, F [ENEL, Milan (Italy)

    1999-12-31

    In this work the idea of using constant load uniaxial creep test results instead of constant stress results for developing a CDM creep model for the P92 material is demonstrated. Due to limited availability of creep test results this work is based on incomplete test data and a general stress rupture line. In spite of these limitations a material creep model was developed for use in a FE analysis. Using P91 material as an example, a method is proposed to account for differences in strain evolution as a function of stress which normally manifests itself as lower strain values at low stresses in a normalised time-strain plot. This allows the CDM model to be used both in FE analysis and in strain-based life assessment engineering calculations. (orig.) 3 refs.

  10. Prediction of material creep behaviour for strain based life assessment applications

    Energy Technology Data Exchange (ETDEWEB)

    Rantala, J.H.; Hurst, R.C. [EC JRC IAM, Petten (Netherlands); Bregani, F. [ENEL, Milan (Italy)

    1998-12-31

    In this work the idea of using constant load uniaxial creep test results instead of constant stress results for developing a CDM creep model for the P92 material is demonstrated. Due to limited availability of creep test results this work is based on incomplete test data and a general stress rupture line. In spite of these limitations a material creep model was developed for use in a FE analysis. Using P91 material as an example, a method is proposed to account for differences in strain evolution as a function of stress which normally manifests itself as lower strain values at low stresses in a normalised time-strain plot. This allows the CDM model to be used both in FE analysis and in strain-based life assessment engineering calculations. (orig.) 3 refs.

  11. Development of a load cell for mechanical testing in hydrogen

    International Nuclear Information System (INIS)

    McCabe, L.P.

    1982-01-01

    Mechanical testing in hydrogen environments is performed on materials to determine hydrogen compatibility. Many tests are performed on small test samples in pressure vessels where monitoring of actual sample load is difficult. A method was developed to monitor small samples by placing inside the vessel a miniature load cell which is capable of measuring loads of less than 100 lbs. The load cell monitors load by means of a Wheatstone Bridge circuit composed of four strain gages. Two of the gages are mounted on a stainless steel stub which becomes part of the vessel load string; the others are wired outside the pressure vessel. Previously, load cells have been short-lived because of hydrogen diffusion into the epoxy-phenolic adhesive used to attach the strain gages to the stub. The use of a flame-sprayed ceramic, however, rather than an organic epoxy to mount the strain gages appears to produce a load cell resistant to the hydrogen test environment

  12. Modeling and Calculation of Dent Based on Pipeline Bending Strain

    Directory of Open Access Journals (Sweden)

    Qingshan Feng

    2016-01-01

    Full Text Available The bending strain of long-distance oil and gas pipelines can be calculated by the in-line inspection tool which used inertial measurement unit (IMU. The bending strain is used to evaluate the strain and displacement of the pipeline. During the bending strain inspection, the dent existing in the pipeline can affect the bending strain data as well. This paper presents a novel method to model and calculate the pipeline dent based on the bending strain. The technique takes inertial mapping data from in-line inspection and calculates depth of dent in the pipeline using Bayesian statistical theory and neural network. To verify accuracy of the proposed method, an in-line inspection tool is used to inspect pipeline to gather data. The calculation of dent shows the method is accurate for the dent, and the mean relative error is 2.44%. The new method provides not only strain of the pipeline dent but also the depth of dent. It is more benefit for integrity management of pipeline for the safety of the pipeline.

  13. Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of fracture toughness (KIc) of metallic materials under predominantly linear-elastic, plane-strain conditions using fatigue precracked specimens having a thickness of 1.6 mm (0.063 in.) or greater subjected to slowly, or in special (elective) cases rapidly, increasing crack-displacement force. Details of test apparatus, specimen configuration, and experimental procedure are given in the Annexes. Note 1—Plane-strain fracture toughness tests of thinner materials that are sufficiently brittle (see 7.1) can be made using other types of specimens (1). There is no standard test method for such thin materials. 1.2 This test method is divided into two parts. The first part gives general recommendations and requirements for KIc testing. The second part consists of Annexes that give specific information on displacement gage and loading fixture design, special requirements for individual specimen configurations, and detailed procedures for fatigue precracking. Additional a...

  14. Seismic qualification of piping systems based on strain criteria

    International Nuclear Information System (INIS)

    Peters, K.; Rangette, A.

    1988-01-01

    Typical LMFBR piping is characterized by elevated temperature and low pressure levels. Taking into account operational conditions only these characteristics demand for and allow flexible piping design. The overestimation of the damage potential of seismic loading by e.g. improper failure criteria usually contradicts operational needs producing the known result of excessive ''snubberism'' and reduction of operational margins. As a matter of fact, due to its transiency seismic loading is essentially secondary provoking the natural design requirement ductility instead of stiffness and rigidity - i.e. exclusion of failure by strain control instead of stress control - and thus avoiding the LMFBR typical competition between operational needs and seismic qualification. The design requirement ductility needs judgement mechanisms, i.e. suitable load descriptions, allowed strain levels and strain evaluation tools. A simplified method for strain range estimation and the underlying basic ideas are roughly outlined. The status of verification and experience gained so far is described. The results achieved suggest that the qualification of piping based on ductility requirement controlled by strain criteria is not out of reach. (author)

  15. Fast response, 2.5K psi (17.24 MPa) transducer for measurement of gas pressure in PWR fuel rods

    International Nuclear Information System (INIS)

    Piper, T.C.

    1976-09-01

    A strain gage pressure transducer of 2,500 psi (17.24 MPa) range for operation in a 650 0 F environment is described. Specific design parameters are given along with the calibration results obtained from typical transducers. Appendices delineate the bridge output to be expected and the actual open circuit value of a strain gage calculated from measurements taken with the bridge completed

  16. CIVAC CV-01 type pressure gage for middle vacuum pumps

    International Nuclear Information System (INIS)

    Olaru, Grigore; Aculai, Agustin

    1997-01-01

    The digital display pressure gage CIVAC CV-01 measures absolute pressures in vacuum range of 10 2 - 10 -3 mbar in any installation or equipment generating or using low pressures. It uses a transducer type PIRANI, model TR-02. It is a portable device, easy to exploit and handle. It is applied in research, chemistry, metallurgical industry, mechanical engineering. The system of coupling the transducer to the enclosure where the pressure is to be measured is of type ISO-PNEUROP with flange, collar and adjusting ring with a DN 25 ring gasket. The technical and functional features are: - Measuring error: ± 35% of real conventional value ; - Response time: 20 ms; - Number of measuring points: 1; - Output signal: 0 - 10 V d.c.; - Repeatability error: 5%; - Max weight: 1,600 Kg; Size: 91 x 117 x 187 mm. (authors)

  17. Studies of Shear Band Velocity Using Spatially and Temporally Resolved Measurements of Strain During Quasistatic Compression of Bulk Metallic Glass

    Energy Technology Data Exchange (ETDEWEB)

    Wright, W J; Samale, M; Hufnagel, T; LeBlanc, M; Florando, J

    2009-06-15

    We have made measurements of the temporal and spatial features of the evolution of strain during the serrated flow of Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass tested under quasistatic, room temperature, uniaxial compression. Strain and load data were acquired at rates of up to 400 kHz using strain gages affixed to all four sides of the specimen and a piezoelectric load cell located near the specimen. Calculation of the displacement rate requires an assumption about the nature of the shear displacement. If one assumes that the entire shear plane displaces simultaneously, the displacement rate is approximately 0.002 m/s. If instead one assumes that the displacement occurs as a localized propagating front, the velocity of the front is approximately 2.8 m/s. In either case, the velocity is orders of magnitude less than the shear wave speed ({approx}2000 m/s). The significance of these measurements for estimates of heating in shear bands is discussed.

  18. Flexible textile-based strain sensor induced by contacts

    International Nuclear Information System (INIS)

    Zhang, Hui

    2015-01-01

    In this paper, the contact effects are used as the key sensing element to develop flexible textile-structured strain sensors. The structures of the contact are analyzed theoretically and the contact resistances are investigated experimentally. The electromechanical properties of the textiles are investigated to find the key factors which determine the sensitivity, repeatability, and linearity of the sensor. The sensing mechanism is based on the change of contact resistance induced by the change of the configuration of the textiles. In order to improve the performance of the textile strain sensor, the contact resistance is designed based on the electromechanical properties of the fabric. It can be seen from the results that the performance of the sensor is largely affected by the structure of the contacts, which are determined by the morphology of fiber surface and the structures of the yarn and fabric. (paper)

  19. A measuring system for mechanical characterization of thin films based on a compact in situ micro-tensile tester and SEM moiré method

    International Nuclear Information System (INIS)

    Li, Yanjie; Tang, Minjin; Xie, Huimin; Zhu, Ronghua; Luo, Qiang; Gu, Changzhi

    2013-01-01

    A measuring system for mechanical characterization of thin films based on a compact in situ micro-tensile tester and scanning electron microscope (SEM) moiré method is proposed. The load is exerted by the tensile tester and the full field strain is measured by SEM moiré method. The configuration of the tensile tester and the principle of SEM moiré method are introduced. In the tensile tester, a lever structure is designed to amplify the displacement imposed by lead–zirconate–titanate (PZT) actuator. The SEM moiré method is applied to measure the strain of the thin film, including both the average strain in the gage section and the local strain distribution at a specific region. As an application, the measuring system is applied to characterize the mechanical property of the free-standing aluminum thin film. The experimental results demonstrate the feasibility of the system and its good application potential for mechanical behavior analysis of film-like materials. (paper)

  20. Dielectrophoresis-based discrimination of bacteria at the strain level based on their surface properties.

    Directory of Open Access Journals (Sweden)

    William A Braff

    Full Text Available Insulator-based dielectrophoresis can be used to manipulate biological particles, but has thus far found limited practical applications due to low sensitivity. We present linear sweep three-dimensional insulator-based dielectrophoresis as a considerably more sensitive approach for strain-level discrimination bacteria. In this work, linear sweep three-dimensional insulator-based dielectrophoresis was performed on Pseudomonas aeruginosa PA14 along with six isogenic mutants as well as Streptococcus mitis SF100 and PS344. Strain-level discrimination was achieved between these clinically important pathogens with applied electric fields below 10 V/mm. This low voltage, high sensitivity technique has potential applications in clinical diagnostics as well as microbial physiology research.

  1. Out-of-plane strain effect on silicon-based flexible FinFETs

    KAUST Repository

    Ghoneim, Mohamed T.; Alfaraj, Nasir; Sevilla, Galo T.; Fahad, Hossain M.; Hussain, Muhammad Mustafa

    2015-01-01

    Summary form only given. We report out-of-plane strain effect on silicon based flexible FinFET, with sub 20 nm wide fins and hafnium silicate based high-κ gate dielectric. Since ultra-thin inorganic solid state substrates become flexible with reduced thickness, flexing induced strain does not enhance performance. However, detrimental effects arise as the devices are subject to various out-of-plane stresses (compressive and tensile) along the channel length.

  2. Out-of-plane strain effect on silicon-based flexible FinFETs

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-06-21

    Summary form only given. We report out-of-plane strain effect on silicon based flexible FinFET, with sub 20 nm wide fins and hafnium silicate based high-κ gate dielectric. Since ultra-thin inorganic solid state substrates become flexible with reduced thickness, flexing induced strain does not enhance performance. However, detrimental effects arise as the devices are subject to various out-of-plane stresses (compressive and tensile) along the channel length.

  3. Tensile Split Hopkinson Bar Technique: Numerical Analysis of the Problem of Wave Disturbance and Specimen Geometry Selection

    Directory of Open Access Journals (Sweden)

    Panowicz Robert

    2016-09-01

    Full Text Available A method of tensile testing of materials in dynamic conditions based on a slightly modified compressive split Hopkinson bar system using a shoulder is described in this paper. The main goal was to solve, with the use of numerical modelling, the problem of wave disturbance resulting from application of a shoulder, as well as the problem of selecting a specimen geometry that enables to study the phenomenon of high strain-rate failure in tension. It is shown that, in order to prevent any interference of disturbance with the required strain signals at a given recording moment, the positions of the strain gages on the bars have to be correctly chosen for a given experimental setup. Besides, it is demonstrated that - on the basis of simplified numerical analysis - an appropriate gage length and diameter of a material specimen for failure testing in tension can be estimated.

  4. A new strain based brick element for plate bending

    Directory of Open Access Journals (Sweden)

    L. Belounar

    2014-03-01

    Full Text Available This paper presents the development of a new three-dimensional brick finite element by the use of the strain based approach for the linear analysis of plate bending. The developed element has the three essential external degrees of freedom (U, V and W at each of the eight corner nodes as well as at the centroidal node. The displacement field of the developed element is based on assumed functions for the various strains satisfying the compatibility equations and the static condensation technique is used for the internal node. The performance of this element is evaluated on several problems related to thick and thin plate bending in linear analysis. The obtained results show the good performances and accuracy of the present element.

  5. Comparison of stress-based and strain-based creep failure criteria for severe accident analysis

    International Nuclear Information System (INIS)

    Chavez, S.A.; Kelly, D.L.; Witt, R.J.; Stirn, D.P.

    1995-01-01

    We conducted a parametic analysis of stress-based and strain-based creep failure criteria to determine if there is a significant difference between the two criteria for SA533B vessel steel under severe accident conditions. Parametric variables include debris composition, system pressure, and creep strain histories derived from different testing programs and mathematically fit, with and without tertiary creep. Results indicate significant differences between the two criteria. Stress gradient plays an important role in determining which criterion will predict failure first. Creep failure was not very sensitive to different creep strain histories, except near the transition temperature of the vessel steel (900K to 1000K). Statistical analyses of creep failure data of four independent sources indicate that these data may be pooled, with a spline point at 1000K. We found the Manson-Haferd parameter to have better failure predictive capability than the Larson-Miller parameter for the data studied. (orig.)

  6. Displacement sensing based on modal interference in polymer optical fibers with partially applied strain

    Science.gov (United States)

    Mizuno, Yosuke; Hagiwara, Sonoko; Kawa, Tomohito; Lee, Heeyoung; Nakamura, Kentaro

    2018-05-01

    Strain sensing based on modal interference in multimode fibers (MMFs) has been extensively studied, but no experimental or theoretical reports have been given as to how the system works when strain is applied not to the whole MMF but only to part of the MMF. Here, using a perfluorinated graded-index polymer optical fiber as the MMF, we investigate the strain sensing characteristics of this type of sensor when strain is partially applied to fiber sections with different lengths. The strain sensitivity dependence on the length of the strained section reveals that this strain sensor actually behaves as a displacement sensor.

  7. Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Zubel, M. G.

    2016-01-01

    The annealing effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors after their photoinscription are investigated. PMMA optical fibre based Bragg grating sensors are first photo-inscribed and then they were placed into hot water for annealing. Strain, stress...... fibre tends to increase the strain, stress and force sensitivity of the photo-inscribed sensor....

  8. STRAIN-CONTROLLED BIAXIAL TENSION OF NATURAL RUBBER: NEW EXPERIMENTAL DATA

    KAUST Repository

    Pancheri, Francesco Q.

    2014-03-01

    We present a new experimental method and provide data showing the response of 40A natural rubber in uniaxial, pure shear, and biaxial tension. Real-time biaxial strain control allows for independent and automatic variation of the velocity of extension and retraction of each actuator to maintain the preselected deformation rate within the gage area of the specimen. Wealso focus on the Valanis-Landel hypothesis that is used to verify and validate the consistency of the data.Weuse a threeterm Ogden model to derive stress-stretch relations to validate the experimental data. The material model parameters are determined using the primary loading path in uniaxial and equibiaxial tension. Excellent agreement is found when the model is used to predict the response in biaxial tension for different maximum in-plane stretches. The application of the Valanis-Landel hypothesis also results in excellent agreement with the theoretical prediction.

  9. Footprints of phineas gage: Historical beginnings on the origins of brain and behavior and the birth of cerebral localizationism

    Directory of Open Access Journals (Sweden)

    Bhaskara P Shelley

    2016-01-01

    Full Text Available The intellectual revolution led by ancient Greek philosophers and physicians witnessed the extraordinary evolution of the birth of neuroscience from speculations of cardiocentrism (Aristotelism and encephalocentrism (Galenism. Later further development of neurosciences was hallmarked by the development of anatomic theories of phrenology by the German physician Franz Joseph Gall in 1796. Although phrenology was a pseudoscience, it was Gall who laid the foundations for the subsequent biologically based doctrine of brain behavior localization. The amazing story of Phineas Gage is a classic case in the nineteenth-century neurosciences literature that played a pivotal role in the concept of cerebral localizationism, a theory that moved beyond phrenology. This iconic case marked the historical beginnings of brain origins of human behavior and elucidated a link between brain trauma, prefrontal brain damage and personality change.

  10. [TYPING OF LEPTOSPIRA SPP. STRAINS BASED ON 16S rRNA].

    Science.gov (United States)

    Ostankova, Yu V; Semenov, A V; Stoyanova, N A; Tokarevich, N K; Lyubimova, N E; Petrova, O A; Ananina, Yu V; Petrov, E M

    2016-01-01

    Comparative typing of Leptospira spp. strain collection based on analysis of 16S RNA fragment. 2 pairs of primers were used for PCR, that jointly flank 1423b.p. sized fragment. Sequences of Leptospira spp. strain 16S rRNA, presented in the international database, were used for phylogenetic analysis. A high similarity, including interspecies, of the 16S fragment in Leptospira spp. strains was shown independently of the source, serovar and serogroup. Heterogeneity of the primary matrix, spontaneous mutations of hotspots and erroneous nucleotide couplings, characteristic for 16S sequence of pathogenic Leptospira spp. strains, are discussed. Molecular-genetic characteristic of certain reference Leptospira spp. strains by 16S sequence is obtained. Results of the studies give evidence on expedience of introduction into clinical practice of identification of Leptospira spp. by 16S sequence directly from the clinical material, that would allow to significantly reduce identification time, dismiss complex type-specific sera and other labor-intensive methods.

  11. Preparation and Property Research of Strain Sensor Based on PDMS and Silver Nanomaterials

    Directory of Open Access Journals (Sweden)

    Lihua Liu

    2017-01-01

    Full Text Available Based on the advantages and broad applications of stretchable strain sensors, this study reports a simple method to fabricate a highly sensitive strain sensor with Ag nanomaterials-polydimethylsiloxane (AgNMs-PDMS to create a synergic conductive network and a sandwich-structure. Three Ag nanomaterial samples were synthesized by controlling the concentrations of the FeCl3 solution and reaction time via the heat polyols thermal method. The AgNMs network’s elastomer nanocomposite-based strain sensors show strong piezoresistivity with a high gauge factor of 547.8 and stretchability from 0.81% to 7.26%. The application of our high-performance strain sensors was demonstrated by the inducting finger of the motion detection. These highly sensitive sensors conform to the current trends of flexible electronics and have prospects for broad application.

  12. Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding

    Directory of Open Access Journals (Sweden)

    Seong Kyung Hong

    2018-04-01

    Full Text Available This paper details the design of a poly(dimethylsiloxane (PDMS-shielded waterproof crack-based stretchable strain sensor, in which the electrical characteristics and sensing performance are not influenced by changes in humidity. This results in a higher number of potential applications for the sensor. A previously developed omni-purpose stretchable strain (OPSS sensor was used as the basis for this work, which utilizes a metal cracking structure and provides a wide sensing range and high sensitivity. Changes in the conductivity of the OPSS sensor, based on humidity conditions, were investigated along with the potential possibility of using the design as a humidity sensor. However, to prevent conductivity variation, which can decrease the reliability and sensing ability of the OPSS sensor, PDMS was utilized as a shielding layer over the OPSS sensor. The PDMS-shielded OPSS sensor showed approximately the same electrical characteristics as previous designs, including in a high humidity environment, while maintaining its strain sensing capabilities. The developed sensor shows promise for use under high humidity conditions and in underwater applications. Therefore, considering its unique features and reliable sensing performance, the developed PDMS-shielded waterproof OPSS sensor has potential utility in a wide range of applications, such as motion monitoring, medical robotics and wearable healthcare devices.

  13. Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding.

    Science.gov (United States)

    Hong, Seong Kyung; Yang, Seongjin; Cho, Seong J; Jeon, Hyungkook; Lim, Geunbae

    2018-04-12

    This paper details the design of a poly(dimethylsiloxane) (PDMS)-shielded waterproof crack-based stretchable strain sensor, in which the electrical characteristics and sensing performance are not influenced by changes in humidity. This results in a higher number of potential applications for the sensor. A previously developed omni-purpose stretchable strain (OPSS) sensor was used as the basis for this work, which utilizes a metal cracking structure and provides a wide sensing range and high sensitivity. Changes in the conductivity of the OPSS sensor, based on humidity conditions, were investigated along with the potential possibility of using the design as a humidity sensor. However, to prevent conductivity variation, which can decrease the reliability and sensing ability of the OPSS sensor, PDMS was utilized as a shielding layer over the OPSS sensor. The PDMS-shielded OPSS sensor showed approximately the same electrical characteristics as previous designs, including in a high humidity environment, while maintaining its strain sensing capabilities. The developed sensor shows promise for use under high humidity conditions and in underwater applications. Therefore, considering its unique features and reliable sensing performance, the developed PDMS-shielded waterproof OPSS sensor has potential utility in a wide range of applications, such as motion monitoring, medical robotics and wearable healthcare devices.

  14. Towards the determination of deformation rates - pinch-and-swell structures as a natural and simulated paleo-strain rate gage

    Science.gov (United States)

    Peters, Max; Poulet, Thomas; Karrech, Ali; Regenauer-Lieb, Klaus; Herwegh, Marco

    2014-05-01

    Layered rocks deformed under viscous deformation conditions frequently show boudinage, a phenomenon that results from differences in effective viscosity between the involved layers. In the case of continuous necking of a mechanically stiffer layer embedded in a weaker matrix, symmetric boudins are interpreted as the result of dominant visco-plastic deformation (Goscombe et al., 2004). However, information on the physical conditions, material properties and deformation processes are yet unknown. Natural samples deformed under low-grade (TAustin and Evans (2007) combined with the thermodynamic approach of Regenauer-Lieb and Yuen (2004). Depending on the dissipated energy, grain sizes in these domains vary substantially in space and time. While low strain rates (low stresses) in the swells favor grain growth and GSI dominated deformation, high strain rates in the pinches provoke dramatic grain size reduction with an increasing contribution of GSS as a function of decreasing grain size. The development of symmetric necks observed in nature thus seems to coincide with the transition from dislocation to diffusion creep dominated flow with continuous grain size reduction and growth from swell to neck at relatively high extensional strains. REFERENCES Austin, N. and Evans, B. (2007). Paleowattmeters: A scaling relation for dynamically recrystallized grain size. Geology, 35. Goscombe, B.D., Passchier, C.W. and Hand, M. (2004). Boudinage classification: End-member boudin types and modified boudin structures, Journal of Structural Geology, 26. Herwegh, M., Poulet, T., Karrech, A. and Regenauer-Lieb, K. (in press). From transient to steady state deformation and grain size: A thermodynamic approach using elasto-visco-plastic numerical modeling. Journal of Geophysical Research. Karrech, A., Regenauer-Lieb, K. and Poulet, T. (2011a). A Damaged visco-plasticity model for pressure and temperature sensitive geomaterials. Journal of Engineering Science 49. Regenauer-Lieb, K. and Yuen

  15. Strain-Based Design Methodology of Large Diameter Grade X80 Linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark D. [ORNL

    2014-04-01

    Continuous growth in energy demand is driving oil and natural gas production to areas that are often located far from major markets where the terrain is prone to earthquakes, landslides, and other types of ground motion. Transmission pipelines that cross this type of terrain can experience large longitudinal strains and plastic circumferential elongation as the pipeline experiences alignment changes resulting from differential ground movement. Such displacements can potentially impact pipeline safety by adversely affecting structural capacity and leak tight integrity of the linepipe steel. Planning for new long-distance transmission pipelines usually involves consideration of higher strength linepipe steels because their use allows pipeline operators to reduce the overall cost of pipeline construction and increase pipeline throughput by increasing the operating pressure. The design trend for new pipelines in areas prone to ground movement has evolved over the last 10 years from a stress-based design approach to a strain-based design (SBD) approach to further realize the cost benefits from using higher strength linepipe steels. This report presents an overview of SBD for pipelines subjected to large longitudinal strain and high internal pressure with emphasis on the tensile strain capacity of high-strength microalloyed linepipe steel. The technical basis for this report involved engineering analysis and examination of the mechanical behavior of Grade X80 linepipe steel in both the longitudinal and circumferential directions. Testing was conducted to assess effects on material processing including as-rolled, expanded, and heat treatment processing intended to simulate coating application. Elastic-plastic and low-cycle fatigue analyses were also performed with varying internal pressures. Proposed SBD models discussed in this report are based on classical plasticity theory and account for material anisotropy, triaxial strain, and microstructural damage effects

  16. Fatigue Life Prediction of High Modulus Asphalt Concrete Based on the Local Stress-Strain Method

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2017-03-01

    Full Text Available Previously published studies have proposed fatigue life prediction models for dense graded asphalt pavement based on flexural fatigue test. This study focused on the fatigue life prediction of High Modulus Asphalt Concrete (HMAC pavement using the local strain-stress method and direct tension fatigue test. First, the direct tension fatigue test at various strain levels was conducted on HMAC prism samples cut from plate specimens. Afterwards, their true stress-strain loop curves were obtained and modified to develop the strain-fatigue life equation. Then the nominal strain of HMAC course determined using finite element method was converted into local strain using the Neuber method. Finally, based on the established fatigue equation and converted local strain, a method to predict the pavement fatigue crack initiation life was proposed and the fatigue life of a typical HMAC overlay pavement which runs a risk of bottom-up cracking was predicted and validated. Results show that the proposed method was able to produce satisfactory crack initiation life.

  17. The effects of strain rate and carbon concentration on the dynamic strain aging of cold rolled Ni-based alloy in high temperature water

    International Nuclear Information System (INIS)

    Kuang, Wenjun; Was, Gary S.

    2015-01-01

    Graphical abstract: The stress amplitude of serrations first increases with decreasing strain rate and then gradually saturates. The matrix carbon concentration affects the stress amplitude and the tendency to saturation. - Abstract: The effect of strain rate on dynamic strain aging of cold-rolled Ni-based alloy was investigated. With decreasing strain rate, the stress amplitude of serrations first increased and then saturated. Compared with the solution-annealed condition, the thermally-treated condition produced smaller stress amplitudes that saturated at a lower strain rate. Observations are consistent with a mechanism in which the locking strength of solute atmospheres first increases with increasing solute atom arrival at dislocations and gradually saturates as solute reaches a critical level

  18. Tubular gage for a liquid-metal-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Hutter, E.; Tuma, L.A.

    1977-01-01

    Spring-loaded plungers are arranged about a housing for insertion into a polygonal tube, one plunger for each side of the tube. Each plunger has a locking cam and sliding wedge mechanism which can overcome the spring force associated with the plunger and lock it in any position. The wedges are operated by a rod movable axially in the housing. Several housings with their associated plungers can be stacked. The stack is lowered into the polygonal tube with all of the plungers locked in a fully inward position. When the stack is in the tube, each wedge is moved to release its locking cam, allowing each of the plungers to spring outward against an inner side of the tube. Each housing will thus gage the internal dimensions of the tube at its elevation. The plungers are locked in position, the entire stack is rotated to bring the plungers into the corners described by the intersections of the flat sides, and the stack is removed from the tube whereupon the dimensions across opposite locked plungers may be read by a micrometer

  19. Spiking Phineas Gage: a neurocomputational theory of cognitive-affective integration in decision making.

    Science.gov (United States)

    Wagar, Brandon M; Thagard, Paul

    2004-01-01

    The authors present a neurological theory of how cognitive information and emotional information are integrated in the nucleus accumbens during effective decision making. They describe how the nucleus accumbens acts as a gateway to integrate cognitive information from the ventromedial prefrontal cortex and the hippocampus with emotional information from the amygdala. The authors have modeled this integration by a network of spiking artificial neurons organized into separate areas and used this computational model to simulate 2 kinds of cognitive-affective integration. The model simulates successful performance by people with normal cognitive-affective integration. The model also simulates the historical case of Phineas Gage as well as subsequent patients whose ability to make decisions became impeded by damage to the ventromedial prefrontal cortex.

  20. Ten years of real-time streamflow gaging of turkey creek - where we have been and where we are going

    Science.gov (United States)

    Paul Conrads; Devendra Amatya

    2016-01-01

    The Turkey Creek watershed is a third-order coastal plain stream system draining an area of approximately 5,240 hectares of the Francis Marion National Forest and located about 37 miles northwest of Charleston near Huger, South Carolina. The U.S. Department of Agriculture (USDA) Forest Service maintained a streamflow gaging station on Turkey Creek from 1964 to 1981....

  1. Design of cross-sensitive temperature and strain sensor based on sampled fiber grating

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohang

    2017-02-01

    Full Text Available In this paper,a cross-sensitive temperature and strain sensor based on sampled fiber grating is designed.Its temperature measurement range is -50-200℃,and the strain measurement rangeis 0-2 000 με.The characteristics of the sensor are obtained using simulation method.Utilizing SPSS software,we found the dual-parameter matrix equations of measurement of temperature and strain,and calibrated the four sensing coefficients of the matrix equations.

  2. [Determination of genetic bases of auxotrophy in Yersinia pestis ssp. caucasica strains].

    Science.gov (United States)

    Odinokov, G N; Eroshenko, G A; Kukleva, L M; Shavina, N Iu; Krasnov, Ia M; Kutyrev, V V

    2012-04-01

    Based on the results of computer analysis of nucleotide sequences in strains Yersinia pestis and Y. pseudotuberculosis recorded in the files of NCBI GenBank database, differences between genes argA, aroG, aroF, thiH, and thiG of strain Pestoides F (subspecies caucasica) were found, compared to other strains of plaque agent and pseudotuberculosis microbe. Using PCR with calculated primers and the method of sequence analysis, the structure of variable regions of these genes was studied in 96 natural Y. pestis and Y. pseudotuberculosis strains. It was shown that all examined strains of subspecies caucasica, unlike strains of plague-causing agent of other subspecies and pseudotubercolosis microbe, had identical mutations in genes argA (integration of the insertion sequence IS100), aroG (insertion of ten nucleotides), aroF (inserion of IS100), thiH (insertion of nucleotide T), and thiG (deletion of 13 nucleotides). These mutations are the reason for the absence in strains belonging to this subspecies of the ability to synthesize arginine, phenylalanine, tyrosine, and vitamin B1 (thiamine), and cause their auxotrophy for these growth factors.

  3. Monitoring Poisson's ratio of glass fiber reinforced composites as damage index using biaxial Fiber Bragg Grating sensors

    OpenAIRE

    Yılmaz, Çağatay; Yilmaz, Cagatay; Akalın, Çağdaş; Akalin, Cagdas; Kocaman, Esat Selim; Suleman, A.; Yıldız, Mehmet; Yildiz, Mehmet

    2016-01-01

    Damage accumulation in Glass Fiber Reinforced Polymer (GFRP) composites is monitored based on Poisson's ratio measurements for three different fiber stacking sequences subjected to both quasi-static and quasi-static cyclic tensile loadings. The sensor systems utilized include a dual-extensometer, a biaxial strain gage and a novel embedded-biaxial Fiber Bragg Grating (FBG) sensor. These sensors are used concurrently to measure biaxial strain whereby the evolution of Poisson's ratio as a functi...

  4. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li

    2012-01-01

    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fib...

  5. An Embeddable Strain Sensor with 30 Nano-Strain Resolution Based on Optical Interferometry

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2018-04-01

    Full Text Available A cost-effective, robust and embeddable optical interferometric strain sensor with nanoscale strain resolution is presented in this paper. The sensor consists of an optical fiber, a quartz rod with one end coated with a thin gold layer, and two metal shells employed to transfer the strain and orient and protect the optical fiber and the quartz rod. The optical fiber endface, combining with the gold-coated surface, forms an extrinsic Fabry–Perot interferometer. The sensor was firstly calibrated, and the result showed that our prototype sensor could provide a measurement resolution of 30 nano-strain (nε and a sensitivity of 10.01 µε/µm over a range of 1000 µε. After calibration of the sensor, the shrinkage strain of a cubic brick of mortar in real time during the drying process was monitored. The strain sensor was compared with a commercial linear variable displacement transducer, and the comparison results in four weeks demonstrated that our sensor had much higher measurement resolution and gained more detailed and useful information. Due to the advantages of the extremely simple, robust and cost-effective configuration, it is believed that the sensor is significantly beneficial to practical applications, especially for structural health monitoring.

  6. Algal bioremediation of waste waters from land-based aquaculture using ulva: selecting target species and strains.

    Directory of Open Access Journals (Sweden)

    Rebecca J Lawton

    Full Text Available The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day(-1 respectively across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2-20.4% day(-1 and Sydney strains had the lowest growth rates (2.5-8.3% day(-1. We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to

  7. Development of a Brillouin scattering based distributed fibre optic strain sensor

    Science.gov (United States)

    Brown, Anthony Wayne

    2001-07-01

    The parameters of the Brillouin spectrum of an optical fibre depend upon the strain and temperature conditions of the fibre. As a result, fibre optic distributed sensors based on Brillouin scattering can measure strain and temperature in arbitrary regions of a sensing fibre. In the past, such sensors have often been demonstrated under laboratory conditions, demonstrating the principle of operation. Although some field tests of temperature sensing have been reported, the actual deployment of such sensors in the field for strain measurements has been limited by poor spatial resolution (typically 1 m or more) and poor strain accuracy (+/-100 muepsilon). Also, cross-sensitivity of the Brillouin spectrum to temperature further reduces the accuracy of strain measurement while long acquisition times hinders field use. The high level of user knowledge and lack of automation required to operate the equipment is another limiting factor of the only commercially available unit. The potential benefits of distributed measurements are great for instrumentation of civil structures provided that the above limitations are overcome. However, before this system is used with confidence by practitioners, it is essential that it can be effectively operated in field conditions. In light of this, the fibre optics group at the University of New Brunswick has been developing an automated system for field measurement of strain in civil structures, particularly in reinforced concrete. The development of the sensing system hardware and software was the main focus of this thesis. This has been made possible, in part, by observation of the Brillouin spectrum for the case of using very short light pulses (performance to measure strain to an accuracy of 10 muepsilon; and allow the simultaneous measurement of strain and temperature to an accuracy of 204 muepsilon and 3°C are presented. Finally, the results of field measurement of strain on a concrete structure are presented.

  8. Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Lacroute, Y.; Markey, L.; Salazar, M.; Vignal, V. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)

    2011-05-15

    Research highlights: > Surface strains measured using nanogauge were compared to the texture obtained by EBSD. > Statistics of the principal strain discern the grains according to the Schmid factor. > Strain hotspots were localized near a triple junction of alloy 600 under tensile loading. > Asymetrical profile of the GB strains is a criterion for surface cracking initiation. - Abstract: A key element for analyzing the crack initiation in strained polycrystalline alloys is the local quantification of the surface strain distribution according to the grain texture. Using electron backscattered diffraction, the local microstructure was determined to both localize a triple junction and deduce the local Schmid factors. Kernel average misorientation (KAM) was also used to map the areas of defect concentration. The maximum principal strain and the in-plane shear strain were quantified using the biaxial nanogauge. Distortions of the array of nanodots used as spot markers were analyzed near the triple junction. The crystallographic orientation and the surface strain were then investigated both statistically for each grain and locally at the grain boundaries. The superimposition of microstructure and strain maps allows the high strain gradient (reaching 3-fold the applied strain) to be localized at preferential grain boundaries near the triple junction. The Schmid factors and the KAM were compared to the maximum principal strain and the in-plane shear strain respectively. The polycrystalline deformation was attributable first to the rotation of some grains, followed by the elongation of all grains along their preferential activated slip systems.

  9. Residual stresses and stress corrosion cracking in pipe fittings

    International Nuclear Information System (INIS)

    Parrington, R.J.; Scott, J.J.; Torres, F.

    1994-06-01

    Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique

  10. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  11. Pipeline Bending Strain Measurement and Compensation Technology Based on Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-01-01

    Full Text Available The bending strain of long distance oil and gas pipelines may lead to instability of the pipeline and failure of materials, which seriously deteriorates the transportation security of oil and gas. To locate the position of the bending strain for maintenance, an Inertial Measurement Unit (IMU is usually adopted in a Pipeline Inspection Gauge (PIG. The attitude data of the IMU is usually acquired to calculate the bending strain in the pipe. However, because of the vibrations in the pipeline and other system noises, the resulting bending strain calculations may be incorrect. To improve the measurement precision, a method, based on wavelet neural network, was proposed. To test the proposed method experimentally, a PIG with the proposed method is used to detect a straight pipeline. It can be obtained that the proposed method has a better repeatability and convergence than the original method. Furthermore, the new method is more accurate than the original method and the accuracy of bending strain is raised by about 23% compared to original method. This paper provides a novel method for precisely inspecting bending strain of long distance oil and gas pipelines and lays a foundation for improving the precision of inspection of bending strain of long distance oil and gas pipelines.

  12. Comparative Analysis of two Helicobacter pylori Strains using Genomics and Mass Spectrometry-Based Proteomics

    Directory of Open Access Journals (Sweden)

    Roger Karlsson

    2016-11-01

    Full Text Available Helicobacter pylori, a gastroenteric pathogen believed to have co-evolved with humans over 100,000 years, shows significant genetic variability. This motivates the study of different H. pylori strains and the diseases they cause in order to identify determinants for disease evolution. In this study, we used proteomics tools to compare two H. pylori strains. Nic25_A was isolated in Nicaragua from a patient with intestinal metaplasia, and P12 was isolated in Europe from a patient with duodenal ulcers. Differences in the abundance of surface proteins between the two strains were determined with two mass spectrometry-based methods, label-free quantification (MaxQuant or the use of tandem mass tags (TMT. Each approach used a lipid-based protein immobilization (LPI™ technique to enrich peptides of surface proteins. Using the MaxQuant software, we found 52 proteins that differed significantly in abundance between the two strains (up- or downregulated by a factor of 1.5; with TMT, we found 18 proteins that differed in abundance between the strains. Strain P12 had a higher abundance of proteins encoded by the cag pathogenicity island, while levels of the acid response regulator ArsR and its regulatory targets (KatA, AmiE, and proteins involved in urease production were higher in strain Nic25_A. Our results show that differences in protein abundance between H. pylori strains can be detected with proteomic approaches; this could have important implications for the study of disease progression.

  13. Hostile environments and high temperature measurements; Proceedings of the Conference, Kansas City, MO, Nov. 6-8, 1989

    Science.gov (United States)

    Topics presented include the identification of stagnant region in a fluidized bed combustor, high sensitivity objective grating speckle, an X-ray beam method for displacement and strain distributions using the moire method, and high-temperature deformation of a Ti-alloy composite under complex loading. Also addressed are a hybrid procedure for dynamic characterization of ceramics at elevated temperature, thermo-structural measurements in a SiC coated carbon-carbon hypersonic glide vehicle, and recent experience with elevated-temperature foil strain gages with application to thin-gage materials.

