WorldWideScience

Sample records for stoves gas burning

  1. Emissions and efficiency of a domestic gas stove burning natural gases with various compositions

    International Nuclear Information System (INIS)

    Yungchang Ko; Tahui Lin

    2003-01-01

    The heating value of a fuel, which depends on its composition, strongly affects burner performance. Using the same gas stove to burn natural gas with various heating values is inappropriate and hazardous due to the possible occurrence of incomplete combustion (i.e. a great increase of CO emissions and/or soot formation), liftoff, flashback and inadequate heat input. In this study, we aim to assess the effects of changes in gas composition on burner performance and propose suitable design or operational factors of domestic gas stoves burning natural gas with various heating values. A single gas burner, originally designed for burning natural gas with low heating value, is adopted to investigate the effects of variations in gas composition on the burner performance. The influence of five significant parameters, including gas composition, primary aeration, gas flow rate (heat input), gas supply pressure, and loading height, on the thermal efficiency and CO emissions were reported and discussed. Using natural gas with high heating value instead of natural gas with low heating value results in a decrease in thermal efficiency (due to higher thermal input) and an increase in CO emission (caused by incomplete combustion). These problems can be significantly improved by decreasing the gas pressure to a suitable value, by enlarging the primary aeration to a favorable level, by selecting a proper thermal input, or by adjusting the optimized heating height. (Author)

  2. Wood-burning stoves worldwide

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo

    global environmental health risk, since these sources are important contributors to fine particulate matter (PM2.5) in the ambient air that increase climate and health risks. This thesis explores the social-technical dimensions of both the use of wood-burning stoves (WBSs) and transition to the use......More than any time in our history, the wood-burning stove continues to be the most popular technology used for cooking and heating worldwide. According to the World Health Organization and recent scientific studies, the inefficient use of solid-fuels in traditional stoves constitutes the major...... systems, improved efficient retrofits and advanced stove innovations. In chapter 3, four popular wood-burning practices found in five countries were singled-out to be examined closely in four case studies: “cooking in Brazil”, “cooking and heating in Peru”, “heating in Portugal” and “recreational heat...

  3. Energy performance of Portuguese and Danish wood-burning stoves

    DEFF Research Database (Denmark)

    Carvalho, Ricardo; Jensen, Ole Michael; Tarelho, Luis A. C.

    2011-01-01

    In Europe, considerable amounts of renewable energy resources are used for residential heating with wood-burning stoves, which can cause considerable energy losses and environmental impacts. A better understanding of its operating characteristics will permit to improve the buildings energy...... carried out through the measurement of the main operating parameters: flue gas temperature and composition, combustion air flow rate, and fuel consumption rate. The results showed that the appliances emitted energy intermittently, with a mean heat flow rate into the indoors of 5 kWth, representing mean...... efficiency and indoor climate, and to reduce the emission of air pollutants to the environment. This study aimed to analyze the operating conditions of a Portuguese made stove and compare it with the most efficient Danish made stoves tested at the Technological Institute. The combustion experiments were...

  4. Impact of operating wood-burning stoves on indoor air quality

    DEFF Research Database (Denmark)

    Afshari, Alireza; Jensen, Ole Michael; Bergsøe, Niels Christian

    2011-01-01

    A field study on the impact of operating and reloading wood-burning stoves on the indoor air quality was carried out during two consecutive winters. In contrast to the majority of recent studies, which focussed on the ambient air quality and the penetration of particles to the indoor air......, this study aims to understand to what extent the operation of a stove contributes to the generation of concentration of ultrafine particles in the indoor air. Therefore, different stoves were ignited in one session by the owner of the stove and in a subsequent session by an expert on wood-burning stoves....... The study was conducted in seven typical Danish detached houses without other indoor activities taking place. In each house the average air change rate during one week was measured (using passive tracer gas technique) and the indoor and outdoor temperature and relative humidity were recorded continuously...

  5. Regulation of air pollution from wood-burning stoves

    DEFF Research Database (Denmark)

    Bjørner, Thomas Bue; Brandt, Jørgen; Hansen, Lars Gårn

    Air pollution is a major global challenge. Emissions from residential wood-burning stoves make a surprisingly large contribution to total air pollution related health costs. In Denmark, emissions from wood-burning stoves are calculated to cause almost 400 premature deaths each year within Denmark...... and additionally about 300 premature deaths in other parts of Europe. In this article, we present an integrated assessment of the net social benefit of different schemes for regulating wood-burning stoves including bans and taxes. The assessment uses high resolution air pollution emission inventory...

  6. Scaling housing interventions for wood-burning stoves worldwide

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; da Cruz Tarelho, Luís António

    2013-01-01

    The wood-burning stove is the most popular energy technology in the world since about 3 billion people rely on it for both domestic cooking and heating purposes. It is estimated that in 2030 more than 200 million people will be affected by this abundant energy source. Large-scale clean stove prog...

  7. Wood-burning stoves in low-carbon dwellings

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Afshari, Alireza

    2013-01-01

    The European climate change strategy intends to encourage the erection of low-carbon buildings and the upgrading of existing buildings to low-carbon level. At the same time, it is an EU vision to maximise the use of renewable energy resources. In this strategy, small-scale wood......-burning is an overlooked source for heating. A wood-burning stove is considered low-carbon technology since its fuel is based on local residual biomass. A field study investigating how modern wood-burning stoves operated in modern single-family houses showed that intermittent heat supply occasionally conflicted...... combustion technology and automatics, controlling the interplay between stove and house, can make wood-burning stoves suitable for low-carbon dwellings and meet the remaining heat demand during the coldest period. It was further concluded that new guidelines need to be elaborated about how to install...

  8. Emission of dioxins from fireplaces and wood-burning stoves

    International Nuclear Information System (INIS)

    Hansen, K.J.; Vikelsoee, J.; Madsen, H.

    1994-01-01

    In 1988 the Environmental Report No. 149 was published. The result of this investigation was that exceptionally large quantities of dioxin were emitted from burning of clean wood in fireplaces and wood-burning stoves. The conclusion was, however, that it was a preliminary investigation subject to great uncertainties. So it was recommended to make further investigations. The project was continued in 1990, and the present report is the result of this investigation. The fuels applied were logged and treated as an integral part of the test in order to take precautions against contamination. A new test arrangement with a dilution channel was developed in order to be able to take samples. The dilution channel made it possible to take out representative samples for the entire combustion process. Four wood-burning stoves were chosen for the experiments. Two stoves representing those sold from 1960 till 1990. One new stove approved according to DS 887 and finally a prototype stove. The dioxin analysis method was developed so that it could better handle the presence of tar in the samples taken. Danmarks Miljoe Undersoegelse (DMU) - The Danish Environmental Investigations - carried out a great work of development and documentation in this field. Before the main experiment a validation of the sampling and the analysis method was made. The conclusion was that the sampling and analysis method was satisfactory and that a continuity from Environmental Project no. 149 was ensured. During the execution of the present project a probable explanation of the high dioxin emission has been found which were reported in Environmental Project No. 149. The reason is in all probability contamination from burning of pressure-creosoted wood with burning of clean wood. The present report contains a number of appendices showing results from single experiments, references and a number of references to supplementary reports which were elaborated during the progress of the work. (EG)

  9. Mapping the performance of wood-burning stoves by installations worldwide

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Tarelho, Luis A. C.

    2016-01-01

    environmental health risk. Research stressed the need to increase the performance of conventional interplays between users, stoves and buildings. This scientific review aims to characterize the performance and environmental effects of 9 wood-burning stove categories by installations worldwide...

  10. Catalytic combustion in gas stoves - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, Anna-Karin [CATATOR AB, Lund (Sweden)

    2003-06-01

    Several independent studies show that gas stoves to some degree contribute to the indoor emissions of NO{sub x} especially in situations were the ventilation flow is poor. The peak-NO{sub x} concentrations can reach several hundred ppb but the integral concentration seldom exceeds about 20 - 50 ppb, which corresponds to an indoor-outdoor ratio of about 1 - 2.5. Epidemiological studies indicate increasing problems with respiratory symptoms in sensitive people at concentrations as low as 15 ppb of NO{sub 2}. Consequently, the NO{sub x}-concentration in homes where gas stoves are used is high enough to cause health effects. However, in situations where the ventilation flow is high (utilisation of ventilation hoods) the NO{sub x}-emissions are not likely to cause any health problems. This study has been aimed at investigating the possibilities to reduce the NO{sub x} emissions from gas stoves by replacing the conventional flame combustion with catalytic combustion. The investigation is requested by Swedish Gas Center, and is a following-up work of an earlier conducted feasibility study presented in April-2002. The present investigation reports on the possibility to use cheap and simple retro-fit catalytic design suggestions for traditional gas stoves. Experiments have been conducted with both natural and town gas, and parameters such as emissions of NO{sub x}, CO and unburned fuel gas and thermal efficiency, etc, have been examined and are discussed. The results show that it is possible to reduce the NO{sub x} emissions up to 80% by a simple retro-fit installation, without decreasing the thermal efficiency of the cooking plate. The measured source strengths correspond to indoor NO{sub x} concentrations that are below or equal to the average outdoor concentration, implying that no additional detrimental health effects are probable. The drawback of the suggested installations is that the concentration of CO and in some cases also CH{sub 4} are increased in the flue gases

  11. Burns and fires in South Africa's informal settlements: Have approved kerosene stoves improved safety?

    Science.gov (United States)

    Kimemia, David; van Niekerk, Ashley; Govender, Rajen; Seedat, Mohamed

    2018-06-01

    This study is a follow-on to an intervention project that implemented South African Bureau of Standards approved kerosene stoves and safety education in 150 households of a Johannesburg informal settlement. An investigation conducted 12 months later established that 43 stoves had operational defects, yet 23 households continued using the faulty appliances. This study focuses on (1) the psychological and behavioural factors associated with continued use of faulty stoves by the 23 households, and (2), the specific technical failures of these stoves. The study involved one-on-one recall interviews with the households using defective stoves (N=21) and laboratory-based stove tests for seven of the affected appliances. The results indicate that the stoves had defects in critical safety features such as flame control and the self-extinguishing mechanism. Four stove malfunctions of minor burn affect were reported in the study. Continued use of the damaged stoves was significantly associated with the time from receipt of the stove to detection of first failure: stoves that failed later on were more significantly likely to remain in use as compared to those that failed sooner. The findings point to the need for strengthening enforcement of appliance standards, public education on kerosene stove use, and structural change for the energy-poor. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  12. Proper indoor climate by the adoption of advanced wood burning stoves

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Skreiberg, Oeyvind

    2014-01-01

    The indoor emission of (ultra)fine particles and overheating from wood-burning stoves are crucial problems in modern houses when wood is used for heating. The main cause for indoor particle emission is the interaction between user and stove when lighting and refilling the stove. The main causes...... for overheating are a high thermal insulation level of the house and high (peak) wattage of the stove. This research aims to understand how low wattage stoves with a computer added device and water jacket will perform on the indoor air quality as proper heating appliances for low energy houses. Two field studies...... were designed to compare the influence of the auto-pilot device and water jacket on the indoor climate. The first experiments were conducted in 8 renovated detached houses using certified stoves while the following experiments were conducted in 4 low energy houses using modern and advanced stoves...

  13. Particle Morphology From Wood-Burning Cook Stoves Emissions

    Science.gov (United States)

    Peralta, O.; Carabali, G.; Castro, T.; Torres, R.; Ruiz, L. G.; Molina, L. T.; Saavedra, I.

    2013-12-01

    Emissions from three wood-burning cook stoves were sampled to collect particles. Transmission electron microscope (TEM) copper grids were placed on the last two stages of an 8-stage MOUDI cascade impactor (d50= 0.32, and 0.18 μm). Samples were obtained on two heating stages of cooking, the first is a quick heating process to boil 1 liter of water, and the second is to keep the water at 90 C. Absorption coefficient, scattering coefficients, and particles concentration (0.01 - 2.5 μm aerodynamic diameter) were measured simultaneously using an absorption photometer (operated at 550 nm), a portable integrating nephelometer (at 530 nm), and a condensation particle counter connected to a chamber to dilute the wood stoves emissions. Transmission electron micrographic images of soot particles were acquired at different magnifications using a High Resolution Transmission Electron Microscope (HRTEM) JEOL HRTEM 4000EX operating at 200 kV, equipped with a GATAN digital micrograph system for image acquisition. The morphology of soot particles was analyzed calculating the border-based fractal dimension (Df). Particles sampled on the first heating stage exhibit complex shapes with high values of Df, which are present as aggregates formed by carbon ceno-spheres. The presence of high numbers of carbon ceno-spheres can be attributed to pyrolysis, thermal degradation, and others processes prior to combustion. Energy dispersive X-ray spectroscopy (EDS) was used to determine the elemental composition of particles. EDS analysis in particles with d50= 0.18 μm showed a higher content of carbonaceous material and relevant amounts of Si, S and K.

  14. Indoor Wood-Burning Stove and Fireplace Use and Breast Cancer in a Prospective Cohort Study.

    Science.gov (United States)

    White, Alexandra J; Sandler, Dale P

    2017-07-18

    Indoor burning of fuel for heating or cooking releases carcinogens. Little is known about the impact of indoor air pollution from wood-burning stoves or fireplaces on breast cancer risk. In a large prospective cohort study, we evaluated the risk of breast cancer in relation to indoor heating and cooking practices. Sister Study participants ( n =50,884) were recruited from 2003–2009. Breast cancer–free women in the United States or Puerto Rico, 35–74 y old, with a sister with breast cancer were eligible. Participants completed questionnaires on indoor heating and cooking practices for both their enrollment and their longest adult residence. Cox regression was used to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (95% CIs) for the association between indoor heating/cooking and breast cancer. A total of 2,416 breast cancer cases were diagnosed during follow-up (mean=6.4 y). Having an indoor wood-burning stove/fireplace in the longest adult residence was associated with a higher breast cancer risk [HR=1.11 (95% CI: 1.01, 1.22)]; the risk increased with average frequency of use [≥once/week, HR=1.17 (95% CI: 1.02, 1.34)] (p for trend=0.01). An elevated HR was seen for women burning wood [HR=1.09 (95% CI: 0.98, 1.21)] or natural gas/propane [HR=1.15 (95% CI: 1.00, 1.32)]. No association was observed for burning artificial fire-logs [HR=0.98 (95% CI: 0.85, 1.12)] except among women from western states [HR=1.36 (95% CI: 1.02, 1.81)]. In this prospective study, using an indoor wood-burning stove/fireplace in the longest adult residence at least once a week and burning either wood or natural gas/propane was associated with a modestly higher risk of breast cancer. https://doi.org/10.1289/EHP827.

  15. Strong air pollution from old wood stoves

    International Nuclear Information System (INIS)

    2001-01-01

    According to this article, wood-firing is the major source of suspended dust in Norway. Old stoves emit about six times as much as new stoves. Only seven percent of the wood-firing takes place in modern, clean-burning stoves. In Oslo, where replacement of old stoves has been publicly supported, this fraction is even less. The emission of carbon dioxide from burning wood does not count as climate gas emission since the amount of CO 2 released from a burning tree equals the amount that was fixed in the growing tree, and it would have been released anyhow by the decaying tree if not burned

  16. Perceptions of Improved Biomass and Liquefied Petroleum Gas Stoves in Puno, Peru: Implications for Promoting Sustained and Exclusive Adoption of Clean Cooking Technologies

    Directory of Open Access Journals (Sweden)

    Jacqueline Hollada

    2017-02-01

    Full Text Available Many households in low- and middle-income countries cook with inefficient biomass-burning stoves, which cause high levels of household air pollution and threaten long-term health. Although clean stoves and fuels are available, uptake and consistent use has been low. Using observations and in-depth interviews, we assessed the attitudes, preferences, and beliefs about traditional versus liquefied petroleum gas (LPG stoves in rural Puno, Peru. A total of 31 in-depth interviews were conducted with primary cooks and their families, health workers, community leaders, and improved stove contractors. Six in-home observations of meal preparation were also conducted. Six major barriers to consistent use of clean stoves were identified: (1 perceived differences in food taste and nutrition by stove type; (2 cooking niches filled by different stoves; (3 social norms related to cooking practices; (4 safety concerns; (5 comparative costs of using different stoves; and (6 lack of awareness and concern about long-term health risks. These findings suggest that to successfully reduce household air pollution, clean cooking programs and policies must consider the many factors influencing adoption beyond health, such as cost, taste, fears, and cultural traditions. These factors could be incorporated into community-based and national efforts to scale-up sustained and exclusive adoption of clean cooking.

  17. Chemical characterization of biomass burning deposits from cooking stoves in Bangladesh

    International Nuclear Information System (INIS)

    Salam, Abdus; Hasan, Mahmodul; Begum, Bilkis A.; Begum, Monira; Biswas, Swapan K.

    2013-01-01

    Biomass burning smoke deposits were characterized from cooking stoves in Brahmondi, Narsingdi, Bangladesh. Arjun, bamboo, coconut, madhabilata, mahogany, mango, rice husk coil, plum and mixed dried leaves were used as biomasses. Smoke deposits were collected from the ceiling (above the stove) of the kitchen on aluminum foil. Deposits samples were analyzed with X-ray fluorescence (XRF) spectroscopy for trace elements determination. UV–visible spectrophotometer was used for ions analysis. The surface morphology of the smoke deposits was studied with scanning electron microscope (SEM). Elevated concentrations of the trace elements were observed, especially for toxic metals (Pb, Co, Cu). The highest concentration of lead was observed in rice husk coil among the determined biomasses followed by mahogany and arjun, whereas the lowest concentration was observed in bamboo. Potassium has the highest concentration among the determined trace elements followed by calcium, iron and titanium. Trace elements such as potassium, calcium, iron showed significant variation among different biomass burning smoke deposits. The average concentrations of sulfate, nitrate, and phosphate were 38.0, 0.60, 0.73 mg kg −1 , respectively. The surface morphology was almost similar for these biomass burning deposit samples. The Southeast Asian biomass burning smoke deposits had distinct behavior from European and USA wood fuels combustion. -- Highlights: •Elevated concentrations of trace elements were observed in biomass burning deposits. •Very high concentration of lead was observed in biomasses burring deposits •Elevated toxic trace elements concentrations in kitchens need further surveillance

  18. Thermal distillation system utilizing biomass energy burned in stove by means of heat pipe

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2016-09-01

    Full Text Available A thermal distillation system utilizing a part of the thermal energy of biomass burned in a stove during cooking is proposed. The thermal energy is transported from the stove to the distiller by means of a heat pipe. The distiller is a vertical multiple-effect diffusion distiller, in which a number of parallel partitions in contact with saline-soaked wicks are set vertically with narrow gaps of air. A pilot experimental apparatus was constructed and tested with a single-effect and multiple-effect distillers to investigate primarily whether a heat pipe can transport thermal energy adequately from the stove to the distiller. It was found that the temperatures of the heated plate and the first partition of the distiller reached to about 100 °C and 90 °C, respectively, at steady state, showing that the heat pipe works sufficiently. The distilled water obtained was about 0.75 and 1.35 kg during the first 2 h of burning from a single-effect and multiple-effect distillers, respectively.

  19. Diffusion of rural innovations: some analytical issues and the case of wood-burning stoves

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, B

    1983-04-01

    The literature on the diffusion of rural innovations in Third World countries reveals a spectrum of approaches to the diffusion process. It is argued here that the effectiveness of a particular approach in the diffusion of particular innovations would depend on the technical, the economic, and the social characteristics of the innovations. A typology of innovations in terms of these characteristics has been drawn up. This provides the analytical framework within which the instance of wood-burning stoves is concerned. A priori, the characteristics of this innovation are seen to be such as to necessitate the close involvement of the users approach to diffusion. Available evidence relating to actual experience with promoting woodburning stoves is seen to bear this out. 62 references.

  20. Absorption cycle commercial refrigerator using wood burning cook stove; Geladeira de absorcao acionada por fogao a lenha

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Jose Tomaz Vieira; Martins, Gilberto [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia

    1991-12-31

    The current utilization of wood burning cook stoves in Brazil and the socio-economical profile of their users were surveyed. A traditional heavy-mass wood-burning cook stove was studied as a thermal equipment. Simple changes in the geometry of the combustion chamber were suggested to improve the cooking efficiency. A closed two-phase thermosyphon using water as working fluid was designed, built and connected between the combustion chamber of the cook stove and a depressurized absorption refrigeration system to determine the heat flux and the temperature level. A commercial refrigerator unit, using the absorption cycle, was coupled with the wood stove through the thermosyphon. The overall results of the coupling point to successful country-side applications. (author) 12 refs., 9 figs., 4 tabs.

  1. Are Korean Households Willing to Pay a Premium for Induction Cooktops over Gas Stoves?

    Directory of Open Access Journals (Sweden)

    Hyo-Jin Kim

    2017-08-01

    Full Text Available Korean households generally prefer to use induction cooktops rather than gas stoves because of their greater convenience and safety features. This paper tries to investigate whether Korean households are willing to pay a premium for replacing their gas stoves, which are currently common in Korea, with induction cooktops, from the perspective of convenience and safety. To this end, a contingent valuation technique was applied to assess the additional willingness to pay (WTP a premium for using an induction cooktop rather than a gas stove. A nationwide survey of 1000 households was carried out. The results indicate that the mean additional WTP for using an induction cooktop rather than a gas stove is KRW 207 (USD 0.19 per cubic meter of residential gas. This value can be interpreted as the convenience and safety benefits to the consumer of using an induction cooktop rather than a gas stove, or residential electricity rather than residential gas for cooking. It amounts to approximately 26.7% of the average 2015 price of residential gas, which was KRW 775 (USD 0.70 per cubic meter. If the gap between the price for residential electricity and the price for residential gas is less than the WTP value, households will increase their demand for residential electricity for cooking.

  2. Residential space heating with wood burning stoves. Energy efficiency and indoor climate; Boligopvarmning ved braendefyring. Energieffektivitet og indeklima

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Ole Michael; Afshari, A.; Bergsoee, N.C.; Carvalho, R. [Miljoestyrelsen, Copenhagen (Denmark); Aalborg Univ.. Statens Byggeforskningsinstitut, Aalborg (Denmark))

    2012-11-01

    Two issues turn up concerning how to use wood-burning stoves in modern homes. The first is whether wood-burning stoves in future may still act as a genuine heat source, given that new and refurbished single-family houses retain the heat much better than older ones and therefore need less and less energy for space heating. The second issue is whether it will still be possible to use wood-burning stoves in modern houses where the air exchange is controlled by mechanical ventilation or possibly heat recovery. It is a question whether firing techniques can be developed that will work in airtight houses with mechanical ventilation and negative pressure, so that harmful particle emissions can be avoided. To illustrate the first issue, a field study was designed to look carefully at seven modern wood-burning stoves that were set up in six new houses and one older house and investigated, both in terms of firing and heat release. As a background for this part of the study, a heat balance calculation was made for each house. The question is, whether wood-burning stoves will also in the future have a role to play as a heating source. Modern houses grow ever tighter and only need to be supplied with a small quantity of heat. The new Danish Buildings Requirement, 2010 has resulted in a further reduction of 25 % of the energy demand, including the energy supply for heating. However, the new requirements imply that the heating season eventually become so short that a traditional central heating installation becomes superfluous. This means that by using the small amounts of wood cut in gardens and hedgerows of the neighbourhood, a wood-burning stove will, in principle, cover the heating demand. Therefore, the question is rather whether a wood-burning stove is manufactured that can successfully be adapted to new houses. As a consequence of this development, future stoves must be further scaled down in order to meet the heating demand of a modern low-energy house and the stoves must

  3. Emission factors from biomass burning in three types of appliances: fireplace, woodstove and pellet stove

    Science.gov (United States)

    Duarte, Márcio; Vicente, Estela; Calvo, Ana; Nunes, Teresa; Tarelho, Luis; Alves, Célia

    2014-05-01

    In the last years, the importance of biomass fuels has increased mainly for two reasons. One of them is the effort to control the emissions of greenhouse gases, and on the other hand, the increasing costs associated with fossil fuels. Besides that, biomass burning is now recognised as one of the major sources contributing to high concentrations of particulate matter, especially during winter time. Southern European countries have a lack of information regarding emission profiles from biomass burning. Because of that, in most source apportionment studies, the information used comes from northern and alpine countries, whose combustion appliances, fuels and habits are different from those in Mediterranean countries. Due to this lack of information, series of tests using different types of equipment, as well as fuels, were carried out in order to obtain emission profiles and emission factors that correspond to the reality in southern European countries. Tests involved three types of biomass appliances used in Portugal, a fireplace, a woodstove and a modern pellet stove. Emission factors (mg.kg-1 fuel, dry basis) for CO, THC and PM10 were obtained. CO emission factors ranged from 38, for pine on the woodstove, to 84 for eucalyptus in the fireplace. THC emissions were between 4 and 24, for pine in the woodstove and eucalyptus in the fireplace, respectively. PM10 emission factors were in the range from 3.99, for pine in the woodstove, to 17.3 for eucalyptus in the fireplace. On average, the emission factors obtained for the fireplace are 1.5 (CO) to 4 (THC) times higher than those of the woodstove. The fireplace has emission factors for CO, THC and PM10 10, 35 and 32 times, respectively, higher than the pellet stove.

  4. Experimental and numerical investigations of heat transfer and thermal efficiency of an infrared gas stove

    Science.gov (United States)

    Charoenlerdchanya, A.; Rattanadecho, P.; Keangin, P.

    2018-01-01

    An infrared gas stove is a low-pressure gas stove type and it has higher thermal efficiency than the other domestic cooking stoves. This study considers the computationally determine water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The goal of this work is to investigate the effect of various pot diameters i.e. 220 mm, 240 mm and 260 mm on the water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The time-dependent heat transfer equation involving diffusion and convection coupled with the time-dependent fluid dynamic equation is implemented and is solved by using the finite element method (FEM). The computer simulation study is validated with an experimental study, which is use standard experiment by LPG test for low-pressure gas stove in households (TIS No. 2312-2549). The findings revealed that the water and air temperature distributions increase with greater heating time, which varies with the three different pot diameters (220 mm, 240 mm and 260 mm). Similarly, the greater heating time, the water and air velocity distributions increase that vary by pot diameters (220, 240 and 260 mm). The maximum water temperature in the case of pot diameter of 220 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 260 mm, respectively. However, the maximum air temperature in the case of pot diameter of 260 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 220 mm, respectively. The obtained results may provide a basis for improving the energy efficiency of infrared gas stoves and other equipment, including helping to reduce energy consumption.

  5. Evaluating the Effectiveness of a Commercial Portable Air Purifier in Homes with Wood Burning Stoves: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Julie F. Hart

    2011-01-01

    Full Text Available Wood burning for residential heating is prevalent in the Rocky Mountain regions of the United States. Studies have shown that wood stoves can be a significant source of PM2.5 within homes. In this study, the effectiveness of an electrostatic filter portable air purifier was evaluated (1 in a home where a wood stove was the sole heat source and (2 in a home where a wood stove was used as a supplemental heat source. Particle count concentrations in six particle sizes and particle mass concentrations in two particle sizes were measured for ten 12-hour purifier on and ten purifier off trials in each home. Particle count concentrations were reduced by 61–85 percent. Similar reductions were observed in particle mass concentrations. These findings, although limited to one season, suggest that a portable air purifier may effectively reduce indoor particulate matter concentrations associated with wood combustion during home heating.

  6. Personal exposures of preschool children to carbon monoxide: roles of ambient air quality and gas stoves

    Energy Technology Data Exchange (ETDEWEB)

    Alm, S.; Reponen, A.; Mukala, K.; Pasanen, P.; Tuomisto, J.; Jantunen, M.J. (National Public Health Institute, Kuopio (Finland). Division of Environmental Health)

    1994-12-01

    Personal 1 h mean CO exposures of preschool children in two day care centers (Toolo and Vallila) in Helsinki were measured with continuously recording personal exposure monitors. In Vallila, the median CO exposure of children from homes with gas stoves was 2.0 mgm[sup -3], and with electric stoves, 0.9 mgm[sup -3]. In Tooloo, the corresponding values were 1.9 and 1.0 mgm[sup -3], respectively. The national ambient air quality guidelines for CO in Finland were exceeded in a few percent of the exposure measurements. The results were compared to fixed-site ambient air monitoring data and related to the presence of town-gas fired stoves in the children's homes. The results show that fixed-site ambient air monitors are of little value in predicting personal exposures of children or even their relative differences between areas. They also show that town-gas fired stoves may have a profound effect on the CO exposures of the children. 8 refs., 4 figs., 3 tabs.

  7. How the user can influence particulate emissions from residential wood and pellet stoves: Emission factors for different fuels and burning conditions

    Science.gov (United States)

    Fachinger, Friederike; Drewnick, Frank; Gieré, Reto; Borrmann, Stephan

    2017-06-01

    For a common household wood stove and a pellet stove we investigated the dependence of emission factors for various gaseous and particulate pollutants on burning phase, burning condition, and fuel. Ideal and non-ideal burning conditions (dried wood, under- and overload, small logs, logs with bark, excess air) were used. We tested 11 hardwood species (apple, ash, bangkirai, birch, beech, cherry, hickory, oak, olive, plum, sugar maple), 4 softwood species (Douglas fir, pine, spruce, spruce/fir), treated softwood, beech and oak wood briquettes, paper briquettes, brown coal, wood chips, and herbaceous species (miscanthus, Chinese silver grass) as fuel. Particle composition (black carbon, non-refractory, and some semi-refractory species) was measured continuously. Repeatability was shown to be better for the pellet stove than for the wood stove. It was shown that the user has a strong influence on wood stove emission behavior both by selection of the fuel and of the burning conditions: Combustion efficiency was found to be low at both very low and very high burn rates, and influenced particle properties such as particle number, mass, and organic content in a complex way. No marked differences were found for the emissions from different wood species. For non-woody fuels, much higher emission factors could be observed (up to five-fold increase). Strongest enhancement of emission factors was found for burning of small or dried logs (up to six-fold), and usage of excess air (two- to three-fold). Real world pellet stove emissions can be expected to be much closer to laboratory-derived emission factors than wood stove emissions, due to lower dependence on user operation.

  8. Wood burning stoves and small boilers - particle emissions and reduction initiatives; Braendeovne og smae kedler - partikelemissioner og reduktionstiltag

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J B; Capral Henriksen, T; Lundhede, T [Danmarks Miljoeundersoegelser, Aarhus Universitet, Aarhus (Denmark); Breugel, C van; Zoellner Jensen, N [Miljoestyrelsen, Copenhagen (Denmark)

    2007-06-15

    Pollution from burning wood in private households, and the environmental and health consequences of this is determined in practice by a complicated interaction between a number of factors, including firing habits, fuel, type of stove/boiler, chimney and location of the chimney in relation to the surroundings. This report maps out the technologies used today for burning wood in private households, how these technologies contribute to particle emissions and which technologies may potentially reduce emissions of particles from burning wood in households in Denmark. Moreover, the possible emissions reductions and the financial costs incurred by consumers from different initiatives have been estimated. This report does not deal with possible initiatives for improvement of firing habits, fuel quality and chimneys. (au)

  9. Personal exposures of preschool children to carbon monoxide and nitrogen dioxide. The role of gas stoves

    Energy Technology Data Exchange (ETDEWEB)

    Alm, S.; Jantunen, M.J.; Mukala, K.; Tuomisto, J. [National Public Health Institute, Kuopio (Finland). Div. of Environmental Health; Pasanen, P. [Kuopio Univ. (Finland)

    1993-12-31

    Personal 1-h mean CO exposures of preschool children in two day care centers of Helsinki were measured with continuously recording personal exposure monitors, and their personal 1-wk NO{sub 2} exposures with Palmes tubes. The results were compared to fixed site ambient air monitoring results and related to the presence of high CO, low heat value town gas fired stoves in the homes of the children. Results show that fixed site ambient air monitors are of little value in predicting personal exposures of children or even their relative differences between areas, and also that town gas fired stoves have a profound effect on the CO exposures, and little or no effect on the NO{sub 2} exposures of the children. (author)

  10. Transition to an intelligent use of cleaner biomass stoves

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Vicent, Estela D.

    2016-01-01

    are relevant issues to save energy and avoid greenhouse gas (CO2e) emissions. This work compares the operating performance of 3 types of biomass stoves used in Europe in their interaction with dwellings. Field studies were conducted in 24 houses in Portugal and Denmark to analyse wood-burning behaviours......In Europe, inappropriate user behaviours in the operation of wood-burning stoves (WBSs) results in substantial energy losses where fireplaces and conventional stoves are major contributors to undue emissions of health damaging fine particulate matter (PM2.5). The design and adoption of cleaner WBSs...

  11. In-home performance of residential cordwood stoves

    International Nuclear Information System (INIS)

    Houck, J.E.; Barnett, S.G.; Roholt, R.B.

    1991-01-01

    The air quality impacts of residential cordwood stoves have been of concern to regulators, energy planners, and members of the woodstove industry. In addition, the reliability of laboratory certification emission values in predicting 'real world' emissions has been questioned. In response to these concerns, particulate emissions from residential cordwood stoves under actual in-home use have been measured for 5 heating seasons as part of 12 separate studies in Oregon, New York, Vermont, and the Yukon Territory. Monitoring was conducted using an automated emission sampler (AES) system. The system has been deployed in nearly 100 individual homes. Typically, emissions from several 1-week-long integrated sampling periods over the course of the heating season were measured with the AES system at each home. Particulate emission rates in grams of particles per hour of stove operation, grams of particles per kilogram of dry wood burned, and grams of particles per million Joules were calculated. Ancillary data provided by the studies included wood burn rates, homeowner wood loading patterns, wood moisture content and species, hours of operation of auxiliary heating appliances in the study homes, room ambient, flue gas, catalyst, and pre-catalyst temperatures, and hours of catalyst operation. Conventional stoves, high-technology non-catalytic stoves, catalytic stoves, and stoves equipped with retrofit catalytic devices have been studied. In addition to the 12 cordwood stove studies, the AES system has been used in 2 pellet stove studies and 1 fireplace study

  12. The emissions from a space-heating biomass stove

    International Nuclear Information System (INIS)

    Koyuncu, T.; Pinar, Y.

    2007-01-01

    In this paper, the flue gas emissions of carbon monoxide (CO), nitrogen oxides (NO X ), sulphur dioxide (SO 2 ) and soot from an improved space-heating biomass stove and thermal efficiency of the stove have been investigated. Various biomass fuels such as firewood, wood shavings, hazelnut shell, walnut shell, peanut shell, seed shell of apricot (sweet and hot seed type), kernel removed corncob, wheat stalk litter (for cattle and sheep pen), cornhusk and maize stalk litter (for cattle pen) and charcoal were burned in the same space-heating biomass stove. Flue gas emissions were recorded during the combustion period at intervals of 5min. It was seen from the results that the flue gas emissions have different values depending on the characteristics of biomass fuels. Charcoal is the most appropriate biomass fuel for use in the space-heating biomass stoves because its combustion emits less smoke and the thermal efficiency of the stove is approximately 46%. (author)

  13. Impacts of two improved wood-burning stoves on the indoor air quality

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Tarelho, Luis A. C.

    2014-01-01

    Large amounts of forest wood is still being used in rural housing in low and mid-income countries in South America - 36% in Peru and 6% in Brazil - generating hazardous wood smoke. Interviews were conducted to the users of improved stoves in 20 rural households. In Peru, the field study was carri...

  14. Changes of indoor climate by the adoption of retrofitted wood-burning stoves

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Tarelho, Luis A. C.

    2014-01-01

    More than 3 billion people in the world rely on local solid-fuels for domestic cooking and heating through inefficient combustion, causing indoor air pollution and overheating worldwide. Technological regimes were categorized in 18 popular stove models to describe how residential wood combustion ...

  15. STUDI EMISI TUNGKU MASAK RUMAH TANGGA (Study for Emission Characteristic of Household Stoves

    Directory of Open Access Journals (Sweden)

    Agus Haryanto

    2013-03-01

    Full Text Available The objective of this research was to study emission characteristic of household stoves. Five stoves were tested, namely clay pot biomass stove, brick biomass stove, kerosene stove, coal stove, and LPG stove.  Emission parameters to be measured were CO, NO2, SO2, and particulates. Gas emission was measured using gas analyzer Wolfsense TG 501, while particulate was determined based on Indonesian National Standard (SNI: 19-7117.12-2005. Results showed that LPG stove emitted no CO indicating that complete burning existed. Other stoves emitted CO with kerosene stove exhibited the highest CO emission of 1074 μg/m3. Biomass pot stoves produced SO2 (722 μg/m3 which is lower than LPG stove (1488 μg/m3 and kerosene stove (1055 μg/m3, but higher than coal stove (290 μg/m3. On the other side, biomass pot stoves produced more NO2 (99 μg/m3 with pot stove as compared to kerosene stove (25 μg/m3. Particulate emission increased based on the fuels used with an order from the lowest was LPG stove, kerosene stove, coal stove, and biomass stove. Key words: emission, stove, biomass, fossil fuels   ABSTRAK Tujuan penelitian ini adalah untuk mengkaji karakteristik emisi beberapa tungku atau kompor dapur rumah tangga. Penelitian dilakukan dengan menggunakan lima jenis tungku atau kompor, yaitu tungku biomassa pot tebal, tungku biomassa bata, kompor minyak tanah, kompor batubara, dan kompor LPG. Parameter emisi yang diukur meliputi CO, NO2, SO2 dan partikel. Emisi gas diukur menggunakan gas analyser Wolfsense TG 501, sedangkan emisi partikel debu ditentukan berdasarkan standar SNI 19-7117.12-2005. Hasil penelitian menunjukkan bahwa kompor LPG tidak menghasilkan emisi CO. Kompor minyak tanah menghasilkan emisi CO paling tinggi yaitu (1074 μg/m3. Kompor LPG menghasilkan emisi SO2 paling banyak (1488 μg/m3, diikuti kompor minyak tanah (1055 μg/m3, tungku kayu pot (722 μg/m3, dan kompor batubara (290 μg/m3. Di pihak lain, tungku biomassa pot tebal

  16. Effects of wood smoke particles from wood-burning stoves on the respiratory health of atopic humans

    Directory of Open Access Journals (Sweden)

    Riddervold Ingunn

    2012-04-01

    Full Text Available Abstract Background There is growing evidence that particulate air pollution derived from wood stoves causes acute inflammation in the respiratory system, increases the incidence of asthma and other allergic diseases, and increases respiratory morbidity and mortality. The objective of this study was to evaluate acute respiratory effects from short-term wood smoke exposure in humans. Twenty non-smoking atopic volunteers with normal lung function and without bronchial responsiveness were monitored during three different experimental exposure sessions, aiming at particle concentrations of about 200 μg/m3, 400 μg/m3, and clean air as control exposure. A balanced cross-over design was used and participants were randomly allocated to exposure orders. Particles were generated in a wood-burning facility and added to a full-scale climate chamber where the participants were exposed for 3 hours under controlled environmental conditions. Health effects were evaluated in relation to: peak expiratory flow (PEF, forced expiratory volume in the first second (FEV1, and forced vital capacity (FVC. Furthermore, the effects were assessed in relation to changes in nasal patency and from markers of airway inflammation: fractional exhaled nitric oxide (FENO, exhaled breath condensate (EBC and nasal lavage (NAL samples were collected before, and at various intervals after exposure. Results No statistically significant effect of wood smoke exposure was found for lung function, for FENO, for NAL or for the nasal patency. Limited signs of airway inflammation were found in EBC. Conclusion In conclusion, short term exposure with wood smoke at a concentration normally found in a residential area with a high density of burning wood stoves causes only mild inflammatory response.

  17. Designing a behavioral intervention using the COM-B model and the theoretical domains framework to promote gas stove use in rural Guatemala: a formative research study.

    Science.gov (United States)

    Thompson, Lisa M; Diaz-Artiga, Anaité; Weinstein, John R; Handley, Margaret A

    2018-02-14

    Three billion people use solid cooking fuels, and 4 million people die from household air pollution annually. Shifting households to clean fuels, like liquefied petroleum gas (LPG), may protect health only if stoves are consistently used. Few studies have used an implementation science framework to systematically assess "de-implementation" of traditional stoves, and none have done so with pregnant women who are more likely to adopt new behaviors. We evaluated an introduced LPG stove coupled with a phased behavioral intervention to encourage exclusive gas stove use among pregnant women in rural Guatemala. We enrolled 50 women at < 20 weeks gestation in this prospective cohort study. All women received a free 3-burner LPG stove and ten tank refills. We conducted formative research using COM-B Model and Theoretical Domains Framework (TDF). This included thematic analysis of focus group findings and classes delivered to 25 pregnant women (Phase 1). In Phase 2, we complemented classes with a home-based tailored behavioral intervention with a different group of 25 pregnant women. We mapped 35 TDF constructs onto survey questions. To evaluate stove use, we placed temperature sensors on wood and gas stoves and estimated fraction of stove use three times during pregnancy and twice during the first month after infant birth. Class attendance rates were above 92%. We discussed feasible ways to reduce HAP exposure, proper stove use, maintenance and safety. We addressed food preferences, ease of cooking and time savings through cooking demonstrations. In Phase 2, the COM-B framework revealed that other household members needed to be involved if the gas stove was to be consistently used. Social identity and empowerment were key in decisions about stove repairs and LPG tank refills. The seven intervention functions included training, education, persuasion, incentivization, modelling, enablement and environmental restructuring. Wood stove use dropped upon introduction of the

  18. Comparison of carbon monoxide poisonings originated from coal stove and natural gas and the evaluation of Neutrophil/Lymphocyte ratio

    Directory of Open Access Journals (Sweden)

    Yahya Kemal Günaydın

    2015-09-01

    Full Text Available Objective: The aim of our study is to present the epidemiologic, clinical, laboratory and prognosis differences between the coal stove origin poisoning and natural gas leakages. We also aimed to investigate relationship between the severity of clinical picture, prognosis, complications develop in CO poisoning with neutrophil/lymphocyte ratio (NLR at the initial admission. Methods: All the acute carbon monoxide cases who applied to Ankara Training and Research Hospital Emergency Medicine Clinic between October 2009 and April 2010 were included to this prospective study. CO poisoning diagnosis was made by the history of CO poisoning with carboxyl hemoglobin (COHb concentration is over 10%. 100 patients were included to our study. Results: Of the patients, 55(55% were poisoned from the coal-stove and 45(45% from natural gas leakage. The mean COHb level of the natural gas group was significantly high (p=0.01. The mean value of GCS of the natural gas group was significantly lower (p=0.018. The number of patients with indication for HBO therapy were 17 and 6 in the natural gas group and coal-stove group, respectively, being significantly higher in the natural gas group(p=0.001. There was no statistically significant relationship between the value of NLR and values of COHb, troponin, and GCS (p=0.872, p=0.470, and p=0.896, respectively. Conclusions: Carbon monoxide poisoning from natural gas leakage is more toxic than that from the coal-stove. There is no relationship between NLR at the time of presentation and the severity of clinical findings, prognosis and complications.

  19. ITDG stoves project - the story so far

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, S

    1981-12-01

    The ITDG stoves project was initiated in 1978 and funded by ODA in 1979 to assist overseas organizations in the design, testing and development of wood-burning stoves, as a contribution to the deforestation problem. Collaboration has been established with three organizations in Indonesia, Sri Lanka and India who have the resources to undertake testing, design and dissemination of stoves. The strategy and performance of the stove project to date is evaluated.

  20. A comparative analysis of liquefied petroleum gas (LPG) and kerosene related burns.

    Science.gov (United States)

    Ahuja, Rajeev B; Dash, Jayant K; Shrivastava, Prabhat

    2011-12-01

    Previous studies from our department reflected a trend of decreasing incidence of burns culminating from rising income levels, which were bringing about a change in the cooking fuel in many urban households [1,2]. These studies also indicated a changing scenario of increased incidence of burns from LPG mishaps [2]. In the absence of much information on the subject we felt it rather imperative to comparatively study the pattern of burn injuries resulting from LPG and kerosene. This prospective study was conducted on the clinical database of consecutive patients admitted with burns sustained due to LPG and kerosene from 1st January 2009 to 31st May 2010 (17 months). Data recorded for each patient included; age, gender, religion, socioeconomic status, literacy level, type of family unit, marital status, type of dwelling unit, mode of injury and its exact mechanism, place of incident, level of cooking stove, extent of burns (%TBSA), presence of features of inhalation injury, number of patients affected in a single mishap, size of LPG cylinder used, length of hospital stay and mortality. Of 731 flame burn patients in this study, 395 (54%) were due to kerosene burns and 200 (27.4%) from LPG mishaps. Significantly, the majority of injuries, in both the groups, occurred in lower middle class families living as nuclear units, in a single room dwelling, without a separate kitchen. Majority of LPG burns (70.5%, 141 patients) resulted from a gas leak and 25.5% were from cooking negligence (51 patients). 50.5% of kerosene accidents were from 'stove mishaps' and 49% due to cooking negligence. In all kerosene accidents the stove was kept at floor level but in LPG group 20.6% had the stove placed on a platform. There was a slight difference in mean TBSA burns; 51% in kerosene group compared to 41.5% TBSA in LPG group. There were nine episodes in LPG group in which there were more than three burn victims admitted for treatment. Very importantly, 77% patients in LPG group were from

  1. Gas fireplace contact burns in young children.

    Science.gov (United States)

    Zettel, Julie C; Khambalia, Amina; Barden, Wendy; Murthy, Trisha; Macarthur, Colin

    2004-01-01

    Contact burns from domestic appliances are common in young children. Recently, gas fireplaces have been recognized as a potential cause of contact burns in young children. We sought to quantify the frequency of gas fireplace contact burns in young children, to identify the etiology of contact, to describe the clinical presentation, and to describe clinical outcomes. Children with gas fireplace contact burn injuries presenting to The Hospital for Sick Children in Toronto (1999-2002) were identified using three data sources: the Canadian Hospitals Injury Reporting and Prevention Program Database, the Burn Unit Registry, and the Rehabilitation Services Database. Demographic, clinical, and outcomes data were collected on all children. During the 4-year study period, 27 children presented to the hospital because of a gas fireplace contact burn (approximately 9% of all contact burns). The median age of the children was 14 months (range, 8-36 months), with 16 boys (59%). Most children were burned in their own home. With regard to etiology, 10 children (37%) lost their balance near the fireplace, 2 (7%) walked too close to the glass front, and 8 (30%) touched the glass front out of curiosity. Almost half (44%) of the children burned the palms and digits of both hands. The median total burn surface area was 1% (range, 0.2-2.5%). In total, 30% of children were admitted to hospital, and 11% required skin grafts. All children had full wound closure after 4 to 43 days. Given the etiology of these burns (loss of balance or curiosity), passive prevention, such as barriers or changes in the composition of glass panels, may be the most effective approach to combat them.

  2. Effects of a liquefied petroleum gas stove intervention on pollutant exposure and adult cardiopulmonary outcomes (CHAP): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Fandiño-Del-Rio, Magdalena; Goodman, Dina; Kephart, Josiah L; Miele, Catherine H; Williams, Kendra N; Moazzami, Mitra; Fung, Elizabeth C; Koehler, Kirsten; Davila-Roman, Victor G; Lee, Kathryn A; Nangia, Saachi; Harvey, Steven A; Steenland, Kyle; Gonzales, Gustavo F; Checkley, William

    2017-11-03

    Biomass fuel smoke is a leading risk factor for the burden of disease worldwide. International campaigns are promoting the widespread adoption of liquefied petroleum gas (LPG) in resource-limited settings. However, it is unclear if the introduction and use of LPG stoves, in settings where biomass fuels are used daily, reduces pollution concentration exposure, improves health outcomes, or how cultural and social barriers influence the exclusive adoption of LPG stoves. We will conduct a randomized controlled, field intervention trial of LPG stoves and fuel distribution in rural Puno, Peru, in which we will enroll 180 female participants aged 25-64 years and follow them for 2 years. After enrollment, we will collect information on sociodemographic characteristics, household characteristics, and cooking practices. During the first year of the study, LPG stoves and fuel tanks will be delivered to the homes of 90 intervention participants. During the second year, participants in the intervention arm will keep their LPG stoves, but the gas supply will stop. Control participants will receive LPG stoves and vouchers to obtain free fuel from distributors at the beginning of the second year, but gas will not be delivered. Starting at baseline, we will collect longitudinal measurements of respiratory symptoms, pulmonary function, blood pressure, endothelial function, carotid artery intima-media thickness, 24-h dietary recalls, exhaled carbon monoxide, quality-of-life indicators, and stove-use behaviors. Environmental exposure assessments will occur six times over the 2-year follow-up period, consisting of 48-h personal exposure and kitchen concentration measurements of fine particulate matter and carbon monoxide, and 48-h kitchen concentrations of nitrogen dioxide for a subset of 100 participants. Findings from this study will allow us to better understand behavioral patterns, environmental exposures, and cardiovascular and pulmonary outcomes resulting from the adoption of

  3. Morphology and Chemical Composition of soot particles emitted by Wood-burning Cook-Stoves: a HRTEM, XPS and Elastic backscattering Studies.

    Science.gov (United States)

    Carabali-Sandoval, G. A., Sr.; Castro, T.; Peralta, O.; De la Cruz, W.; Días, J.; Amelines, O.; Rivera-Hernández, M.; Varela, A.; Muñoz-Muñoz, F.; Policroniades, R.; Murillo, G.; Moreno, E.

    2014-12-01

    The morphology, microstructure and the chemical composition on surface of soot particles were studied by using high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and elastic backscattering spectrometry. In order to obtain freshly soot particles emitted by home-made wood-burning cook stoves, copper grids for Transmission Electron Microscope (TEM) were placed on the last two of an 8-stages MOUDI cascade impactor. The analysis of HRTEM micrographs revealed the nanostructure and the particle size of soot particles. The XPS survey spectra show a large carbon peak around 285 eV and the oxygen signal at 533 eV. Some differences observed in the carbon/oxygen (C/O) ratio of the particles probably depend on the combustion process efficiency of each cook-stove analyzed. The C-1s XPS spectra show an asymmetric broad peak and other with low intensity that corresponds to sp2 and sp3hybridization, which were fitted with a convolution using Gaussian functions. Elastic backscattering technique allows a chemical elemental analysis of samples and confirms the presence of C, O and Si observed by XPS. Additionally, the morphological properties of soot aggregates were analyzed calculating the border-based fractal dimension (Df). Particles exhibit complex shapes with high values of Df. Also, real-time absorption (σabs) and scattering (σsct) coefficients of fine (with aerodynamic diameter < 2.5 µm) soot particles were measured. The trend in σabs and σsct indicate that the cooking process has two important combustion stages which varied in its flaming strength, being vigorous in the first stage and soft in the second one.

  4. Available exhaust gas power in different configurations in a pellet stove plant

    Energy Technology Data Exchange (ETDEWEB)

    Granada, E.; Patino, D.; Collazo, J.; Moran, J.C.; Porteiro, J. [Vigo University, E.T.S. Ingenieros Industriales, Lagoas-Marcosende, s/n, 36200 Vigo (Spain)

    2009-12-15

    With a view to finding the best configuration for a small cogeneration system based on the pellet combustion process, exergetic analysis was applied to a small pellet stove. The evaluation focuses on fume exergetic content for power generation purposes. Preheated air, secondary air, fume recirculation and basis configurations were studied. Global exergetic calculation was developed at these configurations based on experimental correlations of energy and emissions. The influences of the pellet feeding rate, excess air, secondary air and fume recirculation were studied. The results for multiple configurations are discussed and the best one is presented. Results show that CO emissions have a major influence on fume exergetic content, although if emissions diminish only a slight thermomechanical exergetic efficiency increase is expected. (author)

  5. Trace gas emissions from burning Florida wetlands

    Science.gov (United States)

    Cofer, Wesley R.; Levine, Joel S.; Winstead, Edward L.; Lebel, Peter J.; Koller, Albert M.; Hinkle, C. Ross

    1990-02-01

    Measurements of biomass burn-produced trace gases are presented that were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide (CO2) normalized emission ratios (ΔX/ΔCO2; V/V; where X is trace gas) for carbon monoxide (CO), hydrogen (H2), methane (CH4), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N2O) were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak (Quercus spp) and saw palmetto (Screnoa repens) were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. We believe that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes (both small-size fuels) burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly diminished.

  6. Wood burning

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, H

    1955-01-01

    Discussed are the use of wood as a fuel, the technique of wood combustion and the operation of wood-burning stoves for cooking and heating. In addition, there is a section which reviews the use of wood stoves in various countries and lists manufacturers of stoves, central heating furnaces and in some cases sawdust burners.

  7. Perceptions of the health effects of stoves in Mongolia.

    Science.gov (United States)

    Gordon, Joanna K; Emmel, Nick D; Manaseki, Semira; Chambers, Jacky

    2007-01-01

    The purpose of this paper is to evaluate the views of stove users in Ulaanbaatar, Mongolia on how stoves affect their health. In this paper focus groups were conducted with improved stove users; traditional stove users; and a mix of traditional and improved stove users. Individual interviews were also held with various types of stove users. A translator moderated all discussions with a questioning route. All discussions were fully transcribed and translated. The transcripts were analysed by identifying common themes in responses to form an emerging theory. The findings in the paper are that all stove users recognised respiratory symptoms caused by stove smoke and other health effects such as warmth, dirt and workload, which they perceived to be important. Stove users had a lack of knowledge about the diseases caused by the smoke. Public health was a key driver for the improved stove project, yet has been neglected in improved stove marketing. The study used in this paper was limited by the language barrier. Some of the meanings of participants' responses may have been lost in translation. This paper has highlighted the importance of the health effects of stove smoke to stove users. Uptake of the improved stoves has been low. Public health should be included in marketing strategies for improved stoves to increase their uptake. The paper shows that acute respiratory infections are a major cause of mortality world-wide. Indoor air pollution from burning biomass fuels in household stoves causes a significant proportion of respiratory infections. No qualitative research has been published exploring stove users' views on the health effects of stoves. This paper provides an insight into stove users' perceptions for those interested in people-centred approaches to tackling international health issues.

  8. Oxygen and coke oven gas (COG) consumption optimization at hot stove of Usiminas blast furnace 3; Otimizacao do consumo de oxigenio e GCO nos regeneradores do alto forno 3 da Usiminas

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Marco Antonio; Bastos, Moises Hofer [Usiminas, Ipatinga, MG (Brazil)

    2001-07-01

    This paper presents the model developed for determination of the correlation between oxygen and coke oven gas (COG) consumption in the hot stove at Usiminas blast furnace 3, the applicability and results obtained. (author)

  9. The use of wood burning cook stove in rural areas of Piaui-Brazil: a case study; O uso do fogao a lenha no semi-arido piauiense: um estudo de caso

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Albemerc Moura de; Martins, Gilberto; Trigoso, Federico B. Morante [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas

    2008-07-01

    The use of wood burning cook stoves is an ancient practice, still used nowadays, mainly in the rural areas of the developing countries. Despite its widespread use by millions of people around of the world, little attention has being paid to its study. In Piaui this reality is not different, since thousands of locals use this equipment as their main instrument for the preparation of their meals. The present article has the objective to study the use of wood stove in rural areas of Piaui. A questionnaire has been applied to ten homes in two villages, which permitted to obtain the main characteristics of the equipment used as well as the habits and wood consumption patterns. (author)

  10. Five-year epidemiology of liquefied petroleum gas-related burns.

    Science.gov (United States)

    Jin, Ronghua; Wu, Pan; Ho, Jon Kee; Wang, Xingang; Han, Chunmao

    2018-02-01

    2-84 days). Only 48 patients (24.62%) had medical insurance, while 124 patients (63.59%) had no medical insurance. The average hospital cost of the no medical insurance group was significantly higher (pLPG-related burns is alarming. This calls for rigorous precautions. Because gas leak was the main cause of LPG-related burns, any part of LPG stove system that shows signs of weathering should be replaced regularly. In addition, we also found that most of the LAMA patients were uninsured. Thus, comprehensive medical insurance should be involved early in the recovery process to assure a safe and adequate discharge. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  11. PIV Measurements of Gas Flow Fields from Burning End

    Science.gov (United States)

    Huang, Yifei; Wu, Junzhang; Zeng, Jingsong; Tang, Darong; Du, Liang

    2017-12-01

    To study the influence of cigarette gas on the environment, it is necessary to know the cigarette gas flow fields from burning end. By using PIV technique, in order to reveal velocity characteristics of gas flow fields, the velocities of cigarette gas flow fields was analyzed with different stepping motor frequencies corresponding to suction pressures, and the trend of velocity has been given with image fitting. The results shows that the velocities of the burning end increased with suction pressures; Between velocities of the burning end and suction pressures, the relations present polynomial rule; The cigarette gas diffusion in combustion process is faster than in the smoldering process.

  12. Evaluation of burn injuries related to liquefied petroleum gas.

    Science.gov (United States)

    Tarim, Mehmet Akin

    2014-01-01

    Liquefied petroleum gas (LPG) is a fuel that is widely used for domestic, agricultural, and industrial purposes. LPG is also commonly used in restaurants, industries, and cars; however, the home continues to be the main site for accidents. In Turkey, the increased usage of LPG as a cooking or heating fuel has resulted in many burn injuries from LPG mishaps. Between January 2000 and June 2011, 56 LPG-burned patients were compared with 112 flame-burned patients. There were no significant differences with respect to the mean age, sex, hospitalization time, and mortality in both groups. In the LPG-caused burn cases, 41 burns (73.2%) occurred at home, seven (12.5) were work-related mishaps, and eight (14.3) were associated with car accidents. The majority of the LPG burns (82%, 46 patients) resulted from a gas leak, and 18% of them were related to the failure to close LPG tubes in the patients' kitchens (10 patients). Burns to the face and neck (82 vs 67%, P = .039) and upper (62 vs 23%, P = .000) and lower (70 vs 45%, P = .002) extremities were significantly higher in LPG-caused burn cases than flame-burned cases. General awareness regarding the risk of LPG and first aid for burns appears to be lacking. The LPG delivery system should be standardized throughout countries that widely use LPG.

  13. Trace gas emissions from burning Florida wetlands

    Science.gov (United States)

    Cofer, Wesley R., III; Levine, Joel S.; Lebel, Peter J.; Winstead, Edward L.; Koller, Albert M., Jr.; Hinkle, C. Ross

    1990-01-01

    Measurements of biomass burn-produced trace gases were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide normalized emission ratios for carbon monoxide, hydrogen, methane, total nonmethane hydrocarbons, and nitrous oxide were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak and saw palmetto were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. It is believed that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly deminished.

  14. Smoke emissions from a catalytic wood stove

    International Nuclear Information System (INIS)

    Cowburn, D.A.; Stephens, N.P.J.

    1994-01-01

    The work reported here was concerned with testing a catalytic wood burning stove (roomheater) following the most applicable UK procedures. The identical stove has also been tested in several other nations to their individual procedures. The results will be submitted to the International Energy Agency (IEA) such that appropriate comparisons can be made. The results comprised: burning rate; an indicative appliance efficiency; heat output; carbon dioxide emissions; carbon monoxide emissions; and smoke emissions. These results were determined with the appliance at three nominal burning rates (high, medium and low). Comparing the results with those obtained in other countries indicates good agreement except when the appliance was operated at low burning rates, under which conditions the UK results indicate significantly worse smoke emissions than those measured by other researchers. (author)

  15. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter Emitted from Burning Kerosene, Liquid Petroleum Gas, and Wood Fuels in Household Cookstoves

    Science.gov (United States)

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10%...

  16. Wood fuel use in the traditional cooking stoves in the rural floodplain areas of Bangladesh: A socio-environmental perspective

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Md. Danesh [Department of Forest Science, Kookmin University, Seoul (Korea)]|[Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong 4331 (Bangladesh); Al Rashid, Harun [Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong 4331 (Bangladesh); Shin, Man Yong [Department of Forest Science, Kookmin University, Seoul (Korea)

    2009-01-15

    A study was conducted, using a multistage simple random sampling design, to determine the structural characteristics of the traditional cooking stoves, amount of wood fuel consumed in the rural floodplain areas in Bangladesh, and also to figure out the socio-economic and environmental consequences of wood fuel usage in the traditional cooking stove. The study showed that family size, income, amount cooked and burning hours significantly affected the amount of wood fuel used per family per year. Taking into account different family sizes, the study observed that 4.24 tonne fuelwood were consumed per family per year. The study showed that 42% of families used only biomass fuel, 5% used liquefied petroleum gas (LPG) and 53% used kerosene along with biomass fuels. The main source of biomass fuel was homestead forests (40%). It has been figured out that the incomplete combustion of biomass in the traditional cooking stove poses severe epidemiological consequences to human health and contributes to global warming. The study also showed that 83% of the respondents would prefer improved cooking stoves over traditional cooking stoves. (author)

  17. Wood fuel use in the traditional cooking stoves in the rural floodplain areas of Bangladesh: A socio-environmental perspective

    International Nuclear Information System (INIS)

    Miah, Md. Danesh; Al Rashid, Harun; Shin, Man Yong

    2009-01-01

    A study was conducted, using a multistage simple random sampling design, to determine the structural characteristics of the traditional cooking stoves, amount of wood fuel consumed in the rural floodplain areas in Bangladesh, and also to figure out the socio-economic and environmental consequences of wood fuel usage in the traditional cooking stove. The study showed that family size, income, amount cooked and burning hours significantly affected the amount of wood fuel used per family per year. Taking into account different family sizes, the study observed that 4.24 tonne fuelwood were consumed per family per year. The study showed that 42% of families used only biomass fuel, 5% used liquefied petroleum gas (LPG) and 53% used kerosene along with biomass fuels. The main source of biomass fuel was homestead forests (40%). It has been figured out that the incomplete combustion of biomass in the traditional cooking stove poses severe epidemiological consequences to human health and contributes to global warming. The study also showed that 83% of the respondents would prefer improved cooking stoves over traditional cooking stoves. (author)

  18. The gas fireplace: a new burn hazard in the home.

    Science.gov (United States)

    Becker, L; Cartotto, R

    1999-01-01

    Gas fireplaces have become popular in recent years. This article presents the first reported case of a burn injury from contact with the glass front of a gas fireplace. An investigation of the surface temperature of the glass fronts of gas fireplaces was undertaken to clarify the risks posed by these units. Surface temperature measurements of the glass fronts of 3 common gas fireplace models were obtained using a thermocouple probe. Glass temperatures reached 200 degrees C within 6.5 minutes of ignition, climbing to 245 degrees C at 14 minutes after ignition. Glass temperature continued to rise beyond this point, but it could not be monitored because the adhesives securing the thermocouple probe melted. Glass temperatures of 50 degrees C were recorded at 30 minutes after the unit was shut off. The temperatures of the glass fronts of glass fireplaces are sufficient to cause cutaneous burns within seconds of contact both while the fireplace is in use and up to one half hour after it has been turned off. Current industry safety standards are not directed at the prevention of contact burns. We recommend that (1) mechanical guards be installed to create a barrier in front of the glass; (2) strict warning labels be applied to the units and ignition switches; and (3) burn prevention information be distributed with the owner's manual for these products.

  19. Development of thermoacoustic engine operating by waste heat from cooking stove

    Science.gov (United States)

    Chen, B. M.; Abakr, Y. A.; Riley, P. H.; Hann, D. B.

    2012-06-01

    There are about 1.5 billion people worldwide use biomass as their primary form of energy in household cooking[1]. They do not have access to electricity, and are too remote to benefit from grid electrical supply. In many rural communities, stoves are made without technical advancements, mostly using open fires cooking stoves which have been proven to be extremely low efficiency, and about 93% of the energy generated is lost during cooking. The cooking is done inside a dwelling and creates significant health hazard to the family members and pollution to environment. SCORE (www.score.uk.com) is an international collaboration research project to design and build a low-cost, high efficiency woodstove that uses about half amount of the wood of an open wood fire, and uses the waste heat of the stove to power a thermoacoustic engine (TAE) to produce electricity for applications such as LED lighting, charging mobile phones or charging a 12V battery. This paper reviews on the development of two types of the thermoacoustic engine powered by waste heat from cooking stove which is either using Propane gas or burning of wood as a cooking energy to produce an acceptable amount of electricity for the use of rural communities.

  20. Liquefied petroleum gas cold burn sustained while refueling a car.

    Science.gov (United States)

    Scarr, Bronwyn; Mitra, Biswadev; Maini, Amit; Cleland, Heather

    2010-02-01

    There have been few cases of cold burn related to the exposure of liquid petroleum gas (LPG). We present the case of a young woman exposed to LPG while refueling her car who sustained partial thickness burns to the dorsum of her hand. Contact with LPG leaking from a pressurized system causes tissue damage because of cold injury. Immediate management of LPG is extrapolated from the management of frostbite. The increasing use of LPG mandates an awareness of prevention strategies and management principles in the setting of adverse events.

  1. Efficiency tests on the pyrolysis gasifier stove Peko Pe

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts

    1996-01-01

    This paper presents results from water boiling tests on the pyrolysis gasifier stove Peko Pe, which has been developed by the Norwegian Paal Wendelbo. The stove efficiency determined vary between 21 and 29% when burning dry Danish woodchips (10% moisture) with an estimated caloric value of 16 MJ...... the water content in the grass. In Adjumani refugee camp it was furthermore found that the stove was able to provide sufficient energy from solid combustion, after the pyrolysis was stopped, to boil water for additional 25-30 minutes with lid. This effect was not seen in the tests on woodchips in Denmark...

  2. Investigation of time-resolved atmospheric conditions and indoor/outdoor particulate matter concentrations in homes with gas and biomass cook stoves in Nogales, Sonora, Mexico.

