WorldWideScience

Sample records for stowage

  1. The Container Stowage Problem

    DEFF Research Database (Denmark)

    Janstrup, Kira; Rose, Trine Høyer; Andersen, Kent Høj

    The main purpose of this project is to use integer programming to create a model that minimizes the costs for container transportation by ship. To make the model as realistic as possible it will be based on information from a large shipping company about the vessel layout and container types....... In addition to our project two other projects are made where an optimal solution to the container stowage problem also is tried to be found, but by using constraint programming and local search instead respectively. We will therefore in the end compare these three methods and the achieved results on fastness...

  2. The Container Stowage Problem

    DEFF Research Database (Denmark)

    Janstrup, Kira

    2010-01-01

    The main purpose of this project is to use integer programming to create a model that minimizes the costs for container transportation by ship. To make the model as realistic as possible it will be based on information from a large shipping company about the vessel layout and container types....... In addition to our project two other projects are made where an optimal solution to the container stowage problem also is tried to be found, but by using constraint programming and local search instead respectively. We will therefore in the end compare these three methods and the achieved results on fastness...

  3. Cold Stowage: An ISS Project

    Science.gov (United States)

    Hartley, Garen

    2018-01-01

    NASA's vision for humans pursuing deep space flight involves the collection of science in low earth orbit aboard the International Space Station (ISS). As a service to the science community, Johnson Space Center (JSC) has developed hardware and processes to preserve collected science on the ISS and transfer it safely back to the Principal Investigators. This hardware includes an array of freezers, refrigerators, and incubators. The Cold Stowage team is part of the International Space Station (ISS) program. JSC manages the operation, support and integration tasks provided by Jacobs Technology and the University of Alabama Birmingham (UAB). Cold Stowage provides controlled environments to meet temperature requirements during ascent, on-orbit operations and return, in relation to International Space Station Payload Science.

  4. 14 CFR 25.787 - Stowage compartments.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.787 Stowage compartments. (a) Each compartment for the stowage of cargo, baggage, carry-on articles, and... to compartments located below, or forward, of all occupants in the airplane. If the airplane has a...

  5. 49 CFR 176.130 - Magazine stowage Type A.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Magazine stowage Type A. 176.130 Section 176.130... Requirements for Class 1 (Explosive) Materials Stowage § 176.130 Magazine stowage Type A. (a) In addition to protecting the Class 1 (explosive) materials and preventing unauthorized access, magazine stowage type A...

  6. 49 CFR 176.133 - Magazine stowage Type C.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Magazine stowage Type C. 176.133 Section 176.133... Requirements for Class 1 (Explosive) Materials Stowage § 176.133 Magazine stowage Type C. The construction requirements for magazine stowage type C are the same as for a closed cargo transport unit in § 176.63(e). In...

  7. 49 CFR 176.128 - Magazine stowage types “A”, “C” and Special Stowage.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Magazine stowage types âAâ, âCâ and Special... CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Stowage § 176.128 Magazine...” and “Special”. (b) Magazine stowage type “A”. Magazine stowage type A is required for those substances...

  8. Fast Generation of Container Vessel Stowage Plans

    DEFF Research Database (Denmark)

    Pacino, Dario

    that the vessel is stable and seaworthy, and at the same time arrange the cargo such that the time at port is minimized. Moreover, stowage coordinators only have a limited amount of time to produce the plan. This thesis addresses the question of whether it is possible to automatically generate stowage plans...... test instances provided by a major liner shipping company. Improvements to the modeling of vessel stability and an analysis of its accuracy together with an analysis of the computational complexity of the container stowage problem are also included in the thesis, resulting in an overall in...

  9. Symbolic Configuration for Interactive Container Ship Stowage Planning

    DEFF Research Database (Denmark)

    Kroer, Christian; Svendsen, Martin Kjær; Jensen, Rune Møller

    2014-01-01

    Low-cost containerized shipping requires high-quality stowage plans. Scalable stowage planning optimization algorithms have been developed recently. All of these algorithms, however, produce monolithic solutions that are hard for stowage coordinators to modify, which is necessary in practice owin...

  10. Radioactive source manipulator and stowage device

    International Nuclear Information System (INIS)

    Burton, C.

    1980-01-01

    A description is given of a radioactive source manipulator and stowage device comprising: a cylindrical body; a transversely disposed socket formed near one end of said cylindrical body for receiving a radioactive source; a cylindrical sleeve rotatably mounted on said cylindrical body; and an aperture formed in the wall of said sleeve whereby rotation of said sleeve to axially align said aperture with said socket will permit a radioactive source to be inserted into and removed from said socket and rotation of said sleeve to move said aperture out of alignment with said socket when the socket contains a radioactive source readies the device for manipulation and stowage

  11. 46 CFR 133.140 - Stowage of rescue boats.

    Science.gov (United States)

    2010-10-01

    ... SYSTEMS Requirements for All OSVs § 133.140 Stowage of rescue boats. (a) Rescue boats must be stowed as follows: (1) Each rescue boat must be ready for launching in not more than 5 minutes. (2) Each rescue boat... 46 Shipping 4 2010-10-01 2010-10-01 false Stowage of rescue boats. 133.140 Section 133.140...

  12. 46 CFR 117.130 - Stowage of survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Stowage of survival craft. 117.130 Section 117.130... AND ARRANGEMENTS Survival Craft Arrangements and Equipment § 117.130 Stowage of survival craft. (a) Each survival craft must be: (1) Secured to the vessel by a painter with a float-free link permanently...

  13. 46 CFR 133.130 - Stowage of survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Stowage of survival craft. 133.130 Section 133.130... SYSTEMS Requirements for All OSVs § 133.130 Stowage of survival craft. (a) General. Each survival craft must be stowed as follows: (1) Each survival craft must be as close to the accommodation and service...

  14. 46 CFR 199.230 - Stowage of survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Stowage of survival craft. 199.230 Section 199.230... Stowage of survival craft. (a) To meet the requirements of § 199.130(b)(1), each lifeboat on a passenger... height of a survival craft must take into account the vessel's escape provisions, the vessel's size, and...

  15. 46 CFR 199.130 - Stowage of survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Stowage of survival craft. 199.130 Section 199.130... craft. (a) General. Each survival craft must be stowed— (1) As close to the accommodation and service spaces as possible; (2) So that neither the survival craft nor its stowage arrangements will interfere...

  16. 46 CFR 180.130 - Stowage of survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Stowage of survival craft. 180.130 Section 180.130... TONS) LIFESAVING EQUIPMENT AND ARRANGEMENTS Survival Craft Arrangements and Equipment § 180.130 Stowage of survival craft. (a) Each survival craft must be: (1) Secured to the vessel by a painter with a...

  17. 46 CFR 108.530 - Stowage of survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Stowage of survival craft. 108.530 Section 108.530... AND EQUIPMENT Lifesaving Equipment § 108.530 Stowage of survival craft. (a) General. Each survival craft required to be served by a launching appliance or marine evacuation system must be stowed as...

  18. 46 CFR 199.290 - Stowage of survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Stowage of survival craft. 199.290 Section 199.290... of survival craft. (a) To meet the requirements of § 199.130(b)(1), each lifeboat— (1) On a cargo... required under § 199.261(e), no stowage position or muster and embarkation station for a survival craft on...

  19. 46 CFR 28.125 - Stowage of survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Stowage of survival craft. 28.125 Section 28.125... FISHING INDUSTRY VESSELS Requirements for All Vessels § 28.125 Stowage of survival craft. (a) Each..., inflatable buoyant apparatus, and any auxiliary craft used in their place, must be kept readily accessible...

  20. Generating Optimal Stowage Plans for Container Vessel Bays

    DEFF Research Database (Denmark)

    Delgado-Ortegon, Alberto; Jensen, Rune Møller; Schulte, Christian

    2009-01-01

    collaboration to date with a liner shipping company on automated stowage planning. We then show how to solve this model ef- ficiently in - to our knowledge - the first application of CP to stowage planning using state-of-the-art techniques such as extensive use of global constraints, viewpoints, static...

  1. Study of stowage of radioactive materials packagings in accidental conditions

    International Nuclear Information System (INIS)

    Chevalier, G.; Gilles, P.; Phalippou, C.; Pouard, M.; Draulans, J.; Lafontaine, I.

    1987-03-01

    The study of transport conditions shows that few data are available on accidental conditions. Two types of accidents are selected and defined by calculations and tests. Sizing of stowage is determined for a frontal shock (35 g deceleration), maintaining the packaging on the vehicle, and side shock rupture of the stowage system for a determined stress. Mathematical formulations are developed [fr

  2. 49 CFR 176.805 - On deck stowage.

    Science.gov (United States)

    2010-10-01

    ... for leakage from any package to drain away from other cargo into an overboard scupper or freeing port... stowage is not practical, sufficient clean dry sand must be placed under and around the lower tier of...

  3. Fast Generation of Near-Optimal Plans for Eco-Efficient Stowage of Large Container Vessels

    DEFF Research Database (Denmark)

    Pacino, Dario; Delgado, Alberto; Jensen, Rune Møller

    2011-01-01

    Eco-efficient stowage plans that are both competitive and sustainable have become a priority for the shipping industry. Stowage planning is NP-hard and is a challenging optimization problem in practice. We propose a new 2-phase approach that generates near-optimal stowage plans and fulfills indus...

  4. Columbus stowage optimization by cast (cargo accommodation support tool)

    Science.gov (United States)

    Fasano, G.; Saia, D.; Piras, A.

    2010-08-01

    A challenging issue related to the International Space Station utilization concerns the on-board stowage, implying a strong impact on habitability, safety and crew productivity. This holds in particular for the European Columbus laboratory, nowadays also utilized to provide the station with logistic support. The volume exploitation has to be maximized, in compliance with the given accommodation rules. At each upload step, the stowage problem must be solved quickly and efficiently. This leads to the comparison of different scenarios to select the most suitable one. Last minute upgrades, due to possible re-planning, may, moreover arise, imposing the further capability to rapidly readapt the current solution to the updated status. In this context, looking into satisfactory solutions represents a very demanding job, even for experienced designers. Thales Alenia Space Italia has achieved a remarkable expertise in the field of cargo accommodation and stowage. The company has recently developed CAST, a dedicated in-house software tool, to support the cargo accommodation of the European automated transfer vehicle. An ad hoc version, tailored to the Columbus stowage, has been further implemented and is going to be used from now on. This paper surveys the on-board stowage issue, pointing out the advantages of the proposed approach.

  5. Models and Algorithms for Container Vessel Stowage Optimization

    DEFF Research Database (Denmark)

    Delgado-Ortegon, Alberto

    .g., selection of vessels to buy that satisfy specific demands), through to operational decisions (e.g., selection of containers that optimize revenue, and stowing those containers into a vessel). This thesis addresses the question of whether it is possible to formulate stowage optimization models...... container of those to be loaded in a port should be placed in a vessel, i.e., to generate stowage plans. This thesis explores two different approaches to solve this problem, both follow a 2-phase decomposition that assigns containers to vessel sections in the first phase, i.e., master planning...

  6. A matheuristic for the Cargo Mix Problem with Block Stowage

    DEFF Research Database (Denmark)

    Christensen, Jonas Mark; Pacino, Dario

    2017-01-01

    The cargo-mix problem aims at selecting the amount of containers of a given type to load on a vessel. In this article we present an extended definition that includes the analysis of a circular route with draft restrictions, limitations on expected cargo and the use of a block stowage strategy...

  7. Space Science Investigation: NASA ISS Stowage Simulator

    Science.gov (United States)

    Crawford, Gary

    2017-01-01

    During this internship the opportunity was granted to work with the Integrated, Graphics, Operations and Analysis Laboratory (IGOAL) team. The main assignment was to create 12 achievement patches for the Space Station training simulator called the "NASA ISS Stowage Training Game." This project was built using previous IGOAL developed software. To accomplish this task, Adobe Photoshop and Adobe Illustrator were used to craft the badges and other elements required. Blender, a 3D modeling software, was used to make the required 3D elements. Blender was a useful tool to make things such as a CTB bag for the "No More Bob" patch which shows a gentleman kicking a CTB bag into the distance. It was also used to pose characters to the positions that was optimal for their patches as in the "Station Sanitation" patch which portrays and astronaut waving on a U.S module on a truck. Adobe Illustrator was the main piece of software for this task. It was used to craft the badges and upload them when they were completed. The style of the badges were flat, meaning that they shouldn't look three dimensional in any way, shape or form. Adobe Photoshop was used when any pictures need brightening and was where the texture for the CTB bag was made. In order for the patches to be ready for the game's next major release, they have to go under some critical reviewing, revising and re-editing to make sure the other artists and the rest of the staff are satisfied with the final products. Many patches were created and revamped to meet the flat setting and incorporate suggestions from the IGOAL team. After the three processes were completed, the badges were implemented into the game (reference fig1 for badges). After a month of designing badges, the finished products were placed into the final game build via the programmers. The art was the final piece in showcasing the latest build to the public for testing. Comments from the testers were often exceptional and the feedback on the badges were

  8. Detailed requirements document for Stowage List and Hardware Tracking System (SLAHTS). [computer based information management system in support of space shuttle orbiter stowage configuration

    Science.gov (United States)

    Keltner, D. J.

    1975-01-01

    The stowage list and hardware tracking system, a computer based information management system, used in support of the space shuttle orbiter stowage configuration and the Johnson Space Center hardware tracking is described. The input, processing, and output requirements that serve as a baseline for system development are defined.

  9. Fast Interactive Decision Support for Modifying Stowage Plans Using Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Jensen, Rune Møller; Leknes, Eilif; Bebbington, Thomas

    Low cost containerized shipping requires high quality stowage plans. Scalable stowage planning optimization algorithms have been developed recently. All of these algorithms, however, produce monolithic solutions that are hard for stowage coordinators to modify, which is necessary in practice due ...... fast, complete, and backtrack-free decision support. Our computational results show that the approach can solve real-sized instances when breaking symmetries among similar containers...

  10. A GRASP algorithm for the container stowage slot planning problem

    DEFF Research Database (Denmark)

    Parreno, Francisco; Pacino, Dario; Alvarez-Valdes, Ramon

    2016-01-01

    in clusters along the vessel. For each of those clusters a specific position for each container must be found. Compared to previous studies, we have introduced two new features: the explicit handling of rolled out containers and the inclusion of separations rules for dangerous cargo. We present a novel......This work presents a generalization of the Slot Planning Problem which raises when the liner shipping industry needs to plan the placement of containers within a vessel (stowage planning). State-of-the-art stowage planning relies on a heuristic decomposition where containers are first distributed...... integer programming formulation and a Greedy Randomized Adaptive Search Procedure (GRASP) to solve the problem. The approach is able to find high-quality solution within 1 s. We also provide comparison with the state-of-the-art on an existing and a new set of benchmark instances. (C) 2016 Elsevier Ltd...

  11. 49 CFR 176.84 - Other requirements for stowage and segregation for cargo vessels and passenger vessels.

    Science.gov (United States)

    2010-10-01

    ... persons on passenger vessels. 94 Plastic jerricans and plastic drums not permitted under deck. 95 Stow... Stowage category “04” for projectiles or cartridges for guns, cannons or mortars; Stowage category “08... projectiles or cartridges for guns, cannons or mortars; Stowage category “07” for other types; magazines must...

  12. 14 CFR 382.127 - What procedures apply to stowage of battery-powered mobility aids?

    Science.gov (United States)

    2010-01-01

    ...-powered mobility aids? 382.127 Section 382.127 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT... DISABILITY IN AIR TRAVEL Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.127 What procedures apply to stowage of battery-powered mobility aids? (a) Whenever baggage compartment...

  13. An LNS Approach for Container Stowage Multi-port Master Planning

    DEFF Research Database (Denmark)

    Pacino, Dario

    2013-01-01

    The generation of competitive stowage plans have become a priority for the shipping industry. Stowage planning is NP-hard and is a challenging optimization problem in practice. Two-phase decomposition approaches have proved to give viable solutions. We propose a large neighborhood search (LNS) to...