  14. Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading

    International Nuclear Information System (INIS)

    Young, M.L.; Wagner, M.F.-X.; Frenzel, J.; Schmahl, W.W.; Eggeler, G.

    2010-01-01

    An ultrafine-grained pseudoelastic NiTi shape-memory alloy wire with 50.9 at.% Ni was examined using synchrotron X-ray diffraction during in situ uniaxial tensile loading (up to 1 GPa) and unloading. Both macroscopic stress-strain measurements and volume-averaged lattice strains are reported and discussed. The loading behavior is described in terms of elasto-plastic deformation of austenite, emergence of R phase, stress-induced martensitic transformation, and elasto-plastic deformation, grain reorientation and detwinning of martensite. The unloading behavior is described in terms of stress relaxation and reverse plasticity of martensite, reverse transformation of martensite to austenite due to stress relaxation, and stress relaxation of austenite. Microscopically, lattice strains in various crystallographic directions in the austenitic B2, martensitic R, and martensitic B19' phases are examined during loading and unloading. It is shown that the phase transformation occurs in a localized manner along the gage length at the plateau stress. Phase volume fractions and lattice strains in various crystallographic reflections in the austenite and martensite phases are examined over two transition regions between austenite and martensite, which have a width on the order of the wire diameter. Anisotropic effects observed in various crystallographic reflections of the austenitic phase are also discussed. The results contribute to a better understanding of the tensile loading behavior, both macroscopically and microscopically, of NiTi shape-memory alloys.

  15. Long-term behaviour of a steel-concrete composite railway bridge deck

    OpenAIRE

    STAQUET, S; TAILHAN, JL; ESPION, B

    2005-01-01

    A prefabricated, composite and prestressed railway bridge deck has been instrumented in June 2000 with strain gages and vibrating wire extensometers. The purpose of this paper is to report on the comparison between strains recorded in situ up to four years with values computed within the framework of an original time-dependent analysis base on the evolution of the degree of hydration and the internal relative humidity in concrete. These fundamental parameters used in the proposed model to com...

  16. Experiences with strain based limit state design in The Netherlands

    NARCIS (Netherlands)

    Gresnigt, A.M.; Foeken, R.J. van

    1996-01-01

    Limit state design differs from conventional design methods in that each failure mode is specifically addressed (e.g. burst, collapse, local buckling, fracture due to insufficient strain capacity of the pipe wall, fatigue). Based on an extensive theoretical and experimental research programme,

  17. Effect of strain on voltage-controlled magnetism in BiFeO₃-based heterostructures.

    Science.gov (United States)

    Wang, J J; Hu, J M; Yang, T N; Feng, M; Zhang, J X; Chen, L Q; Nan, C W

    2014-04-01

    Voltage-modulated magnetism in magnetic/BiFeO3 heterostructures can be driven by a combination of the intrinsic ferroelectric-antiferromagnetic coupling in BiFeO3 and the antiferromagnetic-ferromagnetic exchange interaction across the heterointerface. However, ferroelectric BiFeO3 film is also ferroelastic, thus it is possible to generate voltage-induced strain in BiFeO3 that could be applied onto the magnetic layer across the heterointerface and modulate magnetism through magnetoelastic coupling. Here, we investigated, using phase-field simulations, the role of strain in voltage-controlled magnetism for these BiFeO3-based heterostructures. It is predicted, under certain condition, coexistence of strain and exchange interaction will result in a pure voltage-driven 180° magnetization reversal in BiFeO3-based heterostructures.

  18. Experimental stress analysis and fatigue tests of five 12-in. NPS ANSI Standard B16.9 tees

    International Nuclear Information System (INIS)

    Moore, S.E.; Grigory, S.C.; Weed, R.A.

    1984-04-01

    The tees, designated as ORNL tees T-4, T-6, T-7, T-8, and T-15, were tested under subcontract at Southwest Research Institute, and the data were analyzed at ORNL. Experimental stress analyses were conducted for 13 individual loadings on each tee, including internal pressure and 3 mutually perpendicular force and moment loads on the branch and on the run. Each test model was instrumented with approx. 220, 1/16-in. three-gage, 45 0 strain rosettes on the body of the tee, and approx. 10, 1/16-in. two-gage, strain rosettes on the pipe extensions. Dial indicators, mounted on a special nonflexible holding frame, were used to measure deflections and rotations of the pipe extensions. Normalized maximum stress intensities for each loading condition on each tee are summarized in the text. Complete sets of strain-gage data, normalized stresses, and displacement measurements for each tee are given on microfiche in the appendixes. Following completion of the strain-gage tests, each tee was tested to failure in a fully reversed displacement-controlled low-cycle fatigue test with an alternating transverse load applied to the branch pipe. The load was directed out of plane for T-4, T-6, T-8, and T-15; and in plane for T-7. A constant internal pressure equal to the nominal design pressure was maintained during the fatigue tests. Failure data from the fatigue tests are summarized in the text

  19. Effect of uniaxial strain on the tunnel magnetoresistance of T-shaped graphene nanoribbon based spin-valve

    Science.gov (United States)

    Fouladi, A. Ahmadi

    2016-07-01

    We theoretically investigated the spin-dependent transport through a T-shaped graphene nanoribbon (TsGNR) based spin-valve consisting of armchair graphene sandwiched between two semi-infinite ferromagnetic armchair graphene nanoribbon leads in the presence of an applied uniaxial strain. Based on a tight-binding model and standard nonequilibrium Green's function technique, it is demonstrated that the tunnel magnetoresistance (TMR) for the system can be increased about 98% by tuning the uniaxial strain. Our results show that the absolute values of TMR around the zero bias voltage for compressive strain are larger than tensile strain. In addition, the TMR of the system can be nicely controlled by GNR width.

  20. Cylinder valve packing nut studies

    Energy Technology Data Exchange (ETDEWEB)

    Blue, S.C. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.

  1. Characterization of a Robotic Manipulator for Dynamic Wind Tunnel Applications

    Science.gov (United States)

    2015-03-26

    Semiconductor strain gages are attached to each beam. These strain-sensitive resistors , connected through a Wheatstone bridge, determine the strain in the beam...Aerdyanmic Performance and Particle Image Velocimetery of Piezo Acuated Biometric Manduca Sexta Engineered Wings Towards Design and Application of a

  2. Characterization of Multifunctional Carbon Nanotube Yarns: In-situ Strain Sensing and Composite Reinforcement

    Science.gov (United States)

    Page, Christian David

    A large body of scientific research and development worldwide has focused on the unprecedented structural/functional properties of carbon nanotubes (CNT), yet translation of these unique properties of CNTs to macroscopic materials has been slow to develop. CNT yarns are an appealing application for CNTs; their lightweight and small diameter can allow for them to be embedded into composite materials. Since the individual nanotubes have shown to have incredibly high strength, stiffness, and strain sensitivity, CNT yarns have the potential to be highly effective for in-situ structural health monitoring of advanced materials and structures. This work identifies the sources for losses in strength and electromechanical sensitivity. This is done by first understanding the physics involved with a CNT yarn under axial strain. Since this material is not a Newtonian solid, the stress-strain relationships are dissimilar to conventional materials, exhibiting a three zone behavior. This is present in both the stress-strain and resistance-strain relationships. A tensile test performed in-situ within a scanning electron microscope showed that the diameter of the yarn reduced greatly during tension, which indicates that the volume is not constant; therefore, the intratube/intrabundle load transfer efficiency and electrical conductivity change significantly under strain. Observation of this phenomenon helps elucidate the source for loss in the translation from nanoscopic CNTs to the macroscopic CNT yarns. Following the observation that the CNT yarn is not a solid body mechanics system, investigation into the long-standing field of textile engineering helped to identify that the CNT yarn structural hierarchy should be re-evaluated. Literary review reveals that the predominant base morphology of CNT yarns is bundles of CNTs as opposed to individual CNTs. Furthermore, in conventional textiles, it is well known that the base morphology (in textiles this is the "fiber") will bundle

  3. Kirigami-based PVDF thin-film as stretchable strain sensor

    Science.gov (United States)

    Hu, Nan; Chen, Dajing; Hao, Nanjing; Huang, Shicheng; Yu, Xiaojiao; Zhang, John X. J.; Chen, Zi

    Kirigami, as the sister of the origami, involves cutting of 2D sheets to form complex 3D geometries with out-of-plane patterns. Motivated by the development of the high-stretchable biomedical devices, we explore the stretchability of the kirigami-based PVDF thin film under tension. Our structural prototypes include a set of 2D geometry with kirigami-based pattern cutting on PVDF thin films. We first used paper models to generate a wide range of cutting patterns to study the deformation under compression tests, the results of which are compared with finite element simulations. We then proceeded to test different kirigami-based designs to identify geometric parameters that can tune the post-buckling response and strain distribution. Next, we fabricated and tested the PVDF thin film with kirigami pattern. Experiments showed that the PVDF film in the absence of cutting can be stretched to a limited extent and will break upon further stretching. In contrast, the kirigami-based films can be stretched up to 100% without failure. Our designs demonstrate the ability to significantly improve the strain range of the structure and sensing ability of a sensor. We envision a promising future to use this class of structural elements to develop highly stretchable materials, structures, and devices. Z.C. acknowledges the Society in Science-Branco Weiss fellowship, administered by ETH Zürich. J.X.J.Z. acknowledges the NIH Director's Transformative Research Award (1R01 OD022910-01).

  4. Integrating a logarithmic-strain based hyper-elastic formulation into a three-field mixed finite element formulation to deal with incompressibility in finite-strain elasto-plasticity

    International Nuclear Information System (INIS)

    Dina Al Akhrass; Bruchon, Julien; Drapier, Sylvain; Fayolle, Sebastien

    2014-01-01

    This paper deals with the treatment of incompressibility in solid mechanics in finite-strain elasto-plasticity. A finite-strain model proposed by Miehe, Apel and Lambrecht, which is based on a logarithmic strain measure and its work-conjugate stress tensor is chosen. Its main interest is that it allows for the adoption of standard constitutive models established in a small-strain framework. This model is extended to take into account the plastic incompressibility constraint intrinsically. In that purpose, an extension of this model to a three-field mixed finite element formulation is proposed, involving displacements, a strain variable and pressure as nodal variables with respect to standard finite element. Numerical examples of finite-strain problems are presented to assess the performance of the formulation. To conclude, an industrial case for which the classical under-integrated elements fail is considered. (authors)

  5. The Formation and Evolution of Shear Bands in Plane Strain Compressed Nickel-Base Superalloy

    Directory of Open Access Journals (Sweden)

    Bin Tang

    2018-02-01

    Full Text Available The formation and evolution of shear bands in Inconel 718 nickel-base superalloy under plane strain compression was investigated in the present work. It is found that the propagation of shear bands under plane strain compression is more intense in comparison with conventional uniaxial compression. The morphology of shear bands was identified to generally fall into two categories: in “S” shape at severe conditions (low temperatures and high strain rates and “X” shape at mild conditions (high temperatures and low strain rates. However, uniform deformation at the mesoscale without shear bands was also obtained by compressing at 1050 °C/0.001 s−1. By using the finite element method (FEM, the formation mechanism of the shear bands in the present study was explored for the special deformation mode of plane strain compression. Furthermore, the effect of processing parameters, i.e., strain rate and temperature, on the morphology and evolution of shear bands was discussed following a phenomenological approach. The plane strain compression attempt in the present work yields important information for processing parameters optimization and failure prediction under plane strain loading conditions of the Inconel 718 superalloy.

  6. Regression Analysis and Calibration Recommendations for the Characterization of Balance Temperature Effects

    Science.gov (United States)

    Ulbrich, N.; Volden, T.

    2018-01-01

    Analysis and use of temperature-dependent wind tunnel strain-gage balance calibration data are discussed in the paper. First, three different methods are presented and compared that may be used to process temperature-dependent strain-gage balance data. The first method uses an extended set of independent variables in order to process the data and predict balance loads. The second method applies an extended load iteration equation during the analysis of balance calibration data. The third method uses temperature-dependent sensitivities for the data analysis. Physical interpretations of the most important temperature-dependent regression model terms are provided that relate temperature compensation imperfections and the temperature-dependent nature of the gage factor to sets of regression model terms. Finally, balance calibration recommendations are listed so that temperature-dependent calibration data can be obtained and successfully processed using the reviewed analysis methods.

  7. Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement.

    Science.gov (United States)

    Kang, Zexin; Wen, Xiaodong; Li, Chao; Sun, Jiang; Wang, Jing; Jian, Shuisheng

    2014-04-20

    A novel all-fiber sensing configuration for simultaneous measurements of temperature and strain based on the up-taper Mach-Zehnder interferometer (MZI) with an in-line embedded fiber Bragg grating (FBG) is proposed and experimentally demonstrated. This configuration consists of two up-tapers fabricated by an excessive fusion splicing method and a short segment of inscribed FBG. Due to the different responses of the up-taper MZI and the FBG to the uniform variation of temperature and strain, the simultaneous measurement for these two variables could be achieved by real-time monitoring the transmission spectrum. For 0.01 nm wavelength resolution, a resolution of 0.311°C in temperature can be achieved, and the average strain resolution is 10.07 με.

  8. Strain- and stress-based forming limit curves for DP 590 steel sheet using Marciniak-Kuczynski method

    Science.gov (United States)

    Kumar, Gautam; Maji, Kuntal

    2018-04-01

    This article deals with the prediction of strain-and stress-based forming limit curves for advanced high strength steel DP590 sheet using Marciniak-Kuczynski (M-K) method. Three yield criteria namely Von-Mises, Hill's 48 and Yld2000-2d and two hardening laws i.e., Hollomon power and Swift hardening laws were considered to predict the forming limit curves (FLCs) for DP590 steel sheet. The effects of imperfection factor and initial groove angle on prediction of FLC were also investigated. It was observed that the FLCs shifted upward with the increase of imperfection factor value. The initial groove angle was found to have significant effects on limit strains in the left side of FLC, and insignificant effect for the right side of FLC for certain range of strain paths. The limit strains were calculated at zero groove angle for the right side of FLC, and a critical groove angle was used for the left side of FLC. The numerically predicted FLCs considering the different combinations of yield criteria and hardening laws were compared with the published experimental results of FLCs for DP590 steel sheet. The FLC predicted using the combination of Yld2000-2d yield criterion and swift hardening law was in better coorelation with the experimental data. Stress based forming limit curves (SFLCs) were also calculated from the limiting strain values obtained by M-K model. Theoretically predicted SFLCs were compared with that obtained from the experimental forming limit strains. Stress based forming limit curves were seen to better represent the forming limits of DP590 steel sheet compared to that by strain-based forming limit curves.

  9. Development and validation of a strain-based Structural Health Monitoring system

    Science.gov (United States)

    Katsikeros, Ch. E.; Labeas, G. N.

    2009-02-01

    An innovative Structural Health Monitoring (SHM) methodology, based on structural strain measurements, which are processed by a back-propagation feed-forward Artificial Neural Network (ANN), is proposed. The demonstration of the SHM methodology and the identification of its capabilities and drawbacks are performed by applying the method in the prediction of fatigue damage states of a typical aircraft cracked lap-joint structure. An ANN of suitable architecture is developed and trained by numerically generated strain data sets, which have been preprocessed by Fast Fourier Transformation (FFT) for the extraction of the Fourier Descriptors (FDs). The Finite Element (FE) substructuring technique is implemented in the stress and strain analysis of the lap-joint structure, due to its efficiency in the calculation of the numerous strain data, which are necessary for the ANN training. The trained network is successfully validated, as it is proven capable to accurately predict crack positions and lengths of a lap-joint structure, which is damaged by fatigue cracks of unknown location and extent. The proposed methodology is applicable to the identification of more complex types of damage or to other critical structural locations, as its basic concept is generic.

  10. A Comparative Study Between Strain And Stress Based Forming Limit Analysis By Applying Several Phenomenological Yield Criteria

    International Nuclear Information System (INIS)

    Butuc, Marilena C.; Vincze, Gabriela T.; Gracio, Jose J.; Barata da Rocha, A.

    2005-01-01

    The present work aims at analyzing a comparative study between the strain-based forming limit criterion (FLD) and the stress-based forming limit criterion (FLSD), under linear and complex strain paths. The selected material is an AA5182-0 aluminium alloy. Some relevant remarks about stress-based forming limit criterion concept are presented

  11. Effect of strain on voltage-controlled magnetism in BiFeO3-based heterostructures

    Science.gov (United States)

    Wang, J. J.; Hu, J. M.; Yang, T. N.; Feng, M.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    Voltage-modulated magnetism in magnetic/BiFeO3 heterostructures can be driven by a combination of the intrinsic ferroelectric-antiferromagnetic coupling in BiFeO3 and the antiferromagnetic-ferromagnetic exchange interaction across the heterointerface. However, ferroelectric BiFeO3 film is also ferroelastic, thus it is possible to generate voltage-induced strain in BiFeO3 that could be applied onto the magnetic layer across the heterointerface and modulate magnetism through magnetoelastic coupling. Here, we investigated, using phase-field simulations, the role of strain in voltage-controlled magnetism for these BiFeO3-based heterostructures. It is predicted, under certain condition, coexistence of strain and exchange interaction will result in a pure voltage-driven 180° magnetization reversal in BiFeO3-based heterostructures. PMID:24686503

  12. Improving the durability of the optical fiber sensor based on strain transfer analysis

    Science.gov (United States)

    Wang, Huaping; Jiang, Lizhong; Xiang, Ping

    2018-05-01

    To realize the reliable and long-term strain detection, the durability of optical fiber sensors has attracted more and more attention. The packaging technique has been considered as an effective method, which can enhance the survival ratios of optical fiber sensors to resist the harsh construction and service environment in civil engineering. To monitor the internal strain of structures, the embedded installation is adopted. Due to the different material properties between host material and the protective layer, the monitored structure embedded with sensors can be regarded as a typical model containing inclusions. Interfacial characteristic between the sensor and host material exists obviously, and the contacted interface is prone to debonding failure induced by the large interfacial shear stress. To recognize the local interfacial debonding damage and extend the effective life cycle of the embedded sensor, strain transfer analysis of a general three-layered sensing model is conducted to investigate the failure mechanism. The perturbation of the embedded sensor on the local strain field of host material is discussed. Based on the theoretical analysis, the distribution of the interfacial shear stress along the sensing length is characterized and adopted for the diagnosis of local interfacial debonding, and the sensitive parameters influencing the interfacial shear stress are also investigated. The research in this paper explores the interfacial debonding failure mechanism of embedded sensors based on the strain transfer analysis and provides theoretical basis for enhancing the interfacial bonding properties and improving the durability of embedded optical fiber sensors.

  13. Prediction of stress- and strain-based forming limits of automotive thin sheets by numerical, theoretical and experimental methods

    Science.gov (United States)

    Béres, Gábor; Weltsch, Zoltán; Lukács, Zsolt; Tisza, Miklós

    2018-05-01

    Forming limit is a complex concept of limit values related to the onset of local necking in the sheet metal. In cold sheet metal forming, major and minor limit strains are influenced by the sheet thickness, strain path (deformation history) as well as material parameters and microstructure. Forming Limit Curves are plotted in ɛ1 - ɛ2 coordinate system providing the classic strain-based Forming Limit Diagram (FLD). Using the appropriate constitutive model, the limit strains can be changed into the stress-based Forming Limit Diagram (SFLD), irrespective of the strain path. This study is about the effect of the hardening model parameters on defining of limit stress values during Nakazima tests for automotive dual phase (DP) steels. Five limit strain pairs were specified experimentally with the loading of five different sheet geometries, which performed different strain-paths from pure shear (-2ɛ2=ɛ1) up to biaxial stretching (ɛ2=ɛ1). The former works of Hill, Levy-Tyne and Keeler-Brazier made possible some kind of theoretical strain determination, too. This was followed by the stress calculation based on the experimental and theoretical strain data. Since the n exponent in the Nádai expression is varying with the strain at some DP steels, we applied the least-squares method to fit other hardening model parameters (Ludwik, Voce, Hockett-Sherby) to calculate the stress fields belonging to each limit strains. The results showed that each model parameters could produce some discrepancies between the limit stress states in the range of higher equivalent strains than uniaxial stretching. The calculated hardening models were imported to FE code to extend and validate the results by numerical simulations.

  14. Analysis of structures based on a characteristic-strain model of creep

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J. [Alstom Power, Newbold Road, Rugby CV21 2NH (United Kingdom)], E-mail: janjohn.bolton@virgin.net

    2008-01-15

    A companion paper [Bolton J. In: A characteristic-strain model for creep, ECCC/I.Mech.E. conference on creep and fracture in high-temperature components, London, September 2005] describes a creep model based on a constant 'characteristic strain' at any temperature. The present paper discusses the application of such a model, first to simple structures and then to engineering components of general form under steady loading. A basis is proposed for identifying the stress within a structure, or within the critical part of a structure, which can be considered to govern both its overall and local deformations. The concept is similar to skeletal-point stress but is more readily applied to components of any shape. The implementation of the concept of 'structural stress' is discussed in the context of finite-element creep calculations. Consideration is given to the analysis of cracked structures, where very high strains at the crack tip must be accommodated.

  15. Analysis of structures based on a characteristic-strain model of creep

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J. [Alstom Power, Newbold Road, Rugby CV21 2NH (United Kingdom)], E-mail: janjohn.bolton@virgin.net

    2008-01-15

    A companion paper [Bolton J. In: A characteristic-strain model for creep, ECCC/I.Mech.E. conference on creep and fracture in high-temperature components, London, September 2005] describes a creep model based on a constant 'characteristic strain' at any temperature. The present paper discusses the application of such a model, first to simple structures and then to engineering components of general form under steady loading. A basis is proposed for identifying the stress within a structure, or within the critical part of a structure, which can be considered to govern both its overall and local deformations. The concept is similar to skeletal-point stress but is more readily applied to components of any shape. The implementation of the concept of 'structural stress' is discussed in the context of finite-element creep calculations. Consideration is given to the analysis of cracked structures, where very high strains at the crack tip must be accommodated.

  16. Analysis of structures based on a characteristic-strain model of creep

    International Nuclear Information System (INIS)

    Bolton, J.

    2008-01-01

    A companion paper [Bolton J. In: A characteristic-strain model for creep, ECCC/I.Mech.E. conference on creep and fracture in high-temperature components, London, September 2005] describes a creep model based on a constant 'characteristic strain' at any temperature. The present paper discusses the application of such a model, first to simple structures and then to engineering components of general form under steady loading. A basis is proposed for identifying the stress within a structure, or within the critical part of a structure, which can be considered to govern both its overall and local deformations. The concept is similar to skeletal-point stress but is more readily applied to components of any shape. The implementation of the concept of 'structural stress' is discussed in the context of finite-element creep calculations. Consideration is given to the analysis of cracked structures, where very high strains at the crack tip must be accommodated

  17. Reliability Assessment for PSC Box-Girder Bridges Based on SHM Strain Measurements

    Directory of Open Access Journals (Sweden)

    Chuang Chen

    2017-01-01

    Full Text Available A reliability assessment method for prestressed concrete (PSC continuous box-girder bridges based on structural health monitoring (SHM strain measurements was proposed. First, due to the fact that measured strain was compositive and the variation periods of its components were different, a series of limit state equations under normal use limit state were given. Then, a linear fitting method was used to determine the relationship between the ambient temperature and the measured strain, which was aimed at extracting the vehicle load effect and the temperature load effect from the measured strain. Finally, according to the equivalent normalization method, the load effects unsatisfying the normal distribution by probability density function fitting were transformed, and the daily failure probabilities of monitored positions were calculated for evaluating the safety state of the girder. The results show that (1 the top plate of the box girder is more sensitive than the bottom plate to the high temperature, (2 the daily and seasonal strain variations induced by uniform temperature reveal an inconsistent tendency to the seasonal variation for mid-span cross sections, and (3 the generalized extreme value distribution is recommended for temperature gradient stress and vehicle induced stress fitting for box-girder bridges.

  18. Thermogravimetric study of oxidation of a PdCr alloy used for high-temperature sensors

    Science.gov (United States)

    Boyd, Darwin L.; Zeller, Mary V.

    1994-01-01

    In this study, the oxidation of Pd-13 weight percent Cr, a candidate alloy for high-temperature strain gages, was investigated by thermogravimetry. Although the bulk alloy exhibits linear electrical resistivity versus temperature and stable resistivity at elevated temperatures, problems attributed to oxidation occur when this material is fabricated into strain gages. In this work, isothermal thermogravimetry (TG) was used to study the oxidation kinetics. Results indicate that the oxidation of Pd-13 weight percent Cr was approximately parabolic in time at 600 C but exhibited greater passivation from 700 to 900 C. At 1100 C, the oxidation rate again increased.

  19. Instrumentation of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Div.; Hoag, D.L.; Blankenship, D.A.; DeYonge, W.F.; Schiermeister, D.M. [RE/SPEC, Inc., Albuquerque, NM (United States); Jones, R.L.; Baird, G.T. [Tech Reps, Inc., Albuquerque, NM (United States)

    1997-04-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories had the responsibility for the experimental activities at the WIPP and fielded several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The instrumentation of these tests involved the placement of over 4,200 gages including room closure gages, borehole extensometers, stress gages, borehole inclinometers, fixed reference gages, borehole strain gages, thermocouples, thermal flux meters, heater power gages, environmental gages, and ventilation gages. Most of the gages were remotely read instruments that were monitored by an automated data acquisition system, but manually read instruments were also used to provide early deformation information and to provide a redundancy of measurement for the remote gages. Instruments were selected that could operate in the harsh environment of the test rooms and that could accommodate the ranges of test room responses predicted by pretest calculations. Instruments were tested in the field prior to installation at the WIPP site and were modified to improve their performance. Other modifications were made to gages as the TSI tests progressed using knowledge gained from test maintenance. Quality assurance procedures were developed for all aspects of instrumentation including calibration, installation, and maintenance. The instrumentation performed exceptionally well and has produced a large quantity of quality information.

  20. Instrumentation of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Munson, D.E.; Jones, R.L.; Baird, G.T.

    1997-04-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories had the responsibility for the experimental activities at the WIPP and fielded several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The instrumentation of these tests involved the placement of over 4,200 gages including room closure gages, borehole extensometers, stress gages, borehole inclinometers, fixed reference gages, borehole strain gages, thermocouples, thermal flux meters, heater power gages, environmental gages, and ventilation gages. Most of the gages were remotely read instruments that were monitored by an automated data acquisition system, but manually read instruments were also used to provide early deformation information and to provide a redundancy of measurement for the remote gages. Instruments were selected that could operate in the harsh environment of the test rooms and that could accommodate the ranges of test room responses predicted by pretest calculations. Instruments were tested in the field prior to installation at the WIPP site and were modified to improve their performance. Other modifications were made to gages as the TSI tests progressed using knowledge gained from test maintenance. Quality assurance procedures were developed for all aspects of instrumentation including calibration, installation, and maintenance. The instrumentation performed exceptionally well and has produced a large quantity of quality information

  1. Different commercial yeast strains affecting the volatile and sensory profile of cava base wine.

    Science.gov (United States)

    Torrens, Jordi; Urpí, Pilar; Riu-Aumatell, Montserrat; Vichi, Stefania; López-Tamames, Elvira; Buxaderas, Susana

    2008-05-10

    36 semi-industrial fermentations were carried out with 6 different yeast strains in order to assess differences in the wines' chemical and volatile profile. Two of the tested strains (Y3 and Y6) showed the fastest fermentation rates throughout 3 harvests and on 2 grape varieties. The wines fermented by three of the tested strains (Y5, Y3 and Y4) stand out for their high amounts of esters and possessed the highest fruity character. Wines from strains producing low amounts of esters and high concentrations of medium chain fatty acids, higher alcohols and six-carbon alcohols were the least appreciated at the sensory analysis. The data obtained in the present study show how the yeast strain quantitatively affects the final chemical and volatile composition of cava base wines and have repercussions on their sensory profile, independently of must variety and harvest year.

  2. Identification Of Some Strains Of Dinoflagellates Based On Morphology And Molecular Analysis

    Directory of Open Access Journals (Sweden)

    Hikmah Thoha

    2008-11-01

    Full Text Available Dinoflagellates are the important primary producers in aquatic environments. In oceans, they play interesting role in ecological functions such as red tide forming organisms, symbiont of coral reef or sea anemone and DSP (Diarrhetic Shellfish Poisoning or PSP (Paralytic Shellfish Poisoning producing organisms. Morphology and molecular analysis of dinoflagellates were conducted on November 2002 to March 2003. The phylogenetic studies based on 18S rDNA analyses, sequence have begun to appear more frequently in the literature, as attention has turned to relationships within the major eukaryotic lineages, particular importance for the taxonomy of the armored and unarmored genera of dinoflagellates (Gyrodinium sp., Cachonina sp., Gymnodinium sp., Amphidinium sp., because many of the genera cause extensive plankton blooms, fish kills and other harmful events, were studied used to amplify 18S rDNA, present in the total DNA extracted from algal pellet. The amplify approximately 1400 bp of the nuclear-encoded LSU rDNA gene using terminal primeirs DIR, products were cheked by 1.0 % agarose gel electrophoresis, then cloning with TA cloning KIT. Sequencing were analyzed by the GENETIX Mac Software, Homology search by Blast and Phylogenetic analysis. Results of hylogenetic analysis of 18S rDNA are: Strain no. 10893 (un identified from the genera, it is belonging Gymnodinium or Polarella. Strain no. 10795 is closely related other species Cachonina hallii. We tentatively named strain no 11151 and 11160 similar to Gyrodinium or Gymnodinium based on morphology, but these strain indepently position in this tree and is not a real of Gymnodinium sensu stricto. It is possible, we can establish the new genera for strain no. 11151; 11160 because this not cluster any other unarmored species.

  3. Piezoresistive strain sensing of carbon nanotubes-based composite skin for aeronautical morphing structures

    Science.gov (United States)

    Viscardi, Massimo; Arena, Maurizio; Barra, Giuseppina; Vertuccio, Luigi; Ciminello, Monica; Guadagno, Liberata

    2018-03-01

    Nowadays, smart composites based on different nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a more possible alternative solution to conventional smart materials, mainly for their improved electrical properties. Great attention is being given by the research community in designing highly sensitive strain sensors for more and more ambitious challenges: in such context, interest fields related to carbon nanotubes have seen extraordinary development in recent years. The authors aim to provide the most contemporary overview possible of carbon nanotube-based strain sensors for aeronautical application. A smart structure as a morphing wing needs an embedded sensing system in order to measure the actual deformation state as well as to "monitor" the structural conditions. Looking at more innovative health monitoring tools for the next generation of composite structures, a resin strain sensor has been realized. The epoxy resin was first analysed by means of a micro-tension test, estimating the electrical resistance variations as function of the load, in order to demonstrate the feasibility of the sensor. The epoxy dogbone specimen has been equipped with a standard strain gauge to quantify its strain sensitivity. The voltamperometric tests highlight a good linearity of the electrical resistance value as the load increases at least in the region of elastic deformation of the material. Such intrinsic piezoresistive performance is essentially attributable to the re-arrangement of conductive percolating network formed by MWCNT, induced by the deformation of the material due to the applied loads. The specimen has been prepared within this investigation, to demonstrate its performance for a future composite laminate typical of aerospace structures. The future carbon-fiber sensor can replace conventional metal foil strain gauges in aerospace applications. Furthermore, dynamic tests will be carried out to detect any non

  4. Model-based methodology to develop the isochronous stress-strain curves for modified 9Cr steels

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Yin, Song Nan; Kim, Sung Ho; Lee, Chan Bock; Jung, Ik Hee

    2008-01-01

    Since high temperature materials are designed with a target life based on a specified amount of allowable strain and stress, their Isochronous Stress-Strain Curves (ISSC) are needed to avoid an excessive deformation during an intended service life. In this paper, a model-based methodology to develop the isochronous curves for a G91 steel is described. Creep strain-time curves were reviewed for typical high-temperature materials, and Garofalo's model which conforms well to the primary and secondary creep stages was proper for the G91 steel. Procedures to obtain an instantaneous elastic-plastic strain, ε i were given in detail. Also, to accurately determine the P 1 , P 2 and P 3 parameters in the Garofalo's model, a Nonlinear Least Square Fitting (NLSF) method was adopted and useful. The long-term creep curves for the G91 steel can be modeled by the Garofalo's model, and the long-term ISSCs can be developed using the modeled creep curves

  5. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Omar Rodriguez

    2016-12-01

    Full Text Available Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion closer to the substrate’s (Ti6Al4V CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO2 in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO2 to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO2 incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass® and Pyrex.

  6. Strain gradient plasticity-based modeling of hydrogen environment assisted cracking

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof; P. Gangloff, Richard

    2016-01-01

    Finite element analysis of stress about a blunt crack tip, emphasizing finite strain and phenomenologicaland mechanism-based strain gradient plasticity (SGP) formulations, is integrated with electrochemical assessment of occluded-crack tip hydrogen (H) solubility and two H-decohesion models...... to predict hydrogen environment assisted crack growth properties. SGP elevates crack tip geometrically necessary dislocation density and flow stress, with enhancement declining with increasing alloy strength. Elevated hydrostatic stress promotes high-trapped H concentration for crack tip damage......; it is imperative to account for SGP in H cracking models. Predictions of the threshold stress intensity factor and H-diffusion limited Stage II crack growth rate agree with experimental data for a high strength austenitic Ni-Cusuperalloy (Monel®K-500) and two modern ultra-high strength martensitic steels (Aer...

  7. Complex measurement system for long-term monitoring of prestressed railway bridges of the new Lehrter Bahnhof in Berlin

    Science.gov (United States)

    Habel, Wolfgang R.; Hofmann, Detlef; Kohlhoff, H.; Knapp, J.; Brandes, K.; Haenichen, H.; Inaudi, Daniele

    2002-07-01

    A new central railway station - Lehrter Bahnhof - is being built in Berlin. Because of construction activities in immediate vicinity and because of difficult soil conditions, different vertical displacements have to be expected. In order to avoid damage to the bridges and to a widely spanned glass roof which will be supported by two concrete bridges these two bridges have to be monitored with regard to their deformation performance right from the beginning of construction until commissioning as well as later on for several years. For this purpose, a monitoring concept has been developed and sensors with excellent long-term stability have been chosen. This paper describes the system for monitoring settlements and heaves by means of laser-based optics and hydrostatic leveling. Additionally, strain and inclination of the prestressed concrete bridges are redundantly monitored by embedded long-gage length fiber-optic strain sensors as well as resistive strain gages, and inclinometers. Measurements on-site are referenced by measurements on two test beams well-defined loaded under laboratory and field conditions. The paper also describes the measuring concept and the sensor techniques as well as installation of the sensor system and first results.

  8. FY 2017 Status of Sodium Freezing and Remelting Tests

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Boron, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Momozaki, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Chojnowski, D. B. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Reed, C. B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-15

    The Sodium Freezing and Remelting experiment facility at Argonne National Laboratory has been significantly modified and improved. The main improvement was replacement of the two original stainless steel test sections that had strain gages limited by their bonds to the stainless steel to maximum temperatures of 350°C with a single new test section with strain gages that can be utilized up to 980°C and a thin wall to enhance measured strains. Wetting of stainless steel by sodium within a practical time of one to a few days is expected to require temperatures of 450°C or greater. Thus, the higher temperature strain gages enable wetting in a short time of a few days. Wetting below 350°C would have required an impractically long time of at least weeks. Other improvements included upgrading of the loop configuration, incorporation of a cold finger to purify sodium, a new data acquisition system, and reinstallation of the many heaters, heater controllers, and thermocouples. After the loop had been heated to 400°C for about two hours, an initial sodium freezing test was conducted. It is thought that the sodium might have at least partially wetted the stainless steel wall under these conditions. The strain gage measurements indicate that an incremental step inward deformation of the test section thin wall occurred as the temperature decreased through the sodium freezing temperature. This behavior is consistent with sodium initially adhering to the stainless steel inner wall but breaking away from the wall as the freezing sodium contracted. Conduct of additional sodium freezing tests under well wetted conditions was prevented as a result of stoppage of all electrical work at Argonne by the Laboratory Director on July 25, 2017. A pathway to resuming electrical work is now in place at Argonne and additional sodium freezing testing will resume next fiscal year.

  9. Deformation features of aluminium in tensile tests

    International Nuclear Information System (INIS)

    Quadros, N.F. de.

    1984-01-01

    It is presented a method to analyse stress-strain curves. Plastic and elastic strains were studied. The strains were done by tensile tests in four types of materials: highly pure aluminium, pure aluminium, commercially pure aluminium and aluminium - uranium. The chemical compositions were obtained by spectroscopy analysis and neutron activation analysis. Tensile tests were carried out at three strain rates, at room temperature, 100,200, 300 and 400 0 C, with knives extensometer and strain-gages to studied the elastic strain region. A multiple spring model based on two springs model to analyse elastic strain caused by tests without extensometers, taking in account moduli of elasticity and, an interactive analysis system with graphic capability were developed. It was suggested a qualitative model to explain the quantized multielasticity of Bell. (M.C.K.) [pt

  10. Force Reconstruction from Ejection Tests of Stores from Aircraft Used for Model Predictions and Missing/Bad Gages

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Michael; Cap, Jerome S.; Starr, Michael J.; Urbina, Angel; Brink, Adam Ray

    2015-12-01

    One of the more severe environments for a store on an aircraft is during the ejection of the store. During this environment it is not possible to instrument all component responses, and it is also likely that some instruments may fail during the environment testing. This work provides a method for developing these responses from failed gages and uninstrumented locations. First, the forces observed by the store during the environment are reconstructed. A simple sampling method is used to reconstruct these forces given various parameters. Then, these forces are applied to a model to generate the component responses. Validation is performed on this methodology.

  11. Multistate nonvolatile straintronics controlled by a lateral electric field.

    Science.gov (United States)

    Iurchuk, V; Doudin, B; Kundys, B

    2014-07-23

    We present a multifunctional and multistate permanent memory device based on lateral electric field control of a strained surface. Sub-coercive electrical writing of a remnant strain of a PZT substrate imprints stable and rewritable resistance changes on a CoFe overlayer. A proof-of-principle device, with the simplest resistance strain gage design, is shown as a memory cell exhibiting 17-memory states of high reproducibility and reliability for nonvolatile operations. Magnetoresistance of the film also depends on the cell state, and indicates a rewritable change of magnetic properties persisting in the remnant strain of the substrate. This makes it possible to combine strain, magnetic and resistive functionalities in a single memory element, and suggests that sub-coercive stress studies are of interest for straintronics applications.