    Science.gov (United States)

    Holmes, Heather A; Pardyjak, Eric R

    2014-07-01

    This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States-Mexico border During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14-30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 microg m(-3) and biomass stoves 163 to 504 microg m(-1). Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 microg m(-3)). The former is evident in the median and range of daytime PM values (median PM3: 250 microg m(-3), maximum: 9411 microg m(-3)), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 microg m(-3), maximum: 10,846 microg m(-3)). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 microg m(-3)). Implications: Regulatory air quality standards are based on outdoor

  3. Performance evaluation of kerosene stoves

    Energy Technology Data Exchange (ETDEWEB)

    Malathy, D; Murugesan, V; Shanmugam, K; Swaminathan, K R

    1984-07-01

    This article compares the eight types of stoves available in the market in Coimbatore area. The authors have discussed about the design parameters which affect the fuel efficiencies of the kerosene stoves.

  4. Biomass stoves in dwellings

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo

    and analyzed in this session. Experimental results regarding the performance of biomass combustion stoves and the effects of real-life practices in terms of thermal efficiency, particulate and gaseous emissions will be addressed. This research is based on the development of a new testing approach that combines...... laboratory and field measurements established in the context of the implications of the upcoming eco-design directive. The communication will cover technical aspects concerning the operating performance of different types of biomass stoves and building envelopes, in order to map the ongoing opportunities...

  5. Survey of usage patterns for domestic stoves/fireplaces. Prestudy

    International Nuclear Information System (INIS)

    Cooper, David; Joeborn, Inger; Sjoedin, Aake; Munkhammar, Inger; Gustavsson, Lennart

    2005-02-01

    We have investigated the use of domestic wood burning for wood stoves and open fireplaces. The results from a closer examination of existing national energy statistics for residential heating has enabled a division of the average consumption of firewood for each house by the category 'fireplace for open fire' and 'tiled stove/heating stove/fireplace for wood'. The estimation of emissions can therefore be improved by differentiating emission factors for different wood stoves and open fireplaces. Today, only one emission factor is used. An insight into general firing procedures, wood storage routines etc. was investigated using a questionnaire for the Teleborg area of the city Vaexjoe. The results of this study provide a foundation for further work, which will subsequently enable improvements for emission inventories on small-scale biomass combustion from household appliances

  6. Impact of primary and secondary air supply intensity in stove on emissions of size-segregated particulate matter and carbonaceous aerosols from apple tree wood burning

    Science.gov (United States)

    Sun, Jian; Shen, Zhenxing; Zhang, Leiming; Zhang, Qian; Lei, Yali; Cao, Junji; Huang, Yu; Liu, Suixin; Zheng, Chunli; Xu, Hongmei; Liu, Hongxia; Pan, Hua; Liu, Pingping; Zhang, Renjian

    2018-04-01

    In order to assess emission factors (EF) more accurately from household biomass burning, a series of laboratory-controlled apple tree wood burning tests were conducted to measure the EFs of size-segregated particulate matter (PM) and carbonaceous aerosols. The controlled burning experiments were conducted with designed primary air (PA) and secondary air (SA) supply intensity. An optimum value of 7 m3·h- 1 was found for SA, resulting the highest modified combustion efficiency (92.4 ± 2.5%) as well as the lowest EFs of PM2.5 (0.13 ± 0.01 g·MJ- 1), OC (0.04 ± 0.03 g·MJ- 1) and EC (0.03 ± 0.01 g·MJ- 1). SA values of 7 and 10 m3·h- 1 resulted the lowest EFs for all the different PM sizes. In a test with PA of 6 m3·h- 1 and SA of 7 m3·h- 1, very low EFs were observed for OC1 (8.2%), OC2 (11.2%) and especially OP (Pyrolyzed OC) (0%, not detected), indicating nearly complete combustion under this air supply condition. Besides SA, higher PA was proved to have positive effects on PM and carbonaceous fraction emission reduction. For example, with a fixed SA of 1.5 m3·h- 1, EFs of PM2.5 decreased from 0.64 to 0.27 g·MJ- 1 when PA increased from 6 to 15 m3·h- 1 (P < 0.05). Similar reductions were also observed in EFs of OC, EC and size segregated PM.

  7. Air extraction in gas turbines burning coal-derived gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

    1993-11-01

    In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

  8. The development of a thermoelectric power generator dedicated to stove-fireplaces with heat accumulation systems

    International Nuclear Information System (INIS)

    Sornek, Krzysztof; Filipowicz, Mariusz; Rzepka, Kamila

    2016-01-01

    Highlights: • Application of thermoelectric generators in the stove-fireplace with accumulation. • Construction of the thermoelectric generator is limited by the heat accumulation. • Variants of the heat exchanger’s construction are discussed. • The control method is related on velocity of flue gas and water cooling. • The power limit of 30 W for self-sufficient operation is sufficient. - Abstract: A significant part of the world’s population (about 40%) cooks their meals and provides heating for their homes using wood-burning heating devices. Due to the relatively low cost of fuel and their aesthetic design, solid fuel stoves capable of heat accumulation are convenient and common. The use of dedicated small-scale power generators provides also additional benefits. This paper presents the results of a study conducted to verify the possibility of generating power using stove-fireplaces with heat accumulation systems. In such units, the temperature of the flue gas should be kept at a certain level for the purposes of storing heat, which results from certain limitations of the thermoelectric generators. To verify the possibility of applying thermoelectric modules in such heating devices, a dedicated system with thermoelectric generators was selected from among various microcogeneration systems and implemented. Three types of heat exchangers were studied and the most efficient unit was selected for further testing. Two types of generators, with maximum operating temperatures of 320 and 175 °C, were compared. Subsequently, the characteristics of the latter were determined. The conducted tests allowed to determine the performance and the total efficiency of the generators that were used. It has been demonstrated that the maximum power of the generator would not exceed ca. 30 W e and that there is no economic justification for such a device. However, providing a self-powered and self-sufficient operation of stove-fireplaces with heat accumulation systems

  9. Improved stoves in India: A study of sustainable business models

    International Nuclear Information System (INIS)

    Shrimali, Gireesh; Slaski, Xander; Thurber, Mark C.; Zerriffi, Hisham

    2011-01-01

    Burning of biomass for cooking is associated with health problems and climate change impacts. Many previous efforts to disseminate improved stoves – primarily by governments and NGOs – have not been successful. Based on interviews with 12 organizations selling improved biomass stoves, we assess the results to date and future prospects of commercial stove operations in India. Specifically, we consider how the ability of these businesses to achieve scale and become self-sustaining has been influenced by six elements of their respective business models: design, customers targeted, financing, marketing, channel strategy, and organizational characteristics. The two companies with the most stoves in the field shared in common generous enterprise financing, a sophisticated approach to developing a sales channel, and many person-years of management experience in marketing and operations. And yet the financial sustainability of improved stove sales to households remains far from assured. The only company in our sample with demonstrated profitability is a family-owned business selling to commercial rather than household customers. The stove sales leader is itself now turning to the commercial segment to maintain flagging cash flow, casting doubt on the likelihood of large positive impacts on health from sales to households in the near term. - Highlights: ► Business models to sell improved stoves can be viable in India. ► Commercial stove efforts may not be able to deliver all the benefits hoped for. ► The government could play a useful role if policies are targeted and well thought-out. ► Develops models for that hard-to-define entity mixing business and charity.

  10. Implications of changes in household stoves and fuel use in China

    International Nuclear Information System (INIS)

    Edwards, Rufus D.; Smith, Kirk R.; Zhang Junfeng; Ma Yuqing

    2004-01-01

    gas emissions. Not all the improved stoves resulted in benefits on all levels, however, and it is possible, therefore, to implement policies with the best intentions for alleviating the burden of collecting fuel, which may actually, result in increased exposure of the population to health damaging pollutants and increased global warming contributions. In addition, the difference between global warming commitments for renewable and non-renewable harvesting of biomass fuels was of such magnitude, especially compared to differences between stove types, that more detailed accounting of the renewable nature of the harvesting of biomass fuels is essential and has profound implications for global accounting of carbon emissions and credit through the clean development mechanism. Clearly, however, evaluation of biomass burning in residential stoves requires a more holistic, or full fuel cycle approach that considers both the production of the fuel wood, the burning of the fuel, sequestration of gases during the next growing season and the environmental degradation and shift in fuels that may occur due to mining of the resource

  11. Experimental and computational studies on a gasifier based stove

    International Nuclear Information System (INIS)

    Varunkumar, S.; Rajan, N.K.S.; Mukunda, H.S.

    2012-01-01

    Highlights: ► A simple method to calculate the fraction of HHC was devised. ► η g for stove is same as that of a downdraft gasifier. ► Gas from stove contains 5.5% of CH 4 equivalent of HHC. ► Effect of vessel size on utilization efficiency brought out clearly. ► Contribution of radiative heat transfer from char bed to efficiency is 6%. - Abstract: The work reported here is concerned with a detailed thermochemical evaluation of the flaming mode behaviour of a gasifier based stove. Determination of the gas composition over the fuel bed, surface and gas temperatures in the gasification process constitute principal experimental features. A simple atomic balance for the gasification reaction combined with the gas composition from the experiments is used to determine the CH 4 equivalent of higher hydrocarbons and the gasification efficiency (η g ). The components of utilization efficiency, namely, gasification–combustion and heat transfer are explored. Reactive flow computational studies using the measured gas composition over the fuel bed are used to simulate the thermochemical flow field and heat transfer to the vessel; hither-to-ignored vessel size effects in the extraction of heat from the stove are established clearly. The overall flaming mode efficiency of the stove is 50–54%; the convective and radiative components of heat transfer are established to be 45–47 and 5–7% respectively. The efficiency estimates from reacting computational fluid dynamics (RCFD) compare well with experiments.

  12. Burns

    Science.gov (United States)

    A burn is damage to your body's tissues caused by heat, chemicals, electricity, sunlight, or radiation. Scalds from hot ... and gases are the most common causes of burns. Another kind is an inhalation injury, caused by ...

  13. Improved biomass Injera stove- Mirte

    International Nuclear Information System (INIS)

    Bess, M.; Kenna, J.

    1994-01-01

    The status report of 1994 - 1995 shows as the need to design an improved biomass stove for Injera was recognized. The marketing began in mid-1994 with a Mirte which showed even higher efficiencies in laboratory, using 50 percent less woody biomass than the open fire. By early 1994 several hundreds Mirte stoves had been sold in Addis Ababa at non-subsidized prices. The Mirte is currently produced on a large-scale by building materials companies. 3 figs. 1 tab

  14. Measurement of laminar burning velocities and Markstein lengths of diluted hydrogen-enriched natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Haiyan; Jiao, Qi; Huang, Zuohua; Jiang, Deming [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Eng., Xi' an Jiaotong University (China)

    2009-01-15

    The laminar flame characteristics of natural gas-hydrogen-air-diluent gas (nitrogen/CO{sub 2}) mixtures were studied in a constant volume combustion bomb at various diluent ratios, hydrogen fractions and equivalence ratios. Both unstretched laminar burning velocity and Markstein length were obtained. The results showed that hydrogen fraction, diluent ratio and equivalence ratio have combined influence on laminar burning velocity and flame instability. The unstretched laminar burning velocity is reduced at a rate that is increased with the increase of the diluent ratio. The reduction effect of CO{sub 2} diluent gas is stronger than that of nitrogen diluent gas. Hydrogen-enriched natural gas with high hydrogen fraction can tolerate more diluent gas than that with low hydrogen fraction. Markstein length can either increase or decrease with the increase of the diluent ratio, depending on the hydrogen fraction of the fuel. (author)

  15. Policy trade-offs between climate mitigation and clean cook-stove access in South Asia

    OpenAIRE

    Cameron, C.; Pachauri, S.; Rao, N.; McCollum, D.; Rogelj, J.; Riahi, K.

    2016-01-01

    Household air pollution from traditional cook stoves presents a greater health hazard than any other environmental factor. Despite government efforts to support clean-burning cooking fuels, over 700 million people in South Asia could still rely on traditional stoves in 2030. This number could rise if climate change mitigation efforts increase energy costs. Here we quantify the costs of support policies to make clean cooking affordable to all South Asians under four increasingly stringent c...

  16. Coal use, stove improvement, and adult pneumonia mortality in Xuanwei, China: a retrospective cohort study.

    NARCIS (Netherlands)

    Shen, M.; Chapman, R.S.; Vermeulen, R.C.H.|info:eu-repo/dai/nl/216532620; Tian, L.; Zheng, T.; Chen, B.E.; Engels, E.A.; He, X.; Blair, A.; Lan, Q.

    2009-01-01

    BACKGROUND: In Xuanwei County, China, unvented indoor coal burning is strongly associated with increased risk of lung cancer and chronic obstructive pulmonary disease. However, the impact of coal burning and stove improvement on risk of pneumonia is not clear. METHODS: We conducted a retrospective

  17. Improved Biomass Cooking Stoves and Improved Stove Emission Equipment

    Energy Technology Data Exchange (ETDEWEB)

    HATFIELD, MICHAEL; Still, Dean

    2013-04-15

    In developing countries, there is an urgent need for access to safe, efficient, and more affordable cooking technologies. Nearly 2.5 billion people currently use an open fire or traditional cookstove to prepare their meals, and recent models predict that use of biomass for cooking will continue to be the dominant energy use in rural, resource-poor households through 2030. For these families, cooking poses serious risks to health, safety, and income. An alarming 4 million people, primarily women and children, die prematurely each year from indoor and outdoor exposure to the harmful emissions released by solid fuel combustion. Use of traditional stoves can also have a significant impact on deforestation and climate change. This dire situation creates a critical need for cookstoves that significantly and verifiably reduce fuel use and emissions in order to reach protective levels for human health and the environment. Additionally, advances in the scientific equipment needed to measure and monitor stove fuel use and emissions have not kept pace with the significant need within the industry. While several testing centers in the developed world may have hundred thousand-dollar emissions testing systems, organizations in the field have had little more than a thermometer, a scale, and subjective observations to quantify the performance of stove designs. There is an urgent need for easy-to-use, inexpensive, accurate, and robust stove testing equipment for use by laboratory and field researchers around the world. ASAT and their research partner, Aprovecho Research Center (ARC), have over thirty years of experience addressing these two needs, improved cookstoves and emissions monitoring equipment, with expertise spanning the full spectrum of development from conceptual design to product manufacturing and dissemination. This includes: 1) research, design, and verification of clean biomass cookstove technology and emissions monitoring equipment; 2) mass production of quality

  18. Dioxin emissions from coal combustion in domestic stove: Formation in the chimney and coal chlorine content influence

    Directory of Open Access Journals (Sweden)

    Paradiz Bostjan

    2015-01-01

    Full Text Available Combustion experiments conducted in domestic stove burning hard coal demonstrated a predominant influence of the coal chlorine content on the PCDD/F emissions, together with a pronounced effect of the flue gas temperature. PCDD/F concentrations of over 100 ng TEQ/m3, three orders of magnitude higher than in a modern waste incinerator, were measured in the flue gases of a domestic stove when combusting high chlorine coal (0.31 %. The PCDD/F concentrations in the flue gases dropped below 0,5 ng TEQ/m3, when low chlorine coal (0.07 % was used. When low chlorine coal was impregnated with NaCl to obtain 0.38 % chlorine content, the emission of the PCDD/Fs increased by two orders of magnitude. Pronounced nonlinearity of the PCDD/F concentrations related to chlorine content in the coal was observed. The combustion of the high chlorine coal yielded PCDD/F concentrations in flue gases one order of magnitude lower in a fan cooled chimney when compared to an insulated one, thus indicating formation in the chimney. The influence of flue gas temperature on the PCDD/F emissions was less pronounced when burning low chlorine coal. The predominant pathway of the PCDD/F emissions is via flue gases, 99 % of the TEQ in the case of the high chlorine coal for insulated chimney.

  19. Inhalation exposure and risk of polycyclic aromatic hydrocarbons (PAHs) among the rural population adopting wood gasifier stoves compared to different fuel-stove users

    Science.gov (United States)

    Lin, Nan; Chen, Yuanchen; Du, Wei; Shen, Guofeng; Zhu, Xi; Huang, Tianbo; Wang, Xilong; Cheng, Hefa; Liu, Junfeng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy Y.; Xing, Baoshan; Tao, Shu

    2016-12-01

    Polycyclic aromatica hydrocarbons (PAHs) are a group of compounds with carcinogenic potentials and residential solid fuel combustion is one major source of PAHs in most developing countries. Replacement of traditional stoves with improved ones is believed to be a practical approach to reduce pollutant emissions, however, field assessments on the performance and consequent impacts on air quality and human health after adopting improved stoves are rare. The study is the first time to quantify inhalation exposure to PAHs among the residents who adopted wood gasifier stoves. The results were compared to those still burning coals in the region and compared to exposure levels for different fuel/stove users in literature. The results showed that the PAHs exposure levels for the wood gasifier stove users were significantly lower than the values for those using traditional wood stoves reported in literature, and the daily exposure concentrations of BaPeq (Benzo[a]pyrene equivalent concentration) can be reduced by 48%-91% if traditional wood stoves were replaced by wood gasifier stoves. The corresponding Incremental Lifetime Cancer Risk (ILCR) decreased approximately four times from 1.94 × 10-4 to 5.17 × 10-5. The average concentration of the total 26 PAHs for the wood users was 1091 ± 722 ng/m3, which was comparable to 1060 ± 927 ng/m3 for those using anthracite coals, but the composition profiles were considerably different. The average BaPeq were 116 and 25.8 ng/m3 for the wood and coal users, respectively, and the corresponding ILCR of the anthracite coal users was 1.69 × 10-5, which was nearly one third of those using the wood gasifier stoves. The wood users exposed to not only high levels of high molecular weight PAHs, but relatively high fractions of particulate phase PAHs in small particles compared to the coal users, resulting in high exposure risks.

  20. The Impact of Legislation on Gas Can- and Mattress-Related Burn Injuries.

    Science.gov (United States)

    Kellogg, Levi; Butcher, Brandon; Peek-Asa, Corinne; Wibbenmeyer, Lucy

    2018-01-01

    Burn prevention program success requires thorough evaluation of intervention outcomes. The impact of 2 engineering-specific burn prevention regulations, the Children's Gasoline Burn Prevention Act and the Standard for the Flammability of Mattress Sets, will be assessed. Records from 1997 to 2015 within the Consumer Product Safety Commission's (CPSC) National Electronic Injury Surveillance System (NEISS) were reviewed. After identifying gas can- and mattress-involved burn injuries, injury incidence was estimated by utilizing survey sampling weights associated with each record. Logistic regression, incorporating estimated injury incidence and adjusting for gender and age, was performed to test for change in injury risk following these regulations. Within NEISS, there were 493 burns involving gas cans, yielding an estimated 19,339 injuries (95% confidence interval [CI], 15,781-22,896) during the 19-year study period. The odds of a gas can burn injury after legislation decreased by 67% for children younger than 5 years (odds ratio [OR], 0.33; 95% CI, 0.16-0.66; P = 0.0018). There was no significant change in risk for persons 5 years and older (OR, 1.07; 95% CI, 0.80-1.41; P = 0.66). During the same time, there were 219 NEISS burns involving mattresses, yielding an estimated 6864 injuries (95% CI, 5071-8658). The odds of a mattress burn injury following legislation enactment decreased by 31% for all ages (OR, 0.69; 95% CI, 0.51-0.94; P = 0.02). Both regulations decreased the odds of injury in their target populations. This study demonstrates that passive interventions involving engineering standards remain a powerful tool for burn prevention and should be the focus of future efforts to improve burn care.

  1. [Emission factors and PM chemical composition study of biomass burning in the Yangtze River Delta region].

    Science.gov (United States)

    Tang, Xi-Bin; Huang, Cheng; Lou, Sheng-Rong; Qiao, Li-Ping; Wang, Hong-Li; Zhou, Min; Chen, Ming-hua; Chen, Chang-Hong; Wang, Qian; Li, Gui-Ling; Li, Li; Huang, Hai-Ying; Zhang, Gang-Feng

    2014-05-01

    The emission characteristics of five typical crops, including wheat straw, rice straw, oil rape straw, soybean straw and fuel wood, were investigated to explore the gas and particulates emission of typical biomass burning in Yangzi-River-Delta area. The straws were tested both by burning in stove and by burning in the farm with a self-developed measurement system as open burning sources. Both gas and fine particle pollutants were measured in this study as well as the chemical composition of fine particles. The results showed that the average emission factors of CO, NO, and PM2,5 in open farm burning were 28.7 g.kg -1, 1.2 g.kg-1 and 2.65 g kg-1 , respectively. Due to insufficient burning in the low oxygen level environment, the emission factors of stove burning were higher than those of open farm burning, which were 81.9 g kg-1, 2. 1 g.kg -1 and 8.5 gkg -1 , respectively. Oil rape straw had the highest emission factors in all tested straws samples. Carbonaceous matter, including organic carbon(OC) and element carbon(EC) , was the foremost component of PM2, 5from biomass burning. The average mass fractions of OC and EC were (38.92 +/- 13.93)% and (5.66 +/-1.54)% by open farm burning and (26.37 +/- 10. 14)% and (18.97 +/- 10.76)% by stove burning. Water soluble ions such as Cl-and K+ had a large contribution. The average mass fractions of CI- and K+ were (13.27 +/-6. 82)% and (12.41 +/- 3.02)% by open farm burning, and were (16.25 +/- 9.34)% and (13.62 +/- 7.91)% by stove burning. The K +/OC values of particles from wheat straw, rice straw, oil rape straw and soybean straw by open farm burning were 0. 30, 0. 52, 0. 49 and 0. 15, respectively, which can be used to evaluate the influence on the regional air quality in YRD area from biomass burning and provide direct evidence for source apportionment.

  2. Stoichiometric and lean burn heavy-duty gas engines: a dilemma between emissions and fuel consumption?

    NARCIS (Netherlands)

    Steen, M. van der; Rijke, J. de; Seppen, J.J.

    1996-01-01

    This paper compares stoichiometric with lean burn technology for heavy-duty gas engines (natural gas and LPG) and demonstrates that there is a future for both engine concepts on the multilateral global market. Emission limits in Europe as expected in the near future will facilitate both engine

  3. Household energy isn't all stoves

    NARCIS (Netherlands)

    Clancy, Joy S.

    1998-01-01

    When people talk about 'household energy', most people automatically think of stoves. A lot of attention has been paid to improving stoves to make them more energy efficient and to reduce their pollution. This is one side of the 'stoves' approach, whilst others look at the 'supply' side of the

  4. Influence of the altitude on the burning velocity of the natural gas

    International Nuclear Information System (INIS)

    Arrieta, Andres Amell; Garcia Posada, Jorge Mario; Quilindo Valencia, Arvey; Henao Vallejo, Diego Alberto

    2004-01-01

    By the increasing use of natural gas in cities of Latin America located to high altitude, is necessary to study the effect of the altitude on the combustion, for example the burning velocity. This work is an experimental study of as it changes to the burning velocity with the altitude, being made test in sites with altitude of 40, 550, 1.020, 1.550, 2.040 and 2.550 meters. The result was that the variations are slight

  5. Adoption and use of a semi-gasifier cooking and water heating stove and fuel intervention in the Tibetan Plateau, China

    Science.gov (United States)

    Clark, S.; Carter, E.; Shan, M.; Ni, K.; Niu, H.; Tseng, J. T. W.; Pattanayak, S. K.; Jeuland, M.; Schauer, J. J.; Ezzati, M.; Wiedinmyer, C.; Yang, X.; Baumgartner, J.

    2017-07-01

    Improved cookstoves and fuels, such as advanced gasifier stoves, carry the promise of improving health outcomes, preserving local environments, and reducing climate-forcing air pollutants. However, low adoption and use of these stoves in many settings has limited their benefits. We aimed to improve the understanding of improved stove use by describing the patterns and predictors of adoption of a semi-gasifier stove and processed biomass fuel intervention in southwestern China. Of 113 intervention homes interviewed, 79% of homes tried the stove, and the majority of these (92%) continued using it 5-10 months later. One to five months after intervention, the average proportion of days that the semi-gasifier stove was in use was modest (40.4% [95% CI 34.3-46.6]), and further declined over 13 months. Homes that received the stove in the first batch used it more frequently (67.2% [95% CI 42.1-92.3] days in use) than homes that received it in the second batch (29.3% [95% CI 13.8-44.5] days in use), likely because of stove quality and user training. Household stove use was positively associated with reported cooking needs and negatively associated with age of the main cook, household socioeconomic status, and the availability of substitute cleaner-burning stoves. Our results show that even a carefully engineered, multi-purpose semi-gasifier stove and fuel intervention contributed modestly to overall household energy use in rural China.

  6. Emissions from burning of softwood pellets

    International Nuclear Information System (INIS)

    Olsson, Maria; Kjaellstrand, Jennica

    2004-01-01

    Softwood pellets from three different Swedish manufacturers were burnt in laboratory scale to determine compounds emitted. The emissions were sampled on Tenax cartridges and assessed by gas chromatography and mass spectrometry. No large differences in the emissions from pellets from different manufacturers were observed. The major primary semi-volatile compounds released during flaming burning were 2-methoxyphenols from lignin. The methoxyphenols are of interest due to their antioxidant effect, which may counteract health hazards of aromatic hydrocarbons. Glowing combustion released the carcinogenic benzene as the predominant aromatic compound. However, the benzene emissions were lower than from flaming burning. To relate the results from the laboratory burnings to emissions from pellet burners and pellet stoves, chimney emissions were determined for different burning equipments. The pellet burner emitted benzene as the major aromatic compound, whereas the stove and boiler emitted phenolic antioxidants together with benzene. As the demand for pellets increases, different biomass wastes will be considered as raw materials. Ecological aspects and pollution hazards indicate that wood pellets should be used primarily for residential heating, whereas controlled large-scale combustion should be preferred for pellets made of most other types of biomass waste. (Author)

  7. America: AGA [American Gas Association] initiative aims to boost gas demand

    International Nuclear Information System (INIS)

    Fraser, K.M.

    1992-01-01

    This article focuses on the aim of the American Gas Association to increase natural gas demand in the key areas of gas electric generation, natural gas vehicles, gas cooling, and conversion of oil burning facilities, electric water heaters and household appliances such as space heating, stoves, washers and lighting. The need to improve the reliability of natural gas supplies is discussed. It is anticipated that natural gas will not replace coal as the main energy source for power generation, but that it will help utilities to meet environmental regulations. (UK)

  8. Laboratory Measurements of Biomass Cook-stove Emissions Aged in an Oxidation Flow Reactor: Influence of Combustion and Aging Conditions on Aerosols

    Science.gov (United States)

    Grieshop, A. P.; Reece, S. M.; Sinha, A.; Wathore, R.

    2016-12-01

    Combustion in rudimentary and improved cook-stoves used by billions in developing countries can be a regionally dominant contributor to black carbon (BC), primary organic aerosols (POA) and precursors for secondary organic aerosol (SOA). Recent studies suggest that SOA formed during photo-oxidation of primary emissions from biomass burning may make important contribution to its atmospheric impacts. However, the extent to which stove type and operating conditions affect the amount, composition and characteristics of SOA formed from the aging of cookstoves emissions is still largely undetermined. Here we present results from experiments with a field portable oxidation flow reactor (F-OFR) designed to assess aging of cook-stove emissions in both laboratory and field settings. Laboratory tests results are used to compare the quantity and properties of fresh and aged emissions from a traditional open fire and twp alternative stove designs operated on the standard and alternate testing protocols. Diluted cookstove emissions were exposed to a range of oxidant concentrations in the F-OFR. Primary emissions were aged both on-line, to study the influence of combustion variability, and sampled from batched emissions in a smog chamber to examine different aging conditions. Data from real-time particle- and gas-phase instruments and integrated filter samples were collected up and down stream of the OFR. The properties of primary emissions vary strongly with stove type and combustion conditions (e.g. smoldering versus flaming). Experiments aging diluted biomass emissions from distinct phases of stove operation (smoldering and flaming) showed peak SOA production for both phases occurred between 3 and 6 equivalent days of aging with slightly greater production observed in flaming phase emissions. Changing combustion conditions had a stronger influence than aging on POA+SOA `emission factors'. Aerosol Chemical Speciation Monitor data show a substantial evolution of aerosol

  9. Diffusion of improved biomass stoves in China

    International Nuclear Information System (INIS)

    Daxiong Qiu; Shuhua Gu; Catania, P.; Kun Huang

    1996-01-01

    The large-scale utilization of inefficient biofuel stoves for cooking and heating in the rural areas of China can cause ecological and environmental problems; thus, in 1982, the Chinese government encouraged the diffusion of improved biomass stoves. From 1982 to 1994, these improved biomass stoves have been used by 144 million households or the equivalent of 90% of all improved stoves installed globally; 62% of the Chinese market has been penetrated. This paper presents the fundamental features of China's diffusion programme of improved biomass stoves, analyses of the future domestic market, and defines some of the lessons learned from the diffusion programme which may be applicable in other emerging nations. (Author)

  10. Policy trade-offs between climate mitigation and clean cook-stove access in South Asia

    Science.gov (United States)

    Cameron, Colin; Pachauri, Shonali; Rao, Narasimha D.; McCollum, David; Rogelj, Joeri; Riahi, Keywan

    2016-01-01

    Household air pollution from traditional cook stoves presents a greater health hazard than any other environmental factor. Despite government efforts to support clean-burning cooking fuels, over 700 million people in South Asia could still rely on traditional stoves in 2030. This number could rise if climate change mitigation efforts increase energy costs. Here we quantify the costs of support policies to make clean cooking affordable to all South Asians under four increasingly stringent climate policy scenarios. Our most stringent mitigation scenario increases clean fuel costs 38% in 2030 relative to the baseline, keeping 21% more South Asians on traditional stoves or increasing the minimum support policy cost to achieve universal clean cooking by up to 44%. The extent of this increase depends on how policymakers allocate subsidies between clean fuels and stoves. These additional costs are within the range of financial transfers to South Asia estimated in efforts-sharing scenarios of international climate agreements.

  11. Fission gas release from UO2 pellet fuel at high burn-up

    International Nuclear Information System (INIS)

    Vitanza, C.; Kolstad, E.; Graziani, U.

    1979-01-01

    Analysis of in-reactor measurements of fuel center temperature and rod internal pressure at the OECD Halden Reactor Project has led to the development of an empirical fission gas release model, which is described. The model originally derived from data obtained in the low and intermediate burn-up range, appears to give good predictions for rods irradiated to high exposures as well. PIE puncturing data from seven fuel rods, operated at relatively constant powers and peak center temperatures between 1900 and 2000 0 C up to approx. 40,000 MWd/t UO 2 , did not exhibit any burn-up enhancement on the fission gas release rate

  12. Small high temperature gas-cooled reactors with innovative nuclear burning

    International Nuclear Information System (INIS)

    Liem, Peng Hong; Ismail; Sekimoto, Hiroshi

    2008-01-01

    Since the innovative concept of CANDLE (Constant Axial shape of Neutron Flux, nuclide densities and power shape During Life of Energy producing reactor) burning strategy was proposed, intensive research works have been continuously conducted to evaluate the feasibility and the performance of the burning strategy on both fast and thermal reactors. We learned that one potential application of the burning strategy for thermal reactors is for the High Temperature Gas-Cooled Reactors (HTGR) with prismatic/block-type fuel elements. Several characteristics of CANDLE burning strategy such as constant reactor characteristics during burn-up, no need for burn-up reactivity control mechanism, proportionality of core height with core lifetime, sub-criticality of fresh fuel elements, etc. enable us to design small sized HTGR with a high degree of safety easiness of operation and maintenance, and long core lifetime which are required for introducing the reactors into remote areas or developing countries with limited infrastructures and resources. In the present work, we report our evaluation results on small sized block-type HTGR designs with CANDLE burning strategy and compared with other existing small HTGR designs including the ones with pebble fuel elements, under both uranium and thorium fuel cycles. (author)

  13. Adoption of Clean Cookstoves after Improved Solid Fuel Stove Programme Exposure: A Cross-Sectional Study in Three Peruvian Andean Regions.

    Science.gov (United States)

    Wolf, Jennyfer; Mäusezahl, Daniel; Verastegui, Hector; Hartinger, Stella M

    2017-07-08

    This study examined measures of clean cookstove adoption after improved solid fuel stove programmes in three geographically and culturally diverse rural Andean settings and explored factors associated with these measures. A questionnaire was administered to 1200 households on stove use and cooking behaviours including previously defined factors associated with clean cookstove adoption. Logistic multivariable regressions with 16 pre-specified explanatory variables were performed for three outcomes; (1) daily improved solid fuel stove use, (2) use of liquefied petroleum gas stove and (3) traditional stove displacement. Eighty-seven percent of households reported daily improved solid fuel stove use, 51% liquefied petroleum gas stove use and 66% no longer used the traditional cookstove. Variables associated with one or more of the three outcomes are: education, age and civil status of the reporting female, household wealth and size, region, encounters of problems with the improved solid fuel stove, knowledge of somebody able to build an improved solid fuel stove, whether stove parts are obtainable in the community, and subsidy schemes. We conclude that to be successful, improved solid fuel stove programmes need to consider (1) existing household characteristics, (2) the household's need for ready access to maintenance and repair, and (3) improved knowledge at the community level.

  14. Hydrofluoric acid burn resulting from ignition of gas from a compressed air duster.

    Science.gov (United States)

    Foster, Kevin N; Jones, LouAnn; Caruso, Daniel M

    2003-01-01

    A young female suffered burns to her hand after the ignition of gas from a compressed air duster. After debridement and dressing, the patient continued to have pain out of proportion to injury that was refractory to intravenous morphine. The material safety data sheet revealed that the chemical used was 1,1-difluoroethane. High temperatures can cause decompensation to form hydrofluoric acid. Calcium gluconate gel was applied topically to the patient's burns, which caused prompt and complete relief of her pain. A review of different compressed air duster products revealed that the main ingredient in each was a halogenated hydrocarbon. Although not considered flammable, all products have warnings regarding the possibility of ignition under various circumstances. Ignition of the gas in compressed air cleaners not only can cause flame burns, it can also cause chemical damage from exposure to hydrogen and fluoride ions. Prompt recognition and treatment is necessary to prevent severe injury.

  15. Fission gas release at high burn-up: beyond the standard diffusion model

    International Nuclear Information System (INIS)

    Landskron, H.; Sontheimer, F.; Billaux, M.R.

    2002-01-01

    At high burn-up standard diffusion models describing the release of fission gases from nuclear fuel must be extended to describe the experimental loss of xenon observed in the fuel matrix of the rim zone. Marked improvements of the prediction of integral fission gas release of fuel rods as well as of radial fission gas profiles in fuel pellets are achieved by using a saturation concept to describe fission gas behaviour not only in the pellet rim but also as an additional fission gas path in the whole pellet. (author)

  16. Reduction of NOx emissions when burning low heating value gas

    International Nuclear Information System (INIS)

    Gustafsson, R.; Oskarsson, J.; Waldheim, L.

    1993-09-01

    On the gasification of nitrogen-rich fuel the nitrogen from the fuel goes into the gas phase in the form of ammonia and hydrogen cyanide and also nitrogen containing tars. When the gas is combusted the nitrogen compounds are oxidized to a great extent to NO x and, therefore, high NO x emissions can be found on the combustion of low heating value gas produced from energy forest wood chips as is also the case with direct combustion of nitrogen rich fuels. An experimental study has been carried out where the important parameters for designing a combustion chamber for low heating value gases have been studied in order to obtain maximum reduction of NO x emissions. The effect of tar cracking using dolomite on these emissions and the effect of parameters such as the addition of steam has also been tested. The tests were carried out with energy forest wood chips with 0.3% nitrogen. The gasification was carried out in a pyrolysis reactor, operated to yield a low heating value gas, and which was coupled to a simplified gas turbine combustion chamber at atmospheric pressure. The results show that the main part of the nitrogen in the fuel is found as ammonia in the low heating value gas. With this type of gasification the conversion of fuel nitrogen to ammonia in the gas is equivalent to 500-600 mg/MJ, calculated as NO 2 . Only very low amounts of hydrogen cyanide have been noted and no nitrogen containing tar components have been found. No apparent effect of steam additions has been noted. On the other hand the distribution of air in the combustion chamber and residence time during the under stoichiometric conditions are of great importance for the NO x reduction. Depending on the air distribution the emissions of NO 2 varied between 100 and 250 mg/MJ, calculated as NO 2 . 23 refs, 11 figs, 2 tabs

  17. Fission Gas Release in LWR Fuel Rods Exhibiting Very High Burn-Up

    DEFF Research Database (Denmark)

    Carlsen, H.

    1980-01-01

    Two UO2Zr BWR type test fuel rods were irradiated to a burn-up of about 38000 MWd/tUO2. After non-destructive characterization, the fission gas released to the internal free volume was extracted and analysed. The irradiation was simulated by means of the Danish fuel performance code WAFER-2, which...

  18. Shale gas: don't burn your bridges

    International Nuclear Information System (INIS)

    Dupin, L.; Casalonga, S.

    2011-01-01

    As debates take place in the French Parliament to forbid the extraction of shale in gas in France, the author outlines that, according to some experts, even though some sites might be very interesting, only a fraction of their content could be exploited. He also outlines the actual danger of this exploitation for the environment, notably because hydraulic fracturing has to be used. Although the main operators are American, French big companies possess the required know-how and are gaining experience abroad. Moreover, it seems that shale gas exploitation does not possess a significant job creation potential. The situation of different countries with respect to shale gas exploitation is briefly presented: United States, Canada, China, and Poland. The United States policy on this issue is more precisely described in a last article

  19. A multicenter study of preventable contact burns from glass fronted gas fireplaces.

    Science.gov (United States)

    Wibbenmeyer, Lucy; Gittelman, Michael A; Kluesner, Karen; Liao, Junlin; Xing, Yunfan; Faraklas, Iris; Anyan, Walter; Gamero, Chelsea; Moulton, Steven; Nederveld, Cindy; Banks, Ashley; Ryan, Colleen M; Conway, Jennifer A; Reilly, Debra A; Fish, Joel; Kelly, Charis; Peltier, George; Schwantke, Emily; Conrad, Peggie F; Caruso, Daniel M; Richey, Karen J; McCrory, Kristine; Elfar, Mohamed S A; Pittinger, Timothy; Sadie, Christine; Greenhalgh, David; Palmieri, Tina; Grossman, Peter H; Richards, Kurt M; Joyce, Teresa; Pozez, Andrea L; Savetamal, Alisa; Harrington, David T; Duncan, Kimberley; Pomerantz, Wendy J; Dillard, B Daniel

    2015-01-01

    Glass fronted gas fireplaces (GFGFs) have exterior surfaces that can reach extremely high temperatures. Burn injuries from contact with the glass front can be severe with long-term sequelae. The Consumer Product Safety Commission reported that these injuries are uncommon, whereas single-center studies indicate a much higher frequency. The purpose of this multi-institutional study was to determine the magnitude and severity of GFGF injuries in North America. Seventeen burn centers elected to participate in this retrospective chart review. Chart review identified 402 children ≤10 years of age who sustained contact burns from contact with GFGF, who were seen or admitted to the study hospitals from January 2006 to December 2010. Demographic, burn, treatment, and financial data were collected. The mean age of the study group was 16.8 ± 13.3 months. The majority suffered burns to their hands (396, 98.5%), with burns to the face being the second, much less common site (14, 3.5%). Two hundred and sixty-nine required rehabilitation therapy (66.9%). The number of GFGF injuries reported was 20 times greater than the approximately 30 injuries estimated by the Consumer Product Safety Commission's 10-year review. For the affected children, these injuries are painful, often costly and occasionally can lead to long-term sequelae. Given that less than a quarter of burn centers contributed data, the injury numbers reported herein support a need for broader safety guidelines for gas fireplaces in order to have a significant impact on future injuries.

  20. Evaluation of the physical dew point in the economizer of a combined cycle burning natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Pena, F.; Blanco, J.M. [Universidad del Pais Vasco/E.H.U. Alameda de Urquijo s/n, Bilbao (Spain). Dpto. Maquinas y Motores Termicos, Escuela Sup. de Ingenieria

    2007-08-15

    Natural gas contents a considerable percentage of hydrogen, so is obvious to expect an amount of water vapour in its combustion exhaust gases, which would raise the dew point temperature. That means a higher speed of corrosion over the whole exposed physical area, which could represent a serious risk of breakdown, especially in pressurized hot-water equipments. In this work, a new methodology for determining the physical dew point inside a economizer depending on the fuel type burned (in this case is natural gas) has been developed. The calculation of the total amount of condensed water has also been carried out as well as the localization of the area where this condensation occurs. Acid dew point has not been taken into account here although exhaust gases are acidic, due mainly to the low sulphur content which is almost undetectable when burning natural gas, but it will be performed in a later study coming soon. (author)

  1. Hydrogen Addition for Improved Lean Burn Capability on Natural Gas Engine

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Tobias [Lund Inst. of Technology (Sweden). Dept. of Heat and Power Engineering

    2002-12-01

    Lean burn spark ignition (SI) engines powered by natural gas is an attractive alternative to the Diesel engine, especially in urban traffic, where reduction of tailpipe emissions are of great importance. A major benefit is the large reduction in soot (PM). Lean burn spark ignition (SI) engines yield high fuel conversion efficiency and also relatively low NO{sub x} emissions at full load. In order to improve the engine operating characteristics at lower loads, the {lambda}-value is normally reduced to some degree, with increased NO{sub x} emissions and reduced efficiency as a result. This is a drawback for the lean burn engines, especially in urban applications such as in city buses and distribution trucks for urban use. So, it is desirable to find ways to extend the lean limit at low loads. One way to improve these part load properties is to add hydrogen to the natural gas in order to improve the combustion characteristics of the fuel. It is possible to extend the lean limit of a natural gas engine by addition of hydrogen to the primary fuel. This report presents measurements made on a single cylinder 1.6 liter natural gas engine. Two combustion chambers, one slow and one fast burning, were tested with various amounts of hydrogen (0 to 20 %-vol) added to natural gas. Three operating conditions were investigated for each combustion chamber and each hydrogen content level; idle, wide open throttle (WOT) and a high load condition (simulated turbo charging). For all three operating conditions, the air/fuel ratio was varied between stoichiometric and the lean limit. For each operating point, the ignition timing was swept in order to find maximum brake torque (MBT) timing. In some cases were the ignition timing limited by knock. Heat release rate calculations were made in order to assess the influence of hydrogen addition on burn rate. Addition of hydrogen showed an increase in burn rate for both combustion chambers, resulting in more stable combustion close to the lean

  2. Optimalisation Of Oxide Burn-Up Enhanced For RSG-Gas Core

    International Nuclear Information System (INIS)

    Tukiran; Sembiring, Tagor Malem

    2000-01-01

    Strategy of fuel management of the RSG-Gas core has been changed from 6/1 to 5/1 pattern so the evaluation of fuel management is necessary to be done. The aim of evaluation is to look for the optimal fuel management so that the fuel can be stayed longer in the core and finally can save cost of operation. Using Batan-EQUIL-2D code did the evaluation of fuel management with 5/1 pattern. The result of evaluation is used to choose which one is more advantage without break the safety margin which is available in the Safety Analysis Report (SAR) firstly, the fuel management was calculated with core excess reactivity of 9,2% criteria. Secondly, fuel burn-up maximum of 56% criteria and the last, fuel burn-up maximum of 64% criteria. From the result of fuel management calculation of the RSG-Gas equilibrium core can be concluded that the optimal RSG-Gas equilibrium core with 5/1 pattern is if the fuel burn-up maximum 64% and the energy in a cycle of operation is 715 MWD. The fuel can be added one more step in the core without break any safety margin. It means that the RSG-Gas equilibrium core can save fuel and cost reduction

  3. Numerical Investigation of the Low-Caloric Gas Burning Process in a Bottom Burner

    Directory of Open Access Journals (Sweden)

    Redko A.

    2017-08-01

    Full Text Available The use of low-grade gases in the fuel and energy balance of enterprises makes it possible to increase the energy efficiency of technological processes. The volumes of low-grade gases (blast furnace and coke oven gases, synthesis gas of coal gasification processes, biogas, coal gas, etc. that are utilized more significant in technological processes but their calorific value are low. At the same time artificial gases contain ballast gaseous (СО2, H2O and mechanical impurities that are harmful gas impurities. Their use requires technological preparation. Thus coal methane is characterized of high humidity, coal dust and drip moisture, variable composition. Thus was effective burning of coal methane it is required the development of constructive and regime measures that ensure a stable and complete burning of gaseous fuels. In this article it is presented the results of computer simulation of a stationary turbulent diffusion flame in a restricted space in the process of burning natural gas and coal methane in a bottom burner. The calculation results contain the fields of gear, temperature, concentration of CH4‚ CO‚ H2O‚ CO2 and nitrogen oxides. The structural elements of the flame (recirculation zone, hot "dome", mixing layer and far trace are determined. It has been established that complete combustion of coal methane in a modified bottom burner is ensured and the numerical values of nitrogen oxide concentrations in the flame are consistent with the literature data.

  4. Burned gas and unburned mixture composition prediction in biodiesel-fuelled compression igniton engine

    International Nuclear Information System (INIS)

    Chuepeng, S.; Komintarachati, C.

    2009-01-01

    A prediction of burned gas and unburned mixture composition from a variety of methyl ester based bio diesel combustion in compression ignition engine, in comparison with conventional diesel fuel is presented. A free-energy minimisation scheme was used to determine mixture composition. Firstly, effects of bio diesel type were studied without exhaust gas recirculation (EGR). The combustion of the higher hydrogen-to-carbon molar ratio (H/C) bio diesel resulted in lower carbon dioxide and oxygen emissions but higher water vapour in the exhaust gases, compared to those of lower H/C ratios. At the same results also show that relative air-to-fuel ratio, that bio diesel combustion gases contain a higher amount of water vapour and a higher level of carbon dioxide compared to those of diesel. Secondly, influences of EGR (burned gas fraction) addition to bio diesel-fuelled engine on unburned mixture were simulated. For both diesel and bio diesel, the increased burned gas fraction addition to the fresh charge increased carbon dioxide and water vapour emissions while lowering oxygen content, especially for the bio diesel case. The prediction was compared with experimental results from literatures; good agreement was found. This can be considered to be a means for explaining some phenomenon occurring in bio diesel-fuelled engines. (author)

  5. Load compensation in a lean burn natural gas vehicle

    Science.gov (United States)

    Gangopadhyay, Anupam

    A new multivariable PI tuning technique is developed in this research that is primarily developed for regulation purposes. Design guidelines are developed based on closed-loop stability. The new multivariable design is applied in a natural gas vehicle to combine idle and A/F ratio control loops. This results in better recovery during low idle operation of a vehicle under external step torques. A powertrain model of a natural gas engine is developed and validated for steady-state and transient operation. The nonlinear model has three states: engine speed, intake manifold pressure and fuel fraction in the intake manifold. The model includes the effect of fuel partial pressure in the intake manifold filling and emptying dynamics. Due to the inclusion of fuel fraction as a state, fuel flow rate into the cylinders is also accurately modeled. A linear system identification is performed on the nonlinear model. The linear model structure is predicted analytically from the nonlinear model and the coefficients of the predicted transfer function are shown to be functions of key physical parameters in the plant. Simulations of linear system and model parameter identification is shown to converge to the predicted values of the model coefficients. The multivariable controller developed in this research could be designed in an algebraic fashion once the plant model is known. It is thus possible to implement the multivariable PI design in an adaptive fashion combining the controller with identified plant model on-line. This will result in a self-tuning regulator (STR) type controller where the underlying design criteria is the multivariable tuning technique designed in this research.

  6. Validation of numerical model for cook stove using Reynolds averaged Navier-Stokes based solver

    Science.gov (United States)

    Islam, Md. Moinul; Hasan, Md. Abdullah Al; Rahman, Md. Mominur; Rahaman, Md. Mashiur

    2017-12-01

    Biomass fired cook stoves, for many years, have been the main cooking appliance for the rural people of developing countries. Several researches have been carried out to the find efficient stoves. In the present study, numerical model of an improved household cook stove is developed to analyze the heat transfer and flow behavior of gas during operation. The numerical model is validated with the experimental results. Computation of the numerical model is executed the using non-premixed combustion model. Reynold's averaged Navier-Stokes (RaNS) equation along with the κ - ɛ model governed the turbulent flow associated within the computed domain. The computational results are in well agreement with the experiment. Developed numerical model can be used to predict the effect of different biomasses on the efficiency of the cook stove.

  7. Deployment of coal briquettes and improved stoves: possibly an option for both environment and climate

    Energy Technology Data Exchange (ETDEWEB)

    Guorui Zhi; Conghu Peng; Yingjun Chen; Dongyan Liu; Guoying Sheng; Jiamo Fu [Chinese Academy of Meteorological Sciences, Beijing (China). Key Laboratory for Atmospheric Chemistry

    2009-08-15

    The use of coal briquettes and improved stoves by Chinese households has been encouraged by the government as a means of reducing air pollution and health impacts. In this study we have shown that these two improvements also relate to climate change. Our experimental measurements indicate that, if all coal were burned as briquettes in improved stoves, particulate matter (PM), organic carbon (OC), and black carbon (BC) could be annually reduced by 63 {+-} 12%, 61 {+-} 10%, and 98 {+-} 1.7%, respectively. Also, the ratio of BC to OC (BC/OC) could be reduced by about 97%, from 0.49 to 0.016, which would make the primary emissions of household coal combustion more optically scattering. Therefore, it is suggested that the government consider the possibility of: (i) phasing out direct burning of bituminous raw-coal-chunks in households; (ii) phasing out simple stoves in households; and, (iii) financially supporting the research, production, and popularization of improved stoves and efficient coal briquettes. These actions may have considerable environmental benefits by reducing emissions and mitigating some of the impacts of household coal burning on the climate. International cooperation is required both technologically and financially to accelerate the emission reduction in the world. 50 refs., 3 figs., 2 tabs.

  8. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  9. Optimization of Operating Conditions of a Household Up-draft Biomass Gasification Stove

    Directory of Open Access Journals (Sweden)

    Shuanghui Deng

    2015-05-01

    Full Text Available Experiments were carried out with a household up-draft biomass gasification stove to investigate effects of the air distribution method on the performance of the stove. The temperature distribution along the gasifier, the producer gas composition, the stove power, and the thermal efficiency were investigated. Results showed that in the temperature distribution along the gasifier height, the highest temperature was at the bottom oxidation layer of the gasifier, in the range of 950 to 1050 °C. With increasing air quantity through the burner, the time required to boil the water first decreased and then increased, whereas the stove power and thermal efficiency increased and then decreased. The best stove performance was obtained at an optimum air distribution ratio of 0.333 between burner and gasifier air (0.794×10-3 m3/s·kg. When the burner air increased, the flame length above the burner was remarkably reduced and the flame color gradually changed from yellow-red to blue. At the optimum air distribution ratio of 0.333, the flame was blue and stable. The present study provides references for developing a more efficient biomass gasification stove.

  10. Biogas Stoves Reduce Firewood Use, Household Air Pollution, and Hospital Visits in Odisha, India.

    Science.gov (United States)

    Lewis, Jessica J; Hollingsworth, John W; Chartier, Ryan T; Cooper, Ellen M; Foster, William Michael; Gomes, Genna L; Kussin, Peter S; MacInnis, John J; Padhi, Bijaya K; Panigrahi, Pinaki; Rodes, Charles E; Ryde, Ian T; Singha, Ashok K; Stapleton, Heather M; Thornburg, Jonathan; Young, Cora J; Meyer, Joel N; Pattanayak, Subhrendu K

    2017-01-03

    Traditional cooking using biomass is associated with ill health, local environmental degradation, and regional climate change. Clean stoves (liquefied petroleum gas (LPG), biogas, and electric) are heralded as a solution, but few studies have demonstrated their environmental health benefits in field settings. We analyzed the impact of mainly biogas (as well as electric and LPG) stove use on social, environmental, and health outcomes in two districts in Odisha, India, where the Indian government has promoted household biogas. We established a cross-sectional observational cohort of 105 households that use either traditional mud stoves or improved cookstoves (ICS). Our multidisciplinary team conducted surveys, environmental air sampling, fuel weighing, and health measurements. We examined associations between traditional or improved stove use and primary outcomes, stratifying households by proximity to major industrial plants. ICS use was associated with 91% reduced use of firewood (p biogas stoves in a context in which traditional stove use persists, although pollution levels in ICS households still remained above WHO guidelines.

  11. MOLECULAR CHARACTERIZATION OF SMOKE FROM CAMPFIRE BURNING OF PINE WOOD (PINUS ELLIOTTII). (R823990)

    Science.gov (United States)

    AbstractAlthough campfires are typically enjoyable events, people are exposed to high concentrations of gaseous and particulate pollutants. The combustion conditions of wood burned in campfires are different from those of indoor wood burning in stoves or fireplaces. T...

  12. Impacts of prescribed burning on soil greenhouse gas fluxes in a suburban native forest of south-eastern Queensland, Australia

    Science.gov (United States)

    Zhao, Y.; Wang, Y. Z.; Xu, Z. H.; Fu, L.

    2015-11-01

    Prescribed burning is a forest management practice that is widely used in Australia to reduce the risk of damaging wildfires. Prescribed burning can affect both carbon (C) and nitrogen (N) cycling in the forest and thereby influence the soil-atmosphere exchange of major greenhouse gases, i.e. carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). To quantify the impact of a prescribed burning (conducted on 27 May 2014) on greenhouse gas exchange and the potential controlling mechanisms, we carried out a series of field measurements before (August 2013) and after (August 2014 and November 2014) the fire. Gas exchange rates were determined in four replicate plots which were burned during the combustion and in another four adjacent unburned plots located in green islands, using a set of static chambers. Surface soil properties including temperature, pH, moisture, soil C and N pools were also determined either by in situ measurement or by analysing surface 10 cm soil samples. All of the chamber measurements indicated a net sink of atmospheric CH4, with mean CH4 uptake ranging from 1.15 to 1.99 mg m-2 d-1. Prescribed burning significantly enhanced CH4 uptake as indicated by the significant higher CH4 uptake rates in the burned plots measured in August 2014. In the following 3 months, the CH4 uptake rate was recovered to the pre-burning level. Mean CO2 emission from the forest soils ranged from 2721.76 to 7113.49 mg m-2 d-1. The effect of prescribed burning on CO2 emission was limited within the first 3 months, as no significant difference was observed between the burned and the adjacent unburned plots in both August and November 2014. The CO2 emissions showed more seasonal variations, rather than the effects of prescribed burning. The N2O emission in the plots was quite low, and no significant impact of prescribed burning was observed. The changes in understory plants and litter layers, surface soil temperature, C and N substrate availability and microbial

  13. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    Science.gov (United States)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  14. Behavioral Attitudes and Preferences in Cooking Practices with Traditional Open-Fire Stoves in Peru, Nepal, and Kenya: Implications for Improved Cookstove Interventions

    Directory of Open Access Journals (Sweden)

    Evelyn L. Rhodes

    2014-10-01

    Full Text Available Global efforts are underway to develop and promote improved cookstoves which may reduce the negative health and environmental effects of burning solid fuels on health and the environment. Behavioral studies have considered cookstove user practices, needs and preferences in the design and implementation of cookstove projects; however, these studies have not examined the implications of the traditional stove use and design across multiple resource-poor settings in the implementation and promotion of improved cookstove projects that utilize a single, standardized stove design. We conducted in-depth interviews and direct observations of meal preparation and traditional, open-fire stove use of 137 women aged 20–49 years in Kenya, Peru and Nepal prior in the four-month period preceding installation of an improved cookstove as part of a field intervention trial. Despite general similarities in cooking practices across sites, we identified locally distinct practices and norms regarding traditional stove use and desired stove improvements. Traditional stoves are designed to accommodate specific cooking styles, types of fuel, and available resources for maintenance and renovation. The tailored stoves allow users to cook and repair their stoves easily. Women in each setting expressed their desire for a new stove, but they articulated distinct specific alterations that would meet their needs and preferences. Improved cookstove designs need to consider the diversity of values and needs held by potential users, presenting a significant challenge in identifying a “one size fits all” improved cookstove design. Our data show that a single stove design for use with locally available biomass fuels will not meet the cooking demands and resources available across the three sites. Moreover, locally produced or adapted improved cookstoves may be needed to meet the cooking needs of diverse populations while addressing health and environmental concerns of

  15. Behavioral Attitudes and Preferences in Cooking Practices with Traditional Open-Fire Stoves in Peru, Nepal, and Kenya: Implications for Improved Cookstove Interventions

    Science.gov (United States)

    Rhodes, Evelyn L.; Dreibelbis, Robert; Klasen, Elizabeth; Naithani, Neha; Baliddawa, Joyce; Menya, Diana; Khatry, Subarna; Levy, Stephanie; Tielsch, James M.; Miranda, J. Jaime; Kennedy, Caitlin; Checkley, William

    2014-01-01

    Global efforts are underway to develop and promote improved cookstoves which may reduce the negative health and environmental effects of burning solid fuels on health and the environment. Behavioral studies have considered cookstove user practices, needs and preferences in the design and implementation of cookstove projects; however, these studies have not examined the implications of the traditional stove use and design across multiple resource-poor settings in the implementation and promotion of improved cookstove projects that utilize a single, standardized stove design. We conducted in-depth interviews and direct observations of meal preparation and traditional, open-fire stove use of 137 women aged 20–49 years in Kenya, Peru and Nepal prior in the four-month period preceding installation of an improved cookstove as part of a field intervention trial. Despite general similarities in cooking practices across sites, we identified locally distinct practices and norms regarding traditional stove use and desired stove improvements. Traditional stoves are designed to accommodate specific cooking styles, types of fuel, and available resources for maintenance and renovation. The tailored stoves allow users to cook and repair their stoves easily. Women in each setting expressed their desire for a new stove, but they articulated distinct specific alterations that would meet their needs and preferences. Improved cookstove designs need to consider the diversity of values and needs held by potential users, presenting a significant challenge in identifying a “one size fits all” improved cookstove design. Our data show that a single stove design for use with locally available biomass fuels will not meet the cooking demands and resources available across the three sites. Moreover, locally produced or adapted improved cookstoves may be needed to meet the cooking needs of diverse populations while addressing health and environmental concerns of traditional stoves. PMID

  16. 'Oorja' in India: Assessing a large-scale commercial distribution of advanced biomass stoves to households.

    Science.gov (United States)

    Thurber, Mark C; Phadke, Himani; Nagavarapu, Sriniketh; Shrimali, Gireesh; Zerriffi, Hisham

    2014-04-01

    Replacing traditional stoves with advanced alternatives that burn more cleanly has the potential to ameliorate major health problems associated with indoor air pollution in developing countries. With a few exceptions, large government and charitable programs to distribute advanced stoves have not had the desired impact. Commercially-based distributions that seek cost recovery and even profits might plausibly do better, both because they encourage distributors to supply and promote products that people want and because they are based around properly-incentivized supply chains that could more be scalable, sustainable, and replicable. The sale in India of over 400,000 "Oorja" stoves to households from 2006 onwards represents the largest commercially-based distribution of a gasification-type advanced biomass stove. BP's Emerging Consumer Markets (ECM) division and then successor company First Energy sold this stove and the pelletized biomass fuel on which it operates. We assess the success of this effort and the role its commercial aspect played in outcomes using a survey of 998 households in areas of Maharashtra and Karnataka where the stove was sold as well as detailed interviews with BP and First Energy staff. Statistical models based on this data indicate that Oorja purchase rates were significantly influenced by the intensity of Oorja marketing in a region as well as by pre-existing stove mix among households. The highest rate of adoption came from LPG-using households for which Oorja's pelletized biomass fuel reduced costs. Smoke- and health-related messages from Oorja marketing did not significantly influence the purchase decision, although they did appear to affect household perceptions about smoke. By the time of our survey, only 9% of households that purchased Oorja were still using the stove, the result in large part of difficulties First Energy encountered in developing a viable supply chain around low-cost procurement of "agricultural waste" to make

  17. Influence of the operating modes of wood-fired stoves on particle emissions; Einfluss der Betriebsweise auf die Partikelemissionen von Holzoefen. Projektzusatz 1+2 zum Projekt Wirkung von Verbrennungspartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Klippel, N.; Nussbaumer, T.

    2007-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) examines the influence of the operating characteristics of wood-fired stoves on their particle emissions. Four types of stove are compared: A metal stove with small combustion chamber and a low mass of ceramic lining, a stove with a large combustion chamber and heavier ceramic lining, a newly designed stove with two-stage combustion using gasification and gas oxidation in a separate combustion chamber using secondary air and a modern pellet-fired stove operated with wood and straw pellets. The report describes the measurement programme and presents the results obtained using gravimetric measurements. The spectrum of particle emissions measured for the four types of stove are presented and discussed. The correlation of carbon monoxide and fine-dust emissions is examined. The results of biological tests and the chemical analysis of the dust are discussed.

  18. Burn-Up Calculation of the Fuel Element in RSG-GAS Reactor using Program Package BATAN-FUEL

    International Nuclear Information System (INIS)

    Mochamad Imron; Ariyawan Sunardi

    2012-01-01

    Calculation of burn lip distribution of 2.96 gr U/cc Silicide fuel element at the 78 th reactor cycle using computer code program of BATAN-FUEL has been done. This calculation uses inputs such as generated power, operation time and a core assumption model of 5/1. Using this calculation model burn up for the entire fuel elements at the reactor core are able to be calculated. From the calculation it is obtained that the minimum burn up of 6.82% is RI-50 at the position of A-9, while the maximum burn up of 57.57% is RI 467 at the position of 8-7. Based on the safety criteria as specified in the Safety Analysis Report (SAR) RSG-GAS reactor, the maximum fuel burn up allowed is 59.59%. It then can be concluded that pattern that elements placement at the reactor core are properly and optimally done. (author)

  19. Bringing Stoves to the People: An Assessment of Impact

    International Nuclear Information System (INIS)

    Joseph, S.; Prasad, K.K; Van der Zaan, H.B

    1990-01-01

    The absence of reliable and in-depth information on the impact of improved cook-stove has required stove project managers, governments and donors to rely on unverified and anecdotal data for designing and implementing stove programmes. This survey was designed to provide a comprehensive and up-to-date assessment of world-wide stove activities. The report was a compilation of seven stove surveys carried out from Burkina Faso, Guatemala, India, Indonesia, Kenya and Niger. The report has indicated the benefits of using improved cook stoves that includes, conserving energy, reduction of indoor air pollution, improves household health, foster greater gender equality and stimulation of small-scale enterprise development

  20. Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico

    Science.gov (United States)

    Christian, T. J.; Yokelson, R. J.; Cárdenas, B.; Molina, L. T.; Engling, G.; Hsu, S.-C.

    2010-01-01

    In central Mexico during the spring of 2007 we measured the initial emissions of 12 gases and the aerosol speciation for elemental and organic carbon (EC, OC), anhydrosugars, Cl-, NO3-, and 20 metals from 10 cooking fires, four garbage fires, three brick making kilns, three charcoal making kilns, and two crop residue fires. Global biofuel use has been estimated at over 2600 Tg/y. With several simple case studies we show that cooking fires can be a major, or the major, source of several gases and fine particles in developing countries. Insulated cook stoves with chimneys were earlier shown to reduce indoor air pollution and the fuel use per cooking task. We confirm that they also reduce the emissions of VOC pollutants per mass of fuel burned by about half. We did not detect HCN emissions from cooking fires in Mexico or Africa. Thus, if regional source attribution is based on HCN emissions typical for other types of biomass burning (BB), then biofuel use and total BB will be underestimated in much of the developing world. This is also significant because cooking fires are not detected from space. We estimate that ~2000 Tg/y of garbage are generated globally and about half may be burned, making this a commonly overlooked major global source of emissions. We estimate a fine particle emission factor (EFPM2.5) for garbage burning of ~10.5±8.8 g/kg, which is in reasonable agreement with very limited previous work. We observe large HCl emission factors in the range 2-10 g/kg. Consideration of the Cl content of the global waste stream suggests that garbage burning may generate as much as 6-9 Tg/yr of HCl, which would make it a major source of this compound. HCl generated by garbage burning in dry environments may have a relatively greater atmospheric impact than HCl generated in humid areas. Garbage burning PM2.5 was found to contain levoglucosan and K in concentrations similar to those for biomass burning, so it could be a source of interference in some areas when using

  1. Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico

    Directory of Open Access Journals (Sweden)

    T. J. Christian

    2010-01-01

    Full Text Available In central Mexico during the spring of 2007 we measured the initial emissions of 12 gases and the aerosol speciation for elemental and organic carbon (EC, OC, anhydrosugars, Cl, NO3, and 20 metals from 10 cooking fires, four garbage fires, three brick making kilns, three charcoal making kilns, and two crop residue fires. Global biofuel use has been estimated at over 2600 Tg/y. With several simple case studies we show that cooking fires can be a major, or the major, source of several gases and fine particles in developing countries. Insulated cook stoves with chimneys were earlier shown to reduce indoor air pollution and the fuel use per cooking task. We confirm that they also reduce the emissions of VOC pollutants per mass of fuel burned by about half. We did not detect HCN emissions from cooking fires in Mexico or Africa. Thus, if regional source attribution is based on HCN emissions typical for other types of biomass burning (BB, then biofuel use and total BB will be underestimated in much of the developing world. This is also significant because cooking fires are not detected from space. We estimate that ~2000 Tg/y of garbage are generated globally and about half may be burned, making this a commonly overlooked major global source of emissions. We estimate a fine particle emission factor (EFPM2.5 for garbage burning of ~10.5±8.8 g/kg, which is in reasonable agreement with very limited previous work. We observe large HCl emission factors in the range 2–10 g/kg. Consideration of the Cl content of the global waste stream suggests that garbage burning may generate as much as 6–9 Tg/yr of HCl, which would make it a major source of this compound. HCl generated by garbage burning in dry environments may have a relatively greater atmospheric impact than HCl generated in humid areas. Garbage burning PM2.5 was found to contain levoglucosan and K in concentrations similar to those for

  2. Methodology for identifying parameters for the TRNSYS model Type 210 - wood pellet stoves and boilers

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Tomas; Fiedler, Frank; Nordlander, Svante

    2006-05-15

    This report describes a method how to perform measurements on boilers and stoves and how to identify parameters from the measurements for the boiler/stove-model TRNSYS Type 210. The model can be used for detailed annual system simulations using TRNSYS. Experience from measurements on three different pellet stoves and four boilers were used to develop this methodology. Recommendations for the set up of measurements are given and the required combustion theory for the data evaluation and data preparation are given. The data evaluation showed that the uncertainties are quite large for the measured flue gas flow rate and for boilers and stoves with high fraction of energy going to the water jacket also the calculated heat rate to the room may have large uncertainties. A methodology for the parameter identification process and identified parameters for two different stoves and three boilers are given. Finally the identified models are compared with measured data showing that the model generally agreed well with measured data during both stationary and dynamic conditions.