  14. 49 CFR 176.903 - Stowage of cotton or vegetable fibers with coal.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Stowage of cotton or vegetable fibers with coal... § 176.903 Stowage of cotton or vegetable fibers with coal. Cotton or vegetable fibers being transported on a vessel may not be stowed in the same hold with coal. They may be stowed in adjacent holds if the...

  15. 46 CFR 196.37-37 - Markings for lifesaving appliances, instructions to passengers, and stowage locations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Markings for lifesaving appliances, instructions to..., etc. § 196.37-37 Markings for lifesaving appliances, instructions to passengers, and stowage locations. Lifesaving appliances, instructions to passengers, and stowage locations must be marked in accordance with...

  16. 46 CFR 78.47-45 - Markings for lifesaving appliances, instructions to passengers, and stowage locations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Markings for lifesaving appliances, instructions to...-45 Markings for lifesaving appliances, instructions to passengers, and stowage locations. Lifesaving appliances, instructions to passengers, and stowage locations must be marked in accordance with subchapter W...

  17. 46 CFR 97.37-42 - Markings for lifesaving appliances, instructions to passengers, and stowage locations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Markings for lifesaving appliances, instructions to..., Etc. § 97.37-42 Markings for lifesaving appliances, instructions to passengers, and stowage locations. Lifesaving appliances, instructions to passengers, and stowage locations must be marked in accordance with...

  18. Stowage Planning in Multiple Ports with Shifting Fee Minimization

    Directory of Open Access Journals (Sweden)

    E. Zhang

    2018-01-01

    Full Text Available This paper studies the problem of stowage planning within a vessel bay in a multiple port transportation route, aiming at minimizing the total container shifting fee. Since the access to containers is in the top-to-bottom order for each stack, reshuffle operations occur when a target container to be unloaded at its destination port is not stowed on the top of a stack at the time. Each container shift via a quay crane induces one unit of shifting fee that depends on the charge policy of the local container port. Previous studies assume that each container shift consumes a uniform cost in all ports and thus focus on minimizing the total number of shifts or the turnaround time of the vessel. Motivated by the observation that different ports are of nonuniform fee for each container shift, we propose a mixed integer programming (MIP model for the problem to produce an optimal stowage planning with minimum total shifting fee in this work. Moreover, as the considered problem is NP-hard due to the NP-hardness of its counterpart with uniform unit shifting fee, we propose an improved genetic algorithm to solve the problem. The efficiency of the proposed algorithm is demonstrated via numerical experiments.

  19. Assessment of Fire Growth and Mitigation in Submarine Plastic Waste Stowage Compartments

    National Research Council Canada - National Science Library

    Ndubizu, Chuka

    2000-01-01

    This report presents the results of tests to assess the fire growth characteristics and the ease of fire control in the proposed Virginia-class and the Ohio-class submarine plastic waste stowage compartments...

  20. On the complexity of container stowage planning problems

    DEFF Research Database (Denmark)

    Tierney, Kevin; Pacino, Dario; Jensen, Rune Møller

    2014-01-01

    The optimization of container ship and depot operations embeds the kk-shift problem, in which containers must be stowed in stacks such that at most kk containers must be removed in order to reach containers below them. We first solve an open problem introduced by Avriel et al. (2000) by showing...... that changing from uncapacitated to capacitated stacks reduces the complexity of this problem from NP-complete to polynomial. We then examine the complexity of the current state-of-the-art abstraction of container ship stowage planning, wherein containers and slots are grouped together. To do this, we define...... the hatch overstow problem, in which a set of containers are placed on top of the hatches of a container ship such that the number of containers that are stowed on hatches that must be accessed is minimized. We show that this problem is NP-complete by a reduction from the set-covering problem, which means...

  1. 14 CFR 135.122 - Stowage of food, beverage, and passenger service equipment during aircraft movement on the...

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Stowage of food, beverage, and passenger....122 Stowage of food, beverage, and passenger service equipment during aircraft movement on the surface... when any food, beverage, or tableware furnished by the certificate holder is located at any passenger...

  2. 14 CFR 91.535 - Stowage of food, beverage, and passenger service equipment during aircraft movement on the...

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Stowage of food, beverage, and passenger... Airplanes and Fractional Ownership Program Aircraft § 91.535 Stowage of food, beverage, and passenger... an aircraft on the surface, take off, or land when any food, beverage, or tableware furnished by the...

  3. 14 CFR 121.577 - Stowage of food, beverage, and passenger service equipment during airplane movement on the...

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Stowage of food, beverage, and passenger..., FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.577 Stowage of food, beverage, and passenger... may move an airplane on the surface, take off, or land when any food, beverage, or tableware furnished...

  4. Minimizing Lid Overstows in Master Stowage Plans for Container Vessels is NP-Complete

    DEFF Research Database (Denmark)

    Ajspur, Mai Lise; Jensen, Rune Møller; Guilbert, Nicolas

    Container vessel stowage is a particularly hard combinatorial problem within the shipping industry. The currently most successful approaches decompose the problem hierarchically and first generate a master plan that handle highlevel constraints and objectives such as balance and stress moments...... that it is an NP -complete problem to generate master plans that minimize the number of these lid overstows. Since any efficient approach to container vessel stowage most likely must include a master plan, the implication of this result is that future research must focus and developing good heuristics...

  5. 49 CFR 176.194 - Stowage of Class 1 (explosive) materials on magazine vessels.

    Science.gov (United States)

    2010-10-01

    ... magazine vessels. 176.194 Section 176.194 Transportation Other Regulations Relating to Transportation... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Magazine Vessels § 176.194 Stowage of Class 1 (explosive) materials on magazine vessels. (a) General. The requirements of...

  6. A Constraint Programming Model for Fast Optimal Stowage of Container Vessel Bays

    DEFF Research Database (Denmark)

    Delgado-Ortegon, Alberto; Jensen, Rune Møller; Janstrup, Kira

    bays. Due to the large number of sub-problems, they must each be solved fast to generate complete stowage plans within the time requirements and computational resource limits of the shipping industry. In this paper we present the first independent study of these sub-problems. We introduce an accurate...

  7. Effects of Long-Term Stowage on the Deployment of Bistable Tape Springs

    OpenAIRE

    Brinkmeyer, Alex; Pellegrino, Sergio; Weaver, Paul M.

    2016-01-01

    In the context of strain-energy-deployed space structures, material relaxation effects play a significant role in structures that are stowed for long durations, for example, in a space vehicle prior to launch. Here, the deployment of an ultrathin carbon fiber reinforced plastic (CFRP) tape spring is studied, with the aim of understanding how long-duration stowage affects its deployment behavior. Analytical modeling and experiments show that the deployment time increases predictably with stowa...

  8. Solving the Container Stowage Problem (CSP) using Particle Swarm Optimization (PSO)

    Science.gov (United States)

    Matsaini; Santosa, Budi

    2018-04-01

    Container Stowage Problem (CSP) is a problem of containers arrangement into ships by considering rules such as: total weight, weight of one stack, destination, equilibrium, and placement of containers on vessel. Container stowage problem is combinatorial problem and hard to solve with enumeration technique. It is an NP-Hard Problem. Therefore, to find a solution, metaheuristics is preferred. The objective of solving the problem is to minimize the amount of shifting such that the unloading time is minimized. Particle Swarm Optimization (PSO) is proposed to solve the problem. The implementation of PSO is combined with some steps which are stack position change rules, stack changes based on destination, and stack changes based on the weight type of the stacks (light, medium, and heavy). The proposed method was applied on five different cases. The results were compared to Bee Swarm Optimization (BSO) and heuristics method. PSO provided mean of 0.87% gap and time gap of 60 second. While BSO provided mean of 2,98% gap and 459,6 second to the heuristcs.

  9. 76 FR 32107 - Nondiscrimination on the Basis of Disability in Air Travel; Accessibility of Aircraft and Stowage...

    Science.gov (United States)

    2011-06-03

    ... wheelchair was originally adopted in 1990, the Department's intention was that new aircraft would have a... have a priority stowage space. (4) Any increased costs to carriers, such as increased purchases of... wide variety of wheelchairs and mobility devices on the market, what dimensions would be a reasonable...

  10. 49 CFR 176.108 - Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage. 176.108 Section 176.108 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  11. 14 CFR 125.333 - Stowage of food, beverage, and passenger service equipment during airplane movement on the...

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Stowage of food, beverage, and passenger... food, beverage, and passenger service equipment during airplane movement on the surface, takeoff, and... certificate holder may move an airplane on the surface, take off, or land unless each food and beverage tray...

  12. AngelStow: A Commercial Optimization-Based Decision Support Tool for Stowage Planning

    DEFF Research Database (Denmark)

    Delgado-Ortegon, Alberto; Jensen, Rune Møller; Guilbert, Nicolas

    save port fees, optimize use of vessel capacity, and reduce bunker consumption. Stowage Coordinators (SCs) produce these plans manually with the help of graphical tools, but high-quality SPs are hard to generate with the limited support they provide. In this abstract, we introduce AngelStow which...... is a commercial optimization-based decision support tool for stowing container vessels developed in collaboration between Ange Optimization and The IT University of Copenhagen. The tool assists SCs in the process of generating SPs interactively, focusing on satisfying and optimizing constraints and objectives...... that are tedious to deal with for humans, while letting the SCs use their expertise to deal with hard combinatorial objectives and corner cases....

  13. A Constraint Programming Model for Fast Optimal Stowage of Container Vessel Bays

    DEFF Research Database (Denmark)

    Delgado-Ortegon, Alberto; Jensen, Rune Møller; Janstrup, Kira

    2012-01-01

    Container vessel stowage planning is a hard combinatorial optimization problem with both high economic and environmental impact. We have developed an approach that often is able to generate near-optimal plans for large container vessels within a few minutes. It decomposes the problem into a master...... planning phase that distributes the containers to bay sections and a slot planning phase that assigns containers of each bay section to slots. In this paper, we focus on the slot planning phase of this approach and present a constraint programming and integer programming model for stowing a set...... of containers in a single bay section. This so-called slot planning problem is NP-hard and often involves stowing several hundred containers. Using state-of-the-art constraint solvers and modeling techniques, however, we were able to solve 90% of 236 real instances from our industrial collaborator to optimality...

  14. Space shuttle/food system. Volume 2, Appendix C: Food cooling techniques analysis. Appendix D: Package and stowage: Alternate concepts analysis

    Science.gov (United States)

    1974-01-01

    The relative penalties associated with various techniques for providing an onboard cold environment for storage of perishable food items, and for the development of packaging and vehicle stowage parameters were investigated in terms of the overall food system design analysis of space shuttle. The degrees of capability for maintaining both a 40 F to 45 F refrigerated temperature and a 0 F and 20 F frozen environment were assessed for the following cooling techniques: (1) phase change (heat sink) concept; (2) thermoelectric concept; (3) vapor cycle concept; and (4) expendable ammonia concept. The parameters considered in the analysis were weight, volume, and spacecraft power restrictions. Data were also produced for packaging and vehicle stowage parameters which are compatible with vehicle weight and volume specifications. Certain assumptions were made for food packaging sizes based on previously generated space shuttle menus. The results of the study are shown, along with the range of meal choices considered.

  15. Calf tissue liquid stowage and muscular and deep vein distension in orthostatic tests after a 90-day head down bed rest

    Science.gov (United States)

    Arbeille, P.A.; Kerbeci, P.; Audebert, P.; Capri, A.; Pascaud, L.

    2005-08-01

    The objectives were to assess the contribution of (1) the calf veins distension and(2) the tissue liquid stowage during standtest, to orthostatic intolerance "OI" after a head down bed rest (HDBR) of 90days. Method: The population consisted of a control group (Co-gr, n=9) and an exercise Fly wheel counter-measure group (CM-gr, n=9). Calf vein cross sectional area (CSA) and surrounding tissue liquid content (tissue image darkness) were assessed by echography during pre and post HDBR stand-tests. Results: From supine to standing (post HDBR), the Tibial and muscular vein CSA increased significantly in non tolerant subjects whereas in tolerant subjects the vein CSA did not change. Post HDBR the tissue image darkness (proportional to tissue liquid content) increased more from supine to standing in non tolerant than in tolerant subjects. No significant difference were found between Co and exercise CM groups. Conclusion: High calf vein CSA and tissue liquid content increase at post-HDBR stand-test were significantly correlated with occurrence of OI but not with CM.

  16. 46 CFR 42.25-15 - Stowage.

    Science.gov (United States)

    2010-10-01

    ... way with the navigation and necessary work of the vessel. (b) Upright. (1) Uprights, when required by... flexible wire rope of equivalent strength, fitted with sliphooks and turnbuckles, which shall be accessible... least 391/2 inches above the cargo. (f) Steering arrangements. (1) Steering arrangements shall be...

  17. Crew Clothing Odor Absorbing Stowage Bag

    Data.gov (United States)

    National Aeronautics and Space Administration — Clothing accounts for a significant portion of the logistical mass launched on current space missions: 277 kg (including 62 kg of exercise clothing) for an ISS crew...

  18. 49 CFR 176.600 - General stowage requirements.

    Science.gov (United States)

    2010-10-01

    ... POISON label, being transported on a vessel, must be stowed clear of living quarters and any ventilation ducts serving living quarters and separated from foodstuffs, except when the hazardous materials and the.... (c) Each package bearing a POISON label displaying the text “PG III” or bearing a “PG III” mark...

  19. 49 CFR 176.800 - General stowage requirements.

    Science.gov (United States)

    2010-10-01

    ... must be stowed clear of living quarters, and away from foodstuffs and cargo of an organic nature. (b) A...) which also bears a FLAMMABLE LIQUID label must be stowed away from all sources of heat and ignition...

  20. Automating Stowage Operations for the International Space Station

    Science.gov (United States)

    Knight, Russell; Rabideau, Gregg; Mishkin, Andrew; Lee, Young

    2013-01-01

    A challenge for any proposed mission is to demonstrate convincingly that the proposed systems will in fact deliver the science promised. Funding agencies and mission design personnel are becoming ever more skeptical of the abstractions that form the basis of the current state of the practice with respect to approximating science return. To address this, we have been using automated planning and scheduling technology to provide actual coverage campaigns that provide better predictive performance with respect to science return for a given mission design and set of mission objectives given implementation uncertainties. Specifically, we have applied an adaptation of ASPEN and SPICE to the Eagle-Eye domain that demonstrates the performance of the mission design with respect to coverage of science imaging targets that address climate change and disaster response. Eagle-Eye is an Earth-imaging telescope that has been proposed to fly aboard the International Space Station (ISS).

  1. Constraint-based local search for container stowage slot planning

    DEFF Research Database (Denmark)

    Pacino, Dario; Jensen, Rune Møller; Bebbington, Tom

    2012-01-01

    -sea vessels. This paper describes the constrained-based local search algorithm used in the second phase of this approach where individual containers are assigned to slots in each bay section. The algorithm can solve this problem in an average of 0.18 seconds per bay, corresponding to a 20 seconds runtime...

  2. A Placement Heuristic for a Commercial Decision Support System for Container Vessel Stowage

    DEFF Research Database (Denmark)

    Delgado-Ortegon, Alberto; Jensen, Rune Møller; Guilbert, Nicolas

    2013-01-01

    Decision support systems have become a viable approach to tackle complex optimization problems. The combination of experts' know-how and efficient optimization algorithms can dramatically improve solution quality and reduce work time. Some of these systems rely on continuous interaction with thei...

  3. 49 CFR 176.900 - Packaging and stowage of cotton and vegetable fibers; general.

    Science.gov (United States)

    2010-10-01

    ... loading, the extinguishing system must be examined to ensure that it is in good working condition; and (7... extinguishers may be the vessel's equipment or shore equipment. (h) Smoking is not permitted on a vessel during... designated by the master. “NO SMOKING” signs must be conspicuously posted in appropriate places, and the...