  12. Strain measurement in concrete using embedded carbon roving-based sensors

    International Nuclear Information System (INIS)

    Quadflieg, Till; Gries, Thomas; Stolyarov, Oleg

    2016-01-01

    This paper presents the results of the application of carbon rovings as strain sensors for measuring the strain in concrete. In this work, three types of electrically conductive carbon roving with different characteristics were used. The possibility of using carbon rovings as a strain sensor is demonstrated via measurements in tensile and four point bending tests. The experimental setups and methods for measuring the electrical resistance of carbon roving in the roving and concrete are described. The results of the characterization of the electrical behavior as a function of strain of carbon rovings and concrete are presented and discussed. The obtained results indicate that the strain range of carbon rovings optimally corresponds to the strain range of concrete. This characteristic behavior makes the carbon rovings well suited for the use as strain sensors. A good correlation has been found between the electrical resistance-strain curve of the carbon roving and the measurements in the concrete.

  13. Two New Quadrilateral Elements Based on Strain States

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaiee-Pajand

    2015-06-01

    Full Text Available In this paper, two new quadrilateral elements are formulated to solve plane problems. Low sensitivity to geometric distortion, no parasitic shear error, rotational invariance, and satisfying the Felippa pure bending test are characteristics of these suggested elements. One proposed element is formulated by establishing equilibrium equations for the second-order strain field. The other suggested element is obtained by establishing equilibrium equations only for the linear part of the strain field. The number of the strain states decreases when the conditions among strain states are satisfied. Several numerical tests are used to demonstrate the performance of the proposed elements. Famous elements, which were suggested by other researchers, are used as a means of comparison. It is shown that these novel elements pass the strong patch tests, even for extremely poor meshes, and one of them has an excellent accuracy and fast convergence in other complicated problems.

  14. A piezoelectric-based infinite stiffness generation method for strain-type load sensors

    International Nuclear Information System (INIS)

    Zhang, Shuwen; Shao, Shubao; Xu, Minglong; Chen, Jie

    2015-01-01

    Under certain application conditions like nanoindentation technology and the mechanical property measurement of soft materials, the elastic deformation of strain-type load sensors affects their displacement measurement accuracy. In this work, a piezoelectric-based infinite stiffness generation method for strain-type load sensors that compensates for this elastic deformation is presented. The piezoelectric material-based deformation compensation method is proposed. An Hottinger Baldwin Messtechnik GmbH (HBM) Z30A/50N load sensor acts as the foundation of the method presented in this work. The piezoelectric stack is selected based on its size, maximum deformation value, blocking force and stiffness. Then, a clamping and fixing structure is designed to integrate the HBM sensor with the piezoelectric stack. The clamping and fixing structure, piezoelectric stack and HBM load sensor comprise the sensing part of the enhanced load sensor. The load-deformation curve and the voltage-deformation curve of the enhanced load sensor are then investigated experimentally. Because a hysteresis effect exists in the piezoelectric structure, the relationship between the control signal and the deformation value of the piezoelectric material is nonlinear. The hysteresis characteristic in a quasi-static condition is studied and fitted using a quadratic polynomial, and its coefficients are analyzed to enable control signal prediction. Applied arithmetic based on current theory and the fitted data is developed to predict the control signal. Finally, the experimental effects of the proposed method are presented. It is shown that when a quasi-static load is exerted on this enhanced strain-type load sensor, the deformation is reduced and the equivalent stiffness appears to be almost infinite. (paper)

  15. Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions

    Science.gov (United States)

    Huang, Ying; Zhao, Yunong; Wang, Yang; Guo, Xiaohui; Zhang, Yangyang; Liu, Ping; Liu, Caixia; Zhang, Yugang

    2018-03-01

    Strain sensors used as flexible and wearable electronic devices have improved prospects in the fields of artificial skin, robotics, human-machine interfaces, and healthcare. This work introduces a highly stretchable fiber-based strain sensor with a laminated structure made up of a graphene nanoplatelet layer and a carbon black/single-walled carbon nanotube synergetic conductive network layer. An ultrathin, flexible, and elastic two-layer polyurethane (PU) yarn substrate was successively deposited by a novel chemical bonding-based layered dip-coating process. These strain sensors demonstrated high stretchability (˜350%), little hysteresis, and long-term durability (over 2400 cycles) due to the favorable tensile properties of the PU substrate. The linearity of the strain sensor could reach an adjusted R-squared of 0.990 at 100% strain, which is better than most of the recently reported strain sensors. Meanwhile, the strain sensor exhibited good sensibility, rapid response, and a lower detection limit. The lower detection limit benefited from the hydrogen bond-assisted laminated structure and continuous conductive path. Finally, a series of experiments were carried out based on the special features of the PU strain sensor to show its capacity of detecting and monitoring tiny human motions.

  16. Strain-based finite elements for the analysis of cylinders with holes and normally intersecting cylinders

    International Nuclear Information System (INIS)

    Sabir, A.B.

    1983-01-01

    A finite element solution to the problems of stress distribution for cylindrical shells with circular and elliptical holes and also for normally intersecting thin elastic cylindrical shells is given. Quadrilateral and triangular curved finite elements are used in the analysis. The elements are of a new class, based on simple independent generalised strain functions insofar as this is allowed by the compatibility equations. The elements also satisfy exactly the requirements of strain-free-rigid body displacements and uses only the external 'geometrical' nodal degrees of freedom to avoid the difficulties associated with unnecessary internal degrees of freedom. We first develop strain based quadrilateral and triangular elements and apply them to the solution of the problem of stress concentrations in the neighbourhood of small and large circular and elliptical holes when the cylinders are subjected to a uniform axial tension. These results are compared with analytical solutions based on shallow shell approximations and show that the use of these strain based elements obviates the need for using an inordinately large number of elements. Normally intersecting cylinders are common configurations in structural components for nuclear reactor systems and design information for such configurations are generally lacking. The opportunity is taken in the present paper to provide a finite element solution to this problem. A method of substructing will be introduced to enable a solution to the large number of non banded set of simultaneous equations encountered. (orig./HP)

  17. Geographical markers for Saccharomyces cerevisiae strains with similar technological origins domesticated for rice-based ethnic fermented beverages production in North East India.

    Science.gov (United States)

    Jeyaram, Kumaraswamy; Tamang, Jyoti Prakash; Capece, Angela; Romano, Patrizia

    2011-11-01

    Autochthonous strains of Saccharomyces cerevisiae from traditional starters used for the production of rice-based ethnic fermented beverage in North East India were examined for their genetic polymorphism using mitochondrial DNA-RFLP and electrophoretic karyotyping. Mitochondrial DNA-RFLP analysis of S. cerevisiae strains with similar technological origins from hamei starter of Manipur and marcha starter of Sikkim revealed widely separated clusters based on their geographical origin. Electrophoretic karyotyping showed high polymorphism amongst the hamei strains within similar mitochondrial DNA-RFLP cluster and one unique karyotype of marcha strain was widely distributed in the Sikkim-Himalayan region. We conceptualized the possibility of separate domestication events for hamei strains in Manipur (located in the Indo-Burma biodiversity hotspot) and marcha strains in Sikkim (located in Himalayan biodiversity hotspot), as a consequence of less homogeneity in the genomic structure between these two groups, their clear separation being based on geographical origin, but not on technological origin and low strain level diversity within each group. The molecular markers developed based on HinfI-mtDNA-RFLP profile and the chromosomal doublets in chromosome VIII position of Sikkim-Himalayan strains could be effectively used as geographical markers for authenticating the above starter strains and differentiating them from other commercial strains.

  18. Hydrologic classification of rivers based on cluster analysis of dimensionless hydrologic signatures: Applications for environmental instream flows

    Science.gov (United States)

    Praskievicz, S. J.; Luo, C.

    2017-12-01

    Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.

  19. Whole genome sequencing-based characterization of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis from Pakistan

    KAUST Repository

    Hasan, Zahra; Ali, Asho; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant A.; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G.; Hasan, Rumina

    2015-01-01

    Objectives: The global increase in drug resistance in Mycobacterium tuberculosis (MTB) strains increases the focus on improved molecular diagnostics for MTB. Extensively drug-resistant (XDR) - TB is caused by MTB strains resistant to rifampicin, isoniazid, fluoroquinolone and aminoglycoside antibiotics. Resistance to anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs), in particular MTB genes. However, there is regional variation between MTB lineages and the SNPs associated with resistance. Therefore, there is a need to identify common resistance conferring SNPs so that effective molecular-based diagnostic tests for MTB can be developed. This study investigated used whole genome sequencing (WGS) to characterize 37 XDR MTB isolates from Pakistan and investigated SNPs related to drug resistance. Methods: XDR-TB strains were selected. DNA was extracted from MTB strains, and samples underwent WGS with 76-base-paired end fragment sizes using Illumina paired end HiSeq2000 technology. Raw sequence data were mapped uniquely to H37Rv reference genome. The mappings allowed SNPs and small indels to be called using SAMtools/BCFtools. Results: This study found that in all XDR strains, rifampicin resistance was attributable to SNPs in the rpoB RDR region. Isoniazid resistance-associated mutations were primarily related to katG codon 315 followed by inhA S94A. Fluoroquinolone resistance was attributable to gyrA 91-94 codons in most strains, while one did not have SNPs in either gyrA or gyrB. Aminoglycoside resistance was mostly associated with SNPs in rrs, except in 6 strains. Ethambutol resistant strains had embB codon 306 mutations, but many strains did not have this present. The SNPs were compared with those present in commercial assays such as LiPA Hain MDRTBsl, and the sensitivity of the assays for these strains was evaluated. Conclusions: If common drug resistance associated with SNPs evaluated the concordance between phenotypic and

  20. Whole genome sequencing-based characterization of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis from Pakistan

    KAUST Repository

    Hasan, Zahra

    2015-03-01

    Objectives: The global increase in drug resistance in Mycobacterium tuberculosis (MTB) strains increases the focus on improved molecular diagnostics for MTB. Extensively drug-resistant (XDR) - TB is caused by MTB strains resistant to rifampicin, isoniazid, fluoroquinolone and aminoglycoside antibiotics. Resistance to anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs), in particular MTB genes. However, there is regional variation between MTB lineages and the SNPs associated with resistance. Therefore, there is a need to identify common resistance conferring SNPs so that effective molecular-based diagnostic tests for MTB can be developed. This study investigated used whole genome sequencing (WGS) to characterize 37 XDR MTB isolates from Pakistan and investigated SNPs related to drug resistance. Methods: XDR-TB strains were selected. DNA was extracted from MTB strains, and samples underwent WGS with 76-base-paired end fragment sizes using Illumina paired end HiSeq2000 technology. Raw sequence data were mapped uniquely to H37Rv reference genome. The mappings allowed SNPs and small indels to be called using SAMtools/BCFtools. Results: This study found that in all XDR strains, rifampicin resistance was attributable to SNPs in the rpoB RDR region. Isoniazid resistance-associated mutations were primarily related to katG codon 315 followed by inhA S94A. Fluoroquinolone resistance was attributable to gyrA 91-94 codons in most strains, while one did not have SNPs in either gyrA or gyrB. Aminoglycoside resistance was mostly associated with SNPs in rrs, except in 6 strains. Ethambutol resistant strains had embB codon 306 mutations, but many strains did not have this present. The SNPs were compared with those present in commercial assays such as LiPA Hain MDRTBsl, and the sensitivity of the assays for these strains was evaluated. Conclusions: If common drug resistance associated with SNPs evaluated the concordance between phenotypic and

  1. Mechanical Behaviour of Bolted Joints Under Impact Rates of Loading

    Science.gov (United States)

    2012-01-01

    M. (1995). Bearing Strength of Autoclave and oven cured kevlar / epoxy laminates under static and dynamic loading. Compostes, 451-456. Kretsis, G...Joints in Glass Fibre/ Epoxy Laminates. Composites, Volume 16. No 2. Kolsky, H. (1949). An Investigation of the Mechanical Properties of Materials at...elongating the pulse width. The responses are read by the strain gages bonded on the incident and transmission bar with Vishay AE-10 epoxy . The gages

  2. Quantification of carotid artery plaque stability with multiple region of interest based ultrasound strain indices and relationship with cognition

    Science.gov (United States)

    Meshram, N. H.; Varghese, T.; Mitchell, C. C.; Jackson, D. C.; Wilbrand, S. M.; Hermann, B. P.; Dempsey, R. J.

    2017-08-01

    Vulnerability and instability in carotid artery plaque has been assessed based on strain variations using noninvasive ultrasound imaging. We previously demonstrated that carotid plaques with higher strain indices in a region of interest (ROI) correlated to patients with lower cognition, probably due to cerebrovascular emboli arising from these unstable plaques. This work attempts to characterize the strain distribution throughout the entire plaque region instead of being restricted to a single localized ROI. Multiple ROIs are selected within the entire plaque region, based on thresholds determined by the maximum and average strains in the entire plaque, enabling generation of additional relevant strain indices. Ultrasound strain imaging of carotid plaques, was performed on 60 human patients using an 18L6 transducer coupled to a Siemens Acuson S2000 system to acquire radiofrequency data over several cardiac cycles. Patients also underwent a battery of neuropsychological tests under a protocol based on National Institute of Neurological Disorders and Stroke and Canadian Stroke Network guidelines. Correlation of strain indices with composite cognitive index of executive function revealed a negative association relating high strain to poor cognition. Patients grouped into high and low cognition groups were then classified using these additional strain indices. One of our newer indices, namely the average L  -  1 norm with plaque (AL1NWP) presented with significantly improved correlation with executive function when compared to our previously reported maximum accumulated strain indices. An optimal combination of three of the new indices generated classifiers of patient cognition with an area under the curve (AUC) of 0.880, 0.921 and 0.905 for all (n  =  60), symptomatic (n  =  33) and asymptomatic patients (n  =  27) whereas classifiers using maximum accumulated strain indices alone provided AUC values of 0.817, 0.815 and 0

  3. Direct measurements of wall shear stress by buried wire gages in a shock-wave boundary-layer interaction region

    Science.gov (United States)

    Murthy, V. S.; Rose, W. C.

    1977-01-01

    Detailed measurements of wall shear stress (skin friction) were made with specially developed buried wire gages in the interaction regions of a Mach 2.9 turbulent boundary layer with externally generated shocks. Separation and reattachment points inferred by these measurements support the findings of earlier experiments which used a surface oil flow technique and pitot profile measurements. The measurements further indicate that the boundary layer tends to attain significantly higher skin-friction values downstream of the interaction region as compared to upstream. Comparisons between measured wall shear stress and published results of some theoretical calculation schemes show that the general, but not detailed, behavior is predicted well by such schemes.

  4. Strain sensitivity of carbon nanotube cement-based composites for structural health monitoring

    Science.gov (United States)

    D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Rallini, Marco; Materazzi, Annibale L.; Kenny, Josè M.

    2016-04-01

    Cement-based smart sensors appear particularly suitable for monitoring applications, due to their self-sensing abilities, their ease of use, and their numerous possible field applications. The addition of conductive carbon nanofillers into a cementitious matrix provides the material with piezoresistive characteristics and enhanced sensitivity to mechanical alterations. The strain-sensing ability is achieved by correlating the variation of external loads or deformations with the variation of specific electrical parameters, such as the electrical resistance. Among conductive nanofillers, carbon nanotubes (CNTs) have shown promise for the fabrication of self-monitoring composites. However, some issues related to the filler dispersion and the mix design of cementitious nanoadded materials need to be further investigated. For instance, a small difference in the added quantity of a specific nanofiller in a cement-matrix composite can substantially change the quality of the dispersion and the strain sensitivity of the resulting material. The present research focuses on the strain sensitivity of concrete, mortar and cement paste sensors fabricated with different amounts of carbon nanotube inclusions. The aim of the work is to investigate the quality of dispersion of the CNTs in the aqueous solutions, the physical properties of the fresh mixtures, the electromechanical properties of the hardened materials, and the sensing properties of the obtained transducers. Results show that cement-based sensors with CNT inclusions, if properly implemented, can be favorably applied to structural health monitoring.

  5. Are people living next to mobile phone base stations more strained? Relationship of health concerns, self-estimated distance to base station, and psychological parameters.

    Science.gov (United States)

    Augner, Christoph; Hacker, Gerhard W

    2009-12-01

    Coeval with the expansion of mobile phone technology and the associated obvious presence of mobile phone base stations, some people living close to these masts reported symptoms they attributed to electromagnetic fields (EMF). Public and scientific discussions arose with regard to whether these symptoms were due to EMF or were nocebo effects. The aim of this study was to find out if people who believe that they live close to base stations show psychological or psychobiological differences that would indicate more strain or stress. Furthermore, we wanted to detect the relevant connections linking self-estimated distance between home and the next mobile phone base station (DBS), daily use of mobile phone (MPU), EMF-health concerns, electromagnetic hypersensitivity, and psychological strain parameters. Fifty-seven participants completed standardized and non-standardized questionnaires that focused on the relevant parameters. In addition, saliva samples were used as an indication to determine the psychobiological strain by concentration of alpha-amylase, cortisol, immunoglobulin A (IgA), and substance P. Self-declared base station neighbors (DBS base station neighbors are more strained than others. EMF-related health concerns cannot explain these findings. Further research should identify if actual EMF exposure or other factors are responsible for these results.

  6. Twin-Core Fiber-Based Mach Zehnder Interferometer for Simultaneous Measurement of Strain and Temperature

    Science.gov (United States)

    Kowal, Dominik; Urbanczyk, Waclaw; Mergo, Pawel

    2018-01-01

    In this paper we present an all-fiber interferometric sensor for the simultaneous measurement of strain and temperature. It is composed of a specially fabricated twin-core fiber spliced between two pieces of a single-mode fiber. Due to the refractive index difference between the two cores in a twin-core fiber, a differential interference pattern is produced at the sensor output. The phase response of the interferometer to strain and temperature is measured in the 850–1250 nm spectral range, showing zero sensitivity to strain at 1000 nm. Due to the significant difference in sensitivities to both parameters, our interferometer is suitable for two-parameter sensing. The simultaneous response of the interferometer to strain and temperature was studied using the two-wavelength interrogation method and a novel approach based on the spectral fitting of the differential phase response. As the latter technique uses all the gathered spectral information, it is more reliable and yields the results with better accuracy. PMID:29558386

  7. Perpendicular magnetic tunnel junction with a strained Mn-based nanolayer

    Science.gov (United States)

    Suzuki, K. Z.; Ranjbar, R.; Okabayashi, J.; Miura, Y.; Sugihara, A.; Tsuchiura, H.; Mizukami, S.

    2016-07-01

    A magnetic tunnel junction with a perpendicular magnetic easy-axis (p-MTJ) is a key device for spintronic non-volatile magnetoresistive random access memory (MRAM). Co-Fe-B alloy-based p-MTJs are being developed, although they have a large magnetisation and medium perpendicular magnetic anisotropy (PMA), which make it difficult to apply them to a future dense MRAM. Here, we demonstrate a p-MTJ with an epitaxially strained MnGa nanolayer grown on a unique CoGa buffer material, which exhibits a large PMA of more than 5 Merg/cm3 and magnetisation below 500 emu/cm3 these properties are sufficient for application to advanced MRAM. Although the experimental tunnel magnetoresistance (TMR) ratio is still low, first principles calculations confirm that the strain-induced crystal lattice distortion modifies the band dispersion along the tetragonal c-axis into the fully spin-polarised state; thus, a huge TMR effect can be generated in this p-MTJ.

  8. Strain-based HLA association analysis identified HLA-DRB1*09:01 associated with modern strain tuberculosis.

    Science.gov (United States)

    Toyo-Oka, L; Mahasirimongkol, S; Yanai, H; Mushiroda, T; Wattanapokayakit, S; Wichukchinda, N; Yamada, N; Smittipat, N; Juthayothin, T; Palittapongarnpim, P; Nedsuwan, S; Kantipong, P; Takahashi, A; Kubo, M; Sawanpanyalert, P; Tokunaga, K

    2017-09-01

    Tuberculosis (TB) occurs as a result of complex interactions between the host immune system and pathogen virulence factors. Human leukocyte antigen (HLA) class II molecules play an important role in the host immune system. However, no study has assessed the association between HLA class II genes and susceptibility to TB caused by specific strains. This study investigated the possible association of HLA class II genes with TB caused by modern and ancient Mycobacterium tuberculosis (MTB). The study included 682 patients with TB and 836 control subjects who were typed for HLA-DRB1 and HLA-DQB1 alleles. MTB strains were classified using a large sequence polymorphism typing method. Association analysis was performed using common HLA alleles and haplotypes in different MTB strains. HLA association analysis of patients infected with modern MTB strains showed significant association for HLA-DRB1*09:01 (odds ratio [OR] = 1.82; P-value = 9.88 × 10 -4 ) and HLA-DQB1*03:03 alleles (OR = 1.76; P-value = 1.31 × 10 -3 ) with susceptibility to TB. Haplotype analysis confirmed that these alleles were in strong linkage disequilibrium and did not exert an interactive effect. Thus, the results of this study showed an association between HLA class II genes and susceptibility to TB caused by modern MTB strains, suggesting the importance of strain-specific analysis to determine susceptibility genes associated with TB. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Magnetic attachment for implant overdentures: influence of contact relationship with the denture base on stability and bending strain.

    Science.gov (United States)

    Yang, Tsung-Chieh; Maeda, Yoshinobu; Gonda, Tomoya; Wada, Masahiro

    2013-01-01

    This study evaluated how the contact height between the magnetic attachment and denture base influences stability and bending strain. An implant modified with strain gauges and a magnetic attachment mounted in an acrylic resin block were used to characterize systems with varying degrees or heights of contact with the abutment. Bending strain under lateral loading increased significantly as the contact height decreased. In the no contact and resilient contact groups, magnetic assemblies separated at reduced bending strain in all loading conditions. The contact height of the magnetic attachment influenced the stability and the amount of bending strain on the implant.

  10. Multistate nonvolatile straintronics controlled by a lateral electric field

    International Nuclear Information System (INIS)

    Iurchuk, V; Doudin, B; Kundys, B

    2014-01-01

    We present a multifunctional and multistate permanent memory device based on lateral electric field control of a strained surface. Sub-coercive electrical writing of a remnant strain of a PZT substrate imprints stable and rewritable resistance changes on a CoFe overlayer. A proof-of-principle device, with the simplest resistance strain gage design, is shown as a memory cell exhibiting 17-memory states of high reproducibility and reliability for nonvolatile operations. Magnetoresistance of the film also depends on the cell state, and indicates a rewritable change of magnetic properties persisting in the remnant strain of the substrate. This makes it possible to combine strain, magnetic and resistive functionalities in a single memory element, and suggests that sub-coercive stress studies are of interest for straintronics applications. (fast track communication)

  11. Effect of plastic strain on elastic-plastic fracture toughness of SM490 carbon steel. Assessment by stress-based criterion for ductile crack initiation

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2012-01-01

    Although the plastic strain induced in materials increases the mechanical strength, it may reduce the fracture toughness. In this study, the change in fracture toughness of SM490 carbon steel due to pre-straining was investigated using a stress-based criterion for ductile crack initiation. The specimens with blunt notch of various radiuses were used in addition to those with conventional fatigue pre-cracking. The degree of applied plastic strain was 5%, 10% or 20%. The fracture toughness was largest when the induced plastic strain was 5%, although it decreased for the plastic strains of 10% and 20%. The stress and strain distributions near the crack tip of fracture toughness test specimens was investigated by elastic-plastic finite element analyses using a well-correlated stress-strain curve for large strain. It was shown that the critical condition at the onset of the ductile crack was better correlated with the equivalent stress than the plastic strain at the crack tip. By using the stress-based criterion, which was represented by the equivalent stress and stress triaxiality, the change in the fracture toughness due to pre-straining could be reasonably explained. Based on these results, it was concluded that the stress-based criterion should be used for predicting the ductile crack initiation. (author)

  12. Test and Analysis Correlation for a Y-Joint Specimen for a Composite Cryotank

    Science.gov (United States)

    Mason, Brian H.; Sleight, David W.; Grenoble, Ray

    2015-01-01

    The Composite Cryotank Technology Demonstration (CCTD) project under NASA's Game Changing Development Program (GCDP) developed space technologies using advanced composite materials. Under CCTD, NASA funded the Boeing Company to design and test a number of element-level joint specimens as a precursor to a 2.4-m diameter composite cryotank. Preliminary analyses indicated that the y-joint in the cryotank had low margins of safety; hence the y-joint was considered to be a critical design region. The y-joint design includes a softening strip wedge to reduce localized shear stresses at the skirt/dome interface. In this paper, NASA-developed analytical models will be correlated with the experimental results of a series of positive-peel y-joint specimens from Boeing tests. Initial analytical models over-predicted the experimental strain gage readings in the far-field region by approximately 10%. The over-prediction was attributed to uncertainty in the elastic properties of the laminate and a mismatch between the thermal expansion of the strain gages and the laminate. The elastic properties of the analytical model were adjusted to account for the strain gage differences. The experimental strain gages also indicated a large non-linear effect in the softening strip region that was not predicted by the analytical model. This non-linear effect was attributed to delamination initiating in the softening strip region at below 20% of the failure load for the specimen. Because the specimen was contained in a thermally insulated box during cryogenic testing to failure, delamination initiation and progression was not visualized during the test. Several possible failure initiation locations were investigated, and a most likely failure scenario was determined that correlated well with the experimental data. The most likely failure scenario corresponded to damage initiating in the softening strip and delamination extending to the grips at final failure.

  13. Effects of Fluid-Structure Interaction on Dynamic Response of Composite Structures: Experimental and Numerical Studies

    Science.gov (United States)

    2013-08-01

    of the drop height. Additionally, strains under wet impact at gage locations #3 through #4 show more major peaks and valleys as the drop height...strain rates would be needed to further valuate this statement. The failure criterion also suggests that the unloading process uring the loading

  14. Molecular beam epitaxy of alternating-strain ZnSe-based multilayer heterostructures for blue-green lasers

    International Nuclear Information System (INIS)

    Ivanov, S.V.; Toropov, A.A.; Sorokin, S.V.; Shubina, T.V.; Il'inskaya, N.D.; Lebedev, A.V.; Sedova, I.V.; Kop'ev, P.S.; Alferov, Zh.I.; Lugauer, H.-J.; Reuscher, G.; Keim, M.; Fischer, F.; Waag, A.; Landwehr, G.

    1998-01-01

    High-quality ZnSe-based heterostructures are grown by uninterrupted molecular beam epitaxy using the concept of strain compensation and alternating-strain multilayers. To verify the advantages of this technique, optically pumped ZnSSe/ZnCdSe laser structures containing short-period superlattices or multiple quantum wells have been grown and studied. A room-temperature injection laser diode with a BeZnSe/ZnSe superlattice waveguide is described

  15. Geometric pre-patterning based tuning of the period doubling onset strain during thin film wrinkling

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sourabh K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-16

    Wrinkling of supported thin films is an easy-to-implement and low-cost fabrication technique for generation of stretch-tunable periodic micro and nano-scale structures. However, the tunability of such structures is often limited by the emergence of an undesirable period doubled mode at high strains. Predictively tuning the onset strain for period doubling via existing techniques requires one to have extensive knowledge about the nonlinear pattern formation behavior. Herein, a geometric pre-patterning based technique is introduced to delay the onset of period doubling that can be implemented to predictively tune the onset strain even with limited system knowledge. The technique comprises pre-patterning the film/base bilayer with a sinusoidal pattern that has the same period as the natural wrinkle period of the system. The effectiveness of this technique has been verified via physical and computational experiments on the polydimethylsiloxane/glass bilayer system. It is observed that the period doubling onset strain can be increased from the typical value of 20% for flat films to greater than 30% with a modest pre-pattern aspect ratio (2∙amplitude/period) of 0.15. In addition, finite element simulations reveal that (i) the onset strain can be increased up to a limit by increasing the amplitude of the pre-patterns and (ii) the delaying effect can be captured entirely by the pre-pattern geometry. As a result, one can implement this technique even with limited system knowledge, such as material properties or film thickness, by simply replicating pre-existing wrinkled patterns to generate prepatterned bilayers. Thus, geometric pre-patterning is a practical scheme to suppress period doubling that can increase the operating range of stretch-tunable wrinkle-based devices by at least 50%.

  16. Normalized Rotational Multiple Yield Surface Framework (NRMYSF) stress-strain curve prediction method based on small strain triaxial test data on undisturbed Auckland residual clay soils

    Science.gov (United States)

    Noor, M. J. Md; Ibrahim, A.; Rahman, A. S. A.

    2018-04-01

    Small strain triaxial test measurement is considered to be significantly accurate compared to the external strain measurement using conventional method due to systematic errors normally associated with the test. Three submersible miniature linear variable differential transducer (LVDT) mounted on yokes which clamped directly onto the soil sample at equally 120° from the others. The device setup using 0.4 N resolution load cell and 16 bit AD converter was capable of consistently resolving displacement of less than 1µm and measuring axial strains ranging from less than 0.001% to 2.5%. Further analysis of small strain local measurement data was performed using new Normalized Multiple Yield Surface Framework (NRMYSF) method and compared with existing Rotational Multiple Yield Surface Framework (RMYSF) prediction method. The prediction of shear strength based on combined intrinsic curvilinear shear strength envelope using small strain triaxial test data confirmed the significant improvement and reliability of the measurement and analysis methods. Moreover, the NRMYSF method shows an excellent data prediction and significant improvement toward more reliable prediction of soil strength that can reduce the cost and time of experimental laboratory test.

  17. Coupled stress-strain and electrical resistivity measurements on copper based shape memory single crystals

    Directory of Open Access Journals (Sweden)

    Gonzalez Cezar Henrique

    2004-01-01

    Full Text Available Recently, electrical resistivity (ER measurements have been done during some thermomechanical tests in copper based shape memory alloys (SMA's. In this work, single crystals of Cu-based SMA's have been studied at different temperatures to analyse the relationship between stress (s and ER changes as a function of the strain (e. A good consistency between ER change values is observed in different experiments: thermal martensitic transformation, stress induced martensitic transformation and stress induced reorientation of martensite variants. During stress induced martensitic transformation (superelastic behaviour and stress induced reorientation of martensite variants, a linear relationship is obtained between ER and strain as well as the absence of hys teresis. In conclusion, the present results show a direct evidence of martensite electrical resistivity anisotropy.

  18. Selection of Yeast Strains for Tequila Fermentation Based on Growth Dynamics in Combined Fructose and Ethanol Media.

    Science.gov (United States)

    Aldrete-Tapia, J A; Miranda-Castilleja, D E; Arvizu-Medrano, S M; Hernández-Iturriaga, M

    2018-02-01

    The high concentration of fructose in agave juice has been associated with reduced ethanol tolerance of commercial yeasts used for tequila production and low fermentation yields. The selection of autochthonous strains, which are better adapted to agave juice, could improve the process. In this study, a 2-step selection process of yeasts isolated from spontaneous fermentations for tequila production was carried out based on analysis of the growth dynamics in combined conditions of high fructose and ethanol. First, yeast isolates (605) were screened to identify strains tolerant to high fructose (20%) and to ethanol (10%), yielding 89 isolates able to grow in both conditions. From the 89 isolates, the growth curves under 8 treatments of combined fructose (from 20% to 5%) and ethanol (from 0% to 10%) were obtained, and the kinetic parameters were analyzed with principal component analysis and k-means clustering. The resulting yeast strain groups corresponded to the fast, medium and slow growers. A second clustering of only the fast growers led to the selection of 3 Saccharomyces strains (199, 230, 231) that were able to grow rapidly in 4 out of the 8 conditions evaluated. This methodology differentiated strains phenotypically and could be further used for strain selection in other processes. A method to select yeast strains for fermentation taking into account the natural differences of yeast isolates. This methodology is based on the cell exposition to combinations of sugar and ethanol, which are the most important stress factors in fermentation. This strategy will help to identify the most tolerant strain that could improve ethanol yield and reduce fermentation time. © 2018 Institute of Food Technologists®.

  19. Transparent and stretchable strain sensors based on metal nanowire microgrids for human motion monitoring

    Science.gov (United States)

    Cho, Ji Hwan; Ha, Sung-Hun; Kim, Jong-Man

    2018-04-01

    Optical transparency is increasingly considered as one of the most important characteristics required in advanced stretchable strain sensors for application in body-attachable systems. In this paper, we present an entirely solution-processed fabrication route to highly transparent and stretchable resistive strain sensors based on silver nanowire microgrids (AgNW-MGs). The AgNW-MG strain sensors are readily prepared by patterning the AgNWs on a stretchable substrate into a MG geometry via a mesh-template-assisted contact-transfer printing. The MG has a unique architecture comprising the AgNWs and can be stretched to ɛ = 35%, with high gauge factors of ˜6.9 for ɛ = 0%-30% and ˜41.1 for ɛ = 30%-35%. The sensor also shows a high optical transmittance of 77.1% ± 1.5% (at 550 nm) and stably maintains the remarkable optical performance even at high strains. In addition, the sensor responses are found to be highly reversible with negligible hysteresis and are reliable even under repetitive stretching-releasing cycles (1000 cycles at ɛ = 10%). The practicality of the AgNW-MG strain sensor is confirmed by successfully monitoring a wide range of human motions in real time after firmly laminating the device onto various body parts.

  20. TIGER: Development of Thermal Gradient Compensation Algorithms and Techniques

    Science.gov (United States)

    Hereford, James; Parker, Peter A.; Rhew, Ray D.

    2004-01-01

    In a wind tunnel facility, the direct measurement of forces and moments induced on the model are performed by a force measurement balance. The measurement balance is a precision-machined device that has strain gages at strategic locations to measure the strain (i.e., deformations) due to applied forces and moments. The strain gages convert the strain (and hence the applied force) to an electrical voltage that is measured by external instruments. To address the problem of thermal gradients on the force measurement balance NASA-LaRC has initiated a research program called TIGER - Thermally-Induced Gradients Effects Research. The ultimate goals of the TIGER program are to: (a) understand the physics of the thermally-induced strain and its subsequent impact on load measurements and (b) develop a robust thermal gradient compensation technique. This paper will discuss the impact of thermal gradients on force measurement balances, specific aspects of the TIGER program (the design of a special-purpose balance, data acquisition and data analysis challenges), and give an overall summary.

  1. Identification and characterization of Lactococcus starter strains in milk-based traditional fermented products in the region of Iran

    Directory of Open Access Journals (Sweden)

    Farzad Rahmati

    2018-02-01

    Full Text Available The aim of the present research was identification and investigation of technological attributes of Lactococcus starter strains from traditional dairy products collected from the countryside of Boroujerd in Iran. 33 samples were cultured on selective media M17 and typical colonies surveyed for morphological properties. Totally, 37 strains were isolated based on the diversity in cell morphology and identified using API galleries and carbohydrate fermentation includes 17 strains of Lactococcus lactis (45.96%, 12 strains of Lactococcus garvieae (32.43% and 8 strains of Lactococcusplantarum (21.62%. Strains were appraised for hydrolysis of L-arginine, casein and starch. Furthermore, strains were evaluated for the ability to grow at temperature 10 °C, 45 °C and presence of 4% and 6.5% NaCl, antibiotic sensitivity, acidification ability, proteolytic and lipolytic activities. Generally, 3 strains of Lc.garvieae (GYLC1, BWLC1, DCLC1 and 7 strains of Lc. lactis (GCLC4, GWLC2, GWLC3, SWLC1, SWLC3, BCLC5, DYLC1 exposed the highest levels of technological properties in order to use as starter cultures.

  2. Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: An evolutionary approach

    Science.gov (United States)

    Baziar, Mohammad H.; Jafarian, Yaser; Shahnazari, Habib; Movahed, Vahid; Amin Tutunchian, Mohammad

    2011-11-01

    Liquefaction is a catastrophic type of ground failure, which usually occurs in loose saturated soil deposits under earthquake excitations. A new predictive model is presented in this study to estimate the amount of strain energy density, which is required for the liquefaction triggering of sand-silt mixtures. A wide-ranging database containing the results of cyclic tests on sand-silt mixtures was first gathered from previously published studies. Input variables of the model were chosen from the available understandings evolved from the previous studies on the strain energy-based liquefaction potential assessment. In order to avoid overtraining, two sets of validation data were employed and a particular monitoring was made on the behavior of the evolved models. Results of a comprehensive parametric study on the proposed model are in accord with the previously published experimental observations. Accordingly, the amount of strain energy required for liquefaction onset increases with increase in initial effective overburden pressure, relative density, and mean grain size. The effect of nonplastic fines on strain energy-based liquefaction resistance shows a more complicated behavior. Accordingly, liquefaction resistance increases with increase in fines up to about 10-15% and then starts to decline for a higher increase in fines content. Further verifications of the model were carried out using the valuable results of some downhole array data as well as centrifuge model tests. These verifications confirm that the proposed model, which was derived from laboratory data, can be successfully utilized under field conditions.

  3. Strain-Based Damage Determination Using Finite Element Analysis for Structural Health Management

    Science.gov (United States)

    Hochhalter, Jacob D.; Krishnamurthy, Thiagaraja; Aguilo, Miguel A.

    2016-01-01

    A damage determination method is presented that relies on in-service strain sensor measurements. The method employs a gradient-based optimization procedure combined with the finite element method for solution to the forward problem. It is demonstrated that strains, measured at a limited number of sensors, can be used to accurately determine the location, size, and orientation of damage. Numerical examples are presented to demonstrate the general procedure. This work is motivated by the need to provide structural health management systems with a real-time damage characterization. The damage cases investigated herein are characteristic of point-source damage, which can attain critical size during flight. The procedure described can be used to provide prognosis tools with the current damage configuration.

  4. The Actuator Fault Diagnosis Based on the Valve Friction

    Directory of Open Access Journals (Sweden)

    Jiajiang Li

    2014-08-01

    Full Text Available Control valve (actuator is the frequently moving terminal Instrument of the control system. To avoid the leaking of the actuator, there is packing at the moving parts. However, the friction caused by the packing can do harm to the control of the system. The washing effect of the media, high temperature, high pressure, frequent movement and other effects can result in the leaking of the packing and the deformation of the valve stem, which causes the change of the friction. The study of the control of the friction has always been an interesting topic in the industry. In this paper, we theoretically analyze the relationship of the friction of the packing and the static performance of the control valve, and offer a method to check the quality of the moving parts by attaching a strain gage (strain rosette to the empty part of the valve stem. This method has been demonstrated via experiment and a method to do error detection is provided at last.

  5. Fuel-pin cladding transient failure strain criterion

    International Nuclear Information System (INIS)

    Bard, F.E.; Duncan, D.R.; Hunter, C.W.

    1983-01-01

    A criterion for cladding failure based on accumulated strain was developed for mixed uranium-plutonium oxide fuel pins and used to interpret the calculated strain results from failed transient fuel pin experiments conducted in the Transient Reactor Test (TREAT) facility. The new STRAIN criterion replaced a stress-based criterion that depends on the DORN parameter and that incorrectly predicted fuel pin failure for transient tested fuel pins. This paper describes the STRAIN criterion and compares its prediction with those of the stress-based criterion

  6. Distinct GAGE and MAGE-A expression during early human development indicate specific roles in lineage differentiation

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Harkness, Linda; Kassem, Moustapha

    2008-01-01

    BACKGROUND: Expression of cancer/testis-associated proteins (CTAs) has traditionally been considered to be restricted to germ cells in normal tissues and to different types of malignancies. We have evaluated the potential role of CTAs in early human development. METHODS: Using immunohistochemistry...... and RT-PCR, we investigated the expression of CTAs in differentiated human embryonic stem cells (hESC) and in late embryos and early fetuses. RESULTS: We found that melanoma antigen A (MAGE-A) family members were expressed during differentiation of hESC to embryoid bodies and in teratomas, and overlapped...... with expression of the neuroectodermal markers beta-tubulin 3, Pax6 and nestin. A widespread expression of MAGE-A was also observed in neurons of the early developing central nervous system and peripheral nerves. G antigen (GAGE) expression was present in the early ectoderm of embryos, including cells...