  3. GREENHOUSE GASES FROM BIOMASS AND FOSSIL FUEL STOVES IN DEVELOPING COUNTRIES: A MANILA PILOT STUDY

    Science.gov (United States)

    Samples were taken of the combustion gases released by household cookstoves in Manila, Philippines. In a total of 24 samples, 14 cookstoves were tested. These were fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Ambient samples were ...

  4. Ceramic stove eases strain on African forests | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-10-28

    Oct 28, 2010 ... IDRC began supporting research that led to the marketing of the ceramic Jiko stove in the ... IDRC Communications ... Informal sector workers producing the traditional stoves were sent designs and convinced to switch to this ...

  5. [Design of coal stove, construction, assembly and test

    International Nuclear Information System (INIS)

    Bitrus, K.D.; Dauda, S.

    2004-01-01

    Some years back, after the discovery of Petroleum, Kerosene as one of the fraction of the distillation of Petroleum came into use as cooking fuel and a reduction in pressure was seen on wood and vegetation. Along this line, by the improvement of sciences and technology gas cooker and electric cooker were developed; but epileptic supply of electricity, gas and government policy on deforestation showed that continuous dependence on wood, electricity, gas and kerosene as the only sources of cooking fuel is not going to solve Nigeria domestic cooking problem. To solve this, coal as a source of heat energy could be used as a cooking fuel. However, this paper reports the design of coal stove, construction, assembly and test. The test result showed that using coal (anthracite) as the fuel on a pot of 200g containing 800g of water at room temperature could boil the water in 20 minutes

  6. Analysis of Japanese Articles about Suicides Involving Charcoal Burning or Hydrogen Sulfide Gas.

    Science.gov (United States)

    Nabeshima, Yoshihiro; Onozuka, Daisuke; Kitazono, Takanari; Hagihara, Akihito

    2016-10-15

    It is well known that certain types of media reports about suicide can result in imitative suicides. In the last two decades, Japan has experienced two suicide epidemics and the subsequent excessive media coverage of these events. However, the quality of the media suicide reports has yet to be evaluated in terms of the guidelines for media suicide coverage. Thus, the present study analyzed Japanese newspaper articles ( n = 4007) on suicides by charcoal burning or hydrogen sulfide gas between 11 February 2003 and 13 March 2010. The suicide reports were evaluated in terms of the extent to which they conformed to the suicide reporting guidelines. The mean violation scores were 3.06 (±0.7) for all articles, 3.2 (±0.8) for articles about suicide by charcoal burning, and 2.9 (±0.7) for articles about suicide by hydrogen sulfide ( p < 0.001). With the exception of not following several recommendations, newspaper articles about suicide have improved in quality, as defined by the recommendations for media suicide coverage. To prevent imitative suicides based on media suicide reports, individuals in the media should try not to report suicide methods and to make attempts to report the poor condition of suicide survivors.

  7. Analysis of Japanese Articles about Suicides Involving Charcoal Burning or Hydrogen Sulfide Gas

    Directory of Open Access Journals (Sweden)

    Yoshihiro Nabeshima

    2016-10-01

    Full Text Available It is well known that certain types of media reports about suicide can result in imitative suicides. In the last two decades, Japan has experienced two suicide epidemics and the subsequent excessive media coverage of these events. However, the quality of the media suicide reports has yet to be evaluated in terms of the guidelines for media suicide coverage. Thus, the present study analyzed Japanese newspaper articles (n = 4007 on suicides by charcoal burning or hydrogen sulfide gas between 11 February 2003 and 13 March 2010. The suicide reports were evaluated in terms of the extent to which they conformed to the suicide reporting guidelines. The mean violation scores were 3.06 (±0.7 for all articles, 3.2 (±0.8 for articles about suicide by charcoal burning, and 2.9 (±0.7 for articles about suicide by hydrogen sulfide (p < 0.001. With the exception of not following several recommendations, newspaper articles about suicide have improved in quality, as defined by the recommendations for media suicide coverage. To prevent imitative suicides based on media suicide reports, individuals in the media should try not to report suicide methods and to make attempts to report the poor condition of suicide survivors.

  8. On the rate determining step in fission gas release from high burn-up water reactor fuel during power transients

    International Nuclear Information System (INIS)

    Walker, C.T.; Mogensen, M.

    1987-01-01

    The radial distribution of grain boundary gas in a PWR and a BWR fuel is reported. The measurements were made using a new approach involving X-ray fluorescence analysis and electron probe microanalysis. In both fuels the concentration of grain boundary gas was much higher than hitherto suspected. The gas was mainly contained in the bubble/pore structure. The factors that determined the fraction of gas released from the grains and the level of gas retention on the grain boundaries are identified and discussed. The variables involved are the local fuel stoichiometry, the amount of open porosity, the magnitude of the local compressive hydrostatic stress and the interaction of metallic precipitates with gas bubbles on the grain faces. It is concluded that under transient conditions the interlinkage of gas bubbles on the grain faces and the subsequent formation of grain edge tunnels is the rate determining step for gas release; at least when high burn-up fuel is involved. (orig.)

  9. 40 CFR 60.4325 - What emission limits must I meet for NOX if my turbine burns both natural gas and distillate oil...

    Science.gov (United States)

    2010-07-01

    ... NOX if my turbine burns both natural gas and distillate oil (or some other combination of fuels)? 60... both natural gas and distillate oil (or some other combination of fuels)? You must meet the emission... burning that fuel. Similarly, when your total heat input is greater than 50 percent distillate oil and...

  10. FY 2000 Study report. Feasibility study on model project for effective utilization of sensible heat of off gas from hot stoves at blast furnaces in India; 2000 nendo Indo ni okeru koro netsufuro hai gas kennetsu yuko riyo model jigyo jisshi kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The feasibility study was conducted on a model project in India for the energy saving effect and reduction of the greenhouse gas emissions by introducing blast furnace hot stove waste heat recovery systems in steelworks. The blast furnaces studied are Blast Furnace G at Jamshedpur Steelworks of TISCO, the largest private steel maker in India, and No.7 Blast Furnace at Bhilai Steelworks of state-operated Steel Authority of India Ltd. (SAIL). The study results indicate that the annual energy-saving effects of 8,255 and 8,190 tons as heavy oil, and annual CO2 emission reduction of 25,543 and 25,342 tons are expected in the TISCO and SAIL blast furnaces, respectively, in the case of increasing blast temperature and reducing blast furnace fuel coke (increased iron production possible). The model project is applicable to both blast furnaces. There are a total of 46 blast furnaces in India in which the heat recovery systems can be introduced. The nation-wide annual energy saving and CO2 abatement would reach 126,202 tons as heavy oil and 390,501 tons, when all of these blast furnaces could be provided with the heat recovery systems. (NEDO)

  11. Laboratory Investigation of Trace Gas Emissions from Biomass Burning on DoD Bases

    Science.gov (United States)

    Burling, I. R.; Yokelson, R. J.; Griffith, D. W.; Roberts, J. M.; Veres, P. R.; Warneke, C.; Johnson, T. J.

    2009-12-01

    Vegetation representing fuels commonly managed with prescribed fires was collected from five DoD bases and burned under controlled conditions at the USFS Firelab in Missoula, MT. The smoke emissions were measured with a large suite of state-of-the-art instrumentation. Seventy-seven fires were conducted and the smoke composition data will improve DoD land managers’ ability to assess the impact of prescribed fires on local air quality. A key instrument used in the measurement of the gas phase species in smoke was an open-path FTIR (OP-FTIR) spectrometer, built and operated by the Universities of Montana and Wollongong. The OP-FTIR has to date detected and quantified 20 gas phase species - CO2, CO, H2O, N2O, NO2, NO, HONO, NH3, HCl, SO2, CH4, CH3OH, HCHO, HCOOH, C2H2, C2H4, CH3COOH, HCN, propylene and furan. The spectra were analyzed using a non-linear least squares fitting routine that included reference spectra recently acquired at the Pacific Northwest National Laboratories. Preliminary results from the OP-FTIR analysis are reported here. Of particular interest, gas-phase nitrous acid (HONO) was detected simultaneously by the OP-FTIR and negative-ion proton-transfer chemical ionization spectrometer (NI-PT-CIMS), with preliminary fire-integrated molar emission ratios (relative to NOx) ranging from approximately 0.03 to 0.20, depending on the vegetation type. HONO is an important precursor in the production of OH, the primary oxidizing species in the atmosphere. There existed little previous data documenting HONO emissions from either wild or prescribed fires. The non-methane organic emissions were dominated by oxygenated species, which can be further oxidized and thus involved in secondary aerosol formation. Elevated amounts of gas-phase HCl were also detected in the smoke, with the amounts varying depending on location and vegetation type.

  12. FUEL BURN-UP CALCULATION FOR WORKING CORE OF THE RSG-GAS RESEARCH REACTOR AT BATAN SERPONG

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2017-12-01

    Full Text Available The neutronic parameters are required in the safety analysis of the RSG-GAS research reactor. The RSG-GAS research reactor, MTR (Material Testing Reactor type is used for research and also in radioisotope production. RSG-GAS has been operating for 30 years without experiencing significant obstacles. It is managed under strict requirements, especially fuel management and fuel burn-up calculations. The reactor is operated under the supervision of the Regulatory Body (BAPETEN and the IAEA (International Atomic Energy Agency. In this paper, the experience of managing RSG-GAS core fuels will be discussed, there are hundred possibilities of fuel placements on the reactor core and the strategy used to operate the reactor will be crucial. However, based on strict calculation and supervision, there is no incorrect placement of the fuels in the core. The calculations were performed on working core by using the WIMSD-5B computer code with ENDFVII.0 data file to generate the macroscopic cross-section of fuel and BATAN-FUEL code were used to obtain the neutronic parameter value such as fuel burn-up fractions. The calculation of the neutronic core parameters of the RSG-GAS research reactor was carried out for U3Si2-Al fuel, 250 grams of mass, with an equilibrium core strategy. The calculations show that on the last three operating cores (T90, T91, T92, all fuels meet the safety criteria and the fuel burn-up does not exceed the maximum discharge burn-up of 59%. Maximum fuel burn-up always exists in the fuel which is close to the position of control rod.

  13. Induction stoves as an option for clean cooking in rural India

    International Nuclear Information System (INIS)

    Banerjee, Manjushree; Prasad, Rakesh; Rehman, Ibrahim H; Gill, Bigsna

    2016-01-01

    As part of a programme on ‘access to clean cooking alternatives in rural India’, induction stoves were introduced in nearly 4000 rural households in Himachal Pradesh, one of the few highly electrified states in India. Analysis of primary usage information from 1000 rural households revealed that electricity majorly replaced Liquid Petroleum Gas (LPG), generally used as a secondary cooking fuel, but did not influence a similar shift from traditional mud stoves as the primary cooking technology. Likewise, the shift from firewood to electricity as a primary cooking fuel was observed in only 5% of the households studied. Country level analysis indicates that rural households falling in lower monthly per capita expenditure (MPCE) classes have lesser access to electricity and clean cooking options than those falling in higher MPCE classes. Again, only three states in India with high levels of rural household electrification report consumption statuses more than 82 kWh per month (the estimated mean for electricity consumption by induction stoves). Overall, the results of the study indicate that induction stoves will have limited potential in reducing the consumption of firewood and LPG if included in energy access programmes, that too only in regions where high levels of electrification exist. - Highlights: • Primary survey of induction stove users was conducted in 1000 rural households. • In 84% households, electricity replaced LPG as the secondary cooking fuel. • In only 5% households, electricity replaced firewood as the primary cooking fuel. • Electricity as a cooking fuel for rural India still needs massive investments. • Currently, induction stoves are only able to reduce consumption of firewood and LPG.

  14. Investigation of combustion and thermodynamic performance of a lean burn catalytic combustion gas turbine system

    International Nuclear Information System (INIS)

    Yin Juan; Weng Yiwu

    2011-01-01

    The goals of this research were to investigate the combustion and thermodynamic performance of a lean burn catalytic combustion gas turbine. The characteristics of lean burn catalytic combustion were investigated by utilising 1D heterogeneous plug flow model which was validated by experiments. The effects of operating parameters on catalytic combustion were numerically analysed. The system models were built in ASPEN Plus and three independent design variables, i.e. compressor pressure ratio (PR), regenerator effectiveness (RE) and turbine inlet temperature (TIT) were selected to analyse the thermodynamic performance of the thermal cycle. The main results show that: simulations from 1D heterogeneous plug flow model can capture the trend of catalytic combustion and describe the behavior of the catalytic monolith in detail. Inlet temperature is the most significant parameter that impacts operation of the catalytic combustor. When TIT and RE are constant, the increase of PR results in lowering the inlet temperature of the catalytic combustor, which results in decreasing methane conversion. The peak thermal efficiency and the optimal PR at a constant TIT increase with the increase of TIT; and at the constant PR, the thermal efficiency increases with the increase of TIT. However, with lower TIT conditions, the optimal PR and the peak efficiency at a constant TIT of the LBCCGT cycle are relative low to that of the conventional cycle. When TIT and PR are constant, the decrease of RE may result in lower methane conversion. The influences of RE on the methane conversion and the thermal efficiency are more significant at higher PRs. The higher thermal efficiency for the lower RE is achieved at lower PR.

  15. Particulate Matter 2.5 Exposure and Self-Reported Use of Wood Stoves and Other Indoor Combustion Sources in Urban Nonsmoking Homes in Norway.

    Directory of Open Access Journals (Sweden)

    Annah B Wyss

    Full Text Available Few studies have examined particulate matter (PM exposure from self-reported use of wood stoves and other indoor combustion sources in urban settings in developed countries. We measured concentrations of indoor PM < 2.5 microns (PM2.5 for one week with the MicroPEM™ nephelometer in 36 households in the greater Oslo, Norway metropolitan area. We examined indoor PM2.5 levels in relation to use of wood stoves and other combustion sources during a 7 day monitoring period using mixed effects linear models with adjustment for ambient PM2.5 levels. Mean hourly indoor PM2.5 concentrations were higher (p = 0.04 for the 14 homes with wood stove use (15.6 μg/m3 than for the 22 homes without (12.6 μg/m3. Moreover, mean hourly PM2.5 was higher (p = 0.001 for use of wood stoves made before 1997 (6 homes, 20.2 μg/m3, when wood stove emission limits were instituted in Norway, compared to newer wood stoves (8 homes, 11.9 μg/m3 which had mean hourly values similar to control homes. Increased PM2.5 levels during diary-reported burning of candles was detected independently of concomitant wood stove use. These results suggest that self-reported use of wood stoves, particularly older stoves, and other combustion sources, such as candles, are associated with indoor PM2.5 measurements in an urban population from a high income country.

  16. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer

  17. Wood-burning appliances and indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Benoit; Allaire, Sylvain; Gauvin, Denis; Gingras, Suzanne; Rhainds, Marc; Prud' Homme, Henri; Duchesne, Jean-Francois [CHUQ-Centre de Recherche du CHUL, Unite de Recherche en Sante Publique, 2400, d' Estimauville, Beauport, G1E 7G9 Quebec (Canada); Koutrakis, Petros [Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115 (United States)

    2001-12-17

    Wood heating represents an interesting economic alternative to electrical or heating oil and gas systems. However, many people are concerned about poor indoor air quality in homes equipped with wood-burning appliances. We conducted a study in the Quebec City region (Canada) to verify the extent of indoor air contamination, and to examine the frequency of respiratory symptoms and illnesses among occupants of wood-heated homes. One child attending primary school (median=8 years old; range=5-14 years old) and an adult (median=37 years old; range=23-52 years old) were recruited in each eligible house. Eligible houses were without known sources of combustion products (smokers, attached garage, oil or gas furnace, gas stove, etc.) except for wood-burning appliance. Out of the 89 houses included in the study, 59 had wood-burning appliances. Formaldehyde, nitrogen dioxide, respirable particles (PM10) and carbon monoxide were measured in a sub-set of 49 houses (41 with a wood-burning appliance and 8 without). The frequency of respiratory symptoms and diseases among participants were documented using a daily symptom diary. Concentrations of contaminants were low in most houses, both with or without a wood-burning appliance. Globally, there was no consistent relationship between the presence of a wood-burning appliance and respiratory morbidity in residents. Nevertheless, residents who mentioned being exposed to fumes emitted by such an appliance reported more respiratory illnesses and symptoms. The presence of animals or molds, and keeping windows closed most of the time in winter were other factors associated with respiratory problems. We conclude that wood burning appears to be a respiratory health risk for occupants if the appliance is not maintained and used properly.

  18. Catalytic reduction of methane/unburned hydrocarbons in smoke from lean-burn gas engines

    International Nuclear Information System (INIS)

    Wit, Jan de.

    1999-01-01

    The aim of this project has been: To describe the flue gas conditions of typical stationary gas engines for cogeneration; To evaluate the predominant causes of deactivation of oxidation catalysts under realistic operation conditions; To develop improved long-term stable oxidation catalysts; To evaluate alternative catalyst-based methane reduction technologies. Most gas engines for stationary purposes are efficient lean-burn gas engines. Both the high efficiency and the very lean operation lead to low exhaust temperatures. However, there is now a tendency to design engines with un-cooled exhaust manifolds. This leads to higher shaft efficiency and increases the exhaust temperature. Exhaust gas composition and temperatures during continuous operation and start/stops are given in this report. Analyses have been made of catalyst samples to find predominant causes for oxidation catalyst deactivation. The analyses have shown that the presence of sulphur dioxide in the flue gas causes sulphur poisoning on the active catalyst surface. This effect is dependent on both the catalyst formulation and the catalyst support material composition. Neither sintering, nor other poisoning components than sulphur have been on the examined catalyst samples. The sulphur dioxide in the exhaust is a result of the sulphur in the odorisation additive used in the natural gas (approx. 10 mg/n 3 m THT) and of the sulphur present in combusted lubrication oil. These sources leads to a level of approx. 0.3 - 0.6 ppm (vol) SO 2 in the exhaust gas. Based on a large number of laboratory tests, a new oxidation catalyst formulation has been developed and successfully tested over 5000 hours of operation at a commercial cogeneration plant. This long-term testing has been additionally supplemented by short-term testings at test sites to see performance under other operation conditions. It has been shown that a rise in flue gas temperature (from e.g. 450 deg. C) will significantly reduce the necessary

  19. Field performance of wood-burning and coal-burning appliances in Crested Butte during the 1989-90 heating season. Final report

    International Nuclear Information System (INIS)

    Jaasma, D.R.; Champion, M.R.; Gundappa, M.

    1991-10-01

    The field performance of woodburning and coalburning appliances in and around Crested Butte, CO, has been evaluated. Measurements included particulate matter (PM), carbon monoxide (CO), and weekly average burn rates. Woodburning appliances included conventional airtight stoves, EPA-certified catalytic stoves, and EPA-certified noncatalytic stoves. Compared to the emissions measured from conventional stoves, the certified stoves reduced PM emission factors (g/kg) by 53% and CO emission factors by 49%. Coalburning appliances included a commercial scale boiler, a residential stoker, and hand-fired coalstove. The coalburning appliances were compared to conventional woodstoves on a grams of pollutant per joule of heat output basis. The automatically stoked coal appliances reduced PM and CO emissions by roughly 84% and 85%, respectively. The hand-fired stove was cleaner than expected, reducing PM by 55% and CO by 27%

  20. Behaviour of fission gas in the rim region of high burn-up UO2 fuel pellets with particular reference to results from an XRF investigation

    International Nuclear Information System (INIS)

    Mogensen, M.; Walker, C.T.

    1999-01-01

    XRF and EPMA results for retained xenon from Battelle's high burn-up effects program are re-evaluated. The data reviewed are from commercial low enriched BWR fuel with burn-ups of 44.8-54.9 GWd/tU and high enriched PWR fuel with burn-ups from 62.5 to 83.1 GWd/tU. It is found that the high burn-up structure penetrated much deeper than initially reported. The local burn-up threshold for the formation of the high burn-up structure in those fuels with grain sizes in the normal range lay between 60 and 75 GWd/tU. The high burn-up structure was not detected by EPMA in a fuel that had a grain size of 78 μm although the local burn-up at the pellet rim had exceeded 80 GWd/tU. It is concluded that fission gas had been released from the high burn-up structure in three PWR fuel sections with burn-ups of 70.4, 72.2 and 83.1 GWd/tU. In the rim region of the last two sections at the locations where XRF indicated gas release the local burn-up was higher than 75 GWd/tU. (orig.)

  1. The atomization and burning of biofuels in the combustion chambers of gas turbine engines

    Science.gov (United States)

    Maiorova, A. I.; Vasil'ev, A. Yu; Sviridenkov, A. A.; Chelebyan, O. G.

    2017-11-01

    The present work analyzes the effect of physical properties of liquid fuels with high viscosity (including biofuels) on the spray and burning characteristics. The study showed that the spray characteristics behind devices well atomized fuel oil, may significantly deteriorate when using biofuels, until the collapse of the fuel bubble. To avoid this phenomenon it is necessary to carry out the calculation of the fuel film form when designing the nozzles. As a result of this calculation boundary curves in the coordinates of the Reynolds number on fuel - the Laplace number are built, characterizing the transition from sheet breakup to spraying. It is shown that these curves are described by a power function with the same exponent for nozzles of various designs. The swirl of air surrounding the nozzle in the same direction, as the swirl of fuel film, can significantly improve the performance of atomization of highly viscous fuel. Moreover the value of the tangential air velocity has the determining influence on the film shape. For carrying out of hot tests in aviation combustor some embodiments of liquid fuels were proved and the most preferred one was chosen. Fire tests of combustion chamber compartment at conventional fuel has shown comprehensible characteristics, in particular wide side-altars of the stable combustion. The blended biofuel application makes worse combustion stability in comparison with kerosene. A number of measures was recommended to modernize the conventional combustors when using biofuels in gas turbine engines.

  2. Fuelwood and stoves: lessons from Zimbabwe

    Energy Technology Data Exchange (ETDEWEB)

    Gill, J

    1983-03-01

    Laboratory tests on traditional open fires as methods of cooking give values of thermal efficiency varying from 12-30%. These are significantly higher than values which are widely quoted in the literature. The results of a research visit to Zimbabwe indicated that in three villages fuel efficiency did not appear to be the main determinant of choice of cooking method: villagers had changed from their traditional mode of cooking to stoves which they perceived to consume substantially more fuel. These stoves enable meals to be prepared more quickly which the women found useful during the busy months. The increased labour costs could be borne because the fuel was gathered during the slack season.

  3. Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency

    Science.gov (United States)

    Bertrand, Amelie; Stefenelli, Giulia; Bruns, Emily A.; Pieber, Simone M.; Temime-Roussel, Brice; Slowik, Jay G.; Prévôt, André S. H.; Wortham, Henri; El Haddad, Imad; Marchand, Nicolas

    2017-11-01

    To reduce the influence of biomass burning on air quality, consumers are encouraged to replace their old woodstove with new and cleaner appliances. While their primary emissions have been extensively investigated, the impact of atmospheric aging on these emissions, including secondary organic aerosol (SOA) formation, remains unknown. Here, using an atmospheric smog chamber, we aim at understanding the chemical nature and quantify the emission factors of the primary organic aerosols (POA) from three types of appliances for residential heating, and to assess the influence of aging thereon. Two, old and modern, logwood stoves and one pellet burner were operated under typical conditions. Emissions from an entire burning cycle (past the start-up operation) were injected, including the smoldering and flaming phases, resulting in highly variable emission factors. The stoves emitted a significant fraction of POA (up to 80%) and black carbon. After ageing, the total mass concentration of organic aerosol (OA) increased on average by a factor of 5. For the pellet stove, flaming conditions were maintained throughout the combustion. The aerosol was dominated by black carbon (over 90% of the primary emission) and amounted to the same quantity of primary aerosol emitted by the old logwood stove. However, after ageing, the OA mass was increased by a factor of 1.7 only, thus rendering OA emissions by the pellet stove almost negligible compared to the other two stoves tested. Therefore, the pellet stove was the most reliable and least polluting appliance out of the three stoves tested. The spectral signatures of the POA and aged emissions by a High Resolution - Time of Flight - Aerosol Mass Spectrometer (Electron Ionization (EI) at 70 eV) were also investigated. The m/z 44 (CO2+) and high molecular weight fragments (m/z 115 (C9H7+), 137 (C8H9O2+), 167 (C9H11O3+) and 181 (C9H9O4+, C14H13+)) correlate with the modified combustion efficiency (MCE) allowing us to discriminate further

  4. Nonlinear dynamics of cycle-to-cycle combustion variations in a lean-burn natural gas engine

    International Nuclear Information System (INIS)

    Li Guoxiu; Yao Baofeng

    2008-01-01

    Temporal dynamics of the combustion process in a lean-burn natural gas engine was studied by the analysis of time series of consecutive experimental in-cylinder pressure data in this work. Methods borrowed to the nonlinear dynamical system theory were applied to analyze the in-cylinder pressure time series under operating conditions with different equivalence ratio. Phase spaces were reconstructed from the in-cylinder pressure time series and Poincare section calculated from each phase space. Poincare sections show that the in-cylinder combustion process involves chaotic behavior. Furthermore, return maps plotted from time series of indicated mean effective pressure show that both nonlinear deterministic components and stochastic components are involved in the dynamics of cycle-to-cycle combustion variations in the lean burn natural gas engine. There is a transition from stochastic behavior to noisy nonlinear determinism as equivalence ratio decreases from near stoichiometric to very lean conditions

  5. Nonlinear dynamics of cycle-to-cycle combustion variations in a lean-burn natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Li Guoxiu [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)], E-mail: gxli@bjtu.edu.cn; Yao Baofeng [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2008-04-15

    Temporal dynamics of the combustion process in a lean-burn natural gas engine was studied by the analysis of time series of consecutive experimental in-cylinder pressure data in this work. Methods borrowed to the nonlinear dynamical system theory were applied to analyze the in-cylinder pressure time series under operating conditions with different equivalence ratio. Phase spaces were reconstructed from the in-cylinder pressure time series and Poincare section calculated from each phase space. Poincare sections show that the in-cylinder combustion process involves chaotic behavior. Furthermore, return maps plotted from time series of indicated mean effective pressure show that both nonlinear deterministic components and stochastic components are involved in the dynamics of cycle-to-cycle combustion variations in the lean burn natural gas engine. There is a transition from stochastic behavior to noisy nonlinear determinism as equivalence ratio decreases from near stoichiometric to very lean conditions.

  6. ‘Oorja’ in India: Assessing a large-scale commercial distribution of advanced biomass stoves to households

    Science.gov (United States)

    Thurber, Mark C.; Phadke, Himani; Nagavarapu, Sriniketh; Shrimali, Gireesh; Zerriffi, Hisham

    2015-01-01

    Replacing traditional stoves with advanced alternatives that burn more cleanly has the potential to ameliorate major health problems associated with indoor air pollution in developing countries. With a few exceptions, large government and charitable programs to distribute advanced stoves have not had the desired impact. Commercially-based distributions that seek cost recovery and even profits might plausibly do better, both because they encourage distributors to supply and promote products that people want and because they are based around properly-incentivized supply chains that could more be scalable, sustainable, and replicable. The sale in India of over 400,000 “Oorja” stoves to households from 2006 onwards represents the largest commercially-based distribution of a gasification-type advanced biomass stove. BP's Emerging Consumer Markets (ECM) division and then successor company First Energy sold this stove and the pelletized biomass fuel on which it operates. We assess the success of this effort and the role its commercial aspect played in outcomes using a survey of 998 households in areas of Maharashtra and Karnataka where the stove was sold as well as detailed interviews with BP and First Energy staff. Statistical models based on this data indicate that Oorja purchase rates were significantly influenced by the intensity of Oorja marketing in a region as well as by pre-existing stove mix among households. The highest rate of adoption came from LPG-using households for which Oorja's pelletized biomass fuel reduced costs. Smoke- and health-related messages from Oorja marketing did not significantly influence the purchase decision, although they did appear to affect household perceptions about smoke. By the time of our survey, only 9% of households that purchased Oorja were still using the stove, the result in large part of difficulties First Energy encountered in developing a viable supply chain around low-cost procurement of “agricultural waste” to

  7. Impact of cleaner fuel use and improved stoves on acute respiratory infections: evidence from India.

    Science.gov (United States)

    Lamichhane, Prabhat; Sharma, Anurag; Mahal, Ajay

    2017-11-01

    The use of cleaner fuel and improved stoves has been promoted as a means to lower harmful emissions from solid fuels. However, little is known about how exclusive use of cleaner fuels, mixed fuel use and improved stoves influences children's health. We compared the impact of using liquefied petroleum gas (LPG) exclusively with mixed fuel use (LPG plus polluting fuels) and with exclusive use of polluting fuels on acute respiratory infections (ARI) among 16 157 children 0-4 years of age from households in the 2012 Indian Human Development Survey. Inverse probability weighting (IPW) procedures for multiple treatments were used for this evaluation. Children from households using LPG had a 5.0% lower probability of reporting ARI relative to exclusive users of polluting fuels, with larger effects (10.7%) in rural households. The probability of ARI in households using improved stoves and mixed fuel use was also lower in rural households, by 2.9% and 2.8%, respectively. The magnitude of effect varied across population subgroups, with the highest effects for children living in households living in kachha (low quality material) houses households identified as poor. Use of LPG and improved stoves lowered the probability of ARI among children younger than 5 years. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Plutonium-burn high temperature gas-cooled reactor for 3E+3S

    International Nuclear Information System (INIS)

    Okamoto, Koji

    2015-01-01

    The Nuclear Energy Development in Japan is facing a very difficult conditions after Fukushima-Daiichi NPP Accident. Nuclear Energy has strong advantages on 3E, i.e., Energy security, Economical efficiency and Environment. However, people does not believe the Safety 'S' of Nuclear Energy, now. The disadvantage of 'S' overrides the advantages of '3E'. In Nuclear Energy, 'S' is expanded into 3S, i.e., Safety, Security and Safeguards. Especially, the management of Plutonium inventory in Spent Fuel generated by the NPP operation is very important in the viewpoints of non-proliferation. The high-temperature gas cooled reactor (HTGR) is the solution of these disadvantages of '3S' in Nuclear Energy. The fuel of HTGR is composed by 1 mm spherical fuel particle, i.e., TRISO made by fuel, graphite and silicon-carbide. The silicon-carbide can confine the fission products in any conditions of fuel life cycle, i.e., during operation, accidents and disposal for 1 million years. The confinement of the radioactive materials can be confirmed by the TRISO. The HTGR core has strong negative feedback for temperature. So, the fission automatically stopped at the accidental conditions, such as loss of flow and LOCA. Also, the residual heat can be cooled by the radiation heat transfer to reactor vessel wall. The HTGR system usually has passive vessel wall cooling system. When the passive cooling system had been failed, the heat can be transferred to the land by heat conductions, and fuel does not reach the SiC broken temperature. The fission chain reaction has been stopped automatically by negative feedback, i.e., physics. The residual heat had been cooled automatically by radiation. The radioactive materials had been confined automatically by silicon-carbide. The HTGR is superior for 'S' safety. Plutonium can be burned by the HTGR. In the viewpoints of non-proliferation, the fuel should be made by YSZ-PuO 2 , stabilized buffer

  9. The Effect of Humidity on the Knock Behavior in a Medium BMEP Lean-Burn High-Speed Gas Engine

    NARCIS (Netherlands)

    van Essen, Vincent Martijn; Gersen, Sander; van Dijk, Gerco; Mundt, Torsten; Levinsky, Howard

    2016-01-01

    The effects of air humidity on the knock characteristics of fuels are investigated in a lean-burn, high-speed medium BMEP engine fueled with a CH4 + 4.7 mole% C3H8 gas mixture. Experiments are carried out with humidity ratios ranging from 4.3 to 11 g H2O/kg dry air. The measured pressure profiles at

  10. Gasification Performance of a Top-Lit Updraft Cook Stove

    Directory of Open Access Journals (Sweden)

    Yogesh Mehta

    2017-10-01

    Full Text Available This paper reports on an experimental study of a top-lit updraft cook stove with a focus on gasification. The reactor is operated with primary air only. The performance is studied for a variation in the primary airflow, as well as reactor geometry. Temperature in the reactor, air flow rate, fuel consumption rate, and producer gas composition were measured. From the measurements the superficial velocity, pyrolysis front velocity, peak bed temperature, air fuel ratio, heating value of the producer gas, and gasification rate were calculated. The results show that the producer gas energy content was maximized at a superficial velocity of 9 cm/s. The percent char remaining at the end of gasification decreased with increasing combustion chamber diameter. For a fixed superficial velocity, the gasification rate and producer gas energy content were found to scale linearly with diameter. The energy content of the producer gas was maximized at an air fuel (AF ratio of 1.8 regardless of the diameter.

  11. Effect of Machine Smoking Intensity and Filter Ventilation Level on Gas-Phase Temperature Distribution Inside a Burning Cigarette

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available Accurate measurements of cigarette coal temperature are essential to understand the thermophysical and thermo-chemical processes in a burning cigarette. The last system-atic studies of cigarette burning temperature measurements were conducted in the mid-1970s. Contemporary cigarettes have evolved in design features and multiple standard machine-smoking regimes have also become available, hence there is a need to re-examine cigarette combustion. In this work, we performed systematic measurements on gas-phase temperature of burning cigarettes using an improved fine thermocouple technique. The effects of machine-smoking parameters (puff volume and puff duration and filter ventilation levels were studied with high spatial and time resolutions during single puffs. The experimental results were presented in a number of differ-ent ways to highlight the dynamic and complex thermal processes inside a burning coal. A mathematical distribution equation was used to fit the experimental temperature data. Extracting and plotting the distribution parameters against puffing time revealed complex temperature profiles under different coal volume as a function of puffing intensities or filter ventilation levels. By dividing the coal volume prior to puffing into three temperature ranges (low-temperature from 200 to 400 °C, medium-temperature from 400 to 600 °C, and high-temperature volume above 600 °C by following their development at different smoking regimes, useful mechanistic details were obtained. Finally, direct visualisation of the gas-phase temperature through detailed temperature and temperature gradient contour maps provided further insights into the complex thermo-physics of the burning coal. [Beitr. Tabakforsch. Int. 26 (2014 191-203

  12. Development of fast-burn combustion with elevated coolant temperatures for natural gas engines. Final report, May 1985-May 1990

    Energy Technology Data Exchange (ETDEWEB)

    Bruch, K.L.; Dennis, J.W.

    1990-09-01

    The overall objective of the work was to improve the state of the art in the gas fired spark ignited engine for use in a cogeneration system. Four characteristics were enhanced for cogeneration, namely, Low Pressure Gas Induction, Improved Shaft Thermal Efficiency, Low NOx Emissions, and Increased Jacket Coolant Temperature. Using Taguchi methods and statistical design of experiment methodologies, an engine design evolved that exhibited: The ability to run satisfactorily on supply gas pressure as low as 1.5 psig (goal: 1 psig); A brake specific fuel consumption as low as 6950 Btu/hp-hr (36.6% thermal efficiency) at 2 gm/hp-hr NOx (goal: 7000 acceptable, 6800 excellent with NOx no more than 2 gm/hp-hr); A jacket water coolant system (with oil cooler on the same circuit) temperature of 225 F (goal); and The ability to burn gas with Methane Number as low as 67 (goal).

  13. Survey report for fiscal 1998 on the conversion of the existing coal burning power plant to natural gas burning plant in Sakhalin State; 1998 nendo Saharinshu muke, kisetsu sekitandaki hatsuden no tennen gas daki tenkan chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The present survey is intended to discuss a modernization plan effective in reducing greenhouse effect gases for the two existing coal burning power plants in Sakhalin Island, Sakhalin State, the Federal Republic of Russia. The power plants are Sakhalinskaya Power Plant (GRES) and Yuzhno Sakalinskaya Power Plant (TETs-1). Simultaneously with converting the fuel from coal to natural gas, discussions are given on an optimal plan including introduction of the combined cycle and repowering technologies aiming at improving the thermal efficiency. Reduction in greenhouse effect gases, finance, and economy are evaluated. At the same time, verification will be given on environment improvement in Sakhalin Island, and influence on sustainable economic and social activation. The GRES modernization plan intends to build four combined cycle units each of 80 MW class to have nearly the same total capacity as the current total power generation facility capacity (315 MW). The TETs-1 modernization plan will convert the fuel for the existing boilers from coal to natural gas, modify one of the boilers whose construction is being suspended into gas burning boiler, and add gas turbines. (NEDO)

  14. Coal use, stove improvement, and adult pneumonia mortality in Xuanwei, China: a retrospective cohort study

    Energy Technology Data Exchange (ETDEWEB)

    Shen, M.; Chapman, R.S.; Vermeulen, R.; Tian, L.W.; Zheng, T.Z.; Chen, B.E.; Engels, E.A.; He, X.Z.; Blair, A.; Lan, Q. [NCI, Bethesda, MD (USA)

    2009-02-15

    In Xuanwei County, China, unvented indoor coal burning is strongly associated with increased risk of lung cancer and chronic obstructive pulmonary disease. However, the impact of coal burning and stove improvement on risk of pneumonia is not clear. We conducted a retrospective cohort study among all farmers born 1917 through 1951 and living in Xuanwei as of 1 January 1976. The analysis included a total of 42,422 cohort members. Follow-up identified all deaths in the cohort from 1976 through 1996. Ages at entry into and at exit from follow-up ranged from 24 to 59 years and from 25 to 80 years, respectively. The record search detected 225 deaths from pneumonia, and 32,332 (76%) were alive as of 31 December 1996. We constructed multivariable Cox models (time variable = age) to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Use of coal, especially smokeless coal, was positively associated with pneumonia mortality. Annual tonnage and lifetime duration of smoky and smokeless coal use were positively associated with pneumonia mortality. Stove improvement was associated with a 50% reduction in pneumonia deaths (smoky coal users: HR, 0.521; 95% CI, 0.340-0.798; smokeless coal users: HR, 0.449; 95% CI, 0.215-0.937). Our analysis is the first to suggest that indoor air pollution from unvented coal burning is an important risk factor for pneumonia death in adults and that improving ventilation by installing a chimney is an effective measure to decrease it.

  15. Mitigation of Short-Lived Climate Pollutants from Residential Coal Heating and Combined Heating/Cooking Stoves: Impacts on the Cryosphere, Policy Options, and Co-benefits

    Science.gov (United States)

    Chafe, Z.; Anenberg, S.; Klimont, Z.; Kupiainen, K.; Lewis, J.; Metcalfe, J.; Pearson, P.

    2017-12-01

    Residential solid fuel combustion for cooking, heating, and other energy services contributes to indoor and outdoor air pollution, and creates impacts on the cryosphere. Solid fuel use often occurs in colder climates and at higher elevations, where a wide range of combustion emissions can reduce reflectivity of the snow- and ice-covered surfaces, causing climatic warming. Reducing short-lived climate pollutants (SLCPs), such as black carbon (BC), could have substantial climate and health co-benefits, especially in areas where emissions influence the cryosphere. A review of existing literature and emissions estimates, conducted as part of the Warsaw Summit on BC and Other Emissions from Residential Coal Heating Stoves and Combined Cooking/Heating Stoves, found little nationally-representative data on the fuels and technologies used for heating and combined cooking/heating. The GAINS model estimates that 24 million tonnes of coal equivalent were combusted by households for space heating globally in 2010, releasing 190 kilotons (kt) BC. Emissions from combined cooking/heating are virtually unknown. Policy instruments could mitigate cryosphere-relevant emissions of SLCPs from residential heating or cooking. These include indoor air quality guidelines, stove emission limits, bans on the use of specific fuels, regulatory codes that stipulate when burning can occur, stove changeout programs, and voluntary public education campaigns. These measures are being implemented in countries such as Chile (fuelwood moisture reduction campaign, energy efficiency, heating system improvements), Mongolia (stove renovation, fuel switching), Peru (improved stove programs), Poland (district heating, local fuel bans), United States (stove emission regulation) and throughout the European Community (Ecodesign Directive). Few, if any, of these regulations are likely to reduce emissions from combined cooking/heating. This research team found no global platform to create and share model

  16. Performance of a domestic cooking wick stove using fatty acid methyl esters (FAME) from oil plants in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Wagutu, Agatha W.; Chhabra, Sumesh C.; Lang' at-Thoruwa, Caroline C. [Department of Chemistry, Kenyatta University, P.O. Box 43844-0100, Nairobi (Kenya); Thoruwa, Thomas F.N. [Department of Energy Engineering, Kenyatta University, P.O. Box 43844, Nairobi (Kenya); Mahunnah, R.L.A. [University of Dar-es Salaam, Muhimbili College of Medicine, P.O. Box 53486, Dar-es Salaam (Tanzania)

    2010-08-15

    With depletion of solid biomass fuels and their rising costs in recent years, there has been a shift towards using kerosene and liquefied petroleum gas (LPG) for domestic cooking in Kenya. However, the use of kerosene is associated with health and safety problems. Therefore, it is necessary to develop a clean, safe and sustainable liquid bio-fuel. Plant oil derivatives fatty acid methyl esters (FAME) present such a promising solution. This paper presents the performance of a wick stove using FAME fuels derived from oil plants: Jatropha curcus L. (Physic nut), Croton megalocarpus Hutch, Calodendrum capense (L.f.) Thunb., Cocos nucifera L. (coconut), soyabeans and sunflower. The FAME performance tests were based on the standard water-boiling tests (WBT) and compared with kerosene. Unlike kerosene all FAME fuels burned with odorless and non-pungent smell generating an average firepower of 1095 W with specific fuel consumption of 44.6 g L{sup -1} (55% higher than kerosene). The flash points of the FAME fuels obtained were typically much higher (2.3-3.3 times) than kerosene implying that they are much safer to use than kerosene. From the results obtained, it was concluded that the FAME fuels have potential to provide safe and sustainable cooking liquid fuel in developing countries. (author)

  17. Performance of a domestic cooking wick stove using fatty acid methyl esters (FAME) from oil plants in Kenya

    International Nuclear Information System (INIS)

    Wagutu, Agatha W.; Thoruwa, Thomas F.N.; Chhabra, Sumesh C.; Lang'at-Thoruwa, Caroline C.; Mahunnah, R.L.A.

    2010-01-01

    With depletion of solid biomass fuels and their rising costs in recent years, there has been a shift towards using kerosene and liquefied petroleum gas (LPG) for domestic cooking in Kenya. However, the use of kerosene is associated with health and safety problems. Therefore, it is necessary to develop a clean, safe and sustainable liquid bio-fuel. Plant oil derivatives fatty acid methyl esters (FAME) present such a promising solution. This paper presents the performance of a wick stove using FAME fuels derived from oil plants: Jatropha curcus L. (Physic nut), Croton megalocarpus Hutch, Calodendrum capense (L.f.) Thunb., Cocos nucifera L. (coconut), soyabeans and sunflower. The FAME performance tests were based on the standard water-boiling tests (WBT) and compared with kerosene. Unlike kerosene all FAME fuels burned with odorless and non-pungent smell generating an average firepower of 1095 W with specific fuel consumption of 44.6 g L -1 (55% higher than kerosene). The flash points of the FAME fuels obtained were typically much higher (2.3-3.3 times) than kerosene implying that they are much safer to use than kerosene. From the results obtained, it was concluded that the FAME fuels have potential to provide safe and sustainable cooking liquid fuel in developing countries.

  18. Criterion for burn-up conditions in gas-cooled cryogenic current leads

    International Nuclear Information System (INIS)

    Bejan, A.; Cluss, E.M. Jr.

    1976-01-01

    Superconducting magnets are energized through helium vapour-cooled cryogenic current leads operating at high ratios of current to mass flow. The high current operation where lead temperature, runaway, and eventual burn-up are likely to occur is investigated. A simple criterion for estimating the burn-up operation conditions (current, mass flow) for a given lead geometry (cross-sectional area, length, heat exchanger area) is presented. This article stresses the role played by the available heat exchanger area in avoiding burn-up at high ratios of current to mass flow. (author)

  19. Influence of cooled exhaust gas recirculation on performance, emissions and combustion characteristics of LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Pradeep Bhasker, J.; Alexander, Jim; Porpatham, E.

    2017-11-01

    On fuel perspective, Liquefied Petroleum Gas (LPG) provides cleaner emissions and also facilitates lean burn signifying less fuel consumption and emissions. Lean burn technology can attain better efficiencies and lesser combustion temperatures but this temperature is quite sufficient to facilitate formation of nitrogen oxide (NOx). Exhaust Gas Recirculation (EGR) for NOx reduction has been considered allover but extremely little literatures exist on the consequence of EGR on lean burn LPG fuelled spark ignition (SI) engine. The following research is carried out to find the optimal rate of EGR addition to reduce NOx emissions without settling on performance and combustion characteristics. A single cylinder diesel engine is altered to operate as LPG fuelled SI engine at a compression ratio of 10.5:1 and arrangements to provide different ratios of cooled EGR in the intake manifold. Investigations are done to arrive at optimum ratio of the EGR to reduce emissions without compromising on performance. Significant reductions in NOx emissions alongside HC and CO emissions were seen. Higher percentages of EGR further diluted the charge and lead to improper combustion and thus increased hydrocarbon emissions. Cooled EGR reduced the peak in-cylinder temperature which reduced NOx emissions but lead to misfire at lower lean limits.

  20. Verification to the RSG-GAS fuel discharge burn-up using SRAC2006 module of COREBN/HIST

    International Nuclear Information System (INIS)

    J-Susilo; T-M-Sembiring; G-R-Sunaryo; M-Imron

    2018-01-01

    For 30 years operation, some of the modifications to the RSG GAS core has been done, that are changes included the type of fuel from U 3 O 8 -Al to U 3 Si 2 -Al with the same density 2.96 gU/cc, the loading pattern of standard fuel elements/fuel control elements from 6/1 & 6/2 to 5/1 pattern, and in core fuel management calculation tool has been change from IAFUEL to BATAN-FUEL. To obtain an extension of the operating license for the next 10 years, the RSG-GAS Periodic Safety Assessment Document is need to prepared. According to the Regulatory Body Chairman Regulation No. 2 2015, RSG-GAS safety assessment should be done independently. As part of this assessment the fuel discharge burn-up must be estimated. In this research, to ensure that the misposition of fuel element in the core has not occurred, the investigation to the document operating report related the fuel placement has been done. Therefore, by using 78 th to 93 rd operation data, verify of the fuel discharge burn-up of the RSG-GAS has been performed by using SRAC2006 module of COREBN/HIST. In addition, the results of these calculations are also made comparative with the operating report data that is calculated by using BATAN-FUEL. Maximum fuel discharge burn-up (57.73 % of U-235) was verified still under permissible value determined by the regulatory body (<60 % of U-235). Maximum differences value between two computer codes was about 2.12 % of U-235 (3.80 %) that is fuel at the B-7 position. Fuel discharge burn-up of RSG-GAS showed almost the same value for each the operation cycle, range of 1.52 % of U-235. So it can be concluded that the RSG-GAS core operation over the last ten years was in good fuel management performance, in accordance with the design. BATAN-FUEL has been conformed well enough with COREBN/HIST. (author)

  1. CO and NO emissions from pellet stoves: an experimental study

    Science.gov (United States)

    Petrocelli, D.; Lezzi, A. M.

    2014-04-01

    This work presents a report on an experimental investigation on pellet stoves aimed to fully understand which parameters influence CO and NO emissions and how it is possible to find and choose the optimal point of working. Tests are performed on three pellet stoves varying heating power, combustion chamber size and burner pot geometry. After a brief review on the factors which influence the production of these pollutants, we present and discuss the results of experimental tests aimed to ascertain how the geometry of the combustion chamber and the distribution of primary and secondary air, can modify the quantity of CO and NO in the flue gas. Experimental tests show that production of CO is strongly affected by the excess air and by its distribution: in particular, it is critical an effective control of air distribution. In these devices a low-level of CO emissions does require a proper setup to operate in the optimal range of excess air that minimizes CO production. In order to simplify the optimization process, we propose the use of instantaneous data of CO and O2 concentration, instead of average values, because they allow a quick identification of the optimal point. It is shown that the optimal range of operation can be enlarged as a consequence of proper burner pot design. Finally, it is shown that NO emissions are not a critical issue, since they are well below threshold enforced by law, are not influenced by the distribution of air in the combustion chamber, and their behavior as a function of air excess is the same for all the geometries investigated here.

  2. CO and NO emissions from pellet stoves: an experimental study

    International Nuclear Information System (INIS)

    Petrocelli, D; Lezzi, A M

    2014-01-01

    This work presents a report on an experimental investigation on pellet stoves aimed to fully understand which parameters influence CO and NO emissions and how it is possible to find and choose the optimal point of working. Tests are performed on three pellet stoves varying heating power, combustion chamber size and burner pot geometry. After a brief review on the factors which influence the production of these pollutants, we present and discuss the results of experimental tests aimed to ascertain how the geometry of the combustion chamber and the distribution of primary and secondary air, can modify the quantity of CO and NO in the flue gas. Experimental tests show that production of CO is strongly affected by the excess air and by its distribution: in particular, it is critical an effective control of air distribution. In these devices a low-level of CO emissions does require a proper setup to operate in the optimal range of excess air that minimizes CO production. In order to simplify the optimization process, we propose the use of instantaneous data of CO and O2 concentration, instead of average values, because they allow a quick identification of the optimal point. It is shown that the optimal range of operation can be enlarged as a consequence of proper burner pot design. Finally, it is shown that NO emissions are not a critical issue, since they are well below threshold enforced by law, are not influenced by the distribution of air in the combustion chamber, and their behavior as a function of air excess is the same for all the geometries investigated here.

  3. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States

    Science.gov (United States)

    Burling, I. R.; Yokelson, R. J.; Griffith, D. W. T.; Johnson, T. J.; Veres, P.; Roberts, J. M.; Warneke, C.; Urbanski, S. P.; Reardon, J.; Weise, D. R.; Hao, W. M.; de Gouw, J.

    2010-11-01

    Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP-FTIR) spectrometer for measurement of gas-phase species. The OP-FTIR detected and quantified 19 gas-phase species in these fires: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. Emission factors for these species are presented for each vegetation type burned. Gas-phase nitrous acid (HONO), an important OH precursor, was detected in the smoke from all fires. The HONO emission factors ranged from 0.15 to 0.60 g kg-1 and were higher for the southeastern fuels. The fire-integrated molar emission ratios of HONO (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values also observed for the southeastern fuels. The majority of non-methane organic compound (NMOC) emissions detected by OP-FTIR were oxygenated volatile organic compounds (OVOCs) with the total identified OVOC emissions constituting 61 ± 12% of the total measured NMOC on a molar basis. These OVOC may undergo photolysis or further oxidation contributing to ozone formation. Elevated amounts of gas-phase HCl and SO2 were also detected during flaming combustion, with the amounts varying greatly depending on location and vegetation type. The fuels with the highest HCl emission factors were all located in the coastal regions, although HCl was also observed from fuels farther inland. Emission factors for HCl were generally higher for the southwestern fuels, particularly those found in the chaparral biome in the coastal regions of California.

  4. Violates stem wood burning sustainable development?

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2008-01-01

    friendly effects of substituting wood burning for fossil fuels. With reference to Bent Sørensen's classical work on 'Renewable Energy' the assumption of CO2-neutrality regarding incineration is problematised when applied to plants with long rotation periods as trees. Registered CO2-emissions from wood...... burning are characterised together with particle and PAH emissions. The positive treatment of wood stove-technology in the Danish strategy for sustainable development (draft 2007) is critically evaluated and approaches to better regulation are identified....

  5. Performance evaluation of a powered charcoal stove using different ...

    African Journals Online (AJOL)

    A powered stove was designed to effectively utilized biomass, quickly start and maintain fire and reduce cooking time. The stove consists of a blower with hand winder and a fuel carrier. Performance evaluation carried out show that boiling time decreased with increased volumetric air flow rate for all the biomass used.

  6. Fuel efficient stoves for the poorest two billion

    Science.gov (United States)

    Gadgil, Ashok

    2012-03-01

    About 2 billion people cook their daily meals on generally inefficient, polluting, biomass cookstoves. The fuels include twigs and leaves, agricultural waste, animal dung, firewood, and charcoal. Exposure to resulting smoke leads to acute respiratory illness, and cancers, particularly among women cooks, and their infant children near them. Resulting annual mortality estimate is almost 2 million deaths, higher than that from malaria or tuberculosis. There is a large diversity of cooking methods (baking, boiling, long simmers, brazing and roasting), and a diversity of pot shapes and sizes in which the cooking is undertaken. Fuel-efficiency and emissions depend on the tending of the fire (and thermal power), type of fuel, stove characteristics, and fit of the pot to the stove. Thus, no one perfect fuel-efficient low-emitting stove can suit all users. Affordability imposes a further severe constraint on the stove design. For various economic strata within the users, a variety of stove designs may be appropriate and affordable. In some regions, biomass is harvested non-renewably for cooking fuel. There is also increasing evidence that black carbon emitted from stoves is a significant contributor to atmospheric forcing. Thus improved biomass stoves can also help mitigate global climate change. The speaker will describe specific work undertaken to design, develop, test, and disseminate affordable fuel-efficient stoves for internally displaced persons (IDPs) of Darfur, Sudan, where the IDPs face hardship, humiliation, hunger, and risk of sexual assault owing to their dependence on local biomass for cooking their meals.

  7. Improvement Design of an Existing Atomized Kerosene Stove for ...

    African Journals Online (AJOL)

    The existing atomized kerosene stove being used in some households in Nigeria does not give room for primary air fuel mixture but secondary one before combustion. This in turn leads to higher specific fuel consumption and ultimately lower thermal efficiency (resulting from low combustion efficiency) of the stove. In order ...

  8. Emission of Dioxins from Danish Wood-Stoves

    DEFF Research Database (Denmark)

    Vikelsøe, J.; Madsen, Henrik; Hansen, K.

    1994-01-01

    The main purpose of the investigation was to estimate the annual dioxin emission from Danish wood-stoves. 4 stoves of different designs and 3 types of fuel were tested in 2 operating conditions. Sampling was carried out in a dilution tunnel, making reproducible sampling possible. The dioxin...

  9. Total surface area change of Uranium dioxide fuel in function of burn-up and its impact on fission gas release during neutron irradiation for small, intermediate and high burn-up

    International Nuclear Information System (INIS)

    Szuta, M.

    2011-01-01

    In the early published papers it was observed that the fractional fission gas release from the specimen have a tendency to increase with the total surface area of the specimen - a fairy linear relationship was indicated. Moreover it was observed that the increase of total surface area during irradiation occurs in the result of connection the closed porosity with the open porosity what in turn causes the increase of fission gas release. These observations let us surmise that the process of knock-out release is the most significant process of fission gas release since its quantity is proportional to the total surface area. Review of the experiments related to the increase of total surface area in function of burn-up is presented in the paper. For very high burn-up the process of grain sub-division (polygonization) occurs under condition that the temperature of irradiated fuel lies below the temperature of grain re-crystallization. Simultaneously with the process of polygonization, the increase in local porosity and the decrease in local density in function of burn-up occurs, which leads to the increase of total surface area. It is suggested that the same processes take place in the transformed fuel as in the original fuel, with the difference that the total surface area is so big that the whole fuel can be treated as that affected by the knock-out process. This leads to explanation of the experimental data that for very high burn-up (>120 MWd/kgU) the concentration of xenon is constant. An explanation of the grain subdivision process in function of burn-up in the 'athermal' rim region in terms of total surface area, initial grain size and knock-out release is undertaken. Correlation of the threshold burn-up, the local fission gas concentration, local total surface area, initial and local grain size and burn-up in the rim region is expected. (author)

  10. Poverty alleviation aspects of successful improved household stoves programmes

    International Nuclear Information System (INIS)

    2000-01-01

    Programmes to improve household wood and charcoal stove efficiencies have been launched throughout the developing world over the past 20 years. Their main driver has been to reduce environmental degradation resulting from the removal of trees for charcoal and fuel wood production. In addition, health benefits arise from the reduction or removal of smoke in people's homes. Unfortunately, many programmes have failed to establish sustainable improved stove production - primarily through lack of sufficient attention to consumer tastes and market dynamics. This project, carried out in Kenya, Ethiopia and Uganda, has identified key success factors for sustainable stove production and supply by determining the poverty impacts of successful, commercially-based, improved household biomass stove programmes on producers, consumers and others associated with the household fuel and stove supply and end-use business. (author)

  11. A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, D. L. [West Virginia Univ., Morgantown, WV (United States)

    2007-05-01

    To meet the ignition system needs of large bore, high pressure, lean burn, natural gas engines a side pumped, passively Q-switched, Nd:YAG laser was developed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn, high compression engine. The laser and associated optics were designed with a passive Q-switch to eliminate the need for high voltage signaling and associated equipment. The laser was diode pumped to eliminate the need for high voltage flash lamps which have poor pumping efficiency. The independent and dependent parameters of the laser were identified and explored in specific combinations that produced consistent robust sparks in laboratory air. Prior research has shown that increasing gas pressure lowers the breakdown threshold for laser initiated ignition. The laser has an overall geometry of 57x57x152 mm with an output beam diameter of approximately 3 mm. The experimentation used a wide range of optical and electrical input parameters that when combined produced ignition in laboratory air. The results show a strong dependence of the output parameters on the output coupler reflectivity, Q-switch initial transmission, and gain media dopant concentration. As these three parameters were lowered the output performance of the laser increased leading to larger more brilliant sparks. The results show peak power levels of up to 3MW and peak focal intensities of up to 560 GW/cm2. Engine testing was performed on a Ricardo Proteus single cylinder research engine. The goal of the engine testing was to show that the test laser performs identically to the commercially available flashlamp pumped actively Q-switched laser used in previous laser ignition testing. The engine testing consisted of a comparison of the in-cylinder, and emissions behavior of the engine using each of the lasers as an ignition system. All engine parameters were kept as constant as possilbe while the equivalence ratio (fueling

  12. Trace gas emissions to the atmosphere by biomass burning in the west African savannas

    Science.gov (United States)

    Frouin, Robert J.; Iacobellis, Samuel F.; Razafimpanilo, Herisoa; Somerville, Richard C. J.

    1994-01-01

    Savanna fires and atmospheric carbon dioxide (CO2) detection and estimating burned area using Advanced Very High Resolution Radiometer_(AVHRR) reflectance data are investigated in this two part research project. The first part involves carbon dioxide flux estimates and a three-dimensional transport model to quantify the effect of north African savanna fires on atmospheric CO2 concentration, including CO2 spatial and temporal variability patterns and their significance to global emissions. The second article describes two methods used to determine burned area from AVHRR data. The article discusses the relationship between the percentage of burned area and AVHRR channel 2 reflectance (the linear method) and Normalized Difference Vegetation Index (NDVI) (the nonlinear method). A comparative performance analysis of each method is described.

  13. A laboratory comparison of the global warming impact of five major types of biomass cooking stoves

    Energy Technology Data Exchange (ETDEWEB)

    MacCarty, N.; Ogle, D.; Still, D.; Bond, T.; Roden, C. [Aprovecho Research Center, Creswell, OR (United States)

    2008-06-15

    With over 2 billion of the world's population living in families using biomass to cook every day, the possibility of improved stoves helping to mitigate climate change is generating increasing attention. With their emissions of carbon dioxide (CO{sub 2}), methane, and black carbon, among other substances, is there a cleaner, practical option to provide to the families that will need to continue to use biomass for cooking? This study served to help quantify the relative emissions from five common types of biomass combustion in order to investigate if there are cleaner options. The laboratory results showed that for situations of sustainable harvesting where CO{sub 2} emissions are considered neutral, some improved stoves with rocket-type combustion or fan assistance can reduce overall warming impact from the products of incomplete combustion (PICs) by as much as 50-95%. In non-sustainable situations where fuel and CO{sub 2} savings are of greater importance, three types of improved combustion methods were shown to potentially reduce warming by 40-60%. Charcoal-burning may emit less CO{sub 2} than traditional wood-burning, but the PIC emissions are significantly greater.

  14. Development and Performance Evaluation of Charcoal-Fired Cooking Stoves

    International Nuclear Information System (INIS)

    Ndirika, V. I. O.

    2002-01-01

    Three different sizes of cooking stoves which utilizes charcoal as source of fuel with fuel capacities 15.7 kg, 10.6 kg and 3.5 kg for the large, medium and small stoves respectively were designed and fabricated for domestic cooking of food by the rural communities. The stoves were evaluated for performance in terms of fuel efficiency, fuel consumption rate, cooking efficiency and boiling time during testing operation with water. From the result it was revealed that the rate of fuel consumption for the large, medium and small cooking stove were 7.2 kg/h, 5.9 kg/h and 2.3 kg/h respectively, and their fuel efficiencies were 88%, 86% and 82% respectively. Also the cooking efficiencies of these stoves were 94%, 83% and 72% respectively. A comparative evaluation of the cooking efficiencies, fuel efficiencies, fuel consumption rate and cooking time between the three types of stoves and the traditional three stone open fire system, reveals that the cooking efficiencies and fuel efficiencies obtained were greater than the values obtained with the traditional three stone open fire system. But the values of the fuel consumption rate and boiling time obtained for the three stoves were lower than the values obtained with the traditional system. And the difference between their means was statistically significant at 5 % level of significance

  15. PENGEMBANGAN TUNGKU BRIKET BATUBARA SKALA RUMAH TANGGA Improvement of a Coal Briquette Stove for Household Scale

    Directory of Open Access Journals (Sweden)

    Tamrin Tamrin

    2012-05-01

    Full Text Available Improving of a coal briquette stove is required in the context of energy diversification for strengthening national energy security. The policy of kerosene conversion to LPG is a short term policy and needs other source of energy alternative.  In idealized sense, all potentials should be used for household cooking, not always depending on a particular energy source. Purpose of this research was to improve a household coal briquette stove to increase stove efficiency and ease in ceasing the ember. Design criteria of the coal briquette stove were based on heat transfer from the burning coal to the heated object, ease in ceasing the ember, and facilitating the exhausting smoke from the kitchen room. Performance test to the designed stove was conducted on analyses of temperature at the bottom of a pan versus time during the firing, heat efficiency, and the time of ceasing ember. The results showed that the cooking temperature (>180 oC was reached after 35-65 minutes. The cooking temperature lasted for 4 hours, heat efficiency of 25.5 % was about optimum, and the time of ember ceasing was 19-33 minutes. ABSTRAK Pengembangan tungku briket batubara sangat diperlukan dalam diversifikasi pemakaian energi bahan bakar agar ketahanan energi nasional  menjadi kuat.  Kebijakan pengalihan bahan bakar minyak tanah ke elpiji merupakan ke- bijakan jangka pendek dan perlu energi alternatif lainnya  Idealnya  semua potensi yang ada dapat digunakan untuk memasak, tidak harus bergantung pada energi tertentu.  Tujuan penelitian ini adalah untuk mengembangkan tungku briket batubara skala rumah tangga untuk meningkatkan efiseinsi dan memudahkan pematian bara api. Tungku briket batubara dibuat didasarkan pada sistem pindah panas dari bara briket ke objek yang dipanaskan, memudahkan pe- matian bara api briket batubara dan menyalurkan asap dari ruang pembakaran keluar dari ruang dapur. Pengujian dilakukan untuk mengetahui perubahan suhu dasar panci selama pembakaran

  16. Inventory of usage pattern for wood burning appliances

    International Nuclear Information System (INIS)

    Cooper, David; Joeborn, Inger; Sjoedin, Aake; Munkhammar, Inger; Gustavsson, Lennart

    2005-02-01

    The Swedish Environmental Research Institute (IVL) in co-operation with the Swedish National Testing and Research Institute (SP) and Statistics Sweden (SCB) have investigated the use of domestic wood burning for wood stoves and open fireplaces. The results from a closer examination of existing national energy statistics for residential heating has enabled a division of the average consumption of firewood for each house by the category 'fireplace for open fire' and 'tiled stove/heating stove/fireplace for wood'. The estimation of emissions can therefore be improved by differentiating emission factors for different wood stoves and open fireplaces. Today, only one emission factor is used. An insight into general firing procedures, wood storage routines etc. was investigated using a questionnaire for the Teleborg area of the city Vaexjoe. The results of this study provide a foundation for further work, which will subsequently enable improvements for emission inventories on small-scale biomass combustion from household appliances

  17. Household related predictors of burn injuries in an Iranian population: a case–control study

    Directory of Open Access Journals (Sweden)

    Sadeghi-Bazargani Homayoun

    2012-05-01

    Full Text Available Abstract Background To prevent burn injuries it is vital to have sound information on predictors of its occurrence in different settings. Ardabil Province is the coldest province of Iran with high burden of burn injuries. The aim of this study was to determine the household related predictors of unintentional burns in Ardabil Province located at North-West of Iran. Methods The study was conducted through a hospital based case–control design. 239 burn victims as well as 246 hospital-based controls were enrolled. Both bivariate and multivariate analysis methods were used. Results Males comprised 55.2% of all the study subjects. Mean age of the participants was 21.8 years (95% CI: 19.17-24.4. The economic ability of the households was associated with risk of burn injuries. Multivariate conditional logistic regression results showed the following variables to be independent factors associated with burn injuries. Using non-conventional pipe-less air heaters instead of conventional piped kerosene- or gas-burning heaters (Odds ratio: 1.98, 95% CI: 1.1-3.6. Common use of picnic gas-stove for cooking at home (odds ratio = 1.6, 95%CI: 1–2.4. Using electric samovars instead of other types of samovars (Odds ratio = 0.3, 95% CI: 0.1-1. Using samovars lacking the national standard authorization mark (Odds ratio = 2.2, 95% CI: 1.4-3.6. Conclusion Using some types of specific heating or cooking appliances, and unsafe use of conventional appliances were major risk predictors of burn injuries in this population.