  4. Next-Generation Ultra-Compact Stowage/Lightweight Solar Array System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) has developed a next-generation high performance solar array system that has game-changing performance metrics in terms of...

  5. 49 CFR 176.69 - General stowage requirements for hazardous materials.

    Science.gov (United States)

    2010-10-01

    ... equipped with a fixed fire extinguishing and fire detection system, the freight containers or barges need... by paragraph (a) of this section if fire fighting equipment capable of reaching and piercing the..., their removal from a potentially dangerous situation, and the removal of packages in case of fire. (b...

  6. 78 FR 67918 - Nondiscrimination on the Basis of Disability in Air Travel; Accessibility of Aircraft and Stowage...

    Science.gov (United States)

    2013-11-12

    ... individual consumers submitted comments. The Department has carefully reviewed and considered the comments... would allow airlines to offer lower fares for consumers. According to these commenters, seat-strapping... the last row of seats, rather than the first, which could cause it to be the last item off the plane...

  7. Public announcement of guidelines for the packing and safe stowing of cargo in freight containers and vehicles for ocean transport (Container Stowage Guidelines)

    International Nuclear Information System (INIS)

    1987-01-01

    The IMO and ILO guidelines are given, which help to meet the requirements of the Maritime Safety Ordinance and the Ordinance on Ocean Transport of Dangerous Goods. The guidelines explain the principles of safe packing and stowing of cargo in freight containers and vehicles for ocean transports. Further information and practical hints are given in international publications referred to in the annex. The guidelines are also meant for training purposes. (orig./HSCH) [de

  8. Fast Generation of Container Vessel Stowage Plans:Using mixed integer programming for optimal master planning and constraint based local search for slot planning

    OpenAIRE

    Pacino, Dario

    2012-01-01

    Containerization has changed the way the world perceives shipping. It is now possible to establish complex international supply chains that have minimized shipping costs. Over the past two decades, the demand for cost efficient containerized transportation has seen a continuous increase. In order to answer to this demand, shipping companies have deployed bigger container vessels, that nowadays can transport up to 18,000 containers and are wider than the extended Panama Canal. Like busses, con...

  9. 14 CFR 382.129 - What other requirements apply when passengers' wheelchairs, other mobility aids, and other...

    Science.gov (United States)

    2010-01-01

    ... passengers' wheelchairs, other mobility aids, and other assistive devices must be disassembled for stowage... Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.129 What other requirements apply when passengers' wheelchairs, other mobility aids, and other assistive devices must be...

  10. 75 FR 64585 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Science.gov (United States)

    2010-10-19

    ...), U.S. Department of Transportation, West Building Ground Floor, Room W12-140, 1200 New Jersey Avenue... is categorically excluded under section 2.B.2, figure 2-1, paragraphs (34)(a) and (d) of the... followed after unloading. 148.115 Report of incidents. Subpart D--Stowage and Segregation 148.120 Stowage...

  11. 49 CFR 176.137 - Portable magazine.

    Science.gov (United States)

    2010-10-01

    ... requirements: (1) It must be weather-tight, constructed of wood or metal lined with wood at least 2 cm (0.787... wood, a portable magazine must be framed of nominal 5 cm × 10 cm (2×4 inch) lumber, and sheathed with... used for the stowage of Class 1 (explosive) materials under such construction, handling, and stowage...

  12. 75 FR 52385 - Office of Hazardous Materials Safety; Actions on Special Permit Applications

    Science.gov (United States)

    2010-08-25

    ... communication requirements, quantity limitations and certain loading and stowage requirements (mode 4). Nature... Dog 172.101 Column transportation in Operations, 9(B). commerce of Anchorage, AK. Xanthates, which... subject to hazard communication requirements, quantity limitations and certain loading and stowage...

  13. Longitudinal Acceleration Tests of Overhead Luggage Bins and Auxiliary Fuel Tank in a Transport Airplane Airframe Section

    National Research Council Canada - National Science Library

    McGuire, Robert

    1999-01-01

    This report contains the description and test results of overhead stowage bin calibrations and longitudinal impact testing of a 10-foot transport airframe section conducted at the Transportation Research Center Inc. (TRC...

  14. Longitudinal Acceleration Test of Overhead Luggage Bins and Auxiliary Fuel Tank in a Transport Airplane Airframe Section, Part 2

    National Research Council Canada - National Science Library

    McGuire, Robert

    2000-01-01

    This report contains the description and test results of overhead stowage bin calibrations and longitudinal impact testing of a 10-foot transport airframe section conducted at the Transportation Research Center Inc. (TRC...

  15. 33 CFR 144.20-5 - Exposure suits.

    Science.gov (United States)

    2010-07-01

    ... light that is approved under 46 CFR 161.012. Each light must be securely attached to the front shoulder... lanyard coiled and stopped off. (f) No stowage container for exposure suits may be capable of being locked...

  16. 14 CFR 23.853 - Passenger and crew compartment interiors.

    Science.gov (United States)

    2010-01-01

    ... Photographic Film PH1.25 (available from the American National Standards Institute, 1430 Broadway, New York, N... stowage compartments and compartments for stowing small items such as magazines and maps) must be self...

  17. Commander Lousma is surrounded by a week's worth of trash on the middeck

    Science.gov (United States)

    1982-01-01

    Commander Lousma, wearing communication kit assembly (ASSY) mini headset (HDST), gathers three freefloating plastic trash bags filled with empty containers, paper towels, straws, etc. Lousma will stow them in a designated stowage volume.

  18. Foldable Compactly Stowable Extremely High Power Solar Array System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) has developed a high performance solar array system that has game-changing performance metrics in terms of ultra-compact stowage...

  19. Low Cost Automated Manufacture of PV Array Technology (P-NASA12-007-1), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft for NASA, DoD and commercial missions need higher power than ever before, with lower mass, compact stowage, and lower cost. While high efficiency,...

  20. Engineering design, stress and thermal analysis, and documentation for SATS program

    Science.gov (United States)

    1973-01-01

    An in-depth analysis and mechanical design of the solar array stowage and deployment arrangements for use in Small Applications Technology Satellite spacecraft is presented. Alternate approaches for the major elements of work are developed and evaluated. Elements include array stowage and deployment arrangements, the spacecraft and array behavior in the spacecraft despin mode, and the design of the main hinge and segment hinge assemblies. Feasibility calculations are performed and the preferred approach is identified.

  1. 78 FR 68784 - Cargo Securing Manuals

    Science.gov (United States)

    2013-11-15

    .../Circ.) 1352 (``Cargo Stowage and Securing (CSS Code) Annex 14 Guidance on Providing Safe Working... Providing Safe Working Conditions for the Securing of Containers'') of the IMO 2010 CSS Code. A cargo safe.... Indian Tribal Governments K. Energy Effects L. Technical Standards M. Environment I. Public Participation...

  2. Astronaut Anna Fisher demonstrates sleep restraints on shuttle

    Science.gov (United States)

    1984-01-01

    Astronaut Anna L. Fisher demonstrates the versatility of shuttle sleep restraints to accommodate the preference of crewmembers as she appears to have configured hers in a horizontal hammock mode. Stowage lockers, one of the middeck walls, another sleep restraint, a jury-rigged foot and hand restraint are among other items in the frame.

  3. 46 CFR 109.347 - Pilot boarding equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pilot boarding equipment. 109.347 Section 109.347... OPERATIONS Operation and Stowage of Safety Equipment § 109.347 Pilot boarding equipment. (a) The master or person in charge shall ensure that pilot boarding equipment is maintained as follows: (1) The equipment...

  4. 49 CFR 176.120 - Lightning protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Lightning protection. 176.120 Section 176.120 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Class 1 (Explosive) Materials Stowage § 176.120 Lightning protection. A lightning conductor...

  5. Guide relative to the regulatory requirements applicable to the radioactive materials transport in airport area

    International Nuclear Information System (INIS)

    2006-02-01

    This guide makes an inventory of all the points necessary for the correct functioning of the transport of radioactive materials in airport zone. Stowage of the parcels, program of radiological protection (P.R.P.), operation of transport, quality assurance, radiation dose evaluation, radiation monitoring, dose optimization, storage management, are the principal points of this guide. (N.C.)

  6. 46 CFR 160.151-15 - Design and performance of inflatable liferafts.

    Science.gov (United States)

    2010-10-01

    ...). (g) Towing attachments (Regulation III/38.1.4.) Each towing attachment must be reinforced strongly... mm (3/8-inch), or equivalent. Each lifeline-attachment patch must have a minimum breaking strength of... inflation cylinders in place when the liferaft is dropped into the water from its stowage height and during...

  7. 46 CFR 147.50 - Fuel for cooking, heating, and lighting.

    Science.gov (United States)

    2010-10-01

    ... cargo vessels. (b) Fluid alcohol is prohibited for cooking, heating, or lighting on ferry vessels. Fluid... 46 Shipping 5 2010-10-01 2010-10-01 false Fuel for cooking, heating, and lighting. 147.50 Section... SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.50 Fuel for cooking...

  8. 46 CFR 109.323 - Manning of survival craft and supervision.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Manning of survival craft and supervision. 109.323... DRILLING UNITS OPERATIONS Operation and Stowage of Safety Equipment § 109.323 Manning of survival craft and supervision. (a) There must be a sufficient number of trained persons on board the survival craft for...

  9. Optimizing Liner Shipping Fleet Repositioning Plans

    DEFF Research Database (Denmark)

    Tierney, Kevin

    authorities on two real ports, the port of Hamburg, Germany, and the Maasvlakte area of the port of Rotterdam, Netherlands. Finally, this thesis gives a polynomial time algorithm for an open problem from the container stowage literature, the capacitated k-shift problem with a xed number of stacks and stack...

  10. 46 CFR 4.05-15 - Voyage records, retention of.

    Science.gov (United States)

    2010-10-01

    ... room logs, bell books, navigation charts, navigation work books, compass deviation cards, gyro records, stowage plans, records of draft, aids to mariners, night order books, radiograms sent and received, radio... request, to a duly authorized investigating officer, administrative law judge, officer or employee of the...

  11. 46 CFR 147.90 - Refrigerants.

    Science.gov (United States)

    2010-10-01

    .../ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating system... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other...

  12. 7 CFR 868.90 - Fees for certain Federal inspection services.

    Science.gov (United States)

    2010-01-01

    ... or sample) 13.75 (iii) Factor analysis (per factor) 5.65 (2) Additional Tests—Unit Rates (Hops): (i... Commodities): (i) Factor analysis (per factor) 5.65 (4) Stowage Examination (service-on-request) 4 (i) Ship... (24) Protein 16.00 (25) Sanitation (light filth) 47.00 (26) Sieve test 11.00 (27) Smoke Point 43.00...

  13. 49 CFR 176.76 - Transport vehicles, freight containers, and portable tanks containing hazardous materials.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport vehicles, freight containers, and... TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL General Handling and Stowage § 176.76 Transport... paragraphs (b) through (f) of this section, hazardous materials authorized to be transported by vessel may be...

  14. U.S. Navy Ships Food Service Divisions: Modernizing Inventory Management

    Science.gov (United States)

    2010-06-01

    management procedures for receipt, inventory, stowage, and issue of provisions onboard ships have remained relatively unchanged for decades. Culinary ...improve the quality of life for Culinary Specialists 15. NUMBER OF PAGES 87 14. SUBJECT TERMS Inventory management , records keeper, stores onload...remained relatively unchanged for decades. Culinary Specialists are utilizing an antiquated and unreliable inventory management program (the Food

  15. Constraint Optimization for Highly Constrained Logistic Problems

    DEFF Research Database (Denmark)

    Mochnacs, Maria Kinga; Tanaka, Meang Akira; Nyborg, Anders

    This report investigates whether propagators combined with branch and bound algorithm are suitable for solving the storage area stowage problem within reasonable time. The approach has not been attempted before and experiments show that the implementation was not capable of solving the storage ar...

  16. Space shuttle/food system study. Volume 2, Appendix F: Flight food and primary packaging

    Science.gov (United States)

    1974-01-01

    The analysis and selection of food items and primary packaging, the development of menus, the nutritional analysis of diet, and the analyses of alternate food mixes and contingency foods is reported in terms of the overall food system design for space shuttle flight. Stowage weights and cubic volumes associated with each alternate mix were also evaluated.

  17. What it takes to Fly in Space...Training to be an Astronaut and Daily Operations on ISS

    Science.gov (United States)

    Ham, Michelle

    2009-01-01

    This presentation highlights NASA requirements to become an astronaut, training astronauts must do to fly on the International Space Station (ISS), systems and other training, and day-to-day activities onboard ISS. Additionally, stowage, organization and methods of communication (email, video conferenceing, IP phone) are discussed.

  18. Application of an In-Line Contamination Monitoring Unit to the AHT-64 Hydraulic Test Stand.

    Science.gov (United States)

    1981-06-04

    suction return connection port will require the operator to secuire same from a squatting position. The present stowage arrangement on the test stand... SPC FC sample~~~ Iepal" -a *Tpoa _______Rate 7 eo3,t Sq,’ TPc owe te - U Enciosure ULeeds & Northrup N’AFC- 92- 1 0 Typical Plumbing Connections for

  19. Guide relative to the regulatory requirements applicable to the radioactive materials transport in airport area; Guide relatif aux exigences reglementaires applicables au transport des matieres radioactives en zone aeroportuaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    This guide makes an inventory of all the points necessary for the correct functioning of the transport of radioactive materials in airport zone. Stowage of the parcels, program of radiological protection (P.R.P.), operation of transport, quality assurance, radiation dose evaluation, radiation monitoring, dose optimization, storage management, are the principal points of this guide. (N.C.)

  20. 46 CFR 147.85 - Oxygen.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Oxygen. 147.85 Section 147.85 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other...) of oxygen may be on board a vessel engaged in industrial operations, if it is stowed on deck or in a...

  1. 46 CFR 147.70 - Acetylene.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Acetylene. 147.70 Section 147.70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other... standard cubic feet) of acetylene may be on board a vessel engaged in industrial operations, if it is...

  2. 46 CFR 160.028-6 - Container.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Container. 160.028-6 Section 160.028-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... Container. (a) General. Containers for the stowage of signal pistols and pistol projected parachute red...

  3. 46 CFR 109.334 - Working over water.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Working over water. 109.334 Section 109.334 Shipping... Operation and Stowage of Safety Equipment § 109.334 Working over water. The master or person in charge shall insure that each person working over the water is wearing a life preserver or a buoyant work vest. ...

  4. 49 CFR 176.2 - Definitions.

    Science.gov (United States)

    2010-10-01

    ... not penetrate accommodations, machinery spaces or other work areas by means of entrances or other... cargo, to prevent damage during transportation. Explosives anchorage means an anchorage so designated... whose stowage together may result in undue hazards in the case of leakage, spillage, or other accident...

  5. Constellation Architecture Team-Lunar Scenario 12.0 Habitation Overview

    Science.gov (United States)

    Kennedy, Kriss J.; Toups, Larry D.; Rudisill, Marianne

    2010-01-01

    This paper will describe an overview of the Constellation Architecture Team Lunar Scenario 12.0 (LS-12) surface habitation approach and concept performed during the study definition. The Lunar Scenario 12 architecture study focused on two primary habitation approaches: a horizontally-oriented habitation module (LS-12.0) and a vertically-oriented habitation module (LS-12.1). This paper will provide an overview of the 12.0 lunar surface campaign, the associated outpost architecture, habitation functionality, concept description, system integration strategy, mass and power resource estimates. The Scenario 12 architecture resulted from combining three previous scenario attributes from Scenario 4 "Optimized Exploration", Scenario 5 "Fission Surface Power System" and Scenario 8 "Initial Extensive Mobility" into Scenario 12 along with an added emphasis on defining the excursion ConOps while the crew is away from the outpost location. This paper will describe an overview of the CxAT-Lunar Scenario 12.0 habitation concepts and their functionality. The Crew Operations area includes basic crew accommodations such as sleeping, eating, hygiene and stowage. The EVA Operations area includes additional EVA capability beyond the suitlock function such as suit maintenance, spares stowage, and suit stowage. The Logistics Operations area includes the enhanced accommodations for 180 days such as enhanced life support systems hardware, consumable stowage, spares stowage, interconnection to the other habitation elements, a common interface mechanism for future growth, and mating to a pressurized rover or Pressurized Logistics Module (PLM). The Mission & Science Operations area includes enhanced outpost autonomy such as an IVA glove box, life support, medical operations, and exercise equipment.