  7. Strain-based plastic instability acceptance criteria for ferritic steel safety class 1 nuclear components under level D

    International Nuclear Information System (INIS)

    Kim, Ji Su; Lee, Han Sang; Kim, Yun Jae; Kim, Jong Sung; Kim, Jin Won

    2015-01-01

    This paper proposes strain-based acceptance criteria for assessing plastic instability of the safety class 1 nuclear components made of ferritic steel during level D service loads. The strain-based criteria were proposed with two approaches: (1) a section average approach and (2) a critical location approach. Both approaches were based on the damage initiation point corresponding to the maximum load-carrying capability point instead of the fracture point via tensile tests and finite element analysis (FEA) for the notched specimen under uni-axial tensile loading. The two proposed criteria were reviewed from the viewpoint of design practice and philosophy to select a more appropriate criterion. As a result of the review, it was found that the section average approach is more appropriate than the critical location approach from the viewpoint of design practice and philosophy. Finally, the criterion based on the section average approach was applied to a simplified reactor pressure vessel (RPV) outlet nozzle subject to SSE loads. The application shows that the strain-based acceptance criteria can consider cumulative damages caused by the sequential loads unlike the stress-based acceptance criteria and can reduce the over conservatism of the stress-based acceptance criteria, which often occurs for level D service loads.

  8. Strain-based plastic instability acceptance criteria for ferritic steel safety class 1 nuclear components under level D

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Su; Lee, Han Sang; Kim, Yun Jae [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Kim, Jong Sung [Dept. of Mechanical Engineering, Sunchon National University, Suncheon (Korea, Republic of); Kim, Jin Won [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2015-04-15

    This paper proposes strain-based acceptance criteria for assessing plastic instability of the safety class 1 nuclear components made of ferritic steel during level D service loads. The strain-based criteria were proposed with two approaches: (1) a section average approach and (2) a critical location approach. Both approaches were based on the damage initiation point corresponding to the maximum load-carrying capability point instead of the fracture point via tensile tests and finite element analysis (FEA) for the notched specimen under uni-axial tensile loading. The two proposed criteria were reviewed from the viewpoint of design practice and philosophy to select a more appropriate criterion. As a result of the review, it was found that the section average approach is more appropriate than the critical location approach from the viewpoint of design practice and philosophy. Finally, the criterion based on the section average approach was applied to a simplified reactor pressure vessel (RPV) outlet nozzle subject to SSE loads. The application shows that the strain-based acceptance criteria can consider cumulative damages caused by the sequential loads unlike the stress-based acceptance criteria and can reduce the over conservatism of the stress-based acceptance criteria, which often occurs for level D service loads.

  9. Carbon nanotubes (CNTs) based strain sensors for a wearable monitoring and biofeedback system for pressure ulcer prevention and rehabilitation.

    Science.gov (United States)

    Boissy, Patrick; Genest, Jonathan; Patenaude, Johanne; Poirier, Marie-Sol; Chenel, Vanessa; Béland, Jean-Pierre; Legault, Georges-Auguste; Bernier, Louise; Tapin, Danielle; Beauvais, Jacques

    2011-01-01

    This paper presents an overview of the functioning principles of CNTs and their electrical and mechanical properties when used as strain sensors and describes a system embodiment for a wearable monitoring and biofeedback platform for use in pressure ulcer prevention and rehabilitation. Two type of CNTs films (multi-layered CNTs film vs purified film) were characterized electrically and mechanically for potential use as source material. The loosely woven CNTs film (multi-layered) showed substantial less sensitivity than the purified CNTs film but had an almost linear response to stress and better mechanical properties. CNTs have the potential to achieve a much higher sensitivity to strain than other piezoresistors based on regular of conductive particles such as commercially available resistive inks and could become an innovative source material for wearable strain sensors. We are currently continuing the characterization of CNTs based strain sensors and exploring their use in a design for 3-axis strain sensors.

  10. Energy harvesting from vibration of Timoshenko nanobeam under base excitation considering flexoelectric and elastic strain gradient effects

    Science.gov (United States)

    Managheb, S. A. M.; Ziaei-Rad, S.; Tikani, R.

    2018-05-01

    The coupling between polarization and strain gradients is called flexoelectricity. This phenomenon exists in all dielectrics with any symmetry. In this paper, energy harvesting from a Timoshenko beam is studied by considering the flexoelectric and strain gradient effects. General governing equations and related boundary conditions are derived using Hamilton's principle. The flexoelectric effects are defined by gradients of normal and shear strains which lead to a more general model. The developed model also covers the classical Timoshenko beam theory by ignoring the flexoelectric effect. Based on the developed model, flexoelectricity effect on dielectric beams and energy harvesting from cantilever beam under harmonic base excitation is investigated. A parametric study was conducted to evaluate the effects of flexoelectric coefficients, strain gradient constants, base acceleration and the attaching tip mass on the energy harvested from a cantilever Timoshenko beam. Results show that the flexoelectricity has a significant effect on the energy harvester performance, especially in submicron and nano scales. In addition, this effect makes the beam to behave softer than before and also it changes the harvester first resonance frequency. The present study provides guidance for flexoelectric nano-beam analysis and a method to evaluate the performance of energy harvester in nano-dielectric devices.

  11. Operational verification of a blow out preventer utilizing fiber Bragg grating based strain gauges

    Science.gov (United States)

    Turner, Alan L.; Loustau, Philippe; Thibodeau, Dan

    2015-05-01

    Ultra-deep water BOP (Blowout Preventer) operation poses numerous challenges in obtaining accurate knowledge of current system integrity and component condition- a salient example is the difficulty of verifying closure of the pipe and shearing rams during and after well control events. Ascertaining the integrity of these functions is currently based on a manual volume measurement performed with a stop watch. Advances in sensor technology now permit more accurate methods of BOP condition monitoring. Fiber optic sensing technology and particularly fiber optic strain gauges have evolved to a point where we can derive a good representation of what is happening inside a BOP by installing sensors on the outside shell. Function signatures can be baselined to establish thresholds that indicate successful function activation. Based on this knowledge base, signal variation over time can then be utilized to assess degradation of these functions and subsequent failure to function. Monitoring the BOP from the outside has the advantage of gathering data through a system that can be interfaced with risk based integrity management software and/or a smart monitoring system that analyzes BOP control redundancies without the requirement of interfacing with OEM control systems. The paper will present the results of ongoing work on a fully instrumented 13-½" 10,000 psi pipe ram. Instrumentation includes commonly used pressure transducers, accelerometers, flow meters, and optical strain gauges. Correlation will be presented between flow, pressure, acceleration signatures and the fiber optic strain gauge's response as it relates to functional verification and component level degradation trending.

  12. Graphene based strain sensor with LCP substrate

    Science.gov (United States)

    Nie, M.; Yang, H. S.; Xia, Y. H.

    2018-02-01

    A flexible strain sensor constructed by an efficient, low-cost fabrication strategy is presented in this paper. It is assembled by adhering grid-like graphene on LCP substrate. Kinds of measurement setup have been designed to verify that the proposed flexible sensor device is suitable to be used in health monitoring system. From the experiment results, it can be proved that the sensor exhibits the following features: ultra-light, relatively good sensitivity, high reversibility, superior physical robustness, easy fabrication. With the great performance of this flexible strain sensor, it is considered to play an important role in body monitoring, structural health monitoring system, fatigue detection and healthcare systems in the near future.

  13. Low temperature measurement of thermal and mechanical properties of phenolic laminate, the pultruded polyester fiberglass and A and B epoxy putty

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.; Kim, N.S.; Cheng, R.S.; Hoffman, J.; Gonczy, J.

    1979-01-01

    Low temperature measurements were made and are reported of thermal and mechanical properties of phenolic laminate, pultruded polyester fiberglass, and A and B epoxy putty. To determine the modulus, compressive and tensile stress and strain, an Instron machine, a Tinus-Olsen testing machine, a Wheatstone bridge and strain gages were used

  14. A study of microindentation hardness tests by mechanism-based strain gradient plasticity

    International Nuclear Information System (INIS)

    Huang, Y.; Xue, Z.; Gao, H.; Nix, W. D.; Xia, Z. C.

    2000-01-01

    We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model. In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society

  15. Molecular typing of Brucella melitensis endemic strains and differentiation from the vaccine strain Rev-1.

    Science.gov (United States)

    Noutsios, Georgios T; Papi, Rigini M; Ekateriniadou, Loukia V; Minas, Anastasios; Kyriakidis, Dimitrios A

    2012-03-01

    In the present study forty-four Greek endemic strains of Br. melitensis and three reference strains were genotyped by Multi locus Variable Number Tandem Repeat (ML-VNTR) analysis based on an eight-base pair tandem repeat sequence that was revealed in eight loci of Br. melitensis genome. The forty-four strains were discriminated from the vaccine strain Rev-1 by Restriction Fragment Length Polymorphism (RFLP) and Denaturant Gradient Gel Electrophoresis (DGGE). The ML-VNTR analysis revealed that endemic, reference and vaccine strains are genetically closely related, while most of the loci tested (1, 2, 4, 5 and 7) are highly polymorphic with Hunter-Gaston Genetic Diversity Index (HGDI) values in the range of 0.939 to 0.775. Analysis of ML-VNTRs loci stability through in vitro passages proved that loci 1 and 5 are non stable. Therefore, vaccine strain can be discriminated from endemic strains by allele's clusters of loci 2, 4, 6 and 7. RFLP and DGGE were also employed to analyse omp2 gene and reveled different patterns among Rev-1 and endemic strains. In RFLP, Rev-1 revealed three fragments (282, 238 and 44 bp), while endemic strains two fragments (238 and 44 bp). As for DGGE, the electrophoretic mobility of Rev-1 is different from the endemic strains due to heterologous binding of DNA chains of omp2a and omp2b gene. Overall, our data show clearly that it is feasible to genotype endemic strains of Br. melitensis and differentiate them from vaccine strain Rev-1 with ML-VNTR, RFLP and DGGE techniques. These tools can be used for conventional investigations in brucellosis outbreaks.

  16. Prion strain discrimination based on rapid in vivo amplification and analysis by the cell panel assay.

    Directory of Open Access Journals (Sweden)

    Yervand Eduard Karapetyan

    Full Text Available Prion strain identification has been hitherto achieved using time-consuming incubation time determinations in one or more mouse lines and elaborate neuropathological assessment. In the present work, we make a detailed study of the properties of PrP-overproducing Tga20 mice. We show that in these mice the four prion strains examined are rapidly and faithfully amplified and can subsequently be discriminated by a cell-based procedure, the Cell Panel Assay.

  17. Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature.

    Science.gov (United States)

    Han, Young-Geun; Tran, T V A; Kim, Sang-Hyuck; Lee, Sang Bae

    2005-06-01

    We propose a simple and flexible multiwavelength Raman-fiber-laser-based long-distance remote-sensing scheme for simultaneous measurement of strain and temperature by use of fiber Bragg gratings. By combining two uniform fiber Bragg gratings with a tunable chirped fiber grating, we readily achieve simultaneous two-channel sensing probes with a high extinction ratio of more than approximately 50 dB over a 50-km distance. When strain and temperature are applied, lasing wavelength separation and shift occur, respectively, since the two uniform fiber Bragg gratings have identical material composition and different cladding diameters. This allows simultaneous measurement of strain and temperature for long-distance sensing applications of more than 50 km.

  18. Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes

    Science.gov (United States)

    Zhou, Dong

    In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user

  19. Electron transport in gold colloidal nanoparticle-based strain gauges

    Science.gov (United States)

    Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M.; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence

    2013-03-01

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values.

  20. Tensile behaviour of geopolymer-based materials under medium and high strain rates

    Science.gov (United States)

    Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio

    2015-09-01

    Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.

  1. Tattoo-Like Strain Gauges Based on Silicon Nano-Membranes

    Science.gov (United States)

    Lu, Nanshu

    2012-02-01

    This talk reports the in vivo measurement of tissue deformation through adhesive-free, conformable lamination of a tattoo-like elastic strain gauge consisted of piezoresistive silicon nano-membranes strategically integrated with tissue-like elastomeric substrates. The mechanical deformation in soft tissues cannot yet be directly quantified due to the lack of enabling tools. While stiff strain gauges for structural health monitoring have long existed, biological tissues are soft, curvilinear and highly deformable in contrast to civil or aerospace structures. An ultra-thin, ultra-soft, tattoo-like strain gauge that can conform to the convoluted surface of human body and stay attached during locomotion will be able to directly quantify tissue deformation without affecting the mechanical behavior of the tissue. While single crystalline silicon is known to have the highest gauge factor and best elastic response, it is intrinsically stiff and brittle. To achieve strain gauges with high compliance, high stretchability and reasonable sensitivity, single crystalline silicon nano-membranes will be transfer-printed onto polymeric support through carefully engineered stamps. The thickness and length of the Si strip will be chosen according to theoretical and numerical mechanics analysis which takes into account for the tradeoff between stretchability and sensitivity.

  2. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

    Science.gov (United States)

    Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

    2018-04-01

    Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

  3. Numerical Predictions of Damage and Failure in Carbon Fiber Reinforced Laminates Using a Thermodynamically-Based Work Potential Theory

    Science.gov (United States)

    Pineda, Evan Jorge; Waas, Anthony M.

    2013-01-01

    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, referred to as enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Consistent characteristic lengths are introduced into the formulation to govern the evolution of the failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs are derived. The theory is implemented into a commercial finite element code. The model is verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared against the experimental results.

  4. Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications

    Directory of Open Access Journals (Sweden)

    Ozgur Atalay

    2018-05-01

    Full Text Available The electronic textile area has gained considerable attention due to its implementation of wearable devices, and soft sensors are the main components of these systems. In this paper, a new sensor design is presented to create stretchable, capacitance-based strain sensors for human motion tracking. This involves the use of stretchable, conductive-knit fabric within the silicone elastomer matrix, as interdigitated electrodes. While conductive fabric creates a secure conductive network for electrodes, a silicone-based matrix provides encapsulation and dimensional-stability to the structure. During the benchtop characterization, sensors show linear output, i.e., R2 = 0.997, with high response time, i.e., 50 ms, and high resolution, i.e., 1.36%. Finally, movement of the knee joint during the different scenarios was successfully recorded.

  5. Damage identification method for continuous girder bridges based on spatially-distributed long-gauge strain sensing under moving loads

    Science.gov (United States)

    Wu, Bitao; Wu, Gang; Yang, Caiqian; He, Yi

    2018-05-01

    A novel damage identification method for concrete continuous girder bridges based on spatially-distributed long-gauge strain sensing is presented in this paper. First, the variation regularity of the long-gauge strain influence line of continuous girder bridges which changes with the location of vehicles on the bridge is studied. According to this variation regularity, a calculation method for the distribution regularity of the area of long-gauge strain history is investigated. Second, a numerical simulation of damage identification based on the distribution regularity of the area of long-gauge strain history is conducted, and the results indicate that this method is effective for identifying damage and is not affected by the speed, axle number and weight of vehicles. Finally, a real bridge test on a highway is conducted, and the experimental results also show that this method is very effective for identifying damage in continuous girder bridges, and the local element stiffness distribution regularity can be revealed at the same time. This identified information is useful for maintaining of continuous girder bridges on highways.

  6. Noninvasive characterization of carotid plaque strain.

    Science.gov (United States)

    Khan, Amir A; Sikdar, Siddhartha; Hatsukami, Thomas; Cebral, Juan; Jones, Michael; Huston, John; Howard, George; Lal, Brajesh K

    2017-06-01

    Current risk stratification of internal carotid artery plaques based on diameter-reducing percentage stenosis may be unreliable because ischemic stroke results from plaque disruption with atheroembolization. Biomechanical forces acting on the plaque may render it vulnerable to rupture. The feasibility of ultrasound-based quantification of plaque displacement and strain induced by hemodynamic forces and their relationship to high-risk plaques have not been determined. We studied the feasibility and reliability of carotid plaque strain measurement from clinical B-mode ultrasound images and the relationship of strain to high-risk plaque morphology. We analyzed carotid ultrasound B-mode cine loops obtained in patients with asymptomatic ≥50% stenosis during routine clinical scanning. Optical flow methods were used to quantify plaque motion and shear strain during the cardiac cycle. The magnitude (maximum absolute shear strain rate [MASSR]) and variability (entropy of shear strain rate [ESSR] and variance of shear strain rate [VSSR]) of strain were combined into a composite shear strain index (SSI), which was assessed for interscan repeatability and correlated with plaque echolucency. Nineteen patients (mean age, 70 years) constituting 36 plaques underwent imaging; 37% of patients (n = 7) showed high strain (SSI ≥0.5; MASSR, 2.2; ESSR, 39.7; VSSR, 0.03) in their plaques; the remaining clustered into a low-strain group (SSI routine B-mode imaging using clinical ultrasound machines. High plaque strain correlates with known high-risk echolucent morphology. Strain measurement can complement identification of patients at high risk for plaque disruption and stroke. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  7. Investigation of Size-Dependency in Free-Vibration of Micro-Resonators Based on the Strain Gradient Theory

    Directory of Open Access Journals (Sweden)

    R. Vatankhah

    Full Text Available Abstract This paper investigates the vibration behavior of micro-resonators based on the strain gradient theory, a non-classical continuum theory capable of capturing the size effect appearing in micro-scale structures. The micro-resonator is modeled as a clamped-clamped micro-beam with an attached mass subjected to an axial force. The governing equations of motion and both classical and non-classical sets of boundary conditions are developed based on the strain gradient theory. The normalized natural frequency of the micro-resonator is evaluated and the influences of various parameters are assessed. In addition, the current results are compared to those of the classical and modified couple stress continuum theories.

  8. THz-wave generation via difference frequency mixing in strained silicon based waveguide utilizing its second order susceptibility χ((2)).

    Science.gov (United States)

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-07-14

    Terahertz (THz) wave generation via difference frequency mixing (DFM) process in strain silicon membrane waveguides by introducing the straining layer is theoretically investigated. The Si(3)N(4) straining layer induces anisotropic compressive strain in the silicon core and results in the appearance of the bulk second order nonlinear susceptibility χ((2)) by breaking the crystal symmetry. We have proposed waveguide structures for THz wave generation under the DFM process by .using the modal birefringence in the waveguide core. Our simulations show that an output power of up to 0.95 mW can be achieved at 9.09 THz. The strained silicon optical device may open a widow in the field of the silicon-based active THz photonic device applications.

  9. Vertical datum conversion process for the inland and coastal gage network located in the New England, Mid-Atlantic, and South Atlantic-Gulf hydrologic regions

    Science.gov (United States)

    Rydlund, Jr., Paul H.; Noll, Michael L.

    2017-03-07

    Datum conversions from the National Geodetic Vertical Datum of 1929 to the North American Vertical Datum of 1988 among inland and coastal gages throughout the hydrologic regions of New England, the Mid-Atlantic, and the South Atlantic-Gulf have implications among river and storm surge forecasting, general commerce, and water-control operations. The process of data conversions may involve the application of a recovered National Geodetic Vertical Datum of 1929–North American Vertical Datum of 1988 offset, a simplistic datum transformation using VDatum or VERTCON software, or a survey, depending on a gaging network datum evaluation, anticipated uncertainties for data use among the cooperative water community, and methods used to derive the conversion. Datum transformations from National Geodetic Vertical Datum of 1929 to North American Vertical Datum of 1988 using VERTCON purport errors of ± 0.13 foot at the 95 percent confidence level among modeled points, claiming more consistency along the east coast. Survey methods involving differential and trigonometric leveling, along with observations using Global Navigation Satellite System technology, afford a variety of approaches to establish or perpetuate a datum during a survey. Uncertainties among leveling approaches are generally quality category and ≥0.1 foot for Level II or III quality categories (defined by the U.S. Geological Survey) by observation and review of experienced practice. The conversion process is initiated with an evaluation of the inland and coastal gage network datum, beginning with altitude datum components and the history of those components queried through the U.S. Geological Survey Groundwater Site Inventory database. Subsequent edits to the Groundwater Site Inventory database may be required and a consensus reached among the U.S. Geological Survey Water Science Centers to identify the outstanding workload categorized as in-office datum transformations or offset applications versus out

  10. Prediction of slope stability based on numerical modeling of stress–strain state of rocks

    Science.gov (United States)

    Kozhogulov Nifadyev, KCh, VI; Usmanov, SF

    2018-03-01

    The paper presents the developed technique for the estimation of rock mass stability based on the finite element modeling of stress–strain state of rocks. The modeling results on the pit wall landslide as a flow of particles along a sloped surface are described.

  11. Observation and quantification of water penetration into Strain Hardening Cement-based Composites (SHCC) with multiple cracks by means of neutron radiography

    International Nuclear Information System (INIS)

    Zhang, P.; Wittmann, F.H.; Zhao, T.J.; Lehmann, E.H.; Tian, L.; Vontobel, P.

    2010-01-01

    Durability of reinforced concrete structures has become a crucial issue with respect to economy, ecology and sustainability. One major reason for durability problems of concrete structures is the limited strain capacity of cement-based materials under imposed tensile stress. By adding PVA fibers, a new material named Strain Hardening Cement-based Composites (SHCC) with high strain capacity can be produced. Due to the formation of multiple micro-cracks, wide cracks can be avoided in SHCC under an imposed strain. The high strain capacity, however, is beneficial with respect to durability only if the multi-crack formation in SHCC does not lead to significantly increased water penetration. If water and aggressive chemical compounds such as chlorides and sulfates dissolved in water penetrate into the cement-based matrix and reach the steel reinforcement service-life of reinforced concrete structures will be reduced significantly. In this project, neutron radiography was applied to observe and quantify the process of water penetration into uncracked SHCC and after the multi-crack formation. In addition, water penetration into integral water repellent cracked and uncracked SHCC, which has been produced by adding a silane-based water repellent agent to the fresh SHCC mortar has been investigated. Results will be discussed with respect to durability.

  12. Effect of oxygen on the fatigue behavior of Zircaloy

    International Nuclear Information System (INIS)

    Lee, D.; Hill, P.T.

    1976-01-01

    An Instron loading frame with a closed-loop load-strain control system was used to monitor diametral strain and load. In all tests, an equal amount of diametral strain was applied in tension and compression while maintaining a constant cross head speed. The diametral displacements were measured by means of an extensometer fitted with quartz gage rods. All the tests were made at 350 0 C in air. (Auth.)

  13. Life Stress, Strain, and Deviance Across Schools: Testing the Contextual Version of General Strain Theory in China.

    Science.gov (United States)

    Zhang, Jinwu; Liu, Jianhong; Wang, Xin; Zou, Anquan

    2017-08-01

    General Strain Theory delineates different types of strain and intervening processes from strain to deviance and crime. In addition to explaining individual strain-crime relationship, a contextualized version of general strain theory, which is called the Macro General Strain Theory, has been used to analyze how aggregate variables influence aggregate and individual deviance and crime. Using a sample of 1,852 students (Level 1) nested in 52 schools (Level 2), the current study tests the Macro General Strain Theory using Chinese data. The results revealed that aggregate life stress and strain have influences on aggregate and individual deviance, and reinforce the individual stress-deviance association. The current study contributes by providing the first Macro General Strain Theory test based on Chinese data and offering empirical evidence for the multilevel intervening processes from strain to deviance. Limitations and future research directions are discussed.

  14. Influence of the Testing Gage Length on the Strength, Young's Modulus and Weibull Modulus of Carbon Fibres and Glass Fibres

    Directory of Open Access Journals (Sweden)

    Luiz Claudio Pardini

    2002-10-01

    Full Text Available Carbon fibres and glass fibres are reinforcements for advanced composites and the fiber strength is the most influential factor on the strength of the composites. They are essentially brittle and fail with very little reduction in cross section. Composites made with these fibres are characterized by a high strength/density ratio and their properties are intrisically related to their microstructure, i.e., amount and orientation of the fibres, surface treatment, among other factors. Processing parameters have an important role in the fibre mechanical behaviour (strength and modulus. Cracks, voids and impurities in the case of glass fibres and fibrillar misalignments in the case of carbon fibres are created during processing. Such inhomogeneities give rise to an appreciable scatter in properties. The most used statistical tool that deals with this characteristic variability in properties is the Weibull distribution. The present work investigates the influence of the testing gage length on the strength, Young's modulus and Weibull modulus of carbon fibres and glass fibres. The Young's modulus is calculated by two methods: (i ASTM D 3379M, and (ii interaction between testing equipment/specimen The first method resulted in a Young modulus of 183 GPa for carbon fibre, and 76 GPa for glass fibre. The second method gave a Young modulus of 250 GPa for carbon fibre and 50 GPa for glass fibre. These differences revelead differences on how the interaction specimen/testing machine can interfere in the Young modulus calculations. Weibull modulus can be a tool to evaluate the fibre's homogeneity in terms of properties and it is a good quality control parameter during processing. In the range of specimen gage length tested the Weibull modulus for carbon fibre is ~ 3.30 and for glass fibres is ~ 5.65, which indicates that for the batch of fibres tested, the glass fibre is more uniform in properties.

  15. Intramyocardial strain estimation from cardiac cine MRI.

    Science.gov (United States)

    Elnakib, Ahmed; Beache, Garth M; Gimel'farb, Georgy; El-Baz, Ayman

    2015-08-01

    Functional strain is one of the important clinical indicators for the quantification of heart performance and the early detection of cardiovascular diseases, and functional strain parameters are used to aid therapeutic decisions and follow-up evaluations after cardiac surgery. A comprehensive framework for deriving functional strain parameters at the endocardium, epicardium, and mid-wall of the left ventricle (LV) from conventional cine MRI data was developed and tested. Cine data were collected using short TR-/TE-balanced steady-state free precession acquisitions on a 1.5T Siemens Espree scanner. The LV wall borders are segmented using a level set-based deformable model guided by a stochastic force derived from a second-order Markov-Gibbs random field model that accounts for the object shape and appearance features. Then, the mid-wall of the segmented LV is determined based on estimating the centerline between the endocardium and epicardium of the LV. Finally, a geometrical Laplace-based method is proposed to track corresponding points on successive myocardial contours throughout the cardiac cycle in order to characterize the strain evolutions. The method was tested using simulated phantom images with predefined point locations of the LV wall throughout the cardiac cycle. The method was tested on 30 in vivo datasets to evaluate the feasibility of the proposed framework to index functional strain parameters. The cine MRI-based model agreed with the ground truth for functional metrics to within 0.30 % for indexing the peak systolic strain change and 0.29 % (per unit time) for indexing systolic and diastolic strain rates. The method was feasible for in vivo extraction of functional strain parameters. Strain indexes of the endocardium, mid-wall, and epicardium can be derived from routine cine images using automated techniques, thereby improving the utility of cine MRI data for characterization of myocardial function. Unlike traditional texture-based tracking, the

  16. Low-flow analysis and selected flow statistics representative of 1930-2002 for streamflow-gaging stations in or near West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.

    2006-01-01

    Five time periods between 1930 and 2002 are identified as having distinct patterns of annual minimum daily mean flows (minimum flows). Average minimum flows increased around 1970 at many streamflow-gaging stations in West Virginia. Before 1930, however, there might have been a period of minimum flows greater than any period identified between 1930 and 2002. The effects of climate variability are probably the principal causes of the differences among the five time periods. Comparisons of selected streamflow statistics are made between values computed for the five identified time periods and values computed for the 1930-2002 interval for 15 streamflow-gaging stations. The average difference between statistics computed for the five time periods and the 1930-2002 interval decreases with increasing magnitude of the low-flow statistic. The greatest individual-station absolute difference was 582.5 percent greater for the 7-day 10-year low flow computed for 1970-1979 compared to the value computed for 1930-2002. The hydrologically based low flows indicate approximately equal or smaller absolute differences than biologically based low flows. The average 1-day 3-year biologically based low flow (1B3) and 4-day 3-year biologically based low flow (4B3) are less than the average 1-day 10-year hydrologically based low flow (1Q10) and 7-day 10-year hydrologic-based low flow (7Q10) respectively, and range between 28.5 percent less and 13.6 percent greater. Seasonally, the average difference between low-flow statistics computed for the five time periods and 1930-2002 is not consistent between magnitudes of low-flow statistics, and the greatest difference is for the summer (July 1-September 30) and fall (October 1-December 31) for the same time period as the greatest difference determined in the annual analysis. The greatest average difference between 1B3 and 4B3 compared to 1Q10 and 7Q10, respectively, is in the spring (April 1-June 30), ranging between 11.6 and 102.3 percent

  17. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    Science.gov (United States)

    Li, H.; Liu, Y. H.

    2008-11-01

    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  18. Simulation of daily streamflows at gaged and ungaged locations within the Cedar River Basin, Iowa, using a Precipitation-Runoff Modeling System model

    Science.gov (United States)

    Christiansen, Daniel E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted a study to examine techniques for estimation of daily streamflows using hydrological models and statistical methods. This report focuses on the use of a hydrologic model, the U.S. Geological Survey's Precipitation-Runoff Modeling System, to estimate daily streamflows at gaged and ungaged locations. The Precipitation-Runoff Modeling System is a modular, physically based, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff and general basin hydrology. The Cedar River Basin was selected to construct a Precipitation-Runoff Modeling System model that simulates the period from January 1, 2000, to December 31, 2010. The calibration period was from January 1, 2000, to December 31, 2004, and the validation periods were from January 1, 2005, to December 31, 2010 and January 1, 2000 to December 31, 2010. A Geographic Information System tool was used to delineate the Cedar River Basin and subbasins for the Precipitation-Runoff Modeling System model and to derive parameters based on the physical geographical features. Calibration of the Precipitation-Runoff Modeling System model was completed using a U.S. Geological Survey calibration software tool. The main objective of the calibration was to match the daily streamflow simulated by the Precipitation-Runoff Modeling System model with streamflow measured at U.S. Geological Survey streamflow gages. The Cedar River Basin daily streamflow model performed with a Nash-Sutcliffe efficiency ranged from 0.82 to 0.33 during the calibration period, and a Nash-Sutcliffe efficiency ranged from 0.77 to -0.04 during the validation period. The Cedar River Basin model is meeting the criteria of greater than 0.50 Nash-Sutcliffe and is a good fit for streamflow conditions for the calibration period at all but one location, Austin, Minnesota

  19. Comparison of DNA-based techniques for differentiation of production strains of ale and lager brewing yeast.

    Science.gov (United States)

    Kopecká, J; Němec, M; Matoulková, D

    2016-06-01

    Brewing yeasts are classified into two species-Saccharomyces pastorianus and Saccharomyces cerevisiae. Most of the brewing yeast strains are natural interspecies hybrids typically polyploids and their identification is thus often difficult giving heterogenous results according to the method used. We performed genetic characterization of a set of the brewing yeast strains coming from several yeast culture collections by combination of various DNA-based techniques. The aim of this study was to select a method for species-specific identification of yeast and discrimination of yeast strains according to their technological classification. A group of 40 yeast strains were characterized using PCR-RFLP analysis of ITS-5·8S, NTS, HIS4 and COX2 genes, multiplex PCR, RAPD-PCR of genomic DNA, mtDNA-RFLP and electrophoretic karyotyping. Reliable differentiation of yeast to the species level was achieved by PCR-RFLP of HIS4 gene. Numerical analysis of the obtained RAPD-fingerprints and karyotype revealed species-specific clustering corresponding with the technological classification of the strains. Taxonomic position and partial hybrid nature of strains were verified by multiplex PCR. Differentiation among species using the PCR-RFLP of ITS-5·8S and NTS region was shown to be unreliable. Karyotyping and RFLP of mitochondrial DNA evinced small inaccuracies in strain categorization. PCR-RFLP of HIS4 gene and RAPD-PCR of genomic DNA are reliable and suitable methods for fast identification of yeast strains. RAPD-PCR with primer 21 is a fast and reliable method applicable for differentiation of brewing yeasts with only 35% similarity of fingerprint profile between the two main technological groups (ale and lager) of brewing strains. It was proved that PCR-RFLP method of HIS4 gene enables precise discrimination among three technologically important Saccharomyces species. Differentiation of brewing yeast to the strain level can be achieved using the RAPD-PCR technique. © 2016 The

  20. Dualband MW/LW Strained Layer Superlattice Focal Plane Arrays For Satellite-Based Wildfire Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Dualband focal plane arrays (FPAs) based on gallium-free Type-II strained layer superlattice (SLS) photodiodes have recently experienced significant advances. We...

  1. Application of the strain energy for fatigue life prediction (LCF) of metals by the energy-based criterion

    International Nuclear Information System (INIS)

    Shahram Shahrooi; Ibrahim Henk Metselaar; Zainul Huda; Ghezavati, H.R.

    2009-01-01

    Full text: In this study, the plastic strain energy under multiaxial fatigue condition has been calculated in the cyclic plasticity models by the stress-strain hysteresis loops. Then, using the results of these models, the fatigue lives in energy-based fatigue model is predicted and compared to experimental data. Moreover, a weighting factor on shear plastic work is presented to decrease the life factors in the model fatigue. (author)

  2. DOE Project 353: TAMS Prototype and production coupling alignment units

    Energy Technology Data Exchange (ETDEWEB)

    Field, K.V.

    1996-02-01

    TAMS is an electronic measurement system used to determine the alignment of turbine-generator shafts at the coupling interface. The displacement transducer is a strain gage based sensor mounted in a portable probe. The measurement system was experiencing zero input drift and temperature induced drift. This project endeavored to determine the source of these problems and to revise a unit to be returned to a customer, Baltimore Gas and Electric (BGE), within a period of five weeks.

  3. Strains and Stressors: An Analysis of Touchscreen Learning in Genetically Diverse Mouse Strains

    Science.gov (United States)

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M.; Bussey, Timothy J.; Sagalyn, Erica; Williams, Robert W.; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of “reversal learning,” “motivation-related late reversal learning,” “discrimination learning,” “speed to respond,” and

  4. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    Science.gov (United States)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2011-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, anairplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  5. Fatigue strain mapping via digital image correlation for Ni-based superalloys: The role of thermal activation on cube slip

    International Nuclear Information System (INIS)

    Mello, Alberto W.; Nicolas, Andrea; Sangid, Michael D.

    2017-01-01

    A deformation mechanism map for a Ni-based superalloy is presented during cyclic loading at low (300 °C), intermediate (550 °C), and high (700 °C) temperatures for low (0.7%) and high (1.0%) applied strain amplitudes. Strain mapping is performed via digital image correlation (DIC) during interrupted fatigue experiments at elevated temperatures at 1, 10, 100 and 1000 cycles, for each specified loading and temperature condition. The DIC measurements are performed in a scanning electron microscope, which allows high-resolution measurements of heterogeneous slip events and a vacuum environment to ensure stability of the speckle pattern for DIC at high temperatures. The cumulative fatigue experiments show that the slip bands are present in the first cycle and intensify with number of cycles; resulting in highly localized strain accumulation. The strain mapping results are combined with microstructure characterization via electron backscatter diffraction. The combination of crystal orientations and high-resolution strain measurements was used to determine the active slip planes. At low temperatures, slip bands follow the {111} octahedral planes. However, as temperature increases, both the {111} octahedral and {100} cubic slip planes accommodate strain. The activation of cubic slip via cross-slip within the ordered intermetallic γ’ phase has been well documented in Ni-based superalloys and is generally accepted as the mechanism responsible for the anomalous yield phenomenon. The results in this paper represent an important quantifiable study of cubic slip system activity at the mesoscale in polycrystalline γ-γ’ Ni-based superalloys, which is a key advancement to calibrate the thermal activation components of polycrystalline deformation models.

  6. Fatigue strain mapping via digital image correlation for Ni-based superalloys: The role of thermal activation on cube slip

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Alberto W.; Nicolas, Andrea; Sangid, Michael D., E-mail: msangid@purdue.edu

    2017-05-17

    A deformation mechanism map for a Ni-based superalloy is presented during cyclic loading at low (300 °C), intermediate (550 °C), and high (700 °C) temperatures for low (0.7%) and high (1.0%) applied strain amplitudes. Strain mapping is performed via digital image correlation (DIC) during interrupted fatigue experiments at elevated temperatures at 1, 10, 100 and 1000 cycles, for each specified loading and temperature condition. The DIC measurements are performed in a scanning electron microscope, which allows high-resolution measurements of heterogeneous slip events and a vacuum environment to ensure stability of the speckle pattern for DIC at high temperatures. The cumulative fatigue experiments show that the slip bands are present in the first cycle and intensify with number of cycles; resulting in highly localized strain accumulation. The strain mapping results are combined with microstructure characterization via electron backscatter diffraction. The combination of crystal orientations and high-resolution strain measurements was used to determine the active slip planes. At low temperatures, slip bands follow the {111} octahedral planes. However, as temperature increases, both the {111} octahedral and {100} cubic slip planes accommodate strain. The activation of cubic slip via cross-slip within the ordered intermetallic γ’ phase has been well documented in Ni-based superalloys and is generally accepted as the mechanism responsible for the anomalous yield phenomenon. The results in this paper represent an important quantifiable study of cubic slip system activity at the mesoscale in polycrystalline γ-γ’ Ni-based superalloys, which is a key advancement to calibrate the thermal activation components of polycrystalline deformation models.

  7. Dualband MW/LW Strained Layer Superlattice Focal Plane Arrays for Satellite-Based Wildfire Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Infrared focal plane arrays (FPAs) based on Type-II strained layer superlattice (SLS) photodiodes have recently experienced significant advances. In Phase I we...

  8. Variation in the strain anisotropy of Zircaloy with temperature and strain

    International Nuclear Information System (INIS)

    Hindle, E.D.; Worswick, D.

    1984-01-01

    The strong crystallographic texture which is developed during the fabrication of zirconium-based alloys causes pronounced anisotropy in their mechanical properties, particularly deformation. The tendency for circular-section tension specimens with a high concentration of basal poles in one direction to become elliptical when deformed in tension has been used in this study to provide quantitative data on the effects of both strain and temperature on strain anisotropy. Tension tests were carried out over a temperature range of 293 to 1193 K on specimens machined from Zircaloy-2 plate. The strain anisotropy was found to increase markedly at temperatures over 923 K, reaching a maximum in the region of 1070 K. The strain anisotropy increased with increasing strain in this temperature region. The study was extended to Zircaloy-4 pressurized-water reactor fuel cladding by carrying out tube swelling tests and evaluating the axial deformation produced. Although scatter in the test results was higher than that exhibited in the tension tests, the general trend in the data was similar. The effects of the strain anisotropy observed are discussed in relation to the effects of temperature on the ductility of Zircaloy fuel cladding tubes during postulated largebreak loss-of-coolant accidents

  9. Instrumentation of a prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Hessheimer, M.F.; Rightley, M.J.; Matsumoto, T.