  18. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States

    Directory of Open Access Journals (Sweden)

    I. R. Burling

    2010-11-01

    Full Text Available Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP-FTIR spectrometer for measurement of gas-phase species. The OP-FTIR detected and quantified 19 gas-phase species in these fires: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. Emission factors for these species are presented for each vegetation type burned. Gas-phase nitrous acid (HONO, an important OH precursor, was detected in the smoke from all fires. The HONO emission factors ranged from 0.15 to 0.60 g kg−1 and were higher for the southeastern fuels. The fire-integrated molar emission ratios of HONO (relative to NOx ranged from approximately 0.03 to 0.20, with higher values also observed for the southeastern fuels. The majority of non-methane organic compound (NMOC emissions detected by OP-FTIR were oxygenated volatile organic compounds (OVOCs with the total identified OVOC emissions constituting 61 ± 12% of the total measured NMOC on a molar basis. These OVOC may undergo photolysis or further oxidation contributing to ozone formation. Elevated amounts of gas-phase HCl and SO2 were also detected during flaming combustion, with the amounts varying greatly depending on location and vegetation type. The fuels with the highest HCl emission factors were all located in the coastal regions, although HCl was also observed from fuels farther inland. Emission factors for HCl were generally higher for the southwestern fuels

  19. Electricity savings with pellet stoves and solar heating in electrically heated houses; Elbesparing med pelletkaminer och solvaerme i direktelvaermda smaahus

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Tomas [Hoegskolan Dalarna, Borlaenge (Sweden)

    2004-07-01

    simulated comfort criteria). In the houses with a traditional layout a pellet stove gives slightly higher costs than the reference house having only electrical resistance heating due to the fact that less heating can be replaced. The concepts including stoves with a water jacket all give higher costs than the reference system, but the concept closest to be economical is a system with a buffer store, a stove with a high fraction of the heat distributed by the water circuit, a new water radiator heating system and a solar collector. Losses from stoves can be divided into: flue gas losses including leakage air flow when the stove is not in operation; losses during start and stop phases; and losses due to a high air factor. An increased efficiency of the stoves is important both from a private economical point of view, but also from the perspective that there can be a lack of bio fuel in the near future also in Sweden. From this point of view it is also important to utilize as much solar heat as possible. The utilization of solar heat is low in the simulated systems, depending on the lack of space for a large buffer store. The simulations have shown that the annual efficiency is much lower that the nominal efficiency at full power. The simulations have also shown that changing the control principle for the stove can improve efficiency and reduce the CO-emissions. Today's most common control principle for stoves is the on/off control, which results in many starts and stops and thereby high CO-emissions. A more advanced control varying the heating rate from maximum to minimum to keep a constant room temperature reduces the number of starts and stops and thereby the emissions. Also the efficiency can be higher with such a control, and the room temperature will be kept at a more constant temperature providing a higher comfort.

  20. Cord Wood Testing in a Non-Catalytic Wood Stove

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, G. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  1. Improved stoves in Southern Africa: a solution for all seasons

    CSIR Research Space (South Africa)

    Mapako, MC

    2011-04-01

    Full Text Available to avoid using wood altogether. The requirements of a cooking fuel vary seasonally in any given household, and across different climatic zones. The ability of improved stoves to meet these requirements varies considerably across these different zones...

  2. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    Science.gov (United States)

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  3. performance eval performance evaluation of a biomass stove using

    African Journals Online (AJOL)

    eobe

    2015-07-03

    Jul 3, 2015 ... stoves have come in various sizes and styles which require biomass ... impacts associated solid wood based fuel is reduced through .... The LEMS model is an ideal test for .... increased firepower, the curve returns to a fairly.

  4. Heat transfer and performance analysis of thermoelectric stoves

    International Nuclear Information System (INIS)

    Najjar, Yousef S.H.; Kseibi, Musaab M.

    2016-01-01

    Highlights: • Design and testing of a thermo electric stove. • Three biofuels namely: wood, peat and manure are used. • Heat transfer analysis is detailed. • Resulting thermoelectric energy for vital purposes in remote poor regions. • Evaluation of performance of the stove subcomponents. - Abstract: Access to electricity is one of the important challenges for remote poor regions of the world. Adding TEG (thermoelectric generators) to stoves can provide electricity for the basic benefits such as: operating radio, light, phones, medical instruments and other small electronic devices. Heat transfer analysis of a multi-purpose stove coupled with 12 TEG modules is presented. This analysis comprises a well aerodynamically designed combustor, finned TEG base plate, cooker and water heater beside the outer surface for space heating. Heat transfer analysis was also carried out for all the subcomponents of the stove, and performance predicted against the experimental results. It was found that the maximum power obtained is about 7.88 W using wood, manure or peat with an average overall efficiency of the stove about 60%.

  5. Guidelines for automated control systems for stoves

    DEFF Research Database (Denmark)

    Illerup, Jytte Boll; Mandl, Christoph; Obernberger, Ingwald

    ERA-NET Bioenergy is a network of national research and development programmes focusing on bioenergy which includes 14 funding organisations from 10 European countries: Austria, Denmark, Finland, France, Germany, Ireland, The Netherlands, Poland, Sweden and the United Kingdom. Its mission is to e...... manufacturers concerning the optimisation of their products and the development and design of new products with its recommendations which have been worked out based on scientific investigations as well as comprehensive test runs....... units or measures to stabilise the draft or to reduce standing losses). Objectives related to the implementation and evaluation of the different measures -Test of the most promising concepts by performing test runs with prototypes. -Development of design guidelines for stove manufacturers based...... by ERA-NET Bioenergy under 7th Joint Call for Research and Development of the ERA-NET Bioenergy from 2013. Today small-scale biomass combustion is one of the most relevant bioenergy applications. Driven by EU-wide and national measures to promote the utilisation of biomass for energy production...

  6. Prevalence of Acute Respiratory Infections in Women and Children in Western Sierra Leone due to Smoke from Wood and Charcoal Stoves

    Directory of Open Access Journals (Sweden)

    Eldred Tunde Taylor

    2012-06-01

    Full Text Available Combustion of biomass fuels (wood and charcoal for cooking releases smoke that contains health damaging pollutants. Women and children are the most affected. Exposure to biomass smoke is associated with acute respiratory infections (ARI. This study investigated the prevalence of ARI potentially caused by smoke from wood and charcoal stoves in Western Sierra Leone, as these two fuels are the predominant fuel types used for cooking. A cross sectional study was conducted for 520 women age 15–45 years; and 520 children under 5 years of age in homes that burn wood and charcoal. A questionnaire assessing demographic, household and exposure characteristics and ARI was administered to every woman who further gave information for the child. Suspended particulate matter (SPM was continuously monitored in fifteen homes. ARI prevalence revealed 32% and 24% for women, 64% and 44% for children in homes with wood and charcoal stoves, respectively. After adjusting for potential confounders for each group, the odds ratio of having suffered from ARI was similar for women, but remained large for children in homes with wood stoves relative to charcoal stoves (OR = 1.14, 95%CI: 0.71–1.82 and (OR = 2.03, 95%CI: 1.31–3.13, respectively. ARI prevalence was higher for children in homes with wood stoves compared with homes with charcoal stoves, but ARI prevalence for both types of fuels is higher compared with reported prevalence elsewhere. To achieve a reduction in ARI would require switching from wood and charcoal to cleaner fuels.

  7. Factors Influencing Household Uptake of Improved Solid Fuel Stoves in Low- and Middle-Income Countries: A Qualitative Systematic Review

    Directory of Open Access Journals (Sweden)

    Stanistreet Debbi

    2014-08-01

    Full Text Available Household burning of solid fuels in traditional stoves is detrimental to health, the environment and development. A range of improved solid fuel stoves (IS are available but little is known about successful approaches to dissemination. This qualitative systematic review aimed to identify factors that influence household uptake of IS in low- and middle-income countries. Extensive searches were carried out and studies were screened and extracted using established systematic review methods. Fourteen qualitative studies from Asia, Africa and Latin-America met the inclusion criteria. Thematic synthesis was used to synthesise data and findings are presented under seven framework domains. Findings relate to user and stakeholder perceptions and highlight the importance of cost, good stove design, fuel and time savings, health benefits, being able to cook traditional dishes and cleanliness in relation to uptake. Creating demand, appropriate approaches to business, and community involvement, are also discussed. Achieving and sustaining uptake is complex and requires consideration of a broad range of factors, which operate at household, community, regional and national levels. Initiatives aimed at IS scale up should include quantitative evaluations of effectiveness, supplemented with qualitative studies to assess factors affecting uptake, with an equity focus.

  8. Measurements of ultrafine particles from a gas-turbine burning biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Allouis, C.; Beretta, F.; Minutolo, P.; Pagliara, R. [Istituto di Ricerche sulla Combustione, CNR, Piazzale V. Tecchio, 80, 80125 Napoli (Italy); Sirignano, M.; Sgro, L.A.; D' Anna, A. [Dipartimento di Ingegneria Chimica, Universita di Napoli Federico II, Piazzale V. Tecchio, 80, 80125 Napoli (Italy)

    2010-04-15

    Measurements of ultrafine particles have been performed at the exhaust of a low emission microturbine for power generation. This device has been fuelled with liquid fuels, including a commercial diesel oil, a mixture of the diesel oil with a biodiesel and kerosene, and tested under different loads. Primarily attention has been focused on the measurements of the size distribution functions of the particles emitted from the system by using particle differential mobility analysis. A bimodal size distribution function of the particle emitted has been found in all the examined conditions. Burning diesel oil, the first mode of the size distribution function of the combustion-formed particles is centered at around 2-3 nm, whereas the second mode is centered at about 20-30 nm. The increase of the turbine load and the addition of 50% of biodiesel has not caused changes in the shape of size distribution of the particles. A slightly decrease of the amount of particle formed has been found. By using kerosene the amount of emitted particles increases of more than one order of magnitude. Also the shape of the size distribution function changes with the first mode shifted towards larger particles of the order of 8-10 nm but with a lower emission of larger 20-30 nm particles. Overall, in this conditions, the mass concentration of particles is increased respect to the diesel oil operation. Particle sizes measured with the diesel oil have been compared with the results on a diesel engine operated in the same power conditions and with the same fuel. Measurements have showed that the mean sizes of the formed particles do not change in the two combustion systems. However, diesel engine emits a number concentration of particles more than two orders of magnitude higher in the same conditions of power and with the same fuel. By running the engine in more premixed-like conditions, the size distribution function of the particles approaches that measured by burning kerosene in the

  9. A quantitative performance assessment of improved cooking stoves and traditional three-stone-fire stoves using a two-pot test design in Chamwino, Dodoma, Tanzania

    Science.gov (United States)

    Hafner, J.; Uckert, G.; Graef, F.; Hoffmann, H.; Kimaro, A. A.; Sererya, O.; Sieber, S.

    2018-02-01

    In Tanzania, a majority of rural residents cook using firewood-based three-stone-fire stoves. In this study, quantitative performance differences between technologically advanced improved cooking stoves and three-stone-fire stoves are analysed. We test the performance of improved cooking stoves and three-stone-fire stoves using local cooks, foods, and fuels, in the semi-arid region of Dodoma in Tanzania. We used the cooking protocol of the Controlled Cooking Test following a two-pot test design. The findings of the study suggest that improved cooking stoves use less firewood and less time than three-stone-fire stoves to conduct a predefined cooking task. In total, 40 households were assessed and ask to complete two different cooking tasks: (1) a fast cooking meal (rice and vegetables) and (2) a slow cooking meal (beans and rice). For cooking task 1, the results show a significant reduction in firewood consumption of 37.1% by improved cooking stoves compared to traditional three-stone-fire stoves; for cooking task 2 a reduction of 15.6% is found. In addition, it was found that the time needed to conduct cooking tasks 1 and 2 was significantly reduced by 26.8% and 22.8% respectively, when improved cooking stoves were used instead of three-stone-fire-stoves. We observed that the villagers altered the initial improved cooking stove design, resulting in the so-called modified improved cooking stove. In an additional Controlled Cooking Test, we conducted cooking task 3: a very fast cooking meal (maize flour and vegetables) within 32 households. Significant changes between the initial and modified improved cooking stoves regarding firewood and time consumption were not detected. However, analyses show that both firewood and time consumption during cooking was reduced when large amounts (for 6-7 household members) of food were prepared instead of small amounts (for 2-3 household members).

  10. Emission reductions through precombustion chamber design in a natural gas, lean burn engine

    International Nuclear Information System (INIS)

    Crane, M.E.; King, S.R.

    1992-01-01

    A study was conducted to evaluate the effects of various precombustion chamber design, operating and control parameters on the exhaust emissions of a natural gas engine. Analysis of the results showed that engine-out total hydrocarbons and oxides of nitrogen (NO x ) can be reduced, relative to conventional methods, through prechamber design. More specifically, a novel staged prechamber yielded significant reductions in NO x and total hydrocarbon emissions by promoting stable prechamber and main chamber ignition under fuel-lean conditions. Precise fuel control was also critical when balancing low emissions and engine efficiency (i.e., fuel economy). The purpose of this paper is to identify and explain positive and deleterious effects of natural gas prechamber design on exhaust emissions

  11. Simultaneously combining AOD and multiple trace gas measurements to identify decadal changes in urban and biomass burning aerosols

    Science.gov (United States)

    Cohen, Jason

    2017-04-01

    This work presents a methodology by which to comprehensively analyze simultaneous tropospheric measurements of AOD and associated trace gasses. It then applies this methodology by focusing over the past 11 years (2006-2016) on one of the most rapidly changing regions of the troposphere: Eastern and Southeastern Asia. The specific work presented incorporates measurements of both aerosol and related gas phase tropospheric measurements across different spectral, spatial, temporal, and passive/active sensors and properties, including: MODIS, MISR, OMI, CALIOP, and others. This new characterization reveals a trio of new information, including a time-invariant urban signal, slowly-time-varying new-urbanization signal, and a rapidly time-varying biomass burning signal. Additionally, due to the different chemical properties of the various species analyzed, analyzing the different spatial domains of the resulting products allows for further information in terms of the amounts of aerosols produced both through primary emissions as well as secondary processing. The end result is a new characterization, in space, time, and magnitude, of both anthropogenic and biomass burning aerosols. These results are then used to drive an advanced modeling system including aerosol chemistry, physics, optics, and transport, and employing an aerosol routine based on multi-modal and both externally mixed and core-shell mixing. The resulting characterization in space, time, and quantity is analyzed and compared against AERONET, NOAA, and other ground networks, with the results comparing consistently to or better than present approaches which set up net emissions separately from urban and biomass burning products. Scientifically, new source regions of emissions are identified, some of which were previously non-urbanized or found to not contain any fire hotspots. This new approach is consistent with the underlying economic and development pathways of expanding urban areas and rapid economic growth

  12. Coke burning behavior of a catalyst of ZSM-5/ZSM-11 co-crystallized zeolite in the alkylation of benzene with FCC off-gas to ethylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yi; Zhai, Yuchun [Northeastern University, Shenyang, 110006 (P. R. China); Liu, Shenglin; Wang, Qingxia; Xu, Longya [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, P. O. Box 110, Dalian 116023 (P. R. China)

    2006-04-15

    Since the commercialization of ethylbenzene production via alkylation of benzene with the dilute ethene in FCC off-gas over a ZSM-5/ZSM-11 co-crystallized zeolite catalyst in China, the catalyst has been regenerated several times and showed good regeneration performance. During the alkylation process, the catalytic activity decreases, some of the catalyst pores are blocked and the acid centers are partly covered by coke deposition. Influence of the factors such as catalyst particle size, temperature, etc. on the burning rate of the coke was investigated by the TG technique, and a rate equation for coke burning on the ZSM-5/ZSM-11 co-crystallized catalyst was established. (author)

  13. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    Science.gov (United States)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  14. Slow heat release - solid fuel stove with acetat-trihydrate heat storage sodium; Slow heat release - Braendeovn med salthydratvarmelager

    Energy Technology Data Exchange (ETDEWEB)

    Zielke, U.; Bjerrum, M.; Noergaard, T. (Teknologisk Institut, Aarhus (Denmark))

    2012-07-01

    focusing on particle emission including determination of particle size and PAH emission. The emissions were measured at normal firing and at ''night firing''. Generally, extremely small particles were found in all measurements, and no particles larger than 1 mum. At normal firing the particle emission is 2.8 g/kg dry matter and at ''night firing'' the emissions were increased by approx. factor 4.7. The PAH emission is not negligible with approx. 8 mg/Nm3 or 0.1 mg BaP Tox. equivalents/ Nm3. Possible emission reducing measures have been examined. Automatic control of the air supply has no positive effect. An increase of the chimney draught by means of flue gas fan has resulted in a perceptible reduction of the emissions. Only the gaseous emissions have been examined, which are reduced by factor 3-4 by increasing the chimney draught from 12 Pa to 48 Pa. Furthermore, the effect of a totally different combustion principle has been examined. The ''down-draft'' combustion is capable of eliminating the emission peaks in the beginning of a firing, but during a whole firing sequence, the emissions are more or less the same as for a normal solid fuel stove. (LN)

  15. Maximization of Transuranic Deep-Burn in High Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Kim, Yong Hee; Kim, K. S.; Hong, S. G.; Shim, H. J.; Jo, C. K.; Lee, S. W.

    2008-03-01

    An optimization study of a single-pass transuranic (TRU) deep burn (DB) has been performed for a block-type modular helium reactor (MHR) proposed. A high-burnup TRU feed vector from light water reactors is considered. For three dimensional equilibrium cores, the performance analysis is done by using the Monte Carlo code McCARD. The core optimization is performed from the viewpoints of the core configuration, fuel management, TRISO fuel specification, and neutron spectrum. With regard to core configuration, two annular cores are investigated in terms of the neutron economy. A conventional radial shuffling scheme of fuel blocks is compared with an axial-only block-shuffling strategy in terms of the fuel bum up and core power distributions. The impact of the kernel size of the TRISO fuel is evaluated, and a diluted kernel, instead of a conventional concentrated kernel, is introduced to maximize the TRU burnup by reducing the self-shielding effects of the TRISO particles. In addition, it is shown that the core power distribution can be effectively controlled by a zoning of the packing fraction of the TRISO fuels. We also have shown that a long-cycle DB-MHR core can be designed by using a two- or three-batch fuel-reloading scheme, at the expense of only a marginal decrease of the TRU discharge bum up. Preliminary safety characteristics of a DBMHR core have been investigated in terms of the temperature coefficients and effective delayed neutron fraction. It has been found that, depending on the fuel management scheme and fuel specifications, the TRU burnup in an optimized DB-MHR core can be over 60% in a single-pass irradiation campaign. In addition, the equilibrium cycle mass balance analyses were also performed for 12 fuel cycles and the impact of TRU deep-bum on the repository was evaluated as well. Additionally, an SFR (Sodium Fast Reactor) fed with DB-MHR spent fuel were designed and characterized

  16. Emission factors from residential combustion appliances burning Portuguese biomass fuels.

    Science.gov (United States)

    Fernandes, A P; Alves, C A; Gonçalves, C; Tarelho, L; Pio, C; Schimdl, C; Bauer, H

    2011-11-01

    Smoke from residential wood burning has been identified as a major contributor to air pollution, motivating detailed emission measurements under controlled conditions. A series of experiments were performed to compare the emission levels from two types of wood-stoves to those of fireplaces. Eight types of biomass were burned in the laboratory: wood from seven species of trees grown in the Portuguese forest (Pinus pinaster, Eucalyptus globulus, Quercus suber, Acacia longifolia, Quercus faginea, Olea europaea and Quercus ilex rotundifolia) and briquettes produced from forest biomass waste. Average emission factors were in the ranges 27.5-99.2 g CO kg(-1), 552-1660 g CO(2) kg(-1), 0.66-1.34 g NO kg(-1), and 0.82-4.94 g hydrocarbons kg(-1) of biomass burned (dry basis). Average particle emission factors varied between 1.12 and 20.06 g kg(-1) biomass burned (dry basis), with higher burn rates producing significantly less particle mass per kg wood burned than the low burn rates. Particle mass emission factors from wood-stoves were lower than those from the fireplace. The average emission factors for organic and elemental carbon were in the intervals 0.24-10.1 and 0.18-0.68 g kg(-1) biomass burned (dry basis), respectively. The elemental carbon content of particles emitted from the energy-efficient "chimney type" logwood stove was substantially higher than in the conventional cast iron stove and fireplace, whereas the opposite was observed for the organic carbon fraction. Pinus pinaster, the only softwood species among all, was the biofuel with the lowest emissions of particles, CO, NO and hydrocarbons.

  17. Clean Cook Stove Technology for Artisanal Palm Oil Clarification and Biochar Production in Ghana

    DEFF Research Database (Denmark)

    Dorvlo, Selorm Y.; Addo, Ahmad; Abenney-Mickson, Stephen

    the palm fruits) and simultaneously produce heat and biochar. The adopted design procedure was iterative and eight preliminary tests were conducted; each an improvement of the previous stove tested. The best stove configuration was adopted for the design calculations and the final stove fabricated...... with a biochar yield of 5%. A maximum CO emission of 5 ppm was measured. The study showed that the palm oil clarification process with the designed cook stove provided a smokeless work environment, heat and biochar....

  18. Fuel burning and climate

    International Nuclear Information System (INIS)

    Aunan, Kristin

    2004-01-01

    Emission of soot particles and other air pollution indoors constitutes a considerable health hazard for a major part of the population in many developing countries, one of them being China. In these countries problems relating to poverty are the most important risk factors, undernourishment being the dominating reason. Number four on the list of the most serious health hazards is indoor air pollution caused by burning of coal and biomass in the households. Very high levels of soot particles occur indoors because of incomplete combustion in old-fashioned stoves and by use of low quality fuel such as sticks and twigs and straw and other waste from agriculture. This leads to an increase in a series of acute and chronic respiratory diseases, including lung cancer. It has been pointed out in recent years that emissions due to incomplete combustion of coal and biomass can contribute considerably to climate changes

  19. The effect of water injection on nitric oxide emissions of a gas turbine combustor burning ASTM Jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.

  20. Environmental assessment of wood burning in independent heating devices

    International Nuclear Information System (INIS)

    Rogaume, C.; Rogaume, Y.; Zoulalian, A.; Trouve, G.

    2009-01-01

    An environmental assessment has been achieved on two domestic wood-heating devices, a closed fireplace and an open fireplace which represent 80% of the sale market of wood small-scale combustion units and around 65% of the use of wood-energy in France. Not only deals this study with the atmospheric polluting emissions produced in the exhaust stack, but also with the indoor air quality. Therefore, different pollutants were measured at the emission stage and as indoor air concentrations: carbon monoxide (CO), carbon dioxide (CO 2 ), volatile organic compounds (VOC), methane (CH 4 ), nitrogen oxides (NO X ), particulate matter with different sizes (PM 10 to PM 0.1 ), polycyclic aromatic hydrocarbons (PAH) and dioxines and furans. The results concerning indoor air were compared to measurements that showed the influence of residential heating devices. without exhaust duct like an oil stove or a gas stove (space heater) on indoor air quality. Some combustion emission experiments achieved in normal conditions showed that the combustion in open fireplace pollutes more than the combustion in closed fire-place: around 10 times more of PM 2.5 (mass concentration), more than 4 times of total VOC, 1.5 times more of dioxines and furans. On the other hand, the opposite trend was shown for PAH emissions (between 2 and 3 times less depending on the regulations considered). The comparison of the impact of different heating appliances on indoor air quality shows that the rate of CO is the same for all the devices except for the open fireplace which is higher. The CO 2 rate is 10 times higher for the oil stove and 8 times higher for the gas stove than for the fireplaces, which is due to the lack of exhaust duct. The concentration of PM 2.5 is 16 times higher for the open fireplace, 1.6 times higher for the oil stove and 4.4 times higher for the gas stove than the closed fireplace. The percentage of the number distribution of nano-particles, that represents an enhanced health risk

  1. Cell formation effects on the burning speeds and flame front area of synthetic gas at high pressures and temperatures

    International Nuclear Information System (INIS)

    Askari, Omid; Elia, Mimmo; Ferrari, Matthew; Metghalchi, Hameed

    2017-01-01

    Highlights: • Effect of cell formation on burning speed and flame surface area is investigated. • A new developed non-dimensional number called cellularity factor is introduced. • Cellular burning speed and mass burning rate are calculated using differential based multi-shell model. • Flame instability is studied using thermo-diffusive and hydrodynamics effects. • Power law correlations are developed for cellular burning speeds and mass burning rates. - Abstract: Cellular burning speeds and mass burning rates of premixed syngas/oxidizer/diluent (H_2/CO/O_2/He) have been determined at high pressures and temperatures over a wide range of equivalence ratios which are at engine-relevant conditions. Working on high pressure combustion helps to reduce the pollution and increase the energy efficiency in combustion devices. The experimental facilities consisted of two spherical and cylindrical chambers. The spherical chamber, which can withstand high pressures up to 400 atm, was used to collect pressure rise data due to combustion, to calculate cellular burning speed and mass burning rate. For flame structure and instability analysis the cylindrical chamber was used to take pictures of propagating flame using a high speed CMOS camera and a schlieren photography system. A new differential based multi-shell model based on pressure rise data was used to determine the cellular burning speed and mass burning rate. In this paper, cellular burning speed and mass burning rate of H_2/CO/O_2/He mixture have been measured for a wide range of equivalence ratios from 0.6 to 2, temperatures from 400 to 750 K and pressures from 2 to 50 atm for three hydrogen concentrations of 5, 10 and 25% in the syngas. The power law correlations for cellular burning speed and mass burning rate were developed as a function of equivalence ratio, temperature and pressure. In this study a new developed parameter, called cellularity factor, which indicates the cell formation effect on flame

  2. A study of burning processes of fossil fuels in straitened conditions of furnaces in low capacity boilers by an example of natural gas

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Y. V.; Khokhlov, D. A.; Zaichenko, M. N.

    2018-03-01

    The aim of this work is to research operations of modern combined low-emission swirl burner with a capacity of 2.2 MW for fire-tube boiler type KV-GM-2.0, to ensure the effective burning of natural gas, crude oil and diesel fuel. For this purpose, a computer model of the burner and furnace chamber has been developed. The paper presents the results of numerical investigations of the burner operation, using the example of natural gas in a working load range from 40 to 100%. The basic features of processes of fuel burning in the cramped conditions of the flame tube have been identified to fundamentally differ from similar processes in the furnaces of steam boilers. The influence of the design of burners and their operating modes on incomplete combustion of fuel and the formation of nitrogen oxides has been determined.

  3. Indoor air pollution exposure from use of indoor stoves and fireplaces in association with breast cancer: a case-control study.

    Science.gov (United States)

    White, Alexandra J; Teitelbaum, Susan L; Stellman, Steven D; Beyea, Jan; Steck, Susan E; Mordukhovich, Irina; McCarty, Kathleen M; Ahn, Jiyoung; Rossner, Pavel; Santella, Regina M; Gammon, Marilie D

    2014-12-12

    Previous studies suggest that polycyclic aromatic hydrocarbons (PAHs) may adversely affect breast cancer risk. Indoor air pollution from use of indoor stoves and/or fireplaces is an important source of ambient PAH exposure. However, the association between indoor stove/fireplace use and breast cancer risk is unknown. We hypothesized that indoor stove/fireplace use in a Long Island, New York study population would be positively associated with breast cancer and differ by material burned, and the duration and timing of exposure. We also hypothesized that the association would vary by breast cancer subtype defined by p53 mutation status, and interact with glutathione S-transferases GSTM1, T1, A1 and P1 polymorphisms. Population-based, case-control resources (1,508 cases/1,556 controls) were used to conduct unconditional logistic regression to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI). Breast cancer risk was increased among women reporting ever burning synthetic logs (which may also contain wood) in their homes (OR = 1.42, 95% CI 1.11, 1.84), but not for ever burning wood alone (OR = 0.93, 95% CI 0.77, 1.12). For synthetic log use, longer duration >7 years, older age at exposure (>20 years; OR = 1.65, 95% CI 1.02, 2.67) and 2 or more variants in GSTM1, T1, A1 or P1 (OR = 1.71, 95% CI 1.09, 2.69) were associated with increased risk. Burning wood or synthetic logs are both indoor PAH exposure sources; however, positive associations were only observed for burning synthetic logs, which was stronger for longer exposures, adult exposures, and those with multiple GST variant genotypes. Therefore, our results should be interpreted with care and require replication.

  4. Development and optimization of a stove-powered thermoelectric generator

    Science.gov (United States)

    Mastbergen, Dan

    Almost a third of the world's population still lacks access to electricity. Most of these people use biomass stoves for cooking which produce significant amounts of wasted thermal energy, but no electricity. Less than 1% of this energy in the form of electricity would be adequate for basic tasks such as lighting and communications. However, an affordable and reliable means of accomplishing this is currently nonexistent. The goal of this work is to develop a thermoelectric generator to convert a small amount of wasted heat into electricity. Although this concept has been around for decades, previous attempts have failed due to insufficient analysis of the system as a whole, leading to ineffective and costly designs. In this work, a complete design process is undertaken including concept generation, prototype testing, field testing, and redesign/optimization. Detailed component models are constructed and integrated to create a full system model. The model encompasses the stove operation, thermoelectric module, heat sinks, charging system and battery. A 3000 cycle endurance test was also conducted to evaluate the effects of operating temperature, module quality, and thermal interface quality on the generator's reliability, lifetime and cost effectiveness. The results from this testing are integrated into the system model to determine the lowest system cost in $/Watt over a five year period. Through this work the concept of a stove-based thermoelectric generator is shown to be technologically and economically feasible. In addition, a methodology is developed for optimizing the system for specific regional stove usage habits.

  5. Performance Evaluation of a Biomass Stove Using Particulate Matter ...

    African Journals Online (AJOL)

    Researchers have proved that smoke and other emissions resulting from fuel wood in traditional stoves have led to increase in health hazards which include acute ... High thermal efficiency translates to less exposure to PM and CO emission which reduces significantly, risk to health accruing to the use of briquette and fuel ...

  6. A comparison between EGR and lean-burn strategies employed in a natural gas SI engine using a two-zone combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Amr; Bari, Saiful [Sustainable Energy Centre, School of Advanced Manufacturing and Mechanical Engineering, Univ. of South Australia, Mawson Lakes SA 5095 (Australia)

    2009-12-15

    Exhaust gas recirculation (EGR) strategy has been recently employed in natural gas SI engines as an alternative to lean burn technique in order to satisfy the increasingly stringent emission standards. However, the effect of EGR on some of engine performance parameters compared to lean burn is not yet quite certain. In the current study, the effect of both EGR and lean burn on natural gas SI engine performance was compared at similar operating conditions. This was achieved numerically by developing a computer simulation of the four-stroke spark-ignition natural gas engine. A two-zone combustion model was developed to simulate the in-cylinder conditions during combustion. A kinetic model based on the extended Zeldovich mechanism was also developed in order to predict NO emission. The combustion model was validated using experimental data and a good agreement between the results was found. It was demonstrated that adding EGR to the stoichiometric inlet charge at constant inlet pressure of 130 kPa decreased power more rapidly than excess air; however, the power loss was recovered by increasing the inlet pressure from 130 kPa at zero dilution to 150 kPa at 20% EGR dilution. The engine fuel consumption increased by 10% when 20% EGR dilution was added at inlet pressure of 150 kPa compared to using 20% air dilution at 130 kPa. However, it was found that EGR dilution strategy is capable of producing extremely lower NO emission than lean burn technique. NO emission was reduced by about 70% when the inlet charge was diluted at a rate of 20% using EGR instead of excess air. (author)

  7. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: Secondary organic aerosol formation and gas-phase oxidation products

    Science.gov (United States)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Deboudt, Karine; Fourmentin, Marc; Choël, Marie

    2014-04-01

    Methoxyphenols are low molecular weight semi-volatile polar aromatic compounds produced from the pyrolysis of wood lignin. The reaction of guaiacol (2-methoxyphenol) with hydroxyl radicals has been studied in the LPCA simulation chamber at (294 ± 2) K, atmospheric pressure, low relative humidity (RH reactivity of nitroguaiacols with atmospheric oxidants is probably low, we suggest using them as biomass burning emission gas tracers. The atmospheric implications of the guaiacol + OH reaction are also discussed.

  8. A comparison between EGR and lean-burn strategies employed in a natural gas SI engine using a two-zone combustion model

    International Nuclear Information System (INIS)

    Ibrahim, Amr; Bari, Saiful

    2009-01-01

    Exhaust gas recirculation (EGR) strategy has been recently employed in natural gas SI engines as an alternative to lean burn technique in order to satisfy the increasingly stringent emission standards. However, the effect of EGR on some of engine performance parameters compared to lean burn is not yet quite certain. In the current study, the effect of both EGR and lean burn on natural gas SI engine performance was compared at similar operating conditions. This was achieved numerically by developing a computer simulation of the four-stroke spark-ignition natural gas engine. A two-zone combustion model was developed to simulate the in-cylinder conditions during combustion. A kinetic model based on the extended Zeldovich mechanism was also developed in order to predict NO emission. The combustion model was validated using experimental data and a good agreement between the results was found. It was demonstrated that adding EGR to the stoichiometric inlet charge at constant inlet pressure of 130 kPa decreased power more rapidly than excess air; however, the power loss was recovered by increasing the inlet pressure from 130 kPa at zero dilution to 150 kPa at 20% EGR dilution. The engine fuel consumption increased by 10% when 20% EGR dilution was added at inlet pressure of 150 kPa compared to using 20% air dilution at 130 kPa. However, it was found that EGR dilution strategy is capable of producing extremely lower NO emission than lean burn technique. NO emission was reduced by about 70% when the inlet charge was diluted at a rate of 20% using EGR instead of excess air.

  9. Volatile organic compounds in emissions from brown-coal-fired residential stoves

    International Nuclear Information System (INIS)

    Engewald, W.; Knobloch, T.; Efer, J.

    1993-01-01

    Volatile organic compounds were determined in stack-gas emissions from the residential burning of brown-coal briquets using adsorptive enrichment on hydrophobic adsorbents, thermal desorption and capillary-gas chromatographic analysis. 152 compounds were identified and quantified. Quantitative emission factors of the identified individual compounds were determined in relation to the amount of the fuel used. These factors permit assessment of the pollution of the city of Leipzig with volatile organic compounds resulting from the burning of indigenous lignite. (orig.) [de

  10. First results from a large, multi-platform study of trace gas and particle emissions from biomass burning

    Science.gov (United States)

    I. R. Burling; R. J. Yokelson; S. K. Akagi; T. J. Johnson; D. W. Griffith; Shawn Urbanski; J. W. Taylor; J. S. Craven; G. R. McMeeking; J. M. Roberts; C. Warneke; P. R. Veres; J. A. de Gouw; J. B. Gilman; W. C. Kuster; WeiMin Hao; D. Weise; H. Coe; J. Seinfeld

    2010-01-01

    We report preliminary results from a large, multi-component study focused on North American biomass burning that measured both initial emissions and post-emission processing. Vegetation types burned were from the relatively less-studied temperate region of the US and included chaparral, oak savanna, and mixed conifer forest from the southwestern US, and pine understory...

  11. Enhanced levels of atmospheric low-molecular weight monocarboxylic acids in gas and particulates over Mt. Tai, North China, during field burning of agricultural wastes

    Science.gov (United States)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Nakamura, Shinnosuke; Kanaya, Yugo; Wang, Zifa

    2017-12-01

    To understand the source and atmospheric behaviour of low molecular weight monocarboxylic acids (monoacids), gaseous (G) and particulate (P) organic acids were collected at the summit of Mt. Tai in the North China Plain (NCP) during field burning of agricultural waste (wheat straw). Particulate organic acids were collected with neutral quartz filter whereas gaseous organic acids were collected with KOH-impregnated quartz filter. Normal (C1-C10), branched (iC4-iC6), hydroxy (lactic and glycolic), and aromatic (benzoic) monoacids were determined with a capillary gas chromatography employing p-bromophenacyl esters. We found acetic acid as the most abundant gas-phase species whereas formic acid is the dominant particle-phase species. Concentrations of formic (G/P 1 570/1 410 ng m-3) and acetic (3 960/1 120 ng m-3) acids significantly increased during the enhanced field burning of agricultural wastes. Concentrations of formic and acetic acids in daytime were found to increase in both G and P phases with those of K+, a field-burning tracer (r = 0.32-0.64). Primary emission and secondary formation of acetic acid is linked with field burning of agricultural wastes. In addition, we found that particle-phase fractions (Fp = P/(G + P)) of formic (0.50) and acetic (0.31) acids are significantly high, indicating that semi-volatile organic acids largely exist as particles. Field burning of agricultural wastes may play an important role in the formation of particulate monoacids in the NCP. High levels (917 ng m-3) of particle-phase lactic acid, which is characteristic of microorganisms, suggest that microbial activity associated with terrestrial ecosystem significantly contributes to the formation of organic aerosols.

  12. Penetration of natural gas in industrial processes for direct burning: the case of ceramics, cement and glass industries; Penetracao do gas natural em processos industriais de queima direta: caso das industrias ceramica, cimento e vidro

    Energy Technology Data Exchange (ETDEWEB)

    Berni, Mauro Donizeti; Leite, Alvaro A. Furtado [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Dorileo, Ivo Leandro [Universidade Federal do Mato Grosso (NIEPE/UFMT), Cuiaba, MT (Brazil). Nucleo Interdisciplinar de Estudos em Planejamento Energetico; Bajay, Sergio Valdir [Universidade estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], e-mail: bajay@fem.unicamp.com.br

    2008-07-01

    Industrial sector can use the natural gas (NG) as raw material, as fuel and in co-generation. The NG as fuel is used, predominantly, to produce heat in the Brazilian industries. That rate, both main forms of industrial use of the NG are its direct burning in kilns - when the direct contact is had with the product - and the supply of process heat through boilers, for instance. Direct burning is used in the ceramic, cement and glass industries. This work discuss the penetration opportunity of the NG in the direct burning regarding the fuel oil and other energy that it can substitute, the environmental effects and the co-generation possibilities in each one of the analyzed industrial blanches in this work. (author)

  13. A study of selected aspects of the operation of thermoelectric generator incorporated in a biomass-fired stove

    Directory of Open Access Journals (Sweden)

    Sornek Krzysztof

    2016-01-01

    Full Text Available High demands in the field of energy efficiency and clean combustion make it necessary to looking for the new developments in the field of stoves, fireplaces and stove-fireplaces with accumulation. An interesting idea is to use the thermoelectric modules, which receive a heat from flue gas and convert it to the electricity. Electricity generated in this way may be used to power combustion optimizers and other components. This paper shows results of studied carried out to determine the possibility of combined heat and power generation using the stove-fireplace with accumulation. Thermoelectric generator with maximum hot side temperature at a level of 150°C was placed on the surface of the exchanger. Cooling down was realized using the dedicated water exchanger as well as the heat sink without and with an air fan. The experimental results allowed to define the effect of the different cooling systems on the output TEG voltage. Moreover, dependence of the current-voltage characteristics and generated power from the temperature was obtained.

  14. Chimney stoves modestly improved indoor air quality measurements compared with traditional open fire stoves: results from a small-scale intervention study in rural Peru.

    Science.gov (United States)

    Hartinger, S M; Commodore, A A; Hattendorf, J; Lanata, C F; Gil, A I; Verastegui, H; Aguilar-Villalobos, M; Mäusezahl, D; Naeher, L P

    2013-08-01

    Nearly half of the world's population depends on biomass fuels to meet domestic energy needs, producing high levels of pollutants responsible for substantial morbidity and mortality. We compare carbon monoxide (CO) and particulate matter (PM2.5) exposures and kitchen concentrations in households with study-promoted intervention (OPTIMA-improved stoves and control stoves) in San Marcos Province, Cajamarca Region, Peru. We determined 48-h indoor air concentration levels of CO and PM2.5 in 93 kitchen environments and personal exposure, after OPTIMA-improved stoves had been installed for an average of 7 months. PM2.5 and CO measurements did not differ significantly between OPTIMA-improved stoves and control stoves. Although not statistically significant, a post hoc stratification of OPTIMA-improved stoves by level of performance revealed mean PM2.5 and CO levels of fully functional OPTIMA-improved stoves were 28% lower (n = 20, PM2.5, 136 μg/m(3) 95% CI 54-217) and 45% lower (n = 25, CO, 3.2 ppm, 95% CI 1.5-4.9) in the kitchen environment compared with the control stoves (n = 34, PM2.5, 189 μg/m(3), 95% CI 116-261; n = 44, CO, 5.8 ppm, 95% CI 3.3-8.2). Likewise, although not statistically significant, personal exposures for OPTIMA-improved stoves were 43% and 17% lower for PM2.5 (n = 23) and CO (n = 25), respectively. Stove maintenance and functionality level are factors worthy of consideration for future evaluations of stove interventions. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. In-home performance of pellet stoves in Medford and Klamath Falls, Oregon

    International Nuclear Information System (INIS)

    Barnett, S.G.; Houck, J.E.; Roholt, R.B.

    1991-01-01

    Pollutant emissions, thermal efficiencies, and heat outputs of pellet stoves operating in homes located in Klamath Falls and Medford, Oregon were documented. Six stoves representing two commercially available, certified models were studied during the 1989-1990 heating season. Three models exempt from certification (a total of six stoves) were studied during the 1990-1991 heating season. An automated emission sampler (AES) system was used to conduct long-term, in-home monitoring of the stoves. The results of the studies have permitted an evaluation of the environmental and energy performance characteristics of the stoves. For the certified stoves, the average overall particulate emissions were 1.05 grams per hour (g/hr), which is about 75% lower than the best-performing cordwood stoves. The in-home particulate emission values were close to their laboratory certification values. Preliminary results for the exempt stoves produced an average particulate emission value of 2.02 g/hr. Also, for the certified stoves, altitude appeared to have little or no effect on particulate emissions and there appeared to be no differences in particulate emission rates between the two models studied. Polycyclic aromatic hydrocarbon (PAH) and carbon monoxide emissions were low. The carbon monoxide emission rates averaged 14 g/hr, the average net thermal efficiency of the stoves was 68%, and the average heat output was 8,747 Btu per hour. Similar data are currently being evaluated for the exempt stoves. Emission and energy performance data obtained for the pellet stoves assessed in this study demonstrated that pellet stoves offer a viable residential biomass-fueled heating option

  16. The house, the tile stove and the climate change

    DEFF Research Database (Denmark)

    Atzbach, Rainer

    2014-01-01

    The tile stove was invented in the North Alpine area between the 8th and 10th century. Apart from convection air heating and clay cupola ovens, this system provided the only possibility for a smoke-free heated living room. The innovation of the tile stove heating system itself did not reach...... the Southern Scandinavian region until the 12th century. In the Upper German speaking area, this heating system had been connected to a characteristic ground plan since the 14th century. This so-called ninefold ground plan consisted of the "stube" and the adjacent kitchen, a central corridor and unheated...... chambers in three bays and two or three aisles. It probably originated from the "appartement" in a noble context, but "trickled down" to urban and rural housing. In contrast to the quick spread of the heating system, this ground plan was only gradually adopted in the Lower Mountain Range, Northern Germany...

  17. EMISSIONS CHARACTERISTICS OF A RESIDENTIAL PELLET BOILER AND A STOVE

    OpenAIRE

    Win, Kaung Myat; Persson, Tomas

    2010-01-01

    Gaseous and particulate emissions from a residential pellet boiler and a stove are measured at a realistic 6-day operation sequence and during steady state operation. The aim is to characterize the emissions during each phase in order to identify when the major part of the emissions occur to enable actions for emission reduction where the savings can be highest. The characterized emissions comprised carbon monoxide (CO), nitrogen oxide (NO), total organic carbon (TOC) and particulate matter (...

  18. Impact of the Improved Patsari Biomass Stove on Urinary Polycyclic Aromatic Hydrocarbon Biomarkers and Carbon Monoxide Exposures in Rural Mexican Women

    Science.gov (United States)

    Riojas-Rodriguez, Horacio; Schilmann, Astrid; Marron-Mares, Adriana Teresa; Masera, Omar; Li, Zheng; Romanoff, Lovisa; Sjödin, Andreas; Rojas-Bracho, Leonora; Needham, Larry L.

    2011-01-01

    Background: Cooking with biomass fuels on open fires results in exposure to health-damaging pollutants such as carbon monoxide (CO), polycyclic aromatic hydrocarbons (PAHs), and particulate matter. Objective: We compared CO exposures and urinary PAH biomarkers pre- and postintervention with an improved biomass stove, the Patsari stove. Methods: In a subsample of 63 women participating in a randomized controlled trial in central Mexico, we measured personal CO exposure for 8 hr during the day using continuous monitors and passive samplers. In addition, first-morning urine samples obtained the next day were analyzed for monohydroxylated PAH metabolites by gas chromatography/isotope dilution/high-resolution mass spectrometry. Exposure data were collected during the use of an open fire (preintervention) and after installation of the improved stove (postintervention) for 47 women, enabling paired comparisons. Results: Median pre- and postintervention values were 4 and 1 ppm for continuous personal CO and 3 and 1 ppm for passive sampler CO, respectively. Postintervention measurements indicated an average reduction of 42% for hydroxylated metabolites of naphthalene, fluorene, phenanthrene, and pyrene on a whole-weight concentration basis (micrograms per liter of urine), and a 34% reduction on a creatinine-adjusted basis (micrograms per gram of creatinine). Pre- and postintervention geometric mean values for 1-hydroxypyrene were 3.2 and 2.0 μg/g creatinine, respectively. Conclusion: Use of the Patsari stove significantly reduced CO and PAH exposures in women. However, levels of many PAH biomarkers remained higher than those reported among smokers. PMID:21622083

  19. Impact of fuel quality and burner capacity on the performance of wood pellet stove

    OpenAIRE

    Petrović-Bećirović Sanja B.; Manić Nebojša G.; Stojiljković Dragoslava D.

    2015-01-01

    Pellet stoves may play an important role in Serbia in the future when fossil fuel fired conventional heating appliances are replaced by more efficient and environmentally friendly devices. Experimental investigation was conducted in order to examine the influence of wood pellet quality, as well as burner capacity (6, 8 and 10 kW), used in the same stove configuration, on the performance of pellet stove with declared nameplate capacity of 8 kW. The results o...

  20. Linking biomass fuel consumption and improve cooking stove: A study from Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Sohel, Md. Shawkat Islam; Rana, Md. Parvez; Akhter, Sayma

    2010-09-15

    The study determines the biomass fuel consumption pattern and environmental consequences of biomass fuel usage in the traditional and improve cooking stove. The introduction of improved cooking stove minimizes people's forest dependence by reducing the amount of fuelwood required to meet their household needs. Firewood was the most frequently used biomass fuel. It has been figured out that the incomplete combustion of biomass in the traditional cooking stove poses severe epidemiological consequences to human health and contributes to global warming. While improve cooking stove help to reduce such consequences.

  1. Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992

    Energy Technology Data Exchange (ETDEWEB)

    Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [University of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering

    1995-12-01

    This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

  2. Burning issues

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, C.

    1998-10-01

    Coal is world`s most abundant source of energy. Turning this potential pollutant into a clean, cost-effective fuel for power production has become a matter for global concern. Some problems and their solutions are highlighted in this article. Environmental problems caused by the giant Mae Moh plant in Thailand were overcome with an extensive retrofit programme that included flue gas desulfurisation systems. For new and smaller coal-fuelled plant, boilers using circulating fluidised bed (CFB) technology provide a cost effective and efficient system which meets environmental standards. A large independent power plant at Colver, Pennsylvania, USA uses CFB technology to burn bituminous gob. AMM and Alstom can provide turnkey packages for coal-fired power plant using a modular concept based on CFB technology. 2 photos.

  3. Axial gas transport and loss of pressure after ballooning rupture of high burn-up fuel rods subjected to LOCA conditions

    International Nuclear Information System (INIS)

    Wiesenack, Wolfgang; Oberlaender, Barbara; Kekkonen, Laura

    2008-01-01

    The OECD Halden Reactor Project has implemented integral in-pile tests on issues related to fuel behaviour under LOCA conditions. In this test series, the interaction of bonded fuel and cladding, the behaviour of fragmented fuel around the ballooning area, and the axial gas communication in high burn-up rods as affected by gap closure and fuel-clad bonding are of major interest for the investigations. In the Halden reactor tests, the decay heat is simulated by a low level of nuclear heating, in contrast to the heating conditions implemented in hot laboratory set-ups, and the thermal expansion of fuel and cladding relative to each other is more similar to the real event. The paper deals with observations regarding the loss of rod pressure following the rupture of the cladding. In the majority of the tests conducted so far, the rod pressure dropped practically instantaneously as a consequence of ballooning rupture, while one test showed a remarkably slow pressure loss. The slow loss of pressure in this test was analysed, showing that the 'hydraulic diameter' of the rod over an un-distended upper part was about 30 - 35 μm which is typical of high burn-up fuel at hot-standby conditions. The 'plug' of fuel restricts the gas flow from the plenum through the fuel column and thus limits the availability of high pressure gas for driving the ballooning. This observation is relevant for the analysis of the behaviour of a full length fuel rod under LOCA conditions since restricted gas flow may influence bundle blockage and the number of failures. (authors)

  4. Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal, reduced and elevated pressures

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Haiyan [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Eng., Xi' an Jiaotong University (China); Institute of High Performance Computing, A-star (Singapore); Ji, Min; Jiao, Qi; Huang, Qian; Huang, Zuohua [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Eng., Xi' an Jiaotong University (China)

    2009-04-15

    Flame propagation of premixed nitrogen diluted natural gas/hydrogen/air mixtures was studied in a constant volume combustion bomb under various initial pressures. Laminar burning velocities and Markstein lengths were obtained for the diluted stoichiometric fuel/air mixtures with different hydrogen fractions and diluent ratios under various initial pressures. The results showed that both unstretched flame speed and unstretched burning velocity are reduced with the increase in initial pressure (except when the hydrogen fraction is 80%) as well as diluent ratio. The velocity reduction rate due to diluent addition is determined mainly by hydrogen fraction and diluent ratio, and the effect of initial pressure is negligible. Flame stability was studied by analyzing Markstein length. It was found that the increase of initial pressure and hydrogen fraction decreases flame stability and the flame tends to be more stable with the addition of diluent gas. Generally speaking, Markstein length of a fuel with low hydrogen fraction is more sensitive to the change of initial pressure than that of a one with high hydrogen fraction. (author)

  5. Fiscal 1999 report on result of the model project for waste heat recovery in hot blast stove; 1999 nendo netsufuro hainetsu kaishu model jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purpose of curtailing energy consumption of the steel industry, a heavy energy consuming industry in China, a model project was carried out for waste heat recovery in a hot blast stove, with the fiscal 1999 results reported. In the process of this project, a heat exchanger for recovering heat is installed in the exhaust gas flue of a hot blast stove in ironworks, with sensible heat recovered through a heating medium. The heat exchanger for recovering heat and the preheating heat exchanger, which was installed in the main pipe for blast furnace gas and for combustion air, were connected by pressure piping, with the blast furnace gas and the combustion air preheated. In addition, a heating medium circulating pump for transporting the heating medium is installed, as are an expansion tank for absorbing expansion/contraction due to change in temperature, a heating medium storage tank for accepting the entire heating medium in the system for the maintenance of the equipment, and heating medium feeding pump, for example. This year, on the basis of the 'Agreement Annex', basic designs and detailed designs were performed for each equipment in the waste heat recovering equipment for the hot blast stove. Further, procurement and manufacturing were implemented for various component parts and devices of the waste heat recovering equipment. (NEDO)

  6. Impact of fuel quality and burner capacity on the performance of wood pellet stove

    Directory of Open Access Journals (Sweden)

    Petrović-Bećirović Sanja B.

    2015-01-01

    Full Text Available Pellet stoves may play an important role in Serbia in the future when fossil fuel fired conventional heating appliances are replaced by more efficient and environmentally friendly devices. Experimental investigation was conducted in order to examine the influence of wood pellet quality, as well as burner capacity (6, 8 and 10 kW, used in the same stove configuration, on the performance of pellet stove with declared nameplate capacity of 8 kW. The results obtained showed that in case of nominal load and combustion of pellets recommended by the stove manufacturer, stove efficiency of 80.03% was achieved. The use of lower quality pellet caused additional 1.13 kW reduction in heat output in case of nominal load and 0.63 kW in case of reduced load. This was attributed to less favourable properties and lower bulk and particle density of lower quality pellet. The use of different burner capacity has shown to have little effect on heat output and efficiency of the stove when pre-set values in the control system of the stove were not altered. It is concluded that replacement of the burner only is not sufficient to increase/decrease the declared capacity of the same stove configuration, meaning that additional measures are necessary. These measures include a new set up of the stove control system, which needs to be properly adjusted for each alteration in stove configuration. Without the adjustment mentioned, declared capacity of the stove cannot be altered, while its CO emission shall be considerably increased.

  7. Influence of phosphorus content of coconut oil on deposit and performance of plant oil pressure stoves

    Energy Technology Data Exchange (ETDEWEB)

    Kratzeisen, M.; Mueller, J. [Institut fuer Agrartechnik, Universitaet Hohenheim (440e), Garbenstrasse 9, D-70593 Stuttgart (Germany)

    2010-11-15

    Influence of phosphorus lipids on formation of deposits and performance of plant oil pressure stoves was investigated. Refined coconut oil with an original phosphorous content of 5.9 mg/kg was used as base for fuel blends by adding lecithin to adjust increased phosphorous concentrations of 32.2, 51.6 and 63.0 mg/kg. The fuel blends were analysed for acid value, iodine value, total contamination, ash content and Conradson carbon residue according to standard methods. In burning trials, the specific fuel consumption, the required frequency of nozzle cleaning and the amount of deposits in the vaporizer were measured. Results showed an exponential increase of deposits in the vaporizer when phosphorous content was increased: deposits amounted to 0.12 g/kg of consumed fuel for unblended coconut oil and 0.92 g/kg for the blend with the highest phosphorous content. Furthermore, increased phosphorous content caused higher fuel consumption of 0.375 kg/h compared to 0.316 kg/h for the control. (author)

  8. Lessons from a pilot program to induce stove replacements in Chile: design, implementation and evaluation

    Science.gov (United States)

    Gómez, Walter; Chávez, Carlos; Salgado, Hugo; Vásquez, Felipe

    2017-11-01

    We present the design, implementation, and evaluation of a subsidy program to introduce cleaner and more efficient household wood combustion technologies. The program was conducted in the city of Temuco, one of the most polluted cities in southern Chile, as a pilot study to design a new national stove replacement initiative for pollution control. In this city, around 90% of the total emissions of suspended particulate matter is caused by households burning wood. We created a simulated market in which households could choose among different combustion technologies with an assigned subsidy. The subsidy was a relevant factor in the decision to participate, and the inability to secure credit was a significant constraint for the participation of low-income households. Due to several practical difficulties and challenges associated with the implementation of large-scale programs that encourage technological innovation at the household level, it is strongly advisable to start with a small-scale pilot that can provide useful insights into the final design of a fuller, larger-scale program.

  9. Chemical characterisation of PM10 emissions from combustion in a closed stove of common woods grown in Portugal

    Science.gov (United States)

    Gonçalves, C.; Alves, C.; Pio, C.; Rzaca, M.; Schmidl, C.; Puxbaum, H.

    2009-04-01

    A series of source tests were conducted to determine the wood elemental composition, combustion gases and the chemical constitution of PM10 emissions from the closed stove combustion of four species of woods grown in Portugal: Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia. The burning tests were made in a closed stove with a dilution source sampler. To ascertain the combustion phase and conditions, continuous emission monitors measured O2, CO2, CO, NO, hydrocarbons, temperature and pressure, during each burning cycle. Woodsmoke samples have been collected and analysed to estimate the contribution of plant debris and biomass smoke to atmospheric aerosols. At this stage of work, cellulose, anhydrosugars and humic-like substances (HULIS) have been measured. Cellulose was determined photometrically after its conversion to D-Glucose. The determination of levoglucosan and other anhydrosugars, including mannosan and galactosan, was carried out by high performance liquid chromatography with electrochemical detection. HULIS determination was made with a total organic carbon analyser and an infrared non dispersive detector, after the isolation of substances. Cellulose was present in PM10 at mass fractions (w/w) of 0.13%, 0.13%, 0.05% and 0.08% for Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia, respectively. Levoglucosan was the major anhydrosugar present in the samples, representing mass fractions of 14.71%, 3.80%, 6.78% and 1.91%, concerning the above mentioned wood species, respectively. The levoglucosan-to-mannosan ratio, usually used to evaluate the proportion of hardwood or softwood smoke in PM10, gave average values of 34.9 (Eucalyptus globulos), 3.40 (Pinus pinaster), 24.8 (Quercus suber) and 10.4 (Acacia longifolia). HULIS were present at mass fractions of 2.35%, 2.99%, 1.52% and 1.72% for the four wood species listed in the same order as before.

  10. A health intervention or a kitchen appliance? Household costs and benefits of a cleaner burning biomass-fuelled cookstove in Malawi.

    Science.gov (United States)

    Cundale, Katie; Thomas, Ranjeeta; Malava, Jullita Kenala; Havens, Deborah; Mortimer, Kevin; Conteh, Lesong

    2017-06-01

    Pneumonia is the leading cause of mortality for children under five years in sub-Saharan Africa. Household air pollution has been found to increase risk of pneumonia, especially due to exposure from dirty burning biomass fuels. It has been suggested that advanced stoves, which burn fuel more efficiently and reduce smoke emissions, may help to reduce household air pollution in poor, rural settings. This qualitative study aims to provide an insight into the household costs and perceived benefits from use of the stove in Malawi. It was conducted alongside The Cooking and Pneumonia Study (CAPS), the largest village cluster-level randomised controlled trial of an advanced combustion cookstove intervention to prevent pneumonia in children under five to date. In 2015, using 100 semi-structured interviews this study assessed household time use and perceptions of the stove from both control and intervention participants taking part in the CAPS trial in Chilumba. Household direct and indirect costs associated with the intervention were calculated. Users overwhelming liked using the stove. The main reported benefits were reduced cooking times and reduced fuel consumption. In most interviews, the health benefits were not initially identified as advantages of the stove, although when prompted, respondents stated that reduced smoke emissions contributed to a reduction in respiratory symptoms. The cost of the stove was much higher than most respondents said they would be willing to pay. The stoves were not primarily seen as health products. Perceptions of limited impact on health was subsequently supported by the CAPS trial data which showed no significant effect on pneumonia. While the findings are encouraging from the perspective of acceptability, without innovative financing mechanisms, general uptake and sustained use of the stove may not be possible in this setting. The findings also raise the question of whether the stoves should be marketed and championed as 'health

  11. Emission of Metals from Pelletized and Uncompressed Biomass Fuels Combustion in Rural Household Stoves in China

    Science.gov (United States)

    Zhang, Wei; Tong, Yindong; Wang, Huanhuan; Chen, Long; Ou, Langbo; Wang, Xuejun; Liu, Guohua; Zhu, Yan

    2014-07-01

    Effort of reducing CO2 emissions in developing countries may require an increasing utilization of biomass fuels. Biomass pellets seem well-suited for residential biomass markets. However, there is limited quantitative information on pollutant emissions from biomass pellets burning, especially those measured in real applications. In this study, biomass pellets and raw biomass fuels were burned in a pellet burner and a conventional stove respectively, in rural households, and metal emissions were determined. Results showed that the emission factors (EFs) ranged 3.20-5.57 (Pb), 5.20-7.58 (Cu), 0.11-0.23 (Cd), 12.67-39.00 (As), 0.59-1.31 mg/kg (Ni) for pellets, and 0.73-1.34 (Pb), 0.92-4.48 (Cu), 0.08-0.14 (Cd), 7.29-13.22 (As), 0.28-0.62 (Ni) mg/kg for raw biomass. For unit energy delivered to cooking vessels, the EFs ranged 0.42-0.77 (Pb), 0.79-1.16 (Cu), 0.01-0.03 (Cd), 1.93-5.09 (As), 0.08-0.19 mg/MJ (Ni) for pellets, and 0.30-0.56 (Pb), 0.41-1.86 (Cu), 0.04-0.06 (Cd), 3.25-5.49 (As), 0.12-0.26 (Ni) mg/MJ for raw biomass. This study found that moisture, volatile matter and modified combustion efficiency were the important factors affecting metal emissions. Comparisons of the mass-based and task-based EFs found that biomass pellets produced higher metal emissions than the same amount of raw biomass. However, metal emissions from pellets were not higher in terms of unit energy delivered.

  12. Competing for development : a case study of fuel-efficient stoves for Darfur

    International Nuclear Information System (INIS)

    Abdelnour, S.; Branzei, O.

    2008-01-01

    This paper discussed the Darfur Stoves Project. The project was designed to provide local support to non-government organizations (NGOs) to set up production facilities capable of producing 100 stoves per day. The Berkeley-Darfur stove design was based on a survey conducted in Darfur of cooking methods, tools, household fuels, and food requirements. The stove was designed to perform well in windy conditions. A pilot production facility was conducted to ensure that the stoves were easily built and assembled using simple hand tools. The stoves save the average family $250 per year in fuel wood and labour costs. The project is now examining methods of setting up multiple full-scale assembly shops to ensure that 300,000 stoves are built and distributed to households and displaced communities in the Darfur region. The need to save fuel wood has grown since the onset of armed conflict in the region. The combined concerns of deforestation, starvation, and violence against women as they searched for fuel wood has become a central concern in the region. The stove design is one of several designs currently being adopted by development agencies in the region. 32 refs., 11 figs

  13. Competing for development : a case study of fuel-efficient stoves for Darfur

    Energy Technology Data Exchange (ETDEWEB)

    Abdelnour, S.; Branzei, O. [Western Ontario Univ., London, ON (Canada). Richard Ivey School of Business

    2008-07-01

    This paper discussed the Darfur Stoves Project. The project was designed to provide local support to non-government organizations (NGOs) to set up production facilities capable of producing 100 stoves per day. The Berkeley-Darfur stove design was based on a survey conducted in Darfur of cooking methods, tools, household fuels, and food requirements. The stove was designed to perform well in windy conditions. A pilot production facility was conducted to ensure that the stoves were easily built and assembled using simple hand tools. The stoves save the average family $250 per year in fuel wood and labour costs. The project is now examining methods of setting up multiple full-scale assembly shops to ensure that 300,000 stoves are built and distributed to households and displaced communities in the Darfur region. The need to save fuel wood has grown since the onset of armed conflict in the region. The combined concerns of deforestation, starvation, and violence against women as they searched for fuel wood has become a central concern in the region. The stove design is one of several designs currently being adopted by development agencies in the region. 32 refs., 11 figs.

  14. Biomass conservation potential of pottery/ceramic lined Mamta Stove: An improved stove promoted under National Programme on Improved Cookstoves in India

    Energy Technology Data Exchange (ETDEWEB)

    George, R.; Yadla, V.L. [M.S. Univ. of Baroda, Vadodara (India). Home Management Dept.

    1995-10-01

    To combat biomass scarcity and ensure a cleaner cooking environment with less drudgery, among other things, a variety of improved stoves are promoted under National Programme on Improved Cookstoves (NPIC). Mamta Stove (MS) is one among such improved stoves. An indepth study was undertaken covering a sample of twenty-five rural families with the primary objective of assessing fuel saving potential of MS under field conditions through Kitchen Performance Test (KPT). Conventional stove (CS) used in almost all the families was shielded horse-shoe shaped stove with a negligible proportion using three stone open fire. Nearly 88% depended only on zero private cost fuels. The mean number of persons for whom the stoves were used on the days of field measurements in case of CS and MS were 5.6 and 5.7 respectively with an SD of 1.16 and standard adult equivalent (SAE) was approximately 4. Cooking pots included a concave roasting pan, a deep frying pan and flat bottomed pots. The mean daily fuel consumption on CS and MS were estimated to be 4.88 kg and 3.75 kg respective, thereby, resulting in fuel saving to the tune of 24% on MS. The paper discusses at length the design features of CS and MS, meal pattern, cooking habits, need for user training, consumerism in the area of cooking and stove technology, economics of switching over to MS and policy implications of commercialization of hitherto subsidized stove program. Further, salient characteristics of high and low cooking fuel consumers on MS are presented to bring to limelight their profile.

  15. On the possibilities of reduction in emission caused by home tile stoves in Cracow

    Energy Technology Data Exchange (ETDEWEB)

    Szewczyk, W. [Academy of Mining and Metallurgy, Cracow (Poland)

    1995-12-31

    The coal-fired tile stoves are still very popular in Poland. The estimated total number of such home stoves operated in Cracow reaches ca. 100 000. Operation of these stoves during the heating season belongs to the most significant sources of air pollution. Type and scale of emission of the most important pollutants, caused by coal combustion in home stoves in Cracow has been determined basing upon the investigations carried out at the laboratory of the Department of Power Engineering Machines and Devices, Academy of Mining and Metallurgy, Cracow, Poland within the American-Polish Program of Elimination of Low Emission Sources in Cracow. Further experiments included in this Program allowed to estimate the attainable efficiency of home tile stoves and possible reduction in pollutant emission resulting from their operation. A short discussion of these data and capacities is presented in this lecture.

  16. Burn Wise

    Science.gov (United States)

    Burn Wise is a partnership program of the U.S. Environmental Protection Agency that emphasizes the importance of burning the right wood, the right way, in the right appliance to protect your home, health, and the air we breathe.