  6. Rack Distribution Effects on MPLM Center of Mass

    Science.gov (United States)

    Tester, John T.

    2005-01-01

    This research was in support of exploring the need for more flexible "center of gravity (CG) specifications than those currently established by NASA for the Multi-Purpose Logistics Module (MPLM). The MPLM is the cargo carrier for International Space Station (ISS) missions. The MPLM provides locations for 16 standard racks, as shown in Figure 1; not all positions need to be filled in any given flight. The MPLM coordinate system (X(sub M), Y(sub M), Z(sub M)) is illustrated as well. For this project, the primary missions of interest were those which supply the ISS and remove excess materials on the return flights. These flights use a predominate number of "Resupply Stowage Racks" (RSR) and "Resupply Stowage Platforms" (RSP). In these two types of racks, various smaller items are stowed. Hence, these racks will exhibit a considerable range of mass values as well as a range as to where their individual CG are located.

  7. Space shuttle/food system study. Volume 2, Appendix G: Ground support system analysis. Appendix H: Galley functional details analysis

    Science.gov (United States)

    1974-01-01

    The capabilities for preflight feeding of flight personnel and the supply and control of the space shuttle flight food system were investigated to determine ground support requirements; and the functional details of an onboard food system galley are shown in photographic mockups. The elements which were identified as necessary to the efficient accomplishment of ground support functions include the following: (1) administration; (2) dietetics; (3) analytical laboratories; (4) flight food warehouse; (5) stowage module assembly area; (6) launch site module storage area; (7) alert crew restaurant and disperse crew galleys; (8) ground food warehouse; (9) manufacturing facilities; (10) transport; and (11) computer support. Each element is discussed according to the design criteria of minimum cost, maximum flexibility, reliability, and efficiency consistent with space shuttle requirements. The galley mockup overview illustrates the initial operation configuration, food stowage locations, meal assembly and serving trays, meal preparation configuration, serving, trash management, and the logistics of handling and cleanup equipment.

  8. Design and optimization of a self-developing single axis tracking PV array

    International Nuclear Information System (INIS)

    Colozza, A.J.

    1992-01-01

    This paper reports on a study performed in order to design a tracking PV array and optimize the design for maximum specific power. The design considerations were minimal deployment time, high reliability and small stowage volume. The array design was self-deployable, from a compact stowage configuration, using a passive pressurized gas deployment mechanism. The array structural components consist of a combination of beams, columns and cables used to deploy and orient a flexible PV blanket. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces it would be subjected to. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power

  9. Occupational health in high altitudes stevedores: the workers of the wholesale markets from Huancayo, 2006

    OpenAIRE

    Vigil, Liliana; Dirección Ejecutiva de Medicina y Psicología del Trabajo, Centro Nacional de Salud Ocupacional y Protección del Ambiente para la Salud, Instituto Nacional de Salud. Lima, Perú. Psicóloga.; Gutiérrez, Rita; Psicología del Trabajo, Centro Nacional de Salud Ocupacional y Protección del Ambiente para la Salud, Instituto Nacional de Salud. Lima, Perú. Tecnóloga médica.; Cáceres, Walter; Dirección Ejecutiva de Medicina y Psicología del Trabajo, Centro Nacional de Salud Ocupacional y Protección del Ambiente para la Salud, Instituto Nacional de Salud. Lima, Perú. Médico.; Collantes, Héctor; Dirección Ejecutiva de Medicina y Psicología del Trabajo, Centro Nacional de Salud Ocupacional y Protección del Ambiente para la Salud, Instituto Nacional de Salud. Lima, Perú. Médico.; Beas, Julio; Dirección Ejecutiva de Medicina y Psicología del Trabajo, Centro Nacional de Salud Ocupacional y Protección del Ambiente para la Salud, Instituto Nacional de Salud. Lima, Perú. Médico traumatólogo.

    2007-01-01

    Objectives. Knowing the conditions of hygiene and safety of the stowage work process and their relationship with the health of workers engaged in this activity. Materials and methods. Observational study was performed in potato stevedores from wholesale markets of Huancayo, Peru (3350 m). Anthropometric evaluation was using international parameters; working conditions were assessed by direct observation, and ergonomic using the REBA and OWAS methods. We performed a clinical and traumatolo...

  10. Additive Manufacturing as a Sustainment Enabler: An Industry Perspective

    Science.gov (United States)

    2016-12-01

    reduced cost and logistics footprint associated with distribution, stowage and management of spare part inventories. Additionally, mission...Clement, Ph.D. Gaska is chief engineer/fellow of logistics and sustainment at Lockheed Martin Corporation in Fairfax, Virginia. She has a doctorate in...missiles systems at Raytheon Company in Tucson, Arizona. She holds a Ph.D. in Materials Science Engineering from Arizona State University. Both

  11. Self-Healing, Inflatable, Rigidizable Shelter

    Science.gov (United States)

    Haight, Andrea; Gosau, Jan-Michael; Dixit, Anshu; Gleeson, Dan

    2012-01-01

    An inflatable, rigidizable shelter system was developed based on Rigi dization on Command (ROC) technology incorporating not only the requ ired low-stowage volume and lightweight character achieved from an i nflatable/rigidizable system, but also a self-healing foam system inc orporated between the rigidizable layers of the final structure to m inimize the damage caused by any punctures to the structure.

  12. Space shuttle/food system study. Volume 2, appendix E: Alternate flight systems analysis

    Science.gov (United States)

    1974-01-01

    The functional requirements of stowage, preparation, serving, consumption, and cleanup were applied to each of the five food mixes selected for study in terms of the overall design of the space shuttle food system. The analysis led to a definition of performance requirements for each food mix, along with a definition of equipment to meet those requirements. Weight and volume data for all five systems, in terms of food and packaging, support equipment, and galley installation penalties, are presented.

  13. BRIC-60: Biological Research in Canisters (BRIC)-60

    Science.gov (United States)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Romero, Vergel

    2016-01-01

    The Biological Research in Canisters (BRIC) is an anodized-aluminum cylinder used to provide passive stowage for investigations evaluating the effects of space flight on small organisms. Specimens flown in the BRIC 60 mm petri dish (BRIC-60) hardware include Lycoperscion esculentum (tomato), Arabidopsis thaliana (thale cress), Glycine max (soybean) seedlings, Physarum polycephalum (slime mold) cells, Pothetria dispar (gypsy moth) eggs and Ceratodon purpureus (moss).

  14. Improving the Parametric Method of Cost Estimating Relationships of Naval Ships

    Science.gov (United States)

    2014-06-01

    tool since the total cost of the ship is broken down into smaller parts as defined by the WBS. The Navy currently uses the Expanded Ship Work Breakdown...Includes boilers , reactors, turbines, gears, shafting, propellers, steam piping, lube oil piping, and radiation 300 Electric Plant Includes ship...spaces, ladders, storerooms, laundry, and workshops 700 Armament Includes guns, missile launchers, ammunition handling and stowage, torpedo tubes , depth

  15. Cargo-mix optimization in Liner Shipping

    DEFF Research Database (Denmark)

    Christensen, Jonas Mark; Pacino, Dario; Fonseca, Joao Filipe Paiva

    International transportation constitutes one of the biggest challenges in limiting CO2 emission in theworld: it is technically hard to find viable alternatives to fossil fuels, and due to the internationalnature, it is very difficult to regulate CO2 emission of intercontinental trade. Moreover...... and have to find a load configuration (stowage plan)that both suits the current cargo to be loaded but also guarantees that the vessel can be utilizedto its maximum in future ports. The size of nowadays vessels is, however, making this work harderand harder (Pacino et al. (2011)). Moreover, the cargo...

  16. Insulated Containers For Bottled Water (ICB)- Performance Evaluation

    Science.gov (United States)

    2017-04-21

    WATER STOWAGE PROTOTYPES BOTTLED WATER HIGH TEMPERATURE WEIGHT EJECTION CONTAINERS ...Soldiers are ineffectively mounting commercially  available  coolers and they,  as well as the bottles they  contain , are becoming projectile hazards... container  (shown in Figure 15). The tie‐down procedures were determined by a professional  rigger; a video of the procedures is  available  from NSRDEC

  17. KSC-04PD-0392

    Science.gov (United States)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At the SRB Assembly and Refurbishment Facility, STS-114 Commander Eileen Collins (center) is flanked by Bob Herman (left), SRB deputy associate program manager with United Space Alliance, and Jim Carleton (right), director, SRB Program Management, as they walk past solid rocket booster aft skirts. The crew is at KSC for familiarization with Shuttle and mission equipment. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment, plus the external stowage platform, to the International Space Station.

  18. KSC-03PD-2332

    Science.gov (United States)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese space agency NASDA, poses on the deck of one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. He and other crew members Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson toured the ships. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  19. KSC-03PD-2330

    Science.gov (United States)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Captain Bren Wade of the Liberty Star, one of two SRB Retrieval Ships, talks to STS-114 crew members about the engines. Seen at left are Pilot James Kelly and Mission Specialist Soichi Noguchi, who is with the Japanese space agency NASDA.. On their mission, the crew which includes Commander Eileen Collins and Mission Specialist Stephen Robinson will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  20. KSC-03PD-2333

    Science.gov (United States)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. STS-114 Pilot James Kelly talks with Bren Wade, captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. Kelly and other crew members Commander Eileen Collins and Mission Specialists Soichi Noguchi and Stephen Robinson toured the ships. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  1. KSC-03PD-2328

    Science.gov (United States)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. STS-114 Mission Specialists Soichi Noguchi and Stephen Robinson visit the engine room of the Liberty Star, one of two SRB Retrieval Ships. Noguchi is with the Japanese space agency NASDA. Other crew members on the tour are Commander Eileen Collins and Pilot James Kelly. On their mission, the crew will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  2. KSC-03PD-2325

    Science.gov (United States)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. On a tour of the Liberty Star, one of two SRB Retrieval Ships, STS-114 Mission Specialist Stephen Robinson looks over controls. Other crew members are Mission Specialist Soichi Noguchi, Commander Eileen Collins and Pilot James Kelly. Noguchi is with the Japanese space agency NASDA. On their mission, the crew will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  3. KSC-03PD-2327

    Science.gov (United States)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The STS-114 crew visit the bridge of the Liberty Star, one of two SRB Retrieval Ships. From left are Pilot James Kelly, Louise Kleba (with the Vehicle Integration Test Team (VITT) office), Commander Eileen Collins and Mission Specialists Soichi Noguchi and Stephen Robinson. Noguchi is with the Japanese space agency NASDA. On their mission, the crew will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  4. KSC-03PD-2329

    Science.gov (United States)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Visiting the engine room of the Liberty Star, one of two SRB Retrieval Ships, are STS-114 crew members Soichi Noguchi, mission specialist, Eileen Collins, commander, and Stephen Robinson, mission specialist. Noguchi is with the Japanese space agency NASDA. Not pictured is Pilot James Kelly. On their mission, the crew will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS- 114 is under review.

  5. STS-55 MS3 Harris draws blood sample from Payload Specialist Schlegel

    Science.gov (United States)

    1993-01-01

    STS-55 German Payload Specialist 2 Hans Schlegel (left) serves as a test subject inside the Spacelab Deutsche 2 (SL-D2) science module onboard the Earth-orbiting Columbia, Orbiter Vehicle (OV) 102. Mission Specialist 3 (MS3) Bernard A. Harris, Jr, a physician, performs one of many blood draws designed to help investigate human physiology under microgravity conditions. The two crewmembers use intravehicular activity (IVA) foot restraints (foot loops) in front of Rack 10, a stowage rack, to steady themselves during the procedure. Schlegel represents the German Aerospace Research Establishment (DLR).

  6. Non-Lethal Defense III, Johns Hopkins Applied Physics Laboratory, Laurel, Maryland, February 25 & 26, 1998, Revised Agenda.

    Science.gov (United States)

    1998-02-26

    comprised of a right and left grenade discharger. The type-classified standard family of launchers consists of the M250 /M239, the M257/M243/M259, and the M6...The M250 smoke grenade launcher is comprised of two mirror image six-tube cast aluminum dischargers and two mirror image covers. Its twin, the M239...is comprised of the M250 launcher plus two identical externally mounted grenade stowage boxes and electronic firing switch. These launcher systems can

  7. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  8. STS-65 crewmembers participate in bench review at Boeing Building

    Science.gov (United States)

    1994-01-01

    Attired in clean suits, STS-65 Payload Commander (PLC) Richard J. Hieb (left) and Payload Specialist Chiaki Mukai examine the contents of a stowage locker during a bench review at Boeing's Flight Equipment Processing Facility (FEPF) near the Johnson Space Center (JSC). In the background, Commander Robert D. Cabana inspects additional equipment to be carried aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, for the scheduled July flight of the second International Microgravity Laboratory (IML-2) mission. Mukai represents Japan's National Space Development Agency (NASDA). Photo taken by NASA JSC contract photographer Scott A. Wickes.

  9. Probabilistic risk assessment on maritime spent nuclear fuel transportation (Part II: Ship collision probability)

    International Nuclear Information System (INIS)

    Christian, Robby; Kang, Hyun Gook

    2017-01-01

    This paper proposes a methodology to assess and reduce risks of maritime spent nuclear fuel transportation with a probabilistic approach. Event trees detailing the progression of collisions leading to transport casks’ damage were constructed. Parallel and crossing collision probabilities were formulated based on the Poisson distribution. Automatic Identification System (AIS) data were processed with the Hough Transform algorithm to estimate possible intersections between the shipment route and the marine traffic. Monte Carlo simulations were done to compute collision probabilities and impact energies at each intersection. Possible safety improvement measures through a proper selection of operational transport parameters were investigated. These parameters include shipment routes, ship's cruise velocity, number of transport casks carried in a shipment, the casks’ stowage configuration and loading order on board the ship. A shipment case study is presented. Waters with high collision probabilities were identified. Effective range of cruising velocity to reduce collision risks were discovered. The number of casks in a shipment and their stowage method which gave low cask damage frequencies were obtained. The proposed methodology was successful in quantifying ship collision and cask damage frequency. It was effective in assisting decision making processes to minimize risks in maritime spent nuclear fuel transportation. - Highlights: • Proposes a probabilistic framework on the safety of spent nuclear fuel transportation by sea. • Developed a marine traffic simulation model using Generalized Hough Transform (GHT) algorithm. • A transportation case study on South Korean waters is presented. • Single-vessel risk reduction method is outlined by optimizing transport parameters.

  10. BRIC-100VC Biological Research in Canisters (BRIC)-100VC

    Science.gov (United States)

    Richards, Stephanie E.; Levine, Howard G. (Compiler); Romero, Vergel

    2016-01-01

    The Biological Research in Canisters (BRIC) is an anodized-aluminum cylinder used to provide passive stowage for investigations of the effects of space flight on small specimens. The BRIC 100 mm petri dish vacuum containment unit (BRIC-100VC) has supported Dugesia japonica (flatworm) within spring under normal atmospheric conditions for 29 days in space and Hemerocallis lilioasphodelus L. (daylily) somatic embryo development within a 5% CO2 gaseous environment for 4.5 months in space. BRIC-100VC is a completely sealed, anodized-aluminum cylinder (Fig. 1) providing containment and structural support of the experimental specimens. The top and bottom lids of the canister include rapid disconnect valves for filling the canister with selected gases. These specialized valves allow for specific atmospheric containment within the canister, providing a gaseous environment defined by the investigator. Additionally, the top lid has been designed with a toggle latch and O-ring assembly allowing for prompt sealing and removal of the lid. The outside dimensions of the BRIC-100VC canisters are 16.0 cm (height) x 11.4 cm (outside diameter). The lower portion of the canister has been equipped with sufficient storage space for passive temperature and relative humidity data loggers. The BRIC- 100VC canister has been optimized to accommodate standard 100 mm laboratory petri dishes or 50 mL conical tubes. Depending on storage orientation, up to 6 or 9 canisters have been flown within an International Space Station (ISS) stowage locker.