    1995-01-01

    A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the U.S. Nuclear Regulatory Commission. At present, two tests are being planned: a test of a model of a steel containment vessel (SCV) that is representative of an improved, boiling water reactor (BWR) Mark II design; and a test of a model of a prestressed concrete containment vessel (PCCV). This paper discusses plans and the results of a preliminary investigation of the instrumentation of the PCCV model. The instrumentation suite for this model will consist of approximately 2000 channels of data to record displacements, strains in the reinforcing steel, prestressing tendons, concrete, steel liner and liner anchors, as well as pressure and temperature. The instrumentation is being designed to monitor the response of the model during prestressing operations, during Structural Integrity and Integrated Leak Rate testing, and during test to failure of the model. Particular emphasis has been placed on instrumentation of the prestressing system in order to understand the behavior of the prestressing strands at design and beyond design pressure levels. Current plans are to place load cells at both ends of one third of the tendons in addition to placing strain measurement devices along the length of selected tendons. Strain measurements will be made using conventional bonded foil resistance gages and a wire resistance gage, known as a open-quotes Tensmegclose quotes reg-sign gage, specifically designed for use with seven-wire strand. The results of preliminary tests of both types of gages, in the laboratory and in a simulated model configuration, are reported and plans for instrumentation of the model are discussed

  10. Complete genome sequence of cyanobacterium Nostoc sp. NIES-3756, a potentially useful strain for phytochrome-based bioengineering.

    Science.gov (United States)

    Hirose, Yuu; Fujisawa, Takatomo; Ohtsubo, Yoshiyuki; Katayama, Mitsunori; Misawa, Naomi; Wakazuki, Sachiko; Shimura, Yohei; Nakamura, Yasukazu; Kawachi, Masanobu; Yoshikawa, Hirofumi; Eki, Toshihiko; Kanesaki, Yu

    2016-01-20

    To explore the diverse photoreceptors of cyanobacteria, we isolated Nostoc sp. strain NIES-3756 from soil at Mimomi-Park, Chiba, Japan, and determined its complete genome sequence. The Genome consists of one chromosome and two plasmids (total 6,987,571 bp containing no gaps). The NIES-3756 strain carries 7 phytochrome and 12 cyanobacteriochrome genes, which will facilitate the studies of phytochrome-based bioengineering. Copyright © 2015. Published by Elsevier B.V.

  11. Flexible piezotronic strain sensor.

    Science.gov (United States)

    Zhou, Jun; Gu, Yudong; Fei, Peng; Mai, Wenjie; Gao, Yifan; Yang, Rusen; Bao, Gang; Wang, Zhong Lin

    2008-09-01

    Strain sensors based on individual ZnO piezoelectric fine-wires (PFWs; nanowires, microwires) have been fabricated by a simple, reliable, and cost-effective technique. The electromechanical sensor device consists of a single electrically connected PFW that is placed on the outer surface of a flexible polystyrene (PS) substrate and bonded at its two ends. The entire device is fully packaged by a polydimethylsiloxane (PDMS) thin layer. The PFW has Schottky contacts at its two ends but with distinctly different barrier heights. The I- V characteristic is highly sensitive to strain mainly due to the change in Schottky barrier height (SBH), which scales linear with strain. The change in SBH is suggested owing to the strain induced band structure change and piezoelectric effect. The experimental data can be well-described by the thermionic emission-diffusion model. A gauge factor of as high as 1250 has been demonstrated, which is 25% higher than the best gauge factor demonstrated for carbon nanotubes. The strain sensor developed here has applications in strain and stress measurements in cell biology, biomedical sciences, MEMS devices, structure monitoring, and more.

  12. Strain-engineered growth of two-dimensional materials.

    Science.gov (United States)

    Ahn, Geun Ho; Amani, Matin; Rasool, Haider; Lien, Der-Hsien; Mastandrea, James P; Ager Iii, Joel W; Dubey, Madan; Chrzan, Daryl C; Minor, Andrew M; Javey, Ali

    2017-09-20

    The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1% tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2 , respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.Strain engineering is an essential tool for modifying local electronic properties in silicon-based electronics. Here, Ahn et al. demonstrate control of biaxial strain in two-dimensional materials based on the growth substrate, enabling more complex low-dimensional electronics.

  13. Sequence-based comparative study of classical swine fever virus genogroup 2.2 isolate with pestivirus reference strains.

    Science.gov (United States)

    Kumar, Ravi; Rajak, Kaushal Kishor; Chandra, Tribhuwan; Muthuchelvan, Dhanavelu; Saxena, Arpit; Chaudhary, Dheeraj; Kumar, Ajay; Pandey, Awadh Bihari

    2015-09-01

    This study was undertaken with the aim to compare and establish the genetic relatedness between classical swine fever virus (CSFV) genogroup 2.2 isolate and pestivirus reference strains. The available complete genome sequences of CSFV/IND/UK/LAL-290 strain and other pestivirus reference strains were retrieved from GenBank. The complete genome sequence, complete open reading frame, 5' and 3' non-coding region (NCR) sequences were analyzed and compared with reference pestiviruses strains. Clustal W model in MegAlign program of Lasergene 6.0 software was used for analysis of genetic heterogeneity. Phylogenetic analysis was carried out using MEGA 6.06 software package. The complete genome sequence alignment of CSFV/IND/UK/LAL-290 isolate and reference pestivirus strains showed 58.9-72% identities at the nucleotide level and 50.3-76.9% at amino acid level. Sequence homology of 5' and 3' NCRs was found to be 64.1-82.3% and 22.9-71.4%, respectively. In phylogenetic analysis, overall tree topology was found similar irrespective of sequences used in this study; however, whole genome phylogeny of pestivirus formed two main clusters, which further distinguished into the monophyletic clade of each pestivirus species. CSFV/IND/UK/LAL-290 isolate placed with the CSFV Eystrup strain in the same clade with close proximity to border disease virus and Aydin strains. CSFV/IND/UK/LAL-290 exhibited the analogous genomic organization to those of all reference pestivirus strains. Based on sequence identity and phylogenetic analysis, the isolate showed close homology to Aydin/04-TR virus and distantly related to Bungowannah virus.

  14. Internships and UNAVCO: Training the Future Geoscience Workforce Through the NSF GAGE Facility

    Science.gov (United States)

    Morris, A. R.; MacPherson-Krutsky, C. C.; Charlevoix, D. J.; Bartel, B. A.

    2015-12-01

    Facilities are uniquely positioned to both serve a broad, national audience and provide unique workforce experience to students and recent graduates. Intentional efforts dedicated to broadening participation in the future geoscience workforce at the NSF GAGE (Geodesy Advancing Geosciences and EarthScope) Facility operated by UNAVCO, are designed to meet the needs of the next generation of students and professionals. As a university-governed consortium facilitating research and education in the geosciences, UNAVCO is well-situated to both prepare students for geoscience technical careers and advanced research positions. Since 1998, UNAVCO has offered over 165 student assistant or intern positions including engineering, data services, education and outreach, and business support. UNAVCO offers three formal programs: the UNAVCO Student Internship Program (USIP), Research Experiences in Solid Earth Science for Students (RESESS), and the Geo-Launchpad (GLP) internship program. Interns range from community college students up through graduate students and recent Masters graduates. USIP interns gain real-world work experience in a professional setting, collaborate with teams toward a common mission, and contribute their knowledge, skills, and abilities to the UNAVCO community. RESESS interns conduct authentic research with a scientist in the Front Range area as well as participate in a structured professional development series. GLP students are in their first 2 years of higher education and work alongside UNAVCO technical staff gaining valuable work experience and insight into the logistics of supporting scientific research. UNAVCO's efforts in preparing the next generation of scientists largely focuses on increasing diversity in the geosciences, whether continuing academic studies or moving into the workforce. To date, well over half of our interns and student assistants come from backgrounds historically underrepresented in the geosciences. Over 80% of former interns

  15. Nanocomposite Strain Gauges Having Small TCRs

    Science.gov (United States)

    Gregory, Otto; Chen, Ximing

    2009-01-01

    Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets.

  16. Generating strain signals under consideration of road surface profiles

    Science.gov (United States)

    Putra, T. E.; Abdullah, S.; Schramm, D.; Nuawi, M. Z.; Bruckmann, T.

    2015-08-01

    The current study aimed to develop the mechanism for generating strain signal utilising computer-based simulation. The strain data, caused by the acceleration, were undertaken from a fatigue data acquisition involving car movements. Using a mathematical model, the measured strain signals yielded to acceleration data used to describe the bumpiness of road surfaces. The acceleration signals were considered as an external disturbance on generating strain signals. Based on this comparison, both the actual and simulated strain data have similar pattern. The results are expected to provide new knowledge to generate a strain signal via a simulation.

  17. Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group▿

    Science.gov (United States)

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-01-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  18. Testing of large prestressing tendon end anchorage regions

    International Nuclear Information System (INIS)

    Johnson, T.E.

    1976-01-01

    Tests were performed on concrete end anchorage regions for prestressing tendons with ultimate strengths of approximately 8,900 kN. One test structure simulated a full scale concrete containment buttress and the other two test specimens were concrete blocks. The behavior of the test structure and specimens, when subjected to loading, was monitored by strain gages and dial gages. The testing illustrated that all of the amounts of reinforcing tested should be acceptable for the end anchor zones of large tendons presently used in prestressed concrete containment structures. (author)

  19. Effects of the Strain Rate Sensitivity and Strain Hardening on the Saturated Impulse of Plates

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Abstract This paper studies the stiffening effects of the material strain rate sensitivity and strain hardening on the saturated impulse of elastic, perfectly plastic plates. Finite element (FE code ABAQUS is employed to simulate the elastoplastic response of square plates under rectangular pressure pulse. Rigid-plastic analyses for saturated impulse, which consider strain rate sensitivity and strain hardening, are conducted. Satisfactory agreement between the finite element models (FEM and predictions of the rigid-plastic analysis is obtained, which verifies that the proposed rigid-plastic methods are effective to solve the problem including strain rate sensitivity and strain hardening. The quantitative results for the scale effect of the strain rate sensitivity are given. The results for the stiffening effects suggest that two general stiffening factors n 1 and n 2, which characterizes the strain rate sensitivity and strain hardening effect, respectively can be defined. The saturated displacement is inversely proportional to the stiffening factors (i.e. n 1 and n 2 and saturated impulse is inversely proportional to the square roots of the stiffening factors (i.e. n 1 and n 2. Formulae for displacement and saturated impulse are proposed based on the empirical analysis.

  20. Three-Dimensional Force Measurements During Rapid Palatal Expansion in Sus scrofa

    Directory of Open Access Journals (Sweden)

    Kelly Goeckner

    2016-04-01

    Full Text Available Rapid palatal expansion is an orthodontic procedure widely used to correct the maxillary arch. However, its outcome is significantly influenced by factors that show a high degree of variability amongst patients. The traditional treatment methodology is based on an intuitive and heuristic treatment approach because the forces applied in the three dimensions are indeterminate. To enable optimal and individualized treatment, it is essential to measure the three-dimensional (3D forces and displacements created by the expander. This paper proposes a method for performing these 3D measurements using a single embedded strain sensor, combining experimental measurements of strain in the palatal expander with 3D finite element analysis (FEA. The method is demonstrated using the maxillary jaw from a freshly euthanized pig (Sus scrofa and a hyrax-design rapid palatal expander (RPE appliance with integrated strain gage. The strain gage measurements are recorded using a computer interface, following which the expansion forces and extent of expansion are estimated by FEA. A total activation of 2.0 mm results in peak total force of about 100 N—almost entirely along the direction of expansion. The results also indicate that more than 85% of the input activation is immediately transferred to the palate and/or teeth. These studies demonstrate a method for assessing and individualizing expansion magnitudes and forces during orthopedic expansion of the maxilla. This provides the basis for further development of smart orthodontic appliances that provide real-time readouts of forces and movements, which will allow personalized, optimal treatment.

  1. Genetic characterization of Italian field strains of Schmallenberg virus based on N and NSs genes.

    Science.gov (United States)

    Izzo, Francesca; Cosseddu, Gian Mario; Polci, Andrea; Iapaolo, Federica; Pinoni, Chiara; Capobianco Dondona, Andrea; Valleriani, Fabrizia; Monaco, Federica

    2016-08-01

    Following its first identification in Germany in 2011, the Schmallenberg virus (SBV) has rapidly spread to many other European countries. Despite the wide dissemination, the molecular characterization of the circulating strains is limited to German, Belgian, Dutch, and Swiss viruses. To fill this gap, partial genetic characterization of 15 Italian field strains was performed, based on S segment genes. Samples were collected in 2012 in two different regions where outbreaks occurred during distinct epidemic seasons. The comparative sequence analysis demonstrated a high molecular stability of the circulating viruses; nevertheless, we identified several variants of the N and NSs proteins not described in other SBV isolates circulating in Europe.

  2. Graphene spin diode: Strain-modulated spin rectification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yunhua; Wang, B., E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering and Technology, School of Physics and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Yulan, E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2014-08-04

    Strain effects on spin transport in a ferromagnetic/strained/normal graphene junction are explored theoretically. It is shown that the spin-resolved Fermi energy range can be controlled by the armchair direction strain because the strain-induced pseudomagnetic field suppresses the current. The spin rectification effect for the bias reversal occurs because of a combination of ferromagnetic exchange splitting and the broken spatial symmetry of the junction. In addition, the spin rectification performance can be tuned remarkably by manipulation of the strains. In view of this strain-modulated spin rectification effect, we propose that the graphene-based ferromagnetic/strained/normal junction can be used as a tunable spin diode.

  3. Financial strain and cognitive-based smoking processes: The explanatory role of depressive symptoms among adult daily smokers.

    Science.gov (United States)

    Robles, Zuzuky; Anjum, Sahar; Garey, Lorra; Kauffman, Brooke Y; Rodríguez-Cano, Rubén; Langdon, Kirsten J; Neighbors, Clayton; Reitzel, Lorraine R; Zvolensky, Michael J

    2017-07-01

    Little work has focused on the underlying mechanisms that may link financial strain and smoking processes. The current study tested the hypothesis that financial strain would exert an indirect effect on cognitive-based smoking processes via depressive symptoms. Three clinically significant dependent variables linked to the maintenance of smoking were evaluated: negative affect reduction motives, negative mood abstinence expectancies, and perceived barriers for quitting. Participants included 102 adult daily smokers (M age =33.0years, SD=13.60; 35.3% female) recruited from the community to participate in a self-guided (unaided; no psychological or pharmacological intervention) smoking cessation study. Results indicated that depressive symptoms explain, in part, the relation between financial strain and smoking motives for negative affect reduction, negative mood abstinence expectancies, and perceived barriers for quitting. Results indicate that smoking interventions for individuals with high levels of financial strain may potentially benefit from the addition of therapeutic tactics aimed at reducing depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fatigue life evaluation based on welding residual stress relaxation and notch strain approach for cruciform welded joint

    International Nuclear Information System (INIS)

    Han, Jeong Woo; Han, Seung Ho; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint

  5. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review.

    Science.gov (United States)

    Roriz, Paulo; Carvalho, Lídia; Frazão, Orlando; Santos, José Luís; Simões, José António

    2014-04-11

    In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Vibration based structural health monitoring in fibre reinforced composites employing the modal strain energy method

    NARCIS (Netherlands)

    Loendersloot, Richard; Ooijevaar, T.H.; Warnet, Laurent; Akkerman, Remko; de Boer, Andries; Meguid, S.A.; Gomes, J.F.S.

    2009-01-01

    The feasibility of a vibration based damage identification method is investigated. The Modal Strain Energy method is applied to a T–beam structure. The dynamic response of an intact structure and a damaged, delaminated structure is analysed employing a commercially available Finite Element package.

  7. Strain-based control of crystal anisotropy for perovskite oxides on semiconductor-based material

    Science.gov (United States)

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A crystalline structure and a semiconductor device includes a substrate of a semiconductor-based material and a thin film of an anisotropic crystalline material epitaxially arranged upon the surface of the substrate so that the thin film couples to the underlying substrate and so that the geometries of substantially all of the unit cells of the thin film are arranged in a predisposed orientation relative to the substrate surface. The predisposition of the geometries of the unit cells of the thin film is responsible for a predisposed orientation of a directional-dependent quality, such as the dipole moment, of the unit cells. The predisposed orientation of the unit cell geometries are influenced by either a stressed or strained condition of the lattice at the interface between the thin film material and the substrate surface.

  8. Breeding of a xylose-fermenting hybrid strain by mating genetically engineered haploid strains derived from industrial Saccharomyces cerevisiae.

    Science.gov (United States)

    Inoue, Hiroyuki; Hashimoto, Seitaro; Matsushika, Akinori; Watanabe, Seiya; Sawayama, Shigeki

    2014-12-01

    The industrial Saccharomyces cerevisiae IR-2 is a promising host strain to genetically engineer xylose-utilizing yeasts for ethanol fermentation from lignocellulosic hydrolysates. Two IR-2-based haploid strains were selected based upon the rate of xylulose fermentation, and hybrids were obtained by mating recombinant haploid strains harboring heterogeneous xylose dehydrogenase (XDH) (wild-type NAD(+)-dependent XDH or engineered NADP(+)-dependent XDH, ARSdR), xylose reductase (XR) and xylulose kinase (XK) genes. ARSdR in the hybrids selected for growth rates on yeast extract-peptone-dextrose (YPD) agar and YP-xylose agar plates typically had a higher activity than NAD(+)-dependent XDH. Furthermore, the xylose-fermenting performance of the hybrid strain SE12 with the same level of heterogeneous XDH activity was similar to that of a recombinant strain of IR-2 harboring a single set of genes, XR/ARSdR/XK. These results suggest not only that the recombinant haploid strains retain the appropriate genetic background of IR-2 for ethanol production from xylose but also that ARSdR is preferable for xylose fermentation.

  9. Material Properties Test to Determine Ultimate Strain and True Stress-True Strain Curves for High Yield Steels

    Energy Technology Data Exchange (ETDEWEB)

    K.R. Arpin; T.F. Trimble

    2003-04-01

    This testing was undertaken to develop material true stress-true strain curves for elastic-plastic material behavior for use in performing transient analysis. Based on the conclusions of this test, the true stress-true strain curves derived herein are valid for use in elastic-plastic finite element analysis for structures fabricated from these materials. In addition, for the materials tested herein, the ultimate strain values are greater than those values cited as the limits for the elastic-plastic strain acceptance criteria for transient analysis.

  10. Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor.

    Science.gov (United States)

    Kim, Hae-Jin; Thukral, Anish; Yu, Cunjiang

    2018-02-07

    There is a growing interest in developing stretchable strain sensors to quantify the large mechanical deformation and strain associated with the activities for a wide range of species, such as humans, machines, and robots. Here, we report a novel stretchable strain sensor entirely in a rubber format by using a solution-processed rubbery semiconductor as the sensing material to achieve high sensitivity, large mechanical strain tolerance, and hysteresis-less and highly linear responses. Specifically, the rubbery semiconductor exploits π-π stacked poly(3-hexylthiophene-2,5-diyl) nanofibrils (P3HT-NFs) percolated in silicone elastomer of poly(dimethylsiloxane) to yield semiconducting nanocomposite with a large mechanical stretchability, although P3HT is a well-known nonstretchable semiconductor. The fabricated strain sensors exhibit reliable and reversible sensing capability, high gauge factor (gauge factor = 32), high linearity (R 2 > 0.996), and low hysteresis (degree of hysteresis wearable smart gloves. Systematic investigations in the materials design and synthesis, sensor fabrication and characterization, and mechanical analysis reveal the key fundamental and application aspects of the highly sensitive and very stretchable strain sensors entirely from rubbers.

  11. Phase 3 Trial of a Sabin Strain-Based Inactivated Poliovirus Vaccine.

    Science.gov (United States)

    Liao, Guoyang; Li, Rongcheng; Li, Changgui; Sun, Mingbo; Jiang, Shude; Li, Yanping; Mo, Zhaojun; Xia, Jielai; Xie, Zhongping; Che, Yanchun; Yang, Jingsi; Yin, Zhifang; Wang, Jianfeng; Chu, Jiayou; Cai, Wei; Zhou, Jian; Wang, Junzhi; Li, Qihan

    2016-12-01

     The development of a Sabin strain-based inactivated poliovirus vaccine (Sabin-IPV) is imperative to protecting against vaccine-associated paralytic poliomyelitis in developing countries.  In this double-blinded, parallel-group, noninferiority trial, eligible infants aged 60-90 days were randomly assigned in a ratio of 1:1 to receive either 3 doses of Sabin-IPV or Salk strain-based IPV (Salk-IPV) at 30-day intervals and a booster at the age of 18 months. Immunogenicity and safety were assessed on the basis of a protocol.  Of 1438 infants, 1200 eligible infants were recruited and received either Sabin-IPV or Salk-IPV. From the Sabin-IPV and Salk-IPV groups, 570 and 564 infants, respectively, completed the primary immunization and formed the per-protocol population. The seroconversion rates of the participants who received Sabin-IPV were 100%, 94.9%, and 99.0% (types I, II, and III, respectively), and those of the participants who received Salk-IPV were 94.7%, 91.3%, and 97.9% 1 month after the completion of primary immunization. An anamnestic response for poliovirus types I, II, and III was elicited by a booster in both groups. Except in the case of fever, other adverse events were similar between the 2 groups.  The immune response induced by Sabin-IPV was not inferior to that established with Salk-IPV. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  12. Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.; Zhang, Y. G., E-mail: ygzhang@mail.sim.ac.cn; Chen, X. Y.; Xi, S. P.; Du, B.; Ma, Y. J. [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-23

    We report the effect of Bi surfactant on the properties of highly strained InAs/InGaAs triangular quantum wells grown on InP substrates. Reduced surface roughness, improved heterostructure interfaces and enhanced photoluminescence intensity at 2.2 μm are observed by moderate Bi-mediated growth. The nonradiative processes are analysed based on temperature-dependent photoluminescence. It is confirmed that Bi incorporation is insignificant in the samples, whereas excessive Bi flux during the growth results in deteriorated performance. The surfactant effect of Bi is promising to improve InP-based highly strained structures while the excess of Bi flux needs to be avoided.

  13. Mobilomics in Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Menconi, Giulia; Battaglia, Giovanni; Grossi, Roberto; Pisanti, Nadia; Marangoni, Roberto

    2013-03-20

    Mobile Genetic Elements (MGEs) are selfish DNA integrated in the genomes. Their detection is mainly based on consensus-like searches by scanning the investigated genome against the sequence of an already identified MGE. Mobilomics aims at discovering all the MGEs in a genome and understanding their dynamic behavior: The data for this kind of investigation can be provided by comparative genomics of closely related organisms. The amount of data thus involved requires a strong computational effort, which should be alleviated. Our approach proposes to exploit the high similarity among homologous chromosomes of different strains of the same species, following a progressive comparative genomics philosophy. We introduce a software tool based on our new fast algorithm, called regender, which is able to identify the conserved regions between chromosomes. Our case study is represented by a unique recently available dataset of 39 different strains of S.cerevisiae, which regender is able to compare in few minutes. By exploring the non-conserved regions, where MGEs are mainly retrotransposons called Tys, and marking the candidate Tys based on their length, we are able to locate a priori and automatically all the already known Tys and map all the putative Tys in all the strains. The remaining putative mobile elements (PMEs) emerging from this intra-specific comparison are sharp markers of inter-specific evolution: indeed, many events of non-conservation among different yeast strains correspond to PMEs. A clustering based on the presence/absence of the candidate Tys in the strains suggests an evolutionary interconnection that is very similar to classic phylogenetic trees based on SNPs analysis, even though it is computed without using phylogenetic information. The case study indicates that the proposed methodology brings two major advantages: (a) it does not require any template sequence for the wanted MGEs and (b) it can be applied to infer MGEs also for low coverage genomes

  14. Mobilomics in Saccharomyces cerevisiae strains

    Science.gov (United States)

    2013-01-01

    Background Mobile Genetic Elements (MGEs) are selfish DNA integrated in the genomes. Their detection is mainly based on consensus–like searches by scanning the investigated genome against the sequence of an already identified MGE. Mobilomics aims at discovering all the MGEs in a genome and understanding their dynamic behavior: The data for this kind of investigation can be provided by comparative genomics of closely related organisms. The amount of data thus involved requires a strong computational effort, which should be alleviated. Results Our approach proposes to exploit the high similarity among homologous chromosomes of different strains of the same species, following a progressive comparative genomics philosophy. We introduce a software tool based on our new fast algorithm, called regender, which is able to identify the conserved regions between chromosomes. Our case study is represented by a unique recently available dataset of 39 different strains of S.cerevisiae, which regender is able to compare in few minutes. By exploring the non–conserved regions, where MGEs are mainly retrotransposons called Tys, and marking the candidate Tys based on their length, we are able to locate a priori and automatically all the already known Tys and map all the putative Tys in all the strains. The remaining putative mobile elements (PMEs) emerging from this intra–specific comparison are sharp markers of inter–specific evolution: indeed, many events of non–conservation among different yeast strains correspond to PMEs. A clustering based on the presence/absence of the candidate Tys in the strains suggests an evolutionary interconnection that is very similar to classic phylogenetic trees based on SNPs analysis, even though it is computed without using phylogenetic information. Conclusions The case study indicates that the proposed methodology brings two major advantages: (a) it does not require any template sequence for the wanted MGEs and (b) it can be applied to

  15. A Novel Strain-Based Method to Estimate Tire Conditions Using Fuzzy Logic for Intelligent Tires

    Directory of Open Access Journals (Sweden)

    Daniel Garcia-Pozuelo

    2017-02-01

    Full Text Available The so-called intelligent tires are one of the most promising research fields for automotive engineers. These tires are equipped with sensors which provide information about vehicle dynamics. Up to now, the commercial intelligent tires only provide information about inflation pressure and their contribution to stability control systems is currently very limited. Nowadays one of the major problems for intelligent tire development is how to embed feasible and low cost sensors to obtain reliable information such as inflation pressure, vertical load or rolling speed. These parameters provide key information for vehicle dynamics characterization. In this paper, we propose a novel algorithm based on fuzzy logic to estimate the mentioned parameters by means of a single strain-based system. Experimental tests have been carried out in order to prove the suitability and durability of the proposed on-board strain sensor system, as well as its low cost advantages, and the accuracy of the obtained estimations by means of fuzzy logic.

  16. APPLICATION OF PIEZOELECTRIC MATERIAL FILM PVDF (Polyvinylidene Flouride AS LIQUID VISCOSITY SENSOR

    Directory of Open Access Journals (Sweden)

    Hananto F. S, Santoso D.R., Julius

    2012-03-01

    Research was done by taking 10 samples of oil and 3 different size ofPVDF film and a strain gage,that are: 1 cm x 3 cm (PVDF1; 1 cm x 2 cm (PVDF2; 1 cm x 1 cm (PVDF3. Results showed that the resolution of  PVDF1,  PVDF2 and PVDF3 are  4.6  mv/cPois;  3.1  mv/cPois and 1.5  mv/cPois respectively, while the strain gage produce a resolution of 1.2  mv/cPois. The average resolution of PVDF is 1.53 mv.cPois-1.cm-2, which means that every 1 cm2   PVDF film area and the increase of 1 cPois of viscosity of the material will produce 1.53 millivolts.

  17. Strained superlattices and magnetic tunnel junctions based on doped manganites

    International Nuclear Information System (INIS)

    Yafeng Lu

    2001-01-01

    In the first part of this work the effect of biaxial strain on the structure and transport properties of doped manganites has been studied to explore the relevance of Jahn-Teller electron-lattice interaction for the CMR phenomenon in these materials. A series of high quality, coherently strained La 2/3 (Ca or Ba) 1/3 MnO 3 /SrTiO 3 superlattices with different modulation periods have been fabricated on (001) SrTiO 3 and NdGaO 3 substrates by laser molecular beam epitaxy. A detailed structural characterization was performed by high-angle X-ray diffraction (HAXRD) and low-angle X-ray reflectivity (LAXRR). The fabricated superlattices are very flat, show excellent structural coherence and very small mosaic spread (0.2 ∝0.03 ). The in-plane coherency strain could be varied by changing the thickness ratio of the constituent layers allowing for a systematic variation of the resulting lattice distortion of La 2/3 (Ca or Ba) 1/3 MnO 3 . By the in-plane coherency strain the out-of-plane lattice constant could be continuously adjusted by varying the relative thickness of the SrTiO 3 and La 2/3 (Ca or Ba) 1/3 MnO 3 layers: the c-axis lattice constant of La 2/3 Ba 1/3 MnO 3 was found to vary from 3.910 A to 3.975 A due to a compressive in-plane strain, whereas the c-axis constant of La 2/3 Ca 1/3 MnO 3 was found to change from 3.87 A to 3.79A due to tensile in-plane strain. The strain results in a biaxial distortion ε bi of La 2/3 (Ca or Ba) 1/3 MnO 3 that strongly affects the electrical transport properties and the magnetoresistance. Our measurements show that there is a clear correlation between ε bi and the temperature T p corresponding to the maximum in the resistivity versus temperature curves as well as the measured magnetoresistance in the two systems. In the second part of this work we have investigated the spin-dependent tunneling in trilayer structures of La 2/3 Ba 1/3 MnO 3 /SrTiO 3 /La 2/3 Ba 1/3 MnO 3 . (orig.)

  18. Spontaneous abortion and physical strain around implantation

    DEFF Research Database (Denmark)

    Hjøllund, Niels Henrik Ingvar; Jensen, T.K.; Bonde, J.P.

    2000-01-01

    Existing studies of physical strain and spontaneous abortion are mainly retrospective or based only on pregnancies that have survived the first trimester. Furthermore, almost all studies have relied on averaged measures of physical strain, which tend to blur an effect if peak values during short...... pregnancy the women recorded physical strain prospectively in a structured diary. Physical strain around the time of implantation was associated with later spontaneous abortion. The adjusted risk ratio for women who reported physical strain higher than average at day 6 to 9 after the estimated date...

  19. Evolution of phase structure and giant strain at low driving fields in Bi-based lead-free incipient piezoelectrics

    International Nuclear Information System (INIS)

    Maqbool, Adnan; Hussain, Ali; Malik, Rizwan Ahmed; Rahman, Jamil Ur; Zaman, Arif; Song, Tae Kwon; Kim, Won-Jeong; Kim, Myong-Ho

    2015-01-01

    Graphical abstract: - Highlights: • Nb-doped BNBT–SZ ceramics were prepared by conventional solid state method. • A giant normalized strain of 825 pm/V at 4 kV/mm was achieved. • A large strain of 0.20% triggered at a relatively low field of 3 kV/mm. • Highest strain obtained in BNT-based ceramics at such a low driving field. • Ferroelectric to ergodic-relaxor phase transition occurred with Nb-doping. - Abstract: Lead-free 0.99[(Bi 0.5 Na 0.5 ) 0.935 Ba 0.065 Ti (1–x) Nb x O 3 ]–0.01SrZrO 3 (BNBTNb100x–SZ, with Nb100x = 0–1) ceramics were prepared by the conventional mixed oxide route. X-ray diffraction and Raman scattering was utilized for the structural evolution of Nb-modified BNBT–SZ ceramics at average and short-scale localized structure. Temperature dependent dielectric properties showed ferroelectric–ergodic relaxor (FE–ER) transition in Nb-modified BNBT–SZ ceramics by producing a significant disruption of the long-range FE order. A giant normalized strain of 825 pm/V at 4 kV/mm was achieved at Nb1.0. Interestingly, at a relatively low applied field of 3 kV/mm, the Nb0.75 sample displayed a large electric field-induced strain (EFIS) response of 0.20%, which is highest value obtained in non-textured lead-free BNT-based ceramics at such low driving field. The structural distortion induced by doping and electric poling is correlated with the dielectric, ferroelectric and EFIS response, and the evolution of giant strain was ascribed to reversible field induced phase transition from ER–FE phase

  20. Wearable Wide-Range Strain Sensors Based on Ionic Liquids and Monitoring of Human Activities

    Directory of Open Access Journals (Sweden)

    Shao-Hui Zhang

    2017-11-01

    Full Text Available Wearable sensors for detection of human activities have encouraged the development of highly elastic sensors. In particular, to capture subtle and large-scale body motion, stretchable and wide-range strain sensors are highly desired, but still a challenge. Herein, a highly stretchable and transparent stain sensor based on ionic liquids and elastic polymer has been developed. The as-obtained sensor exhibits impressive stretchability with wide-range strain (from 0.1% to 400%, good bending properties and high sensitivity, whose gauge factor can reach 7.9. Importantly, the sensors show excellent biological compatibility and succeed in monitoring the diverse human activities ranging from the complex large-scale multidimensional motions to subtle signals, including wrist, finger and elbow joint bending, finger touch, breath, speech, swallow behavior and pulse wave.

  1. Analysis of borehole inclusion stress measurement concepts proposed for use in the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Morgan, H.S.

    1984-01-01

    The calculations presented in this paper were performed as part of an investigation of inclusion stressmeter performance in salt. They focus on the strain gaged stressmeter (SGS) and on a hypothetical solid cylindrical inclusion with variable stiffness. issues addressed include the effects of creep and the effects of gage stiffness on stressmeter output for various loading conditions. The computational procedures used to calculate gage response are described first and are followed by a presentation of the computed responses of the inclusions to several loading conditions. The results presented clearly indicate the problems involved in relating inclusion stressmeter readings to actual stress fields in salt. Readings change with time due to creep, and the nature of the changes is related to gage stiffness. Creep seems to affect matching inclusion response the least and soft inclusion response the most. In fact, the soft inclusion fails to distinguish small sudden changes in applied load and changes due to creep. The calculations also indicate that inclusion stressmeter performance in salt needs to be evaluated in even greater detail before stress measurements can be used for verifying computational models. The gage installation process needs to be included in this analysis. Field evaluations of several inclusion stressmeters are currently underway to meet these needs. 8 references, 8 figures, 2 tables

  2. Polyphasic analysis of Acidovorax citrulli strains from northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Kirley Michele Marques Silva

    2016-06-01

    Full Text Available ABSTRACT Bacterial fruit blotch (BFB of cucurbit plants is caused by Acidovorax citrulli and represents a serious concern to melon (Cucumis melo L. growers worldwide, including those in Brazil. Thirty-four A. citrulli strains from different melon production areas of northeastern Brazil were characterized for their virulence on melon fruits and their substrate utilization and molecular profiles. Based on the analysis of BFB severity on melon fruits, the A. citrulli strains were divided into three groups, classified as mildly, moderately or highly virulent. Although host-related groups were not observed, the watermelon and ‘melão-pepino’ strains exhibited only low or moderate virulence on melon fruit. Substrate utilization profiles revealed that 94 % of the 95 tested compounds were used by A. citrulli strains as a carbon source. Overall, based on substrate utilization, low variability was observed with no relationship to host of origin. The formation of one group of A. citrulli strains based on Repetitive Sequence-based PCR (rep-PCR analysis confirmed the low variability observed in the substrate utilization analyses. Bayesian inference based on the analysis of 23S rDNA partial sequence data resulted in one well-supported clade and clustered the strains with the A. citrulli-type species with high posterior probability support. Based on the markers used, the Brazilian A. citrulli strains belong to a single group, which corresponds to the previously described Group I for this bacterium in the United States.

  3. Diagnostic tools based on minor groove binder probe technology for rapid identification of vaccinal and field strains of canine parvovirus type 2b.

    Science.gov (United States)

    Decaro, Nicola; Martella, Vito; Elia, Gabriella; Desario, Costantina; Campolo, Marco; Buonavoglia, Domenico; Bellacicco, Anna Lucia; Tempesta, Maria; Buonavoglia, Canio

    2006-12-01

    TaqMan-based diagnostic tests have been developed for the identification of canine parvovirus type 2 (CPV-2) strains in the faeces of dogs with diarrhoea, including a minor groove binder (MGB) probe assay for identification of type 2-based vaccines and field strains (types 2a, 2b and 2c). Since type 2b vaccines have been licensed recently in Europe, two novel MGB assays were developed for discrimination between type 2b vaccines and field strains of CPV. Such assays have been found to be highly sensitive, specific and reproducible, allowing for simultaneous detection of type 2b vaccinal and field strains present in the same specimens. These new assays will help resolution of the diagnostic problems related to the detection of a type 2b strain in the faeces of dogs shortly after the administration of a type 2b vaccine.

  4. Laser-induced photo-thermal strain imaging

    Science.gov (United States)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2018-02-01

    Vulnerable plaque is the one of the leading causes of cardiovascular disease occurrence. However, conventional intravascular imaging techniques suffer from difficulty in finding vulnerable plaque due to limitation such as lack of physiological information, imaging depth, and depth sensitivity. Therefore, new techniques are needed to help determine the vulnerability of plaque, Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed that varies with temperature of medium. During temperature increase, strain occurs in the medium and its variation tendency is depending on the type of tissue, which makes it possible to use for tissue differentiation. Here, we demonstrate laser-induced photo-thermal strain imaging (pTSI) to differentiate tissue using an intravascular ultrasound (IVUS) catheter and a 1210-nm continuous-wave laser for heating lipids intensively. During heating, consecutive US images were obtained from a custom-made phantom made of porcine fat and gelatin. A cross correlation-based speckle-tracking algorithm was then applied to calculate the strain of US images. In the strain images, the positive strain produced in lipids (porcine fat) was clearly differentiated from water-bearing tissue (gelatin). This result shows that laser-induced pTSI could be a new method to distinguish lipids in the plaque and can help to differentiate vulnerability of plaque.

  5. Deformation-strain field in Sichuan and its surrounding areas based on GPS data

    Directory of Open Access Journals (Sweden)

    Fuchao Chen

    2015-05-01

    Full Text Available The strain rate in Sichuan and its surrounding areas, and the activity rate and strain rate in two block boundary fault zones were calculated according to the block movement parameters estimated using the station speed obtained from regional GPS station observation data in these areas for 2009–2011 and GPS continuous station data for 2011–2013. The movement field characteristics in these areas were analyzed with the Sichuan Basin as the reference. Results show that the principal strain rate and maximum shear strain rate of the Bayan Har block were the largest, followed by those of the Sichuan–Yunnan block and Sichuan Basin. The deep normal strain rate in the Longmenshan fault zone was compressive and large over the study period. The normal strain rate in the Xianshuihe fault zone was tensile.

  6. Effect of axial strain on the critical current of Ag-sheathed Bi-based superconductors in magnetic fields up to 25 T

    International Nuclear Information System (INIS)

    Ekin, J.W.; Finnemore, D.K.; Li, Q.; Tenbrink, J.; Carter, W.