  17. Improved cook stove adoption and impact assessment: A proposed methodology

    International Nuclear Information System (INIS)

    Troncoso, Karin; Armendáriz, Cynthia; Alatorre, Silvia

    2013-01-01

    Aims: Until now, the success of improved cook stoves (ICS) implementation programs has usually been measured by the number of ICS distributed. Some important research has been conducted to try to determine the effects of the use of an ICS in the user′s health, but these studies are expensive and time consuming. Moreover, no evaluations show the impact of the technology in the user′s lives. This study seeks to contribute to fill this gap. Scope: By applying cluster analysis techniques to survey data, the most relevant variables that explain adoption and impact were identified. Using these variables, two qualitative indexes are proposed: The adoption index considers the use of the new technology, the level of satisfaction, and the conditions of the stove. The impact index considers the changes in cooking practices and life quality brought about by the ICS. Both indexes are then applied to two implementation programs. The indexes show the differences between the program results and the user′s perceptions of each technology. Conclusions: The proposed indexes can be used to measure the success of an ICS implementation program in terms of the benefits perceived by the users of these technologies. -- Highlights: •Two qualitative indexes are proposed to measure the benefits perceived by ICS users. •Two implementation programs were assessed. •The approach enables determining the impact of ICS programs at a fraction of the cost. •It enables comparing the results of different implementation programs

  18. Stoves or sugar? Willingness to adopt improved cookstoves in Malawi

    International Nuclear Information System (INIS)

    Jagger, Pamela; Jumbe, Charles

    2016-01-01

    Malawi has set a target of adoption of two million improved cookstoves (ICS) by 2020. Meeting this objective requires knowledge about determinants of adoption, particularly in rural areas where the cost of traditional cooking technologies and fuels are non-monetary, and where people have limited capacity to purchase an ICS. We conducted a discrete choice experiment with 383 households in rural Malawi asking them if they would chose a locally made ICS or a package of sugar and salt of roughly equal value. Six months later, we assessed adoption and stove use patterns. Sixty-six percent of households chose the ICS. We find that having a larger share of crop residues in household fuel supply, awareness of the environmental impacts of woodfuel reliance, time the primary cook devotes to collecting fuelwood, and peer effects at the village-level increase the odds of choosing the ICS. Having a large labor supply for fuelwood collection and experience with a non-traditional cooking technology decreased the odds of choosing the ICS. In a rapid assessment six months after stoves were distributed, we found 80% of households were still using the ICS, but not exclusively. Our findings suggest considerable potential for wide-scale adoption of low cost ICS in Malawi. - Highlights: •There is demand for locally produced improved cookstoves in rural Malawi. •Environmental awareness, labor availability, and peer effects influence adoption. •Sustained and exclusive use of improved cookstoves requires training and follow-up.

  19. Autonomy and Proximity in Household Heating Practices: the Case of Wood-Burning Stoves

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf

    2008-01-01

    alter infrastructural conditions in order to pursue personal strategies for domestic heating and comfort, personal strategies that may have their root in economic considerations or may regard the construction of homeliness and sensuous pleasure - referring in turn to broader socio-cultural values...

  20. Autonomy and proximity in household heating practices - the case of wood burning stoves

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf

    Afbrænding af træ i brændeovne og brændefyr er blevet væsentligt mere udbredt i Danmark siden midten af 1990'erne; en udvikling der medfører øget partikelforurening i boligområder med villaer og rækkehuse. Brugen af brændeovne bliver, på basis af et sociologisk studie af fænomenet, forstået i for...

  1. Reducing particulate matter in the operation of firewood burning stoves taking into account the toxicological relevance

    International Nuclear Information System (INIS)

    Lenz, Volker Alfred

    2010-01-01

    One of the greatest challenges facing humanity is climate change. Correspondingly, inter alia, the German government has set a target by 2020, to reduce emissions of greenhouse gases to the 1990 level by 20%. For this purpose can and should an increased energetic use of biomass contribute. End of 2007, the bioenergy had a share of around three quarters of the renewable primary energy input. Of which more than 45% were used for the heat supply. A total of more than 90% of renewable heat have been provided from biomass. From the provided amount of heat come over 80% from the combustion of solid biofuels - so far almost exclusively wood products - in small and medium wood-fuelled combustion systems. To reduce carbon dioxide emissions the federal government is accelerating a further expansion of energetic use of biomass in the heating sector. This expansion of thermal use of biomass, however, for reasons of pollution control, should not rise simultaneously with the emissions of air pollutants such as carbon monoxide, nitrogen oxides or particulate matter. [de

  2. Sustainable energy development strategies in the rural Thailand: The case of the improved cooking stove and the small biogas digester

    Energy Technology Data Exchange (ETDEWEB)

    Limmeechokchai, Bundit [Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22 Thammasat Rangsit Post Office, Pathumthani 12121 (Thailand); Chawana, Saichit [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand)

    2007-06-15

    This paper presents the strategies to overcome barriers to the adoption of improved cooking stove (ICS) and small biogas digester (SBD) technologies in Thailand. Firstly, to obtain the appropriate strategies to implement the ICS and the SBD, a pattern of energy consumption in the residential sector is investigated. Then the potential of reduction of energy consumption and corresponding emissions by the ICS and the SBD is assessed. The identification and ranking of barriers to the adoption of the ICS and the SBD technologies are also investigated. In this study the Long-range Energy Alternatives Planning System (LEAP) model is used to assess the energy consumption and the corresponding emissions reduction. Then, the Analytic Hierarchy Process (AHP) model is used to identify and rank the barriers. Results from the LEAP model show that the cumulative total energy consumption and corresponding emissions reductions during the period 2002-2030 by the ICS are 27,887.7 ktoe and 10,041.0 thousand tonnes of CO{sub 2} equivalent, respectively. An average emissions reduction cost per tonne of CO{sub 2} equivalent per year is US$ 0.95 for a fuel wood cooking stove and US$ 0.35 for a charcoal cooking stove. Regarding the SBD, the cumulative total liquefied petroleum gas (LPG) consumption reduction and CO{sub 2} mitigation are 5780.9ktoe and 1548.8 thousand tonnes of CO{sub 2} equivalent during the period 2002-2030, respectively. Results from AHP analysis of ranking of barriers show that the three most important barriers in the adoption of the ICS are (i) high investment cost, (ii) lack of information, and (iii) lack of financial sources. For the SBD, the three most important barriers are (i) high investment cost, (ii) lack of financial sources, and (iii) lack of experts and skilled manpower. The sustainable energy triangle strategy (SETS) is implemented to overcome barriers in the adoption of the ICS. Results show that the traditional cooking stoves are successfully replaced

  3. IFPE/IFA-597.3, centre-line temperature, fission gas release and clad elongation at high burn-up (60-62 MWd/kg)

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    2003-01-01

    Description: The fuel segments for the high burn-up integral rod behaviour test IFA-597 were taken from fuel rod 33-25065, which was irradiated in the Ringhals 1 BWR for approximately 12 years. The irradiation of this rod and its sibling rod 33-25046 was performed in two stages. During the first irradiation, 1980 to 1986, the rods were part of Ringhals assembly 6477 and an approximate rod averaged burn-up of 31 MWd/kg UO 2 was reached. The rods were then placed into fuel assembly 9902 for a second period of irradiation from 1986 to 1992. The location of the fuel rods 33-25065 and 33-25046 in this assembly were in positions 9902/D and 9902/E4 respectively. A final rod averaged burn-up of 52 MWd/kg UO 2 was achieved. The burn-up at the location of the Halden segments was estimated as 59 MWd/kg UO 2 , well beyond the formation of High Burn-up Structure (Hobs) formation at the pellet rim. At the rim, the burn-up was estimated as 130 MWd/kg UO 2 . After commercial irradiation, PIE was performed at Studsvik. Inner and outer clad oxide thickness measurements were 42 and 5 microns respectively. The measured cold rod diameter varied between 12.20 and 12.25 mm, thus only a small amount of creep-down had occurred from the original diameter of 12.25 mm. Cold gap measurements were taken by diametral compression of the clad onto the fuel. The stiffness changes twice during these measurements, the first (relocated gap) associated with the onset of pellet fragment movement, the second (compressed gap) when the fragments are together and the pellet is compressed. For these rods, the compressed diametral gap was measured as 30 microns. This is in agreement with the pellet and cladding being in contact during the final irradiation cycle, i.e., at ∼12 kW/m. FGR measurements were made after puncturing and values of 2.5%-3.3% were calculated from the extracted gas. The uncertainty is due to different methods of calculation. Ceramography showed a normal crack pattern and no evidence of

  4. Performance Evaluation of Waste Heat Recovery in a Charcoal Stove using a Thermo-Electric Module

    Directory of Open Access Journals (Sweden)

    Nnamdi Judges Ajah

    2018-03-01

    Full Text Available Charcoal stoves have widespread use among the poorer households and outdoor food vendors in Nigeria. In order to improve the efficiency of charcoal stoves, various researches have tried integrating a thermoelectric module in the charcoal stove. The researches, however did not exploit the performance of the thermoelectric modules at different ambient temperatures. To evaluate the performance of thermoelectric integrated charcoal stoves in the sub-Saharan Africa, a self-powered, forced air induced thermoelectric charcoal stove experiment was carried out at five different ambient temperatures of 36ºC, 33ºC, 32ºC, 30ºC and 29ºC and an average fuel hotbed temperature of 1023.75ºC. The thermoelectric charcoal stove generated a maximum voltage of 5.25V at an ambient temperature of 29ºC. The least maximum voltage was generated at the highest ambient temperature of 36ºC. It was observed that the maximum voltage increased with decreasing ambient temperature, this could be attributed to the ambient air being used to cool the thermoelectric generator. Therefore, it could be said that the performance of a forced draft thermoelectric charcoal stove increases with decrease in ambient temperature.

  5. Quantitative Guidance for Stove Usage and Performance to Achieve Health and Environmental Targets.

    Science.gov (United States)

    Johnson, Michael A; Chiang, Ranyee A

    2015-08-01

    Displacing the use of polluting and inefficient cookstoves in developing countries is necessary to achieve the potential health and environmental benefits sought through clean cooking solutions. Yet little quantitative context has been provided on how much displacement of traditional technologies is needed to achieve targets for household air pollutant concentrations or fuel savings. This paper provides instructive guidance on the usage of cooking technologies required to achieve health and environmental improvements. We evaluated different scenarios of displacement of traditional stoves with use of higher performing technologies. The air quality and fuel consumption impacts were estimated for these scenarios using a single-zone box model of indoor air quality and ratios of thermal efficiency. Stove performance and usage should be considered together, as lower performing stoves can result in similar or greater benefits than a higher performing stove if the lower performing stove has considerably higher displacement of the baseline stove. Based on the indoor air quality model, there are multiple performance-usage scenarios for achieving modest indoor air quality improvements. To meet World Health Organization guidance levels, however, three-stone fire and basic charcoal stove usage must be nearly eliminated to achieve the particulate matter target (< 1-3 hr/week), and substantially limited to meet the carbon monoxide guideline (< 7-9 hr/week). Moderate health gains may be achieved with various performance-usage scenarios. The greatest benefits are estimated to be achieved by near-complete displacement of traditional stoves with clean technologies, emphasizing the need to shift in the long term to near exclusive use of clean fuels and stoves. The performance-usage scenarios are also provided as a tool to guide technology selection and prioritize behavior change opportunities to maximize impact.

  6. Wood Stove Pollution in the Developed World: A Case to Raise Awareness Among Pediatricians.

    Science.gov (United States)

    Rokoff, Lisa B; Koutrakis, Petros; Garshick, Eric; Karagas, Margaret R; Oken, Emily; Gold, Diane R; Fleisch, Abby F

    2017-06-01

    Use of wood for residential heating is regaining popularity in developed countries. Currently, over 11 million US homes are heated with a wood stove. Although wood stoves reduce heating costs, wood smoke may adversely impact child health through the emission of gaseous and particulate air pollutants. Our purpose is to raise awareness of this environmental health issue among pediatricians. To summarize the state of the science, we performed a narrative review of articles published in PubMed and Web of Science. We identified 36 studies in developed countries that reported associations of household wood stove use and/or community wood smoke exposure with pediatric health outcomes. Studies primarily investigated respiratory outcomes, with no evaluation of cardiometabolic or neurocognitive health. Studies found community wood smoke exposure to be consistently associated with adverse pediatric respiratory health. Household wood stove use was less consistently associated with respiratory outcomes. However, studies of household wood stoves always relied on participant self-report of wood stove use, while studies of community wood smoke generally assessed air pollution exposure directly and more precisely in larger study populations. In most studies, important potential confounders, such as markers of socioeconomic status, were unaccounted for and may have biased results. We conclude that studies with improved exposure assessment, that measure and account for confounding, and that consider non-respiratory outcomes are needed. While awaiting additional data, pediatricians can refer patients to precautionary measures recommended by the US Environmental Protection Agency (EPA) to mitigate exposure. These include replacing old appliances with EPA-certified stoves, properly maintaining the stove, and using only dry, well-seasoned wood. In addition, several studies have shown mechanical air filters to effectively reduce wood stove pollution exposure in affected homes and

  7. Indoor concentrations of nitrogen dioxide and sulfur dioxide from burning solid fuels for cooking and heating in Yunnan Province, China

    NARCIS (Netherlands)

    Seow, Wei Jie; Downward, George S; Wei, Hu; Rothman, Nathaniel; Reiss, Boris; Xu, Jun; Bassig, Bryan A; Li, Jihua; He, Jun; Hosgood, H Dean; Wu, Guoping; Chapman, Robert S; Tian, Linwei; Wei, Fusheng; Caporaso, Neil E; Vermeulen, Roel; Lan, Qing

    2016-01-01

    The Chinese national pollution census has indicated that the domestic burning of solid fuels is an important contributor to nitrogen dioxide (NO2 ) and sulfur dioxide (SO2 ) emissions in China. To characterize indoor NO2 and SO2 air concentrations in relation to solid fuel use and stove ventilation

  8. Emission of PCDD/F, PCB, and HCB from combustion of firewood and pellets in residential stoves and boilers.

    Science.gov (United States)

    Hedman, Björn; Naslund, Morgan; Marklund, Stellan

    2006-08-15

    To assess potential emissions of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and hexachlorobenzene (HCB) from residential combustion of biofuels, experiments were performed in which various types of pellets and firewood were combusted in four types of stoves and boilers, with both full and reduced rates of air supply. Intermittent combustion of wood pellets resulted in emissions of 11 ng-(WHO-TEQ)/kg combusted fuel (dry weight). A modern, environmentally certified boiler yielded somewhat lower emissions of PCCD/F and PCB than a wood stove. Both gave <0.1 ng(WHO-TEQ)/m3n (1.3-6.5 ng(WHO-TEQ)/kg) and considerably lower emissions than an old boiler (7.0-13 ng(WHO-TEQ)/kg). No positive effect on emissions could be observed in full air combustion (simulating the use of a heat storage tank) compared to combustion with reduced air. Two of the wood combustion experiments included paper and plastic waste fuels. Chlorine-containing plastic waste gave rise to high emissions: ca. 310 ng(WHO-TEQ)/ kg over the whole combustion cycle. The homologue profiles of PCDD/Fs show characteristic differences between ashes and flue gas from combustions with different levels of air supply. These differences do not, however, seem to have any correlation to the relative amount of toxic congeners.

  9. SITUATIONAL CONTROL OF HOT BLAST STOVES GROUP BASED ON DECISION TREE

    Directory of Open Access Journals (Sweden)

    E. I. Kobysh

    2016-09-01

    Full Text Available In this paper was developed the control system of group of hot blast stoves, which operates on the basis of the packing heating control subsystem and subsystem of forecasting of modes duration in the hot blast stoves APCS of iron smelting in a blast furnace. With the use of multi-criteria optimization methods, implemented the adjustment of control system conduct, which takes into account the current production situation that has arisen in the course of the heating packing of each hot blast stove group. Developed a situation recognition algorithm and the choice of scenarios of control based on a decision tree.

  10. Field measurement on the emissions of PM, OC, EC and PAHs from indoor crop straw burning in rural China

    International Nuclear Information System (INIS)

    Wei, Siye; Shen, Guofeng; Zhang, Yanyan; Xue, Miao; Xie, Han; Lin, Pengchuan; Chen, Yuanchen; Wang, Xilong; Tao, Shu

    2014-01-01

    Field measurements were conducted to measure emission factors of particulate matter (EF PM ), organic carbon (EF OC ), elemental carbon (EF EC ), 28 parent polycyclic aromatic hydrocarbons (EF 28pPAHs ), and 4 oxygenated PAHs (EF 4oPAHs ) for four types of crop straws burned in two stoves with similar structure but different ages. The average EF PM , EF OC , EF EC , EF 28pPAHs , and EF 4oPAHs were 9.1 ± 5.7 (1.8–22 as range), 2.6 ± 2.9 (0.30–12), 1.1 ± 1.2 (0.086–5.5), 0.26 ± 0.19 (0.076–0.96), 0.011 ± 0.14 (1.3 × 10 −4 – 0.063) g/kg, respectively. Much high EF 28pPAHs was observed in field compared with the laboratory derived EFs and significant difference in EF 28pPAHs was identified among different crop residues, indicating considerable underestimation when laboratory derived EFs were used in the inventory. The field measured EF PM , EF OC , and EF EC were significantly affected by stove age and the EFs of carbonaceous particles for the 15-year old stove were approximately 2.5 times of those for the 1-year old stove. Highlights: • Field measurements provided more reliable data for the inventory. • Emissions from indoor crop residue burning were measured in field. • Much high PAHs emissions were found in field measurement in comparison with laboratory derived results. • Emissions of carbonaceous particulate matter increased by 2.5 times in the old stove compared that in a new stove. -- Emissions of incomplete combustion pollutants strongly affected by the fuel type and stove usage

  11. Field Measurements of Trace Gases and Aerosols Emitted by Undersampled Combustion Sources Including Wood and Dung Cooking Fires, Garbage and Crop Residue Burning, and Indonesian Peat Fires

    Science.gov (United States)

    Stockwell, C.; Jayarathne, T. S.; Goetz, D.; Simpson, I. J.; Selimovic, V.; Bhave, P.; Blake, D. R.; Cochrane, M. A.; Ryan, K. C.; Putra, E. I.; Saharjo, B.; Stone, E. A.; DeCarlo, P. F.; Yokelson, R. J.

    2017-12-01

    Field measurements were conducted in Nepal and in the Indonesian province of Central Kalimantan to improve characterization of trace gases and aerosols emitted by undersampled combustion sources. The sources targeted included cooking with a variety of stoves, garbage burning, crop residue burning, and authentic peat fires. Trace gas and aerosol emissions were studied using a land-based Fourier transform infrared spectrometer, whole air sampling, photoacoustic extinctiometers (405 and 870nm), and filter samples that were analyzed off-line. These measurements were used to calculate fuel-based emission factors (EFs) for up to 90 gases, PM2.5, and PM2.5 constituents. The aerosol optical data measured included EFs for the scattering and absorption coefficients, the single scattering albedo (at 870 and 405 nm), as well as the absorption Ångström exponent. The emissions varied significantly by source, although light absorption by both brown and black carbon (BrC and BC, respectively) was important for all non-peat sources. For authentic peat combustion, the emissions of BC were negligible and absorption was dominated by organic aerosol. The field results from peat burning were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat and compare well to the limited data available from other field studies. The EFs can be used with estimates of fuel consumption to improve regional emissions inventories and assessments of the climate and health impacts of these undersampled sources.

  12. Pattern of burn injury at north of Jordan.

    Science.gov (United States)

    Bataineh, Ziad A; Al Quran, Thekraiat M; Al Balas, Hamzeh; Khammash, Muhmammad R

    2018-01-01

    To the best of our knowledge, pattern of burn injury was not reported yet at our region, our hospital considered the only tertiary referral center with the only burn unit at the region since 2001 till date, a retrospective analysis of our computerized filing system recorded 527 burn patients between 2001-2016, mean age was 26 years; 1.27:1 was the male to female ratio, 79 patients were found to have major burns, 46% of admissions were below 20 years' age, 92% was at domestic site of affection and 65% due to flame burn followed by scald burn in about 23%. The limbs were the most affected body site, majority of patients were below 15% TBSA and partial thickness, 77 patients found to have inhalational injury. Our mean hospital stay was 16 days and mortality was 8.2%. Mortality was associated with high TBSA affection, depth and flame type. This study shows the pattern of burn at north of Jordan, preventive measures by education and observation will reduce the incidence of burn and its sequel, non-flammable cook plates and stoves will probably help in decrease burn morbidity and mortality.

  13. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    DEFF Research Database (Denmark)

    Goudarzi, A.M.; Mazandarani, P.; Panahi, R.

    2013-01-01

    Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is developed by two devices. An electric fan can increase the air to fuel ratio in order to increase the system’s efficiency and to decrease the air pollution by providing....... The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water and the essential heat for warming the room and cooking....

  14. Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels

    Science.gov (United States)

    Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya

    2016-05-01

    Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.

  15. Biogas cook stoves for healthy and sustainable diets? A case study in Southern India

    Directory of Open Access Journals (Sweden)

    Tal Lee Anderman

    2015-09-01

    Full Text Available Alternative cook stoves that replace solid fuels with cleaner energy sources, such as biogas, are gaining popularity in low-income settings across Asia, Africa and South America. Published research on these technologies focuses on their potential to reduce indoor air pollution and improve respiratory health. Effects on other cooking related aspects, such as diets and women’s time management, are less understood. In this study in southern India, we investigate if using biogas cook stoves alters household diets and women’s time management. We compare treatment households who are supplied with a biogas cook stove with comparison households who do not have access to these stoves, while controlling for several socio-economic factors. We find that diets of treatment households are more diverse than diets of comparison households. In addition, women from treatment households spend on average 40 minutes less cooking and 70 minutes less collecting firewood per day than women in comparison households. This study illustrates that alongside known benefits for respiratory health, using alternative cook stoves may benefit household diets and free up women’s time. To inform development investments and ensure these co-benefits, we argue that multiple dimensions of sustainability should be considered in evaluating the impact of alternative cook stoves.

  16. Analysis of UO2 fuel structure for low and high burn-up and its impact on fission gas release

    International Nuclear Information System (INIS)

    Szuta, M.; El-Koliel, M.S.

    1999-01-01

    During irradiation, uranium dioxide (UO 2 ) fuel undergo important restructuring mainly represented by densification and swelling, void migration, equiaxed grain growth, grain subdivision, and the formation of columnar grains. The purpose of this study is to obtain a comprehensive picture of the phenomenon of equiaxed grain growth in UO 2 ceramic material. The change of the grain size in high-density uranium dioxide as a function of temperature, initial grain size, time, and burnup is calculated. Algorithm of fission gas release from UO 2 fuel during high temperature irradiation at high burnup taking into account grain growth effect is presented. Theoretical results are compared with experimental data. (author)

  17. Stove checking behaviour in people with OCD vs. anxious controls.

    Science.gov (United States)

    Bucarelli, Bianca; Purdon, Christine

    2016-12-01

    A growing body of research suggests that the repetition of an action degrades memory for that action, as well as confidence that is has been done correctly. This has important implications for understanding the compulsive repetition of actions characteristic of obsessive compulsive disorder (OCD). At this time, though, much of the research has been conducted on analogue or nonclinical OCD samples in comparison to healthy controls and often using virtual, as opposed to actual, threat stimuli. Furthermore, although it has been argued that people with OCD are overly attentive to threat stimuli, the research on actual attention to threat is scant. People with a principal diagnosis of OCD (n = 30) and people with a clinically significant diagnosis of an anxiety disorder, but no OCD (n = 18) completed measures of memory confidence and responsibility and then underwent a stove-checking task in a functioning kitchen while wearing a portable eye tracking device. Pre- and post-task ratings of harm and responsibility were taken, along with post-task ratings of memory and certainty. People with OCD did not exhibit poorer memory confidence than the anxious control (AC) group, but did report greater trait and state responsibility for harm. The OCD group checked longer than did the AC group and check duration predicted post-task ratings of harm, but to the same extent in both groups. People with OCD attended to threat items less than did the AC group. Greater visual attention to the stove during the checking period was associated with greater post-task ratings of responsibility and harm and with less certainty in and memory for the check - but only for the AC group. The sample size was modest, women were over-represented and problems with the eye tracking device reduced the amount of reliable data available for analysis. Compulsions are complex actions that are mediated by many trait, state and contextual factors. People with OCD may be able to circumvent self

  18. Impact on indoor air quality during burning of Pakistani coal briquettes

    International Nuclear Information System (INIS)

    Gammage, R.B.; Wachter, E.A.; Wade, J.; Wilson, D.L.; Ahmad, N.; Sibtain, F.; Raza, M.Z.

    1993-01-01

    A comparison was made of airborne emissions from combustion of new types of Pakistani coal briquettes and traditional fuels. A mud-lined Angethi stove was operated under the standard nominal conditions of burning 200 g charges of fuel inside a 12 m 3 shed with a forced rate of air exchange of 14/hr. Coal was cold briquetted with lime, clay, and oxidant. Traditional fuels were wood, charcoal, and animal dung. Compared to raw coal, the amended coal gave fourfold reduced emission of respirable-size particles (RSP) while dramatically reducing overall SO 2 release. Initial burning was restricted to the outer layers of the briquettes during which time reaction of SO 2 with lime was incomplete and early emissions of SO 2 were substantial. The measurements overall indicated that, with respect to CO, SO 2 , NO x , and RSP, substitution of amended coal briquettes for traditional fuels will not worsen indoor air quality during domestic cooking. The traditional fuels and coal briquettes emit elevated peak amounts of CO (100-250μL/L), SO 2 (2-5 μL/L), and NO x (1-5 μL/L) in the early phase of volatiles burning with much reduced emissions in the later char-burning phase. Stove operators can substantially lower exposures by lighting the fuel outside and later moving the stove inside

  19. Experimentation on bio-kerosene stove using organic additive

    Science.gov (United States)

    Varshini, M.; Shetty, Divakar

    2017-07-01

    One of the basic worthy item used in most of the villages even now a day's also is the kerosene stove. But in the current scenario, the petroleum products are been replenished. So an alternate fuel should be found in order delve. This work is to check the contingency of blending pongamia oil and kerosene in which is used as an additive. Pongamia is one of the forest based fast growing evergreen tree which is capable of yielding 9 - 90 kg seeds from which 25% of oil can be extracted. Distilled cow urine is to be used so that the fuel can be stored for longer time and is odorless. Blends of 10% to 70% neat pongamia oil - kerosene(KEP) and pongamia oil - kerosene with additive(KEPWA) are prepared. The properties such as flash point, fire point and viscosity are determined. The blends are been compared by doing emission test. The blends with additive showed better properties and reducing in emission characteristics compared to neat blends. It is also observed that emission of CO is decreasing with increasing blends.

  20. Fuelwood savings and carbon emission reductions by the use of improved cooking stoves in an Afromontane forest, Ethiopia

    OpenAIRE

    Dresen, E.; DeVries, B.R.; Herold, M.; Verchot, L.; Müller, R.

    2014-01-01

    In many Sub-Saharan African countries, fuelwood collection is among the most important drivers of deforestation and particularly forest degradation. In a detailed field study in the Kafa region of southern Ethiopia, we assessed the potential of efficient cooking stoves to mitigate the negative impacts of fuelwood harvesting on forests. Eleven thousand improved cooking stoves (ICS), specifically designed for baking Ethiopia’s staple food injera , referred to locally as “ Mirt ” stoves, have be...

  1. Burning Feet

    Science.gov (United States)

    ... be accompanied by a pins and needles sensation (paresthesia) or numbness, or both. Burning feet may also be referred to as tingling feet or paresthesia. While fatigue or a skin infection can cause ...

  2. Burning issues

    International Nuclear Information System (INIS)

    Raloff, J.

    1993-01-01

    The idea of burning oil slicks at sea has intrigued oil-cleanup managers for more than a decade, but it wasn't until the advent of fireproof booms in the mid-1980's and a major spill opportunity (the March 1989 Exxon Valdez) that in-situ burning got a real sea trial. The results of this and other burning experiments indicate that, when conditions allow it, nothing can compete with fire's ability to remove oil from water. Burns have the potential to remove as much oil in one day as mechanical devices can in one month, along with minimal equipment, labor and cost. Reluctance to burn in appropriate situations comes primarily from the formation of oily, black smoke. Analysis of the potentially toxic gases have been done, indicating that burning will not increase the levels of polluting aldehydes, ketones, dioxins, furans, and PAHs above those that normally evaporate from spilled oil. This article contains descriptions of planned oil fires and the discussion on the advantages and concerns of such a policy

  3. Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator.

    Science.gov (United States)

    Lertsatitthanakorn, C

    2007-05-01

    The use of biomass cook stoves is widespread in the domestic sector of developing countries, but the stoves are not efficient. To advance the versatility of the cook stove, we investigated the feasibility of adding a commercial thermoelectric (TE) module made of bismuth-telluride based materials to the stove's side wall, thereby creating a thermoelectric generator system that utilizes a proportion of the stove's waste heat. The system, a biomass cook stove thermoelectric generator (BITE), consists of a commercial TE module (Taihuaxing model TEP1-1264-3.4), a metal sheet wall which acts as one side of the stove's structure and serves as the hot side of the TE module, and a rectangular fin heat sink at the cold side of the TE module. An experimental set-up was built to evaluate the conversion efficiency at various temperature ranges. The experimental set-up revealed that the electrical power output and the conversion efficiency depended on the temperature difference between the cold and hot sides of the TE module. At a temperature difference of approximately 150 degrees C, the unit achieved a power output of 2.4W. The conversion efficiency of 3.2% was enough to drive a low power incandescent light bulb or a small portable radio. A theoretical model approximated the power output at low temperature ranges. An economic analysis indicated that the payback period tends to be very short when compared with the cost of the same power supplied by batteries. Therefore, the generator design formulated here could be used in the domestic sector. The system is not intended to compete with primary power sources but serves adequately as an emergency or backup source of power.

  4. Policy implications for improved cook stove programs—A case study of the importance of village fuel use variations

    International Nuclear Information System (INIS)

    Vahlne, Niklas; Ahlgren, Erik O.

    2014-01-01

    Despite the long history of cook stove programs, very few have been successful, often only in areas where biomass is purchased or there is a biomass shortage. Several studies have described how rural households generally rely on several different fuels; which fuels are used may depend on various household characteristics such as location and income. This article explores possible consequences of variations in fuel usage for improved cook stove programs and how this may vary between different areas. Reductions of CO 2 equivalent emissions and monetary savings are calculated for hypothetical cook stove deployment using data from a rural energy survey in the Vĩnh Phúc province of northern Vietnam. The results indicate that the areas may respond differently to the various stove options, both in terms of economy and emission reductions. Furthermore, there are large differences in emission reduction calculations when only Kyoto-gases are included and when non-Kyoto greenhouse agents are added. Assumptions regarding household behavior and stove efficiencies have large impacts on the results, indicating a need for further research on how improved cook stoves may influence households’ fuel choices. - Highlights: • Household data from six different villages were used to calculate potential benefits from an improved stove program. • The possible monetary savings and reductions in CO 2 equivalent emissions were calculated. • The results show benefits as non-linear functions of stove improvements. • The results show large variations among villages in the functions mapping stove improvements to benefits

  5. Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India

    Science.gov (United States)

    Fleming, Lauren T.; Lin, Peng; Laskin, Alexander; Laskin, Julia; Weltman, Robert; Edwards, Rufus D.; Arora, Narendra K.; Yadav, Ankit; Meinardi, Simone; Blake, Donald R.; Pillarisetti, Ajay; Smith, Kirk R.; Nizkorodov, Sergey A.

    2018-02-01

    Emissions of airborne particles from biomass burning are a significant source of black carbon (BC) and brown carbon (BrC) in rural areas of developing countries where biomass is the predominant energy source for cooking and heating. This study explores the molecular composition of organic aerosols from household cooking emissions with a focus on identifying fuel-specific compounds and BrC chromophores. Traditional meals were prepared by a local cook with dung and brushwood-fueled cookstoves in a village in Palwal district, Haryana, India. Cooking was done in a village kitchen while controlling for variables including stove type, fuel moisture, and meal. Fine particulate matter (PM2.5) emissions were collected on filters, and then analyzed via nanospray desorption electrospray ionization-high-resolution mass spectrometry (nano-DESI-HRMS) and high-performance liquid chromatography-photodiode array-high-resolution mass spectrometry (HPLC-PDA-HRMS) techniques. The nano-DESI-HRMS analysis provided an inventory of numerous compounds present in the particle phase. Although several compounds observed in this study have been previously characterized using gas chromatography methods a majority of the species in the nano-DESI spectra were newly observed biomass burning compounds. Both the stove (chulha or angithi) and the fuel (brushwood or dung) affected the composition of organic aerosols. The geometric mean of the PM2.5 emission factor and the observed molecular complexity increased in the following order: brushwood-chulha (7.3 ± 1.8 g kg-1 dry fuel, 93 compounds), dung-chulha (21.1 ± 4.2 g kg-1 dry fuel, 212 compounds), and dung-angithi (29.8 ± 11.5 g kg-1 dry fuel, 262 compounds). The mass-normalized absorption coefficient (MACbulk) for the organic-solvent extractable material for brushwood PM2.5 was 3.7 ± 1.5 and 1.9 ± 0.8 m2 g-1 at 360 and 405 nm, respectively, which was approximately a factor of two higher than that for dung PM2.5. The HPLC-PDA-HRMS analysis

  6. The relative effects of fuel concentration, residual-gas fraction, gas motion, spark energy and heat losses to the electrodes on flame-kernel development in a lean-burn spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Aleiferis, P.G.; Taylor, A.M.K.P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering; Ishii, K. [Honda International Technical School, Saitama (Japan); Urata, Y. [Honda R and D Co., Ltd., Tochigi (Japan). Tochigi R and D Centre

    2004-04-01

    The potential of lean combustion for the reduction in exhaust emissions and fuel consumption in spark ignition engines has long been established. However, the operating range of lean-burn spark ignition engines is limited by the level of cyclic variability in the early-flame development stage that typically corresponds to the 0-5 per cent mass fraction burned duration. In the current study, the cyclic variations in early flame development were investigated in an optical stratified-charge spark ignition engine at conditions close to stoichiometry [air-to-fuel ratio (A/F) = 15] and to the lean limit of stable operation (A/F = 22). Flame images were acquired through either a pentroof window ('tumble plane' of view) or the piston crown ('swirl plane' of view) and these were processed to calculate the intra-cycle flame-kernel radius evolution. In order to quantify the relative effects of local fuel concentration, gas motion, spark-energy release and heat losses to the electrodes on the flame-kernel growth rate, a zero-dimensional flame-kernel growth model, in conjunction with a one-dimensional spark ignition model, was employed. Comparison of the calculated flame-radius evolutions with the experimental data suggested that a variation in A/F around the spark plug of {delta}(A/F) {approx} 4 or, in terms of equivalence ratio {phi}, a variation in {delta}{phi} {approx} 0.15 at most was large enough to account for 100 per cent of the observed cyclic variability in flame-kernel radius. A variation in the residual-gas fraction of about 20 per cent around the mean was found to account for up to 30 per cent of the variability in flame-kernel radius at the timing of 5 per cent mass fraction burned. The individual effect of 20 per cent variations in the 'mean' in-cylinder velocity at the spark plug at ignition timing was found to account for no more than 20 per cent of the measured cyclic variability in flame kernel radius. An individual effect of

  7. Black carbon cookstove emissions: A field assessment of 19 stove/fuel combinations

    Science.gov (United States)

    Garland, Charity; Delapena, Samantha; Prasad, Rajendra; L'Orange, Christian; Alexander, Donee; Johnson, Michael

    2017-11-01

    Black carbon (BC) emissions from household cookstoves consuming solid fuel produce approximately 25 percent of total anthropogenic BC emissions. The short atmospheric lifetime of BC means that reducing BC emissions would result in a faster climate response than mitigating CO2 and other long-lived greenhouse gases. This study presents the results of optical BC measurements of two new cookstove emissions field assessments and 17 archived cookstove datasets. BC was determined from attenuation of 880 nm light, which is strongly absorbed by BC, and linearly related between 1 and 125 attenuation units. A relationship was experimentally determined correlating BC mass deposition on quartz filters determined via thermal optical analysis (TOA) and on PTFE and quartz filters using transmissometry, yielding an attenuation cross-section (σATN) for both filter media types. σATN relates TOA measurements to optical measurements on PTFE and quartz (σATN(PTFE) = 13.7 cm-2 μg, R2 = 0.87, σATN(Quartz) = 15.6 cm-2 μg, R2 = 0.87). These filter-specific σATN, optical measurements of archived filters were used to determine BC emission factors and the fraction of particulate matter (PM) in the form of black carbon (BC/PM). The 19 stoves measured fell into five stove classes; simple wood, rocket, advanced biomass, simple charcoal, and advanced charcoal. Advanced biomass stoves include forced- and natural-draft gasifiers which use wood or biomass pellets as fuel. Of these classes, the simple wood and rocket stoves demonstrated the highest median BC emission factors, ranging from 0.051 to 0.14 g MJ-1. The lowest BC emission factors were seen in charcoal stoves, which corresponds to the generally low PM emission factors observed during charcoal combustion, ranging from 0.0084 to 0.014 g MJ-1. The advanced biomass stoves generally showed an improvement in BC emissions factors compared to simple wood and rocket stoves, ranging from 0.0031 to 0.071 g MJ-1. BC/PM ratios were highest for the

  8. Thermoelectricity - A Promising Complementarity with Efficient Stoves in Off-grid-areas

    Directory of Open Access Journals (Sweden)

    Camille Favarel

    2015-09-01

    Full Text Available Thermoelectric modules produce electricity from heat flow. In areas without electricity, biomass is generally burnt in open fires or rudimentary stoves in order to generate heat, to cook and to produce domestic hot water. Combustion quality in these devices is very low and needs a large amount of wood extracted from surrounding forests. “Planète Bois” develops highly efficient clean multifunction stoves based on double chamber combustion.  As an exhaust fan is necessary to adjust the primary and secondary air flows for optimal combustion, these stoves cannot currently be used without electricity. Thermoelectric modules incorporated in a heat exchanger between the flue and the hot water tank can supply the exhaust fan and also produce some electricity for other basic purposes. Our paper presents tests that were done on one of these stoves to size the thermoelectric generator and thus the produced electricity. These preliminary tests are used to identify an outlook for the successful implementation of these stoves.

  9. Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment

    Science.gov (United States)

    Koss, Abigail R.; Sekimoto, Kanako; Gilman, Jessica B.; Selimovic, Vanessa; Coggon, Matthew M.; Zarzana, Kyle J.; Yuan, Bin; Lerner, Brian M.; Brown, Steven S.; Jimenez, Jose L.; Krechmer, Jordan; Roberts, James M.; Warneke, Carsten; Yokelson, Robert J.; de Gouw, Joost

    2018-03-01

    Volatile and intermediate-volatility non-methane organic gases (NMOGs) released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF). We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC) pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90 % of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR), broadband cavity-enhanced spectroscopy (ACES), and iodide ion chemical ionization mass spectrometry (I- CIMS) where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, of > 0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN), nitrous acid (HONO), and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire.

  10. Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment

    Directory of Open Access Journals (Sweden)

    A. R. Koss

    2018-03-01

    Full Text Available Volatile and intermediate-volatility non-methane organic gases (NMOGs released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF. We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90 % of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR, broadband cavity-enhanced spectroscopy (ACES, and iodide ion chemical ionization mass spectrometry (I− CIMS where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, of  >  0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN, nitrous acid (HONO, and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire.

  11. Comic books can educate children about burn safety in developing countries.

    Science.gov (United States)

    Sinha, Indranil; Patel, Anup; Kim, Francis Sun; Maccorkle, Mary Lu; Watkins, James Frease

    2011-01-01

    Burns in developing countries account for significant morbidity and many occur within the pediatric population. This study investigates whether a comic book can increase burn awareness in primary school age children, both domestically and abroad. Based on demographic data regarding pediatric burns in developing nations, a comic book was developed to educate primary school age children on key risk factors regarding burn safety, including teaching children to not touch active stoves, not to light fireworks without supervision, and to "stop, drop, and roll" after burn injury. Students, aged 5 to 7 years, in both West Virginia, United States (N = 74), and West Bengal, India (N = 39), answered a three-question survey regarding these issues both before and after reading the comic book. Groups were compared using Fisher's exact test and significance was defined as P comic as a class. Specifically, there were significant increases in both groups for the questions regarding avoiding hot stoves (P comic and were engaged during the sessions. This study demonstrates that a comic book has value in teaching children about burn awareness. Comic books may be a cost-effective method as an outreach tool for children.

  12. Adapting the deep burn in-core fuel management strategy for the gas turbine - modular helium reactor to a uranium-thorium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Department of Nuclear and Reactor Physics, Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)]. E-mail: alby@neutron.kth.se; Gudowski, Waclaw [Department of Nuclear and Reactor Physics, Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)

    2005-11-15

    In 1966, Philadelphia Electric has put into operation the Peach Bottom I nuclear reactor, it was the first high temperature gas reactor (HTGR); the pioneering of the helium-cooled and graphite-moderated power reactors continued with the Fort St. Vrain and THTR reactors, which operated until 1989. The experience on HTGRs lead General Atomics to design the gas turbine - modular helium reactor (GT-MHR), which adapts the previous HTGRs to the generation IV of nuclear reactors. One of the major benefits of the GT-MHR is the ability to work on the most different types of fuels: light water reactors waste, military plutonium, MOX and thorium. In this work, we focused on the last type of fuel and we propose a mixture of 40% thorium and 60% uranium. In a uranium-thorium fuel, three fissile isotopes mainly sustain the criticality of the reactor: {sup 235}U, which represents the 20% of the fresh uranium, {sup 233}U, which is produced by the transmutation of fertile {sup 232}Th, and {sup 239}Pu, which is produced by the transmutation of fertile {sup 238}U. In order to compensate the depletion of {sup 235}U with the breeding of {sup 233}U and {sup 239}Pu, the quantity of fertile nuclides must be much larger than that one of {sup 235}U because of the small capture cross-section of the fertile nuclides, in the thermal neutron energy range, compared to that one of {sup 235}U. At the same time, the amount of {sup 235}U must be large enough to set the criticality condition of the reactor. The simultaneous satisfaction of the two above constrains induces the necessity to load the reactor with a huge mass of fuel; that is accomplished by equipping the fuel pins with the JAERI TRISO particles. We start the operation of the reactor with loading fresh fuel into all the three rings of the GT-MHR and after 810 days we initiate a refueling and shuffling schedule that, in 9 irradiation periods, approaches the equilibrium of the fuel composition. The analysis of the k {sub eff} and mass

  13. Adapting the deep burn in-core fuel management strategy for the gas turbine - modular helium reactor to a uranium-thorium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gudowski, Waclaw

    2005-01-01

    In 1966, Philadelphia Electric has put into operation the Peach Bottom I nuclear reactor, it was the first high temperature gas reactor (HTGR); the pioneering of the helium-cooled and graphite-moderated power reactors continued with the Fort St. Vrain and THTR reactors, which operated until 1989. The experience on HTGRs lead General Atomics to design the gas turbine - modular helium reactor (GT-MHR), which adapts the previous HTGRs to the generation IV of nuclear reactors. One of the major benefits of the GT-MHR is the ability to work on the most different types of fuels: light water reactors waste, military plutonium, MOX and thorium. In this work, we focused on the last type of fuel and we propose a mixture of 40% thorium and 60% uranium. In a uranium-thorium fuel, three fissile isotopes mainly sustain the criticality of the reactor: 235 U, which represents the 20% of the fresh uranium, 233 U, which is produced by the transmutation of fertile 232 Th, and 239 Pu, which is produced by the transmutation of fertile 238 U. In order to compensate the depletion of 235 U with the breeding of 233 U and 239 Pu, the quantity of fertile nuclides must be much larger than that one of 235 U because of the small capture cross-section of the fertile nuclides, in the thermal neutron energy range, compared to that one of 235 U. At the same time, the amount of 235 U must be large enough to set the criticality condition of the reactor. The simultaneous satisfaction of the two above constrains induces the necessity to load the reactor with a huge mass of fuel; that is accomplished by equipping the fuel pins with the JAERI TRISO particles. We start the operation of the reactor with loading fresh fuel into all the three rings of the GT-MHR and after 810 days we initiate a refueling and shuffling schedule that, in 9 irradiation periods, approaches the equilibrium of the fuel composition. The analysis of the k eff and mass evolution, reaction rates, neutron flux and spectrum at the

  14. Numerical investigation of the flow inside the combustion chamber of a plant oil stove

    Science.gov (United States)

    Pritz, B.; Werler, M.; Wirbser, H.; Gabi, M.

    2013-10-01

    Recently a low cost cooking device for developing and emerging countries was developed at KIT in cooperation with the company Bosch und Siemens Hausgeräte GmbH. After constructing an innovative basic design further development was required. Numerical investigations were conducted in order to investigate the flow inside the combustion chamber of the stove under variation of different geometrical parameters. Beyond the performance improvement a further reason of the investigations was to rate the effects of manufacturing tolerance problems. In this paper the numerical investigation of a plant oil stove by means of RANS simulation will be presented. In order to reduce the computational costs different model reduction steps were necessary. The simulation results of the basic configuration compare very well with experimental measurements and problematic behaviors of the actual stove design could be explained by the investigation.

  15. Energy and emissions characterization of an eco-efficient biomass cook stove at different altitudes

    International Nuclear Information System (INIS)

    Pérez-Bayer, Juan F.; Graciano-Bustamante, Diana S.; Gómez-Betancur, José A.

    2013-01-01

    Around 2.5 billion people depend on wood as their main fuel for heating and cooking.In this work is studied the effect of altitude (678 and 1976 meters above sea level) on energy performance and emissions of an improved wood stove under standardized cooking tests. The experiments were carried out under the Water Boiling (WBT) and Controlled Cooking (CCT) Tests. The efficiency decreased about 24 % with increasing altitude in WBT, and specific fuel consumption increased 27.3 % due to the air density changes. Regarding the controlled cooking test, the specific fuel consumption and specific emissions increased by 15.3 % and 16 %, respectively. It is highlighted that altitude significantly affects the 'Plancha' wood stove behavior. Specific emissions increased at higher altitudes, so it is necessary to redesign wood stoves according to their geographical location in order to optimize the cooking process. (author)

  16. Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System.

    Science.gov (United States)

    de Gennaro, Gianluigi; Dambruoso, Paolo Rosario; Di Gilio, Alessia; Di Palma, Valerio; Marzocca, Annalisa; Tutino, Maria

    2015-12-24

    Around 50% of the world's population, particularly in developing countries, uses biomass as one of the most common fuels. Biomass combustion releases a considerable amount of various incomplete combustion products, including particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). The paper presents the results of Indoor Air Quality (IAQ) measurements in six houses equipped with wood burning stoves or fireplaces as heating systems. The houses were monitored for 48-h periods in order to collect PM10 samples and measure PAH concentrations. The average, the maximum and the lowest values of the 12-h PM10 concentration were 68.6 μg/m³, 350.7 μg/m³ and 16.8 μg/m³ respectively. The average benzo[a]pyrene 12-h concentration was 9.4 ng/m³, while the maximum and the minimum values were 24.0 ng/m³ and 1.5 ng/m³, respectively. Continuous monitoring of PM10, PAHs, Ultra Fine Particle (UFP) and Total Volatile Organic Compounds (TVOC) was performed in order to study the progress of pollution phenomena due to biomass burning, their trends and contributions to IAQ. The results show a great heterogeneity of impacts on IAQ in terms of magnitude and behavior of the considered pollutants' concentrations. This variability is determined by not only different combustion technologies or biomass quality, but overall by different ignition mode, feeding and flame management, which can also be different for the same house. Moreover, room dimensions and ventilation were significant factors for pollution dispersion. The increase of PM10, UFP and PAH concentrations, during lighting, was always detected and relevant. Continuous monitoring allowed singling out contributions of other domestic sources of considered pollutants such as cooking and cigarettes. Cooking contribution produced an impact on IAQ in same cases higher than that of the biomass heating system.

  17. Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System

    Directory of Open Access Journals (Sweden)

    Gianluigi de Gennaro

    2015-12-01

    Full Text Available Around 50% of the world’s population, particularly in developing countries, uses biomass as one of the most common fuels. Biomass combustion releases a considerable amount of various incomplete combustion products, including particulate matter (PM and polycyclic aromatic hydrocarbons (PAHs. The paper presents the results of Indoor Air Quality (IAQ measurements in six houses equipped with wood burning stoves or fireplaces as heating systems. The houses were monitored for 48-h periods in order to collect PM10 samples and measure PAH concentrations. The average, the maximum and the lowest values of the 12-h PM10 concentration were 68.6 μg/m3, 350.7 μg/m3 and 16.8 μg/m3 respectively. The average benzo[a]pyrene 12-h concentration was 9.4 ng/m3, while the maximum and the minimum values were 24.0 ng/m3 and 1.5 ng/m3, respectively. Continuous monitoring of PM10, PAHs, Ultra Fine Particle (UFP and Total Volatile Organic Compounds (TVOC was performed in order to study the progress of pollution phenomena due to biomass burning, their trends and contributions to IAQ. The results show a great heterogeneity of impacts on IAQ in terms of magnitude and behavior of the considered pollutants’ concentrations. This variability is determined by not only different combustion technologies or biomass quality, but overall by different ignition mode, feeding and flame management, which can also be different for the same house. Moreover, room dimensions and ventilation were significant factors for pollution dispersion. The increase of PM10, UFP and PAH concentrations, during lighting, was always detected and relevant. Continuous monitoring allowed singling out contributions of other domestic sources of considered pollutants such as cooking and cigarettes. Cooking contribution produced an impact on IAQ in same cases higher than that of the biomass heating system.

  18. Gases emissions and excess air measurements for performance analysis of a wood stove

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Canto, Sergio Aruana Elarrat; Nogueira, Manoel Fernandes Martins; Maneschy, Carlos Edilson de Almeida; Santos, Tiago da Silva; Gazel, Hussein Felix [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: aruana@ufpa.br, mfmn@ufpa.br, cemaneschy@ufpa.br

    2010-07-01

    Millions of people in Africa, Central and South America and Asia rely on rudimentary and inefficient wood stove that causes respiratory diseases and demand for large quantity of biomass from native forest. The international agents as World Bank, UNESCO and International Energy Agency has pointed out the relevancy of wood stove. Research on this subject has been done by Shell Foundation and Aprovecho Research Center that indicates Rocket Stove technology as the most promising and able to provide efficiency together with low cost. This work presents performance results obtained from one wood rocket stove manufactured by a Brazilian company named Ecofogao. The stove performance was measured characterizing the amount of energy supplied to the stove in the biomass and characterizing the eluding gases. The incoming energy was quantified through the high heating value for the Jabot (using a bomb calorimeter) plus the Ultimate Analysis (content of carbon, hydrogen, nitrogen and oxygen), Proximate Analysis (content of moisture, fixed carbon, volatiles and ash) and the mass flow rate of biomass feed to the stoven. The leaving energy in the exhaustion gases was quantified measuring its temperature and composition immediately at the exit of the stoven what is the inlet of chimney. The results show the presence of CO{sub 2}, O{sub 2} and CO in the concentration ranges of (0.9% to 6.30%), (14.30% to 19.90%) and (0.17% to 2.50%) respectively. The excess air is in the range (3.33 to 23.33) based on carbon dioxide measurements in the eluted gases. These results provided information to promote also further improvements on the stoven design. (author)

  19. Evaluation and development of direct burning natural gas industrial equipment in the food sector; Avaliacao e desenvolvimento de equipamentos industriais de queima direta de gas natural no setor de alimentos

    Energy Technology Data Exchange (ETDEWEB)

    Schwob, Marcelo; Morales, Maria Elizabeth; Henriques, Mauricio; Guimaraes, Marcio; Tapia, Roberto; Rodrigues, Joaquim; Faccion, Alexandre [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The aim of this study, focused in the food sector, is evaluate and develop technologies used in equipment of direct burning natural gas, as ovens and driers of common use in the toasting coffee, noodles and biscuits industries. We have developed an archetype of oven for baking, seeking to incorporate new technological concepts but showing operational conditions of great attractiveness for the users of this kind of equipment. Above all, aiming the optimization of the technologies to improve the energy efficiency, to reduce costs and to increase the operational security. Thus, a survey of the thermal equipment in the mentioned industrial sector was made, followed of an evaluation of the technical possibilities of its incorporation in that sector, adaptations and the modifications of engineering projects, identifying the possibilities of productivity increase, improvement of quality and greater competitiveness, as well as the reduction of atmospheric emissions. So, It has been proposed solutions as the decentralized use of the thermal energy, recovery of heat of exhaustion gases, optimization of the thermal insulation, reduction of thermal inertia and the automatization of the control of the combustion in ovens and/or driers of the mentioned sectors. The main results of this study are: the possibility of reduction of, 32 to 37% in the consumption of thermal energy in the ovens of biscuit production, of 12 to 15% in the toasting of coffee and 20 to 30% in the processes of noodles production. Saving of around 25% would be expected in the small bearing ovens for baking. (author)

  20. FASHION THE KITCHEN: CAST IRON STOVES THE PROVINCE OF QUEBEC, 1900-1914

    Directory of Open Access Journals (Sweden)

    Lisa Baillargeon

    2010-01-01

    Full Text Available The role of aesthetics in the marketing strategies of Quebec’s foundries and retailers at the beginning of the 20th century is not well known. This qualitative analysis of published cast iron stove advertisements suggests that the use of aesthetics to market stoves was far more elaborate than the simple alignment with trendy or classic style categories. In fact, aesthetics were the cornerstone of advertising activities aimed at developing and capitalizing on various market segments at a time of burgeoning consumerism.

  1. Test of pyrolysis gasifier stoves in two institutional kitchens in Uganda

    DEFF Research Database (Denmark)

    Wendelbo, Pall; Nielsen, Per Sieverts

    1998-01-01

    : The main purpose of the paper is to evaluate tests of institutional kitchens carried out at schools in Uganda 1997. The results of the tests for the institutional kitchen with pyrolysis gasifier stoves are compared with the fuel use in traditional kitchens with three-stone stoves. The project......, respectively. The cooking place was build up with a rotating plate on which tree gasifier units were placed. In this way it was possible to change on of the gasifier units when necessary. The pot was then mounted on a tripod app. 10 cm above the gasifier units. The results of the tests show that the improved...

  2. Intelligent Heat System – high energy efficient wood stoves with low emissions

    DEFF Research Database (Denmark)

    Illerup, Jytte Boll; Nickelsen, Joachim; Hansen, Brian Brun

    2016-01-01

    This development and demonstration project conducted by HWAM A/S and DTU Chemical Engineering has contributed to the development of an automatically controlled wood stove (HWAM IHS), which is on the market today. The new digital control system ensures optimal combustion conditions by keeping...... compared to traditional manually controlled stoves. The tests also showed that in many cases it is impossible to visually tell if non-optimal combustion occurs. Also, in practice it is impossible to manually control the combustion air as fast and optimally as the automatically controlled air inlet valves...

  3. Modelling of thermal mechanical behaviour of high burn-Up VVER fuel at power transients with special emphasis on the impact of fission gas induced swelling of fuel pellets

    International Nuclear Information System (INIS)

    Novikov, V.; Medvedev, A.; Khvostov, G.; Bogatyr, S.; Kuzetsov, V.; Korystin, L.

    2005-01-01

    This paper is devoted to the modelling of unsteady state mechanical and thermo-physical behaviour of high burn-up VVER fuel at a power ramp. The contribution of the processes related to the kinetics of fission gas to the consequences of pellet-clad mechanical interaction is analysed by the example of integral VVER-440 rod 9 from the R7 experimental series, with a pellet burn-up in the active part at around 60 MWd/kgU. This fuel rod incurred ramp testing with a ramp value ΔW 1 ∼ 250 W/cm in the MIR research reactor. The experimentally revealed residual deformation of the clad by 30-40 microns in the 'hottest' portion of the rod, reaching a maximum linear power of up to 430 W/cm, is numerically justified on the basis of accounting for the unsteady state swelling and additional degradation of fuel thermal conductivity due to temperature-induced formation and development of gaseous porosity within the grains and on the grain boundaries. The good prediction capability of the START-3 code, coupled with the advanced model of fission gas related processes, with regard to the important mechanical (residual deformation of clad, pellet-clad gap size, central hole filling), thermal physical (fission gas release) and micro-structural (profiles of intra-granular concentration of the retained fission gas and fuel porosity across a pellet) consequences of the R7 test is shown. (authors)

  4. Educational Materials - Burn Wise

    Science.gov (United States)

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  5. Status and Benefits of Renewable Energy Technologies in the Rural Areas of Ethiopia: A Case Study on Improved Cooking Stoves and Biogas Technologies

    Directory of Open Access Journals (Sweden)

    Yitayal Addis Alemayehu

    2015-07-01

    Full Text Available The majority of Ethiopia’s people (85% reside in rural areas, deriving their livelihood from agriculture. Ethiopia’s energy system is characterized mainly by biomass fuel supply, with households being the greatest energy consumers. The household sector takes up nearly 94 % of the total energy supplies. Access to energy resources and technologies in rural Ethiopia is highly constrained which makes the energy supply and consumption pattern of the country to show many elements of un-sustainability. The concern on cooking practices, household economics, health, forest and agricultural resource management, and global greenhouse gas emissions has emerged as a transformative opportunity to improve individual lives, livelihoods, and the global environment. More decentralized renewable energy projects could play an important role in mitigating traditional biomass fuel use. Improved cooking stove (ICS dissemination projects have been launched involving the private sector in the production and commercialization of the stoves. In doing so, about 3.7 million ICSs have been disseminated in the country so far which benefited stove users, producers and the total environment as about 30 million hectare of forest per year can be conserved. Conversion of animal waste to biogas energy to replace traditional fuel and use of the slurry as a fertilizer is the other current focus of the government of Ethiopia and installed more than 860 biogas digesters. The benefits obtained from these technologies are considerable and promising. However, the programs are not that much benefited the rural households where it had been intended to address. So, due attention should be given for those of the rural households in order to address the fuel wood crisis, environmental degradation and their health condition.

  6. Epidemiological Study Of Burn Cases And Their Mortality Experiences Amongst Adults From A Tertiary Level Care Centre

    Directory of Open Access Journals (Sweden)

    Kumar P

    1997-01-01

    Full Text Available Research question: How to use hospital statistics in establishing epidemiology of burns amongst adults? Objectives: To identify epidemiological determinants for Ii Various burn injuries and ii their mortality experiences. Study design: Hospital based study carried out for a period of one year (1st January 1991 to 31st December 1991. Settings: Wards of department of Burn & Plastic Surgery, BJ Medical College, Ahmedabad. Participants: 386 adults (20 years and above admitted at the centre for burn injuries during 1991. Study variables: Epidemiological determinants (age, sex, temporal, place, etc. for various burn injuries and the determinants of mortality (type of burn, extent of burn, referral time lag etc. Outcome profile: Common profile of burn victims with relation to the epidemiological factors and other factors responsible for high mortality in burn cases. Statistical analysis: Chi- square and Z tests. Results:Burns occured more in females specially in the age group of 20-24 years. Eighty five percent were flame burns. Flame burns were more in females, while electric burns were more in males. Burns were less during monsoon (27.7% than winter (32.6% and summer (39.6%, but electric burns were twice more common during monsoon. Maximum burns (81.9% were domestic, occurring mainly either in kitchen or living room. They were seen more in late evening. Sixty two percent cases were severe as total burn surface area (TBSA was >40%. Case fatality correlated positively with TBSA and death was almost universal with TBSA >60%. Early referral reduced fatality significantly in less severe burns (TBSA<40% but failed to influence it in severe burns. Appraisal of alleged suicide cases (2.6% and of stove bursting (4.4% revealed that young females carry additional risk of burn injuries.

  7. Emissão de mercúrio para a atmosfera pela queima de gás natural no Brasil Mercury emissions to the atmosphere from natural gas burning in Brazil

    Directory of Open Access Journals (Sweden)

    Luiz Drude de Lacerda

    2007-04-01

    Full Text Available Increasing natural gas use in Brazil triggered a discussion of its role as a Hg source. We show that Hg emissions to the atmosphere from fossil fuel combustion for power generation in Brazil contribute with 6.2% (4.2 t yr-1 to the total anthropogenic Hg atmospheric emissions, with coal combustion and biomass burning as major sources. Natural gas contributes with 0.04 t yr-1, mostly from electricity generation (88% and industrial uses (7.6%. Preliminary results on Hg concentrations in natural gas suggest that a large fraction of it is trapped during refining and transport, which may create Hg point sources between extraction and consumption.

  8. Beer, wood, and welfare - The impact of improved stove use among dolo-beer breweries

    NARCIS (Netherlands)

    M. Grimm (Michael); J. Peters (Jörg)

    2015-01-01

    textabstractLocal beer breweries in Burkina Faso absorb a considerable amount of urban woodfuel demand. We assess the woodfuel savings caused by the adoption of improved brewing stoves by these micro-breweries and estimate the implied welfare effects through the woodfuel market on private households

  9. Intelligent Heat System - High-Energy Efficient Wood Stoves with Low Emissions. Field Tests

    DEFF Research Database (Denmark)

    Illerup, Jytte Boll; Nickelsen, Joachim; Hansen, Brian Brun

    2014-01-01

    Wood stoves have the potential of providing CO2-neutral energy without transmission loss—but with the significant drawbacks of high emissions of pollutants and particulate matter at low altitude close to private homes, and with an uneven heat release profile which produces non-optimal heating...

  10. Development of lean burn gas engines using pilot fuel for ignition source; Developpement d'un moteur a gaz avec pre-injection de carburant pour la source d'allumage

    Energy Technology Data Exchange (ETDEWEB)

    Sakonji, T.; Saito, H.; Sakurai, T. [Tokyo Gas Co., Ltd. (Japan); Hirashima, T.; Kanno, K. [Nissan Diesel Motor Co., Ltd. (Japan)

    2000-07-01

    A development was conducted to investigate the performance of an open chamber gas engine with pilot fuel for ignition source. Experiments were conducted by using a gas engine equipped with a common-rail injection system. Main gas fuel is supplied to the engine cylinder, and then a small quantity of diesel fuel (approximately 1 % of total fuel energy input) was injected into the main chamber for ignition. The single cylinder prototype gas engine has demonstrated superior performance, such as, a shaft-end thermal efficiency of 36.7% with NO{sub x} level of 0.4 g/kW-h, which equals those of conventional spark ignited pre-chamber lean burn gas engines. For the next step, the multi-cylinder gas engine has been developed. That has 138 mm bore, 142 mm stroke, V8 configuration and 229 kW engine output 1500 rpm. This engine can also run with only diesel fuel for Standby-Power-Concurrent Co-generation. (authors)

  11. Seasonal fuel consumption, stoves, and end-uses in rural households of the far-western development region of Nepal

    Science.gov (United States)

    Lam, Nicholas L.; Upadhyay, Basudev; Maharjan, Shovana; Jagoe, Kirstie; Weyant, Cheryl L.; Thompson, Ryan; Uprety, Sital; Johnson, Michael A.; Bond, Tami C.

    2017-12-01

    Understanding how fuels and stoves are used to meet a diversity of household needs is an important step in addressing the factors leading to continued reliance on polluting devices, and thereby improving household energy programs. In Nepal and many other countries dependent on solid fuel, efforts to mitigate the impacts of residential solid fuel use have emphasized cooking while focusing less on other solid fuel dependent end-uses. We employed a four-season fuel assessment in a cohort of 110 households residing in two elevation regions of the Far-Western Development Region (Province 7) of Nepal. Household interviews and direct fuel weights were used to assess seasonality in fuel consumption and its association with stoves that met cooking and non-cooking needs. Per-capita fuel consumption in winter was twice that of other measured seasons, on average. This winter increase was attributed to greater prevalence of use and fuel consumption by supplemental stoves, not the main cooking stove. End-use profiles showed that fuel was used in supplemental stoves to meet the majority of non-meal needs in the home, notably water heating and preparation of animal food. This emphasis on fuels, stoves, and the satisfaction of energy needs—rather than just stoves or fuels—leads to a better understanding of the factors leading to device and fuel choice within households.

  12. Using exhaled carbon monoxide and carboxyhemoglobin to evaluate the effectiveness of a chimney stove model in Peru.

    Science.gov (United States)

    Eppler, Adam R; Fitzgerald, Christopher; Dorner, Stephen C; Aguilar-Villalobos, Manuel; Rathbun, Stephen L; Adetona, Olorunfemi; Naeher, Luke P

    2013-01-01

    Measurement of biological indicators of physiological change may be useful in evaluating the effectiveness of stove models, which are intended to reduce indoor smoke exposure and potential health effects. We examined changes in exhaled carbon monoxide (CO), percentage carboxy-hemoglobin, and total hemoglobin in response to the installation of a chimney stove model by the Juntos National Program in Huayatan, Peru in 2008. Biomarkers were measured in a convenience sample comprising 35 women who met requirements for participation, and were measured before and three weeks after installation of a chimney stove. The relationships between exposure to indoor smoke and biomarker measurements were also analyzed using simple linear regression models. Exhaled CO reduced from 6.71 ppm (95% CI 5.84-7.71) to 3.14 ppm (95% CI 2.77-3.66) three weeks after stove installation (P < 0.001) while % COHb reduced from 1.76% (95% CI 1.62-1.91) to 1.18% (95% CI 1.12-1.25; P < 0.001). Changes in exhaled CO and % COHb from pre- to post-chimney stove installation were not correlated with corresponding changes in exposure to CO and PM2.5 even though the exposures also reduced after stove installation. Exhaled CO and % COHb both showed improvement with reduction in concentration after the installation of the chimney cook stoves, indicating a positive physiological response subsequent to the intervention.