  11. Optimization in liner shipping

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Karsten, Christian Vad; Pisinger, David

    2017-01-01

    Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling...... still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner...... shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem...

  12. Decision of the National Board of Navigation on the Carriage of Dangerous Goods in Ships

    International Nuclear Information System (INIS)

    1980-01-01

    This is an unofficial English translation of a decision, which was made in accordance with Section 12 of Decree No. 357 of 16th May 1980 on the Carriage of Dangerous Goods in Ships. It adopts by reference the IMO/IMDG Code with the packaging Annex and Amendments 1 - 21. Where the National Board of Navigation has not provided otherwise, the Code shall be applied to vessels carrying dangerous goods, to the classification, packing, marketing and handling of dangerous goods and the stowage of such goods on board, and to documents related to carriage of dangerous goods. The decision applies to vessels engaged in traffic in Finnish territorial waters and to all Finnish vessels, even when operating outside Finnish territorial waters. The decision designates the Finnish Centre for Radiation and Nuclear Safety as the competent authority where approval certificates for transport, packages or containers of radioactive materials are required. (NEA) [fr

  13. Habitability Designs for Crew Exploration Vehicle

    Science.gov (United States)

    Woolford, Barbara

    2006-01-01

    NASA's space human factors team is contributing to the habitability of the Crew Exploration Vehicle (CEV), which will take crews to low Earth orbit, and dock there with additional vehicles to go on to the moon's surface. They developed a task analysis for operations and for self-sustenance (sleeping, eating, hygiene), and estimated the volumes required for performing the various tasks and for the associated equipment, tools and supplies. Rough volumetric mockups were built for crew evaluations. Trade studies were performed to determine the size and location of windows. The habitability analysis also contributes to developing concepts of operations by identifying constraints on crew time. Recently completed studies provided stowage concepts, tools for assessing lighting constraints, and approaches to medical procedure development compatible with the tight space and absence of gravity. New work will be initiated to analyze design concepts and verify that equipment and layouts do meet requirements.

  14. Crew Interviews: Treschev

    Science.gov (United States)

    2002-01-01

    Sergei Treschev is a Cosmonaut of the Rocket Space Corporation Energia, (RSC), from Volynsky District, Lipetsk Region (Russia). He graduated from Moscow Energy Institute. After years of intense training with RSC Energia, he was selected as International Space Station (ISS) Increment 5 flight engineer. The Expedition-Five crew (two Russian cosmonauts and one American astronaut) will stay on the station for approximately 5 months. The Multipurpose Logistics Module, or MPLM, will carry experiment racks and three stowage and resupply racks to the station. The mission will also install a component of the Canadian Arm called the Mobile Base System (MBS) to the Mobile Transporter (MT) installed during STS-110. This completes the Canadian Mobile Servicing System, or MSS. The mechanical arm will now have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites.

  15. Design of an experiment to measure fire exposure of packages aboard container cargo ships

    International Nuclear Information System (INIS)

    Koski, J.A.

    1998-01-01

    The test described in this paper is intended to measure the typical accident environment for a radioactive materials package in a fire abroad a container cargo ship. A stack of nice used standard cargo containers will be variously loaded with empty packages, simulated packages and combustible cargo and placed over a large hydrocarbon pool fire of one hour duration. Fire environments, both inside and outside the containers, typical of on-deck stowage will be measured as well as the potential for container-to-container fire spread. With the use of the inverse heat conduction calculations, the local heat transfer to the simulated packages can be estimated from thermocouple data. Data recorded will also provide information on fire durations in each container, fire intensity and container-to-container fire spread characteristics. (authors)

  16. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    Science.gov (United States)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  17. Assistive technology and passengers with special assistance needs in air transport: contributions to cabin design

    Directory of Open Access Journals (Sweden)

    Carina Campese

    2016-06-01

    Full Text Available Abstract There has been significant growth in air transport worldwide, as well as in Brazil. However, studies have emphasized that disabled, obese, and elderly passengers face difficulties when using this means of transport. Among these difficulties, issues related to passengers’ own assistive devices, including damage, loss, or the impossibility of using during the entire flight, stand out. Therefore, the present study aims to understand the trends in assistive technology focusing on cabin design. This research is based upon literature review, interviews with manufacturers and research centers, visits to specialized trade fairs, and patent search. The results revealed a great diversity of assistive products, its trends, and an increase in their use, which affect aircraft cabin design, especially in terms of space, access, and stowage of these devices.

  18. Determination of Fire Enviroment in Stacked Cargo Containers with Radioactive Materials Packages

    Energy Technology Data Exchange (ETDEWEB)

    Arviso, M.; Bobbe, J.G.; Dukart, R.D.; Koski, J.A.

    1999-05-01

    Results from a Fire Test with a three-by-three stack of standard 6 m long International Standards Organization shipping containers containing combustible fuels and empty radioactive materials packages are reported and discussed. The stack is intended to simulate fire conditions that could occur during on-deck stowage on container cargo ships. The fire is initated by locating the container stack adjacent to a 9.8 x 6 m pool fire. Temperatures of both cargoes (empty and simulated radioactive materials packages) and containers are recorded and reported. Observations on the duration, intensity and spread of the fire are discussed. Based on the results, models for simulation of fire exposure of radioactive materials packages in such fires are suggested.

  19. Design of an experiment to measure the fire exposure of radioactive materials packages aboard container cargo ships

    International Nuclear Information System (INIS)

    Koski, J.A.

    1997-11-01

    The test described in this paper is intended to measure the typical accident environment for a radioactive materials package in a fire aboard a container cargo ship. A stack of nine used standard cargo containers will be variously loaded with empty packages, simulated packages and combustible cargo and placed over a large hydrocarbon pool fire of one hour duration. Both internal and external fire container fire environments typical of on-deck stowage will be measured as well as the potential for container to container fire spread. With the use of the inverse heat conduction calculations, the local heat transfer to the simulated packages can be estimated from thermocouple data. Data recorded will also provide information on fire durations in each container, fire intensity and container to container fire spread characteristics

  20. KSC-03PD-2331

    Science.gov (United States)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. While touring the SRB Retrieval Ship Freedom Star, STS-114 Commander Eileen Collins and Mission Specialist Soichi Noguchi point at something on the Banana River. Noguchi is with the Japanese space agency NASDA. The ships routinely are docked at Hangar AF on the river. On their mission, the crew which also includes Pilot James Kelly and Mission Specialist Stephen Robinson will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  1. KSC-03PD-2324

    Science.gov (United States)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Members of the STS-114 crew are welcomed to the Liberty Star, one of two SRB Retrieval Ships, by Captain Bren Wade (back to camera). Crew members, from left, are Mission Specialist Soichi Noguchi, Mission Specialist Stephen Robinson and Commander Eileen Collins. Noguchi is with the Japanese space agency NASDA. Not pictured is Pilot James Kelly. On their mission, the crew will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  2. KSC-03PD-2334

    Science.gov (United States)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The STS-114 crew poses on deck with the captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. From left are Pilot James Kelly, Mission Specialist Soichi Noguchi, Capt. Bren Wade, Commander Eileen Collins and Mission Specialist Stephen Robinson. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  3. KSC-03PD-2322

    Science.gov (United States)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The STS-114 crew is welcomed to Hangar AF, Cape Canaveral Air Force Station, by Joseph Chaput, with United Space Alliance. The crew, from left, are Mission Specialist Soichi Noguchi, Commander Eileen Collins, Mission Specialist Stephen Robinson and (partially hidden) Pilot James Kelly. Noguchi is with the Japanese space agency NASDA. On the mission, the crew will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review. Hangar AF is the site where SRB Retrieval Ships return the spent solid rocket boosters after a Shuttle launch. The SRBs are lifted from the water and placed on rail cars to begin the disassembly and refurbishment process.

  4. Crew Systems for Asteroid Exploration: Concepts for Lightweight & Low Volume EVA Systems

    Science.gov (United States)

    Mueller, Rob; Calle, Carlos; Mantovani, James

    2013-01-01

    This RFI response is targeting Area 5. Crew Systems for Asteroid Exploration: concepts for lightweight and low volume robotic and extra-vehicular activity (EVA) systems, such as space suits, tools, translation aids, stowage containers, and other equipment. The NASA KSC Surface Systems Office, Granular Mechanics and Regolith Operations (GMRO) Lab and the Electrostatics & Surface Physics Lab (ESPL) are dedicated to developing technologies for operating in regolith environments on target body surfaces. We have identified two technologies in our current portfolio that are highly relevant and useful for crews that will visit a re-directed asteroid in Cis-Lunar Space. Both technologies are at a high TRL of 5/6 and could be rapidly implemented in time for an ARM mission in this decade.

  5. Random Access Frames (RAF): Alternative to Rack and Standoff for Deep Space Habitat Outfitting

    Science.gov (United States)

    Howe, A. Scott; Polit-Casillas, Raul

    2014-01-01

    A modular Random Access Frame (RAF) system is proposed as an alternative to the International Standard Payload Rack (ISPR) for internal module layout and outfitting in a Deep Space Habitat (DSH). The ISPR approach was designed to allow for efficient interchangeability of payload and experiments for the International Space Station (ISS) when frequent resupply missions were available (particularly the now-retired Space Shuttle). Though the standard interface approach to the ISPR system allowed integration of subsystems and hardware from a variety of sources and manufacturers, the heavy rack and standoff approach may not be appropriate when resupply or swap-out capabilities are not available, such as on deep space, long-duration missions. The lightweight RAF concept can allow a more dense packing of stowage and equipment, and may be easily broken down for repurposing or reuse. Several example layouts and workstations are presented.

  6. Osiris-Rex and Hayabusa2 Sample Cleanroom Design and Construction Planning at NASA-JSC

    Science.gov (United States)

    Righter, Kevin; Pace, Lisa F.; Messenger, Keiko

    2018-01-01

    Final Paper and not the abstract is attached. The OSIRIS-REx asteroid sample return mission launched to asteroid Bennu September 8, 2016. The spacecraft will arrive at Bennu in late 2019, orbit and map the asteroid, and perform a touch and go (TAG) sampling maneuver in July 2020. After confirma-tion of successful sample stowage, the spacecraft will return to Earth, and the sample return capsule (SRC) will land in Utah in September 2023. Samples will be recovered from Utah and then transported and stored in a new sample cleanroom at NASA Johnson Space Center in Houston. All curation-specific ex-amination and documentation activities related to Ben-nu samples will be conducted in the dedicated OSIRIS-REx sample cleanroom to be built at NASA-JSC.

  7. Touch And Go Camera System (TAGCAMS) for the OSIRIS-REx Asteroid Sample Return Mission

    Science.gov (United States)

    Bos, B. J.; Ravine, M. A.; Caplinger, M.; Schaffner, J. A.; Ladewig, J. V.; Olds, R. D.; Norman, C. D.; Huish, D.; Hughes, M.; Anderson, S. K.; Lorenz, D. A.; May, A.; Jackman, C. D.; Nelson, D.; Moreau, M.; Kubitschek, D.; Getzandanner, K.; Gordon, K. E.; Eberhardt, A.; Lauretta, D. S.

    2018-02-01

    NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch And Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample, and document asteroid sample stowage. The cameras were designed and constructed by Malin Space Science Systems (MSSS) based on requirements developed by Lockheed Martin and NASA. All three of the cameras are mounted to the spacecraft nadir deck and provide images in the visible part of the spectrum, 400-700 nm. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. Their boresights are aligned in the nadir direction with small angular offsets for operational convenience. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Its boresight is pointed at the OSIRIS-REx sample return capsule located on the spacecraft deck. All three cameras have at their heart a 2592 × 1944 pixel complementary metal oxide semiconductor (CMOS) detector array that provides up to 12-bit pixel depth. All cameras also share the same lens design and a camera field of view of roughly 44° × 32° with a pixel scale of 0.28 mrad/pixel. The StowCam lens is focused to image features on the spacecraft deck, while both NavCam lens focus positions are optimized for imaging at infinity. A brief description of the TAGCAMS instrument and how it is used to support critical OSIRIS-REx operations is provided.

  8. The improvement of the technology and equipment for the utilization of solid industrial wastes by means of adding them to the cast of hardening filling mixtures

    Directory of Open Access Journals (Sweden)

    E. P. Volkov

    2017-12-01

    Full Text Available The article provides an assessment of mining operations in underground mines which apply backfill systems, as well as the volume of enrichment waste accumulated during the exploitation of ore deposits. The use of high-quality cement and expensive inert fillers by many mining companies significantly increases the cost of backfill, while the technologies for increasing the activity of the binder are only partially used. The adoption of low-quality binders (cement and milled granulated slags, the investigation of new economically advantageous technologies for producing filling mixtures, as well as the use of binders and fillers, which can be used as tails of enrichment waste, will promote the spreading of backfill systems. In the practice of mining, it is an urgent task, which should be solved. This solution will significantly expand the raw material base of many mining enterprises; it will also increase their efficiency and address environmental protection issues. The conditions and regularities of increasing the reaction properties of many dump products, changing their rheological properties in time, as well as ways to create, and maintain the activity of the filling mixture during its preparation and pipeline transportation, remain insufficiently studied. We also consider the concept of improving the systems of pipeline transportation of cast hardening of filling mixtures to ensure reliable and uninterrupted delivery of the obtained backfilling mixtures with the reduced water content. It is associated with the use of the special hydrodynamic actuators mounted on a backfilling pipeline. As the activating devices the original patented designs of activators providing high efficiency of restoration of rheological properties of stowage mixes at their transportation on the underground stowage pipeline are offered and described. Based on the theoretical justification of the proposed design solutions, we can conclude that the proposed trigger device

  9. Human habitation field study of the Habitat Demonstration Unit (HDU)

    Science.gov (United States)

    Litaker, Harry L.; Archer, Ronald D.; Szabo, Richard; Twyford, Evan S.; Conlee, Carl S.; Howard, Robert L.

    2013-10-01

    Landing and supporting a permanent outpost on a planetary surface represents humankind's capability to expand its own horizons and challenge current technology. With this in mind, habitability of these structures becomes more essential given the longer durations of the missions. The purpose of this evaluation was to obtain preliminary human-in-the-loop performance data on the Habitat Demonstration Unit (HDU) in a Pressurized Excursion Module (PEM) configuration during a 14-day simulated lunar exploration field trial and to apply this knowledge to further enhance the habitat's capabilities for forward designs. Human factors engineers at the NASA/Johnson Space Center's Habitability and Human Factors Branch recorded approximately 96 h of crew task performance with four work stations. Human factors measures used during this study included the NASA Task Load Index (TLX) and customized post questionnaires. Overall the volume for the PEM was considered acceptable by the crew; however; the habitat's individual work station volume was constrained when setting up the vehicle for operation, medical operations, and suit maintenance while general maintenance, logistical resupply, and geo science was considered acceptable. Crew workload for each station indicated resupply as being the lowest rated, with medical operations, general maintenance, and geo science tasks as being light, while suit maintenance was considered moderate and general vehicle setup being rated the highest. Stowage was an issue around the habitat with the Space Exploration Vehicle (SEV) resupply stowage located in the center of the habitat as interfering with some work station volumes and activities. Ergonomics of the geo science station was considered a major issue, especially with the overhead touch screens.