    1992-01-01

    The irreversible strain limit ε irrev for the onset of permanent axial strain damage to Ag-sheathed Bi 2 Sr 2 Ca 1 Cu 2 O 8+x and Bi 2 Sr 2 Ca 2 Cu 3 O 10+x superconductors has been measured to be in the range of 0.2%--0.35%. This strain damage onset is about an order of magnitude higher than for bulk sintered Y-, Bi-, or Tl-based superconductors and is approaching practical values for magnet design. The measurements show that the value of ε irrev is not dependent on magnetic field, nor does the critical current depend on strain below ε irrev at least up to 25 T at 4.2 K. Both of these factors indicate that the observed strain effect in Ag-sheathed Bi-based superconductors is not intrinsic to the superconductor material. Rather, the effect is extrinsic and arises from superconductor fracture. Thus, the damage onset is amenable to further enhancement. Indeed, the data suggest that subdividing the superconductor into fine filaments or adding Ag to the superconductor powder prior to processing significantly enhances the damage threshold ε irrev to above 0.6%

  7. Creation of the Probiotic Consortium on the Base of Strains of Bifidobacterium spp.

    Directory of Open Access Journals (Sweden)

    Kozhakhmetov, S. S.

    2009-01-01

    Full Text Available Nowadays, a widespread circulation of disbiotic conditions among the population of all ages in Kazakhstan requires an active development in industry for both preparations and products with probiotic properties. The gained bacterial isolates, Bifidobacterium adolescentis 180, B. breve 204, B. breve 584 and B. breve 587 were used in our researches and screening showed they possess high probiotic properties. The consortium possesses strong antimicrobial activity to pathogenic and potentially-pathogenic microflora, insulated during disbacteriosis, as well as from vagina and urea. They are able to produce vitamin B12 and also have antimutagenic activity. As a result, the consortium on the base of strains of Bifidobacterium spp. was received, possessing the following advantages: contains live mass of microbial, antagonistically active strains B. breve and B. adolescentis; contains more than 10^9 alive Bifidobacteria; does not contain plasmids, which means that it could not be a carrier of antibiotic stability for Gram-positive receptive pathogenic and potentially-pathogenic microflora.

  8. Mechanical strength model for plastic bonded granular materials at high strain rates and large strains

    International Nuclear Information System (INIS)

    Browning, R.V.; Scammon, R.J.

    1998-01-01

    Modeling impact events on systems containing plastic bonded explosive materials requires accurate models for stress evolution at high strain rates out to large strains. For example, in the Steven test geometry reactions occur after strains of 0.5 or more are reached for PBX-9501. The morphology of this class of materials and properties of the constituents are briefly described. We then review the viscoelastic behavior observed at small strains for this class of material, and evaluate large strain models used for granular materials such as cap models. Dilatation under shearing deformations of the PBX is experimentally observed and is one of the key features modeled in cap style plasticity theories, together with bulk plastic flow at high pressures. We propose a model that combines viscoelastic behavior at small strains but adds intergranular stresses at larger strains. A procedure using numerical simulations and comparisons with results from flyer plate tests and low rate uniaxial stress tests is used to develop a rough set of constants for PBX-9501. Comparisons with the high rate flyer plate tests demonstrate that the observed characteristic behavior is captured by this viscoelastic based model. copyright 1998 American Institute of Physics

  9. Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses

    International Nuclear Information System (INIS)

    Sauer, G.

    1998-01-01

    Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)

  10. On fracture in finite strain gradient plasticity

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof

    2016-01-01

    In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....

  11. A comparison of EBSD based strain indicators for the study of Fe-3Si steel subjected to cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Schayes, Claire [Université Lille 1 sciences et technologies, UMET – UMR CNRS 8207/ENSCL/Université de Lille, team Métallurgie Physique et Génie des Matériaux, Bâtiment C6, 59655 Villeneuve d' Ascq (France); Valeo Engine Electrical Systems, 2 Rue André Boulle, 94046 Créteil (France); Bouquerel, Jérémie, E-mail: jeremie.bouquerel@univ-lille1.fr [Université Lille 1 sciences et technologies, UMET – UMR CNRS 8207/ENSCL/Université de Lille, team Métallurgie Physique et Génie des Matériaux, Bâtiment C6, 59655 Villeneuve d' Ascq (France); Vogt, Jean-Bernard [Université Lille 1 sciences et technologies, UMET – UMR CNRS 8207/ENSCL/Université de Lille, team Métallurgie Physique et Génie des Matériaux, Bâtiment C6, 59655 Villeneuve d' Ascq (France); Palleschi, Frédéric [Valeo Engine Electrical Systems, 2 Rue André Boulle, 94046 Créteil (France); Zaefferer, Stefan [Max-Planck-Institut für Eisenforschung, Abteilung Mikrostrukturphysik und Umformtechnik, Max-Planck-Strasse 1, 40237 Düsseldorf (Germany)

    2016-05-15

    The current work aims at proposing an EBSD-based indicator for fatigue damage of a Fe-3Si steel. At the same time direct observation of dislocation structures is provided by electron channelling contrast imaging (ECCI). The investigation consisted in processing the EBSD data from patterns collected on specimen subjected to low cycle fatigue. It revealed two different regimes depending on the applied total strain variation which is explained by the identification of the dislocations structures and their evolution. At low strain variation, strain accommodation occurs by planar glide of dislocations uniformly distributed throughout the grains. No misorientation evolution is observed. At higher strain variation, the vein-channel structure is observed within the grain and the wall-channel structure in the vicinity of grain boundaries. The misorientation between these two dislocation structures is evaluated at about 0.7° which is detected by the EBSD analyses and explains the increase of the different misorientation based criteria. The EBSD study enables also the prediction of crack initiation mode. Finally, this study points out the limits of the EBSD technique as no misorientation evolution is detected at small strain variation. Indeed, the lattice distortion is too weak to be detected by conventional EBSD. - Highlights: • Microstructure investigation of the fatigue behaviour of an iron-silicon steel • Use of cECCI to investigate the fatigue dislocations structures • Characterisation of local plastic accommodation through EBSD misorientation criteria.

  12. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    Science.gov (United States)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  13. Ultra-high density out-of-plane strain sensor 3D architecture based on sub-20 nm PMOS FinFET

    KAUST Repository

    Ghoneim, Mohamed T.; Alfaraj, Nasir; Sevilla, Galo T.; Hussain, Muhammad Mustafa

    2016-01-01

    Future wearable electronics require not only flexibility but also preservation of the perks associated with today's high-performance, traditional silicon electronics. In this work we demonstrate a state-of-the-art fin-shaped field-effect transistor (FinFET)-based, out-of-plane strain sensor on flexible silicon through transforming the bulk device in a transfer-less process. The device preserves the functionality and high performance associated with its bulk, inflexible state. Furthermore, gate leakage current shows sufficient dependence on the value of the applied out-of-plane strain that enables permits use of the flexible device as a switching device as well as a strain sensor.

  14. Ultra-high density out-of-plane strain sensor 3D architecture based on sub-20 nm PMOS FinFET

    KAUST Repository

    Ghoneim, Mohamed T.

    2016-02-03

    Future wearable electronics require not only flexibility but also preservation of the perks associated with today\\'s high-performance, traditional silicon electronics. In this work we demonstrate a state-of-the-art fin-shaped field-effect transistor (FinFET)-based, out-of-plane strain sensor on flexible silicon through transforming the bulk device in a transfer-less process. The device preserves the functionality and high performance associated with its bulk, inflexible state. Furthermore, gate leakage current shows sufficient dependence on the value of the applied out-of-plane strain that enables permits use of the flexible device as a switching device as well as a strain sensor.

  15. Intrinsic embedded sensors for polymeric mechatronics: flexure and force sensing.

    Science.gov (United States)

    Jentoft, Leif P; Dollar, Aaron M; Wagner, Christopher R; Howe, Robert D

    2014-02-25

    While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm), three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.

  16. Stress analysis of hydride bed vessels used for tritium storage

    International Nuclear Information System (INIS)

    McKillip, S.T.; Bannister, C.E.; Clark, E.A.

    1991-01-01

    A prototype hydride storage bed, using LaNi 4.25 Al 0.75 as the storage material, was fitted with strain gages to measure strains occurring in the stainless steel bed vessel caused by expansion of the storage powder upon uptake of hydrogen. The strain remained low in the bed as hydrogen was added, up to a bed loading of about 0.5 hydrogen to metal atom ratio (H/M). The strain then increased with increasing hydrogen loading (∼ 0.8 H/M). Different locations exhibited greatly different levels of maximum strain. In no case was the design stress of the vessel exceeded

  17. Simultaneous distributed strain and temperature sensing based on combined Raman–Brillouin scattering using Fabry–Perot lasers

    International Nuclear Information System (INIS)

    Bolognini, Gabriele; Soto, Marcelo A; Di Pasquale, Fabrizio

    2010-01-01

    An investigation is performed of the possibility of achieving simultaneous distributed strain and temperature sensing based on hybrid Raman–Brillouin scattering with the use of multi-wavelength optical sources such as common Fabry–Perot (FP) lasers. By employing a self-heterodyne detection scheme based on a multi-wavelength optical local oscillator, the benefits of FP lasers are fully exploited, allowing for high-power Raman intensity measurements and a simultaneous high-accuracy detection of the Brillouin frequency shift parameter for each FP longitudinal mode. Experimental results point out a significant reduction of coherent Rayleigh noise, and highlight the enhanced performance in hybrid Raman–Brillouin sensing when using FP lasers; in particular using standard FP lasers at 1550 nm results in about 12 dB (7 dB) temperature (strain) accuracy improvement at 25 km sensing distance with respect to the use of standard distributed feedback lasers

  18. Rat Strain Ontology: structured controlled vocabulary designed to facilitate access to strain data at RGD.

    Science.gov (United States)

    Nigam, Rajni; Munzenmaier, Diane H; Worthey, Elizabeth A; Dwinell, Melinda R; Shimoyama, Mary; Jacob, Howard J

    2013-11-22

    The Rat Genome Database (RGD) ( http://rgd.mcw.edu/) is the premier site for comprehensive data on the different strains of the laboratory rat (Rattus norvegicus). The strain data are collected from various publications, direct submissions from individual researchers, and rat providers worldwide. Rat strain, substrain designation and nomenclature follow the Guidelines for Nomenclature of Mouse and Rat Strains, instituted by the International Committee on Standardized Genetic Nomenclature for Mice. While symbols and names aid in identifying strains correctly, the flat nature of this information prohibits easy search and retrieval, as well as other data mining functions. In order to improve these functionalities, particularly in ontology-based tools, the Rat Strain Ontology (RS) was developed. The Rat Strain Ontology (RS) reflects the breeding history, parental background, and genetic manipulation of rat strains. This controlled vocabulary organizes strains by type: inbred, outbred, chromosome altered, congenic, mutant and so on. In addition, under the chromosome altered category, strains are organized by chromosome, and further by type of manipulations, such as mutant or congenic. This allows users to easily retrieve strains of interest with modifications in specific genomic regions. The ontology was developed using the Open Biological and Biomedical Ontology (OBO) file format, and is organized on the Directed Acyclic Graph (DAG) structure. Rat Strain Ontology IDs are included as part of the strain report (RS: ######). As rat researchers are often unaware of the number of substrains or altered strains within a breeding line, this vocabulary now provides an easy way to retrieve all substrains and accompanying information. Its usefulness is particularly evident in tools such as the PhenoMiner at RGD, where users can now easily retrieve phenotype measurement data for related strains, strains with similar backgrounds or those with similar introgressed regions. This

  19. Direct measurement of skin friction with a new instrument

    Science.gov (United States)

    Vakili, A. D.; Wu, J. M.

    1986-01-01

    The design and performance of a small belt-type skin-friction gage to measure wall shear-stress coefficients in wind-tunnel testing are described, summarizing the report of Vakili and Wu (1982). The sensor employs a flexible belt of variable surface characteristics; this belt, wrapped tightly around two cylinders mounted on frictionless flexures, is equipped with strain gages to estimate the deflection of the belt by the flow. An alternative approach uses IR illumination, optical fibers, and a photosensitive transistor, permitting direct measurement of the belt deflection. Drawings, diagrams, and graphs of sample data are provided.

  20. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    International Nuclear Information System (INIS)

    Wang, Huaping; Xiang, Ping

    2016-01-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks. (paper)

  1. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    Science.gov (United States)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  2. Self-sensing piezoresistive cement composite loaded with carbon black particles

    KAUST Repository

    Monteiro, André O.

    2017-04-27

    Strain sensors can be embedded in civil engineering infrastructures to perform real-time service life monitoring. Here, the sensing capability of piezoresistive cement-based composites loaded with carbon black (CB) particles is investigated. Several composite mixtures, with a CB filler loading up to 10% of binder mass, were mechanically tested under cyclic uniaxial compression, registering variations in electrical resistance as a function of deformation. The results show a reversible piezoresistive behaviour and a quasi-linear relation between the fractional change in resistivity and the compressive strain, in particular for those compositions with higher amount of CB. Gage factors of 30 and 24 were found for compositions containing 7 and 10% of binder mass, respectively. These findings suggest that the CB-cement composites may be a promising active material to monitor compressive strain in civil infrastructures such as concrete bridges and roadways.

  3. Design of bridge crane girder strain acquisition system based on virtual instrument

    Directory of Open Access Journals (Sweden)

    Wenxue LIU

    Full Text Available Girder is an important part of the bridge crane, which is also the main force element. In order to prevent accidents, it is necessary to collect the bridge crane girder stress data to analyse the fatigue life. This paper constructs a bridge crane girder strain acquisition system. The hardware system consists of sensors, connectors, data acquisition cards, wireless data transmission groups, POE power and host computer. The software system consists of NI MAX to interface with the computer's NI hardware and software resources,and LabVIEW programming to display and storage the girder strain data. Through this system, positions and working days strain data acquisition for the 50/10 t bridge crane girder gets the key positions strain data. The results show that the girder strain data acquisition system runs stably, channel signals of acquisition task transmit accurately, and the terminal data stores competely, meeting the detection requirements, which provides an important data support for the subsequent fatigue analysis and accurate remaining service life prediction of the crane girder.

  4. Passive wireless strain measurement based upon the Villari effect and giant magnetoresistance

    Science.gov (United States)

    Windl, Roman; Bruckner, Florian; Abert, Claas; Huber, Christian; Vogler, Christoph; Huber, Thomas; Oezelt, Harald; Suess, Dieter

    2016-12-01

    A passive wireless radio frequency-identification (RFID) stress/strain sensor is presented. Stress is transformed into a change of magnetic field by utilizing an amorphous metal ribbon. This magnetic field change is measured by a giant magnetoresistance magnetic field sensor and converted into a digital value with a RFID chip for wireless access. Standard metal foil strain gauges have a gauge factor GF from around 2 to 5 and suffer from the disadvantage of a physically connected power supply and measurement equipment. For the presented sensor, a strain range of -10 μm/m to 190 μm/m results in a linear sensor response, a gauge factor of GF ≈ 245, and a detectivity of 4.10 nm/m 1/√{Hz } . The detectivity of the presented sensor is similar to the detectivity of a reference metal foil strain gauge. Due to low power consumption and easy signal analysis, this sensor is well suited for long term strain measurement inside closed spaces. RFID adds features like multiple tag detection, wireless passive operation and a user data storage.

  5. Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors.

    Science.gov (United States)

    Sahatiya, Parikshit; Badhulika, Sushmee

    2017-03-03

    This paper reports a new type of electronic, recoverable skin-like pressure and strain sensor, produced on a flexible, biodegradable pencil-eraser substrate and fabricated using a solvent-free, low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNT) film, the strain sensing element, was patterned on pencil eraser with a rolling pin and a pre-compaction mechanical press. This induces high interfacial bonding between the MWCNTs and the eraser substrate, which enables the sensor to achieve recoverability under ambient conditions. The eraser serves as a substrate for strain sensing, as well as acting as a dielectric for capacitive pressure sensing, thereby eliminating the dielectric deposition step, which is crucial in capacitive-based pressure sensors. The strain sensing transduction mechanism is attributed to the tunneling effect, caused by the elastic behavior of the MWCNTs and the strong mechanical interlock between MWCNTs and the eraser substrate, which restricts slippage of MWCNTs on the eraser thereby minimizing hysteresis. The gauge factor of the strain sensor was calculated to be 2.4, which is comparable to and even better than most of the strain and pressure sensors fabricated with more complex designs and architectures. The sensitivity of the capacitive pressure sensor was found to be 0.135 MPa -1 .To demonstrate the applicability of the sensor as artificial electronic skin, the sensor was assembled on various parts of the human body and corresponding movements and touch sensation were monitored. The entire fabrication process is scalable and can be integrated into large areas to map spatial pressure distributions. This low-cost, easily scalable MWCNT pin-rolled eraser-based pressure and strain sensor has huge potential in applications such as artificial e-skin in flexible electronics and medical diagnostics, in particular in surgery as it provides high spatial resolution without a complex nanostructure architecture.

  6. A TaqMan-based real time PCR assay for specific detection and quantification of Xylella fastidiosa strains causing bacterial leaf scorch in oleander.

    Science.gov (United States)

    Guan, Wei; Shao, Jonathan; Singh, Raghuwinder; Davis, Robert E; Zhao, Tingchang; Huang, Qi

    2013-02-15

    A TaqMan-based real-time PCR assay was developed for specific detection of strains of X. fastidiosa causing oleander leaf scorch. The assay uses primers WG-OLS-F1 and WG-OLS-R1 and the fluorescent probe WG-OLS-P1, designed based on unique sequences found only in the genome of oleander strain Ann1. The assay is specific, allowing detection of only oleander-infecting strains, not other strains of X. fastidiosa nor other plant-associated bacteria tested. The assay is also sensitive, with a detection limit of 10.4fg DNA of X. fastidiosa per reaction in vitro and in planta. The assay can also be applied to detect low numbers of X. fastidiosa in insect samples, or further developed into a multiplex real-time PCR assay to simultaneously detect and distinguish diverse strains of X. fastidiosa that may occupy the same hosts or insect vectors. Specific and sensitive detection and quantification of oleander strains of X. fastidiosa should be useful for disease diagnosis, epidemiological studies, management of oleander leaf scorch disease, and resistance screening for oleander shrubs. Published by Elsevier B.V.

  7. Evaluating location specific strain rates, temperatures, and accumulated strains in friction welds through microstructure modeling

    Directory of Open Access Journals (Sweden)

    Javed Akram

    2018-04-01

    Full Text Available A microstructural simulation method is adopted to predict the location specific strain rates, temperatures, grain evolution, and accumulated strains in the Inconel 718 friction welds. Cellular automata based 2D microstructure model was developed for Inconel 718 alloy using theoretical aspects of dynamic recrystallization. Flow curves were simulated and compared with experimental results using hot deformation parameter obtained from literature work. Using validated model, simulations were performed for friction welds of Inconel 718 alloy generated at three rotational speed i.e., 1200, 1500, and 1500 RPM. Results showed the increase in strain rates with increasing rotational speed. These simulated strain rates were found to match with the analytical results. Temperature difference of 150 K was noticed from center to edge of the weld. At all the rotational speeds, the temperature was identical implying steady state temperature (0.89Tm attainment. Keywords: Microstructure modeling, Dynamic recrystallization, Friction welding, Inconel 718, EBSD, Hot deformation, Strain map

  8. CONSTRUCTION AND ADAPTATION OF GENETIC SEXING STRAIN OF THE MEDFLY CERATITIS CAPITATA (WIED.)BASED ON TEMPERATURE SENSITIVE MUTATION IN THE EGYPTIAN FRUITFLY LABORATORIES

    International Nuclear Information System (INIS)

    SHOMAN, A.A.

    2007-01-01

    Special strains that produce only males are used now for the control of the medfly Ceratitis capitata using the sterile insect technique. The use of these strains has a major impact on the overall efficiency of SIT, by increasing significantly the amount of sterility induced in field population comparing by using bisexual strains. Genetic sexing strains (GSS) are based on the use of male-linked chromosomal translocations which enable selectable marker genes to be linked to the male sex. Two basic components are required in the medfly to construct and adapt a laboratory strain which exhibits genetic sexing properties. The first is Y-auto some translocation strain, which enables male and female pupae to be differentiated on the basis of colour and the second is temperature sensitive lethal (tsl) mutation strain, which enables females to be killed by an increase in ambient temperature

  9. Microarray-based comparative genomic profiling of reference strains and selected Canadian field isolates of Actinobacillus pleuropneumoniae

    Directory of Open Access Journals (Sweden)

    MacInnes Janet I

    2009-02-01

    Full Text Available Abstract Background Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is a highly contagious respiratory pathogen that causes severe losses to the swine industry worldwide. Current commercially-available vaccines are of limited value because they do not induce cross-serovar immunity and do not prevent development of the carrier state. Microarray-based comparative genomic hybridizations (M-CGH were used to estimate whole genomic diversity of representative Actinobacillus pleuropneumoniae strains. Our goal was to identify conserved genes, especially those predicted to encode outer membrane proteins and lipoproteins because of their potential for the development of more effective vaccines. Results Using hierarchical clustering, our M-CGH results showed that the majority of the genes in the genome of the serovar 5 A. pleuropneumoniae L20 strain were conserved in the reference strains of all 15 serovars and in representative field isolates. Fifty-eight conserved genes predicted to encode for outer membrane proteins or lipoproteins were identified. As well, there were several clusters of diverged or absent genes including those associated with capsule biosynthesis, toxin production as well as genes typically associated with mobile elements. Conclusion Although A. pleuropneumoniae strains are essentially clonal, M-CGH analysis of the reference strains of the fifteen serovars and representative field isolates revealed several classes of genes that were divergent or absent. Not surprisingly, these included genes associated with capsule biosynthesis as the capsule is associated with sero-specificity. Several of the conserved genes were identified as candidates for vaccine development, and we conclude that M-CGH is a valuable tool for reverse vaccinology.

  10. Failure strains and proposed limit strains for an reactor pressure vessel under severe accident conditions

    International Nuclear Information System (INIS)

    Krieg, R.

    2005-01-01

    The local failure strains of essential design elements of a reactor vessel are investigated. The size influence of the structure is of special interest. Typical severe accident conditions including elevated temperatures and dynamic loads are considered. The main part of work consists of test families with specimens under uniaxial and biaxial load. Within one test family the specimen geometry and the load conditions are similar, but the size is varied up to reactor dimensions. Special attention is given to geometries with a hole or a notch causing non-uniform stress and strain distributions typical for the reactor vessel. A key problem is to determine the local failure strain. Here suitable methods had to be developed including the so-called 'vanishing gap method', and the 'forging die method'. They are based on post-test geometrical measurements of the fracture surfaces and reconstructions of the related strain fields using finite element models. The results indicate that stresses versus dimensionless deformations are approximately size independent up to failure for specimens of similar geometry under similar load conditions. Local failure strains could be determined. The values are rather high and size dependent. Statistical evaluation allow the proposal of limit strains which are also size dependent. If these limit strains are not exceeded, the structures will not fracture

  11. Photograph-based ergonomic evaluations using the Rapid Office Strain Assessment (ROSA).

    Science.gov (United States)

    Liebregts, J; Sonne, M; Potvin, J R

    2016-01-01

    The Rapid Office Strain Assessment (ROSA) was developed to assess musculoskeletal disorder (MSD) risk factors for computer workstations. This study examined the validity and reliability of remotely conducted, photo-based assessments using ROSA. Twenty-three office workstations were assessed on-site by an ergonomist, and 5 photos were obtained. Photo-based assessments were conducted by three ergonomists. The sensitivity and specificity of the photo-based assessors' ability to correctly classify workstations was 79% and 55%, respectively. The moderate specificity associated with false positive errors committed by the assessors could lead to unnecessary costs to the employer. Error between on-site and photo-based final scores was a considerable ∼2 points on the 10-point ROSA scale (RMSE = 2.3), with a moderate relationship (ρ = 0.33). Interrater reliability ranged from fairly good to excellent (ICC = 0.667-0.856) and was comparable to previous results. Sources of error include the parallax effect, poor estimations of small joint (e.g. hand/wrist) angles, and boundary errors in postural binning. While this method demonstrated potential validity, further improvements should be made with respect to photo-collection and other protocols for remotely-based ROSA assessments. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. The Contribution of Experimental in vivo Models to Understanding the Mechanisms of Adaptation to Mechanical Loading in Bone

    Science.gov (United States)

    Meakin, Lee B.; Price, Joanna S.; Lanyon, Lance E.

    2014-01-01

    Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones’ strain environment produced by direct, controlled artificial bone loading. Jiri Hert introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gages to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced. Experiments combining strain gage instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats, and mice has yielded significant insight into the control of strain-related adaptive (re)modeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice, which is now the model of choice for many studies. Together such studies have demonstrated that over the physiological strain range, bone’s mechanically adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles, and that these are most effective when interrupted by short periods of rest between them

  13. Metabolomics-based prediction models of yeast strains for screening of metabolites contributing to ethanol stress tolerance

    Science.gov (United States)

    Hashim, Z.; Fukusaki, E.

    2016-06-01

    The increased demand for clean, sustainable and renewable energy resources has driven the development of various microbial systems to produce biofuels. One of such systems is the ethanol-producing yeast. Although yeast produces ethanol naturally using its native pathways, production yield is low and requires improvement for commercial biofuel production. Moreover, ethanol is toxic to yeast and thus ethanol tolerance should be improved to further enhance ethanol production. In this study, we employed metabolomics-based strategy using 30 single-gene deleted yeast strains to construct multivariate models for ethanol tolerance and screen metabolites that relate to ethanol sensitivity/tolerance. The information obtained from this study can be used as an input for strain improvement via metabolic engineering.

  14. An analytical method for calculating stresses and strains of ATF cladding based on thick walled theory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hyun; Kim, Hak Sung [Hanyang University, Seoul (Korea, Republic of); Kim, Hyo Chan; Yang, Yong Sik; In, Wang kee [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, an analytical method based on thick walled theory has been studied to calculate stress and strain of ATF cladding. In order to prescribe boundary conditions of the analytical method, two algorithms were employed which are called subroutine 'Cladf' and 'Couple' of FRACAS, respectively. To evaluate the developed method, equivalent model using finite element method was established and stress components of the method were compared with those of equivalent FE model. One of promising ATF concepts is the coated cladding, which take advantages such as high melting point, a high neutron economy, and low tritium permeation rate. To evaluate the mechanical behavior and performance of the coated cladding, we need to develop the specified model to simulate the ATF behaviors in the reactor. In particular, the model for simulation of stress and strain for the coated cladding should be developed because the previous model, which is 'FRACAS', is for one body model. The FRACAS module employs the analytical method based on thin walled theory. According to thin-walled theory, radial stress is defined as zero but this assumption is not suitable for ATF cladding because value of the radial stress is not negligible in the case of ATF cladding. Recently, a structural model for multi-layered ceramic cylinders based on thick-walled theory was developed. Also, FE-based numerical simulation such as BISON has been developed to evaluate fuel performance. An analytical method that calculates stress components of ATF cladding was developed in this study. Thick-walled theory was used to derive equations for calculating stress and strain. To solve for these equations, boundary and loading conditions were obtained by subroutine 'Cladf' and 'Couple' and applied to the analytical method. To evaluate the developed method, equivalent FE model was established and its results were compared to those of analytical model. Based on the

  15. Comprehensive comparison of macro-strain mode and displacement mode based on different sensing technologies

    Science.gov (United States)

    Hong, Wan; Zhang, Jian; Wu, Gang; Wu, Zhishen

    2015-01-01

    A comprehensive comparison of macro-strain mode and displacement mode obtained from distributed macro-strain sensing and high-density point sensing (such as accelerometers) technologies is presented in this paper. Theoretical derivation reveals that displacement mode shape from accelerometers and modal macro-strain from distributed macro-strain sensors can be converted into each other. However, it is realized that displacement mode shape as global behavior of a structure can still be calculated with high-precision from modal macro-strain considering measurement errors in practical monitoring, whereas modal macro-strain can hardly be accurately achieved from displacement mode shape when signals are corrupted with noise in practical monitoring. Simulation and experiment results show that the calculated displacement mode shapes are very close to the actual ones even if the noise level reaches 5%. Meanwhile, damage index using measured modal macro-strain is still effective when the measurements are corrupted with 5% noise which is reliable for damage detection in practical monitoring. Calculating modal macro-strain from noise-polluted displacement mode shape will cause an unacceptable error if the noise level reaches only 0.5%, which has been verified in the simulation.

  16. Strain sensor system based on amorphous ferromagnetic ribbons

    Czech Academy of Sciences Publication Activity Database

    Jančárik, V.; Švec, P.; Kraus, Luděk

    2002-01-01

    Roč. 53, 10/S (2002), s. 92-94 ISSN 1335-3632. [Magnetic Measurements'02. Bratislava, 11.09.2002-13.09.2002] Grant - others:NATO(XX) SfP 973649 Institutional research plan: CEZ:AV0Z1010914 Keywords : strain sensor * magnetoelastic effect * amorphous ferromagnetic Subject RIV: BM - Solid Matter Physics ; Magnetism

  17. MODERNIZATION OF GENEOTIPING OF STRAINS B. PERTUSSIS

    Directory of Open Access Journals (Sweden)

    G. A. Ivashinnikova

    2013-01-01

    Full Text Available The new rapid molecular genotyping method was developed for studying the structure of ptxP promoter of pertussis toxin. Method is based on PCR-RFLP analysis, which allows studying the specific restriction profiles of the B. pertussis strains and allows differentiation of the strains with the ptxP structural particularities. The developed method for genotyping of strains of B. pertussis can be hhelpful when monitoring strains of the causative agent of whooping cough in system of an epidemiological surveillance over pertussis infections, allowing observation over circulating population of B.pertussis, revealing strains of the causative agent of whooping cough with high production of pertussis toxin and to watch their distribution.

  18. Comparative genomic characterization of citrus-associated Xylella fastidiosa strains

    Directory of Open Access Journals (Sweden)

    Nunes Luiz R

    2007-12-01

    Full Text Available Abstract Background The xylem-inhabiting bacterium Xylella fastidiosa (Xf is the causal agent of Pierce's disease (PD in vineyards and citrus variegated chlorosis (CVC in orange trees. Both of these economically-devastating diseases are caused by distinct strains of this complex group of microorganisms, which has motivated researchers to conduct extensive genomic sequencing projects with Xf strains. This sequence information, along with other molecular tools, have been used to estimate the evolutionary history of the group and provide clues to understand the capacity of Xf to infect different hosts, causing a variety of symptoms. Nonetheless, although significant amounts of information have been generated from Xf strains, a large proportion of these efforts has concentrated on the study of North American strains, limiting our understanding about the genomic composition of South American strains – which is particularly important for CVC-associated strains. Results This paper describes the first genome-wide comparison among South American Xf strains, involving 6 distinct citrus-associated bacteria. Comparative analyses performed through a microarray-based approach allowed identification and characterization of large mobile genetic elements that seem to be exclusive to South American strains. Moreover, a large-scale sequencing effort, based on Suppressive Subtraction Hybridization (SSH, identified 290 new ORFs, distributed in 135 Groups of Orthologous Elements, throughout the genomes of these bacteria. Conclusion Results from microarray-based comparisons provide further evidence concerning activity of horizontally transferred elements, reinforcing their importance as major mediators in the evolution of Xf. Moreover, the microarray-based genomic profiles showed similarity between Xf strains 9a5c and Fb7, which is unexpected, given the geographical and chronological differences associated with the isolation of these microorganisms. The newly

  19. Experimental and Computational Investigation of Triple-rotating Blades in a Mower Deck

    Science.gov (United States)

    Chon, Woochong; Amano, Ryoichi S.

    Experimental and computational studies were performed on the 1.27m wide three-spindle lawn mower deck with side discharge arrangement. Laser Doppler Velocimetry was used to measure the air velocity at 12 different sections under the mower deck. The high-speed video camera test provided valuable visual evidence of airflow and grass discharge patterns. The strain gages were attached at several predetermined locations of the mower blades to measure the strain. In computational fluid dynamics work, computer based analytical studies were performed. During this phase of work, two different trials were attempted. First, two-dimensional blade shapes at several arbitrary radial sections were selected for flow computations around the blade model. Finally, a three-dimensional full deck model was developed and compared with the experimental results.

  20. Fracture behavior of W based materials

    International Nuclear Information System (INIS)

    Hack, J.E.

    1991-01-01

    This report describes the results of a program to investigate the fracture properties of tungsten based materials. In particular, the role of crack velocity on crack instability was determined in a W-Fe-Ni-Co ''heavy alloy'' and pure polycrystalline tungsten. A considerable effort was expended on the development of an appropriate crack velocity gage for use on these materials. Having succeeded in that, the gage technology was employed to determine the crack velocity response to the applied level of stress intensity factor at the onset of crack instability in pre-cracked specimens. The results were also correlated to the failure mode observed in two material systems of interest. Major results include: (1) unstable crack velocity measurements on metallic specimens which require high spatial resolution require the use of brittle, insulating substrates, as opposed to the ductile, polymer based substrates employed in low spatial resolution measurements; and (2) brittle failure modes, such as cleavage, are characterized by relatively slow unstable crack velocities while evidence of high degrees of deformation are associated with failures which proceed at high unstable crack velocities. This latter behavior is consistent with the predictions of the modeling of Hack et al and may have a significant impact on the interpretation of fractographs in general

  1. Microstructurally Based Prediction of High Strain Failure Modes in Crystalline Solids

    Science.gov (United States)

    2016-07-05

    interfaces in hcp– fcc systems subjected to high strain-rate deformation and fracture modes, Journal of Materials Research, (8 2015): 0. doi: 10.1557/jmr...rupture • Comparison and validation with experimental observations/ measurements • New dislocation-density crystalline plasticity that accounts for...relationships between coherent interfaces in hcp– fcc systems subjected to high strain-rate deformation and fracture modes, Journal of Materials Research, Vol. 30

  2. Loading and fracture response of CFRP-to-steel adhesively bonded joints with thick adherents – Part I: Experiments

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Tsouvalis, Nicholas G.

    2013-01-01

    as the structural adherent materials. Seven SLJ geometries have been considered for fabrication and experimental testing. The SLJ specimens were tested under a uni-axial tensile quasi-static displacement. Strain gage sensors were used, in order to study their potential for monitoring damage initiation occurring...

  3. Intrinsic Embedded Sensors for Polymeric Mechatronics: Flexure and Force Sensing

    Directory of Open Access Journals (Sweden)

    Leif P. Jentoft

    2014-02-01

    Full Text Available While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm, three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.

  4. Experimental Analysis of Residual Stresses in Samples of Austenitic Stainless Steel Welded on Martensitic Stainless Steel Used for Kaplan Blades Repairs

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2011-01-01

    Full Text Available Residual stresses occur in materials as a result of mechanical processes: welding, machining, grinding etc. If residual stresses reach high values they can accelerate the occurrence of cracks and erosion of material. An experimental research was made in order to study the occurrence of residual stresses in the repaired areas of hydraulic turbine components damaged by cavitation erosion. An austenitic stainless steel was welded in various layer thicknesses on a martensitic stainless steel base. The residual stresses were determined using the hole drilling strain gage method.

  5. Evaluation of the dynamic behavior of a Pelton runner based on strain gauge measurements

    Science.gov (United States)

    Mack, Reiner; Probst, Christian

    2016-11-01

    A reliable mechanical design of Pelton runners is very important in the layout of new installations and modernizations. Especially in horizontal machines, where the housing is not embedded into concrete, a rupture of a runner bucket can have severe consequences. Even if a crack in the runner is detected on time, the outage time that follows the malfunction of the runner is shortening the return of investment. It is a fact that stresses caused by the runner rotation and the jet forces are superposed by high frequent dynamic stresses. In case of resonance it even can be the dominating effect that is limiting the lifetime of a runner. Therefore a clear understanding of the dynamic mechanisms is essential for a safe runner design. This paper describes the evaluation of the dynamic behavior of a Pelton runner installed in a model turbine based on strain gauge measurements. Equipped with strain gauges at the root area of the buckets, the time responses of the strains under the influence of various operational parameters were measured. As a result basic theories for the jet bucket excitation were verified and the influence of the water mass was detected by evaluating the frequency shift in case of resonance. Furthermore, the influence of the individual bucket masses onto the dynamic behaviour for different mode shapes got measured.

  6. The impact of elastic and plastic strain on relaxation and crystallization of Pd–Ni–P-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Mitrofanov, Yu.P.; Peterlechner, M.; Binkowski, I.; Zadorozhnyy, M.Yu.; Golovin, I.S.; Divinski, S.V.; Wilde, G.

    2015-01-01

    The effects of deformation and subsequent heat treatment on the low-temperature heat capacity, enthalpy relaxation rate and mechanical losses of two Pd–Ni–P-based bulk metallic glasses of slightly different compositions and different thermal stabilities have been investigated. It was found that the crystallization temperatures decreased significantly with imposed strain and the effect was more pronounced for the alloy with a higher thermal stability. The boson heat capacity peak increases with increasing strain in both alloys. However, after annealing treatments above room temperature, it relaxes to a lower enthalpy state as compared to that of the as-quenched state for the alloy with a lower thermal stability. The existence of two counteracting processes that might be related to different shear band structures within one homogeneously deformed sample is suggested. These results agree with the internal friction data, which indicate different regimes of mechanical damping as a function of the strain amplitude, while the critical amplitude of a transition between the regimes depends on the imposed strain. The results are interpreted within the energy landscape approach and advocate that the composition-dependent local atomic configurations affect significantly the response of the glass to an applied strain

  7. Influence of strain on dislocation core in silicon

    Science.gov (United States)

    Pizzagalli, L.; Godet, J.; Brochard, S.

    2018-05-01

    First principles, density functional-based tight binding and semi-empirical interatomic potentials calculations are performed to analyse the influence of large strains on the structure and stability of a 60? dislocation in silicon. Such strains typically arise during the mechanical testing of nanostructures like nanopillars or nanoparticles. We focus on bi-axial strains in the plane normal to the dislocation line. Our calculations surprisingly reveal that the dislocation core structure largely depends on the applied strain, for strain levels of about 5%. In the particular case of bi-axial compression, the transformation of the dislocation to a locally disordered configuration occurs for similar strain magnitudes. The formation of an opening, however, requires larger strains, of about 7.5%. Furthermore, our results suggest that electronic structure methods should be favoured to model dislocation cores in case of large strains whenever possible.

  8. International Clostridium difficile animal strain collection and large diversity of animal associated strains

    DEFF Research Database (Denmark)

    Janezic, Sandra; Zidaric, Valerija; Pardon, Bart

    2014-01-01

    Background: Clostridium difficile is an important cause of intestinal infections in some animal species and animals might be a reservoir for community associated human infections. Here we describe a collection of animal associated C. difficile strains from 12 countries based on inclusion criteria...... of one strain (PCR ribotype) per animal species per laboratory. Results: Altogether 112 isolates were collected and distributed into 38 PCR ribotypes with agarose based approach and 50 PCR ribotypes with sequencer based approach. Four PCR ribotypes were most prevalent in terms of number of isolates...... as well as in terms of number of different host species: 078 (14.3% of isolates; 4 hosts), 014/020 (11.6%; 8 hosts); 002 (5.4%; 4 hosts) and 012 (5.4%; 5 hosts). Two animal hosts were best represented; cattle with 31 isolates (20 PCR ribotypes; 7 countries) and pigs with 31 isolates (16 PCR ribotypes; 10...