  13. Improved stoves and wood benches: one alternative energy self-sufficiency at the farm level for dependents of the oak forests of the Eastern Cordillera

    International Nuclear Information System (INIS)

    Aristizabal Hernandez, Javier Dario

    2010-01-01

    In order to improve thermal efficiency of typical cook stoves used in rural area of Encino, Santander, three improved cook stoves prototypes were built, by means of a modification carried out at combustion chamber. The improved cook stoves were tested by using Controlled Cooking Test (CCT) and compared against a typical cook stove. Scores displayed a mean performance of 14.66% among improved cook stoves and typical cook stove, which implies a saving in fuelwood consume of 0.86 ton/year. Likewise, farm fuelwood lots design is proposed by comparing four tree species used for cooking purposes in that place. Finally, impact in terms of avoided deforestation and carbon dioxide emissions is assessed, under a focus that it could integrate both improved cook stoves and farm fuel wood lots.

  14. Cooking and baking with the sun. Development potential of solar stoves. Kochen und Backen mit Sonne. Entwicklungsmoeglichkeiten von Solaroefen

    Energy Technology Data Exchange (ETDEWEB)

    Hoelle, E.; Kienzle, P.; Oehler, U.

    1991-04-01

    Throughout the last years efforts were made to use solar energy for cooking and baking. Especially in the sunblessed development countries this could contribute to saving fossile energies and ressources. U. Oehler is one of those who developed solar stoves which have proved to work well both in our climate and in tropical areas. A simple theoretic model tires to describe the temperature behaviour of such a stove. By way of comparison the stove was also subjected to experiments. The potential of development and practical application is described. (orig.).

  15. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from garbage burning, wood and dung cooking fires, motorcycles and brick kilns

    Science.gov (United States)

    Jayarathne, T. S.; Rathnayake, C.; Stockwell, C.; Daugherty, K.; Islam, R. M.; Christian, T. J.; Bhave, P.; Praveen, P. S.; Panday, A. K.; Adhikari, S.; Rasmi, M.; Goetz, D.; DeCarlo, P. F.; Saikawa, E.; Yokelson, R. J.; Stone, E. A.

    2016-12-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in-situ characterization of widespread and under-sampled combustion sources in South Asia by determining emission factors (EF) for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon, inorganic ions, trace metals, and organic species. Garbage burning had the highest EF PM2.5 among the sampled sources ranging 7-124 g kg-1, with maximum EFs for garbage burned under higher moisture conditions. Garbage burning emissions contained high concentrations of polycyclic aromatic compounds (PAHs) and heavy metals (Pb, Cd, Zn) that are associated with acute and chronic health effects. Triphenylbenzene and antimony (Sb) were unique to garbage burning are good candidates for tracing this source. Cook stove emissions varied largely by stove technology (traditional mud stove, 3-stone cooking fire, chimney stove, etc.) and biomass fuel (dung, hardwood, twigs, and mixtures thereof). Burning dung consistently emitted more PM2.5 than burning wood and contained characteristic fecal sterols and stanols. Motorcycle emissions were evaluated before and after servicing, which decreased EF PM2.5 from 8.8 g kg-1 to 0.7 g kg-1. Organic species analysis indicated that this reduction in PM2.5­ is largely due to a decrease in emission of motor oil. For brick kilns, the forced draft zig-zag kilns had higher EF PM2.5 (12-19 g kg-1) compared to clamp kilns (8-13 g kg-1) and also exhibited chemical differences. PM2.5 emitted from the zig-zag kiln were mainly OC (7%), sulfate (32%) and uncharacterized chemical components (60%), while clamp kiln emissions were dominated by OC (64%) and ammonium sulfate (36%). The quantitative emission factors developed in this study may be used for source apportionment and to update regional emission inventories.

  16. Burning plasmas

    International Nuclear Information System (INIS)

    Furth, H.P.; Goldston, R.J.; Zweben, S.J.

    1990-10-01

    The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R ampersand D areas that need to be addressed on the way to a fusion power demonstration

  17. Exploring possible causes of fatal burns in 2007 using Haddon's Matrix: a qualitative study

    Directory of Open Access Journals (Sweden)

    Homayoun Sadeghi-Bazargani

    2015-01-01

    Full Text Available Abstract: Background: Burns are a major factor in injury mortality. The aim of this study was to explore the possible causes of fatal burns using Haddon’s Matrix. Methods: This is a qualitative study using a phenomenological approach. We collected elicitation interview data using nine corroborators who were the most knowledgeable about the index burn event. Immediately after recording, the data was verbatim. Each event was analyzed using Haddon’s Matrix. Results: Interviewees provided detailed information about 11 burn cases. Overall, 202 burnrelated factors were extracted. Using Haddon’s Matrix, 43 risk factors were identified. The most common included the lack of basic knowledge of burn care, the use of unsafe appliances including kerosene heaters and stoves in hazardous environments such kitchens and bathrooms, poor burn care delivery system in hospitals, poor and unsafe living conditions, financial issues, and other factors detailed in the article. Conclusions: Our findings suggest burn related prevention efforts should focus on improving human living conditions, promoting the use of safe heating appliances, providing public burn-safety precautions education, and improving the quality of care in burn centers and hospitals. The use of Haddon’s Matrix in future injury research is discussed.

  18. Intelligent Heat System - High-Energy Efficient Wood Stoves with Low Emissions. Emissions of Gases and Particles

    DEFF Research Database (Denmark)

    Illerup, Jytte Boll; Hansen, Brian Brun; Lin, Weigang

    2015-01-01

    performance has been verified by field tests in private homes. The main components of an Autopilot IHS wood stove are: a modern wood stove with three separate combustion air inlets, and a control system composing of measuring devices for vital process parameters and a system of controlling valves to regulate...... combustion charges and phases. The experiments showed that the digital control of the combustion process ensures constant and optimal temperatures and overall oxygen concentrations in the combustion chamber resulting in low PM and CO emissions.......A collaboration project between the CHEC research Centre, at DTU Chemical Engineering, and the stove manufacturing company HWAM A/S has been established during the last years and has led to development and marketing of wood stoves (Autopilot IHS) equipped with a digital control system. The improved...

  19. Burning Mouth Syndrome

    Science.gov (United States)

    ... Care Home Health Info Health Topics Burning Mouth Burning Mouth Syndrome (BMS) is a painful, complex condition often described ... or other symptoms. Read More Publications Cover image Burning Mouth Syndrome Publication files Download Language English PDF — Number of ...

  20. Air pollution and inhalation exposure to particulate matter of different sizes in rural households using improved stoves in central China.

    Science.gov (United States)

    Liu, Weijian; Shen, Guofeng; Chen, Yuanchen; Shen, Huizhong; Huang, Ye; Li, Tongchao; Wang, Yilong; Fu, Xiaofang; Tao, Shu; Liu, Wenxin; Huang-Fu, Yibo; Zhang, Weihao; Xue, Chunyu; Liu, Guangqing; Wu, Fuyong; Wong, Minghung

    2018-01-01

    Household air pollution is considered to be among the top environmental risks in China. To examine the performance of improved stoves for reduction of indoor particulate matter (PM) emission and exposure in rural households, individual inhalation exposure to size-resolved PM was investigated using personal portable samplers carried by residents using wood gasifier stoves or improved coal stoves in a rural county in Central China. Concentrations of PM with different sizes in stationary indoor and outdoor air were also monitored at paired sites. The stationary concentrations of size-resolved PM in indoor air were greater than those in outdoor air, especially finer particles PM 0.25 . The daily averaged exposure concentrations of PM 0.25 , PM 1.0 , PM 2.5 and total suspended particle for all the surveyed residents were 74.4±41.1, 159.3±74.3, 176.7±78.1 and 217.9±78.1μg/m 3 , respectively. Even using the improved stoves, the individual exposure to indoor PM far exceeded the air quality guideline by WHO at 25μg/m 3 . Submicron particles PM 1.0 were the dominant PM fraction for personal exposure and indoor and outdoor air. Personal exposure exhibited a closer correlation with indoor PM concentrations than that for outdoor concentrations. Both inhalation exposure and indoor air PM concentrations in the rural households with gasifier firewood stoves were evidently lower than the reported results using traditional firewood stoves. However, local governments in the studied rural areas should exercise caution when widely and hastily promoting gasifier firewood stoves in place of improved coal stoves, due to the higher PM levels in indoor and outdoor air and personal inhaled exposure. Copyright © 2017. Published by Elsevier B.V.

  1. Device for the catalytic after-burning of exhaust gases in the exhaust gas system of an internal-combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Lange, K

    1975-06-19

    The invention deals with a device which protects the catalyst for the after-burning of exhaust gases against damage by high temperatures. When the catalyst temperature reaches a certain limiting value, a throttle is activated by an electrical control device influenced by a temperature sensor via a servomotor. The throttle valve opens a by-pass for the exhaust gases which had previously flowed through the system for catalytic after-burning. In order to prevent the throttle from rusting due to its rare use, it is regularly put into use after switching off the ignition of the internal-combustion engine by the still briefly present oil pressure in the engine via an oil pressure switch and the mentioned control device.

  2. Fuelwood Savings and Carbon Emission Reductions by the Use of Improved Cooking Stoves in an Afromontane Forest, Ethiopia

    Directory of Open Access Journals (Sweden)

    Elisabeth Dresen

    2014-09-01

    Full Text Available In many Sub-Saharan African countries, fuelwood collection is among the most important drivers of deforestation and particularly forest degradation. In a detailed field study in the Kafa region of southern Ethiopia, we assessed the potential of efficient cooking stoves to mitigate the negative impacts of fuelwood harvesting on forests. Eleven thousand improved cooking stoves (ICS, specifically designed for baking Ethiopia’s staple food injera, referred to locally as “Mirt” stoves, have been distributed here. We found a high acceptance rate of the stove. One hundred forty interviews, including users and non-users of the ICS, revealed fuelwood savings of nearly 40% in injera preparation compared to the traditional three-stone fire, leading to a total annual savings of 1.28 tons of fuelwood per household. Considering the approximated share of fuelwood from unsustainable sources, these savings translate to 11,800 tons of CO2 saved for 11,156 disseminated ICS, corresponding to the amount of carbon stored in over 30 ha of local forest. We further found that stove efficiency increased with longer injera baking sessions, which shows a way of optimizing fuelwood savings by adapted usage of ICS. Our study confirms that efficient cooking stoves, if well adapted to the local cooking habits, can make a significant contribution to the conservation of forests and the avoidance of carbon emission from forest clearing and degradation.

  3. Burning Mouth Syndrome and "Burning Mouth Syndrome".

    Science.gov (United States)

    Rifkind, Jacob Bernard

    2016-03-01

    Burning mouth syndrome is distressing to both the patient and practitioner unable to determine the cause of the patient's symptoms. Burning mouth syndrome is a diagnosis of exclusion, which is used only after nutritional deficiencies, mucosal disease, fungal infections, hormonal disturbances and contact stomatitis have been ruled out. This article will explore the many causes and treatment of patients who present with a chief complaint of "my mouth burns," including symptomatic treatment for those with burning mouth syndrome.

  4. Improved earthen stoves in coastal areas in Bangladesh: Economic, ecological and socio-cultural evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nazmul Alam, S.M.; Chowdhury, Sakila Jahan [Department of Social Sciences and Asian Languages, Curtin University of Technology, GPO Box U1987 Perth, Western Australia 6845 (Australia)

    2010-12-15

    The study evaluated the economic, ecological and socio-cultural achievements of improved earthen stoves that were provided to the beneficiaries under a project to improve decreasing biomass energy utilization. A questionnaire was developed and a random sampling method was employed for selecting the samples from the population. The region has undergone a significant change with the development of shrimp aquaculture in brackish water on former paddy field. As a result the households have become dependent on the wood resources of the Sundarban (77% as their first choice of daily fuel). The fuel collection rate from the Sundarban has increased by 30% since the change to aquaculture, while the use of agricultural residues has declined by a similar amount. The introduction of the improved stove with two cook stations and a chimney resulted in a reduction of fuel use (as wood) to 540 g caput{sup -1} d{sup -1}, from the previous usage of 810 g caput{sup -1} d{sup -1} using the traditional stove. Households saved 1.5 kg d{sup -1} of fuel (one third), and reduced the cooking time by 45 min d{sup -1} (about 20%). While 85% of men and 65% of women were the major fuel collectors, the improved stove resulted in a small increase (14 taka) in the women's contribution to family income as well as a monthly saving on fuel cost of 45 taka. Respondents utilized saved time and money for household means and other economic activities. (author)

  5. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  6. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    Science.gov (United States)

    Goudarzi, A. M.; Mazandarani, P.; Panahi, R.; Behsaz, H.; Rezania, A.; Rosendahl, L. A.

    2013-07-01

    Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is augmented by two devices. An electric fan can increase the air-to-fuel ratio in order to increase the system's efficiency and decrease air pollution by providing complete combustion of wood. In addition, thermoelectric generators (TEGs) produce power that can be used to satisfy all basic needs. In this study, a water-based cooling system is designed to increase the efficiency of the TEGs and also produce hot water for residential use. Through a range of tests, an average of 7.9 W was achieved by a commercial TEG with substrate area of 56 mm × 56 mm, which can produce 14.7 W output power at the maximum matched load. The total power generated by the stove is 166 W. Also, in this study a reasonable ratio of fuel to time is described for residential use. The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water, and essential heat for warming the room and cooking.

  7. Recent Progress and Emerging Issues in Measuring and Modeling Biomass Burning Emissions

    Science.gov (United States)

    Yokelson, R. J.; Stockwell, C.; Veres, P. R.; Hatch, L. E.; Barsanti, K. C.; Simpson, I. J.; Blake, D. R.; Alvarado, M.; Kreidenweis, S. M.; Robinson, A. L.; Akagi, S. K.; McMeeking, G. R.; Stone, E.; Gilman, J.; Warneke, C.; Sedlacek, A. J.; Kleinman, L. I.

    2013-12-01

    Nine recent multi-PI campaigns (6 airborne, 3 laboratory) have quantified biomass burning emissions and the subsequent smoke evolution in unprecedented detail. Among these projects were the Fourth Fire Lab at Missoula Experiment (FLAME-4) and the DOE airborne campaign BBOP (Biomass Burning Observation Project). Between 2009 and 2013 a large selection of fuels and ecosystems were probed including: (1) 21 US prescribed fires in pine forests, chaparral, and shrublands; (2) numerous wildfires in the Pacific Northwest of the US; (3) 77 lab fires burning fuels collected from the sites of the prescribed fires; and (4) 158 lab fires burning authentic fuels in traditional cooking fires and advanced stoves; peat from Indonesia, Canada, and North Carolina; savanna grasses from Africa; temperate grasses from the US; crop waste from the US; rice straw from Taiwan, China, Malaysia, and California; temperate and boreal forest fuels collected in Montana and Alaska; chaparral fuels from California; trash; and tires. Instrumentation for gases included: FTIR, PTR-TOF-MS, 2D-GC and whole air sampling. Particle measurements included filter sampling (with IC, elemental carbon (EC), organic carbon (OC), and GC-MS) and numerous real-time measurements such as: HR-AMS (high-resolution aerosol MS), SP-AMS (soot particle AMS), SP2 (single particle soot photometer), SP-MS (single particle MS), ice nuclei, CCN (cloud condensation nuclei), water soluble OC, size distribution, and optical properties in the UV-VIS. New data include: emission factors for over 400 gases, black carbon (BC), brown carbon (BrC), organic aerosol (OA), ions, metals, EC, and OC; and details of particle morphology, mixing state, optical properties, size distributions, and cloud nucleating activity. Large concentrations (several ppm) of monoterpenes were present in fresh smoke. About 30-70% of the initially emitted gas-phase non-methane organic compounds were semivolatile and could not be identified with current technology

  8. Indoor air pollution by emissions of fossil fuel single stoves: possibly a hitherto underrated risk factor in the development of carcinomas in the head and neck.

    Science.gov (United States)

    Dietz, A; Senneweld, E; Maier, H

    1995-02-01

    We have carried out three case-control studies on the relative risk of head and neck cancer in association with indoor air pollution. The studies performed at the Department of Otorhinolaryngology of the University of Heidelberg comprised 369 male patients with squamous cell carcinoma of the oral cavity, pharynx, and larynx and 1476 healthy control subjects matched for sex, age, and residential area. The OR of laryngeal cancer related to daily exposure to fossil fuels due to stove-heating with oil, coal, gas, and wood for longer than 40 years was 2.5 (CI = 1.51 to 4.05). After adjustment for tobacco and alcohol, the OR declined slightly to 2.0 (CI = 1.10 to 3.46) but still was significant. Elevated ORs were also found for daily presence in a kitchen with an oil, coal, or wood oven for longer than 40 years (OR = 1.7, CI = 1.01 to 2.71; after tobacco and alcohol adjustment, OR = 1.4, CI = 0.76 to 2.41). The OR of pharyngeal cancer related to daily exposure to fossil fuels due to stove-heating with oil, coal, gas, and wood for longer than 40 years was 3.6 (CI = 2.04 to 6.41). After adjustment for tobacco and alcohol the OR declined slightly to 3.3 (CI = 1.43 to 7.55) but still was significant. Elevated ORs were also found for daily presence in a kitchen with an oil, coal, or wood oven for longer than 40 years (OR = 1.6, CI = 0.89 to 2.77; after tobacco and alcohol adjustment, OR = 2.5, CI = 1.03 to 6.30).(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Pilot study to reduce emissions, improve health, and offset BC emissions through the distribution of improved cook stoves in Nepal

    Science.gov (United States)

    Banmali Pradhan, B.; Panday, A. K.; Surapipith, V.

    2013-12-01

    In most developing countries, wood and other biomass fuels are still the primary source of energy for the majority of the people, particularly the poor. It is estimated that cook stoves account for approximately 20% of global black carbon emissions. In Nepal 87% of energy is supplied from traditional biomass and 75% of households still depend on biomass as a cooking fuel. The substitution of traditional cook stoves with improved cook stoves provides an important way to reduce black carbon emissions. In 2013 the International Centre for Integrated Mountain Development (ICIMOD) has commenced a pilot study that both examines ways to effectively disseminate improved cookstoves across remote rural mountain regions, and also quantifies the resulting changes in emissions, air quality and health. The selected study area is in Bajrabarahi Village in Makawanpur district, to the southwest of Kathmandu. The study area consists of around 1600 households, which are divided into control groups and groups where the cook stove intervention is taking place. The study complements the ';Clean Cooking energy solution for all by 2017' announced by the Government of Nepal recently, and will provide insights to the government on ways to effectively reduce black carbon emissions from cook stoves. To make the study robust and sustainable, local women's group and a local medical institution are involved in the project right from the conceptualization stage. The study region has been chosen in part because the medical school Patan Academy of Health Sciences (PAHS) has already started a long term health assessment in the region, and has built up considerable local contacts. The local women's group is working on the modality of cook stove distribution through micro credit programmes in the village. We will distribute the best available manufactured, fan-assisted cook stoves that are expected to reduce BC emissions the most. Health assessments, emissions estimates, as well as measurements of

  10. Research report of fiscal 1997. Research on the projects on Activities Implemented Jointly Japan Program (feasibility research on energy saving by improving heat management for hot blast stoves and heating furnaces); 1997 nendo chosa hokokusho. `Kyodo jisshi katsudo Japan Program` ni kakawaru project chosa (neppuro, kanetsuro no netsukanri kaizen ni yoru sho energy kanosei chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research was made on joint implementation (JI) for preventing global climate changes in China. Since such the stove and furnace consume a large amount of energy, their improvement and energy saving are important for integrated iron plants. Maanshan iron plant was selected for the research. All the furnaces were manually operated without combustion control systems, and oxygen meters for exhaust gas frequently troubled. As measures for the stoves, operation at a proper air fuel ratio, improvement of over heat storage combustion, and dust cleaning for waste heat recovery gas heaters were proposed. For the furnaces, a proper oxygen content at the end of furnaces (reduction of invasion air) was proposed to improve exhaust gas loss up to that in Japan. For this target, reinforced instrument management and standardized combustion control are essential. JI of software improvement for operation and management can reduce annual greenhouse effect gas emission to 45,900t and 6,300t in carbon equivalent for the stove and furnace, respectively. CO2 reduction is also estimated to be 1,173,000t and 205,000t in China of 107,570,000t in raw steel production, respectively. 28 figs., 32 tabs.

  11. Design, empirical modelling and analysis of a waste-heat recovery system coupled to a traditional cooking stove

    International Nuclear Information System (INIS)

    Sakdanuphab, Rachsak; Sakulkalavek, Aparporn

    2017-01-01

    Highlights: • WHR system was implemented to utilise the waste heat from a stove. • The empirical modelling by RSM can be used to predict the generated TEG power. • The total conversion efficiency of the WHR system was more than 80%. • The stove efficiency decreased less than 5% when the WHR system was attached. - Abstract: In this work, a waste-heat recovery (WHR) system was designed and implemented to utilise the waste heat from a cooking stove. The WHR system was designed to preserve maximum thermal energy efficiency, use passive cooling, and produce a system that did not alter the body of the cooking stove. The thermal energy from the cooking stove was converted into electrical energy by a thermoelectric generator (TEG) and used in a waste-heat hot water boiler. The cold side of the TEG was cooled by heat pipes immersed in a water box that offers a high heat transfer rate. The heated water can be used for domestic purposes. Dependent variables were the heater temperature and the volume of water. The heater temperature was varied between 130 and 271 °C, and 4.2–9.5 L of water was investigated. At equilibrium, response surface methodology based on a central composite design was used to empirically model the influence of the heater temperature and the volume of water on the electrical power generation and the hot water temperature. Experimental results of the system efficiency showed that the heater temperature was more influential than was the volume of water. The total efficiency of the WHR system was more than 80%. Thermal contact resistance was analysed to improve the WHR system performance. Finally, the thermal efficiency of a cooking stove, both with and without the WHR system, was measured. Results showed that the thermal efficiency of the cooking stove decreased by less than 5% when the WHR system was attached.

  12. Método basado en teledetección para estimar la emisión de gases efecto invernadero por quema de biomasa A remote sensing method to estimate greenhouse gas emissions from biomass burning

    Directory of Open Access Journals (Sweden)

    Jesús Adolfo Anaya Acevedo

    2011-01-01

    Full Text Available La quema de biomasa es una fuente importante de gases efecto invernadero en países en vías de desarrollo. En Colombia, el cambio de uso del suelo, la silvicultura y el sector agropecuario superan el 50% de las emisiones totales de efecto invernadero. El fuego se utiliza con frecuencia como un mecanismo para cambiar el uso del suelo. Los Llanos orientales y la Amazonía colombiana están sometidos todos los años a la quema de biomasa, especialmente entre enero y marzo. Los estudios en la distribución espacial y temporal de las emisiones son importantes de cara a los informes en el ámbito nacional. Este artículo de revisión describe el método para hacer estas estimaciones utilizando teledetección y algunos de los resultados disponibles para Colombia.Biomass burning is a major source of greenhouse gas emissions in developing countries. In Colombia, land use change, forestry and agriculture are responsible for more than 50% of the total greenhouse gas emissions. Fire is commonly used as a mechanism for land use change. In Colombia the Llanos Orientales and the Amazonia are subject to biomass burning every year during the dry season, especially from January to March. Studies of the spatial and temporal distribution of emissions are required for emissions report at a national level. The goal of this state of the art article is to describe a method to estimate emissions with a remote sensing approach and to present some of the variables already measured in Colombia.

  13. Sustained high incidence of injuries from burns in a densely populated urban slum in Kenya: an emerging public health priority.

    Science.gov (United States)

    Wong, Joshua M; Nyachieo, Dhillon O; Benzekri, Noelle A; Cosmas, Leonard; Ondari, Daniel; Yekta, Shahla; Montgomery, Joel M; Williamson, John M; Breiman, Robert F

    2014-09-01

    Ninety-five percent of burn deaths occur in low- and middle-income countries (LMICs); however, longitudinal household-level studies have not been done in urban slum settings, where overcrowding and unsafe cook stoves may increase likelihood of injury. Using a prospective, population-based disease surveillance system in the urban slum of Kibera in Kenya, we examined the incidence of household-level burns of all severities from 2006-2011. Of approximately 28,500 enrolled individuals (6000 households), we identified 3072 burns. The overall incidence was 27.9/1000 person-years-of-observation. Children slums rapidly increases in many African countries, characterizing and addressing the rising burden of burns is likely to become a public health priority. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  14. Farmer innovation driven by needs and understanding: building the capacities of farmer groups for improved cooking stove construction and continued adaptation

    Science.gov (United States)

    Uckert, G.; Hafner, J.; Graef, F.; Hoffmann, H.; Kimaro, A.; Sererya, O.; Sieber, S.

    2017-12-01

    Enhancing food security is one of the main goals of subsistence farmers in Sub-Saharan Africa. This study investigates the implementation of improved loam-made cooking stoves and its contribution to coping and livelihood strategies. Controlled combustion, air as well as smoke flue, and heat insulation facilitate the more efficient fuel consumption of improved cooking stoves compared to traditional stoves—namely three stone fires. Although the majority of small-scale farmers in Sub-Saharan Africa rely on the free public good of firewood, the increasing time needed for collecting firewood implies high opportunity costs for productive members of the family. The primary outcomes for users of improved stoves are reduced fuel consumption, greater safety, saved time, and reduced smoke in the kitchen. The paper illustrates part of the output, outcome, and impact of a participatory action research approach for implementing improved cooking stoves. Special emphasis was put on enabling the villagers to construct their stoves without external support, hence having locally manufactured stoves made of mud, bricks, and dried grass. The impact pathway of improved cooking stoves followed the training-of-trainers concept, where members of the initially established farmer groups were trained to construct stoves on their own. Special focus was given to knowledge exchange and knowledge transfer in order to increase firewood efficiency and overall satisfaction of users of improved cook stoves. Encouraging the members to further adapt the stoves enabled them to scale-up the construction of improved cooked stoves into a business model and increase dissemination while creating income. Although many important benefits, like time and knowledge gain, were identified by the farmers after adoption of the new technology, we found adoption rates differed significantly between regions.

  15. Community energy plan : village of Burns Lake

    International Nuclear Information System (INIS)

    Rivard, B.

    2008-09-01

    Climate change has a significant impact on the lives of Canadians and their economies. In northern British Columbia, the ability to grow, process and transport food will likely change. The rising cost of fuel and other natural resources will create a need for more resilient communities. This report presented a community energy plan for Burns Lake in order to provide the first steps toward building on an already resilient community. The report answered questions about Burns Lake's energy consumption and greenhouse gas (GHG) emissions as well as the community's views on energy issues. The report provided background information on the Village of Burns Lake and discussed climate change in Burns Lake, energy use, and greenhouse gas emissions. The report also described community engagement by way of a questionnaire on fuel prices, homes and public opinion in Burns Lake. A strategy was also outlined. It was concluded that the village of Burns Lake is well positioned to face challenges regarding future energy use. The community is looking to the municipality for support and leadership, in order to deliver through active opportunities to reduce greenhouse gas emissions. 6 figs., 4 appendices.

  16. Biodigestor for organic waste gas; Biodigestor para o gas do lixo organico

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Carla Miranda; Fernandes, Carla Barbosa; Souza, Aline Vieira da Silva e; Melo, Cibelly Caroliny Santos; Sales, Jefferson Santos; Frade, Marcelo Lorenzo; Machado, Marcus Vinicius; Frade, Matheus Costa; Gomes, Natashua Lauar; Costa, Pedro Henrique de Andrade; Moraes, Rodrigo de Almeida; Estrella, Thales Goncalves; Lima, Miriam Cristina Pontello Barbosa [Centro Universitario de Belo Horizonte (UniBH), MG (Brazil)], e-mails: carlam.ferreira@yahoo.com.br, miriam.pontello@gmail.com

    2011-07-01

    This article to present an alternative reuse os the gas produced by garbage, through the construction of a digester, with a view to preserving the environment through renewable energy. The energy produced by this system is obtained from the decomposition of organic waste is biogas, made up of gases such as methane (CH{sub 4}) and carbon dioxide (CO{sub 2}). This experiment verifies the possibility of using methane gas as an alternative to the operation of a domestic stove. (author)

  17. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  18. Optimization of burn referrals

    DEFF Research Database (Denmark)

    Reiband, Hanna K; Lundin, Kira; Alsbjørn, Bjarne

    2014-01-01

    INTRODUCTION: Correct estimation of the severity of burns is important to obtain the right treatment of the patient and to avoid over- and undertriage. In this study we aimed to assess how often the guidelines for referral of burn injured patients are met at the national burn centre (NBC), Denmar...

  19. Epidemiology of burns

    NARCIS (Netherlands)

    Dokter, Jan

    2016-01-01

    The aim of this thesis is to understand the epidemiology, treatment and outcomes of specialized burn care in The Netherlands. This thesis is mainly based on historical data of the burn centre in Rotterdam from 1986, combined with historical data from the burn centres in Groningen and Beverwijk from

  20. The role of donor organisations in promoting energy efficient cook stoves

    International Nuclear Information System (INIS)

    Kees, Marlis; Feldmann, Lisa

    2011-01-01

    This article focuses on cooking energy and the role of donor organisations in the introduction and dissemination of improved stoves. After presenting some basic facts on cooking energy, the article discusses the cooking energy–poverty nexus and possible reasons for the often neglect of this topic in the context of development cooperation. Clean and efficient technologies for cooking are presented and a short introduction to different dissemination approaches shows the changes that occurred in the last years. The importance of public sector investments to increase the supply and use of clean cooking energy technologies in developing countries is analysed and underlined by GTZ’s experiences in this field. The case study of Uganda finally demonstrates how cooking energy interventions work in the field and points out that investment pays off. - Highlights: ► Cooking energy is a neglected topic in the context of development cooperation. ► Political frameworks do not reflect social and economic relevance of biomass energy. ► Scaling up the dissemination of cookstoves requires public sector investment. ► Investments in efficient and clean stoves pay-off.

  1. Beer, Wood, and Welfare--The Impact of Improved Stove Use Among Dolo-Beer Breweries.

    Directory of Open Access Journals (Sweden)

    Michael Grimm

    Full Text Available Local beer breweries in Burkina Faso absorb a considerable amount of urban woodfuel demand. We assess the woodfuel savings caused by the adoption of improved brewing stoves by these micro-breweries and estimate the implied welfare effects through the woodfuel market on private households as well as the environmental effect. We find substantial wood savings among the breweries, 36% to 38% if they fully switch to an improved stove. In absolute amounts, they save about 0.176 kg of fuelwood per litre of dolo brewed. These savings imply huge reductions in CO2-emissions and reduce the overall demand for woodfuel, which is predominantly used by the poorer strata for cooking purposes. We provide estimates for the price decrease that might result from this and show that the urban poor are likely to benefit. Thus, the intervention under study is an example for a green growth intervention with pro-poor welfare gains--something green growth strategies should look for.

  2. Method of burning petrochemical products

    Energy Technology Data Exchange (ETDEWEB)

    Sado, I

    1973-01-12

    This invention concerns a method of burning wastes such as polyvinyl chloride or other synthetic resin products and rubbers, in which wastes are burned in a nearly smokeless and odorless state. The method is characterized by a process by which petrochemical waste products are subjected to a spontaneous combustion in a casserole state in a closed combustion room in such a way that no air is supplied whatever, and subsequently the gas so generated is sent successively in an adequate amount into a separately installed second combustion room where it is reburnt at a high temperature of more than 1000 C by a jet flame from the oil burners mounted inside the combustion room. Usually, petrochemical products emanate black smoke of Ringelmann concentration of more than five and a strong odor, but in this method, particularly in the case of polyvinyl chloride the exhaust smoke has a Ringelmann smoke concentration of less than one and is almost odorless because the plastic is completely gasified by the spontaneous combustion and completely burned at 1300 to 1400/sup 0/C with oil and air in the second combustion room. When the exhaust smoke is passed through a neutralization tank to remove the chloride compounds in the smoke, the damaging contribution of the exhaust gas or smoke to the secondary pollution can be completely eliminated.

  3. Catalytic removal of methane and NO{sub x} in lean-burn natural-gas engine exhaust; Elimination par catalyse du methane et des NO{sub x} dans les echappements de moteur au gaz naturel a basse combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Satokawa, S.; Yahagi, M.; Yamaseki, K.; Hoshi, F.; Uchida, H.; Yokota, H. [Tokyo Gas Co., Ltd. (Japan)

    2000-07-01

    We have developed a new catalytic system to reduce the emissions of hydrocarbons, carbon monoxide (CO), and nitrogen oxides (NO{sub x}) contained in the exhaust gases from a lean-burn natural-gas engine. Catalytic oxidation of unburned hydrocarbons and CO in the exhaust has been studied for noble metals supported on alumina. (1) A low-loading catalyst comprising platinum supported on alumina (Pt/alumina) was efficient for the oxidation of CO and hydrocarbons without methane. The CO conversions were maintained at more than 98 % for 20,000 hours over the Pt/alumina. (2) A catalyst comprising platinum and palladium supported on alumina (Pt-Pd/alumina) exhibited higher levels of oxidation of hydrocarbons (including methane) than a catalyst comprising only palladium supported on alumina (Pd/alumina). Its oxidation also lasted longer. The combined effects of the platinum and palladium metals achieved high sulfur dioxide resistance. Increasing the palladium content in the Pt-Pd/alumina catalyst increased the level of oxidation and extended the lifetime of the catalyst. (3) A catalyst comprising silver supported on alumina (Ag/alumina) was effective at reducing the amount of NO{sub X} by using the unburned hydrocarbons in the exhaust gas. The NO{sub x} conversions over Ag/alumina were maintained at more than 30 % for 3,500 hours. We describe a total clean-up system consisting of a Ag/alumina catalyst and a Pt-Pd/alumina catalyst in series on the exhaust gas stream. (authors)

  4. Child Skeletal Fluorosis from Indoor Burning of Coal in Southwestern China

    International Nuclear Information System (INIS)

    Qin, X.; Wang, S.; Yu, M.; Li, X.; Zuo, Z.; Zhang, X.; Wang, L.; Zhang, L.

    2010-01-01

    Objectives. We assess the prevalence and pathogenic stage of skeletal fluorosis among children and adolescents residing in a severe coal-burning endemic fluorosis area of southwest China. Methods. We used a cross-sectional design. A total of 1,616 students aged between 7 and 16 years in Zhijin County, Guizhou, China in late 2004 were selected via a cluster sampling of all 9-year compulsory education schools to complete the study questionnaire. Any student lived in a household that burned coal, used an open-burning stove, or baked foodstuffs over a coal stove was deemed high-risk for skeletal fluorosis. About 23% (370) of students (188 boys, 182 girls) were identified as high-risk and further examined by X-ray. Results. One-third of the 370 high-risk participants were diagnosed with skeletal fluorosis. Overall prevalence of child skeletal fluorosis due to indoor burning of coal was 7.5%. Children aged 12 16 years were significantly more likely to be diagnosed with skeletal fluorosis than children aged 7 11 years (OR = 1.84, 95% CI: 1.17 2.90; P = .0082). Four types of skeletal fluorosis were identified: constrictive (60.7%), raritas (15.6%), mixed (16.4%), and soft (7.4%). Most diagnosed cases (91%) were mild or moderate in severity. In addition, about 97% of 370 high-risk children were identified with dental fluorosis. Dental fluorosis was highly correlated with skeletal fluorosis in this study. Conclusions. Skeletal fluorosis among children may contribute to poor health and reduced productivity when they reach adulthood. Further efforts to reduce fluoride exposure among children in southwestern of China where coal is burned indoors are desperately needed.

  5. To burn or not to burn

    International Nuclear Information System (INIS)

    Busch, L.

    1993-01-01

    While taking a match to an oil slick may sound like the making of a chaotic inferno, emergency response specialists say burning may be the most efficient way to remove large oil spills from the ocean's surface. But tests of this technique are being resisted by environmentalists as well as the Environmental Protection Agency (EPA), which has final authority over the matter. The debate over test burning arose most recently in Alaska when a proposal to spill and then ignite 1,000 barrels of crude on the Arctic Ocean this past summer was rejected by the EPA. The EPA didn't object to the technique or to the notion of burning spilled oil. However, it contends that it's not necessary to spill thousands of gallons of oil to conduct tests, and unnecessarily pollute the environment, when plenty of oil is already available from accidental spills. Researchers disagree, claiming they won't be able to use the burning technique on an actual spill until it has been tested in a controlled experiment. Despite such concerns, the Canadian government is going ahead with a test burn off the coast of Newfoundland next year. Faced with a choice of test burning or the kind of shoreline contamination left in the wake of the Exxon Valdez disaster, Environment Canada opts for testing. Learning valuable lessons about rapid oil-spill cleanup is worth the relatively minor risks to the environment that test burning would pose

  6. Method for burning radioactive wastes

    International Nuclear Information System (INIS)

    Hattori, Akinori; Tejima, Takaya.

    1987-01-01

    Purpose: To completely process less combustible radioactive wastes with no excess loads on discharge gas processing systems and without causing corrosions to furnace walls. Method: Among combustible radioactive wastes, chlorine-containing less combustible wastes such as chlorine-containing rubbers and vinyl chlorides, and highly heat generating wastes not containing chloride such as polyethylene are selectively packed into packages. While on the other hand, packages of less combustible wastes are charged into a water-cooled jacket type incinerator intermittently while controlling the amount and the interval of charging so that the temperature in the furnace will be kept to lower than 850 deg C for burning treatment. Directly after the completion of the burning, the packed highly heat calorie producing wastes are charged and subjected to combustion treatment. (Yoshihara, H.)

  7. Fuelwood savings and carbon emission reductions by the use of improved cooking stoves in an Afromontane forest, Ethiopia

    NARCIS (Netherlands)

    Dresen, E.; DeVries, B.R.; Herold, M.; Verchot, L.; Müller, R.

    2014-01-01

    In many Sub-Saharan African countries, fuelwood collection is among the most important drivers of deforestation and particularly forest degradation. In a detailed field study in the Kafa region of southern Ethiopia, we assessed the potential of efficient cooking stoves to mitigate the negative

  8. Does pan diameter influence carbon monoxide levels during heating of water to boiling point with a camping stove?

    Science.gov (United States)

    Leigh-Smith, Simon; Stevenson, Richard; Watt, Martin; Watt, Ian; McFadyen, Angus; Grant, Stan

    2004-01-01

    To determine whether pan diameter influences carbon monoxide (CO) concentration during heating of water to boiling point with a camping stove. The hypothesis was that increasing pan diameter increases CO concentration because of greater flame dispersal and a larger flame. This was a randomized, prospective study. A Coleman Dual Fuel 533 stove was used to heat pans of water to boiling point, with CO concentration monitored every 30 seconds for 5 minutes. The stove was inside a partially ventilated 200-L cardboard box model that was inside an environmental chamber at -6 degrees C. Water temperature, water volume, and flame characteristics were all standardized. Ten trials were performed for each of 2 pan diameters (base diameters of 165 mm [small] and 220 mm [large]). There was a significant difference (P = .002) between the pans for CO levels at each measurement interval from 60 seconds onward. These differences were markedly larger after 90 seconds, with a mean difference of 185 ppm (95% CI 115, 276 ppm) for all the results from 120 seconds onwards. This study has shown that there is significantly higher CO production with a large-diameter pan compared with a small-diameter pan. These findings were evident by using a camping stove to heat water to boiling point when a maximum blue flame was present throughout. Thus, in enclosed environments it is recommended that small-diameter pans be used in an attempt to prevent high CO levels.

  9. Which is the most efficient agent for the diffusion of a high-performance technology? Study of the gas-burning condensing boilers'market in four European countries

    International Nuclear Information System (INIS)

    Cauret, L.; Adnot, J.; Haug, J.; Weber, Ch.

    1999-01-01

    The diffusion of technology is often confronted to numerous barriers (market, economical, social...). The combination of strategies along the partners' chain - equipment manufacturer, utility, government, retailer, installer and customer - contributes to the success or the failure of a diffusion. For a given technology, the comparison of different national markets can help to understand why diffusion programs are successful in a country and not in another one. The gas-burning condensing boilers is a good example. It is theoretically the post efficient boiler with LHV efficiency above 100 %, which guarantee an attractive pay-back period for an individual unit (below 10 years) or for a collective equipment (below 5 years). It also induces lower CO 2 and NO x emissions. But the success on the market of this highly-efficient technology, designed in the seventies, has been dramatically different according to the country. The authors reconstitute these market evolutions for the four countries (France, Germany, Great Britain and Netherlands). Furthermore, the link between sales and strategy of main parties involved ( equipment maker, utility, government, retailer, installer and customer - is analysed throughout the past and current promoting methods implemented for their development (R and D supports by utility, subsidies to customers, subsidies to installers...). Finally, the authors prove the role of the involved partners' chain and of the management of subsidies as determining factors for any market development. (authors)

  10. Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990

    Energy Technology Data Exchange (ETDEWEB)

    Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

    1997-03-01

    Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

  11. Measurement and modeling of indoor air pollution in rural households with multiple stove interventions in Yunnan, China

    Science.gov (United States)

    Chowdhury, Zohir; Campanella, Luke; Gray, Christen; Al Masud, Abdullah; Marter-Kenyon, Jessica; Pennise, David; Charron, Dana; Zuzhang, Xia

    2013-03-01

    In the developing world, indoor air pollution (IAP) created from solid fuel used in traditional biomass cook stoves is a leading contributor of poor respiratory health, global burden of disease, and greenhouse pollutant emissions. In the present study, we piloted an experimental cross-sectional monitoring and evaluation design with 30 households in rural Lijiang and Deqin counties in northwest Yunnan province, China. This approach offers the ability to examine the effectiveness of improved cook stove (ICS) programs with a much smaller sample size than the typical population based pre- and post-intervention study that requires a large sample representative of the population. Continuous PM2.5 was measured with the UCB (currently known as UCB-PATS) and the TSI DustTrak and continuous CO was measured with the HOBO CO logger. Using the traditional method of cooking and heating, mean 24-h PM2.5 and CO concentrations in the kitchen were measured in the range of 0.15-0.71 mg m-3 for PM2.5 and 3.0-11 ppm for CO. These concentrations were compared to using a combination of improved stoves in the kitchen where PM2.5 and CO concentrations were measured in the range of 0.08-0.18 mg m-3 for PM2.5 and 0.7-5.5 ppm for CO. These concentrations yielded statistically significant reduction in IAP when replacing the traditional fireplace or traditional stove with an improved stove combination. Finally, we show a strong correlation between CO and PM2.5 (R2 = 0.72-0.76). The combination of this experimental design along with the monitoring and evaluation protocol presented here may provide a robust framework to rapidly assess the effectiveness of ICS interventions in progress.

  12. Guided synthesis of accumulative solutions for the conceptual design of an efficient stove working with biomass

    International Nuclear Information System (INIS)

    Álvarez Cabrales, Alexis; Gaskins Espinosa, Benjamín Gabriel; Pérez Rodríguez, Roberto; Simeón Monet, Rolando Esteban

    2014-01-01

    The conceptual design is closely related to a product functional structure and the search of solution principles for its definition. This work exposes an accumulative method for the traceability of the functional structure that implements the guided conceptual synthesis of solutions in the preliminary analysis of this designing process stage. The method constitutes a contribution to Pahls and Beitzs classic design model. In it, the functional information system is manipulated, providing the designer with a help so that he can examine the different solutions that are obtained, giving him the possibility of selecting the most convenient one. The guided analysis of the accumulative solutions synthesis is illustrated by means of the conceptual design of an efficient stove working with biomass. (author)

  13. Simulation of thermal effectiveness under coal dust burning

    International Nuclear Information System (INIS)

    Korabejnikova, V.K.

    2001-01-01

    The simulation equation of polydisperse fuel (coal dust) torch combustion in the definite zones of burning cameras of stream generator and taking into account reactions in kinetic and diffusion areas at distinguishing temperatures of particles and gas are considered. (author)

  14. Emissions from biomass burning in the Yucatan

    Science.gov (United States)

    R. J. Yokelson; J. D. Crounse; P. F. DeCarlo; T. Karl; S. Urbanski; E. Atlas; T. Campos; Y. Shinozuka; V. Kapustin; A. D. Clarke; A. Weinheimer; D. J. Knapp; D. D. Montzka; J. Holloway; P. Weibring; F. Flocke; W. Zheng; D. Toohey; P. O. Wennberg; C. Wiedinmyer; L. Mauldin; A. Fried; D. Richter; J. Walega; J. L. Jimenez; K. Adachi; P. R. Buseck; S. R. Hall; R. Shetter

    2009-01-01

    In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/ US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle...

  15. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE: emissions of particulate matter from wood- and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Directory of Open Access Journals (Sweden)

    T. Jayarathne

    2018-02-01

    Full Text Available The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE characterized widespread and under-sampled combustion sources common to South Asia, including brick kilns, garbage burning, diesel and gasoline generators, diesel groundwater pumps, idling motorcycles, traditional and modern cooking stoves and fires, crop residue burning, and heating fire. Fuel-based emission factors (EFs; with units of pollutant mass emitted per kilogram of fuel combusted were determined for fine particulate matter (PM2.5, organic carbon (OC, elemental carbon (EC, inorganic ions, trace metals, and organic species. For the forced-draft zigzag brick kiln, EFPM2.5 ranged from 12 to 19 g kg−1 with major contributions from OC (7 %, sulfate expected to be in the form of sulfuric acid (31.9 %, and other chemicals not measured (e.g., particle-bound water. For the clamp kiln, EFPM2.5 ranged from 8 to 13 g kg−1, with major contributions from OC (63.2 %, sulfate (23.4 %, and ammonium (16 %. Our brick kiln EFPM2.5 values may exceed those previously reported, partly because we sampled emissions at ambient temperature after emission from the stack or kiln allowing some particle-phase OC and sulfate to form from gaseous precursors. The combustion of mixed household garbage under dry conditions had an EFPM2.5 of 7.4 ± 1.2 g kg−1, whereas damp conditions generated the highest EFPM2.5 of all combustion sources in this study, reaching up to 125 ± 23 g kg−1. Garbage burning emissions contained triphenylbenzene and relatively high concentrations of heavy metals (Cu, Pb, Sb, making these useful markers of this source. A variety of cooking stoves and fires fueled with dung, hardwood, twigs, and/or other biofuels were studied. The use of dung for cooking and heating produced higher EFPM2.5 than other biofuel sources and consistently emitted more PM2.5 and OC than burning hardwood and/or twigs; this trend was consistent across traditional mud

  16. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of particulate matter from wood- and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Science.gov (United States)

    Jayarathne, Thilina; Stockwell, Chelsea E.; Bhave, Prakash V.; Praveen, Puppala S.; Rathnayake, Chathurika M.; Robiul Islam, Md.; Panday, Arnico K.; Adhikari, Sagar; Maharjan, Rashmi; Goetz, J. Douglas; DeCarlo, Peter F.; Saikawa, Eri; Yokelson, Robert J.; Stone, Elizabeth A.

    2018-02-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) characterized widespread and under-sampled combustion sources common to South Asia, including brick kilns, garbage burning, diesel and gasoline generators, diesel groundwater pumps, idling motorcycles, traditional and modern cooking stoves and fires, crop residue burning, and heating fire. Fuel-based emission factors (EFs; with units of pollutant mass emitted per kilogram of fuel combusted) were determined for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon (EC), inorganic ions, trace metals, and organic species. For the forced-draft zigzag brick kiln, EFPM2.5 ranged from 12 to 19 g kg-1 with major contributions from OC (7 %), sulfate expected to be in the form of sulfuric acid (31.9 %), and other chemicals not measured (e.g., particle-bound water). For the clamp kiln, EFPM2.5 ranged from 8 to 13 g kg-1, with major contributions from OC (63.2 %), sulfate (23.4 %), and ammonium (16 %). Our brick kiln EFPM2.5 values may exceed those previously reported, partly because we sampled emissions at ambient temperature after emission from the stack or kiln allowing some particle-phase OC and sulfate to form from gaseous precursors. The combustion of mixed household garbage under dry conditions had an EFPM2.5 of 7.4 ± 1.2 g kg-1, whereas damp conditions generated the highest EFPM2.5 of all combustion sources in this study, reaching up to 125 ± 23 g kg-1. Garbage burning emissions contained triphenylbenzene and relatively high concentrations of heavy metals (Cu, Pb, Sb), making these useful markers of this source. A variety of cooking stoves and fires fueled with dung, hardwood, twigs, and/or other biofuels were studied. The use of dung for cooking and heating produced higher EFPM2.5 than other biofuel sources and consistently emitted more PM2.5 and OC than burning hardwood and/or twigs; this trend was consistent across traditional mud stoves, chimney stoves, and three-stone cooking

  17. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  18. Enablers and Barriers to Large-Scale Uptake of Improved Solid Fuel Stoves: A Systematic Review

    Science.gov (United States)

    Puzzolo, Elisa; Stanistreet, Debbi; Pope, Daniel; Bruce, Nigel G.

    2013-01-01

    Background: Globally, 2.8 billion people rely on household solid fuels. Reducing the resulting adverse health, environmental, and development consequences will involve transitioning through a mix of clean fuels and improved solid fuel stoves (IS) of demonstrable effectiveness. To date, achieving uptake of IS has presented significant challenges. Objectives: We performed a systematic review of factors that enable or limit large-scale uptake of IS in low- and middle-income countries. Methods: We conducted systematic searches through multidisciplinary databases, specialist websites, and consulting experts. The review drew on qualitative, quantitative, and case studies and used standardized methods for screening, data extraction, critical appraisal, and synthesis. We summarized our findings as “factors” relating to one of seven domains—fuel and technology characteristics; household and setting characteristics; knowledge and perceptions; finance, tax, and subsidy aspects; market development; regulation, legislation, and standards; programmatic and policy mechanisms—and also recorded issues that impacted equity. Results: We identified 31 factors influencing uptake from 57 studies conducted in Asia, Africa, and Latin America. All domains matter. Although factors such as offering technologies that meet household needs and save fuel, user training and support, effective financing, and facilitative government action appear to be critical, none guarantee success: All factors can be influential, depending on context. The nature of available evidence did not permit further prioritization. Conclusions: Achieving adoption and sustained use of IS at a large scale requires that all factors, spanning household/community and program/societal levels, be assessed and supported by policy. We propose a planning tool that would aid this process and suggest further research to incorporate an evaluation of effectiveness. Citation: Rehfuess EA, Puzzolo E, Stanistreet D, Pope D, Bruce

  19. The Burning Saints

    DEFF Research Database (Denmark)

    Xygalatas, Dimitris

    . Carrying the sacred icons of the saints, participants dance over hot coals as the saint moves them. The Burning Saints presents an analysis of these rituals and the psychology behind them. Based on long-term fieldwork, The Burning Saints traces the historical development and sociocultural context......, The Burning Saints presents a highly original analysis of how mental processes can shape social and religious behaviour....

  20. Burning mouth syndrome

    OpenAIRE

    K A Kamala; S Sankethguddad; S G Sujith; Praveena Tantradi

    2016-01-01

    Burning mouth syndrome (BMS) is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to different...

  1. Evaluating the Performance of Household Liquefied Petroleum Gas Cookstoves.

    Science.gov (United States)

    Shen, Guofeng; Hays, Michael D; Smith, Kirk R; Williams, Craig; Faircloth, Jerroll W; Jetter, James J

    2018-01-16

    Liquefied petroleum gas (LPG) cookstoves are considered to be an important solution for mitigating household air pollution; however, their performance has rarely been evaluated. To fill the data and knowledge gaps in this important area, 89 laboratory tests were conducted to quantify efficiencies and pollutant emissions from five commercially available household LPG stoves under different burning conditions. The mean thermal efficiency (±standard deviation) for the tested LPG cookstoves was 51 ± 6%, meeting guidelines for the highest tier level (Tier 4) under the International Organization for Standardization, International Workshop Agreement 11. Emission factors of CO 2 , CO, THC, CH 4 , and NO x on the basis of useful energy delivered (MJ d ) were 142 ± 17, 0.77 ± 0.55, 130 ± 196, 5.6 ± 8.2, and 46 ± 9 mg/MJ d , respectively. Approximately 90% of the PM 2.5 data were below the detection limit, corresponding to an emission rate below 0.11 mg/min. For those data above the detection limit, the average emission factor was 2.4 ± 1.6 mg/MJ d , with a mean emission rate of 0.20 ± 0.16 mg/min. Under the specified gas pressure (2.8 kPa), but with the burner control set to minimum air flow rate, less complete combustion resulted in a visually yellow flame, and CO, PM 2.5 , EC, and BC emissions all increased. LPG cookstoves met guidelines for Tier 4 for both CO and PM 2.5 emissions and mostly met the World Health Organization Emission Rate Targets set to protect human health.

  2. Choosing Wood Burning Appliances

    Science.gov (United States)

    Information to assist consumers in choosing a wood burning appliance, including types of appliances, the differences between certified and non-certified appliances, and alternative wood heating options.

  3. Worldwide gas marketing

    International Nuclear Information System (INIS)

    Carson, M.M.

    1994-01-01

    Natural gas is an important source of energy throughout the world due to its availability and clean burning characteristics. From liquefied natural gas being shipped via tanker from Alaska to Japan, to natural gas via pipeline from Canada to the US, to inter-country natural gas shipment within the European continent, natural gas continues to expand and justify its place of honor in the world energy picture

  4. Burns and military clothing.

    Science.gov (United States)

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under

  5. Pilot testing of a burn prevention teaching tool for Amish children.

    Science.gov (United States)

    Rieman, Mary T; Kagan, Richard J

    2012-01-01

    Burn prevention education for Amish children is warranted as there are unique risks associated with the Amish lifestyle. Specific educational opportunities are related to scalds, ignition of clothing, and ignition of highly flammable materials. A culturally sensitive burn prevention teaching tool, consisting of a magnetic storyboard, burn safety curriculum, and tests, was developed with the cooperation of one Old Order Amish community. The purpose of this study was to test the effectiveness of the tool in an Amish school. The teacher obtained parental permission and informed assent for the participation of the children. Pretesting was completed before the lessons began. The teacher told stories and arranged the magnets on the storyboard to show burn hazards involving lighters, stoves, kerosene heaters, gasoline-powered engines, and hot liquids used for canning, butchering, mopping, washing clothes, and making lye soap. The children were challenged to rearrange the pieces for a safer situation. Posttesting was performed 2 months after the pretest. Twenty-seven students (grades 1-8) participated. Tests were scored as a percentage of the 33 items answered correctly. The mean pretest score was 62 and the mean posttest score was 83. Statistical analysis using paired t-test demonstrated a highly significant improvement in test scores (P < .0001), with a power of more than 99%. This pilot study demonstrated that the burn prevention teaching tool was effective for improving knowledge in one classroom of Amish children. These results support expanded use and testing of this tool in other Amish schools.

  6. Quality of charcoal produced using micro gasification and how the new cook stove works in rural Kenya

    Science.gov (United States)

    Njenga, Mary; Mahmoud, Yahia; Mendum, Ruth; Iiyama, Muyiki; Jamnadass, Ramni; Roing de Nowina, Kristina; Sundberg, Cecilia

    2016-09-01

    Wood based energy is the main source of cooking and heating fuel in Sub-Saharan Africa. Its use rises as the population increases. Inefficient cook stoves result in fuel wastage and health issues associated with smoke in the kitchen. As users are poor women, they tend not to be consulted on cook stove development, hence the need for participatory development of efficient woodfuel cooking systems. This paper presents the findings of a study carried out in Embu, Kenya to assess energy use efficiency and concentrations of carbon monoxide and fine particulate matter from charcoal produced using gasifier cook stoves, compared to conventional wood charcoal. Charcoal made from Grevillea robusta prunings, Zea mays cob (maize cob) and Cocos nucifera (coconut shells) had calorific values of 26.5 kJ g-1, 28.7 kJ g-1 and 31.7 kJ g-1 respectively, which are comparable to conventional wood charcoal with calorific values of 33.1 kJ g-1. Cooking with firewood in a gasifier cook stove and use of the resultant charcoal as by-product to cook another meal in a conventional charcoal stove saved 41% of the amount of fuel compared to cooking with firewood in the traditional three stone open fire. Cooking with firewood based on G. robusta prunings in the traditional open fire resulted in a concentration of fine particulate matter of 2600 μg m-3, which is more than 100 times greater than from cooking with charcoal made from G. robusta prunings in a gasifier. Thirty five percent of households used the gasifier for cooking dinner and lunch, and cooks preferred using it for food that took a short time to prepare. Although the gasifier cook stove is energy and emission efficient there is a need for it to be developed further to better suit local cooking preferences. The energy transition in Africa will have to include cleaner and more sustainable wood based cooking systems.

  7. Tourniquet associated chemical burn

    Directory of Open Access Journals (Sweden)

    Jae-Hyuk Yang

    2012-01-01

    Full Text Available Chemical burn under pneumatic tourniquet is an iatrogenic preventable injury and is rarely reported in the literature. The two important mechanisms are maceration (friction and wetness underneath the tourniquent. In this report, our experience with two illustrative patients who presented with iatrogenic tourniquet associated burn is described.

  8. Burns (For Parents)

    Science.gov (United States)

    ... small, and have sensitive skin that needs extra protection. Although some minor burns aren't cause for concern and can ... burns, the mildest of the three, are limited to the top layer of skin: Signs ... pain, and minor swelling. The skin is dry without blisters. Healing ...

  9. Fuel Efficient Stoves for Darfur Camps of Internally DisplacedPersons - Report of Field Trip to North and South Darfur, Nov. 16 -Dec.17, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Gadgil, Ashok; Jacobs, Mark; Lee, Yoo-Mi

    2006-02-01

    Approximately 2.2 million internally displaced persons (''IDPs'') in Darfur are living in dense camps scattered in arid areas with low fuelwood productivity. Unsustainable harvesting of fuelwood by the IDPs has created ever increasing zones of denudation, that now (in November 2005) have reached several kilometers from the camp boundaries. Leaving the safety of the camps to fetch fuelwood from farther and farther away imposes great risk and hardship on the IDP women. Three different metal fuel efficient stove (''FES'') designs were tested in Darfur IDP camps for their suitability to substantially reduce the fuelwood needs of IDPs. The mud-and-dung ''ITDG'' stoves being promoted under the current FES program were also examined and tested. A modified design of the ITDG mud-and-dung stove, ''Avi'', was developed, built and tested. Systematic informal surveys of IDP households were undertaken in North and South Darfur to understand the household parameters related to family size, food, fuel, cooking habits, cooking pots, expenditure on fuel, and preferences related to alternative ways to spend time/money if fuel could be saved. Surveys found that a significant fraction of families are missing meals for lack of fuel (50% in South Darfur, and 90% in the North Darfur camps visited by the mission). About 60% of women in South Darfur, and about 90% of women in North Darfur camps purchase fuelwood. Selling some of the food rations to purchase fuel to cook meals was significant (40%) in South Darfur and has become common (80%) in North Darfur. The LBNL mission found that two of the metal stoves and the mud-and-dung Avi can significantly reduce fuelwood consumption using the same fuel, pot, cooking methods, and food ingredients used by Darfur IDPs. The most suitable design for Darfur conditions would be a modified ''Tara'' stove. With training of the cooks in tending the fire

  10. Burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    K A Kamala

    2016-01-01

    Full Text Available Burning mouth syndrome (BMS is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS.

  11. Phoenix Society for Burn Survivors

    Science.gov (United States)

    ... in 2018! Learn More For Loved Ones A burn injury doesn't just impact the survivor. Families ... to support longterm recovery, improve the quality of burn care, and prevent burn injury. Explore articles on ...

  12. Planning a prescribed burn at Tectonagrandis Linn F. plantation

    Directory of Open Access Journals (Sweden)

    Marcos Pedro Ramos Rodríguez

    2018-05-01

    Full Text Available During the last decades, the frequency and severity of forest fires in the tropical region and in other parts of the world, have increased. The accumulation of forest fuel on the forest floor over the years dramatically increases the risk of fire. One of the alternatives to reduce this risk or the potential for damages is to reduce the amount of forest fuel using prescribed burns. This work had the objective of planning a prescribed burning at a Tectonagrandis plantation in Jipijapa, Manabí, Ecuador. The amount of woody dead fuel was determined using the planar intersections method. The amount of miscellaneous and green fuels was evaluated by collecting the material in boxes of 30 x 30 cm and in a plot of 1 m2, respectively, placing samples in stoves to remove moisture. Fire behavior was estimated by calculating parameters such as fire intensity, flame length and lethal scorch height. The total amount of forest fuel estimated was 11.17 t ha-1. The prescriptions obtained for the optimal intervals of the fire behavior parameters presented values of fire intensity between 16.43 and 33.89 kcal m-1 s-1; flame length between 0.54 and 0.76 m and lethal scorch height between 1.38 and 4.20 m. These values sufficiently argue the application of fire in the stand of T. grandis without danger to the trees.

  13. Community effectiveness of stove and health education interventions for reducing exposure to indoor air pollution from solid fuels in four Chinese provinces

    International Nuclear Information System (INIS)

    Zhou Zheng; Jin Yinlong; Liu Fan; Cheng Yibin; Liu Jiang; Kang Jiaqi; He Gongli; Tang Ning; Chen Xun; Baris, Enis; Ezzati, Majid

    2006-01-01

    Indoor air pollution (IAP) from biomass and coal is a leading cause of mortality and disease burden in the developing world. There is limited evidence of the community effectiveness of interventions for reducing IAP exposure. We conducted a community-based intervention study of stove and health education interventions in four low-income Chinese provinces: Gansu, Guizhou, Inner Mongolia, and Shaanxi. Separate townships in one county in each province were assigned to stove plus behavioral interventions, behavioral interventions alone, and control. Data on household fuel and stove use, and on concentrations of respirable particles (RPM), carbon monoxide (CO), and sulfur dioxide (SO 2 ), were collected in peak and late heating seasons before and after interventions. The effectiveness of interventions was evaluated using difference-in-difference analysis. Pollutant concentrations were also measured in controlled tests, in which stoves were operated by expert users. In controlled tests, there was consistent and substantial reduction in concentrations of RPM (>88%) and CO (>66%); in the two coal-using provinces, SO 2 concentrations declined more in Shaanxi than in Guizhou. In community implementation, combined stove and behavioral interventions reduced the concentrations of pollutants in rooms where heating was the main purpose of stove use in the peak heating season, with smaller, non-significant, reduction in late heating season. Gansu was the only province where combined stove and behavioral interventions led to pollution reduction where cooking was the primary purpose of stove use. Compared to the control group, no significant IAP reductions were seen in groups with health education alone

  14. Multi-methodological characterisation of Costa Rican biochars from small-scale retort and top-lit updraft stoves and inter-methodological comparison

    Directory of Open Access Journals (Sweden)

    Joeri Kaal

    2017-01-01

    Full Text Available We applied common (pH, elemental analysis, thermogravimetry and less-common (infrared spectroscopy, GACS adsorption test, pyrolysis-GC-MS, hydrogen pyrolysis analytical procedures to a set of biochars from Costa Rica (bamboo stalk, cacao chaff, sawmill scrap, coconut husk and orchard prunings feedstocks. The biochars were produced by high temperature combustion in a top-lit updraft stove (TLUD and low temperature anaerobic charring in a retort (RET, the latter of which was heated by the gas that evolved from the TLUD. The RET biochars exhibit a smaller adsorption capacity, higher molecular diversity and larger proportion of thermolabile materials, because of the lower degree of thermochemical alteration (DTA and therefore limited formation of the microporous polycondensed aromatic matrix typical of the TLUD biochars. Multivariate statistics showed that DTA, not feedstock composition, controls biochar organic chemistry. The TLUD biochars might be better candidates for soil amendment because of their adsorption capacities and will probably exert a more prolonged effect because of their chemical stability. The cross-comparison of the methods showed the complementarity of especially elemental analysis, GACS, thermogravimetry, hypy and pyrolysis-GC-MS.

  15. Contact palm burns in toddlers from glass enclosed fireplaces.

    Science.gov (United States)

    Dunst, C M; Scott, E C; Kraatz, J J; Anderson, P M; Twomey, J A; Peltier, G L

    2004-01-01

    We have seen an alarming increase in the incidence of pediatric palm burns associated with gas fireplaces. The increasing popularity of these units places more children at risk. Medical records of patients under the age of 5 years who sustained hand burns from contact with the glass enclosure of gas fireplaces from 1996 through 2002 were reviewed. Thirty-nine patients were identified, with a mean age of 12.8 months. A 15-fold increase in incidence was observed. Thirty-three patients suffered superficial second-degree burns that were treated conservatively. Twenty-one percent of children developed significant wound complications requiring intensive therapy including extension splinting or surgery. Pediatric burns resulting from palmar contact with the glass enclosures of gas fireplaces have emerged as an avoidable new danger within the home. Although most of these injuries heal with conservative treatment alone, many require surgery or other intensive management to regain acceptable function.

  16. Greenhouse gas mitigation potential of biomass energy technologies in Vietnam using the long range energy alternative planning system model

    International Nuclear Information System (INIS)

    Kumar, Amit; Bhattacharya, S.C.; Pham, H.L.

    2003-01-01

    The greenhouse gas (GHG) mitigation potentials of number of selected Biomass Energy Technologies (BETs) have been assessed in Vietnam. These include Biomass Integrated Gasification Combined Cycle (BIGCC) based on wood and bagasse, direct combustion plants based on wood, co-firing power plants and Stirling engine based on wood and cooking stoves. Using the Long-range Energy Alternative Planning (LEAP) model, different scenarios were considered, namely the base case with no mitigation options, replacement of kerosene and liquefied petroleum gas (LPG) by biogas stove, substitution of gasoline by ethanol in transport sector, replacement of coal by wood as fuel in industrial boilers, electricity generation with biomass energy technologies and an integrated scenario including all the options together. Substitution of coal stoves by biogas stove has positive abatement cost, as the cost of wood in Vietnam is higher than coal. Replacement of kerosene and LPG cookstoves by biomass stove also has a positive abatement cost. Replacement of gasoline by ethanol can be realized after a few years, as at present the cost of ethanol is more than the cost of gasoline. The replacement of coal by biomass in industrial boiler is also not an attractive option as wood is more expensive than coal in Vietnam. The substitution of fossil fuel fired plants by packages of BETs has a negative abatement cost. This option, if implemented, would result in mitigation of 10.83 million tonnes (Mt) of CO 2 in 2010

  17. Differential effects of smoking on lung cancer mortality before and after household stove improvement in Xuanwei, China

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.M.; Chapman, R.S.; Shen, M.; Lubin, J.H.; Silverman, D.T.; He, X.; Hosgood, H.D.; Chen, B.E.; Rajaraman, P.; Caporaso, N.E.; Fraumeni, J.F.; Blair, A.; Lan, Q. [NCI, Bethesda, MD (USA)

    2010-08-24

    In Xuanwei County, Yunnan Province, China, lung cancer mortality rates in both males and females are among the highest in China. We evaluated differential effects of smoking on lung cancer mortality before and after household stove improvement with chimney to reduce exposure to smoky coal emissions in the unique cohort in Xuanwei, China. Effects of independent variables on lung cancer mortality were measured as hazard ratios and 95% confidence intervals using a multivariable Cox regression model that included separate time-dependent variables for smoking duration (years) before and after stove improvement. We found that the effect of smoking on lung cancer risk becomes considerably stronger after chimney installation and consequent reduction of indoor coal smoke exposure.