  10. OSIRIS-REx Asteroid Sample Return Mission Image Analysis

    Science.gov (United States)

    Chevres Fernandez, Lee Roger; Bos, Brent

    2018-01-01

    NASA’s Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) mission constitutes the “first-of-its-kind” project to thoroughly characterize a near-Earth asteroid. The selected asteroid is (101955) 1999 RQ36 (a.k.a. Bennu). The mission launched in September 2016, and the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. The spacecraft that will travel to, and collect a sample from, Bennu has five integrated instruments from national and international partners. NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch-And-Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample and document asteroid sample stowage. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Analysis of spacecraft imagery acquired by the TAGCAMS during cruise to the target asteroid Bennu was performed using custom codes developed in MATLAB. Assessment of the TAGCAMS in-flight performance using flight imagery was done to characterize camera performance. One specific area of investigation that was targeted was bad pixel mapping. A recent phase of the mission, known as the Earth Gravity Assist (EGA) maneuver, provided images that were used for the detection and confirmation of “questionable” pixels, possibly under responsive, using image segmentation analysis. Ongoing work on point spread function morphology and camera linearity and responsivity will also be used for calibration purposes and further analysis in preparation for proximity operations around Bennu. Said analyses will provide a broader understanding

  11. MPLM On-Orbit Interface Dynamic Flexibility Modal Test

    Science.gov (United States)

    Bookout, Paul S.; Rodriguez, Pedro I.; Tinson, Ian; Fleming, Paolo

    2001-01-01

    Now that the International Space Station (ISS) is being constructed, payload developers have to not only verify the Shuttle-to-payload interface, but also the interfaces their payload will have with the ISS. The Multi Purpose Logistic Module (MPLM) being designed and built by Alenia Spazio in Torino, Italy is one such payload. The MPLM is the primary carrier for the ISS Payload Racks, Re-supply Stowage Racks, and the Resupply Stowage Platforms to re-supply the ISS with food, water, experiments, maintenance equipment and etc. During the development of the MPLM there was no requirement for verification of the on-orbit interfaces with the ISS. When this oversight was discovered, all the dynamic test stands had already been disassembled. A method was needed that would not require an extensive testing stand and could be completed in a short amount of time. The residual flexibility testing technique was chosen. The residual flexibility modal testing method consists of measuring the free-free natural frequencies and mode shapes along with the interface frequency response functions (FRF's). Analytically, the residual flexibility method has been investigated in detail by, MacNeal, Martinez, Carne, and Miller, and Rubin, but has not been implemented extensively for model correlation due to difficulties in data acquisition. In recent years improvement of data acquisition equipment has made possible the implementation of the residual flexibility method as in Admire, Tinker, and Ivey, and Klosterman and Lemon. The residual flexibility modal testing technique is applicable to a structure with distinct points (DOF) of contact with its environment, such as the MPLM-to-Station interface through the Common Berthing Mechanism (CBM). The CBM is bolted to a flange on the forward cone of the MPLM. During the fixed base test (to verify Shuttle interfaces) some data was gathered on the forward cone panels. Even though there was some data on the forward cones, an additional modal test was

  12. Remote quality monitoring in the banana chain.

    Science.gov (United States)

    Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter

    2014-06-13

    Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container.

  13. Growth Chambers on the International Space Station for Large Plants

    Science.gov (United States)

    Massa, Gioia D.; Wheeler, Raymond M.; Morrow, Robert C.; Levine, Howard G.

    2016-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species under LED (Light Emitting Diodes) lighting, and those capabilities continue to expand. The Veggie vegetable production system was deployed to the ISS as an applied research platform for food production in space. Veggie is capable of growing a wide array of horticultural crops. It was designed for low power usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nanometers), blue, (455 nanometers) and green (530 nanometers) LEDs. Interfacing with the light cap is an extendable bellowsbaseplate for enclosing the plant canopy. A second large plant growth chamber, the Advanced Plant Habitat (APH), is will fly to the ISS in 2017. APH will be a fully controllable environment for high-quality plant physiological research. APH will control light (quality, level, and timing), temperature, CO2, relative humidity, and irrigation, while scrubbing any cabin or plant-derived ethylene and other volatile organic compounds. Additional capabilities include sensing of leaf temperature and root zone moisture, root zone temperature, and oxygen concentration. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs (4100K). There will be several internal cameras (visible and IR) to monitor and record plant growth and operations. Veggie and APH are available for research proposals.

  14. Low-floor bus design preferences of walking aid users during simulated boarding and alighting.

    Science.gov (United States)

    D'souza, Clive; Paquet, Victor; Lenker, James; Steinfeld, Edward; Bareria, Piyush

    2012-01-01

    Low-floor buses represent a significant improvement in accessible public transit for passengers with limited mobility. However, there is still a need for research on the inclusive design of transit buses to identify specific low-floor bus design conditions that are either particularly accommodating or challenging for passengers with functional and mobility impairments. These include doorway locations, seating configuration and the large front wheel-well covers that collectively impact boarding, alighting and interior movement of passengers. Findings from a laboratory study using a static full-scale simulation of a lowfloor bus to evaluate the impact of seating configuration and crowding on interior movement and accessibility for individuals with and without walking aids are presented (n=41). Simulated bus journeys that included boarding, fare payment, seating, and alighting were performed. Results from video observations and subjective assessments showed differences in boarding and alighting performance and users' perceptions of task difficulty. The need for assistive design features (e.g. handholds, stanchions), legroom and stowage space for walking aids was evident. These results demonstrate that specific design conditions in low-floor buses can significantly impact design preference among those who use walking aids. Consideration of ergonomics and inclusive design can therefore be used to improve the design of low-floor buses.

  15. Low concentration ratio solar array for low Earth orbit multi-100 kW application. Volume 1: Design, analysis and development tests

    Science.gov (United States)

    1983-01-01

    A preliminary design effort directed toward a low concentration ratio photovoltaic array system capable of delivering multihundred kilowatts (300 kW to 1000 kW range) in low earth orbit is described. The array system consists of two or more array modules each capable of delivering between 113 kW to 175 kW using silicon solar cells or gallium arsenide solar cells, respectively. The array module deployed area is 1320 square meters and consists of 4356 pyramidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of .25 sq. m. The structural analysis and design trades leading to the baseline design are discussed. It describes the configuration, as well as optical, thermal and electrical performance analyses that support the design and overall performance estimates for the array are described.

  16. Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report

    International Nuclear Information System (INIS)

    Minyard, G.

    1998-01-01

    This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redisgn of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products

  17. CERN'S Fire and Rescue Group Gets New Ambulance

    CERN Multimedia

    2000-01-01

    The arrival of a new vehicle is always an important moment in the life of a fire station. So when a new ambulance was delivered to the CERN Fire Brigade on Wednesday 16 September 2000, it was given a warm welcome, attended by staff of the different divisions involved in its purchase. It took a year from the first administrative moves to the day of acquisition. On the one hand there were the calls for tender needed for such a purchase and on the other the development of this custom-designed ambulance with its unique features. Three visits to the manufacturer had to be made, including two to the head office of the Miesen factory at Bonn to study and incorporate in the ambulance the special requirements called for by its future users. These requirements, born from the past experience of CERN’s ambulance crews, concerned not only interior arrangements but also included a new side panel, opening up a stowage compartment where everything will be put that gets dirty during ambulance operations. This will minimize ...

  18. Geometric Reasoning for Automated Planning

    Science.gov (United States)

    Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel

    2012-01-01

    An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.

  19. KSC-05PD-1464

    Science.gov (United States)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Center Director Jim Kennedy welcomes Mission Commander Eileen Collins to NASAs Kennedy Space Center. She and the rest of the crew for Return to Flight mission STS-114 arrived aboard a Gulf Stream aircraft. The other crew members arriving are Pilot James Kelly and Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence and Charles Camarda. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. The crew arrived a day early due to weather concerns associated with Hurricane Dennis. This historic mission is the 114th Space Shuttle flight and the 17th U.S. flight to the International Space Station. STS-114 is scheduled to launch at 3:51 p.m. July 13 and last about 12 days with a planned KSC landing at about 11:01 a.m. EDT on July 25. On mission STS-114, the crew will perform inspections on orbit for the first time of all of the Reinforced Carbon-Carbon (RCC) panels on the leading edge of the wings and the Thermal Protection System tiles using the new Canadian-built Orbiter Boom Sensor System and the data from 176 impact and temperature sensors. Mission Specialists will also practice repair techniques on RCC and tile samples during a spacewalk in the payload bay. During two additional spacewalks, the crew will install the External Stowage Platform-2, equipped with spare part assemblies, and a replacement Control Moment Gyroscope contained in the Lightweight Multi-Purpose Experiment Support Structure.

  20. Review of Large Spacecraft Deployable Membrane Antenna Structures

    Science.gov (United States)

    Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li

    2017-11-01

    The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.

  1. Starshade mechanical design for the Habitable Exoplanet imaging mission concept (HabEx)

    Science.gov (United States)

    Arya, Manan; Webb, David; McGown, James; Lisman, P. Douglas; Shaklan, Stuart; Bradford, S. Case; Steeves, John; Hilgemann, Evan; Trease, Brian; Thomson, Mark; Warwick, Steve; Freebury, Gregg; Gull, Jamie

    2017-09-01

    An external occulter for starlight suppression - a starshade - flying in formation with the Habitable Exoplanet Imaging Mission Concept (HabEx) space telescope could enable the direct imaging and spectrographic characterization of Earthlike exoplanets in the habitable zone. This starshade is flown between the telescope and the star, and suppresses stellar light sufficiently to allow the imaging of the faint reflected light of the planet. This paper presents a mechanical architecture for this occulter, which must stow in a 5 m-diameter launch fairing and then deploy to about a 80 m-diameter structure. The optical performance of the starshade requires that the edge profile is accurate and stable. The stowage and deployment of the starshade to meet these requirements present unique challenges that are addressed in this proposed architecture. The mechanical architecture consists of a number of petals attached to a deployable perimeter truss, which is connected to central hub using tensioned spokes. The petals are furled around the stowed perimeter truss for launch. Herein is described a mechanical design solution that supports an 80 m-class starshade for flight as part of HabEx.

  2. Applied Virtual Reality Research and Applications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Hale, Joseph P.

    1995-01-01

    A Virtual Reality (VR) applications program has been under development at NASA/Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before this technology can be utilized with confidence in these applications, it must be validated for each particular class of application. That is, the precision and reliability with which it maps onto real settings and scenarios, representative of a class, must be calculated and assessed. The approach of the MSFC VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems. Specific validation studies for selected classes of applications have been completed or are currently underway. These include macro-ergonomic "control-room class" design analysis, Spacelab stowage reconfiguration training, a full-body micro-gravity functional reach simulator, and a gross anatomy teaching simulator. This paper describes the MSFC VR Applications Program and the validation studies.

  3. STS-114 Flight Day 6 Highlights

    Science.gov (United States)

    2005-01-01

    Day 6 is a relatively quiet day for the STS-114 crew. The main responsibility for crew members of Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew of the International Space Station (ISS) (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) is to unload supplies from the shuttle payload bay and from the Raffaello Multipurpose Logistics Module onto the ISS. Several of the astronauts answer interview questions from the news media, with an emphasis on the significance of their mission for the Return to Flight, shuttle damage and repair, and the future of the shuttle program. Thomas announces the winners of an essay contest for Australian students about the importance of science and mathematics education. The video includes the installation of a stowage rack for the Human Research Facility onboard the ISS, a brief description of the ISS modules, and an inverted view of the Nile Delta.

  4. An under-aisle air distribution system facilitating humidification of commercial aircraft cabins

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tengfei; Yin, Shi; Wang, Shugang [School of Civil and Hydraulic Engineering, Dalian University of Technology (DUT), 2 Linggong Road, Dalian 116024 (China)

    2010-04-15

    Air environment in aircraft cabins has long been criticized especially for the dryness of the air within. Low moisture content in cabins is known to be responsible for headache, tiredness and many other non-specific symptoms. In addition, current widely used air distribution systems on airplanes dilute internally generated pollutants by promoting air mixing and thus impose risks of infectious airborne disease transmission. To boost air humidity level while simultaneously restricting air mixing, this investigation uses a validated computational fluid dynamics (CFD) program to design a new under-aisle air distribution system for wide-body aircraft cabins. The new system supplies fully outside, dry air at low momentum through a narrow channel passage along both side cabin walls to middle height of the cabin just beneath the stowage bins, while simultaneously humidified air is supplied through both perforated under aisles. By comparing with the current mixing air distribution system in terms of distribution of relative humidity, CO{sub 2} concentration, velocity, temperature and draught risk, the new system is found being able to improve the relative humidity from the existent 10% to the new level of 20% and lessen the inhaled CO{sub 2} concentration by 30%, without causing moisture condensation on cabin interior and inducing draught risks for passengers. The water consumption rate in air humidification is only around 0.05 kg/h per person, which should be affordable by airliners. (author)

  5. ITO-MgF2 Film Development for PowerSphere Polymer Surface Protection

    Science.gov (United States)

    Hambourger, Paul D.; Kerslake, Thomas W.; Waters, Deborah L.

    2004-01-01

    Multi-kilogram class microsatellites with a PowerSphere electric power system are attractive for fulfilling a variety of potential NASA missions. However, PowerSphere polymer surfaces must be coated with a film that has suitable electrical sheet resistivity for electrostatic discharge control, be resistant to atomic oxygen attack, be transparent to ultraviolet light for composite structure curing and resist ultraviolet light induced darkening for efficient photovoltaic cell operation. In addition, the film must be tolerant of polymer layer folding associated with launch stowage of PowerSphere inflatable structures. An excellent film material candidate to meet these requirements is co-sputtered, indium oxide (In2O3) - tin oxide (SnO2), known as 'ITO', and magnesium fluoride (MgF2). While basic ITO-MgF2 film properties have been the subject of research over the last decade, further research is required in the areas of film durability for space-inflatable applications and precise film property control for large scale commercial production. In this paper, the authors present film durability results for a folded polymer substrate and film resistance to vacuum UV darkening. The authors discuss methods and results in the area of film sheet resistivity measurement and active control, particularly dual-channel, plasma emission line measurement of ITO and MgF2 plasma sources. ITO-MgF2 film polymer coupon preparation is described as well as film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed microscopically and electrically. Results show that an approx. 500A ITO-18vol% MgF2 film is a promising candidate to protect PowerSphere polymer surfaces for Earth orbit missions. Preliminary data also indicate that in situ film measurement methods are promising for active film resistivity control in future large scale production. Future film research plans are also

  6. Tie-down assessment of radioactive material packages on conveyances approach to competent authority approval applications in accordance with TS-R 1 (June 2000) and TS-G-1.1 (June 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Read, J.; Owen, S.; Tso, C.F. [Arup, London (United Kingdom)

    2004-07-01

    This paper summarizes the authors' findings, during carrying out many package tie-down assessments, regarding the approach to the assessment process, and the issues that may arise. The current regulatory framework, as outlined in the abstract, is considered and possible areas for further development or research are discussed. The safe transport of a package containing radioactive material requires a secure system of retention on the conveyance during transport. The requirements for the assessment of this tie-down system are covered by International Atomic Energy Authority (IAEA) Regulations, and by the specific regulatory and guidance materials applying in the country of application. The IAEA regulations have recently been updated in TS-R-1 (June 2000) [1] and TS-G-1.1 (June 2002) [2]. In particular, Appendix V of reference [2] specifically covers 'Package Stowage and Retention during Transport'. In the United Kingdom the Transport Container Standardisation Committee (TCSC) provides guidance on the application of the IAEA regulations in TCSC 1006 ''The securing of Radioactive Materials on Conveyances'' [3], and this document has also been revised in December 2003. The basic requirement of the IAEA regulations is to maintain the integrity of the components of the package and its retention systems during routine operations (TS-R-1 Para 612). In accident conditions the package is permitted and may be required as part of the design (the weak-link approach as discussed later in this paper) to separate from the conveyance, while preserving the package integrity. Any tie-down attachments on the package shall be so designed that, under normal and accident conditions of transport, the forces in those attachments shall not impair the ability of the package to meet the requirements of the Regulations. (TS-R-1 Para 636).