  9. MBE growth of Topological Isolators based on strained semi-metallic HgCdTe layers

    Science.gov (United States)

    Grendysa, J.; Tomaka, G.; Sliz, P.; Becker, C. R.; Trzyna, M.; Wojnarowska-Nowak, R.; Bobko, E.; Sheregii, E. M.

    2017-12-01

    Particularities of Molecular Beam Epitaxial (MBE) technology for the growth of Topological Insulators (TI) based on the semi-metal Hg1-xCdx Te are presented. A series of strained layers grown on GaAs substrates with a composition close to the 3D Dirac point were studied. The composition of the layers was verified by means of the position of the E1 maximum in optical reflectivity in the visible region. The surface morphology was determined via atomic force and electron microscopy. Magneto-transport measurements show quantized Hall resistance curves and Shubnikov de Hass oscillations (up to 50 K). It has been demonstrated that a well-developed MBE technology enables one to grow strained Hg1-xCdx Te layers on GaAs/CdTe substrates with a well-defined composition near the 3D Dirac point and consequently allows one to produce a 3D topological Dirac semimetal - 3D analogy of graphene - for future applications.

  10. Flux control-based design of furfural-resistance strains of Saccharomyces cerevisiae for lignocellulosic biorefinery.

    Science.gov (United States)

    Unrean, Pornkamol

    2017-04-01

    We have previously developed a dynamic flux balance analysis of Saccharomyces cerevisiae for elucidation of genome-wide flux response to furfural perturbation (Unrean and Franzen, Biotechnol J 10(8):1248-1258, 2015). Herein, the dynamic flux distributions were analyzed by flux control analysis to identify target overexpressed genes for improved yeast robustness against furfural. The flux control coefficient (FCC) identified overexpressing isocitrate dehydrogenase (IDH1), a rate-controlling flux for ethanol fermentation, and dicarboxylate carrier (DIC1), a limiting flux for cell growth, as keys of furfural-resistance phenotype. Consistent with the model prediction, strain characterization showed 1.2- and 2.0-fold improvement in ethanol synthesis and furfural detoxification rates, respectively, by IDH1 overexpressed mutant compared to the control. DIC1 overexpressed mutant grew at 1.3-fold faster and reduced furfural at 1.4-fold faster than the control under the furfural challenge. This study hence demonstrated the FCC-based approach as an effective tool for guiding the design of robust yeast strains.

  11. Estimation of piping temperature fluctuations based on external strain measurements

    International Nuclear Information System (INIS)

    Morilhat, P.; Maye, J.P.

    1993-01-01

    Due to the difficulty to carry out measurements at the inner sides of nuclear reactor piping subjected to thermal transients, temperature and stress variations in the pipe walls are estimated by means of external thermocouples and strain-gauges. This inverse problem is solved by spectral analysis. Since the wall harmonic transfer function (response to a harmonic load) is known, the inner side signal will be obtained by convolution of the inverse transfer function of the system and of the strain measurement enables detection of internal temperature fluctuations in a frequency range beyond the scope of the thermocouples. (authors). 5 figs., 3 refs

  12. Dielectric properties of zirconium dioxide-based ceramics

    International Nuclear Information System (INIS)

    Vladimirova, O.S.; Gruzdev, A.I.; Koposova, Z.L.; Lyutsareva, L.A.

    1985-01-01

    This paper studies the dielectric properties of materials based on stabilized zirconium dioxide with Co 3 O 4 additions possessing a high temperature-coefficient of resistance. These materials are promising for manufacturing resistance temperature gages that work under an oxidizing atmosphere at 370-1270 degrees K. The obtained results indicate the possibility of developing temperature gases possessing highsensitivity from stabilized zirconium dioxide with Co 3 O 4 additions

  13. Heat-flux gage measurements on a flat plate at a Mach number of 4.6 in the VSD high speed wind tunnel, a feasibility test (LA28). [wind tunnel tests of measuring instruments for boundary layer flow

    Science.gov (United States)

    1975-01-01

    The feasibility of employing thin-film heat-flux gages was studied as a method of defining boundary layer characteristics at supersonic speeds in a high speed blowdown wind tunnel. Flow visualization techniques (using oil) were employed. Tabulated data (computer printouts), a test facility description, and photographs of test equipment are given.

  14. Visual Measurement of Suture Strain for Robotic Surgery

    Directory of Open Access Journals (Sweden)

    John Martell

    2011-01-01

    Full Text Available Minimally invasive surgical procedures offer advantages of smaller incisions, decreased hospital length of stay, and rapid postoperative recovery to the patient. Surgical robots improve access and visualization intraoperatively and have expanded the indications for minimally invasive procedures. A limitation of the DaVinci surgical robot is a lack of sensory feedback to the operative surgeon. Experienced robotic surgeons use visual interpretation of tissue and suture deformation as a surrogate for tactile feedback. A difficulty encountered during robotic surgery is maintaining adequate suture tension while tying knots or following a running anastomotic suture. Displaying suture strain in real time has potential to decrease the learning curve and improve the performance and safety of robotic surgical procedures. Conventional strain measurement methods involve installation of complex sensors on the robotic instruments. This paper presents a noninvasive video processing-based method to determine strain in surgical sutures. The method accurately calculates strain in suture by processing video from the existing surgical camera, making implementation uncomplicated. The video analysis method was developed and validated using video of suture strain standards on a servohydraulic testing system. The video-based suture strain algorithm is shown capable of measuring suture strains of 0.2% with subpixel resolution and proven reliability under various conditions.

  15. The effect of strain distribution on microstructural developments during forging in a newly developed nickel base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, R.C. [Institute of Structural Materials, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN (United Kingdom); Argyrakis, C.; Hardy, M.C. [Rolls-Royce plc, PO Box 31, Derby DE24 8BJ (United Kingdom); Birosca, S., E-mail: 522042@swansea.ac.uk [Institute of Structural Materials, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN (United Kingdom)

    2016-01-27

    In the current study, the effect of strain distribution in a simple forging geometry on the propensity for recrystallization, and its impact on mechanical properties has been investigated in a newly developed experimental nickel-based superalloy. The new alloy was produced via a Powder Metallurgy (PM) route and was subsequently Hot Isostatic Processed (HIP), isothermally forged, and heat treated to produce a coarse grain microstructure with average grain size of 23–32 μm. The alloy was examined by means of Electron Back-Scatter Diffraction (EBSD) to characterise the microstructural features such as grain orientation and morphology, grain boundary characteristics and the identification of potential Prior Particle Boundaries (PPBs) throughout each stage of the processing route. Results at the central region of the cross-section plane parallel to the loading direction showed significant microstructural differences across the forging depth. This microstructural variation was found to be highly dependent on the value of local strain imparted during forging such that areas of low effective strain showed partial recrystallisation and a necklace grain structure was observed following heat treatment. Meanwhile, a fully recrystallised microstructure with no PPBs was observed in the areas of high strain values, in the central region of the forging.

  16. Strain Amount Dependent Grain Size and Orientation Developments during Hot Compression of a Polycrystalline Nickel Based Superalloy

    Directory of Open Access Journals (Sweden)

    Guoai He

    2017-02-01

    Full Text Available Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs to high angle grain boundaries (HAGBs and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary.

  17. Development of an embedded thin-film strain-gauge-based SHM network into 3D-woven composite structure for wind turbine blades

    Science.gov (United States)

    Zhao, Dongning; Rasool, Shafqat; Forde, Micheal; Weafer, Bryan; Archer, Edward; McIlhagger, Alistair; McLaughlin, James

    2017-04-01

    Recently, there has been increasing demand in developing low-cost, effective structure health monitoring system to be embedded into 3D-woven composite wind turbine blades to determine structural integrity and presence of defects. With measuring the strain and temperature inside composites at both in-situ blade resin curing and in-service stages, we are developing a novel scheme to embed a resistive-strain-based thin-metal-film sensory into the blade spar-cap that is made of composite laminates to determine structural integrity and presence of defects. Thus, with fiberglass, epoxy, and a thinmetal- film sensing element, a three-part, low-cost, smart composite laminate is developed. Embedded strain sensory inside composite laminate prototype survived after laminate curing process. The internal strain reading from embedded strain sensor under three-point-bending test standard is comparable. It proves that our proposed method will provide another SHM alternative to reduce sensing costs during the renewable green energy generation.

  18. Application of Lactobacillus acidophilus (LA 5) strain in fruit-based ice cream.

    Science.gov (United States)

    Senanayake, Suraji A; Fernando, Sirimali; Bamunuarachchi, Arthur; Arsekularatne, Mariam

    2013-11-01

    A study was performed to apply a probiotic strain into fermented ice cream mix with suitable fruit bases to develop a value-added product with a substantial level of viable organisms for a sufficient shelf life. Pure direct vat strain culture of Lactobacillus acidophilus (LA 5) in freeze-dried form was inoculated into a mixture of ice cream, frozen, and the number of viable organisms during frozen storage for a period of time was enumerated, using turbidity measurements with a spectrophotometer. An ice cream sample prepared without the probiotic culture was compared with the test sample for quality, by testing the basic quality parameters for ice cream. Results show a reduction in the over run of the probiotic ice cream compared to the nonprobiotic ice cream. Significantly high level (P ice cream. Significantly low pH level in the probiotic sample may be due to the lactic acid produced by the probiotic culture. No significant difference (P > 0.05) in the fat content in the two types of ice cream was observed. A significantly low level (P ice cream. Results show the presence of a sufficient number of viable organisms in the product for the 10-week period, which would be beneficial to consumers.

  19. Spring 2014 Internship Diffuser Data Analysis

    Science.gov (United States)

    Laigaie, Robert T.; Ryan, Harry M.

    2014-01-01

    J-2X engine testing on the A-2 test stand at the NASA John C. Stennis Space Center (SSC) has recently concluded. As part of that test campaign, the engine was operated at lower power levels in support of expanding the use of J-2X to other missions. However, the A-2 diffuser was not designed for engine testing at the proposed low power levels. To evaluate the risk of damage to the diffuser, computer simulations were created of the rocket engine exhaust plume inside the 50ft long, water-cooled, altitude-simulating diffuser. The simulations predicted that low power level testing would cause the plume to oscillate in the lower sections of the diffuser. This can possibly cause excessive vibrations, stress, and heat transfer from the plume to the diffuser walls. To understand and assess the performance of the diffuser during low power level engine testing, nine accelerometers and four strain gages were installed around the outer surface of the diffuser. The added instrumentation also allowed for the verification of the rocket exhaust plume computational model. Prior to engine hot-fire testing, a diffuser water-flow test was conducted to verify the proper operation of the newly installed instrumentation. Subsequently, two J-2X engine hot-fire tests were completed. Hot-Fire Test 1 was 11.5 seconds in duration, and accelerometer and strain data verified that the rocket engine plume oscillated in the lower sections of the diffuser. The accelerometers showed very different results dependent upon location. The diffuser consists of four sections, with Section 1 being closest to the engine nozzle and Section 4 being farthest from the engine nozzle. Section 1 accelerometers showed increased amplitudes at startup and shutdown, but low amplitudes while the diffuser was started. Section 3 accelerometers showed the opposite results with near zero G amplitudes prior to and after diffuser start and peak amplitudes to +/- 100G while the diffuser was started. Hot-Fire Test 1 strain gages

  20. Damage detection methodology under variable load conditions based on strain field pattern recognition using FBGs, nonlinear principal component analysis, and clustering techniques

    Science.gov (United States)

    Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham

    2018-01-01

    Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a

  1. A strain gradient plasticity theory with application to wire torsion

    KAUST Repository

    Liu, J. X.; El Sayed, Tamer S.

    2014-01-01

    Based on the framework of the existing strain gradient plasticity theories, we have examined three kinds of relations for the plastic strain dependence of the material intrinsic length scale, and thus developed updated strain gradient plasticity

  2. Differential stress transcriptome landscape of historic and recently emerged hypervirulent strains of Clostridium difficile strains determined using RNA-seq.

    Directory of Open Access Journals (Sweden)

    Joy Scaria

    Full Text Available C. difficile is the most common cause of nosocomial diarrhea in North America and Europe. Genomes of individual strains of C. difficile are highly divergent. To determine how divergent strains respond to environmental changes, the transcriptomes of two historic and two recently isolated hypervirulent strains were analyzed following nutrient shift and osmotic shock. Illumina based RNA-seq was used to sequence these transcriptomes. Our results reveal that although C. difficile strains contain a large number of shared and strain specific genes, the majority of the differentially expressed genes were core genes. We also detected a number of transcriptionally active regions that were not part of the primary genome annotation. Some of these are likely to be small regulatory RNAs.

  3. An alternative treatment of phenomenological higher-order strain-gradient plasticity theory

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2010-01-01

    strain is discussed, applying a dislocation theory-based consideration. Then, a differential equation for the equivalent plastic strain-gradient is introduced as an additional governing equation. Its weak form makes it possible to deduce and impose extra boundary conditions for the equivalent plastic...... strain. A connection between the present treatment and strain-gradient theories based on an extended virtual work principle is discussed. Furthermore, a numerical implementation and analysis of constrained simple shear of a thin strip are presented....

  4. Use of micro-CT-based finite element analysis to accurately quantify peri-implant bone strains: a validation in rat tibiae.

    Science.gov (United States)

    Torcasio, Antonia; Zhang, Xiaolei; Van Oosterwyck, Hans; Duyck, Joke; van Lenthe, G Harry

    2012-05-01

    Although research has been addressed at investigating the effect of specific loading regimes on bone response around the implant, a precise quantitative understanding of the local mechanical response close to the implant site is still lacking. This study was aimed at validating micro-CT-based finite element (μFE) models to assess tissue strains after implant placement in a rat tibia. Small implants were inserted at the medio-proximal site of 8 rat tibiae. The limbs were subjected to axial compression loading; strain close to the implant was measured by means of strain gauges. Specimen-specific μFE models were created and analyzed. For each specimen, 4 different models were created corresponding to different representations of the bone-implant interface: bone and implant were assumed fully osseointegrated (A); a low stiffness interface zone was assumed with thickness of 40 μm (B), 80 μm (C), and 160 μm (D). In all cases, measured and computational strains correlated highly (R (2) = 0.95, 0.92, 0.93, and 0.95 in A, B, C, and D, respectively). The averaged calculated strains were 1.69, 1.34, and 1.15 times higher than the measured strains for A, B, and C, respectively, and lower than the experimental strains for D (factor = 0.91). In conclusion, we demonstrated that specimen-specific FE analyses provide accurate estimates of peri-implant bone strains in the rat tibia loading model. Further investigations of the bone-implant interface are needed to quantify implant osseointegration.

  5. Static and Dynamic Strain Monitoring of Reinforced Concrete Components through Embedded Carbon Nanotube Cement-Based Sensors

    Directory of Open Access Journals (Sweden)

    Antonella D’Alessandro

    2017-01-01

    Full Text Available The paper presents a study on the use of cement-based sensors doped with carbon nanotubes as embedded smart sensors for static and dynamic strain monitoring of reinforced concrete (RC elements. Such novel sensors can be used for the monitoring of civil infrastructures. Because they are fabricated from a structural material and are easy to utilize, these sensors can be integrated into structural elements for monitoring of different types of constructions during their service life. Despite the scientific attention that such sensors have received in recent years, further research is needed to understand (i the repeatability and accuracy of sensors’ behavior over a meaningful number of sensors, (ii testing configurations and calibration methods, and (iii the sensors’ ability to provide static and dynamic strain measurements when actually embedded in RC elements. To address these research needs, this paper presents a preliminary characterization of the self-sensing capabilities and the dynamic properties of a meaningful number of cement-based sensors and studies their application as embedded sensors in a full-scale RC beam. Results from electrical and electromechanical tests conducted on small and full-scale specimens using different electrical measurement methods confirm that smart cement-based sensors show promise for both static and vibration-based structural health monitoring applications of concrete elements but that calibration of each sensor seems to be necessary.

  6. Hypervelocity technology carbon/carbon testing

    Science.gov (United States)

    Anselmo, John V.; Kretz, Lawrence O.

    The paper describes the procedures used at the Structures Test Laboratory of the Wright Laboratory's Flight Dynamics Directorate to test a carbon/carbon hot structure representing a typical hypersonic gliding body, and presents the results of tests. The forebody was heated to 1371 C over 13 test runs, using radiant quartz lamps; a vertical shear force of 5.34 kN was introduced to the nose at a stabilized temperature of 816 C. Test data were collected using prototype high-temperature strain gages, in-house-designed high-temperature extensometers, conventional strain gages, and thermocouples. Video footage was taken of all test runs. Test runs were successfully completed up to 1371 C with flight typical thermal gradients at heating rates up to 5.56 C/sec. Results showed that, overall, the termal test control systems performed as predicted and that test temperatures and thermal gradients were achieved to within about 5 percent in most cases.

  7. Flexible Strain Sensor Based on Layer-by-Layer Self-Assembled Graphene/Polymer Nanocomposite Membrane and Its Sensing Properties

    Science.gov (United States)

    Zhang, Dongzhi; Jiang, Chuanxing; Tong, Jun; Zong, Xiaoqi; Hu, Wei

    2018-04-01

    Graphene is a potential building block for next generation electronic devices including field-effect transistors, chemical sensors, and radio frequency switches. Investigations of strain application of graphene-based films have emerged in recent years, but the challenges in synthesis and processing achieving control over its fabrication constitute the main obstacles towards device applications. This work presents an alternative approach, layer-by-layer self-assembly, allowing a controllable fabrication of graphene/polymer film strain sensor on flexible substrates of polyimide with interdigital electrodes. Carboxylated graphene and poly (diallyldimethylammonium chloride) (PDDA) were exploited to form hierarchical nanostructure due to electrostatic action. The morphology and structure of the film were inspected by using scanning electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The strain-sensing properties of the graphene/PDDA film sensor were investigated through tuning micrometer caliper exertion and a PC-assisted piezoresistive measurement system. Experimental result shows that the sensor exhibited not only excellent response and reversibility behavior as a function of deflection, but also good repeatability and acceptable linearity. The strain-sensing mechanism of the proposed sensor was attributed to the electrical resistance change resulted from piezoresistive effect.

  8. Towards highly sensitive strain sensing based on nanostructured materials

    International Nuclear Information System (INIS)

    Dao, Dzung Viet; Nakamura, Koichi; Sugiyama, Susumu; Bui, Tung Thanh; Dau, Van Thanh; Yamada, Takeo; Hata, Kenji

    2010-01-01

    This paper presents our recent theoretical and experimental study of piezo-effects in nanostructured materials for highly sensitive, high resolution mechanical sensors. The piezo-effects presented here include the piezoresistive effect in a silicon nanowire (SiNW) and single wall carbon nanotube (SWCNT) thin film, as well as the piezo-optic effect in a Si photonic crystal (PhC) nanocavity. Firstly, the electronic energy band structure of the silicon nanostructure is discussed and simulated by using the First-Principles Calculations method. The result showed a remarkably different energy band structure compared with that of bulk silicon. This difference in the electronic state will result in different physical, chemical, and therefore, sensing properties of silicon nanostructures. The piezoresistive effects of SiNW and SWCNT thin film were investigated experimentally. We found that, when the width of ( 110 ) p-type SiNW decreases from 500 to 35 nm, the piezoresistive effect increases by more than 60%. The longitudinal piezoresistive coefficient of SWCNT thin film was measured to be twice that of bulk p-type silicon. Finally, theoretical investigations of the piezo-optic effect in a PhC nanocavity based on Finite Difference Time Domain (FDTD) showed extremely high resolution strain sensing. These nanostructures were fabricated based on top-down nanofabrication technology. The achievements of this work are significant for highly sensitive, high resolution and miniaturized mechanical sensors

  9. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches.

    Science.gov (United States)

    Schürch, A C; Arredondo-Alonso, S; Willems, R J L; Goering, R V

    2018-04-01

    Whole genome sequence (WGS)-based strain typing finds increasing use in the epidemiologic analysis of bacterial pathogens in both public health as well as more localized infection control settings. This minireview describes methodologic approaches that have been explored for WGS-based epidemiologic analysis and considers the challenges and pitfalls of data interpretation. Personal collection of relevant publications. When applying WGS to study the molecular epidemiology of bacterial pathogens, genomic variability between strains is translated into measures of distance by determining single nucleotide polymorphisms in core genome alignments or by indexing allelic variation in hundreds to thousands of core genes, assigning types to unique allelic profiles. Interpreting isolate relatedness from these distances is highly organism specific, and attempts to establish species-specific cutoffs are unlikely to be generally applicable. In cases where single nucleotide polymorphism or core gene typing do not provide the resolution necessary for accurate assessment of the epidemiology of bacterial pathogens, inclusion of accessory gene or plasmid sequences may provide the additional required discrimination. As with all epidemiologic analysis, realizing the full potential of the revolutionary advances in WGS-based approaches requires understanding and dealing with issues related to the fundamental steps of data generation and interpretation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. A rapid NMR-based method for discrimination of strain-specific cell wall teichoic acid structures reveals a third backbone type in Lactobacillus plantarum.

    Science.gov (United States)

    Tomita, Satoru; Tanaka, Naoto; Okada, Sanae

    2017-03-01

    The lactic acid bacterium Lactobacillus plantarum is capable of producing strain-specific structures of cell wall teichoic acid (WTA), an anionic polysaccharide found in the Gram-positive bacterial cell wall. In this study, we established a rapid, NMR-based procedure to discriminate WTA structures in this species, and applied it to 94 strains of L. plantarum. Six previously reported glycerol- and ribitol-containing WTA subtypes were successfully identified from 78 strains, suggesting that these were the dominant structures. However, the level of structural variety differed markedly among bacterial sources, possibly reflecting differences in strain-level microbial diversity. WTAs from eight strains were not identified based on NMR spectra and were classified into three groups. Structural analysis of a partial degradation product of an unidentified WTA produced by strain TUA 1496L revealed that the WTA was 1-O-β-d-glucosylglycerol. Two-dimensional NMR analysis of the polymer structure showed phosphodiester bonds between C-3 and C-6 of the glycerol and glucose residues, suggesting a polymer structure of 3,6΄-linked poly(1-O-β-d-glucosyl-sn-glycerol phosphate). This is the third WTA backbone structure in L. plantarum, following 3,6΄-linked poly(1-O-α-d-glucosyl-sn-glycerol phosphate) and 1,5-linked poly(ribitol phosphate). © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Field Strain Measurement on the Fiber Scale in Carbon Fiber Reinforced Polymers Using Global Finite-Element Based Digital Image Correlation

    KAUST Repository

    Tao, Ran

    2015-01-01

    is aimed to accurately measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. First, the theories of both local subset-based digital image correlation (DIC) and global finite-element based DIC are outlined. Second, in

  12. A strain-mediated corrosion model for bioabsorbable metallic stents.

    Science.gov (United States)

    Galvin, E; O'Brien, D; Cummins, C; Mac Donald, B J; Lally, C

    2017-06-01

    This paper presents a strain-mediated phenomenological corrosion model, based on the discrete finite element modelling method which was developed for use with the ANSYS Implicit finite element code. The corrosion model was calibrated from experimental data and used to simulate the corrosion performance of a WE43 magnesium alloy stent. The model was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile. The non-linear plastic strain model, extrapolated from the experimental data, was also found to adequately capture the corrosion-induced reduction in the radial stiffness of the stent over time. The model developed will help direct future design efforts towards the minimisation of plastic strain during device manufacture, deployment and in-service, in order to reduce corrosion rates and prolong the mechanical integrity of magnesium devices. The need for corrosion models that explore the interaction of strain with corrosion damage has been recognised as one of the current challenges in degradable material modelling (Gastaldi et al., 2011). A finite element based plastic strain-mediated phenomenological corrosion model was developed in this work and was calibrated based on the results of the corrosion experiments. It was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile and the corrosion-induced reduction in the radial stiffness of the stent over time. To the author's knowledge, the results presented here represent the first experimental calibration of a plastic strain-mediated corrosion model of a corroding magnesium stent. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. SERS-based detection methods for screening of genetically modified bacterial strains

    DEFF Research Database (Denmark)

    Morelli, Lidia

    factories vary largely, including industrial production of valuable compounds for biofuels, polymer synthesis and food, cosmetic and pharmaceutical industry. The improvement of computational and biochemical tools has revolutionized the synthesis of novel modified microbial strains, opening up new......The importance of metabolic engineering has been growing over the last decades, establishing the use of genetically modified microbial strains for overproduction of metabolites at industrial scale as an innovative, convenient and biosustainable method. Nowadays, application areas of microbial...

  14. DNA microarray-based genome comparison of a pathogenic and a nonpathogenic strain of Xylella fastidiosa delineates genes important for bacterial virulence.

    Science.gov (United States)

    Koide, Tie; Zaini, Paulo A; Moreira, Leandro M; Vêncio, Ricardo Z N; Matsukuma, Adriana Y; Durham, Alan M; Teixeira, Diva C; El-Dorry, Hamza; Monteiro, Patrícia B; da Silva, Ana Claudia R; Verjovski-Almeida, Sergio; da Silva, Aline M; Gomes, Suely L

    2004-08-01

    Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease.

  15. Performance of a distributed simultaneous strain and temperature sensor based on a Fabry-Perot laser diode and a dual-stage FBG optical demultiplexer.

    Science.gov (United States)

    Kim, Suhwan; Kwon, Hyungwoo; Yang, Injae; Lee, Seungho; Kim, Jeehyun; Kang, Shinwon

    2013-11-12

    A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD) and a dual-stage fiber Bragg grating (FBG) optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR). By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  16. A piezoelectric transducer for measurement of dynamic strain in pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lannes, Daniel P.; Gama, Antonio L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica

    2009-07-01

    This work presents a new strain transducer developed mainly for the inspection and evaluation of piping systems with excessive vibration. Vibration is one of the most common causes of piping failures. These failures could be avoided if the vibration problems were identified and quickly evaluated. Procedures for evaluation of piping vibration are usually based on pipe velocity or displacement. Although simple and fast, these procedures do not provide precise information on the risk of piping fatigue failure. Through the measurement of pipe dynamic strains the risk of failure due to vibration can be determined more accurately. The measurement of strain is usually performed using the conventional strain gauge method. Although efficient and accurate, the implementation of the conventional strain gauge technique may become a difficult task in certain industrial scenarios. Motivated by the need of a simple and rapid method for pipe dynamic strain measurement, a piezoelectric dynamic strain transducer was developed. This work presents a description of the piezoelectric strain transducer and the preliminary results of pipe strain measurements. The transducer can be applied directly to the pipe through magnetic bases allowing for the quick measurement of the dynamic strains in many points of the pipe. The transducer signal can be read with the same commercial data collectors used for accelerometers. (author)

  17. Microstructure and strain distribution in freestanding Si membrane strained by Si{sub x}N{sub y} deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gao Hongye, E-mail: qgaohongye@msn.com [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Ikeda, Ken-ichi; Hata, Satoshi; Nakashima, Hideharu [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Wang Dong; Nakashima, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2010-09-25

    Research highlights: {yields} Strain is introduced by deposition of amorphous Si{sub x}N{sub y} to improve the carrier mobility for a relatively large-size freestanding semiconductor film, which can be used for the fabrication of relatively large devices such like a bipolar junction transistor. However, standard Raman spectroscopy and X-ray diffraction cannot provide sufficient lateral resolution to the strain in a relatively long (x {mu}m in length) and thin (x nm in thickness) freestanding semiconductor film. {yields} In present research, strain in a bridge-shaped freestanding Si membrane (FSSM) was measured by convergent-beam electron diffraction (CBED) and finite element method (FEM). Compressive strain distribution was shown in three dimensions (3D) in FSSM, where no threading dislocation or stacking fault was found. Relaxation of the strain in FSSM in 3D was discussed based on a comparison of the strain magnitudes in FSSM as measured by CBED and FEM. - Abstract: Strain in a bridge-shaped freestanding Si membrane (FSSM) induced by depositing an amorphous Si{sub x}N{sub y} layer was measured by convergent-beam electron diffraction (CBED). CBED results show that the strain magnitude depends negatively on the FSSM thickness. FEM is a supplement of the result of CBED due to the relaxation of TEM samples during fabricating. The FEM analysis results ascertain the strain property in three dimensions, and show that the strain magnitude depends negatively on the length of FSSM, and the magnitude of the compressive strain in FSSM increases as the position is closer to the upper Si/Si{sub x}N{sub y} interface.

  18. Strain ageing and yield plateau phenomena in γ-TiAl based alloys containing boron

    International Nuclear Information System (INIS)

    Cheng, T.T.; Bate, P.S.; Botten, R.R.; Lipsitt, H.A.

    1999-01-01

    There has been considerable interest over the past few years in γ-TiAl based alloys since they offer a combination of low density and useful mechanical properties at temperatures higher than those possible with conventional titanium alloys. However, there are still serious limitations to their use in engineering components due to their limited ductility and fracture toughness. Much of the recent work has been focused on improving the room temperature ductility of these materials, and a significant part of the work has been involved with studying the effects of thermo-mechanical processing (TMP) and alloying. One of the alloying additions which has received much attention is boron. Addition of boron (≥0.5 at.%) leads to refined as-cast grain structures and can increase the strength and ductility of these alloys. If boron does segregate to grain boundaries, it would be expected that segregation would also occur at dislocations, which can result in solute locking and yield point phenomena. Nakano and Umakoshi's results show some signs of this, with regions of distinct upward curvature in stress-strain curves for boron-containing material, although the flow stress was always increasing with strain. Evidence of strain ageing in TiAl alloys containing boron has also been reported by Wheeler et al., and the work reported here also suggests that boron can act to produce solute locking of glide dislocations in a different class of near γ-TiAl alloys

  19. Lattice and strain analysis of atomic resolution Z-contrast images based on template matching

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Jian-Min, E-mail: jianzuo@uiuc.edu [Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801 (United States); Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801 (United States); Shah, Amish B. [Center for Microanalysis of Materials, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kim, Honggyu; Meng, Yifei; Gao, Wenpei [Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801 (United States); Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801 (United States); Rouviére, Jean-Luc [CEA-INAC/UJF-Grenoble UMR-E, SP2M, LEMMA, Minatec, Grenoble 38054 (France)

    2014-01-15

    A real space approach is developed based on template matching for quantitative lattice analysis using atomic resolution Z-contrast images. The method, called TeMA, uses the template of an atomic column, or a group of atomic columns, to transform the image into a lattice of correlation peaks. This is helped by using a local intensity adjusted correlation and by the design of templates. Lattice analysis is performed on the correlation peaks. A reference lattice is used to correct for scan noise and scan distortions in the recorded images. Using these methods, we demonstrate that a precision of few picometers is achievable in lattice measurement using aberration corrected Z-contrast images. For application, we apply the methods to strain analysis of a molecular beam epitaxy (MBE) grown LaMnO{sub 3} and SrMnO{sub 3} superlattice. The results show alternating epitaxial strain inside the superlattice and its variations across interfaces at the spatial resolution of a single perovskite unit cell. Our methods are general, model free and provide high spatial resolution for lattice analysis. - Highlights: • A real space approach is developed for strain analysis using atomic resolution Z-contrast images and template matching. • A precision of few picometers is achievable in the measurement of lattice displacements. • The spatial resolution of a single perovskite unit cell is demonstrated for a LaMnO{sub 3} and SrMnO{sub 3} superlattice grown by MBE.

  20. Nursing staff competence, work strain, stress and satisfaction in elderly care: a comparison of home-based care and nursing homes.

    Science.gov (United States)

    Hasson, Henna; Arnetz, Judith E

    2008-02-01

    The aims of this study were to: (1) compare older people care nursing staff's perceptions of their competence, work strain and work satisfaction in nursing homes and home-based care; and (2) to examine determinants of work satisfaction in both care settings. The shift in older people care from hospitals to community-based facilities and home care has had implications for nursing practice. Lack of competence development, high levels of work strain and low levels of work satisfaction among nursing staff in both care settings have been associated with high turnover. Few studies have compared staff perceptions of their competence and work in nursing homes as opposed to home-based care. A cross-sectional questionnaire survey. Nursing staff perceptions of their competence, work strain, stress and satisfaction were measured by questionnaire in 2003 in two older people care organizations in Sweden. Comparisons of all outcome variables were made between care settings both within and between the two organizations. Multiple regression analysis was used to determine predictors of work satisfaction in home care and nursing homes respectively. In general, staff in home-based care reported significantly less sufficient knowledge compared with staff in nursing homes. However, home care staff experienced significantly less physical and emotional strain compared with staff in nursing homes. Ratings of work-related exhaustion, mental energy and overall work satisfaction did not differ significantly between care settings. In both care settings, work-related exhaustion was the strongest (inverse) predictor of work satisfaction. Future interventions should focus on counteracting work-related exhaustion and improving competence development to improve work satisfaction among older people care nursing staff in both care settings. Relevance to clinical practice. Work-related exhaustion and lack of competence development may have significant negative implications for work satisfaction among

  1. Flexoelectricity: strain gradient effects in ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Ma Wenhui [Department of Physics, Shantou Unversity, Shantou, Guangdong 515063 (China)

    2007-12-15

    Mechanical strain gradient induced polarization effect or flexoelectricity in perovskite-type ferroelectric and relaxor ferroelectric ceramics was investigated. The flexoelectric coefficients measured at room temperature ranged from about 1 {mu} C m{sup -1} for lead zirconate titanate to 100 {mu} C m{sup -1} for barium strontium titanate. Flexoelectric effects were discovered to be sensitive to chemical makeup, phase symmetry, and domain structures. Based on phenomenological discussion and experimental data on flexoelectricity, the present study proposed that mechanical strain gradient field could influence polarization responses in a way analogous to electric field. Flexoelectric coefficients were found to be nonlinearly enhanced by dielectric permittivity and strain gradient. Interfacial mismatch in epitaxial thin films can give rise to high strain gradients, enabling flexoelectric effects to make a significant impact in properly engineered ferroelectric heterostructure systems.

  2. A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses.

    Science.gov (United States)

    Szpara, Moriah L; Tafuri, Yolanda R; Parsons, Lance; Shamim, S Rafi; Verstrepen, Kevin J; Legendre, Matthieu; Enquist, L W

    2011-10-01

    Alphaherpesviruses are widespread in the human population, and include herpes simplex virus 1 (HSV-1) and 2, and varicella zoster virus (VZV). These viral pathogens cause epithelial lesions, and then infect the nervous system to cause lifelong latency, reactivation, and spread. A related veterinary herpesvirus, pseudorabies (PRV), causes similar disease in livestock that result in significant economic losses. Vaccines developed for VZV and PRV serve as useful models for the development of an HSV-1 vaccine. We present full genome sequence comparisons of the PRV vaccine strain Bartha, and two virulent PRV isolates, Kaplan and Becker. These genome sequences were determined by high-throughput sequencing and assembly, and present new insights into the attenuation of a mammalian alphaherpesvirus vaccine strain. We find many previously unknown coding differences between PRV Bartha and the virulent strains, including changes to the fusion proteins gH and gB, and over forty other viral proteins. Inter-strain variation in PRV protein sequences is much closer to levels previously observed for HSV-1 than for the highly stable VZV proteome. Almost 20% of the PRV genome contains tandem short sequence repeats (SSRs), a class of nucleic acids motifs whose length-variation has been associated with changes in DNA binding site efficiency, transcriptional regulation, and protein interactions. We find SSRs throughout the herpesvirus family, and provide the first global characterization of SSRs in viruses, both within and between strains. We find SSR length variation between different isolates of PRV and HSV-1, which may provide a new mechanism for phenotypic variation between strains. Finally, we detected a small number of polymorphic bases within each plaque-purified PRV strain, and we characterize the effect of passage and plaque-purification on these polymorphisms. These data add to growing evidence that even plaque-purified stocks of stable DNA viruses exhibit limited sequence

  3. Microhardness, strength and strain field characterization of self-reacting friction stir and plug welds of dissimilar aluminum alloys

    Science.gov (United States)

    Horton, Karla Renee

    the nugget region with the samples that were PWHT showing an increase of 58%. The welded joints were tested for ultimate strength. The testing variations included two specimen widths, two plug sizes (M3 and M5), room temperature and cryogenic testing, and post weld heat treated (PWHT) samples. Initial welds had an average ultimate strength of 370 MPa. There was a slight drop from initial weld strength to plug weld strength of approximately 13.8 MPa was observed with M3 plug strength approximately equal to M5 plug strength. The PWHT strengths at room temperature were slightly higher than non-PWHT of 13.8--20.7 MPa and PWHT strengths were equal to non-PWHT at cryogenic temperature. Non-PWHT had a cryogenic strength enhancement approximately 59.2 MPa and PWHT had a cryogenic strength enhancement of approximately 57.2 MPa in the M3 and M5 plugs. Within the subsets of data collected no major statistical significance in strength behavior was observed between the samples tested at room temperature or between the subsets tested at LN2. In almost all cases, failure occurred on the retreating side of the weld which corresponds to the softer material (AA2219-T87). Exceptions were characterized with flaws (weld defects) in the sample. In these cases, failure occurred on the advancing side, the side where flaws were detected. Ductile fracture was noted in most all samples. Digital image correlation using the ARAMIS system was used to define strain patterns in the weld joint. Strain accumulation was observed in the weld along the retreating side and around the plug. ARAMIS data in comparison to extensometer data shows a very reasonable comparison. The ARAMIS strain gage data showed the retreating side of the major diameter has a greater yield than the advancing side. This behavior is identical to the external electrical resistance strain gages.

  4. Efficiency of PCR-based methods in discriminating Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis strains of human origin.

    Science.gov (United States)

    Srůtková, Dagmar; Spanova, Alena; Spano, Miroslav; Dráb, Vladimír; Schwarzer, Martin; Kozaková, Hana; Rittich, Bohuslav

    2011-10-01

    Bifidobacterium longum is considered to play an important role in health maintenance of the human gastrointestinal tract. Probiotic properties of bifidobacterial isolates are strictly strain-dependent and reliable methods for the identification and discrimination of this species at both subspecies and strain levels are thus required. Differentiation between B. longum ssp. longum and B. longum ssp. infantis is difficult due to high genomic similarities. In this study, four molecular-biological methods (species- and subspecies-specific PCRs, random amplified polymorphic DNA (RAPD) method using 5 primers, repetitive sequence-based (rep)-PCR with BOXA1R and (GTG)(5) primers and amplified ribosomal DNA restriction analysis (ARDRA)) and biochemical analysis, were compared for the classification of 30 B. longum strains (28 isolates and 2 collection strains) on subspecies level. Strains originally isolated from the faeces of breast-fed healthy infants (25) and healthy adults (3) showed a high degree of genetic homogeneity by PCR with subspecies-specific primers and rep-PCR. When analysed by RAPD, the strains formed many separate clusters without any potential for subspecies discrimination. These methods together with arabionose/melezitose fermentation analysis clearly differentiated only the collection strains into B. longum ssp. longum and B. longum ssp. infantis at the subspecies level. On the other hand, ARDRA analysis differentiated the strains into the B. longum/infantis subspecies using the cleavage analysis of genus-specific amplicon with just one enzyme, Sau3AI. According to our results the majority of the strains belong to the B. longum ssp. infantis (75%). Therefore we suggest ARDRA using Sau3AI restriction enzyme as the first method of choice for distinguishing between B. longum ssp. longum and B. longum ssp. infantis. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Bacillus subtilis strain specificity affects performance improvement in broilers.