  18. How do People in Rural India Perceive Improved Stoves and Clean Fuel? Evidence from Uttar Pradesh and Uttarakhand

    Directory of Open Access Journals (Sweden)

    Vasundhara Bhojvaid

    2014-01-01

    Full Text Available Improved cook stoves (ICS have been widely touted for their potential to deliver the triple benefits of improved household health and time savings, reduced deforestation and local environmental degradation, and reduced emissions of black carbon, a significant short-term contributor to global climate change. Yet diffusion of ICS technologies among potential users in many low-income settings, including India, remains slow, despite decades of promotion. This paper explores the variation in perceptions of and preferences for ICS in Uttar Pradesh and Uttarakhand, as revealed through a series of semi-structured focus groups and interviews from 11 rural villages or hamlets. We find cautious interest in new ICS technologies, and observe that preferences for ICS are positively related to perceptions of health and time savings. Other respondent and community characteristics, e.g., gender, education, prior experience with clean stoves and institutions promoting similar technologies, and social norms as perceived through the actions of neighbours, also appear important. Though they cannot be considered representative, our results suggest that efforts to increase adoption and use of ICS in rural India will likely require a combination of supply-chain improvements and carefully designed social marketing and promotion campaigns, and possibly incentives, to reduce the up-front cost of stoves.

  19. Wood would burn

    International Nuclear Information System (INIS)

    Swithenbank, Jim; Chen, Qun; Zhang, Xiaohui; Sharifi, Vida; Pourkashanian, Mohamed

    2011-01-01

    Absract: In view of the world-wide problem of energy sustainability and greenhouse gas production (carbon dioxide), it is timely to review the issues involved in generating heat and power from all fuels and especially new (to the UK) solid fuels, including high moisture fuels such as wood, SRF, oil shale, tar sands and brown coal, which will become major international fuels as oil and gas become depleted. The combustion properties of some of these materials are significantly different from traditional coal, oil and gas fuels, however the technology proposed herein is also applicable to these conventional fuels. This paper presents some innovative combustion system options and the associated technical factors that must be considered for their implementation. For clarity of understanding, the novel concepts will be largely presented in terms of a currently developing solid fuel market; biomass wood chips. One of the most important characteristics of many solid fuels to be used in the future (including oil shale and brown coal) is their high moisture content of up to 60%. This could be removed by utilising low grade waste heat that is widely available in industry to dry the fuel and thus reduce transport costs. Burning such dried wood for power generation also increases the energy available from combustion and thus acts as a thermal transformer by upgrading the low grade heat to heat available at combustion temperatures. The alternative approach presented here is to recover the latent heat by condensing the extrinsic moisture and the water formed during combustion. For atmospheric combustion, the temperature of the condensed combustion products is below the dew point at about 55-65 o C and is only suitable for recovery in an efficient district heating system. However, in order to generate power from the latent heat, the condensation temperature must be increased to the level where the heat can be used in the thermodynamic power cycle. This can be achieved by

  20. Improving burn care and preventing burns by establishing a burn database in Ukraine.

    Science.gov (United States)

    Fuzaylov, Gennadiy; Murthy, Sushila; Dunaev, Alexander; Savchyn, Vasyl; Knittel, Justin; Zabolotina, Olga; Dylewski, Maggie L; Driscoll, Daniel N

    2014-08-01

    Burns are a challenge for trauma care and a contribution to the surgical burden. The former Soviet republic of Ukraine has a foundation for burn care; however data concerning burns in Ukraine has historically been scant. The objective of this paper was to compare a new burn database to identify problems and implement improvements in burn care and prevention in this country. Retrospective analyses of demographic and clinical data of burn patients including Tukey's post hoc test, analysis of variance, and chi square analyses, and Fisher's exact test were used. Data were compared to the American Burn Association (ABA) burn repository. This study included 1752 thermally injured patients treated in 20 hospitals including Specialized Burn Unit in Municipal Hospital #8 Lviv, Lviv province in Ukraine. Scald burns were the primary etiology of burns injuries (70%) and burns were more common among children less than five years of age (34%). Length of stay, mechanical ventilation use, infection rates, and morbidity increased with greater burn size. Mortality was significantly related to burn size, inhalation injury, age, and length of stay. Wound infections were associated with burn size and older age. Compared to ABA data, Ukrainian patients had double the length of stay and a higher rate of wound infections (16% vs. 2.4%). We created one of the first burn databases from a region of the former Soviet Union in an effort to bring attention to burn injury and improve burn care. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  1. Working group report: methane emissions from biomass burning

    International Nuclear Information System (INIS)

    Delmas, R.A.; Ahuja, D.

    1993-01-01

    Biomass burning is a significant source of atmospheric methane. Like most other sources of methane, it has both natural and anthropogenic causes, although anthropogenic causes now predominate. Most of the estimates of methane emissions from biomass burning in the past have relied on a uniform emission factor for all types of burning. This results in the share of trace gas emissions for different types of burning being the same as the amounts of biomass burned in those types. The Working Group endorsed the extension of an approach followed for Africa by Delmas et al. (1991) to use different emission factors for different types of biomass burning to estimate national emissions of methane. This is really critical as emission factors present important variations. While the focus of discussions of the Working Group was on methane emissions from biomass burning, the Group endorsed the IPCC-OECD methodology of estimating all greenhouse related trace gases from biomass burning. Neither the IPCC-OECD nor the methodology suggested here applies to estimation of trace gas emissions from the processing of biomass to upgraded fuels. They must be estimated separately. The Group also discussed technical options for controlling methane emissions from biomass. 12 refs

  2. Making of a burn unit: SOA burn center

    Directory of Open Access Journals (Sweden)

    Jayant Kumar Dash

    2016-01-01

    Full Text Available Each year in India, burn injuries account for more than 6 million hospital emergency department visits; of which many require hospitalization and are referred to specialized burn centers. There are few burn surgeons and very few burn centers in India. In our state, Odisha, there are only two burn centers to cater to more than 5000 burn victims per year. This article is an attempt to share the knowledge that I acquired while setting up a new burn unit in a private medical college of Odisha.

  3. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Science.gov (United States)

    Stockwell, Chelsea E.; Christian, Ted J.; Goetz, J. Douglas; Jayarathne, Thilina; Bhave, Prakash V.; Praveen, Puppala S.; Adhikari, Sagar; Maharjan, Rashmi; DeCarlo, Peter F.; Stone, Elizabeth A.; Saikawa, Eri; Blake, Donald R.; Simpson, Isobel J.; Yokelson, Robert J.; Panday, Arnico K.

    2016-09-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870 nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF Bscat, EF Babs, in m2 kg-1 fuel burned), single scattering albedos (SSAs), and absorption Ångström exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (g kg-1 fuel burned). The trace gas measurements provide EFs (g kg-1) for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ˜ 80 gases in all). The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63 ± 0.68) was significantly higher than for wood-fuel cooking fires (3.01 ± 0.10). Dung-fuel cooking fires also emitted high levels of NH3 (3.00 ± 1.33 g kg-1), organic acids (7.66 ± 6.90 g kg-1), and HCN (2.01 ± 1.25 g kg-1), where the latter could

  4. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, L.M.V.; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... on the highest achievable oil slick temperature. Based on this mechanism, predictions can then be made depending on the hydrocarbon composition of the fuel and the measured surface temperature....

  5. American Burn Association

    Science.gov (United States)

    ... burn-related care, prevention, education, and research. Our multidisciplinary membership enhances our ability to work toward common goals with other organizations and educational programs. Membership Being a member of ...

  6. New Fashioned Book Burning.

    Science.gov (United States)

    Gardner, Robert

    1997-01-01

    Reports on results of a teacher's experiment in book burning as a lesson accompanying the teaching of Ray Bradbury's "Fahrenheit 451." Discusses student reactions and the purpose of or justification for the experimental lesson. (TB)

  7. Burn-out

    OpenAIRE

    Patricia van Echtelt

    2014-01-01

    Deze publicatie is alleen elektronisch verkrijgbaar (downloaden van deze site) Burn-out (ofwel: emotionele uitputting) komt relatief vaak voor: ongeveer één op de acht werknemers in Nederland heeft er last van. Het wordt dan ook gezien als een serieus maatschappelijk probleem dat beleidsmatig aandacht vergt. Dit rapport presenteert de resultaten van twee specifieke analyses over burn-out. Ten eerste gaan we na wat het effect is van emotionele uitputting op de loopbaan van werknemers. Ten twee...

  8. Smartphone applications in burns.

    Science.gov (United States)

    Wurzer, Paul; Parvizi, Daryousch; Lumenta, David B; Giretzlehner, Michael; Branski, Ludwik K; Finnerty, Celeste C; Herndon, David N; Tuca, Alexandru; Rappl, Thomas; Smolle, Christian; Kamolz, Lars P

    2015-08-01

    Since the introduction of applications (apps) for smartphones, the popularity of medical apps has been rising. The aim of this review was to demonstrate the current availability of apps related to burns on Google's Android and Apple's iOS store as well as to include a review of their developers, features, and costs. A systematic online review of Google Play Store and Apple's App Store was performed by using the following search terms: "burn," "burns," "thermal," and the German word "Verbrennung." All apps that were programmed for use as medical apps for burns were included. The review was performed from 25 February until 1 March 2014. A closer look at the free and paid calculation apps including a standardized patient was performed. Four types of apps were identified: calculators, information apps, book/journal apps, and games. In Google Play Store, 31 apps were related to burns, of which 20 were calculation apps (eight for estimating the total body surface area (TBSA) and nine for total fluid requirement (TFR)). In Apple's App Store, under the category of medicine, 39 apps were related to burns, of which 21 were calculation apps (19 for estimating the TBSA and 17 for calculating the TFR). In 19 out of 32 available calculation apps, our study showed a correlation of the calculated TFR compared to our standardized patient. The review demonstrated that many apps for medical burns are available in both common app stores. Even free available calculation apps may provide a more objective and reproducible procedure compared to manual/subjective estimations, although there is still a lack of data security especially in personal data entered in calculation apps. Further clinical studies including smartphone apps for burns should be performed. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  9. Burning mouth syndrome

    OpenAIRE

    Zakrzewska, Joanna; Buchanan, John A. G.

    2016-01-01

    Burning mouth syndrome is a debilitating medical condition affecting nearly 1.3 million of Americans. Its common features include a burning painful sensation in the mouth, often associated with dysgeusia and xerostomia, despite normal salivation. Classically, symptoms are better in the morning, worsen during the day and typically subside at night. Its etiology is largely multifactorial, and associated medical conditions may include gastrointestinal, urogenital, psychiatric, neurologic and met...

  10. Burning mouth syndrome: update

    OpenAIRE

    Cassol Spanemberg, Juliana; Rodríguez de Rivera Campillo, Ma Eugenia; Jané Salas, Enric; López López, José, 1958-

    2014-01-01

    Burning Mouth Syndrome (BMS) is a chronic disorder that predominately affects middle-aged women in the postmenopausal period. The condition is distinguished by burning symptoms of the oral mucosa and the absence of any clinical signs. The etiology of BMS is complex and it includes a variety of factors. Local, systemic and psychological factors such as stress, anxiety and depression are listed among the possible causes of BMS. BMS may sometimes be classified as BMS Type I, II or III. Although ...

  11. Burning mouth syndrome

    OpenAIRE

    Jimson, Sudha; Rajesh, E.; Krupaa, R. Jayasri; Kasthuri, M.

    2015-01-01

    Burning mouth syndrome (BMS) is a complex disorder that is characterized by warm or burning sensation in the oral mucosa without changes on physical examination. It occurs more commonly in middle-aged and elderly women and often affects the tip of the tongue, lateral borders, lips, hard and soft palate. This condition is probably of multi-factorial origin, often idiopathic, and its etiopathogensis is unknown. BMS can be classified into two clinical forms namely primary and secondary BMS. As a...

  12. Respiratory involvements among women exposed to the smoke of traditional biomass fuel and gas fuel in a district of Bangladesh.

    Science.gov (United States)

    Alim, Md Abdul; Sarker, Mohammad Abul Bashar; Selim, Shahjada; Karim, Md Rizwanul; Yoshida, Yoshitoku; Hamajima, Nobuyuki

    2014-03-01

    Burning of biomass fuel (cow-dung, crop residue, dried leaves, wood, etc.) in the kitchen releases smoke, which may impair the respiratory functions of women cooking there. This paper aimed to compare the respiratory symptoms between biomass fuel users and gas fuel users in Bangladesh. A cross-sectional survey was conducted through face-to-face interviews and chest examination of 224 adult women using biomass fuel in a rural village and 196 adult women using gas fuel in an urban area. The prevalence of respiratory involvement (at least one among nine symptoms and two diseases) was significantly higher among biomass users than among gas users (29.9 vs. 11.2 %). After adjustment for potential confounders by a logistic model, the odds ratio (OR) of the biomass users for the respiratory involvement was significantly higher (OR = 3.23, 95 % confidence interval 1.30-8.01). The biomass fuel use elevated symptoms/diseases significantly; the adjusted OR was 3.04 for morning cough, 7.41 for nasal allergy, and 5.94 for chronic bronchitis. The mean peak expiratory flow rate of biomass users (253.83 l/min) was significantly lower than that of gas users (282.37 l/min). The study shows significant association between biomass fuel use and respiratory involvement among rural women in Bangladesh, although the potential confounding of urban/rural residency could not be ruled out in the analysis. The use of smoke-free stoves and adequate ventilation along with health education to the rural population to increase awareness about the health effects of indoor biomass fuel use might have roles to prevent these involvements.

  13. Epidemiology of burn injuries in South-Eastern Iran: A retrospective study

    International Nuclear Information System (INIS)

    Moghaddam, A.A.; Baghbanian, A.; Dogoonchi, M.; Roudi, M.M.

    2013-01-01

    Objective: To explore the epidemiology of burn injuries in Zahedan, Southeastern Iran. Methods: A retrospective review of 730 medical records, of burnt patients, for a period of two years was done. Pre-designed data recording forms were used to collect data. The SPSS-15 was used to analyze data. Results: Overall, 713 medical records were analyzed: two-thirds (62.0%) were fire-related and one-third related to scalds (33.1%). Intentional self-harm injuries accounted for 14.3% of all admissions. A significant difference existed between patients' age or sex and the causes of burns (P<0.001). Burns more than 60% closely correlated with death rate and hospital stay (P<0.001). Conclusion: Lack of the necessary, socio-economic infrastructure, language and cultural barriers, low level of literacy, flammability of women's clothes and unsafe application/design of stove and heaters are likely to contribute to the high frequency of burn injuries in this area. (author)

  14. Domestic burns prevention and first aid awareness in and around Jamshedpur, India: strategies and impact.

    Science.gov (United States)

    Ghosh, A; Bharat, R

    2000-11-01

    This article highlights the strategy for awareness creation regarding burns prevention and first aid and its impact in and around the steel-producing city of Jamshedpur, India. This is a joint venture of the Burns Centre and the Medico Social Welfare Unit of the Tata Main Hospital, Jamshedpur in collaboration with the Social Service Division of Tata Steel and city schools. The first phase of 5 years has been devoted to general awareness building in the population through two main programmes, namely "Community Awareness Programmes" for the target group of ladies and teenage girls and "School Education Programmes" for the target group of school children of Standard 8 in the steel-producing city. These programmes include audio-visual presentations as well as face to face interactions regarding structure and arrangements in the kitchen, floor level cooking, clothing while cooking, careful use of electrical appliances, pressure stoves, etc. The discussions also include suicidal and homicidal burns prevention strategies. Various competitions for the target group provide feedback on programmes. The growing awareness about burns prevention among school children and community members, and steady increase in the number of patients who use water as first aid, speak about the success of the strategies.

  15. Reducing health impacts of biomass burning for cooking. The need for cookstove performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Abeliotis, K. [Department of Home Economics and Ecology, Harokopio University, Athens (Greece); Pakula, C. [Institute of Agricultural Engineering, Section Household and Appliance Technology, Rheinische Friedrich-Wilhelms University, Bonn (Germany)

    2013-08-15

    Biomass is a renewable energy source that is routinely used for cooking in the developing world, especially in rural areas. The World Health Organization estimates that about 2.5 billion people globally rely on biomass, such as wood, agricultural waste and animal dung to meet their energy needs for cooking utilising traditional low-efficiency cookstoves. However, certain human health risks are associated with the inhalation of off-gases resulting from the indoor use of biomass for cooking, especially for women and children who spend more of their time at home. On the other hand, use of energy-efficient cookstoves is considered to reduce those risks. Thus, qualitative and quantitative measurements of cookstove performance are necessary in order to make different stoves and different cooking processes comparable. The aim of this paper is the presentation of the current situation regarding biomass use for cooking with emphasis placed on the developing world, the brief of the adverse health impacts of biomass burning based on the review of literature, the presentation of the merits of improved efficiency cookstoves and to highlight the need for stove performance tests. The demand of different types of biomass is not likely to change in the near future in the developing world since biomass is readily available and cheap. Thus, the efforts to improve household air quality must concentrate on improving cookstoves efficiency and ventilation of the flue gases outdoors. Programmes for the improvement of the cookstoves efficiency in the developing world should be part of the development agenda.

  16. Tritium burning in inertial electrostatic confinement fusion facility

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Masami, E-mail: onishi@kansai-u.ac.jp [Department of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Yamamoto, Yasushi; Osawa, Hodaka [Department of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Hatano, Yuji; Torikai, Yuji [Hydrogen Isotope Science Center, University of Toyama, Gofuku, Toyama 930-8555 (Japan); Murata, Isao [Faculty of Engineering Environment and Energy Department, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kamakura, Keita; Onishi, Masaaki; Miyamoto, Keiji; Konda, Hiroki [Department of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Masuda, Kai [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hotta, Eiki [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2016-11-01

    Highlights: • An experiment on tritium burning is conducted in an inertial electrostatic confinement fusion (IECF) facility. • A deuterium–tritium gas mixture with 93% deuterium and 7% tritium is used. • The neutron production rate is measured to be 5–8 times more than that of pure deuterium gas. • The neutron production rate of the D–T gas mixture in 1:1 ratio is expected to be more than 10{sup 8}(1/sec) in the present D–T experiment. - Abstract: An experiment on tritium burning is conducted to investigate the enhancement in the neutron production rate in an inertial electrostatic confinement fusion (IECF) facility. The facility is designed such that it is shielded from the outside for safety against tritium and a getter pump is used for evacuating the vacuum chamber and feeding the fuel gas. A deuterium–tritium gas mixture with 93% deuterium and 7% tritium is used, and its neutron production rate is measured to be 5–8 times more than that of pure deuterium gas. Moreover, the results show good agreement with those of a simplified theoretical estimation of the neutron production rate. After tritium burning, the exhausted fuel gas undergoes a tritium recovery procedure through a water bubbler device. The amount of gaseous tritium released by the developed IECF facility after tritium burning is verified to be much less than the threshold set by regulations.

  17. Tritium burning in inertial electrostatic confinement fusion facility

    International Nuclear Information System (INIS)

    Ohnishi, Masami; Yamamoto, Yasushi; Osawa, Hodaka; Hatano, Yuji; Torikai, Yuji; Murata, Isao; Kamakura, Keita; Onishi, Masaaki; Miyamoto, Keiji; Konda, Hiroki; Masuda, Kai; Hotta, Eiki

    2016-01-01

    Highlights: • An experiment on tritium burning is conducted in an inertial electrostatic confinement fusion (IECF) facility. • A deuterium–tritium gas mixture with 93% deuterium and 7% tritium is used. • The neutron production rate is measured to be 5–8 times more than that of pure deuterium gas. • The neutron production rate of the D–T gas mixture in 1:1 ratio is expected to be more than 10"8(1/sec) in the present D–T experiment. - Abstract: An experiment on tritium burning is conducted to investigate the enhancement in the neutron production rate in an inertial electrostatic confinement fusion (IECF) facility. The facility is designed such that it is shielded from the outside for safety against tritium and a getter pump is used for evacuating the vacuum chamber and feeding the fuel gas. A deuterium–tritium gas mixture with 93% deuterium and 7% tritium is used, and its neutron production rate is measured to be 5–8 times more than that of pure deuterium gas. Moreover, the results show good agreement with those of a simplified theoretical estimation of the neutron production rate. After tritium burning, the exhausted fuel gas undergoes a tritium recovery procedure through a water bubbler device. The amount of gaseous tritium released by the developed IECF facility after tritium burning is verified to be much less than the threshold set by regulations.

  18. Burning mouth disorder

    Directory of Open Access Journals (Sweden)

    Anand Bala

    2012-01-01

    Full Text Available Burning mouth disorder (BMD is a burning or stinging sensation affecting the oral mucosa, lips and/or tongue, in the absence of clinically visible mucosal lesions. There is a strong female predilection, with the age of onset being approximately 50 years. Affected patients often present with multiple oral complaints, including burning, dryness and taste alterations. The causes of BMD are multifactorial and remain poorly understood. Recently, there has been a resurgence of interest in this disorder with the discovery that the pain of burning mouth syndrome (BMS may be neuropathic in origin and originate both centrally and peripherally. The most common sites of burning are the anterior tongue, anterior hard palate and lower lip, but the distribution of oral sites affected does not appear to affect the natural history of the disorder or the response to treatment BMS may persist for many years. This article provides updated information on BMS and presents a new model, based on taste dysfunction, for its pathogenesis.

  19. Solid-fuel cook stoves: Fuel efficiency and emissions testing--Austin

    Science.gov (United States)

    The World Health Organization estimates that approximately 1.6 million people prematurely die each year due to exposure to air pollutants from burning solid fuels for residential cooking and heating (WHO, 2010). Residential solid-fuel use accounts for approximately 25 percent of ...

  20. Análise por cromatografia gasosa de BTEX nas emissões de motor de combustão interna alimentado com diesel e mistura diesel-biodiesel (B10 Analysis of BTEX in the emissions from an internal combustion engine burning diesel oil and diesel-biodiesel mixture (B10 by gas chromatography

    Directory of Open Access Journals (Sweden)

    Sérgio L. Ferreira

    2008-01-01

    Full Text Available This paper describes the procedures for analysing pollutant gases emitted by engines, such as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene by using high resolution gas chromatography (HRGC. For IC engine burning, in a broad sense, the use of the B10 mixture reduces drastically the emissions of aromatic compounds. Especially for benzene the reduction of concentrations occurs at the level of about 24.5%. Although a concentration value below 1 µg mL-1 has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound.

  1. Methoxyphenols in smoke from biomass burning

    Energy Technology Data Exchange (ETDEWEB)

    Kjaellstrand, J

    2000-07-01

    Wood and other forest plant materials were burned in laboratory experiments with the ambition to simulate the natural burning course in a fireplace or a forest fire. Smoke samples were taken and analysed with respect to methoxyphenols, using gas chromatography and mass spectrometry. Different kinds of bio pellets, intended for residential heating were studied in the same way. The aim of a first study was to establish analytical data to facilitate further research. Thirty-six specific methoxyphenols were identified, and gas chromatographic retention and mass spectrometric data were determined for these. In a subsequent study, the methoxyphenol emissions from the burning of wood and other forest plant materials were investigated. Proportions and concentrations of specific methoxyphenols were determined. Methoxyphenols and anhydrosugars, formed from the decomposition of lignin and cellulose respectively, were the most prominent semi-volatile compounds in the biomass smoke. The methoxyphenol compositions reflected the lignin structures of different plant materials. Softwood smoke contained almost only 2-methoxyphenols, while hardwood smoke contained both 2-methoxyphenols and 2,6-dimethoxyphenols. The methoxyphenols in smoke from pellets, made of sawdust, bark and lignin, reflected the source of biomass. Although smoke from incompletely burned wood contains mainly methoxyphenols and anhydrosugars, there is also a smaller amount of well-known hazardous compounds present. The methoxyphenols are antioxidants. They appear mainly condensed on particles and are presumed to be inhaled together with other smoke components. As antioxidants, phenols interrupt free radical chain reactions and possibly counteract the effect of hazardous smoke components. Health hazards of small-scale wood burning should be re-evaluated considering antioxidant effects of the methoxyphenols.

  2. Greenhouse Gas and Particulate Emissions and Impacts from Cooking Technologies in Africa

    Science.gov (United States)

    Kammen, D. M.; Bailis, R.; Kituyi, E.; Ezzati, M.

    2003-12-01

    In much of Africa, the largest fraction of energy consumption occurs within the residential sector and is derived primarily from woodfuels burned in simple stoves with poor combustion characteristics. Many of the products of incomplete combustion (PICs) are damaging to human health, particularly when they are concentrated in poorly ventilated indoor environments. Incomplete combustion also has potentially harmful impacts on the climate. Prevalent PICs include methane, a potent greenhouse gas (GHG) that is among the pollutants subject to controls under the Kyoto Protocol as well as carbon monoxide (CO), non-methane hydrocarbons (NMHCs) and particulate matter (PM), which can all have an effect on climate, but are not subject to controls under Kyoto. In addition, when woodfuels are used at a rate that reduces standing stocks of trees over the medium or long term, the CO2 released by combustion also has an impact. The choice of stove and fuel technology can have a significant impact on the emission of GHGs as well as on human exposure to health damaging pollutants. In this paper we analyze the emissions of different household energy technologies on a life-cycle basis. We use emission factors to estimate the emissions associated with production, distribution and end-use of common household fuels and assess the likely impacts of these emissions on public health and the global environment. We focus largely on charcoal, a popular fuel in many sub-Saharan African countries. Charcoal is produced by heating wood in the absence of sufficient air for complete combustion to occur. This process removes moisture and most of the volatile compounds. The compounds driven off in the process consist of condensable tars as well as many gaseous hydrocarbons, including ~40 g CH4 per kg of charcoal produced. Combining upstream and end-use emissions, every meal cooked with charcoal has 2-10 times the global warming effect of cooking the same meal with firewood and 5-12 times the effect of

  3. Psychiatric aspects of burn

    Directory of Open Access Journals (Sweden)

    Dalal P

    2010-10-01

    Full Text Available Burn injuries and their subsequent treatment cause one of the most excruciating forms of pain imaginable. The psychological aspects of burn injury have been researched in different parts of the world, producing different outcomes. Studies have shown that greater levels of acute pain are associated with negative long-term psychological effects such as acute stress disorder, depression, suicidal ideation, and post-traumatic stress disorder for as long as 2 years after the initial burn injury. The concept of allostatic load is presented as a potential explanation for the relationship between acute pain and subsequent psychological outcomes. A biopsychosocial model is also presented as a means of obtaining better inpatient pain management and helping to mediate this relationship.

  4. Forty-Year Follow-up of Full-Thickness Skin Graft After Thermal Burn Injury to the Volar Hand.

    Science.gov (United States)

    Weeks, Dexter; Kasdan, Morton L; Wilhelmi, Bradon J

    2016-01-01

    The hands are commonly affected in severe thermal burn injuries. Resulting contractures lead to significant loss of function. Burn contracture release and skin grafting are necessary to restore hand function. We report a case in which surgical reconstruction of a volar hand burn was performed with full-thickness skin grafting. The patient had a 40-year follow-up to assess the function and cosmesis of the repaired hand. We report a case in which a 15-month-old boy presented after receiving third-degree burns to the left volar hand, including the flexural aspects of the index, long, and ring fingers by placing it on a hot kitchen stove burner. The patient subsequently underwent scar contracture release and full-thickness skin grafting. Eleven years after reconstruction, further contractures developed associated with the patient's growth, which were reconstructed with repeat full-thickness skin graft from the inguinal region. No recurrence was witnessed afterward and 40 years after initial injury, the patient maintains full activities of daily living and use of his hand in his occupation. There is debate regarding the superiority of split-thickness versus full-thickness grafts during reconstruction. Our case strengthens the argument for durability of a full-thickness skin graft following thermal burn injury.

  5. Burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    Sudha Jimson

    2015-01-01

    Full Text Available Burning mouth syndrome (BMS is a complex disorder that is characterized by warm or burning sensation in the oral mucosa without changes on physical examination. It occurs more commonly in middle-aged and elderly women and often affects the tip of the tongue, lateral borders, lips, hard and soft palate. This condition is probably of multi-factorial origin, often idiopathic, and its etiopathogensis is unknown. BMS can be classified into two clinical forms namely primary and secondary BMS. As a result, a multidisciplinary approach is required for better control of the symptoms. In addition, psychotherapy and behavioral feedback may also help eliminate the BMS symptoms.

  6. Biomass burning in Africa: As assessment of annually burned biomass

    International Nuclear Information System (INIS)

    Delmas, R.A.; Loudjani, P.; Podaire, A.; Menaut, J.C.

    1991-01-01

    It is now established that biomass burning is the dominant phenomenon that controls the atmospheric chemistry in the tropics. Africa is certainly the continent where biomass burning under various aspects and processes is the greatest. Three different types of burnings have to be considered-bush fires in savanna zones which mainly affect herbaceous flora, forest fires due to forestation for shifting agriculture or colonization of new lands, and the use of wood as fuel. The net release of carbon resulting from deforestation is assumed to be responsible for about 20% of the CO 2 increase in the atmosphere because the burning of forests corresponds to a destorage of carbon from the biospheric reservoir. The amount of reactive of greenhouse gases emitted by biomass burning is directly proportional, through individual emission factors, to the biomass actually burned. This chapter evaluates the biomass annually burned on the African continent as a result of the three main burning processes previously mentioned

  7. [Surgical treatment of burns : Special aspects of pediatric burns].

    Science.gov (United States)

    Bührer, G; Beier, J P; Horch, R E; Arkudas, A

    2017-05-01

    Treatment of pediatric burn patients is very important because of the sheer frequency of burn wounds and the possible long-term ramifications. Extensive burns need special care and are treated in specialized burn centers. The goal of this work is to present current standards in burn therapy and important innovations in the treatment of burns in children so that the common and small area burn wounds and scalds in pediatric patients in day-to-day dermatological practice can be adequately treated. Analysis of current literature, discussion of reviews, incorporation of current guidelines. Burns in pediatric patients are common. Improvement of survival can be achieved by treatment in burn centers. The assessment of burn depth and area is an important factor for proper treatment. We give an overview for outpatient treatment of partial thickness burns. New methods may result in better long-term outcome. Adequate treatment of burn injuries considering current literature and guidelines improves patient outcome. Rational implementation of new methods is recommended.

  8. An assessment of burn care professionals' attitudes to major burn.

    LENUS (Irish Health Repository)

    Murphy, A D

    2008-06-01

    The resuscitation of severe burn remains a controversial area within the burn care profession. There is ongoing debate as to what percentage burn is associated with a sufficient quality of life to support initial resuscitation efforts. We conducted a survey of delegates at the 39th Annual Meeting of the British Burns Association (2005), regarding attitudes towards resuscitation following major burns. Respondents were asked the maximum percentage total body surface area (TBSA) burn beyond which they would not wish to be resuscitated. They were also asked what maximum TBSA they perceived to be commensurate with an acceptable quality of life (QOL). One hundred and forty three of 300 delegates responded to the questionnaire. Thirty three percent of respondents would not wish to be resuscitated with 50-75% TBSA burns or greater. A further 35% would not wish to have life-sustaining intervention with 75-95% TBSA burns or greater. The remaining 32% indicated that they would not want resuscitation with TBSA burns>95%. Regardless of TBSA affected, 16% would not wish resuscitation if they had full thickness facial burns, a further 10% did not want resuscitation if both their hands and faces were affected. Our survey demonstrates the diversity of personal preference amongst burn care professionals. This would suggest that a unifying philosophy regarding the resuscitation of extensive burns will remain elusive.

  9. Status of greenhouses in Eastern Mediterranean coastal areas of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... climate control of greenhouses owned by villagers, having only small holdings barely adequate for supporting ... Mediterranean Sea cost line in Turkey and has rather ..... stove and combination of wood burning and gas tube.

  10. Minor burn - first aid - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100213.htm Minor burn - first aid - series—Procedure, part 1 To use ... out of 2 Overview To treat a minor burn, run cool water over the area of the ...

  11. [Burns in adolescents].

    Science.gov (United States)

    Ortiz Rodríguez, R; Domínguez Amillo, E; Soto Beauregard, C; Díaz González, M; López Gutiérrez, J C; Ros Mar, Z; Tovar Larrucea, J A

    2012-04-01

    The aim of this study was to know the epidemiology of burns in teenagers. Burn patients over 11 years old admitted in our Institution in the last 10 years were included. Etiology, burn size, hospital stay, quirurgical interventions and long term sequelae were registered. One thousand and eight patients were admitted, 89 were over 11 years (8.8%), 70.7% were boys and 29.3% girls. Fire was the principal agent in 58 cases (65.1%), due to fireworks in 13 (22.4%), alcohol in 7 (12%), explosion of flammable containers (spray) in 4 (6.8%) and gasoline in 3 (5.2%). Fireworks injuries and spray explosions affected face and hand in 88% cases. The median hospital stay was 8 days after admission (1 to 90). 83.1% required surgical treatment with mean of 1.8 +/- 1.4 interventions and 21.3% had long-term sequelaes that required at least one surgical intervention. Fire is the main cause of burns in adolescents. Fireworks injuries represented a quarter of that lesions, and highlights paint spray explosions as new causative agents. Considering the high morbidity in this age group, with permanent functional and aesthetic sequelae, prevention campaigns are needed to reduce such accidents.

  12. Electrical Burns: First Aid

    Science.gov (United States)

    ... local emergency number if the source of the burn is a high-voltage wire or lightning. Don't get near high-voltage ... 20 feet (about 6 meters) away — farther if wires are jumping and sparking. Don't move a person with ... breathing Heart rhythm problems (arrhythmias) Cardiac ...

  13. Burns - Multiple Languages

    Science.gov (United States)

    ... Translations Russian (Русский) Expand Section Burn Care - Русский (Russian) Bilingual ... Health Information Translations Characters not displaying correctly on this page? See language display issues . Return to the MedlinePlus Health Information ...

  14. One Burn, One Standard

    Science.gov (United States)

    2014-09-01

    PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Giretzlehner M., Haller H. L., Faucher L. D., Pressman M. A., Salinas J., Jeng J. C., 5d. PROJECT NUMBER 5e...AUVA Linz, Austria Lee D. Faucher, MD University of Wisconsin Madison, Wisconsin Melissa A. Pressman , PhD Arizona Burn Center Phoenix

  15. Biomonitoring Human Exposure to Household Air Pollution and Association with Self-reported Health Symptoms – A Stove Intervention Study in Peru

    Science.gov (United States)

    Li, Zheng; Commodore, Adwoa; Hartinger, Stella; Lewin, Michael; Sjödin, Andreas; Pittman, Erin; Trinidad, Debra; Hubbard, Kendra; Lanata, Claudio F.; Gil, Ana I.; Mäusezahl, Daniel; Naeher, Luke P.

    2016-01-01

    Background Household air pollution (HAP) from indoor biomass stoves contains harmful pollutants, such as polycyclic aromatic hydrocarbons (PAHs), and is a leading risk factor for global disease burden. We used biomonitoring to assess HAP exposure and association with self-reported symptoms in 334 non-smoking Peruvian women to evaluate the efficacy of a stove intervention program. Methods We conducted a cross-sectional study within the framework of a community randomized control trial. Using urinary PAH metabolites (OH-PAHs) as the exposure biomarkers, we investigated whether the intervention group (n = 155, with new chimney-equipped stoves) were less exposed to HAP compared to the control group (n = 179, with mostly open-fire stoves). We also estimated associations between the exposure biomarkers, risk factors, and self-reported health symptoms, such as recent eye conditions, respiratory conditions, and headache. Results We observed reduced headache and ocular symptoms in the intervention group than the control group. Urinary 2-naphthol, a suggested biomarker for inhalation PAH exposure, was significantly lower in the intervention group (GM with 95% CI: 13.4 [12.3, 14.6] μg/g creatinine) compared to control group (16.5 [15.0, 18.0] μg/g creatinine). Stove type and/or 2-naphthol was associated with a number of self-reported symptoms, such as red eye (adjusted OR with 95% CI: 3.80 [1.32, 10.9]) in the past 48 h. Conclusions Even with the improved stoves, the biomarker concentrations in this study far exceeded those of the general populations and were higher than a no-observed-genotoxic-effect-level, indicating high exposure and a potential for increased cancer risk in the population. PMID:27680405

  16. Methane gas from cow dung

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The Khadi and Village Industries Commission offers a gobar gas (methane gas) production scheme. The gas plant, available in sizes of 60 to 3000 cu ft, requires only low maintenance expenditures. The cow dung, which is at present being wasted or burned as domestic fuel, can be used for manufacturing methane for fuel gas. The residue will be a good fertilizer for increasing food production. There are now about 4000 gobar gas plants in India.

  17. Additional income with open chimneys and stove. Nostalgia, romanticism and thermal comfort; Zusatzgeschaeft mit Oefen und Kaminen. Nostalgisch-romantische Gefuehle und behagliche Waerme

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, G. [Buderus Heiztechnik GmbH, Wetzlar (Germany)

    2004-01-01

    Stoves and open fireplaces are coming into fashion again with the trend towards nostalgia and design awareness. Further, wood-fuelled chimneys and stoves are viewed as romantic, and they also provide high thermal comfort. Heating systems experts can get additional income from this trend. (orig.) [German] Kamine und Oefen sind bei vielen Hausbesitzern und Bauherrn wieder in Mode. Dieser Trend ist zum einen Teil eines gestiegenen Nostalgie- und Designbewusstseins. Zum anderen gelten vor allem holzbefeuerte Kamine und Oefen als romantisch und ihre Waerme aufgrund des hohen Strahlungsanteils als behaglich. Fuer den aktiven Heizungsfachhandwerker laesst sich aus dieser Modestroemung ein lukratives Zusatzgeschaeft ableiten. (orig.)

  18. Burn Wise Educational Materials for Businesses

    Science.gov (United States)

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  19. Repeated Prescribed Burning in Aspen

    Science.gov (United States)

    Donald A. Perala

    1974-01-01

    Infrequent burning weather, low flammability of the aspen-hardwood association, and prolific sprouting and seeding of shrubs and hardwoods made repeated dormant season burning a poor tool to convert good site aspen to conifers. Repeat fall burns for wildlife habitat maintenance is workable if species composition changes are not important.

  20. Air-Freshener Burns: A New Paradigm in Burns Etiology?

    OpenAIRE

    Sarwar, Umran; Nicolaou, M.; Khan, M. S.; Tiernan, E.

    2011-01-01

    Objectives: We report a rare case of burns following the use of automated air-fresheners. Methods: We present a case report with a brief overview of the literature relating to burns associated with air-fresheners. The mechanism and treatment of these types of injuries are also described. Results: A 44 year-old female was admitted under the care of the burns team following burns secondary to an exploding air-freshener canister. The patient sustained burns to the face, thorax and arms re...

  1. Is proportion burned severely related to daily area burned?

    International Nuclear Information System (INIS)

    Birch, Donovan S; Morgan, Penelope; Smith, Alistair M S; Kolden, Crystal A; Hudak, Andrew T

    2014-01-01

    The ecological effects of forest fires burning with high severity are long-lived and have the greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that wind-driven, large fire-growth days play a significant role, particularly on large fires in forested ecosystems. Here, we examined the relative proportion of classified burn severity for individual daily areas burned that occurred during 42 large forest fires in central Idaho and western Montana from 2005 to 2007 and 2011. Using infrared perimeter data for wildfires with five or more consecutive days of mapped perimeters, we delineated 2697 individual daily areas burned from which we calculated the proportions of each of three burn severity classes (high, moderate, and low) using the differenced normalized burn ratio as mapped for large fires by the Monitoring Trends in Burn Severity project. We found that the proportion of high burn severity was weakly correlated (Kendall τ = 0.299) with size of daily area burned (DAB). Burn severity was highly variable, even for the largest (95th percentile) in DAB, suggesting that other variables than fire extent influence the ecological effects of fires. We suggest that these results do not support the prioritization of large runs during fire rehabilitation efforts, since the underlying assumption in this prioritization is a positive relationship between severity and area burned in a day. (letters)

  2. Chemical composition of particles from traditional burning of Pakistani wood species

    Science.gov (United States)

    Shahid, Imran; Kistler, Magdalena; Mukhtar, Azam; Ramirez-Santa Cruz, Carlos; Bauer, Heidi; Puxbaum, Hans

    2015-11-01

    Total particulate matter (TPM) emitted during burning of three types of Pakistani wood (eucalyptus camaldulensis, local name Safeeda; acacia nilotica, local name Kikar, Babul; dalbergia sissoo, Shisham, Tali) in a traditional brick stove were collected and analyzed for anhydrosugars, sugar alcohols, trace metals, soluble ions and carbonaceous species. This is a first study reporting anhydrosugars in wood smoke particles emitted during traditional burning of common wood types in Pakistan. Carbonaceous species showed the highest contribution to the particulate matter. Although the total carbon (TC) contribution was similar for all burnings (64.8-70.2%), the EC/OC ratio varied significantly, from 0.2 to 0.3 for Accacia and Dalbergia to 0.7-0.8 for Eucalyptus and Wood-mix. Among inorganic constituents potassium chloride and silicon were found at levels higher than 1%. The levoglucosan concentrations ranged from 3.0 to 6.6% (average 5.6%) with the highest value for Accacia and lowest value for the wood-mix. The high levoglucosan/mannosan ratios of 20-28 were typical for hardwood. The ratio between levoglucosan and galactosan varied stronger and was found to be around 13-20 for Accacia, Eucalyptus and Wood mix, and 43 for Dalbergia. The determined levoglucosan concentrations allowed assessing the conversion factor for calculation of biomass smoke contribution to ambient particulate matter levels in Pakistan.

  3. Air-freshener burns: a new paradigm in burns etiology?

    Science.gov (United States)

    Sarwar, Umran; Nicolaou, M; Khan, M S; Tiernan, E

    2011-10-01

    We report a rare case of burns following the use of automated air-fresheners. We present a case report with a brief overview of the literature relating to burns associated with air-fresheners. The mechanism and treatment of these types of injuries are also described. A 44 year-old female was admitted under the care of the burns team following burns secondary to an exploding air-freshener canister. The patient sustained burns to the face, thorax and arms resulting in a seven-day hospital admission. The burns were treated conservatively. To our knowledge this is one of the few documented cases of burns as a result of air-fresheners. As they become more ubiquitous, we anticipate the incidence of such cases to increase. As such, they pose a potential public health concern on a massive scale.

  4. Short Communication: Emission of Oxygenated Polycyclic Aromatic Hydrocarbons from Biomass Pellet Burning in a Modern Burner for Cooking in China.

    Science.gov (United States)

    Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Wei, Wen; Tao, Shu

    2012-12-01

    Biomass pellets are undergoing fast deployment widely in the world, including China. To this stage, there were limited studies on the emissions of various organic pollutants from the burning of those pellets. In addition to parent polycyclic aromatic hydrocarbons, oxygenated PAHs (oPAHs) have been received increased concerns. In this study, emission factors of oPAHs (EF oPAHs ) were measured for two types of pellets made from corn straw and pine wood, respectively. Two combustion modes with (mode II) and without (mode I) secondary side air supply in a modern pellet burner were investigated. For the purpose of comparison, EF oPAHs for raw fuels combusted in a traditional cooking stove were also measured. EF oPAHs were 348±305 and 396±387 µg/kg in the combustion mode II for pine wood and corn straw pellets, respectively. In mode I, measured EF oPAHs were 77.7±49.4 and 189±118 µg/kg, respectively. EFs in mode II were higher (2-5 times) than those in mode I mainly due to the decreased combustion temperature under more excess air. Compared to EF oPAHs for raw corn straw and pine wood burned in a traditional cooking stove, total EF oPAHs for the pellets in mode I were significantly lower ( p < 0.05 ), likely due to increased combustion efficiencies and change in fuel properties. However, the difference between raw biomass fuels and the pellets burned in mode II was not statistically significant. Taking both the increased thermal efficiencies and decreased EFs into consideration, substantial reduction in oPAH emission can be expected if the biomass pellets can be extensively used by rural residents.

  5. Emission of oxygenated polycyclic aromatic hydrocarbons from biomass pellet burning in a modern burner for cooking in China

    Science.gov (United States)

    Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Wei, Wen; Tao, Shu

    2012-12-01

    Biomass pellets are undergoing fast deployment widely in the world, including China. To this stage, there were limited studies on the emissions of various organic pollutants from the burning of those pellets. In addition to parent polycyclic aromatic hydrocarbons, oxygenated PAHs (oPAHs) have been received increased concerns. In this study, emission factors of oPAHs (EFoPAHs) were measured for two types of pellets made from corn straw and pine wood, respectively. Two combustion modes with (mode II) and without (mode I) secondary side air supply in a modern pellet burner were investigated. For the purpose of comparison, EFoPAHs for raw fuels combusted in a traditional cooking stove were also measured. EFoPAHs were 348 ± 305 and 396 ± 387 μg kg-1 in the combustion mode II for pine wood and corn straw pellets, respectively. In mode I, measured EFoPAHs were 77.7 ± 49.4 and 189 ± 118 μg kg-1, respectively. EFs in mode II were higher (2-5 times) than those in mode I mainly due to the decreased combustion temperature under more excess air. Compared to EFoPAHs for raw corn straw and pine wood burned in a traditional cooking stove, total EFoPAHs for the pellets in mode I were significantly lower (p pellets burned in mode II was not statistically significant. Taking both the increased thermal efficiencies and decreased EFs into consideration, substantial reduction in oPAH emission can be expected if the biomass pellets can be extensively used by rural residents.

  6. ANFO truck burn trials

    Energy Technology Data Exchange (ETDEWEB)

    Rosen von, B.; Contestabile, E. [Natural Resources Canada, CANMET Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2003-10-01

    This report describes the investigation of a tractor-trailer explosion. A truck loaded with 18,000 kg of commercial explosives, of which 13,000 kg was ammonium nitrate with fuel oil (ANFO), caught fire when it struck a rockcut near Walden, Ontario on August 5, 1998. The fire resulted in the detonation of the load. The Canadian Explosives Research Laboratory (CERL) conducted a test program to examine the suitability of existing explosive transportation regulations. Unconfined burns of ANFO were performed. The accident was recreated in two burn trials in an attempt to identify the mechanism that led from fire to detonation. Two full-scale tests were conducted using complete tractor-trailers, each in a jack-knifed position with most of the explosives placed on the ground in front of the trailer. ANFO was used in the first test to determine its response to thermal stimulus and the likelihood of detonation or explosion. The second test involved ANFO, a slurry and an emulsion. Thermocouples and video cameras were used to observe the burning characteristics of the explosives, the truck and its components. The explosives burned steadily for 80 minutes in each test. Many truck components, such as tires, spring brake chambers and the fuel tank ruptured violently due to the heat. Although no detonation occurred in the test trials, it was concluded that under favourable conditions, many truck components, might produce fragments with enough energy to initiate heat-sensitized explosives. It was suggested that a fragment impact caused the detonation at Walden. 4 refs., 7 tabs., 8 figs.

  7. Fungal Burn Wound Infection

    Science.gov (United States)

    1991-01-01

    Aspergillus), Blasto- T he use of effective topical chemotherapeutic agents to myces (Candida), and Zygomycetes ( Mucor , Rhizopus).6 reduce...species, 18%; Mucor species and Rhizopus species, acetate in the morning and silver sulfadiazine in the evening. Prophy- 9.1%; and Microspora species and...sensitivity reports, and the patient’s sue, including one patient who required a hip disarticulation response. to control an invasive Mucor burn wound

  8. Assessing burn depth in tattooed burn lesions with LASCA Imaging

    Science.gov (United States)

    Krezdorn, N.; Limbourg, A.; Paprottka, F.J.; Könneker; Ipaktchi, R.; Vogt, P.M

    2016-01-01

    Summary Tattoos are on the rise, and so are patients with tattooed burn lesions. A proper assessment with regard to burn depth is often impeded by the tattoo dye. Laser speckle contrast analysis (LASCA) is a technique that evaluates burn lesions via relative perfusion analysis. We assessed the effect of tattoo skin pigmentation on LASCA perfusion imaging in a multicolour tattooed patient. Depth of burn lesions in multi-coloured tattooed and untattooed skin was assessed using LASCA. Relative perfusion was measured in perfusion units (PU) and compared to various pigment colours, then correlated with the clinical evaluation of the lesion. Superficial partial thickness burn (SPTB) lesions showed significantly elevated perfusion units (PU) compared to normal skin; deep partial thickness burns showed decreased PU levels. PU of various tattoo pigments to normal skin showed either significantly lower values (blue, red, pink) or significantly increased values (black) whereas orange and yellow pigment showed values comparable to normal skin. In SPTB, black and blue pigment showed reduced perfusion; yellow pigment was similar to normal SPTB burn. Deep partial thickness burn (DPTB) lesions in tattoos did not show significant differences to normal DPTB lesions for black, green and red. Tattoo pigments alter the results of perfusion patterns assessed with LASCA both in normal and burned skin. Yellow pigments do not seem to interfere with LASCA assessment. However proper determination of burn depth both in SPTB and DPTB by LASCA is limited by the heterogenic alterations of the various pigment colours. PMID:28149254

  9. Burning mouth syndrome: etiology.

    Science.gov (United States)

    Cerchiari, Dafne Patrícia; de Moricz, Renata Dutra; Sanjar, Fernanda Alves; Rapoport, Priscila Bogar; Moretti, Giovana; Guerra, Marja Michelin

    2006-01-01

    The Burning Mouth Syndrome (BMS) is an oral mucosa pain--with or without inflammatory signs--without any specific lesion. It is mostly observed in women aged 40-60 years. This pain feels like a moderate/severe burning, and it occurs more frequently on the tongue, but it may also be felt at the gingiva, lips and jugal mucosa. It may worsen during the day, during stress and fatigue, when the patient speaks too much, or through eating of spicy/hot foods. The burning can be diminished with cold food, work and leisure. The goal of this review article is to consider possible BMS etiologies and join them in 4 groups to be better studied: local, systemic, emotional and idiopathic causes of pain. Knowing the different diagnoses of this syndrome, we can establish a protocol to manage these patients. Within the local pain group, we must investigate dental, allergic and infectious causes. Concerning systemic causes we need to look for connective tissue diseases, endocrine disorders, neurological diseases, nutritional deficits and salivary glands alterations that result in xerostomia. BMS etiology may be of difficult diagnosis, many times showing more than one cause for oral pain. A detailed interview, general physical examination, oral cavity and oropharynx inspection, and lab exams are essential to avoid a try and error treatment for these patients.

  10. Gas dynamic lasers

    International Nuclear Information System (INIS)

    Hill, R.J.; Jewell, N.T.

    1975-01-01

    In a high powered laser system it is proposed that combustion gases be bled off from a gas turbine engine and their composition adjusted by burning extra fuel in the bleed gases or adding extra substances. Suitable aerodynamic expansion produces a population inversion resulting in laser action in the CO 2 species. Alternatively, bleed gases may be taken from the high pressure compressor of the gas turbine engine and an appropriate fuel burned therein. If required, other adjustments may also be made to the composition and the resulting gaseous mixture subjected to aerodynamic expansion to induce laser action as before. (auth)

  11. Reducing particulate matter in the operation of firewood burning stoves taking into account the toxicological relevance; Feinstaubminderung im Betrieb von Scheitholzkaminoefen unter Beruecksichtigung der toxikologischen Relevanz

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Volker Alfred

    2010-12-02

    One of the greatest challenges facing humanity is climate change. Correspondingly, inter alia, the German government has set a target by 2020, to reduce emissions of greenhouse gases to the 1990 level by 20%. For this purpose can and should an increased energetic use of biomass contribute. End of 2007, the bioenergy had a share of around three quarters of the renewable primary energy input. Of which more than 45% were used for the heat supply. A total of more than 90% of renewable heat have been provided from biomass. From the provided amount of heat come over 80% from the combustion of solid biofuels - so far almost exclusively wood products - in small and medium wood-fuelled combustion systems. To reduce carbon dioxide emissions the federal government is accelerating a further expansion of energetic use of biomass in the heating sector. This expansion of thermal use of biomass, however, for reasons of pollution control, should not rise simultaneously with the emissions of air pollutants such as carbon monoxide, nitrogen oxides or particulate matter. [German] Eine der groessten Herausforderungen fuer die Menschheit ist der Klimawandel. Entsprechend hat sich u.a. die deutsche Bundesregierung das Ziel gesetzt bis 2020 die Emissionen an Treibhausgasen im Vergleich zum Stand 1990 um 20 % zu mindern. Hierzu kann und soll eine verstaerkte energetische Nutzung der Biomasse beitragen. Ende 2007 hatte die Bioenergie einen Anteil von rund drei Viertel am erneuerbaren Primaerenergieeinsatz. Davon wurden mehr als 45 % fuer die Waermebereitstellung genutzt. Insgesamt wurden mehr als 90 % der erneuerbaren Waerme aus Biomasse bereitgestellt. Von der bereitgestellten Waermemenge kommen ueber 80 % aus der Verbrennung von festen Biobrennstoffen - bisher fast ausschliesslich Holzprodukte - in kleinen und mittleren Holzfeuerungsanlagen. Zur Verminderung der Kohlenstoffdioxidemissionen wird von Seiten des Bundes ein weiterer Ausbau der energetischen Biomassenutzung im Waermebereich forciert. Bei diesem Ausbau der thermischen Biomassenutzung duerfen aber aus Gruenden des Immissionsschutzes nicht gleichzeitig die Emissionen an Luftschadstoffen wie z. B. Kohlenstoffmonoxid, Stickstoffoxide oder Feinstaub ansteigen.

  12. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    NARCIS (Netherlands)

    van der Werf, G. R.; Peters, W.; van Leeuwen, T. T.; Giglio, L.

    2012-01-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked

  13. Urban air quality improvement by using a CNG lean burn engine for city buses

    NARCIS (Netherlands)

    Merétei, T.; Ling, J.A.N. van; Havenith, C.

    1998-01-01

    The use of compressed natural gas (CNG)-fuelled lean-burn city bus engines has a significant potential for air quality improvement in urban areas. Particularly important is the reduction of NO, as well as particulate and non regulated HC-emissions. For this reason, a CNG-fuelled, lean-burn,

  14. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    NARCIS (Netherlands)

    Werf, van der G.R.; Peters, W.; Leeuwen, van T.T.; Giglio, L.

    2013-01-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked

  15. Laminar burning velocities of acetone in air at room and elevated temperatures

    NARCIS (Netherlands)

    Nilsson, E.J.K.; Goey, de L.P.H.; Konnov, A.

    2013-01-01

    Laminar burning velocities of acetone + air mixtures at initial gas mixture temperatures of 298, 318, 338 and 358 K are reported. Non-stretched flames were stabilized on a perforated plate burner at 1 atm, and laminar burning velocities were determined using the heat flux method, at conditions where

  16. Assessing the impact of water filters and improved cook stoves on drinking water quality and household air pollution: a randomised controlled trial in Rwanda.

    Directory of Open Access Journals (Sweden)

    Ghislaine Rosa

    Full Text Available Diarrhoea and respiratory infections remain the biggest killers of children under 5 years in developing countries. We conducted a 5-month household randomised controlled trial among 566 households in rural Rwanda to assess uptake, compliance and impact on environmental exposures of a combined intervention delivering high-performance water filters and improved stoves for free. Compliance was measured monthly by self-report and spot-check observations. Semi-continuous 24-h PM2.5 monitoring of the cooking area was conducted in a random subsample of 121 households to assess household air pollution, while samples of drinking water from all households were collected monthly to assess the levels of thermotolerant coliforms. Adoption was generally high, with most householders reporting the filters as their primary source of drinking water and the intervention stoves as their primary cooking stove. However, some householders continued to drink untreated water and most continued to cook on traditional stoves. The intervention was associated with a 97.5% reduction in mean faecal indicator bacteria (Williams means 0.5 vs. 20.2 TTC/100 mL, p<0.001 and a median reduction of 48% of 24-h PM2.5 concentrations in the cooking area (p = 0.005. Further studies to increase compliance should be undertaken to better inform large-scale interventions.Clinicaltrials.gov; NCT01882777; http://clinicaltrials.gov/ct2/results?term=NCT01882777&Search=Search.

  17. Assessing the impact of water filters and improved cook stoves on drinking water quality and household air pollution: a randomised controlled trial in Rwanda.

    Science.gov (United States)

    Rosa, Ghislaine; Majorin, Fiona; Boisson, Sophie; Barstow, Christina; Johnson, Michael; Kirby, Miles; Ngabo, Fidele; Thomas, Evan; Clasen, Thomas

    2014-01-01

    Diarrhoea and respiratory infections remain the biggest killers of children under 5 years in developing countries. We conducted a 5-month household randomised controlled trial among 566 households in rural Rwanda to assess uptake, compliance and impact on environmental exposures of a combined intervention delivering high-performance water filters and improved stoves for free. Compliance was measured monthly by self-report and spot-check observations. Semi-continuous 24-h PM2.5 monitoring of the cooking area was conducted in a random subsample of 121 households to assess household air pollution, while samples of drinking water from all households were collected monthly to assess the levels of thermotolerant coliforms. Adoption was generally high, with most householders reporting the filters as their primary source of drinking water and the intervention stoves as their primary cooking stove. However, some householders continued to drink untreated water and most continued to cook on traditional stoves. The intervention was associated with a 97.5% reduction in mean faecal indicator bacteria (Williams means 0.5 vs. 20.2 TTC/100 mL, pcooking area (p = 0.005). Further studies to increase compliance should be undertaken to better inform large-scale interventions. Clinicaltrials.gov; NCT01882777; http://clinicaltrials.gov/ct2/results?term=NCT01882777&Search=Search.

  18. 76 FR 2708 - Porcelain-on-Steel Cooking Ware From Taiwan; Top-of-the-Stove Stainless Steel Cooking Ware From...

    Science.gov (United States)

    2011-01-14

    .... 701- TA-267 and 731-TA-304 (Third Review)] Porcelain-on-Steel Cooking Ware From Taiwan; Top-of-the-Stove Stainless Steel Cooking Ware From Korea AGENCY: United States International Trade Commission...-steel cooking ware from Taiwan and the antidumping and countervailing duty orders on imports of top-of...

  19. 75 FR 62144 - Porcelain-on-Steel Cooking Ware From China and Taiwan; Top-of-the-Stove Stainless Steel Cooking...

    Science.gov (United States)

    2010-10-07

    ...); (Investigation Nos. 701-TA-267 and 731-TA-304 (Third Review))] Porcelain-on-Steel Cooking Ware From China and Taiwan; Top-of- the-Stove Stainless Steel Cooking Ware From Korea AGENCY: United States International... porcelain-on-steel cooking ware from China and Taiwan and the antidumping and countervailing duty orders on...

  20. Chimney emissions from small-scale burning of pellets and fuelwood - examples referring to different combustion appliances

    International Nuclear Information System (INIS)

    Kjaellstrand, Jennica; Olsson, Maria

    2004-01-01

    Most wood boilers used for residential heating today are old-fashioned and emit large quantities of organic compounds. The installation of a pellet burner and a change to wood pellets as fuel normally decreases the emissions remarkably. In this study, the emissions from different equipment for burning of wood and pellets are compared. The organic fraction of smoke from traditional wood burning is to a great extent composed of methoxyphenols, with antioxidant effects. Methoxyphenols were also identified in smoke from pellet stoves. A fuel wood boiler or a furnace with an inserted pellet burner is heated to a higher combustion temperature, decreasing the total amount of organic compounds in the smoke. Above 800 deg C, methoxyphenols are thermally decomposed and carcinogenic polycyclic aromatic compounds (PACs) are formed. The combustion-formed aromatic hydrocarbon benzene is present in smoke from all kinds of burning, but the proportion relative to primary organic compounds increases with increasing combustion temperature. In smoke from an environmentally labelled wood boiler and from some pellet burning devices, the levels of PAC and benzene were found to be low. Evidently, the combustion was nearly complete. Although the change from wood to pellets significantly decreases the emissions, considerable differences exist between various combinations of pellet burners and boiler furnaces. (Author)

  1. Poaia [Psychotria ipecacuanha (Brot. Stoves]: aspectos da memória cultural dos poaieiros de Cáceres - Mato Grosso, Brasil Ipecac [Psychotria ipecacuanha (Brot. Stoves]: aspects of cultural memory of "poaieiros" in Cáceres - Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    V.A. Teixeira

    2012-01-01

    Full Text Available O Brasil está entre os principais exportadores de poaia [Psychotria ipecacuanha (Brot. Stoves] seguido do Panamá e Costa Rica. A poaia brasileira apresenta alto valor farmacológico das raízes devido aos teores de emetina e cefalina. Este trabalho teve como objetivo descrever como as famílias de poaieiros mantém a memória cultural sobre a Psychotria ipecacuanha (Brot. Stoves. As informações foram coletadas no município de Cáceres, Mato Grosso, através de entrevista estruturada e observação participante com 20 homens e 10 mulheres, de faixa etária de 45 a 86 anos. Foram citadas as formas de utilização na alimentação para animais, inseticida, carrapaticida, emético, contra diarréias, para alívio de dor de cabeça, contra malária, bronquite e dor no estômago. A raiz é a parte mais usada e a forma de preparo é tintura ou misturada ao fumo, ao vinho ou à cachaça. Poucos entrevistados passaram aos filhos o conhecimento sobre a P. ipecacuanha. A memória cultural sobre a P. ipecacuanha deve-se a vivência, extração e comercialização da planta, e por ouvir as conversas dos pais com amigos. A perda de conhecimento associado a poaia é causada pelo êxodo rural, destruição do habitat com o desmatamento e ocupação agrícola. A extinção da espécie na região contribui para a erosão cultural.Brazil is among the leading exporters of ipecac [Psychotria ipecacuanha (Brot. Stoves], followed by Panama and Costa Rica. The roots of Brazilian ipecac have high pharmacological value due to their levels of emetine and cephalin. This study aimed to describe how families of "poaieiros" maintain the cultural memory of Psychotria ipecacuanha (Brot. Stoves. Information was collected in the city of Cáceres, Mato Grosso State, Brazil, through structured interviews and participating observation involving 20 men and 10 women aged from 45 to 86 years. The cited forms of use were in animal nutrition, as insecticide, acaricide, emetic

  2. Foot burns: epidemiology and management.

    Science.gov (United States)

    Hemington-Gorse, S; Pellard, S; Wilson-Jones, N; Potokar, T

    2007-12-01

    This is a retrospective study of the epidemiology and management of isolated foot burns presenting to the Welsh Centre for Burns from January 1998 to December 2002. A total of 289 were treated of which 233 were included in this study. Approximately 40% were in the paediatric age group and the gender distribution varied dramatically for adults and children. In the adult group the male:female ratio was 3.5:1, however in the paediatric group the male:female ratio was more equal (1.6:1). Scald burns (65%) formed the largest group in children and scald (35%) and chemical burns (32%) in adults. Foot burns have a complication rate of 18% and prolonged hospital stay. Complications include hypertrophic scarring, graft loss/delayed healing and wound infection. Although isolated foot burns represent a small body surface area, over half require treatment as in patients to allow for initial aggressive conservative management of elevation and regular wound cleansing to avoid complications. This study suggests a protocol for the initial acute management of foot burns. This protocol states immediate referral of all foot burns to a burn centre, admission of these burns for 24-48 h for elevation, regular wound cleansing with change of dressings and prophylactic antibiotics.

  3. Poverty, population density, and the epidemiology of burns in young children from Mexico treated at a U.S. pediatric burn facility.

    Science.gov (United States)

    Patel, Dipen D; Rosenberg, Marta; Rosenberg, Laura; Foncerrada, Guillermo; Andersen, Clark R; Capek, Karel D; Leal, Jesus; Lee, Jong O; Jimenez, Carlos; Branski, Ludwik; Meyer, Walter J; Herndon, David N

    2018-03-07

    Children 5 and younger are at risk for sustaining serious burn injuries. The causes of burns vary depending on demographic, cultural and socioeconomic variables. At this pediatric burn center we provided medical care to children from Mexico with severe injuries. The purpose of this study was to understand the impact of demographic distribution and modifiable risk factors of burns in young children to help guide prevention. A retrospective chart review was performed with children 5 and younger from Mexico who were injured from 2000-2013. The medical records of 447 acute patients were reviewed. Frequency counts and percentages were used to identify geographic distribution and calculate incidence of burns. Microsoft Powermap software was used to create a geographical map of Mexico based on types of burns. A binomial logistic regression was used to model the incidence of flame burns as opposed to scald burns in each state with relation to population density and poverty percentage. In all statistical tests, alpha=0.05 for a 95% level of confidence. Burns were primarily caused by flame and scald injuries. Admissions from flame injuries were mainly from explosions of propane tanks and gas lines and house fires. Flame injuries were predominantly from the states of Jalisco, Chihuahua, and Distrito Federal. Scalds were attributed to falling in large containers of hot water or food on the ground, and spills of hot liquids. Scald injuries were largely from the states of Oaxaca, Distrito Federal, and Hidalgo. The odds of a patient having flame burns were significantly associated with poverty percentage (ppoverty led to decrease in odds of a flame burn, but an increase in the odds of scald burns. Similarly, we found that increasing population density led to a decrease in the odds of a flame burn, but an increase in the odds of a scald burn. Burns in young children from Mexico who received medical care at this pediatric burn center were attributed to flame and scalds. Potential

  4. SAFARI 2000 1-Degree Estimates of Burned Biomass, Area, and Emissions, 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — A new method is used to generate spatial estimates of monthly averaged biomass burned area and spatial and temporal estimates of trace gas and aerosol emissions from...