  7. Habitability and Human Factors: Lessons Learned in Long Duration Space Flight

    Science.gov (United States)

    Baggerman, Susan D.; Rando, Cynthia M.; Duvall, Laura E.

    2006-01-01

    This study documents the investigation of qualitative habitability and human factors feedback provided by scientists, engineers, and crewmembers on lessons learned from the ISS Program. A thorough review and understanding of this data is critical in charting NASA's future path in space exploration. NASA has been involved in ensuring that the needs of crewmembers to live and work safely and effectively in space have been met throughout the ISS Program. Human factors and habitability data has been collected from every U.S. crewmember that has resided on the ISS. The knowledge gained from both the developers and inhabitants of the ISS have provided a significant resource of information for NASA and will be used in future space exploration. The recurring issues have been tracked and documented; the top 5 most critical issues have been identified from this data. The top 5 identified problems were: excessive onsrbit stowage; environment; communication; procedures; and inadequate design of systems and equipment. Lessons learned from these issues will be used to aid in future improvements and developments to the space program. Full analysis of the habitability and human factors data has led to the following recommendations. It is critical for human factors to be involved early in the design of space vehicles and hardware. Human factors requirements need to be readdressed and redefined given the knowledge gained during previous ISS and long-duration space flight programs. These requirements must be integrated into vehicle and hardware technical documentation and consistently enforced. Lastly, space vehicles and hardware must be designed with primary focus on the user/operator to successfully complete missions and maintain a safe working environment. Implementation of these lessons learned will significantly improve NASA's likelihood of success in future space endeavors.

  8. Tie-down assessment of radioactive material packages on conveyances approach to competent authority approval applications in accordance with TS-R 1 (June 2000) and TS-G-1.1 (June 2002)

    International Nuclear Information System (INIS)

    Read, J.; Owen, S.; Tso, C.F.

    2004-01-01

    This paper summarizes the authors' findings, during carrying out many package tie-down assessments, regarding the approach to the assessment process, and the issues that may arise. The current regulatory framework, as outlined in the abstract, is considered and possible areas for further development or research are discussed. The safe transport of a package containing radioactive material requires a secure system of retention on the conveyance during transport. The requirements for the assessment of this tie-down system are covered by International Atomic Energy Authority (IAEA) Regulations, and by the specific regulatory and guidance materials applying in the country of application. The IAEA regulations have recently been updated in TS-R-1 (June 2000) [1] and TS-G-1.1 (June 2002) [2]. In particular, Appendix V of reference [2] specifically covers 'Package Stowage and Retention during Transport'. In the United Kingdom the Transport Container Standardisation Committee (TCSC) provides guidance on the application of the IAEA regulations in TCSC 1006 ''The securing of Radioactive Materials on Conveyances'' [3], and this document has also been revised in December 2003. The basic requirement of the IAEA regulations is to maintain the integrity of the components of the package and its retention systems during routine operations (TS-R-1 Para 612). In accident conditions the package is permitted and may be required as part of the design (the weak-link approach as discussed later in this paper) to separate from the conveyance, while preserving the package integrity. Any tie-down attachments on the package shall be so designed that, under normal and accident conditions of transport, the forces in those attachments shall not impair the ability of the package to meet the requirements of the Regulations. (TS-R-1 Para 636)

  9. Advances in Nanotechnology for Efficacious and Stable Formulation Development

    Science.gov (United States)

    Putcha, Lakshimi

    2012-01-01

    Current operational medical kits aboard the International Space Station (ISS) include an array of medications intended for the treatment of minor ambulatory care symptoms, first aid, and basic life support. All medications contained in the flight kits are commercially available off-the-shelf formulations used for treatment of illnesses on Earth. However, transport and stowage of supplies including medications for space missions are exposed to adverse environmental conditions and extended shelf-life demands. Proposed missions to Mars and near-Earth objects such as asteroid 1999 AO10 will present crew health risk that is different both quantitatively and qualitatively from those encountered on ISS missions. Few drug options are available at the present time for mitigation of crew health risk of planned space exploration missions. Alternatives to standard oral formulations that include sustained and targeted delivery technologies for preventive healthcare in space will be a welcome addition to the space formulary and may include controlled release topical, sub-cutaneous, intranasal and inhalation dosage forms. An example of such a technology development endeavor can be nanotechnology-based multi-stage drug cocktail and vaccine delivery systems. Nanostructures also have the ability to protect drugs encapsulated within them from physiologic degradation, target their delivery with sustained release and are suitable for per oral routes of administration. The use of nanostructures such as polymeric nanoparticles offers a non-invasive approach for penetrating the blood brain barrier. Finally, nanotechnology offers great potential for the development of safe and efficacious drug delivery systems for preventive health care in space and on Earth.

  10. Combustión espontánea de las harinas de pescado azul: Factores de influencia y peligrosidad en el transporte

    Directory of Open Access Journals (Sweden)

    San José, M. J.

    1995-02-01

    Full Text Available Fish meal production characteristics and treatment are described, together with a detailed explanation of the international regulations for its maritime transport, as well as of the requirements for its stabilization to avoid its spontaneous combustion. Experience with this kind of transport, as well as Intensive research carried out over several years, has shown that the high fat content in several kinds of fish and the environmental humidity and temperature have a great influence and transform this kind of cargo into dangerous goods. Knowledge of proper stowage and cargo distribution in the holds greatly decreases the dangers during maritime transport. Good transport practice and stabilization of the meal with antioxidants together with the conclusions reached after research, make maritime transport of these cargoes safer.

    Se detallan las características de la fabricación y tratamiento de la harina de pescado azul, junto con un amplio desarrollo de las disposiciones internacionales para su transporte por vía marítima, así como la necesidad de estabilizar la harina de pescado para evitar la combustión espontánea. La experiencia en este transporte, además de las investigaciones realizadas durante varios años, ha puesto de manifiesto que el contenido de grasa en el pescado azul, la humedad y la temperatura, tienen una gran influencia y convierten a estos cargamentos en mercancías peligrosas. El conocimiento de una buena estiba o distribución de la carga dentro de las bodegas reduce considerablemente la peligrosidad en su transporte por mar. Esta práctica en el transporte y su estabilización con antioxidantes, junto con las conclusiones aportadas en la investigación, determinan un viaje más seguro en el transporte de estas mercancías.

  11. Human Behavior and Performance Support for ISS Operations and Astronaut Selections: NASA Operational Psychology for Six-Crew Operations

    Science.gov (United States)

    VanderArk, Steve; Sipes, Walter; Holland, Albert; Cockrell, Gabrielle

    2010-01-01

    The Behavioral Health and Performance group at NASA Johnson Space Center provides psychological support services and behavioral health monitoring for ISS astronauts and their families. The ISS began as an austere outpost with minimal comforts of home and minimal communication capabilities with family, friends, and colleagues outside of the Mission Control Center. Since 1998, the work of international partners involved in the Space Flight Human Behavior and Performance Working Group has prepared high-level requirements for behavioral monitoring and support. The "buffet" of services from which crewmembers can choose has increased substantially. Through the process of development, implementation, reviewing effectiveness and modifying as needed, the NASA and Wyle team have proven successful in managing the psychological health and well being of the crews and families with which they work. Increasing the crew size from three to six brought additional challenges. For the first time, all partners had to collaborate at the planning and implementation level, and the U.S. served as mentor to extrapolate their experiences to the others. Parity in available resources, upmass, and stowage had to be worked out. Steady progress was made in improving off-hours living and making provisions for new technologies within a system that has difficulty moving quickly on certifications. In some respect, the BHP support team fell victim to its previous successes. With increasing numbers of crewmembers in training, requests to engage our services spiraled upward. With finite people and funds, a cap had to placed on many services to ensure that parity could be maintained. The evolution of NASA BHP services as the ISS progressed from three- to six-crew composition will be reviewed, and future challenges that may be encountered as the ISS matures in its assembly-complete state will be discussed.

  12. Space-based multifunctional end effector systems functional requirements and proposed designs

    Science.gov (United States)

    Mishkin, A. H.; Jau, B. M.

    1988-01-01

    The end effector is an essential element of teleoperator and telerobot systems to be employed in space in the next decade. The report defines functional requirements for end effector systems to perform operations that are currently only feasible through Extra-Vehicular Activity (EVA). Specific tasks and functions that the end effectors must be capable of performing are delineated. Required capabilities for forces and torques, clearances, compliance, and sensing are described, using current EVA requirements as guidelines where feasible. The implications of these functional requirements on the elements of potential end effector systems are discussed. The systems issues that must be considered in the design of space-based manipulator systems are identified; including impacts on subsystems tightly coupled to the end effector, i.e., control station, information processing, manipulator arm, tool and equipment stowage. Possible end effector designs are divided into three categories: single degree-of-freedom end effectors, multiple degree of freedom end effectors, and anthropomorphic hands. Specific design alternatives are suggested and analyzed within the individual categories. Two evaluations are performed: the first considers how well the individual end effectors could substitute for EVA; the second compares how manipulator systems composed of the top performers from the first evaluation would improve the space shuttle Remote Manipulator System (RMS) capabilities. The analysis concludes that the anthropomorphic hand is best-suited for EVA tasks. A left- and right-handed anthropomorphic manipulator arm configuration is suggested as appropriate to be affixed to the RMS, but could also be used as part of the Smart Front End for the Orbital Maneuvering Vehicle (OMV). The technical feasibility of the anthropomorphic hand and its control are demonstrated. An evolutionary development approach is proposed and approximate scheduling provided for implementing the suggested

  13. NASA Tech Briefs, November 2012

    Science.gov (United States)

    2012-01-01

    The topics include: Visual System for Browsing, Analysis, and Retrieval of Data (ViSBARD); Time-Domain Terahertz Computed Axial Tomography NDE System; Adaptive Sampling of Time Series During Remote Exploration; A Tracking Sun Photometer Without Moving Parts; Surface Temperature Data Analysis; Modular, Autonomous Command and Data Handling Software with Built-In Simulation and Test; In-Situ Wire Damage Detection System; Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions; Wideband Agile Digital Microwave Radiometer; Buckyball Nucleation of HiPco Tubes; FACT, Mega-ROSA, SOLAROSA; An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications; Engineered Multifunctional Surfaces for Fluid Handling; Polyolefin-Based Aerogels; Adjusting Permittivity by Blending Varying Ratios of SWNTs; Gravity-Assist Mechanical Simulator for Outreach; Concept for Hydrogen-Impregnated Nanofiber/Photovoltaic Cargo Stowage System; DROP: Durable Reconnaissance and Observation Platform; Developing Physiologic Models for Emergency Medical Procedures Under Microgravity; Spectroscopic Chemical Analysis Methods and Apparatus; Low Average Sidelobe Slot Array Antennas for Radiometer Applications; Motion-Corrected 3D Sonic Anemometer for Tethersondes and Other Moving Platforms; Water Treatment Systems for Long Spaceflights; Microchip Non-Aqueous Capillary Electrophoresis (MicronNACE) Method to Analyze Long-Chain Primary Amines; Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles; Mars Science Laboratory Engineering Cameras; Seismic Imager Space Telescope; Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations; A Posteriori Study of a DNS Database Describing Super critical Binary-Species Mixing; Scalable SCPPM Decoder; QuakeSim 2.0; HURON (HUman and Robotic Optimization Network) Multi-Agent Temporal Activity Planner/Scheduler; MPST Software: MoonKommand

  14. Why Deep Space Habitats Should Be Different from the International Space Station

    Science.gov (United States)

    Griffin, Brand; Brown, MacAulay

    2016-01-01

    It is tempting to view the International Space Station (ISS) as a model for deep space habitats. This is not a good idea for many reasons. The ISS does not have a habitation module; instead the individual crew quarters are dispersed across several modules, the galley is in the US Laboratory and the waste hygiene compartment is in a Node. This distributed arrangement may be inconvenient but more important differences distinguish a deep space habitat from the ISS. First, the Space Shuttle launch system that shaped, sized, and delivered most ISS elements has been retired. Its replacement, the Space Launch System (SLS), is specifically designed for human exploration beyond low-Earth orbit and is capable of transporting more efficient, large diameter, heavy-lift payloads. Next, because of the Earth's protective geomagnetic field, ISS crews are naturally shielded from lethal radiation. Deep space habitat designs must include either a storm shelter or strategically positioned equipment and stowage for radiation protection. Another important difference is the increased transit time with no opportunity for an ISS-type emergency return. It takes 7 to 10 days to go between Earth and cis-lunar locations and 1000 days for the Mars habitat transit. This long commute calls for greater crew autonomy with habitats designed for the crew to fix their own problems. The ISS rack-enclosed, densely packaged subsystems are a product of the Shuttle era and not maintenance friendly. A solution better suited for deep space habitats spreads systems out allowing direct access to single-layer packaging and providing crew access to each component without having to remove another. Operational readiness is another important discriminator. The ISS required over 100 flights to build, resupply, and transport the crew, whereas SLS offers the capability to launch a fully provisioned habitat that is operational without additional outfitting or resupply flights.

  15. Virtual Reality Simulation of the International Space Welding Experiment

    Science.gov (United States)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.

  16. Evaluation of the Oxygen Concentrator Prototypes: Pressure Swing Adsorption Prototype and Electrochemical Prototype

    Science.gov (United States)

    Gilkey, Kelly M.; Olson, Sandra L.

    2015-01-01

    An oxygen concentrator is needed to provide enriched oxygen in support of medical contingency operations for future exploration human spaceflight programs. It would provide continuous oxygen to an ill or injured crew member in a closed cabin environment. Oxygen concentration technology is being pursued to concentrate oxygen from the ambient environment so oxygen as a consumable resource can be reduced. Because oxygen is a critical resource in manned spaceflight, using an oxygen concentrator to pull oxygen out of the ambient environment instead of using compressed oxygen can provide better optimization of resources. The overall goal of this project is to develop an oxygen concentrator module that minimizes the hardware mass, volume, and power footprint while still performing at the required clinical capabilities. Should a medical event occur that requires patient oxygenation, the release of 100 percent oxygen into a small closed cabin environment can rapidly raise oxygen levels to the vehicles fire limit. The use of an oxygen concentrator to enrich oxygen from the ambient air and concentrate it to the point where it can be used for medical purposes means no oxygen is needed from the ultra-high purity (99.5+% O2) oxygen reserve tanks. By not adding oxygen from compressed tanks to the cabin environment, oxygen levels can be kept below the vehicle fire limit thereby extending the duration of care provided to an oxygenated patient without environmental control system intervention to keep the cabin oxygen levels below the fire limits. The oxygen concentrator will be a Food and Drug Administration (FDA) clearable device. A demonstration unit for the International Space Station (ISS) is planned to verify the technology and provide oxygen capability. For the ISS, the demonstration unit should not exceed 10 kg (approximately 22 lb), which is the soft stowage mass limit for launch on resupply vehicles for the ISS. The unit's size should allow for transport within the

  17. Journal of Gravitational Physiology, Volume 12, Number 1

    Science.gov (United States)

    Fuller, Charles A. (Editor); Cogoli, Augusto (Editor); Hargens, Alan R. (Editor); Smith, Arthur H. (Editor)

    2005-01-01

    Processes; Orpheus 0 G or Ear in Microgravity to Establish Symptoms Concomittant of Inner and Middle Ear and Osteoporosis in Microgravity; Understanding Visual Perception in the Perspective of Gravity; Cortical Regions Associated with Orthostatic Stress in Conscious Humans; Restoration of Central Blood Volume: Application of a Simple Concept and Simple Device to Counteract Cardiovascular Instability in Syncope and Hemorrhage; WISE-2005: Integrative Cardiovascular Responses with LBNP during 60-Day Bed Rest in Women; Intracranial Pressure Increases during Weightlessness. A Parabolic Flights Study; Lower Limb & Portal Veins Echography for Predicting Risk of Thrombosis during a 90-D Bed Rest; Calf Tissue Liquid Stowage and Muscular and Deep Vein Distension in Orthostatic Tests after a 90-Day Head Down Bed Rest; Morphology of Brain Vessels in the Tail Suspended Rats Exposed to Intermittent 2 G; Alterations in Vasoreactivity of Femoral Artery Induced by Hindlimb Unweighting are Related to the Changes of Contractile Protein in Rats; and Respiratory Sinus Arrhythmia: A Marker of Decreased Parasympathetic Modulation after Short Duration.