    Science.gov (United States)

    Rhayat, L; Jacquier, V; Brinch, K S; Nielsen, P; Nelson, A; Geraert, P-A; Devillard, E

    2017-07-01

    The study reports the effects on broiler performance of a newly isolated Bacillus subtilis strain, which is phylogenetically not closely related to already well-described strains of B. subtilis. In the first experiment, birds were reared in battery cages and exposed to C. perfringens. An increase in growth performance was observed with the strain when compared to the challenged animals. Three additional growth trials were conducted to 35 d of age, in different rearing conditions (genetic breeds, corn-soybean meal-based diet with or without animal proteins, in presence or absence of phytase, on fresh or used litter) to investigate the efficacy and the specificity of this new B. subtilis strain on the improvement of BWG and FCR of broilers in comparison with a B. subtilis-based DFM already used in the field. Whatever the rearing conditions tested, the new B. subtilis strain led to an average 3.2% improvement in feed conversion ratio or bodyweight. Comparatively, the commercial Bacillus strain significantly improved broiler performance in only one trial out of 3 with an average improvement reaching 2%. All these results indicate that this new B. subtilis strain consistently improves broiler performances. © 2017 Poultry Science Association Inc.

  6. Geometry of X-ray based measurement of residual strain at desired penetration depth

    Energy Technology Data Exchange (ETDEWEB)

    Morawiec, A. [Polish Academy of Sciences, Institute of Metallurgy and Materials Science, Krakow (Poland)

    2017-10-15

    X-ray based measurement of residual lattice strains at chosen penetration depth is one of the methods for investigating strain inhomogeneities in near-surface layers of polycrystalline materials. The measurement relies on determining shifts of Bragg peaks for various directions of the scattering vector with respect to the specimen. At each of these directions, to reach a given the penetration depth, a proper specimen orientation is required. The task of determining such orientations, albeit elementary, is quite intricate. The existing literature describes only partial solutions with unspecified domains of application, which fail if applied to beyond the domains. Therefore, geometric aspects of the measurement are analyzed in details. Explicit bounds on measurement parameters are given. The equation fundamental for the procedure is solved with respect to specimen orientations. For a given direction of the scattering vector, there are generally four different specimen orientations leading to the same penetration depth. This simple fact (overlooked in previous analyses) can be used for improving reliability of measurement results. Analytical formulas for goniometer angles representing these orientations are provided. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Strain-effect transistors: Theoretical study on the effects of external strain on III-nitride high-electron-mobility transistors on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shervin, Shahab; Asadirad, Mojtaba [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4006 (United States); Materials Science and Engineering Program, University of Houston, Houston, Texas 77204 (United States); Kim, Seung-Hwan; Ravipati, Srikanth; Lee, Keon-Hwa [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4006 (United States); Bulashevich, Kirill [STR Group, Inc., Engels av. 27, P.O. Box 89, 194156, St. Petersburg (Russian Federation); Ryou, Jae-Hyun, E-mail: jryou@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4006 (United States); Materials Science and Engineering Program, University of Houston, Houston, Texas 77204 (United States); Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, Texas 77204 (United States)

    2015-11-09

    This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strain in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.

  8. Mehanical Properties of Electron Beam Welded Joints in Thick Gage CA6NM Stainless Steel

    Science.gov (United States)

    Sarafan, Sheida; Wanjara, Priti; Gholipour, Javad; Champliaud, Henri; Mathieu, Louis

    2017-10-01

    Design of hydroelectric turbine components requires high integrity welds (without detectable volumetric defects) in heavy gage sections of stainless steel materials, such as ASTM A743 grade CA6NM—a low carbon 13% Cr-4% Ni martensitic stainless steel that is manufactured in cast form. In this work, 90-mm-thick plates of CA6NM were joined using a single-pass autogenous electron beam (EB) welding process and the mechanical properties were evaluated in the as-welded condition to characterize the performance of the joints. The static tensile properties that were evaluated in two directions—transverse and longitudinal to the EB weld seam—demonstrated conformance of the joints with the requirements of the ASME Section IX standard. The Charpy impact energies of the EB welds—measured at -18 °C on samples with V-notch roots located in the fusion and heat-affected zones—met the minimum requirements of 27 J specified in ASME Section VIII standard. In addition, bend tests that were conducted on the entire weld cross section displayed no discontinuities on the tension side of the bent joints. Hence, the developed EB welding process was demonstrated to render high-performance joints and promises key advantages for industrialization, such as cost savings through reductions in consumable material, production time and labor intensity.

  9. Valence band structure and density of states effective mass model of biaxial tensile strained silicon based on k · p theory

    International Nuclear Information System (INIS)

    Kuang Qian-Wei; Liu Hong-Xia; Wang Shu-Long; Qin Shan-Shan; Wang Zhi-Lin

    2011-01-01

    After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k · p method. In the paper we calculate the accurate anisotropy valance bands and the splitting energy between light and heavy hole bands. The results show that the valance bands are highly distorted, and the anisotropy is more obvious. To obtain the density of states (DOS) effective mass, which is a very important parameter for device modeling, a DOS effective mass model of biaxial tensile strained Si is constructed based on the valance band calculation. This model can be directly used in the device model of metal—oxide semiconductor field effect transistor (MOSFET). It also a provides valuable reference for biaxial tensile strained silicon MOSFET design. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Design of a sediment-monitoring gaging network on ephemeral tributaries of the Colorado River in Glen, Marble, and Grand Canyons, Arizona

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.; Anderson, Robert S.; Hancock, Gregory S.; Melis, Theodore S.

    2014-01-01

    Management of sediment in rivers downstream from dams requires knowledge of both the sediment supply and downstream sediment transport. In some dam-regulated rivers, the amount of sediment supplied by easily measured major tributaries may overwhelm the amount of sediment supplied by the more difficult to measure lesser tributaries. In this first class of rivers, managers need only know the amount of sediment supplied by these major tributaries. However, in other regulated rivers, the cumulative amount of sediment supplied by the lesser tributaries may approach the total supplied by the major tributaries. The Colorado River downstream from Glen Canyon has been hypothesized to be one such river. If this is correct, then management of sediment in the Colorado River in the part of Glen Canyon National Recreation Area downstream from the dam and in Grand Canyon National Park may require knowledge of the sediment supply from all tributaries. Although two major tributaries, the Paria and Little Colorado Rivers, are well documented as the largest two suppliers of sediment to the Colorado River downstream from Glen Canyon Dam, the contributions of sediment supplied by the ephemeral lesser tributaries of the Colorado River in the lowermost Glen Canyon, and Marble and Grand Canyons are much less constrained. Previous studies have estimated amounts of sediment supplied by these tributaries ranging from very little to almost as much as the amount supplied by the Paria River. Because none of these previous studies relied on direct measurement of sediment transport in any of the ephemeral tributaries in Glen, Marble, or Grand Canyons, there may be significant errors in the magnitudes of sediment supplies estimated during these studies. To reduce the uncertainty in the sediment supply by better constraining the sediment yield of the ephemeral lesser tributaries, the U.S. Geological Survey Grand Canyon Monitoring and Research Center established eight sediment-monitoring gaging

  11. Strained Si/SiGe MOS transistor model

    Directory of Open Access Journals (Sweden)

    Tatjana Pešić-Brđanin

    2009-06-01

    Full Text Available In this paper we describe a new model of surfacechannel strained-Si/SiGe MOSFET based on the extension of non-quasi-static (NQS circuit model previously derived for bulk-Si devices. Basic equations of the NQS model have been modified to account for the new physical parameters of strained-Si and relaxed-SiGe layers. From the comparisons with measurements, it is shown that a modified NQS MOS including steady-state self heating can accurately predict DC characteristics of Strained Silicon MOSFETs.

  12. Experimental Method of Temperature and Strain Discrimination in Polymer Composite Material by Embedded Fiber-Optic Sensors Based on Femtosecond-Inscribed FBGs

    Directory of Open Access Journals (Sweden)

    Victor V. Shishkin

    2016-01-01

    Full Text Available Experimental method of temperature and strain discrimination with fiber Bragg gratings (FBGs sensors embedded in carbon fiber-reinforced plastic is proposed. The method is based on two-fiber technique, when two FBGs inscribed in different fibers with different sensitivities to strain and/or temperature are placed close to each other and act as a single sensing element. The nonlinear polynomial approximation of Bragg wavelength shift as a function of temperature and strain is presented for this method. The FBGs were inscribed with femtosecond laser by point-by-point inscription technique through polymer cladding of the fiber. The comparison of linear and nonlinear approximation accuracies for array of embedded sensors is performed. It is shown that the use of nonlinear approximation gives 1.5–2 times better accuracy. The obtained accuracies of temperature and strain measurements are 2.6–3.8°C and 50–83 με in temperature and strain range of 30–120°C and 0–400 με, respectively.

  13. Subband Structure and Effective Mass in the Inversion Layer of a Strain Si-Based Alloy P-Type MOSFET.

    Science.gov (United States)

    Chen, Kuan-Ting; Fan, Jun Wei; Chang, Shu-Tong; Lin, Chung-Yi

    2015-03-01

    In this paper, the subband structure and effective mass of an Si-based alloy inversion layer in a PMOSFET are studied theoretically. The strain condition considered in our calculations is the intrinsic strain resulting from growth of the silicon-carbon alloy on a (001) Si substrate and mechanical uniaxial stress. The quantum confinement effect resulting from the vertically effective electric field was incorporated into the k · p calculation. The distinct effective mass, such as the quantization effective mass and the density-of-states (DOS) effective mass, as well as the subband structure of the silicon-carbon alloy inversion layer for a PMOSFET under substrate strain and various effective electric field strengths, were all investigated. Ore results show that subband structure of relaxed silicon-carbon alloys with low carbon content are almost the same as silicon. We find that an external stress applied parallel to the channel direction can efficiently reduce the effective mass along the channel direction, thus producing hole mobility enhancement.

  14. Residual Stress Measurement of Coarse Crystal Grain in Aluminium Casting Alloy by Neutron Diffraction

    International Nuclear Information System (INIS)

    Nishida, Masayuki; Watanabe, Yoshitaka; Hanabusa, Takao

    2009-01-01

    Full text: Neutron stress measurement can detect strain and stress information in deep region because of large penetration ability of neutron beams. The present paper describes procedure and results in the residual stress measurement of aluminium casting alloy by neutron diffraction. Usually, the aluminium casting alloy includes the large crystal grains. The existence of large crystal grains makes it difficult to estimate the residual stresses in highly accuracy. In this study, the modified three axial method using Hook's equation was employed for neutron stress measurement. These stress measurements were performed under the two kinds of new techniques. One is a rocking curve method to calculate the principal strains in three directions. The peak profiles which appear discretely on rocking curves were translated to principle stresses by the Bragg law and the basic elastic theory. Another is the consideration of measurement positions and the edge effect in the neutron irradiated area (volume gage). The edge effect generates the errors of 2θ-peak position in the neutron stress measurement. In this study, the edge effect was investigated in detail by a small bit of copper single crystal. The copper bit was moved and scanned on three dimensionally within the gage volume. Furthermore, the average strains of symmetrical positions are measure by the sample turning at 180 degrees, because the error distributions of the 2θ-peak position followed to positions inside the gage volume. Form these results of this study, the residual stresses in aluminium casting alloy which includes the large crystal grains were possible to estimate by neutron stress measurement with the rocking curve method and the correction of the edge effect. (author)

  15. Simultaneous measurement of strain, temperature and refractive index based on multimode interference, fiber tapering and fiber Bragg gratings

    International Nuclear Information System (INIS)

    Oliveira, Ricardo; Osório, Jonas H; Aristilde, Stenio; Cordeiro, Cristiano M B; Bilro, Lúcia; Nogueira, Rogerio N

    2016-01-01

    We report the development of an optical fiber sensor capable of simultaneously measuring strain, temperature and refractive index. The sensor is based on the combination of two fiber Bragg gratings written in a standard single-mode fiber, one in an untapered region and another in a tapered region, spliced to a no-core fiber. The possibility of simultaneously measuring three parameters relies on the different sensitivity responses of each part of the sensor. The results have shown the possibility of measuring three parameters simultaneously with a resolution of 3.77 με , 1.36 °C and 5  ×  10 −4 , respectively for strain, temperature and refractive index. On top of the multiparameter ability, the simple production and combination of all the parts involved on this optical-fiber-based sensor is an attractive feature for several sensing applications. (paper)

  16. Performance of a Distributed Simultaneous Strain and Temperature Sensor Based on a Fabry-Perot Laser Diode and a Dual-Stage FBG Optical Demultiplexer

    Directory of Open Access Journals (Sweden)

    Shinwon Kang

    2013-11-01

    Full Text Available A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD and a dual-stage fiber Bragg grating (FBG optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR. By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  17. Microstructure and strain rate effects on the mechanical behavior of particle reinforced epoxy-based reactive materials

    Science.gov (United States)

    White, Bradley William

    The effects of reactive metal particles on the microstructure and mechanical properties of epoxy-based composites is investigated in this work. Particle reinforced polymer composites show promise as structural energetic materials that can provide structural strength while simultaneously being capable of releasing large amounts of chemical energy through highly exothermic reactions occurring between the particles and with the matrix. This advanced class of materials is advantageous due to the decreased amount of high density inert casings needed for typical energetic materials and for their ability to increase payload expectancy and decrease collateral damage. Structural energetic materials can be comprised of reactive particles that undergo thermite or intermetallic reactions. In this work nickel (Ni) and aluminum (Al) particles were chosen as reinforcing constituents due to their well characterized mechanical and energetic properties. Although, the reactivity of nickel and aluminum is well characterized, the effects of their particle size, volume fractions, and spatial distribution on the mechanical behavior of the epoxy matrix and composite, across a large range of strain rates, are not well understood. To examine these effects castings of epoxy reinforced with 20--40 vol.% Al and 0--10 vol.% Ni were prepared, while varying the aluminum nominal particle size from 5 to 50 mum and holding the nickel nominal particle size constant at 50 mum. Through these variations eight composite materials were produced, possessing unique microstructures exhibiting different particle spatial distributions and constituent makeup. In order to correlate the microstructure to the constitutive response of the composites, techniques such as nearest-neighbor distances, and multiscale analysis of area fractions (MSAAF) were used to quantitatively characterize the microstructures. The composites were investigated under quasi-static and dynamic compressive loading conditions to characterize

  18. A structural strain method for low-cycle fatigue evaluation of welded components

    International Nuclear Information System (INIS)

    Dong, P.; Pei, X.; Xing, S.; Kim, M.H.

    2014-01-01

    In this paper, a new structural strain method is presented to extend the early structural stress based master S–N curve method to low cycle fatigue regime in which plastic deformation can be significant while an elastic core is still present. The method is formulated by taking advantage of elastically calculated mesh-insensitive structural stresses based on nodal forces available from finite element solutions. The structural strain definition is consistent with classical plate and shell theory in which a linear through-thickness deformation field is assumed a priori in both elastic or elastic–plastic regimes. With considerations of both yield and equilibrium conditions, the resulting structural strains are analytically solved if assuming elastic and perfectly plastic material behavior. The formulation can be readily extended to strain-hardening materials for which structural strains can be numerically calculated with ease. The method is shown effective in correlating low-cycle fatigue test data of various sources documented in the literature into a single narrow scatter band which is remarkable consistent with the scatter band of the existing master S–N curve adopted ASME B and PV Code since 2007. With this new method, some of the inconsistencies of the pseudo-elastic structural stress procedure in 2007 ASME Div 2 Code can now be eliminated, such as its use of Neuber's rule in approximating structural strain beyond yield. More importantly, both low cycle and high cycle fatigue behaviors can now be treated in a unified manner. The earlier mesh-insensitive structural stress based master S–N curve method can now be viewed as an application of the structural strain method in high cycle regime, in which structural strains are linearly related to traction-based structural stresses according to Hooke's law. In low-cycle regime, the structural strain method characterizes fatigue damage directly in terms of structural strains that satisfy linear through

  19. Dielectric oil-based polymer actuator for improved thickness strain and breakdown voltage

    International Nuclear Information System (INIS)

    Cho, Min Sung; Yamamoto, Akio

    2016-01-01

    Dielectric elastomer actuators (DEAs) have been increasingly investigated as alternative actuators to conventional ones. However, DEAs suffer from high rates of premature failure. Therefore, this study proposes a dielectric oil-based polymer actuator, also called a Dielectric liquid actuator (DLA), to compensate for the drawbacks of DEAs. DLA was experimentally compared with conventional DEAs. Results showed that DLA successfully prevented thermal runaway at defects in the electrode and excessive thinning of the film, resulting in increased breakdown voltage. Consequently, premature failure was inhibited, and the performance was improved. The breakdown voltages of DLA and DEA were 6000 and 2000 V, respectively, and their maximum thickness strains were 49.5% and 37.5%, respectively

  20. Dielectric oil-based polymer actuator for improved thickness strain and breakdown voltage

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Min Sung; Yamamoto, Akio [Dept. of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo (Japan)

    2016-09-15

    Dielectric elastomer actuators (DEAs) have been increasingly investigated as alternative actuators to conventional ones. However, DEAs suffer from high rates of premature failure. Therefore, this study proposes a dielectric oil-based polymer actuator, also called a Dielectric liquid actuator (DLA), to compensate for the drawbacks of DEAs. DLA was experimentally compared with conventional DEAs. Results showed that DLA successfully prevented thermal runaway at defects in the electrode and excessive thinning of the film, resulting in increased breakdown voltage. Consequently, premature failure was inhibited, and the performance was improved. The breakdown voltages of DLA and DEA were 6000 and 2000 V, respectively, and their maximum thickness strains were 49.5% and 37.5%, respectively.

  1. [Geno- and phenotypic characteristic of Bacillus strains--components of endosporin].

    Science.gov (United States)

    Safronova, L A; Zelenaia, L B; Klochko, V V; Avdeeva, L V; Reva, O N; Podgorskiĭ, V S

    2012-01-01

    Endosporin is used in veterinary for the prophylaxis and treatment of disbacteriosis, intestinal infections, festering wounds and postpartum pyoinflammatory complications in agricultural animals. The probiotic is based on two Bacillus strains which inhibit growth of a broad spectrum of pathogenic microorganisms and synthesise proteolytic enzymes and other biologically active secondary metabolites, particularly - polysaccharides. The activity of these two strains was supplementary. For the species identification of these strains, sequences of 16S rRNA genes and fatty acid content of cell walls were analysed. It was found that the both strains belong to B. velezensis. Limitations of application of 16S rRNA sequences for identification of closely related species are discussed in the paper. A method of 16S rRNA sequence profiling by polymorphic nucleotides was proposed. It was also shown that usefulness of Bacillus strains in probiotics is mostly based on their unique strain specific properties rather than on general species characteristics.

  2. Development of a New Gradient Based Strain-Criterion for Prediction of Bendability in Quality Assurance and FEA

    Science.gov (United States)

    Denninger, Ralf; Liewald, Mathias; Sindel, Manfred

    2011-08-01

    Numerical simulation systems are more and more used in process development of car bodies. Nowadays, also the hemming process is optimised in FEA. Thus, the analysing of process robustness calls for a failure criterion for the specific bending and hemming load condition. For that purpose the experimental determination of bendability under various pre-load conditions that occur in real production, e.g. during deep drawing in press shop, is content of this contribution. Using these experimental results, a new approach for a strain-gradient based failure criterion for bending operations is presented to optimise bendability prediction. The bending-strain-gradient approach can be used both in production related departments of quality assurance as well as for simulative process design or process validation for vehicle manufacturing planning.

  3. DNA-based identification of Lentinula edodes strains with species ...

    African Journals Online (AJOL)

    phe

    2016-02-17

    Feb 17, 2016 ... Received 7 November, 2015; Accepted 25 January, 2016. Lentinula edodes is among the five globally cultivated ... through polymerase chain reaction (PCR). As a prelude to additional nutritional and .... Eleven (11) strains of shiitake, namely LE005 (ATTC #28759),. LE006 (ATTC# 28760), LE 008 (ATTC# ...

  4. Integrate genome-based assessment of safety for probiotic strains: Bacillus coagulans GBI-30, 6086 as a case study.

    Science.gov (United States)

    Salvetti, Elisa; Orrù, Luigi; Capozzi, Vittorio; Martina, Alessia; Lamontanara, Antonella; Keller, David; Cash, Howard; Felis, Giovanna E; Cattivelli, Luigi; Torriani, Sandra; Spano, Giuseppe

    2016-05-01

    Probiotics are microorganisms that confer beneficial effects on the host; nevertheless, before being allowed for human consumption, their safety must be verified with accurate protocols. In the genomic era, such procedures should take into account the genomic-based approaches. This study aims at assessing the safety traits of Bacillus coagulans GBI-30, 6086 integrating the most updated genomics-based procedures and conventional phenotypic assays. Special attention was paid to putative virulence factors (VF), antibiotic resistance (AR) genes and genes encoding enzymes responsible for harmful metabolites (i.e. biogenic amines, BAs). This probiotic strain was phenotypically resistant to streptomycin and kanamycin, although the genome analysis suggested that the AR-related genes were not easily transferrable to other bacteria, and no other genes with potential safety risks, such as those related to VF or BA production, were retrieved. Furthermore, no unstable elements that could potentially lead to genomic rearrangements were detected. Moreover, a workflow is proposed to allow the proper taxonomic identification of a microbial strain and the accurate evaluation of risk-related gene traits, combining whole genome sequencing analysis with updated bioinformatics tools and standard phenotypic assays. The workflow presented can be generalized as a guideline for the safety investigation of novel probiotic strains to help stakeholders (from scientists to manufacturers and consumers) to meet regulatory requirements and avoid misleading information.

  5. Experimental Contribution to High-Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2007-01-01

    of the magnetic forces is conducted using different experimental tests: (i) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor (ii) by measuring the input current and bearing...

  6. Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector.

    Science.gov (United States)

    Kim, Kyung-Jo; Seo, Jun-Kyu; Oh, Min-Cheol

    2008-02-04

    A tunable wavelength filter is demonstrated by imposing a strain on a polymeric Bragg reflection waveguide fabricated on a flexible substrate. The highly elastic property of flexible polymer device enables much wider tuning than the silica fiber. To produce a uniform grating pattern on a flexible plastic substrate, a post lift-off process along with an absorbing layer is incorporated. The flexible Bragg reflector shows narrow bandwidth, which is convincing the uniformity of the grating structure fabricated on plastic film. By stretching the flexible polymer device, the Bragg reflection wavelength is tuned continuously up to 45 nm for the maximum strain of 31,690 muepsilon, which is determined by the elastic expansion limit of waveguide polymer. From the linear wavelength shift proportional to the strain, the photoelastic coefficient of the ZPU polymer is found.

  7. The epitaxial growth and interfacial strain study of VO{sub 2}/MgF{sub 2} (001) films by synchrotron based grazing incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fan, L.L. [Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Chen, S. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Liu, Q.H. [Science and Technology on Electro-optical Information Security Control Laboratory, Tianjin 300300 (China); Liao, G.M.; Chen, Y.L.; Ren, H. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Zou, C.W., E-mail: czou@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)

    2016-09-05

    High quality VO{sub 2} films with different thickness were epitaxially grown on MgF{sub 2} (001) substrates by oxide molecular beam epitaxy method. The evolution of interfacial strain was investigated by synchrotron based grazing incidence X-ray diffraction. By adjusting the incidence angles, the penetration depth of X-ray in VO{sub 2} film could be controlled and the thickness-depend lattice distortion in the epitaxial VO{sub 2} film was investigated. Due to the lattice mismatching, the pronounced tensile strain was observed in ultra-thin VO{sub 2} film. As the film thickness increasing, the interfacial strain relaxed gradually and became fully relaxed for thick VO{sub 2} films. Combined with the electric transport measurement, it was revealed that the phase transition temperature of ultra-thin VO{sub 2} film decreased greatly. The effect of interfacial strain induced phase transition modulation and the intrinsic mechanism was systematically discussed. - Highlights: • We prepared high quality VO{sub 2} epitaxial films on MgF{sub 2} (001) substrates by oxide molecular beam epitaxy method. • Synchrotron radiation grazing incidence X-ray diffraction was employed to detect evolution of strain along depth profile. • Based on a classic band structure model, the mechanism of strain controlled phase transition of VO{sub 2} was discussed.

  8. Consumer perceptions of strain differences in Cannabis aroma.

    Directory of Open Access Journals (Sweden)

    Avery N Gilbert

    Full Text Available The smell of marijuana (Cannabis sativa L. is of interest to users, growers, plant breeders, law enforcement and, increasingly, to state-licensed retail businesses. The numerous varieties and strains of Cannabis produce strikingly different scents but to date there have been few, if any, attempts to quantify these olfactory profiles directly. Using standard sensory evaluation techniques with untrained consumers we have validated a preliminary olfactory lexicon for dried cannabis flower, and characterized the aroma profile of eleven strains sold in the legal recreational market in Colorado. We show that consumers perceive differences among strains, that the strains form distinct clusters based on odor similarity, and that strain aroma profiles are linked to perceptions of potency, price, and smoking interest.

  9. Consumer perceptions of strain differences in Cannabis aroma

    Science.gov (United States)

    DiVerdi, Joseph A.

    2018-01-01

    The smell of marijuana (Cannabis sativa L.) is of interest to users, growers, plant breeders, law enforcement and, increasingly, to state-licensed retail businesses. The numerous varieties and strains of Cannabis produce strikingly different scents but to date there have been few, if any, attempts to quantify these olfactory profiles directly. Using standard sensory evaluation techniques with untrained consumers we have validated a preliminary olfactory lexicon for dried cannabis flower, and characterized the aroma profile of eleven strains sold in the legal recreational market in Colorado. We show that consumers perceive differences among strains, that the strains form distinct clusters based on odor similarity, and that strain aroma profiles are linked to perceptions of potency, price, and smoking interest. PMID:29401526

  10. Improved incorporation of strain gradient elasticity in the flexoelectricity based energy harvesting from nanobeams

    Science.gov (United States)

    Zhou, Yarong; Yang, Xu; Pan, Dongmei; Wang, Binglei

    2018-04-01

    Flexoelectricity, the coupling of strain gradient and polarization, exists in all the dielectric materials and numerous models have been proposed to study this mechanism. However, the contribution of strain gradient elasticity has typically been underestimated. In this work, inspired by the one-length scale parameter model developed by Deng et al. [19], we incorporate three length-scale parameters to carefully capture the contribution of the purely mechanical strain gradients on flexoelectricity. This three-parameter model is more flexible and could be applied to investigate the flexoelectricity in a wide range of complicated deformations. Accordingly, we carry out our analysis by studying a dielectric nanobeam under different boundary conditions. We show that the strain gradient elasticity and flexoelectricity have apparent size effects and significant influence on the electromechanical response. In particular, the strain gradient effects could significantly reduce the energy efficiency, indicating their importance and necessity. This work may be helpful in understanding the mechanism of flexoelectricity at the nanoscale and sheds light on the flexoelectricity energy harvesting.

  11. Oceanographic data collected from Hammond Tide Gage by Center for Coastal Margin Observation and Prediction (CMOP) and assembled by Northwest Association of Networked Ocean Observation Systems (NANOOS) in the Columbia River Estuary and North East Pacific Ocean from 2005-06-24 to 2013-02-08 (NCEI Accession 0162194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162194 contains navigational and physical data collected at Hammond Tide Gage, a fixed station in the Columbia River estuary - Washington/Oregon....

  12. RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments.

    Science.gov (United States)

    Ibáñez, Clara; Pérez-Torrado, Roberto; Morard, Miguel; Toft, Christina; Barrio, Eladio; Querol, Amparo

    2017-09-18

    Transcriptome analyses play a central role in unraveling the complexity of gene expression regulation in Saccharomyces cerevisiae. This species, one of the most important microorganisms for humans given its industrial applications, shows an astonishing degree of genetic and phenotypic variability among different strains adapted to specific environments. In order to gain novel insights into the Saccharomyces cerevisiae biology of strains adapted to different fermentative environments, we analyzed the whole transcriptome of three strains isolated from wine, flor wine or mezcal fermentations. An RNA-seq transcriptome comparison of the different yeasts in the samples obtained during synthetic must fermentation highlighted the differences observed in the genes that encode mannoproteins, and in those involved in aroma, sugar transport, glycerol and alcohol metabolism, which are important under alcoholic fermentation conditions. These differences were also observed in the physiology of the strains after mannoprotein and aroma determinations. This study offers an essential foundation for understanding how gene expression variations contribute to the fermentation differences of the strains adapted to unequal fermentative environments. Such knowledge is crucial to make improvements in fermentation processes and to define targets for the genetic improvement or selection of wine yeasts. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Lignocellulose-Adapted Endo-Cellulase Producing Streptomyces Strains for Bioconversion of Cellulose-Based Materials.

    Science.gov (United States)

    Ventorino, Valeria; Ionata, Elena; Birolo, Leila; Montella, Salvatore; Marcolongo, Loredana; de Chiaro, Addolorata; Espresso, Francesco; Faraco, Vincenza; Pepe, Olimpia

    2016-01-01

    Twenty-four Actinobacteria strains, isolated from Arundo donax, Eucalyptus camaldulensis and Populus nigra biomass during natural biodegradation and with potential enzymatic activities specific for the degradation of lignocellulosic materials, were identified by a polyphasic approach. All strains belonged to the genus Streptomyces ( S .) and in particular, the most highly represented species was Streptomyces argenteolus representing 50% of strains, while 8 strains were identified as Streptomyces flavogriseus (synonym S. flavovirens ) and Streptomyces fimicarius (synonyms Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies , and Streptomyces flavofuscus ), and the other four strains belonged to the species Streptomyces drozdowiczii, Streptomyces rubrogriseus, Streptomyces albolongus , and Streptomyces ambofaciens . Moreover, all Streptomyces strains, tested for endo and exo-cellulase, cellobiase, xylanase, pectinase, ligninase, peroxidase, and laccase activities using qualitative and semi-quantitative methods on solid growth medium, exhibited multiple enzymatic activities (from three to six). The 24 strains were further screened for endo-cellulase activity in liquid growth medium and the four best endo-cellulase producers ( S. argenteolus AE58P, S. argenteolus AE710A, S. argenteolus AE82P, and S. argenteolus AP51A) were subjected to partial characterization and their enzymatic crude extracts adopted to perform saccharification experiments on A. donax pretreated biomass. The degree of cellulose and xylan hydrolysis was evaluated by determining the kinetics of glucose and xylose release during 72 h incubation at 50°C from the pretreated biomass in the presence of cellulose degrading enzymes (cellulase and β-glucosidase) and xylan related activities (xylanase and β-xylosidase). The experiments were carried out utilizing the endo-cellulase activities from the selected S. argenteolus strains supplemented with commercial β-gucosidase and

  14. Dark field electron holography for strain measurement

    Energy Technology Data Exchange (ETDEWEB)

    Beche, A., E-mail: armand.beche@fei.com [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Rouviere, J.L. [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Barnes, J.P.; Cooper, D. [CEA-LETI, Minatec Campus, F-38054 Grenoble (France)

    2011-02-15

    Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity. -- Research Highlights: {yields} Step by step explanation of the dark field electron holography technique. {yields} Presentation of the theoretical equations to obtain quantitative strain map. {yields} Description of experimental parameters influencing dark field holography results. {yields} Quantitative strain measurement on a SiGe layer embedded in a silicon matrix.

  15. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.

    Science.gov (United States)

    Norman, Stephanie C; Wagner, David W; Beaupre, Gary S; Castillo, Alesha B

    2015-01-02

    Axial compression of mouse limbs is commonly used to induce bone formation in a controlled, non-invasive manner. Determination of peak strains caused by loading is central to interpreting results. Load-strain calibration is typically performed using uniaxial strain gauges attached to the diaphyseal, periosteal surface of a small number of sacrificed animals. Strain is measured as the limb is loaded to a range of physiological loads known to be anabolic to bone. The load-strain relationship determined by this subgroup is then extrapolated to a larger group of experimental mice. This method of strain calculation requires the challenging process of strain gauging very small bones which is subject to variability in placement of the strain gauge. We previously developed a method to estimate animal-specific periosteal strain during axial ulnar loading using an image-based computational approach that does not require strain gauges. The purpose of this study was to compare the relationship between load-induced bone formation rates and periosteal strain at ulnar midshaft using three different methods to estimate strain: (A) Nominal strain values based solely on load-strain calibration; (B) Strains calculated from load-strain calibration, but scaled for differences in mid-shaft cross-sectional geometry among animals; and (C) An alternative image-based computational method for calculating strains based on beam theory and animal-specific bone geometry. Our results show that the alternative method (C) provides comparable correlation between strain and bone formation rates in the mouse ulna relative to the strain gauge-dependent methods (A and B), while avoiding the need to use strain gauges. Published by Elsevier Ltd.

  16. Genomic Variability of Mycobacterium tuberculosis Strains of the Euro-American Lineage Based on Large Sequence Deletions and 15-Locus MIRU-VNTR Polymorphism

    Science.gov (United States)

    Rindi, Laura; Medici, Chiara; Bimbi, Nicola; Buzzigoli, Andrea; Lari, Nicoletta; Garzelli, Carlo

    2014-01-01

    A sample of 260 Mycobacterium tuberculosis strains assigned to the Euro-American family was studied to identify phylogenetically informative genomic regions of difference (RD). Mutually exclusive deletions of regions RD115, RD122, RD174, RD182, RD183, RD193, RD219, RD726 and RD761 were found in 202 strains; the RDRio deletion was detected exclusively among the RD174-deleted strains. Although certain deletions were found more frequently in certain spoligotype families (i.e., deletion RD115 in T and LAM, RD174 in LAM, RD182 in Haarlem, RD219 in T and RD726 in the “Cameroon” family), the RD-defined sublineages did not specifically match with spoligotype-defined families, thus arguing against the use of spoligotyping for establishing exact phylogenetic relationships between strains. Notably, when tested for katG463/gyrA95 polymorphism, all the RD-defined sublineages belonged to Principal Genotypic Group (PGG) 2, except sublineage RD219 exclusively belonging to PGG3; the 58 Euro-American strains with no deletion were of either PGG2 or 3. A representative sample of 197 isolates was then analyzed by standard 15-locus MIRU-VNTR typing, a suitable approach to independently assess genetic relationships among the strains. Analysis of the MIRU-VNTR typing results by using a minimum spanning tree (MST) and a classical dendrogram showed groupings that were largely concordant with those obtained by RD-based analysis. Isolates of a given RD profile show, in addition to closely related MIRU-VNTR profiles, related spoligotype profiles that can serve as a basis for better spoligotype-based classification. PMID:25197794

  17. Vibration based monitoring of stay cable force using wireless piezoelectric based strain sensor nodes

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Kim, Jeong Tae

    2012-01-01

    This study presents a method to monitor cable force using wireless sensor nodes and piezoelectric sensors. The following approaches are carried out to achieve the objective. Firstly, the principle of piezoelectric materials (e.g., PZT) as strain sensors is reviewed. A cable force estimation method using dynamic features of cables measured by piezoelectric materials is presented. Secondly, the design of an automated cable force monitoring system using the data acquisition sensor node Imote2/SHM DAQ is described. The sensor node is originally developed by University of Illinois at Urbana champaign and is adopted in this study to monitor strain induced voltage from PZT sensors. The advantages of the system are cheap, and eligible for wireless communication and automated operation. Finally, the feasibility of the proposed monitoring system is evaluated on a lab scaled cable

  18. A 3D finite-strain-based constitutive model for shape memory alloys accounting for thermomechanical coupling and martensite reorientation

    Science.gov (United States)

    Wang, Jun; Moumni, Ziad; Zhang, Weihong; Xu, Yingjie; Zaki, Wael

    2017-06-01

    The paper presents a finite-strain constitutive model for shape memory alloys (SMAs) that accounts for thermomechanical coupling and martensite reorientation. The finite-strain formulation is based on a two-tier, multiplicative decomposition of the deformation gradient into thermal, elastic, and inelastic parts, where the inelastic deformation is further split into phase transformation and martensite reorientation components. A time-discrete formulation of the constitutive equations is proposed and a numerical integration algorithm is presented featuring proper symmetrization of the tensor variables and explicit formulation of the material and spatial tangent operators involved. The algorithm is used for finite element analysis of SMA components subjected to various loading conditions, including uniaxial, non-proportional, isothermal and adiabatic loading cases. The analysis is carried out using the FEA software Abaqus by means of a user-defined material subroutine, which is then utilized to simulate a SMA archwire undergoing large strains and rotations.

  19. Strain engineering of topological phase transition in elemental gray tin: Dirac semimetal phase in the missing half of strain spectrum

    Science.gov (United States)

    Huang, Huaqing; Liu, Feng

    Gray tin was previously found to be a strong topological insulator under compressive uniaxial strain. Here, based on effective k . p analysis and first-principles calculations, we discover that gray tin becomes a Dirac semimetal in the other missing half of strain spectrum, under tensile uniaxial strain. In this newly found Dirac semimetal state, two Dirac points which are tunable by tensile [001] strains, lie in the kz axis and Fermi arcs appear in the (100) surface. A large negative magnetoresistance is anticipated in this half of strain spectrum, which shows as a strong signature of the chiral anomaly effect. Comparing to other Dirac semimetal materials, the proposed Dirac semimetal state in the nontoxic elemental gray tin can be more easily manipulated and accurately controlled. We envision that gray tin provides a perfect platform for strain engineering of topological phase transitions by sweeping through the strain spectrum from positive to negative and vice versa. This work was support by DOE-BES (Grant No. DE-FG02-04ER46148).

  20. A NURBS approximation of experimental stress-strain curves

    International Nuclear Information System (INIS)

    Fedorov, Timofey V.; Morrev, Pavel G.

    2016-01-01

    A compact universal representation of monotonic experimental stress-strain curves of metals and alloys is proposed. It is based on the nonuniform rational Bezier splines (NURBS) of second order and may be used in a computer library of materials. Only six parameters per curve are needed; this is equivalent to a specification of only three points in a stress-strain plane. NURBS-functions of higher order prove to be surplus. Explicit expressions for both yield stress and hardening modulus are given. Two types of curves are considered: at a finite interval of strain and at infinite one. A broad class of metals and alloys of various chemical compositions subjected to various types of preliminary thermo-mechanical working is selected from a comprehensive data base in order to test the methodology proposed. The results demonstrate excellent correspondence to the experimental data. Keywords: work hardening, stress-strain curve, spline approximation, nonuniform rational B-spline, NURBS.