  5. Characterization of Petroleum Hydrocarbons in Post-Burn Crude Oil ...

    African Journals Online (AJOL)

    In the Niger delta, crude oil spilled soils are burned as a means of decontaminating the impacted soils. Gas chromatography - flame ionization detector (GCFID) analyses were performed on oil residues extracted from burnt spilled oil soil samples to facilitate detailed chemical composition and characterization of petroleum ...

  6. Emissions from biomass burning in the Yucatan [Discussions

    Science.gov (United States)

    R. Yokelson; J. D. Crounse; P. F. DeCarlo; T. Karl; S. Urbanski; E. Atlas; T. Campos; Y. Shinozuka; V. Kapustin; A. D. Clarke; A. Weinheimer; D. J. Knapp; D. D. Montzka; J. Holloway; P. Weibring; F. Flocke; W. Zheng; D. Toohey; P. O. Wennberg; C. Wiedinmyer; L. Mauldin; A. Fried; D. Richter; J. Walega; J. L. Jimenez; K. Adachi; P. R. Buseck; S. R. Hall; R. Shetter

    2009-01-01

    In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle...

  7. TIGER Burned Brightly in JAMIC

    Science.gov (United States)

    Olson, Sandra L.; Kashiwagi, Takashi

    2001-01-01

    The Transition From Ignition to Flame Growth Under External Radiation in 3D (TIGER- 3D) experiment, which is slated to fly aboard the International Space Station, conducted a series of highly successful tests in collaboration with the University of Hokkaido using Japan's 10-sec JAMIC drop tower. The tests were conducted to test engineering versions of advanced flight diagnostics such as an infrared camera for detailed surface temperature measurements and an infrared spectroscopic array for gas-phase species concentrations and temperatures based on detailed spectral emissions in the near infrared. Shown in the top figure is a visible light image and in the bottom figure is an infrared image at 3.8 mm obtained during the microgravity tests. The images show flames burning across cellulose samples against a slow wind of a few centimeters per second (wind is from right to left). These flow velocities are typical of spacecraft ventilation systems that provide fresh air for the astronauts. The samples are ignited across the center with a hot wire, and the flame is allowed to spread upwind and/or downwind. As these images show, the flames prefer to spread upwind, into the fresh air, which is the exact opposite of flames on Earth, which spread much faster downwind, or with the airflow, as in forest fires.

  8. Community integration after burn injuries.

    Science.gov (United States)

    Esselman, P C; Ptacek, J T; Kowalske, K; Cromes, G F; deLateur, B J; Engrav, L H

    2001-01-01

    Evaluation of community integration is a meaningful outcome criterion after major burn injury. The Community Integration Questionnaire (CIQ) was administered to 463 individuals with major burn injuries. The CIQ results in Total, Home Integration, Social Integration, and Productivity scores. The purposes of this study were to determine change in CIQ scores over time and what burn injury and demographic factors predict CIQ scores. The CIQ scores did not change significantly from 6 to 12 to 24 months postburn injury. Home integration scores were best predicted by sex and living situation; Social Integration scores by marital status; and Productivity scores by functional outcome, burn severity, age, and preburn work factors. The data demonstrate that individuals with burn injuries have significant difficulties with community integration due to burn and nonburn related factors. CIQ scores did not improve over time but improvement may have occurred before the initial 6-month postburn injury follow-up in this study.

  9. [Epidemiological changes in burned children. A 10-year follow-up].

    Science.gov (United States)

    Rojas Goldsack, María de Los Ángeles; Saavedra Opazo, Rolando; Vicencio Pezo, Paulina; Solís Flores, Fresia

    2016-01-01

    The aim of the study was to compare the incidence and epidemiological characteristics of burns suffered by children in a district of Santiago of Chile over a period of ten years. An analytical study was conducted by checking through the medical files of children under 15 years of age from Pudahuel district who were admitted with burns to the Santiago Aid to Burned Children Corporation (COANIQUEM) during 2011. A comparison was made with the results obtained in a similar study performed in the same district in 2001. In 2011, 440 children were admitted, with an incidence rate of 700/100,000 <15 years old (95% CI: 635-765), a decrease of 25% compared to 2001(Incidence rate of 933/100,000; 95% CI: 856-1010). There were 52% males, 64.5% under 5 years old of age, 88% burned at home, or at other houses where they are been taking care of. There was a significant change in the causative agent, and included, increasing by their relative importance; hot objects (27.1%). The mechanism that mostly increased in occurrence were contact with stoves or heaters, and also emerge that caused by hair iron, and motorcycle exhaust. The most common location was the hand, increasing by 30.8%, and 66.4% showed an extension of the burn of <1% total body surface area (2001, 61%). A significant decline of 54% of deep burns was observed, and 23.2% were admitted to rehabilitation, a similar proportion to 2001. The rate of hospitalization and/or skin graft decreased from 104/100,000 to 62/100,000<15 years old (95% CI: 43-82). Burns incidence has decreased. Hot objects are now the main causal agent. The decrease in the rate of hospitalization and/or graft indicates a lower severity of burns. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. THE TILES FROM THE STOVES OF K. ROZUMOVSKYI’S PALACE AND PARK ENSEMBLE IN BATURYN HISTORICAL AND CULTURAL PRESERVE

    Directory of Open Access Journals (Sweden)

    М. А. Герасько

    2013-10-01

    Full Text Available The theme of this article is the research of the artistic design of the heating system of K. Rozumovskyi’s palace in Baturyn. The object of the research of this theme is thorough study of the production and application of Baturyn tiles in the heating system of the last Ukrainian hetman’s palace. The method of the research of this theme is study of the written sources: the archival documents, the reports of the archaeological expeditions, popular scientific literature, the periodical press and study of the explored material (tiles, made the visual comparative analysis, visiting the museums of local lore. The results of the research can be used in the study of the tiles production and their application in the artistic design of the stove system heating in the 2nd half of the ХVІІІ –beginning ХІХ cent.Purchase on Elibrary.ru > Buy now

  11. Burning Mouth Syndrome

    OpenAIRE

    Renton, Tara

    2011-01-01

    Bruning mouth syndrome is a burning sensation of one or several oral soft tissues with the tongue being affected the most, and may be associated with some other symptoms outside the oral structures. The oral symptoms may appear suddenly or gradually within a time course, may be persistent throughout the day or get more intense as the day progresses in a complaint-free patient in the morning. The syndrome affects mostly women and those over 50 years old, and usually caused by multiple factors....

  12. Burning mouth syndrome: An update

    OpenAIRE

    Vijay Kumar Ambaldhage; Jaishankar Homberhalli Puttabuddi; Purnachandrarao Naik Nunsavath

    2015-01-01

    Burning mouth syndrome (BMS) is characterized by an oral burning sensation in the absence of any organic disorders of the oral cavity. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. It is observed principally in middle-aged patients and postmenopausal women and is characterized by an intense burning type of pain, preferably on the tongue and in other areas of the ...

  13. Burning mouth syndrome: Present perspective

    OpenAIRE

    Ramesh Parajuli

    2015-01-01

    Introduction: Burning mouth syndrome is characterized by chronic oral pain or burning sensation affecting the oral mucosa in the absence of obvious visible mucosal lesions. Patient presenting with the burning mouth sensation or pain is frequently encountered in clinical practice which poses a challenge to the treating clinician. Its exact etiology remains unknown which probably has multifactorial origin. It often affects middle or old age women and it may be accompanied by xerostomia and alte...

  14. The contribution of biomass burning to global warming: An integrated assessment

    International Nuclear Information System (INIS)

    Lashof, D.A.

    1991-01-01

    An analysis of studies of emissions form biomass burning suggests that while biomass burning is less significant than fossil fuel combustion on global basis, it is a major contributor to the greenhouse gas buildup, responsible for perhaps 10% to 15% of the total forcing from current emissions. Uncertainties about emissions and the relative impact of different gases are large, yielding a range of 5% to 30%. Nonetheless, biomass burning is probably the dominant source of greenhouse gases in some regions. A comprehensive policy to limit global climate change must, therefore, address biomass burning

  15. Biomass Burning: Major Uncertainties, Advances, and Opportunities

    Science.gov (United States)

    Yokelson, R. J.; Stockwell, C.; Veres, P. R.; Hatch, L. E.; Barsanti, K. C.; Liu, X.; Huey, L. G.; Ryerson, T. B.; Dibb, J. E.; Wisthaler, A.; Müller, M.; Alvarado, M. J.; Kreidenweis, S. M.; Robinson, A. L.; Toon, O. B.; Peischl, J.; Pollack, I. B.

    2014-12-01

    Domestic and open biomass burning are poorly-understood, major influences on Earth's atmosphere composed of countless individual fires that (along with their products) are difficult to quantify spatially and temporally. Each fire is a minimally-controlled complex phenomenon producing a diverse suite of gases and aerosols that experience many different atmospheric processing scenarios. New lab, airborne, and space-based observations along with model and algorithm development are significantly improving our knowledge of biomass burning. Several campaigns provided new detailed emissions profiles for previously undersampled fire types; including wildfires, cooking fires, peat fires, and agricultural burning; which may increase in importance with climate change and rising population. Multiple campaigns have better characterized black and brown carbon and used new instruments such as high resolution PTR-TOF-MS and 2D-GC/TOF-MS to improve quantification of semi-volatile precursors to aerosol and ozone. The aerosol evolution and formation of PAN and ozone, within hours after emission, have now been measured extensively. The NASA DC-8 sampled smoke before and after cloud-processing in two campaigns. The DC-8 performed continuous intensive sampling of a wildfire plume from the source in California to Canada probing multi-day aerosol and trace gas aging. Night-time plume chemistry has now been measured in detail. Fire inventories are being compared and improved, as is modeling of mass transfer between phases and sub-grid photochemistry for global models.

  16. Ice & Fire: the Burning Question

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Jomaas, Grunde

    2017-01-01

    With the Arctic opening up to new shipping routes and increased oil exploration and production due to climate change, the risk of an Arctic oil spill is increasing. Of the classic oil spill response methods (mechanical recovery, dispersants and in-situ burning), in-situ burning is considered...... to be particularly a suitable response method in the Arctic. In-situ burning aims to remove the oil from the marine environment by burning it from the water surface. A recent Ph.D. thesis from the Technical University of Denmark has provided some new insights with respect to the fire science behind this response...

  17. An experimental investigation of a lean-burn natural-gas pre-chamber spark ignition engine for cogeneration; Swiss Motor. Modification d'un moteur diesel pour le fonctionnement au gaz naturel en cogeneration. Fonctionnement avec prechambre de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Roethlisberger, R.; Favrat, D.

    2001-07-01

    This thesis presented at the Department of Mechanical Engineering of the Swiss Federal Institute of Technology in Lausanne describes the conversion and testing of a commercial diesel engine for use as a lean-burn, natural gas, pre-chamber, spark ignition engine with a rated power of 150 kW, in combined heat and power (CHP) plants. The objective of the investigations - to evaluate the potential of reducing exhaust gas emissions - is discussed in detail with respect to NO{sub x} and CO emissions. The approach adopted includes both experimental work and numerical simulation. The report describes the testing facilities used. The results obtained with experimental spark-plug configurations based on simulation results are presented and the influence of various pre-chamber configuration variants are discussed. The results of the tests are presented and the significant reduction of NO{sub x}, CO and unburned-hydrocarbon (THC) emissions are discussed. The authors state that the engine, which achieves a fuel efficiency of more than 36.5%, fulfils the Swiss requirements on exhaust gas emissions. Also, ways of compensating for the slight loss in fuel-conversion efficiency in the pre-chamber configuration are discussed.

  18. Novel burn device for rapid, reproducible burn wound generation.

    Science.gov (United States)

    Kim, J Y; Dunham, D M; Supp, D M; Sen, C K; Powell, H M

    2016-03-01

    Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200±5°C) and pressed into the skin for 40s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40s at a constant pressure and at pressures of 1 or 3lbs with a constant contact time of 40s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). The custom burn device maintained both its internal

  19. Flue gas wells to minimize dust and acidic components in small-scale burning of field fuel, further development; Roekgasbrunn foer minimering av stoft och sura komponenter vid smaaskalig foerbraenning av aakerbraenslen, vidareutveckling

    Energy Technology Data Exchange (ETDEWEB)

    Yngvesson, Johan; Roennbaeck, Marie; Arkeloev, Olof

    2011-01-15

    Agricultural derived solid fuels are more problematic to combust in small-scale heating plants than conventional wood fuels. Their high content of ash, chlorine and sulphur leads to increased emissions of dust, sulphur dioxide and hydrogen chloride in the flue gases. By transporting the flue gases to a flue gas well where it condenses, and separates dust and sour components, enables a cost effective flue gas purification for small-scale heating plants (50 kW - 10 MW) of agricultural derived solid fuels. This project have studied two heating plants using flue gas wells with the aim to add to the knowledge about how a flue gas wells may look like and to quantify how much emissions of dust, chlorine and sulphur in the flue gases are reduced. The project also aimed to summon regulations and laws regarding the handling of the condensate that develop in the flue gas well. In the project measures were conducted on two different heating plants with mounted flue gas wells: a 60 kW biofuels boiler combusting grains and red canary grass and a 1 MW batch fired boiler combusting wheat straw. Measurements on flue gases were conducted with and without water injection in the flue gases. The flue gas wells reduced dust emissions of up to 80 %. The best reduction was achieved at the 60 kW heating plant when firing red canary grass. Firing grains in the same plant lead to 7 % reduction of the dust emissions. In the 1 MW heating plant firing wheat straw the flue gas well accomplished 40 % reduction of dust emissions. The boiler ability to achieve complete combustion, hence minimize the content of volatile and semi-volatile components in the flue gas, is largely affecting the flue gas well ability to reduce dust emissions. This did not, however, affect the reduction of dust in the flue. Chlorine emissions was reduced by up to 88 % by a flue gas well. Water injection made a big difference on reduction of chlorine emission from grain combustion. Sulphur emissions was reduced by 50

  20. Oral Rehydration Therapy in Burn Patients

    Science.gov (United States)

    2014-04-24

    Burn Any Degree Involving 20-29 Percent of Body Surface; Burn Any Degree Involving 30-39 Percent of Body Surface; Burn Any Degree Involving 40-49 Percent of Body Surface; Burn Any Degree Involving 50-59 Percent of Body Surface; Burn Any Degree Involving 60-65 Percent of Body Surface

  1. Cowdung gas plant gets popular in U. P

    Energy Technology Data Exchange (ETDEWEB)

    Das, R

    1962-12-01

    Work at the Planning Research and Action Institute, Lucknow, was confined from 1957 to 1959 to constructing gas plants of 2.83 m/sup 3/ gas production capacity per day. A demonstration plant on the premises produced gas for lighting and cooking. Successful research at Chinhat demonstrated that small gasoline and kerosene engines could be run on the gas through carburetor modifications. Since 1960 workers at the gobar-gas research center at Ajitmal have developed a two-stage digester system of combined volume of 63.8 m/sup 3/ with a 35.5 m/sup 3/ gasholder. The primary digester is heated and mixed, gravity fed, and passes the slurry through a siphon to the secondary digester. Work continues on the conversion of diesel engines to biogas, the use of the gas for welding, development of stoves on which to bake flatbread, and more efficient use of the effluent.

  2. Global Burned Area and Biomass Burning Emissions from Small Fires

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  3. Emission from open burning of municipal solid waste in India.

    Science.gov (United States)

    Kumari, Kanchan; Kumar, Sunil; Rajagopal, Vineel; Khare, Ankur; Kumar, Rakesh

    2017-07-27

    Open burning of Municipal Solid Waste (MSW) is a potential non-point source of emission, which causes greater concern especially in developing countries such as India. Lack of awareness about environmental impact of open burning, and ignorance of the fact, i.e. 'Open burning is a source of emission of carcinogenic substances' are major hindrances towards an appropriate municipal solid waste management system in India. The paper highlights the open burning of MSW practices in India, and the current and projected emission of 10 major pollutants (dioxin, furans, particulate matter, carbon monoxide, sulphur oxides, nitrogen oxides, benzene, toluene, ethyl benzene and 1-hexene) emitted due to the open burning of MSW. Waste to Energy potential of MSW was also estimated adopting effective biological and thermal techniques. Statistical techniques were applied to analyse the data and current and projected emission of various pollutants were estimated. Data pertaining to population, MSW generation and its collection efficiency were compiled for 29 States and 7 Union Territories. Thereafter, emission of 10 pollutants was measured following methodology prescribed in Intergovernmental Panel on Climate Change guideline for National Greenhouse Gas Inventories, 2006. The study revealed that people living in Metropolitan cities are more affected by emissions from open burning.

  4. In-situ burning of Orimulsion : small scale burns

    International Nuclear Information System (INIS)

    Fingas, M.F.

    2002-01-01

    This study examined the feasibility of burning Orimulsion. In-situ burning has always been a viable method for cleaning oil spills on water because it can effectively reduce the amount of spilled oil and eliminate the need to collect, store, transport and dispose of recovered oil. Orimulsion, however, behaves very differently from conventional oil when it is spilled because of its composition of 70 per cent bitumen in 30 per cent water. In-situ burning of this surfactant-stablized oil-in-water emulsion has never been seriously considered because of the perception that Orimulsion could not be ignited, and if it could, ignition would not be sustained. In this study, burn tests were conducted on 3 scales in a Cleveland Open Cup apparatus of 5 cm, 10 cm and 50 cm diameters. Larger scale burns were conducted in specially built pans. All tests were conducted on salt water which caused the bitumen to separate from the water. The objective was to determine if sufficient vapours could be generated to ignite the Orimulsion. The study also measured if a sustained flame would result in successful combustion. Both objectives were successfully accomplished. Diesel fuel was used to ignite the Orimulsion in the specially designed pan for large scale combustion. Quantitative removal of Orimulsion was achieved in all cases, but in some burns it was necessary to re-ignite the Orimulsion. It was noted that when Orimulsion burns, some trapped water droplets in the bitumen explode with enough force to extinguish a small flame. This did not occur on large-scale burns. It was concluded that the potential for successful in-situ burning increases with size. It was determined that approximately 1 mm in thickness of diesel fuel is needed to ignite a burn. 5 refs., 3 tabs., 4 figs

  5. OH-initiated Aging of Biomass Burning Aerosol during FIREX

    Science.gov (United States)

    Lim, C. Y.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Coggon, M.; Koss, A.; Sekimoto, K.; De Gouw, J. A.; Warneke, C.

    2017-12-01

    Biomass burning emissions represent a major source of fine particulate matter to the atmosphere, and this source will likely become increasingly important in the future due to changes in the Earth's climate. Understanding the effects that increased fire emissions have on both air quality and climate requires understanding the composition of the particles emitted, since chemical and physical composition directly impact important particle properties such as absorptivity, toxicity, and cloud condensation nuclei activity. However, the composition of biomass burning particles in the atmosphere is dynamic, as the particles are subject to the condensation of low-volatility vapors and reaction with oxidants such as the hydroxyl radical (OH) during transport. Here we present a series of laboratory chamber experiments on the OH-initiated aging of biomass burning aerosol performed at the Fire Sciences Laboratory in Missoula, MT as part of the Fire Influences on Regional and Global Environments Experiment (FIREX) campaign. We describe the evolution of biomass burning aerosol produced from a variety of fuels operating the chamber in both particle-only and gas + particle mode, focusing on changes to the organic composition. In particle-only mode, gas-phase biomass burning emissions are removed before oxidation to focus on heterogeneous oxidation, while gas + particle mode includes both heterogeneous oxidation and condensation of oxidized volatile organic compounds onto the particles (secondary organic aerosol formation). Variability in fuels and burning conditions lead to differences in aerosol loading and secondary aerosol production, but in all cases aging results in a significant and rapid increases in the carbon oxidation state of the particles.

  6. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  7. Animal Models in Burn Research

    Science.gov (United States)

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  8. Stem Cells in Burn Eschar

    NARCIS (Netherlands)

    van der Veen, V. C.; Vlig, M.; van Milligen-Kummer, F.J.; de Vries, S.I.; Middelkoop, E.; Ulrich, M.

    2012-01-01

    This study compares mesenchymal cells isolated from excised burn wound eschar with adipose-derived stem cells (ASCs) and dermal fibroblasts in their ability to conform to the requirements for multipotent mesenchymal stem cells (MSCs). A population of multipotent stem cells in burn eschar could be an

  9. Burning mouth syndrome: An update

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ambaldhage

    2015-01-01

    Full Text Available Burning mouth syndrome (BMS is characterized by an oral burning sensation in the absence of any organic disorders of the oral cavity. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. It is observed principally in middle-aged patients and postmenopausal women and is characterized by an intense burning type of pain, preferably on the tongue and in other areas of the oral mucosa. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. This article provides an overview of the literature on this syndrome with special reference to the etiological factors, clinical aspects, diagnostic criteria that should be followed and the therapeutic management with reference to the most recent studies.

  10. The epidemiology of burns in young children from Mexico treated at a U.S. hospital.

    Science.gov (United States)

    Patel, Dipen D; Rosenberg, Laura; Rosenberg, Marta; Leal, Jesus; Andersen, Clark R; Foncerrada, Guillermo; Lee, Jong O; Jimenez, Carlos J; Branski, Ludwik; Meyer, Walter J; Herndon, David N

    2016-12-01

    Young children are the most vulnerable for sustaining burns. At this pediatric burn hospital we have provided medical care to young children with severe burns from Mexico for many years. This study identified modifiable risk factors that could be used to assist in prevention of burns in this age group. A retrospective chart review was performed with children Mexico who were injured from 2000 to 2013. The medical records of 447 acute patients were reviewed. There were 187 females and 260 males with large burns >20% total body surface area (TBSA) burned. Primary causes of burns were flame and scalds. Children with flame injuries were older (3.0±1.5 years of age) than those with scalds (2.6±1.2 years of age). Admissions attributed to flame burns were largely from explosions by propane tanks, gas line leaks, and house fires. Most admissions for scalds were predominantly from falling in large containers of hot water, food, or grease; and fewer were attributed to spills from hot liquids. Most cases reported to a social service agency were to find resources for families. Mortality rate for flame and scald burns was low. It is important take into account demographic, cultural, and socioeconomic variables when developing and implementing prevention programs. Burn prevention instruction for parents is crucial. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  11. Pediatric burns: Kids' Inpatient Database vs the National Burn Repository.

    Science.gov (United States)

    Soleimani, Tahereh; Evans, Tyler A; Sood, Rajiv; Hartman, Brett C; Hadad, Ivan; Tholpady, Sunil S

    2016-04-01

    Burn injuries are one of the leading causes of morbidity and mortality in young children. The Kids' Inpatient Database (KID) and National Burn Repository (NBR) are two large national databases that can be used to evaluate outcomes and help quality improvement in burn care. Differences in the design of the KID and NBR could lead to differing results affecting resultant conclusions and quality improvement programs. This study was designed to validate the use of KID for burn epidemiologic studies, as an adjunct to the NBR. Using the KID (2003, 2006, and 2009), a total of 17,300 nonelective burn patients younger than 20 y old were identified. Data from 13,828 similar patients were collected from the NBR. Outcome variables were compared between the two databases. Comparisons revealed similar patient distribution by gender, race, and burn size. Inhalation injury was more common among the NBR patients and was associated with increased mortality. The rates of respiratory failure, wound infection, cellulitis, sepsis, and urinary tract infection were higher in the KID. Multiple regression analysis adjusting for potential confounders demonstrated similar mortality rate but significantly longer length of stay for patients in the NBR. Despite differences in the design and sampling of the KID and NBR, the overall demographic and mortality results are similar. The differences in complication rate and length of stay should be explored by further studies to clarify underlying causes. Investigations into these differences should also better inform strategies to improve burn prevention and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Prevention of burn injuries to children involving nightwear.

    Science.gov (United States)

    Laing, R M; Bryant, V

    1991-08-28

    The effectiveness of legislative intervention in the New Zealand market for children's nightclothes as an injury prevention strategy has been reassessed by examining those hospital admissions for the period 1980-8 (with emphasis on the 1985-8 period) in which clothing and/or nightclothes were involved. The profiles of the production of children's nightclothes (1977-86) and domestic heating (1984-8) were also examined. Ninety-five cases of burn injury discharges were identified (1985-8), and of those cases involving clothing 42% involved nightwear (49% 1981-4). Some of the 27% unspecified cases may have also involved nightwear (23%, 1981-4). A very strong linear downward trend for nightwear incidents was noted (chi 2 slope = 31.06, p less than 0.001). Forty-eight percent of cases involved children aged 1-6 years, and 68% involved pajamas. Stoves were the main specified ignition agent for nightclothes (36%). Open fires as a form of household heating decreased from 49% to 34% of households (1984-8). Estimated production of nightdresses in New Zealand also decreased (460,000 to 80,000 units, 1973-86). The pronounced decrease in injuries attributable to ignition of children's nightclothes is likely to be the result of mandatory controls on children's nightclothes, increased use of pyjamas, and a steady decrease in use of open fires and portable electric heaters. The typical injury event portrayed to the public of a girl in front of a heater or open fire needs to be corrected.

  13. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE: emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Directory of Open Access Journals (Sweden)

    C. E. Stockwell

    2016-09-01

    Full Text Available The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning, crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR spectroscopy, whole-air sampling (WAS, and photoacoustic extinctiometers (PAX; 405 and 870 nm based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs for scattering and absorption coefficients (EF Bscat, EF Babs, in m2 kg−1 fuel burned, single scattering albedos (SSAs, and absorption Ångström exponents (AAEs. From these data we estimate black and brown carbon (BC, BrC emission factors (g kg−1 fuel burned. The trace gas measurements provide EFs (g kg−1 for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ∼ 80 gases in all. The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63 ± 0.68 was significantly higher than for wood-fuel cooking fires (3.01 ± 0.10. Dung-fuel cooking fires also emitted high levels of NH3 (3.00 ± 1.33 g kg−1, organic acids (7.66 ± 6.90 g kg−1, and HCN

  14. Sedation and Analgesia in Burn

    Directory of Open Access Journals (Sweden)

    Özkan Akıncı

    2011-07-01

    Full Text Available Burn injury is one of the most serious injuries that mankind may face. In addition to serious inflammation, excessive fluid loss, presence of hemodynamic instability due to intercurrent factors such as debridements, infections and organ failure, very different levels and intensities of pain, psychological problems such as traumatic stress disorder, depression, delirium at different levels that occur in patient with severe burn are the factors which make it difficult to provide the patient comfort. In addition to a mild to moderate level of baseline permanent pain in burn patients, which is due to tissue damage, there is procedural pain as well, which occurs by treatments such as grafting and dressings, that are severe, short-term burst style 'breakthrough' pain. Movement and tactile stimuli are also seen in burn injury as an effect to sensitize the peripheral and central nervous system. Even though many burn centers have established protocols to struggle with the pain, studies show that pain relief still inadequate in burn patients. Therefore, the treatment of burn pain and the prevention of possible emergence of future psychiatric problems suc as post-traumatic stress disorder, the sedative and anxiolytic agents should be used as a recommendation according to the needs and hemodynamic status of individual patient. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 26-30

  15. Assault by burning in Jordan

    Science.gov (United States)

    Haddadin, W.

    2012-01-01

    Summary Criminal attacks by burns on women in Jordan are highlighted in this retrospective study carried out of all proved cases of criminal burns in female patients treated at the burn unit of the Royal Rehabilitation Center in Jordan between January 2005 and June 2012. Thirteen patients were included in our study, out of a total of 550 patients admitted, all in the age range of 16-45 yr. Of these 13 women, six were burned by acid throwing, five by hot water, and two by direct flames from fuel thrown over them. Burn percentage ranged from 15 to 75% of the total body surface area, with involvement in most cases of the face and upper trunk. The mean hospital stay was 33 days and the mortality rate was 3/13, i.e. 23%. Violence against women exists in Jordanian society, yet burning assaults are rare. Of these, burning by throwing acid is the most common and most disfiguring act, with a higher mortality rate in domestic environments. PMID:23766757

  16. Estimated health impact of a shift from light fuel to residential wood-burning in Upper Austria.

    Science.gov (United States)

    Haluza, Daniela; Kaiser, August; Moshammer, Hanns; Flandorfer, Claudia; Kundi, Michael; Neuberger, Manfred

    2012-07-01

    The dependency on carbon-based fossil energy and growing awareness of climate change issues has induced ambitious policy initiatives to promote renewable energy sources for indoor heating. Combustion of regionally available material such as wood is considered a carbon-neutral alternative for oil and gas, but unregulated revival of wood stoves may cause detrimental health effects. For the prognosis of the health impact of air pollution due to the use of wood stoves, Upper Austria served for a case study. On the basis of recent measurements of particulate matter fuel oil by either fossil gas or biomass, and for scenario 3, replacement of light fuel oil by biomass only. Compared with the current exposure from scenario 1, the increased annual mean PM10 levels are estimated to lead to 101 (95% CI 56;146) and 174 (95% CI 92;257) additional deaths among 1.4 million inhabitants per year for scenarios 2 and 3, respectively. Without adequate strategies for reducing the emissions of domestic heating facilities, replacement of fossil energy sources could lead to an increased health risk.

  17. Hair bleaching and skin burning

    OpenAIRE

    Forster, K.; Lingitz, R.; Prattes, G.; Schneider, G.; Sutter, S.; Schintler, M.; Trop, M.

    2012-01-01

    Hairdressing-related burns are preventable and therefore each case is one too many. We report a unique case of a 16-yr-old girl who suffered full-thickness chemical and thermal burns to the nape of her neck and superficial burns to the occiput after her hair had been dyed blond and placed under a dryer to accelerate the highlighting procedure. The wound on the nape of the neck required surgical debridement and skin grafting. The grafted area resulted in subsequent scar formation.

  18. Improving global fire carbon emissions estimates by combining moderate resolution burned area and active fire observations

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.

    2011-12-01

    In several important biomes, including croplands and tropical forests, many small fires exist that have sizes that are well below the detection limit for the current generation of burned area products derived from moderate resolution spectroradiometers. These fires likely have important effects on greenhouse gas and aerosol emissions and regional air quality. Here we developed an approach for combining 1km thermal anomalies (active fires; MOD14A2) and 500m burned area observations (MCD64A1) to estimate the prevalence of these fires and their likely contribution to burned area and carbon emissions. We first estimated active fires within and outside of 500m burn scars in 0.5 degree grid cells during 2001-2010 for which MCD64A1 burned area observations were available. For these two sets of active fires we then examined mean fire radiative power (FRP) and changes in enhanced vegetation index (EVI) derived from 16-day intervals immediately before and after each active fire observation. To estimate the burned area associated with sub-500m fires, we first applied burned area to active fire ratios derived solely from within burned area perimeters to active fires outside of burn perimeters. In a second step, we further modified our sub-500m burned area estimates using EVI changes from active fires outside and within of burned areas (after subtracting EVI changes derived from control regions). We found that in northern and southern Africa savanna regions and in Central and South America dry forest regions, the number of active fires outside of MCD64A1 burned areas increased considerably towards the end of the fire season. EVI changes for active fires outside of burn perimeters were, on average, considerably smaller than EVI changes associated with active fires inside burn scars, providing evidence for burn scars that were substantially smaller than the 25 ha area of a single 500m pixel. FRP estimates also were lower for active fires outside of burn perimeters. In our

  19. A burning question

    International Nuclear Information System (INIS)

    Lamb, Garth

    2010-01-01

    Converting unwanted biomass to fuel pellets four times denser than wood has local companies in Queensland, Australia excited. The well-tested 'old technology' of burning wood is going through a renaissance. There is a growing focus on producing high- density biomass pellets from feedstock that would otherwise be considered waste. Their uniform size reduces transport costs, the energy content varies, about 4-5MWh/tonne, compared to 2.8MWh/t for brown coal or 8.3MWh/t for black coal. The biomass estimates from sugarcane, other agricultural wastes and wood wastes suggest Australia has huge biomass resources, but whether or not Australia's political settings see the potential fulfilled is yet to be seen. Altus Renewables recently disclosed plans to build a biofuel pelletisation plant at Queensland's largest sawmill. Altus are very interested in the European market, the world's leading pellet consuming region, where according to the IEA, biomass represents 65% of the renewables. Cheap power provided by waste biomass could potentially power biomass converters, desalination plants, or even pump water inland to arid regions.

  20. Burning mouth syndrome.

    Science.gov (United States)

    Jääskeläinen, Satu K; Woda, Alain

    2017-06-01

    Objective To review the clinical entity of primary burning mouth syndrome (BMS), its pathophysiological mechanisms, accurate new diagnostic methods and evidence-based treatment options, and to describe novel lines for future research regarding aetiology, pathophysiology, and new therapeutic strategies. Description Primary BMS is a chronic neuropathic intraoral pain condition that despite typical symptoms lacks clear clinical signs of neuropathic involvement. With advanced diagnostic methods, such as quantitative sensory testing of small somatosensory and taste afferents, neurophysiological recordings of the trigeminal system, and peripheral nerve blocks, most BMS patients can be classified into the peripheral or central type of neuropathic pain. These two types differ regarding pathophysiological mechanisms, efficacy of available treatments, and psychiatric comorbidity. The two types may overlap in individual patients. BMS is most frequent in postmenopausal women, with general population prevalence of around 1%. Treatment of BMS is difficult; best evidence exists for efficacy of topical and systemic clonazepam. Hormonal substitution, dopaminergic medications, and therapeutic non-invasive neuromodulation may provide efficient mechanism-based treatments for BMS in the future. Conclusion We present a novel comprehensive hypothesis of primary BMS, gathering the hormonal, neuropathic, and genetic factors presumably required in the genesis of the condition. This will aid in future research on pathophysiology and risk factors of BMS, and boost treatment trials taking into account individual mechanism profiles and subgroup-clusters.

  1. Exposure to Household Air Pollution from Biomass-Burning Cookstoves and HbA1c and Diabetic Status among Honduran Women.

    Science.gov (United States)

    Rajkumar, Sarah; Clark, Maggie L; Young, Bonnie N; Benka-Coker, Megan L; Bachand, Annette M; Brook, Robert D; Nelson, Tracy L; Volckens, John; Reynolds, Stephen J; L'Orange, Christian; Good, Nicholas; Koehler, Kirsten; Africano, Sebastian; Osorto Pinel, Anibal B; Peel, Jennifer L

    2018-06-13

    Household air pollution from biomass cookstoves is estimated to be responsible for more than two and a half million premature deaths annually, primarily in low and middle-income countries where cardiometabolic disorders, such as Type II Diabetes, are increasing. Growing evidence supports a link between ambient air pollution and diabetes, but evidence for household air pollution is limited. This cross-sectional study of 142 women (72 with traditional stoves and 70 with cleaner-burning Justa stoves) in rural Honduras evaluated the association of exposure to household air pollution (stove type, 24-hour average kitchen and personal fine particulate matter [PM 2.5 ] mass and black carbon) with glycated hemoglobin (HbA1c) levels and diabetic status based on HbA1c levels. The prevalence ratio [PR] per interquartile range increase in pollution concentration indicated higher prevalence of prediabetes/diabetes (versus normal HbA1c) for all pollutant measures (e.g., PR per 84 μg/m 3 increase in personal PM 2.5 , 1.49; 95% confidence interval [CI], 1.11 - 2.01). Results for HbA1c as a continuous variable were generally in the hypothesized direction. These results provide some evidence linking household air pollution with the prevalence of prediabetes/diabetes, and, if confirmed, suggest that the global public health impact of household air pollution may be broader than currently estimated. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Gaseous and particulate emissions from prescribed burning in Georgia.

    Science.gov (United States)

    Lee, Sangil; Baumann, Karsten; Schauer, James J; Sheesley, Rebecca J; Naeher, Luke P; Meinardi, Simone; Blake, Donald R; Edgerton, Eric S; Russell, Armistead G; Clements, Mark

    2005-12-01

    Prescribed burning is a significant source of fine particulate matter (PM2.5) in the southeastern United States. However, limited data exist on the emission characteristics from this source. Various organic and inorganic compounds both in the gas and particle phase were measured in the emissions of prescribed burnings conducted at two pine-dominated forest areas in Georgia. The measurements of volatile organic compounds (VOCs) and PM2.5 allowed the determination of emission factors for the flaming and smoldering stages of prescribed burnings. The VOC emission factors from smoldering were distinctly higher than those from flaming except for ethene, ethyne, and organic nitrate compounds. VOC emission factors show that emissions of certain aromatic compounds and terpenes such as alpha and beta-pinenes, which are important precursors for secondary organic aerosol (SOA), are much higher from active prescribed burnings than from fireplace wood and laboratory open burning studies. Levoglucosan is the major particulate organic compound (POC) emitted for all these studies, though its emission relative to total organic carbon (mg/g OC) differs significantly. Furthermore, cholesterol, an important fingerprint for meat cooking, was observed only in our in situ study indicating a significant release from the soil and soil organisms during open burning. Source apportionment of ambient primary fine particulate OC measured at two urban receptor locations 20-25 km downwind yields 74 +/- 11% during and immediately after the burns using our new in situ profile. In comparison with the previous source profile from laboratory simulations, however, this OC contribution is on average 27 +/- 5% lower.

  3. Functional Group Analysis of Biomass Burning Particles Using Infrared Spectroscopy

    Science.gov (United States)

    Horrell, K.; Lau, A.; Bond, T.; Iraci, L. T.

    2008-12-01

    Biomass burning is a significant source of particulate organic carbon in the atmosphere. These particles affect the energy balance of the atmosphere directly by absorbing and scattering solar radiation, and indirectly through their ability to act as cloud condensation nuclei (CCN). The chemical composition of biomass burning particles influences their ability to act as CCN, thus understanding the chemistry of these particles is required for understanding their effects on climate and air quality. As climate change influences the frequency and severity of boreal forest fires, the influence of biomass burning aerosols on the atmosphere may become significantly greater. Only a small portion of the organic carbon (OC) fraction of these particles has been identified at the molecular level, although several studies have explored the general chemical classes found in biomass burning smoke. To complement those studies and provide additional information about the reactive functional groups present, we are developing a method for polarity-based separation of compound classes found in the OC fraction, followed by infrared (IR) spectroscopic analysis of each polarity fraction. It is our goal to find a simple, relatively low-tech method which will provide a moderate chemical understanding of the entire suite of compounds present in the OC fraction of biomass burning particles. Here we present preliminary results from pine and oak samples representative of Midwestern United States forests burned at several different temperatures. Wood type and combustion temperature are both seen to affect the composition of the particles. The latter seems to affect relative contributions of certain functional groups, while oak demonstrates at least one additional chemical class of compounds, particularly at lower burning temperatures, where gradual solid-gas phase reactions can produce relatively large amounts of incompletely oxidized products.

  4. Lawn mower-related burns.

    Science.gov (United States)

    Still, J; Orlet, H; Law, E; Gertler, C

    2000-01-01

    Lawn mower-related injuries are fairly common and are usually caused by the mower blades. Burns may also be associated with the use of power lawn mowers. We describe 27 lawn mower-related burn injuries of 24 male patients and 3 female patients. Three of the patients with burn injuries were children. Burn sizes ranged from 1% to 99% of the total body surface area (mean, 18.1%). Two of the patients died. The hospital stay ranged from 1 day to 45 days. Twenty-six injuries involved gasoline, which is frequently associated with refueling accidents. Safety measures should involve keeping children away from lawn mowers that are being used. The proper use and storage of gasoline is stressed.

  5. Modern management of paediatric burns

    African Journals Online (AJOL)

    2010-03-01

    Mar 1, 2010 ... an area of stasis where sluggish circulation and release of inflammatory mediators will .... way to estimate medium to large burns in patients older than 10 .... on day 1 decreases stress hormone release, improves nitrogen ...

  6. Preventing Burns in Your Home

    Science.gov (United States)

    ... clothing when you handle chemicals. Store chemicals, including gasoline, out of the reach of children. To prevent ... mild burn? What is the treatment for smoke inhalation? Resources American Red Cross, Home Fire Safety Centers ...

  7. Prescribed burning: a topical issue

    Directory of Open Access Journals (Sweden)

    Bovio G

    2013-11-01

    Full Text Available Prescribed burning is a promising technique for the prevention of forest fires in Italy. The research deepened several ecological and operative aspects. However, legal issues need to be thoroughly investigated.

  8. Burning mouth syndrome: Clinical dilemma?

    OpenAIRE

    Kanchan R Patil; R S Sathawane

    2008-01-01

    Burning Mouth Syndrome (BMS) is a chronic orofacial burning pain condition usually in the absence of clinical and laboratory findings that affects many adults worldwide, yet its etiology and treatment remain poorly understood. Though it has been associated with numerous oral and systemic conditions, there has been no clear consensus on its etiology, pathogenesis and treatment. As a result, patients with inexplicable oral complaints are often referred from one health care professional to anoth...

  9. 21 CFR 880.5180 - Burn sheet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Burn sheet. 880.5180 Section 880.5180 Food and... Burn sheet. (a) Identification. A burn sheet is a device made of a porous material that is wrapped aroung a burn victim to retain body heat, to absorb wound exudate, and to serve as a barrier against...

  10. DIFFERENTIATING PERIMORTEM AND POSTMORTEM BURNING

    Directory of Open Access Journals (Sweden)

    Brahmaji Master

    2015-01-01

    Full Text Available One of the most challenging cases in forensic medicine is ascertaining the cause of death of burnt bodies under suspicious circumstances. The key questions that arise at the time of investigation include: 1  Was the person alive or dead prior to fire accident?  Did the victim die because of burn?  If death was not related to burns, could burns play a role in causing death?  Were the burns sustained accidentally, did the person commit suicide or was the person murdered?  Are the circumstances suggesting an attempt to conceal crime?  How was the fire started?  How was the victim identified?  In case of mass fatalities, who died first? Postmortem burning of corpses is supposed to be one of the ways to hide a crime. Differentiating the actual cause of death in burn patients is therefore important. Medical examiners usually focus on the defining the changes that occur in tissues while forensic anthropologists deal with the changes related to the bone with or without any the influence of other tissues. Under the circumstances of fire, differentiating the perimortem trauma from that of postmortem cause of bone fractures is vital in determining the cause and motive of death

  11. A study on hydrogen burn due to the operation of containment spray system

    International Nuclear Information System (INIS)

    Park, S.Y.; Kim, D.H.; Jin, Y.; Park, C.K.

    1995-01-01

    The bounding calculation for inflammable gas combustion due to the steam condensation by the operation of the containment spray system was performed. Sensitivity study was performed for two initiating events, station blackout and loss of coolant accident. The parameters for sensitivity study are the condition of cavity, wet or dry, and the timing of operation of the containment spray system. It is shown, based on MAAP4 analyses, that: for dry cavity, auto-ignition burn and hydrogen laden jet burn due to the high temperature in the reactor cavity consumes large amount of burnable gas in the containment and reduces the peak pressure at the global burn by flammability criteria; for wet cavity, large amount of hydrogen and carbon monoxide are generated after dryout of the reactor cavity, but burn is prohibited due to the low gas temperature in the high concentration of the steam. The late operation of the containment spray system condenses the steam rapidly, which results in the global burn at high concentration of burnable gas in the containment. The containment peak pressure from this burn is determined to be high enough to threaten the containment integrity significantly. (author). 3 refs., 3 tabs

  12. Feasibility of flare gas reformation to practical energy in Farashband gas refinery: no gas flaring.

    Science.gov (United States)

    Rahimpour, Mohammad Reaza; Jokar, Seyyed Mohammad

    2012-03-30

    A suggested method for controlling the level of hazardous materials in the atmosphere is prevention of combustion in flare. In this work, three methods are proposed to recover flare gas instead of conventional gas-burning in flare at the Farashband gas refinery. These methods aim to minimize environmental and economical disadvantages of burning flare gas. The proposed methods are: (1) gas to liquid (GTL) production, (2) electricity generation with a gas turbine and, (3) compression and injection into the refinery pipelines. To find the most suitable method, the refinery units that send gas to the flare as well as the required equipment for the three aforementioned methods are simulated. These simulations determine the amount of flare gas, the number of GTL barrels, the power generated by the gas turbine and the required compression horsepower. The results of simulation show that 563 barrels/day of valuable GTL products is produced by the first method. The second method provides 25 MW electricity and the third method provides a compressed natural gas with 129 bar pressure for injection to the refinery pipelines. In addition, the economics of flare gas recovery methods are studied and compared. The results show that for the 4.176MMSCFD of gas flared from the Farashband gas refinery, the electricity production gives the highest rate of return (ROR), the lowest payback period, the highest annual profit and mild capital investment. Therefore, the electricity production is the superior method economically. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Treatment of Palm Burns in Children

    OpenAIRE

    Argirova, M.; Hadzhiyski, O.

    2005-01-01

    The timing and methods of treatment of palm burns in children vary widely. From January 2002 to November 2004, 492 children with burns - 125 of them with hand burns or other body burns - were hospitalized and treated at the N.I. Pirogov Clinic for Burns and Plastic Surgery in Bulgaria. Fifty-four children (for a total of 73 burned hands) presented isolated palm burns.Twenty-two hands were operated on. In this review we present the incidence, causes, treatment methods, functional results, and ...

  14. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  15. Energy poverty, shack fires and childhood burns

    Directory of Open Access Journals (Sweden)

    D K Kimemia

    2017-04-01

    Full Text Available Burn injuries are a persisting challenge in South Africa. Energy poverty, prevalent in under-resourced communities, is a key contributor to the problem. The energy-poor rely on solid fuels and flammable hydrocarbons, such as paraffin, for energy services. The fuels are burnt in inefficient, leaky and unstable appliances, leading to health losses from pollutant emissions, burns, and conflagrations. Within cramped informal home settings, using flammable fuels and risky combustion technologies, the situation can become devastating, especially for young children. Those who survive fiery incidents have to contend with trauma and property losses that may lead to further impoverishment. Proactive intervention strategies are required and should include the broadening of access to safe and sustainable energy. We advocate greater enforcement of home appliance standards and targeted support for the distribution of proven alternative energy technologies, such as liquefied petroleum gas and solar power. Support and advocacy from professional and citizen groups would be necessary to ensure that government prioritises the safe energy requirements of poor citizens.

  16. Results of laboratory tests on the potential for using in situ burning on seventeen crude oils

    International Nuclear Information System (INIS)

    McCourt, J.; Buist, I.; Buffington, S.

    2000-01-01

    The past five years at SL Ross (Ottawa) have been spent analysing seventeen crude oils to establish whether each oil could be cleaned up using an in situ burning technique in the event of a spill. The process involved a series of laboratory tests and controlled burns. The authors determined the emulsification characteristics, the limits to ignition imposed by evaporation and emulsion formation using a series of baseline burns, as well as the emulsion breaker burn test on emulsions that could not be ignited with gelled gas in the baseline burn test. They also determined the density, viscosity, and for some oils the interfacial tension, pour point, and flash point. The results obtained provided valuable information to be used in the case of a spill. They also indicated avenues to be followed in future research. 10 refs., 2 tabs

  17. Emissions from Biomass Burning in the Yucatan

    Science.gov (United States)

    Yokelson, R.; Crounse, J. D.; DeCarlo, P. F.; Karl, T.; Urbanski, S.; Atlas, E.; Campos, T.; Shinozuka, Y.; Kapustin, V.; Clarke, A. D.; hide

    2009-01-01

    In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two trace gases useful as indicaters of BB (HCN and acetonitrile) and several rarely, or never before, measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid, and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan fires emitted unusually amounts of SO2 and particle chloride, likely due to a strong marine influence on the peninsula.

  18. Characterization of metallic micro sieves for gas purification on the example of fine dedusting of exhaust gases of wood burning firing systems; Charakterisierung metallischer Mikrosiebe zur Gasreinigung am Beispiel der Feinentstaubung von Holzfeuerungsabgasen

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Esther

    2011-07-15

    Metallic micro sieves are a promising filter media for fine particulate-removal from gas streams due to their flexible and precisely adaptable pore geometry and their material properties. A current field of application is the particle removal from exhaust gas from biomass heating appliances. The generated aerosol particles are considerably smaller than 1 {mu}m. As a consequence they pose a significant health risk. In order to promote new developments in the field of gas cleaning, this study explores the filtration characteristics of metallic micro sieves theoretically and practically. For the purpose of the design layout of micro sieve filters, the fundamental process of the filtration kinetics, that is the time-dependent development of filtration efficiency and pressure drop, were displayed in a physically based and algebraically solvable calculation model. The filtration kinetics is subdivided in three parts: The flow and the capture of particles in micro sieves (instant of time 0), the dynamic accrue of the pores due to captured particles (phase 1) and the build-up of a filter cake (phase 2). Each section was covered by the formulation of separate mathematic solutions or by further development respectively adaption of existing models. Both the section models and the total model were in good compliance with experimental results. The model as well as the experimental results were used to assess possible applications in the field of the removal of fine particulate matter from exhaust gases of wood fired heating appliances. Exemplary for a wood fired heating appliance with a heating capacity of 100 kW, the required filter surface and achievable filtration efficiencies were calculated. Due to present high particle concentrations, relatively big pore diameters between 15 and 20 {mu}m are sufficient to obtain significant filtration efficiencies above 99 % after a short operation time. Adequate micro sieve porosities of more than 5 % are available. Thus, the realization

  19. Impact of a Newly Implemented Burn Protocol on Surgically Managed Partial Thickness Burns at a Specialized Burns Center in Singapore.

    Science.gov (United States)

    Tay, Khwee-Soon Vincent; Chong, Si-Jack; Tan, Bien-Keem

    2016-03-01

    This study evaluated the impact of a newly implemented protocol for superficial to mid-dermal partial thickness burns which involves early surgery and rapid coverage with biosynthetic dressing in a specialized national burns center in Singapore. Consecutive patients with 5% or greater total body surface area (TBSA) superficial to mid-dermal partial thickness burns injury admitted to the Burns Centre at the Singapore General Hospital between August and December 2014 for surgery within 48 hours of injury were prospectively recruited into the study to form the protocol group. Comparable historical cases from the year 2013 retrieved from the burns center audit database were used to form the historical control group. Demographics (age, sex), type and depth of burns, %TBSA burnt, number of operative sessions, and length of stay were recorded for each patient of both cohorts. Thirty-nine burns patients managed under the new protocol were compared with historical control (n = 39) comparable in age and extensiveness of burns. A significantly shorter length of stay (P burns was observed in the new protocol group (0.74 day/%TBSA) versus historical control (1.55 day/%TBSA). Fewer operative sessions were needed under the new protocol for burns 10% or greater TBSA burns (P protocol for surgically managed burns patients which involves early surgery and appropriate use of biosynthetic dressing on superficial to mid-dermal partial thickness burns. Clinically, shorter lengths of stay, fewer operative sessions, and decreased need for skin grafting of burns patient were observed.

  20. Comparing the reported burn conditions for different severity burns in porcine models: a systematic review.

    Science.gov (United States)

    Andrews, Christine J; Cuttle, Leila

    2017-12-01

    There are many porcine burn models that create burns using different materials (e.g. metal, water) and different burn conditions (e.g. temperature and duration of exposure). This review aims to determine whether a pooled analysis of these studies can provide insight into the burn materials and conditions required to create burns of a specific severity. A systematic review of 42 porcine burn studies describing the depth of burn injury with histological evaluation is presented. Inclusion criteria included thermal burns, burns created with a novel method or material, histological evaluation within 7 days post-burn and method for depth of injury assessment specified. Conditions causing deep dermal scald burns compared to contact burns of equivalent severity were disparate, with lower temperatures and shorter durations reported for scald burns (83°C for 14 seconds) compared to contact burns (111°C for 23 seconds). A valuable archive of the different mechanisms and materials used for porcine burn models is presented to aid design and optimisation of future models. Significantly, this review demonstrates the effect of the mechanism of injury on burn severity and that caution is recommended when burn conditions established by porcine contact burn models are used by regulators to guide scald burn prevention strategies. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  1. Steady State Investigations of DPF Soot Burn Rates and DPF Modeling

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Lage; Ivarsson, Anders; Schramm, Jesper

    2011-01-01

    and soot mass concentrations are used as model boundary conditions. An in-house developed raw exhaust gas sampling technique is used to measure the soot concentration upstream the DPF which is also needed to find the DPF soot burn rate. The soot concentration is measured basically by filtering the soot...... characteristics are used to fit model constants of soot and filter properties. Measured DPF gas conversions and soot burn rates are used to fit model activation energies of four DPF regeneration reactions using O2 and NO2 as reactants. Modeled DPF pressure drops and soot burn rates are compared to the steady...... state DPF experiments in the temperature range between 260 and 480 °C. The model widely reproduces the experimental results. Especially the exponential soot burn rate versus temperature is accurately reproduced by the model....

  2. Electric Engines to Gas

    International Nuclear Information System (INIS)

    Novoa, M.G.

    1996-01-01

    Environmental pollution and specially air pollution, it is produced in a wide range by exhaust gases of internal combustion engines, those which are used to generate energy. Direct use of fossil combustibles as petroleum derivatives and coal produces large quantities of harmful elements to ecology equilibrium. Whit the objective of reducing this pollutant load has been development thermoelectric plants whit turbine to gas or to steam, those which are moved by internal combustion engines. Gas engines can burn most of available gases, as both solid waste and wastewater treatment plants biogas, propane gas, oil-liquefied gas or natural gas. These gases are an alternative and clean energy source, and its efficiency in internal combustion engines is highest compared whit other combustibles as gasoline-motor or diesel

  3. Burning mouth syndrome: Current concepts

    Directory of Open Access Journals (Sweden)

    Cibele Nasri-Heir

    2015-01-01

    Full Text Available Burning mouth syndrome (BMS is a chronic pain condition. It has been described by the International Headache Society as "an intra-oral burning or dysesthetic sensation, recurring daily for more than 2 h/day for more than 3 months, without clinically evident causative lesions." BMS is frequently seen in women in the peri-menopausal and menopausal age group in an average female/male ratio of 7:1. The site most commonly affected is the anterior two-thirds of the tongue. The patient may also report taste alterations and oral dryness along with the burning. The etiopathogenesis is complex and is not well-comprehended. The more accepted theories point toward a neuropathic etiology, but the gustatory system has also been implicated in this condition. BMS is frequently mismanaged, partly because it is not well-known among healthcare providers. Diagnosis of BMS is made after other local and systemic causes of burning have been ruled out as then; the oral burning is the disease itself. The management of BMS still remains a challenge. Benzodiazepines have been used in clinical practice as the first-line medication in the pharmacological management of BMS. Nonpharmacological management includes cognitive behavioral therapy and complementary and alternative medicine (CAM. The aim of this review is to familiarize healthcare providers with the diagnosis, pathogenesis, and general characteristics of primary BMS while updating them with the current treatment options to better manage this group of patients.

  4. Burning mouth syndrome: Current concepts.

    Science.gov (United States)

    Nasri-Heir, Cibele; Zagury, Julyana Gomes; Thomas, Davis; Ananthan, Sowmya

    2015-01-01

    Burning mouth syndrome (BMS) is a chronic pain condition. It has been described by the International Headache Society as "an intra-oral burning or dysesthetic sensation, recurring daily for more than 2 h/day for more than 3 months, without clinically evident causative lesions." BMS is frequently seen in women in the peri-menopausal and menopausal age group in an average female/male ratio of 7:1. The site most commonly affected is the anterior two-thirds of the tongue. The patient may also report taste alterations and oral dryness along with the burning. The etiopathogenesis is complex and is not well-comprehended. The more accepted theories point toward a neuropathic etiology, but the gustatory system has also been implicated in this condition. BMS is frequently mismanaged, partly because it is not well-known among healthcare providers. Diagnosis of BMS is made after other local and systemic causes of burning have been ruled out as then; the oral burning is the disease itself. The management of BMS still remains a challenge. Benzodiazepines have been used in clinical practice as the first-line medication in the pharmacological management of BMS. Nonpharmacological management includes cognitive behavioral therapy and complementary and alternative medicine (CAM). The aim of this review is to familiarize healthcare providers with the diagnosis, pathogenesis, and general characteristics of primary BMS while updating them with the current treatment options to better manage this group of patients.

  5. Telemedicine and burns: an overview.

    Science.gov (United States)

    Atiyeh, B; Dibo, S A; Janom, H H

    2014-06-30

    Access to specialized burn care is becoming more difficult and is being restricted by the decreasing number of specialized burn centers. It is also limited by distance and resources for many patients, particularly those living in poverty or in rural medically underserved communities. Telemedicine is a rapidly evolving technology related to the practice of medicine at a distance through rapid access to remote medical expertise by telecommunication and information technologies. Feasibility of telemedicine in burn care has been demonstrated by various centers. Its use facilitates the delivery of care to patients with burn injuries of all sizes. It allows delivery of acute care and can be appropriately used for a substantial portion of the long-term management of patients after a burn by guiding less-experienced surgeons to treat and follow-up patients more appropriately. Most importantly, it allows better effective triage which reduces unnecessary time and resource demanding referrals that might overwhelm system capacities. However, there are still numerous barriers to the implementation of telemedicine, including technical difficulties, legal uncertainties, limited financial support, reimbursement issues, and an inadequate evidence base of its value and efficiency.

  6. Introduction to burning plasma physics

    International Nuclear Information System (INIS)

    Momota, Hiromu

    1982-01-01

    The free energy of fusion-produced charged particles, the critical plasma Q-value for the thermal instability, and the Cherenkov's emission are discussed. The free energy of fusion-produced charged particles is large even in DT burning plasma. The primary role of fusion-produced energetic charged particles is the heating of fuel plasma. If the charged particle heating is large, burning may be thermally unstable. A zero dimensional analysis shows that the critical plasma Q-values for this thermal instability are nearly 5 for DT burning plasma of 14 keV and 1.6 for D-He 3 burning plasma of 60 keV. These critical plasma Q-values are small as compared to that required for commercial reactors. Then, some methods of burning-control should be introduced to fusion plasma. Another feature of energetic charged particles may be Cherenkov's emission of various waves in fusion plasma. The relationship between this micro-instability and transport phenomena may be the important problem to be clarified. The fusion-produced energetic charged particles have large Larmor radii, and they may have effects on balooning mode instability. (Kato, T.)

  7. Effects of burn location and investigator on burn depth in a porcine model.

    Science.gov (United States)

    Singer, Adam J; Toussaint, Jimmy; Chung, Won Taek; Thode, Henry C; McClain, Steve; Raut, Vivek

    2016-02-01

    In order to be useful, animal models should be reproducible and consistent regardless of sampling bias, investigator creating burn, and burn location. We determined the variability in burn depth based on biopsy location, burn location and investigator in a porcine model of partial thickness burns. 24 partial thickness burns (2.5 cm by 2.5 cm each) were created on the backs of 2 anesthetized pigs by 2 investigators (one experienced, one inexperienced) using a previously validated model. In one of the pigs, the necrotic epidermis covering each burn was removed. Five full thickness 4mm punch biopsies were obtained 1h after injury from the four corners and center of the burns and stained with Hematoxylin and Eosin and Masson's trichrome for determination of burn depth by a board certified dermatopathologist blinded to burn location and investigator. Comparisons of burn depth by biopsy location, burn location and investigator were performed with t-tests and ANOVA as appropriate. The mean (SD) depth of injury to blood vessels (the main determinant of burn progression) in debrided and non-debrided pigs pooled together was 1.8 (0.3)mm, which included 75% of the dermal depth. Non-debrided burns were 0.24 mm deeper than debrided burns (Plocations, in debrided burns. Additionally, there were also no statistical differences in burn depths from midline to lateral in either of these burn types. Burn depth was similar for both investigators and among biopsy locations. Burn depth was greater for caudal locations in non-debrided burns and overall non-debrided burns were deeper than debrided burns. However, burn depth did not differ based on investigator, biopsy site, and medial-lateral location. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  8. Factors affecting perception of beneficiaries of National Programme on Improved Cookstoves regarding cost-benefit of adoption of Mamta Stove

    Energy Technology Data Exchange (ETDEWEB)

    George, R.; Yadla, V.L. [M.S. Univ. of Baroda, Vadodara (India). Home Management Dept.

    1995-10-01

    Perceived levels of cost-benefit of adoption of Mamta Stove (MS) was investigated on a sample of 390 beneficiaries of National Programme on Improved Cookstoves (NPIC) drawn through multistage random sampling technique from 3 villages in Gujarat State, viz., Kanjari, Vadadla, and Sindhrot. A standardized cost-benefit scale that exhibited a reliability coefficient of 0.92 was used in the study. The main cooks revealed a mean age of 36 years. Regarding perception on available sources of cooking fuel and accessibility to those, a wide disparity was observed, not only with reference to commercial sources and fuel forms but also with reference to free fuels gathered from forest land and waste land. MSs were installed in rural kitchens with the active involvement of about 50% of the main cooks. Majority of the cooks in Sindhrot village attended user education camps. The mean perceived cost-benefit ratio (PCBR) was computed to be 0.14. However, PCBR of the cooks from Sindhrot village was 0.51 while those of Vadadla and Kanjari were 0.09 and {minus}0.19 respectively. The correlation coefficient computed between PCBR and selected variables revealed that there existed a significant positive correlation between PCBR of the cook and their participation in NPIC and quality of installation of MS. The observation of the highest PCBR in Sindhrot village, a model smokeless village developed by TBU Baroda, could be attributed to the implementation of NPIC in a systematic manner adopting participatory model. The paper discusses at length the implications of the study and outlines the strategies for achieving widespread adoption of MS by beneficiaries of NPIC.

  9. Comparison of carbon monoxide levels during heating of ice and water to boiling point with a camping stove.

    Science.gov (United States)

    Leigh-Smith, Simon; Watt, Ian; McFadyen, Angus; Grant, Stan

    2004-01-01

    To determine whether using a camping stove to bring a pan of ice to boiling point produces higher carbon monoxide (CO) concentration than would bringing a pan of water to boiling point. The hypothesis was that ice would cause greater CO concentration because of its greater flame-cooling effect and, consequently, more incomplete combustion. This was a randomized, prospective observational study. After an initial pilot study, CO concentration was monitored during 10 trials for each of ice and water. A partially ventilated 200-L cardboard box model was developed and then used inside a chamber at -6 degrees C. Ice temperature and volume, water temperature and volume, pan size, and flame characteristics were all standardized. Temperature of the heated medium was monitored to determine time to boiling point. Carbon monoxide concentration was monitored every 30 seconds for the first 3 minutes, then every minute until the end of each 10-minute trial. There was no significant difference (P > .05) in CO production levels between ice and water. Each achieved a similar mean plateau level of approximately 400 ppm CO concentration with a similar rate of rise. However, significantly higher (P = .014) CO concentration occurred at 4 and 5 minutes when the flame underwent a yellow flare; this occurred only on 3 occasions when ice was the medium. There were no significant differences for CO production between bringing a pan of ice or water to boiling point. In a small number of ice trials, the presence of a yellow flame resulted in high CO concentration. Yellow flares might occur more often with ice or snow melting, but this has not been proven.

  10. Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions

    Science.gov (United States)

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but unce...

  11. Advanced tokamak burning plasma experiment

    International Nuclear Information System (INIS)

    Porkolab, M.; Bonoli, P.T.; Ramos, J.; Schultz, J.; Nevins, W.N.

    2001-01-01

    A new reduced size ITER-RC superconducting tokamak concept is proposed with the goals of studying burn physics either in an inductively driven standard tokamak (ST) mode of operation, or in a quasi-steady state advanced tokamak (AT) mode sustained by non-inductive means. This is achieved by reducing the radiation shield thickness protecting the superconducting magnet by 0.34 m relative to ITER and limiting the burn mode of operation to pulse lengths as allowed by the TF coil warming up to the current sharing temperature. High gain (Q≅10) burn physics studies in a reversed shear equilibrium, sustained by RF and NB current drive techniques, may be obtained. (author)

  12. Burn Control Mechanisms in Tokamaks

    Science.gov (United States)

    Hill, M. A.; Stacey, W. M.

    2015-11-01

    Burn control and passive safety in accident scenarios will be an important design consideration in future tokamak reactors, in particular fusion-fission hybrid reactors, e.g. the Subcritical Advanced Burner Reactor. We are developing a burning plasma dynamics code to explore various aspects of burn control, with the intent to identify feedback mechanisms that would prevent power excursions. This code solves the coupled set of global density and temperature equations, using scaling relations from experimental fits. Predictions of densities and temperatures have been benchmarked against DIII-D data. We are examining several potential feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instability density limits, iii) MHD instability limits, iv) the degradation of alpha-particle confinement, v) modifications to the radial current profile, vi) ``divertor choking'' and vii) Type 1 ELMs. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.

  13. Gas and Gas Pains

    Science.gov (United States)

    ... to produce gas. Often, relatively simple changes in eating habits can lessen bothersome gas. Certain digestive system disorders, ... such as soda and beer, increase stomach gas. Eating habits, such as eating too quickly, drinking through a ...

  14. Burning mouth syndrome: Current concepts

    OpenAIRE

    Nasri-Heir, Cibele; Zagury, Julyana Gomes; Thomas, Davis; Ananthan, Sowmya

    2015-01-01

    Burning mouth syndrome (BMS) is a chronic pain condition. It has been described by the International Headache Society as "an intra-oral burning or dysesthetic sensation, recurring daily for more than 2 h/day for more than 3 months, without clinically evident causative lesions." BMS is frequently seen in women in the peri-menopausal and menopausal age group in an average female/male ratio of 7:1. The site most commonly affected is the anterior two-thirds of the tongue. The patient may also rep...