  18. Development of Gradient Compression Garments for Protection Against Post Flight Orthostatic Intolerance

    Science.gov (United States)

    Stenger, M. B.; Lee, S. M. C.; Westby, C. M.; Platts, S. H.

    2010-01-01

    Orthostatic intolerance after space flight is still an issue for astronaut health. No in-flight countermeasure has been 100% effective to date. NASA currently uses an inflatable anti-gravity suit (AGS) during reentry, but this device is uncomfortable and loses effectiveness upon egress from the Shuttle. The Russian Space Agency currently uses a mechanical counter-pressure garment (Kentavr) that is difficult to adjust alone, and prolonged use may result in painful swelling at points where the garment is not continuous (feet, knees, and groin). To improve comfort, reduce upmass and stowage requirements, and control fabrication and maintenance costs, we have been evaluating a variety of gradient compression, mechanical counter-pressure garments, constructed from spandex and nylon, as a possible replacement for the current AGS. We have examined comfort and cardiovascular responses to knee-high garments in normovolemic subjects; thigh-high garments in hypovolemic subjects and in astronauts after space flight; and 1-piece, breast-high garments in hypovolemic subjects. These gradient compression garments provide 55 mmHg of compression over the ankle, decreasing linearly to 35 mmHg at the knee. In thigh-high versions the compression continues to decrease to 20 mmHg at the top of the leg, and for breast-high versions, to 15 mmHg over the abdomen. Measures of efficacy include increased tilt survival time, elevated blood pressure and stroke volume, and lower heart-rate response to orthostatic stress. Results from these studies indicate that the greater the magnitude of compression and the greater the area of coverage, the more effective the compression garment becomes. Therefore, we are currently testing a 3-piece breast-high compression garment on astronauts after short-duration flight. We chose a 3-piece garment consisting of thigh-high stockings and shorts, because it is easy to don and comfortable to wear, and should provide the same level of protection as the 1-piece

  19. Mass Reduction: The Weighty Challenge for Exploration Space Flight

    Science.gov (United States)

    Kloeris, Vickie L.

    2014-01-01

    Meeting nutritional and acceptability requirements is critical for the food system for an exploration class space mission. However, this must be achieved within the constraints of available resources such as water, crew time, stowage volume, launch mass and power availability. ? Due to resource constraints, exploration class missions are not expected to have refrigerators or freezers for food storage, and current per person food mass must be reduced to improve mission feasibility. ? The Packaged Food Mass Reduction Trade Study (Stoklosa, 2009) concluded that the mass of the current space food system can be effectively reduced by decreasing water content of certain foods and offering nutrient dense substitutes, such as meal replacement bars and beverages. Target nutrient ranges were established based on the nutritional content of the current breakfast and lunch meals in the ISS standard menu. A market survey of available commercial products produced no viable options for meal replacement bar or beverage products. New prototypes for both categories were formulated to meet target nutrient ranges. Samples of prototype products were packaged in high barrier packaging currently used for ISS and underwent an accelerated shelf life study at 31 degC and 41 degC (50% RH) for 24 weeks. Samples were assessed at the following time points: Initial, 6 weeks, 12 weeks, and 24 weeks. Testing at each time point included the following: color, texture, water activity, acceptability, and hexanal analysis (for food bars only). Proof of concept prototypes demonstrated that meal replacement food bars and beverages can deliver a comparable macronutrient profile while reducing the overall mass when compared to the ISS Standard Menu. Future work suggestions for meal replacement bars: Reformulation to include ingredients that reduce hardness and reduce browning to increase shelf life. Micronutrient analysis and potential fortification. Sensory evaluation studies including satiety tests and

  20. Challenges for Life Support Systems in Space Environments, Including Food Production

    Science.gov (United States)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew

  1. Large Plant Growth Chambers: Flying Soon on a Space Station near You!

    Science.gov (United States)

    Massa, Gioia D.; Morrow, Robert C.; Levine, Howard G.

    2014-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species, and those capabilities continue to grow. The Veggie vegetable production system will be deployed to the ISS in Spring of 2014 to act as an applied research platform with goals of studying food production in space, providing the crew with a source of fresh food, allowing behavioral health and plant microbiology experimentation, and being a source of recreation and enjoyment for the crew. Veggie was conceived, designed, and constructed by Orbital Technologies Corporation (ORBITEC, Madison, WI). Veggie is the largest plant growth chamber that NASA has flown to date, and is capable of growing a wide array of horticultural crops. It was designed for low energy usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nanometers), blue, (455 nanometers) and green (530 nanometers) light emitting diodes. Interfacing with the light cap is an extendable bellows baseplate secured to the light cap via magnetic closures and stabilized with extensible flexible arms. The baseplate contains vents allowing air from the ISS cabin to be pulled through the plant growth area by a fan in the light cap. The baseplate holds a Veggie root mat reservoir that will supply water to plant pillows attached via elastic cords. Plant pillows are packages of growth media and seeds that will be sent to ISS dry and installed and hydrated on orbit. Pillows can be constructed in various sizes for different plant types. Watering will be via passive wicking from the root mat to the pillows. Science procedures will include photography or videography, plant thinning, pollination, harvesting, microbial sampling, water sampling, etcetera. Veggie is one of the ISS flight options currently available for research investigations on plants. The Plant Habitat (PH) is being designed and constructed through a NASA

  2. Color Choice is Everything - Impacts Color makes to the Lighting Environment

    Science.gov (United States)

    Clark, Toni A.

    2012-01-01

    When contracts are let out to design multiple systems in a vehicle, it is a challenge to maintain integration between system leads. Designers on niche systems, like lighting and control panel design, often get caught up in the challenge of designing the light source or visual interface and fail to include time in their schedule to work with system architects on how their lighting system will be integrated. Additionally, behavioral scientists, industrial designers, and materials engineers get caught up with the materials and look of the system, but often fail to consider how the selection of their materials could affect the certification or performance of electronic devices like lighting systems. Additionally, computer modeling of the system architecture often assumes a perfect environment without the clutter of actual human use (dirt, stowage, crowding). As a result, lighting systems, and backlit displays run the risk of being overdesigned or under designed. Engineers making the assumption that because they have no input or there is no requirement on work surface reflectance, make the assumption that they can t count on good material choices and thus may install more lighting than is necessary. While having more lights may seem better, for a vehicle that is trying to conserve power, more lights may not be a good option. On the other hand, designers who made the opposite assumption and designed a lighting system that only produced just enough light, often wind up with a system that did conserve power, but didn t produce enough light. These situations are exasperated when the system starts to be used and the models are not perfect anymore. The lack of coordination and iterative design not only can impact lighting levels within an environment, but also can affect color perception. This is because, if materials do not represent a gradation of white or black, the material unevenly absorbs and reflects light at different wavelengths of the visual spectrum. The lighting

  3. The Multi-User Droplet Combustion Apparatus: the Development and Integration Concept for Droplet Combustion Payloads in the Fluids and Combustion Facility Combustion Integrated Rack

    Science.gov (United States)

    Myhre, C. A.

    2002-01-01

    using liquid combustibles on Earth and in space. As a result of the concurrent design process of MDCA and CIR, the MDCA team continues to work closely with the CIR team, developing Integration Agreements and an Interface Control Document during preliminary integration activities. Integrated testing of hardware and software systems will occur at the Engineering Model and Flight Model phases. Because the engineering model is a high fidelity unit, it will be upgraded to a flight equivalent Ground Integration Unit (GIU) when the engineering model phase is completed. The GIU will be available on the ground for troubleshooting of any on-orbit problems. Integrated verification testing will be conducted with the MDCA flight unit and the CIR flight unit. Upon successful testing, the MDCA will be shipped to the Kennedy Space Center for a post-shipment checkout and final turn-over to CIR for final processing and launch to the International Space Station. Once on-orbit, the MDCA is managed from the GRC Telescience Support Center (TSC). The MDCA operations team resides at the TSC. Data is transmitted to the PI's at their home sites by means of TREK workstations, allowing direct interaction between the PI and operations staff to maximum science. Upon completion of a PI's experiment, the MDCA is reconfigured for the next of the three follow-on experiments or ultimately removed from the CIR, placed into stowage, and returned to Earth.

  4. NASA Advanced Explorations Systems: Concepts for Logistics to Living

    Science.gov (United States)

    Shull, Sarah A.; Howe, A. Scott; Flynn, Michael T.; Howard, Robert

    2012-01-01

    , Howard 2010]. Several of the L2L concepts that have shown the most potential in the past are based on NASA cargo transfer bags (CTBs) or their equivalents which are currently used to transfer cargo to and from the ISS. A high percentage of all logistics supplies are packaging mass and for a 6-month mission a crew of four might need over 100 CTBs. These CTBs are used for on-orbit transfer and storage but eventually becomes waste after use since down mass is very limited. The work being done in L2L also considering innovative interior habitat construction that integrate the CTBs into the walls of future habitats. The direct integration could provide multiple functions: launch packaging, stowage, radiation protection, water processing, life support augmentation, as well as structure. Reuse of these CTBs would reduce the amount of waste generated and also significantly reduce future up mass requirements for exploration missions. Also discussed here is the L2L water wall , an innovative reuse of an unfolded CTB as a passive water treatment system utilizing forward osmosis. The bags have been modified to have an inner membrane liner that allows them to purify wastewater. They may also provide a structural water-wall element that can be used to provide radiation protection and as a structural divider. Integration of the components into vehicle/habitat architecture and consideration of operations concepts and human factors will be discussed. In the future these bags could be designed to treat wastewater, concentrated brines, and solid wastes, and to dewater solid wastes and produce a bio-stabilized construction element. This paper will describe the follow-on work done in design, fabrication and demonstrations of various L2L concepts, including advanced CTBs for reuse/repurposing, internal outfitting studies and the CTB-based forward osmosis water wall.

  5. Estudo sobre os riscos da profissão de estivador do Porto do Mucuripe em Fortaleza Occupational risks among dock workers in the Port of Mucuripe, Fortaleza, Brazil

    Directory of Open Access Journals (Sweden)

    Francisco Fábio Gadelha Cavalcante

    2005-12-01

    Full Text Available Os estivadores do Porto do Mucuripe são trabalhadores sem vínculo empregatício com a Companhia Docas do Ceará. Atuam no convés e no porão dos navios, fazendo o embarque, o desembarque e a organização dos contêineres. Neste ambiente de constante exposição a riscos, o médico do trabalho é fundamental na organização de planos de prevenção de acidentes, de educação dos trabalhadores e de monitorização dos riscos. O objetivo do artigo é caracterizar e conhecer o estivador, correlacionar o ambiente portuário e o seu processo produtivo com os fatores de risco e os agravos associados, bem como ressaltar a importância da medicina do trabalho para o controle de tais riscos. O trabalho de campo foi desenvolvido nos meses de janeiro e de fevereiro de 2003, com a aplicação de 60 questionários aos estivadores. A análise dos dados evidencia que os principais problemas de saúde inerentes à profissão de estivador são, entre outros, os distúrbios osteoarticulares (hérnia de disco e desgastes na articulação do joelho e metabólicos (diabetes e hipertensão arterial. Estes se devem não só ao trabalho, mas também e, com grande influência, ao contexto de vida destes profissionais.The stevedores of the Port of Mucuripe are workers without employment bond with the Company Dock of Ceará. They act in the deck and the stowage of the ships, making the embarkment, the landing and the organization of containers. In this environment of constant exposition to risks, occupational physician is basic in the organization of plans of prevention of accidents, education of the workers and monitorization of the risks. The objective of this article is to characterize and to know the stevedore’s job, to correlate the port environment and its productive process with the factors of risk and the damages associates, as well as standing out the importance of the Occupational Medicine for the control of such risks. The fieldwork was developed in the

  6. Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication

    Science.gov (United States)

    Subbaraman, Harish; Hen, Ray T.; Lu, Xuejun; Chen, Maggie Yihong

    2013-01-01

    NASAs future exploration missions focus on the manned exploration of the Moon, Mars, and beyond, which will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit, and back to Earth. Flexible antennas are highly desired in many scenarios. Active phased array antennas (active PAAs) with distributed control and processing electronics at the surface of an antenna aperture offer numerous advantages for radar communications. Large-area active PAAs on flexible substrates are of particular interest in NASA s space radars due to their efficient inflatable package that can be rolled up during transportation and deployed in space. Such an inflatable package significantly reduces stowage volume and mass. Because of these performance and packaging advantages, large-area inflatable active PAAs are highly desired in NASA s surface-to-orbit and surface-to-relay communications. To address the issues of flexible electronics, a room-temperature printing process of active phased-array antennas on a flexible Kapton substrate was developed. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proved feasible for the PAA system. This innovation is a new type of fully inkjet-printable, two-dimensional, high-frequency PAA on a flexible substrate at room temperature. The designed electronic circuit components, such as the FET switches in the phase shifter, metal interconnection lines, microstrip transmission lines, etc., are all printed using a special inkjet printer. Using the developed technology, entire 1x4, 2x2, and 4x4 PAA systems were developed, packaged, and demonstrated at 5.3 GHz. Several key solutions are addressed in this work to solve the fabrication issues. The source/drain contact is developed using droplets of silver ink printed on the source/drain areas prior to applying CNT thin-film. The wet silver ink droplets allow the silver to

  7. Re-Engineering the ISS Payload Operations Control Center During Increased Utilization and Critical Onboard Events

    Science.gov (United States)

    Dudley, Stephanie R. B.; Marsh, Angela L.

    2014-01-01

    With an increase in utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four-month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS real-time operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art Video Wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management of

  8. Modifying a Commercial Centrifuge to Reduce Electromagnetic Interference and Evaluating Functionality of Ultrasound Equipment

    Science.gov (United States)

    Greening, Gage J.

    2016-01-01

    meet our specifications and to understand what needs to be done in lab to the new centrifuge. Our modifications will provide a standard for readying centrifuges for future missions. Once the new modified centrifuge arrives by the vendor, it will need to undergo EMI testing again for validation. The centrifuge is also in the process of compatibility testing with a custom stowage drawer, which is an ongoing project in SF4. Both of these items will be payloads on future missions to the ISS for various research purposes. Ultrasound: ISS currently has an onboard ultrasound (Ultrasound 2 system) for research and medical purposes. Every piece of medical flight hardware has an equivalent ground-unit so instrumentation can be routinely evaluated and transported to the ISS if necessary. The ground-unit ultrasound equipment must be evaluated every six months using a task performance sheet (TPS). A TPS is a document, written by the appropriate scientists and engineers, which describes how to run equipment and is written in such a way that astronauts with unspecialized training can follow the tasks. I was responsible for performing six TPSs on a combination of three ultrasounds and two video power converters (VPCs). Performing a TPS involves checking out and computationally documenting each piece of equipment removed from storage locations, setting up hardware and software, performing tasks to verify functionality, returning equipment, and logging items back into the computerized system. My work revealed all ground-unit ultrasounds were functioning properly. Because of proper function, a discrepancy report (DR) did not have to be opened. The TPS was then passed along to the Quality Engineering (QE) for review and ultimately given to Quality Assurance (QA). Other projects: In addition to my main projects, I participated in other tasks including troubleshooting an EEG headband, volunteering for an ultrasound training research study, and conformal coating printed circuit boards. My